Ingeniería Mecánica

Permanent URI for this collectionhttp://repositorio.uta.edu.ec/handle/123456789/900

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Obtención y caracterización físico-mecánica de un biopolímero a partir del almidón de la oca (Oxalis Tuberosa)
    (Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica, Carrera de Ingeniería Mecánica, 2024-08) Tocalema Tisalema, Nelly Marisol; Paredes Salinas, Juan Gilberto
    Currently, traditional polymers have a wide range of applications, especially in the packaging industry, where a considerable number of tons are used per year. However, they have drawbacks that must be taken into account. Commercial plastics are manufactured using raw materials from non-renewable resources, such as oil, whose availability is decreasing and its price constantly increasing. Furthermore, they persist in the environment for extended periods of time, causing major environmental problems. This work was developed in three essential stages to obtain optimal results. The first stage consisted of the extraction of goose starch, using a juice extractor, followed by obtaining the biopolymer through a design of experiments (DOE) by mixing, at room temperature and a curing time of 8 days. The second stage included the characterization of the biopolymer, carried out according to the ASTM D638 (Tensile) standard, using a universal testing machine, and the evaluation of biodegradability in accordance with the INTE ISO 14855-1 standard, through ground and air tests. In the third stage, the results obtained were tabulated and analyzed using statistical software. This allowed us to statistically test the assumptions and verify the significance of the model (ANOVA) to identify the best compound. The results showed a maximum tensile stress of 4.10 MPa, an elastic modulus of 23.86 MPa, an elongation of 5.3 percent, in biodegradability tests, a weight loss of 53.36 percent in air and 58.77 percent in the earth.
  • Item
    Caracterización mecánica de un biopolímero a partir del almidón de maíz (Zea Mays) y fréjol (Phaseolus Vulgaris) obtenido mediante DOE-mezclas
    (Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica, Carrera de Ingeniería Mecánica, 2024-08) Ramos Peres, Marilyn Aracelly; Paredes Salinas, Juan Gilberto
    Currently, one of the problems that most affects the environment is the excessive production of plastics that are made from petroleum. These plastics take a long time to degrade, so alternatives have been sought to replace them. In addition, the manufacture of these plastics uses non-renewable resources, generating a great deal of environmental pollution. In this research, through the experimental design by mixtures (DOE), it was possible to know the ideal quantity of starch, glycerin, distilled water and acetic acid for the production of the test tubes. With the DOE, 19 mixtures were obtained, each with 3 repetitions, in order to determine the mechanical properties; Also, tensile, biodegradability and microscopy tests were performed on all the test tubes. The results were tabulated and the best combination to obtain the bioplastic was 150 ml of distilled water, 10.71 g of white carrot starch, 10.71 g of chickpea starch, 4.25 ml of glycerin and 1.70 ml of acetic acid. This formulation corresponds to case 18. When performing the tensile tests, an elasticity modulus of 22.14 MPa, a tensile strength of 2.11 MPa and an elongation percentage of 3.25 percent were obtained. In the biodegradability test, it was verified that mixture 17 is the one with the highest percentage of biodegradation in soil, with a value of 39.29 percent. As a result, it is said that the bioplastic has mechanical properties similar to common plastics.
  • Item
    Caracterización mecánica de un biopolímero a partir del almidón de zanahoria blanca (Arracacia Xanthorrhiza) y garbanzo (Cicer Arietinum) obtenido mediante DOE-mezclas
    (Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica, Carrera de Ingeniería Mecánica, 2024-08) Chicaiza Lema, Ángel Arturo; Paredes Salinas, Juan Gilberto
    In recent years, the consumption of petroleum-derived plastic has increased considerably, generating an increase in greenhouse gas emissions. To address this problem, we have sought to develop a new material such as bioplastic from the starch of different plants as a more sustainable and environmentally friendly alternative. In this research, test tubes were prepared based on the experimental design by mixtures (DOE), which allowed determining the amount of starch, distilled water, acetic acid and glycerin. 19 cases were obtained, each with 3 replicas, allowing their mechanical properties to be better determined. Tensile, biodegradability and microscopy tests were carried out for each test tube, with the results obtained it was evident that the best combination was 150 ml of distilled water, 10.71 g of white carrot starch, 10.71 g of chickpea starch, 4.25 ml of glycerin and 1.70 ml of acetic acid belonging to case 18, which, from the tensile test, the elastic modulus of 11.86 MPa, a maximum tensile stress of 1.664 MPa and an elongation percentage of 3.04 percent were obtained. While, from the biodegradability test, a biodegradation in soil of 33.68 percent and in air of 18.72 percent was obtained in a period of 32 days. As a result, it was obtained that the bioplastic has mechanical properties very similar to common plastics.