Modelo de predicción del resultado en exámenes de acceso a la educación superior para estudiantes que se preparan en centros de capacitación preuniversitaria usando algoritmos de Machine Learning.

dc.contributor.advisorBenalcázar Palacios, Marco Enrique
dc.contributor.authorCoba Gavilánez, Christian Danilo
dc.date.accessioned2023-06-12T21:35:10Z
dc.date.available2023-06-12T21:35:10Z
dc.date.issued2023
dc.description.abstractLa nota de admisión para el ingreso a la educación superior define si un estudiante ingresa o no la carrera de su interés. En Ecuador se ofertan cupos para el 56% de los postulantes a tercer nivel [1]. Esto hace que los estudiantes que optan por un cupo se preparen adicionalmente en un programa preuniversitario. Los cursos de preparación preuniversitaria tienen la misión de hacer que un estudiante obtenga una buena nota y pueda postular para tener una mayor probabilidad de ingreso a la universidad. Usualmente un programa preuniversitario consta de varios procesos académicos y evaluaciones continuas. En este trabajo se propone tener una predicción de la nota que sacará un estudiante en su examen de ingreso a la universidad antes de completar el programa preuniversitario. Adicionalmente se desea conocer cuáles son los factores de mayor relevancia que hacen que esta nota varíe. En los resultados se puede ver que la filial Ambato, un curso de 10 meses y los simulacros de exámenes son factores que tienen un impacto directo en la nota final de admisión. Los modelos de predicción implementados en este trabajo se basan en el uso de regresión lineal y redes neuronales artificiales (RNA). Los resultados de predicción de ambos modelos son similares, pero la ventaja del modelo de regresión lineal es que se puede interpretar cada una de las variables predictoras. Los datos y las variables de interés se obtuvieron del centro de estudios Quality Up, con información de procesos de admisión de 300 estudiantes pertenecientes al ciclo sierra 2022.es_ES
dc.identifier.urihttps://repositorio.uta.edu.ec/handle/123456789/38794
dc.language.isospaes_ES
dc.publisherUniversidad Técnica de Ambato. Facultad de Ingeniería en Sistemas, Electrónica e Industrial. Maestría en Matemática Aplicadaes_ES
dc.rightsopenAccesses_ES
dc.subjectEXAMEN DE ADMISIÓNes_ES
dc.subjectPREDICCIÓNes_ES
dc.subjectREDES NEURONALES ARTIFICIALESes_ES
dc.subjectREGRESIÓN LINEALes_ES
dc.titleModelo de predicción del resultado en exámenes de acceso a la educación superior para estudiantes que se preparan en centros de capacitación preuniversitaria usando algoritmos de Machine Learning.es_ES
dc.typemasterThesises_ES

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
t2306mma.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format
Description:
Texto completo

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: