Ciencia e Ingeniería en Alimentos y Biotecnología

Permanent URI for this communityhttp://repositorio.uta.edu.ec/handle/123456789/412

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Caracterización in vitro de andamios biológicos elaborados a partir de biopolímeros naturales para aplicaciones en ingeniería de tejidos
    (Universidad Técnica de Ambato. Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología. Carrera de Biotecnología, 2023-09) Piñaloza Vásconez, Leslie de los Ángeles; Núñez Villacís, Lorena de los Ángeles
    The shortage of organ donors and the lack of techniques to regenerate injured tissues pose a challenge worldwide, making tissue engineering a promising alternative. In this discipline, cells, biological scaffolds, and factors are combined to generate functional tissues. This study focused on the development and characterization of scaffolds made from natural biopolymers, as these provide the basis for cell adhesion and proliferation. Collagen, chitosan, and collagen - chitosan (hybrid) scaffolds were prepared by lyophilization. Their morphology was evaluated by SEM (porosity) and ethanol infiltration (porosity percentage). In addition, hemocompatibility was characterized by swelling, clotting index, hemolysis, and red blood cell and platelet adhesion tests. The results showed that the hybrid scaffold has the best properties and is the most suitable for future research. However, it is proposed to use the collagen scaffold for epithelial tissue studies, the chitosan scaffold for bone and cartilage tissues, and the hybrid scaffold for bone, cartilage, and connective tissues. Future studies will evaluate the bioactivity of the scaffolds with cells, therefore, to ensure sterility of the scaffolds for cell culture, two sterilization methods were investigated: ultraviolet irradiation and ethanol (65-70 percent). UV light proved to be the best method due to the time required and ease of use. In conclusion, the characterization carried out on the ABs suggests that they possess adequate characteristics for future investigations related to tissue development; however, the collagen - chitosan scaffold presents better morphological characteristics. These ABs will be used in future evaluations of cell growth and proliferation.