Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Garcés Cifuentes, Andrés Benjamín"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Análisis Filogenético de Estructura y Genoma de enzima PETasa de Ideonella sakaiensis
    (Universidad Técnica de Ambato. Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología. Carrera de Ingeniería Bioquímica, 2021-01) Garcés Cifuentes, Andrés Benjamín; Terán Mera, David Andrés
    The bioinformatic studies presented on this work consisted of phylogenetic analysis, structure modeling and molecular docking. On the phylogenetic analysis, more than a hundred identified sequences like PETase from Ideonella sakaiensis were aligned with it. Said information was used to identify high homology sequences that codify for enzymes with possible PET hydrolytic activity. Through this procedure three enzymes were found that meet similar features. The enzyme Pbs from Acidovorax delafieldii (PbsA), DHL from Rizhobacter gummiphilus and DHL from Polyangium brachysporum. Protein structure modelling was performed using SWISSPROT. This needed since the three enzymes did not possess a crystallographic model present on any database. The templates used for the modelling reported are solution higher than 1.8 Armstroms. The molecular docking procedure was performed through AutodockTools. A PET monomer was used as ligand. As result the fixation energies of each enzyme were determined through enzymatic kinetics calculations. This value is a good indicator of substrateenzyme affinity. Finally, plasmid extraction, cell transformation and qualitative analysis of enzymatic activity was carried out in the E. coli (rosetta) cell line. The importance of this study lies in the discovery of PETase activity in already known proteins, which offers more biotechnological options for the treatment of plastic waste, which is an environmental problem that has progressively become a priority worldwide.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify