

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE CIENCIA E INGENIERÍA EN ALIMENTOS

TEMA:

"DESARROLLO DE UNA TECNOLOGÍA INNOVADORA DE PROCESAMIENTO MÍNIMO PARA LA CONSERVACIÓN DE HORTALIZAS FRESCAS LECHUGA (Lactuca sativa L.), COL DE REPOLLO (Brassica oleracea var. capitata), COL MORADA (Brassica oleracea var. Lambarda), ESPINACA (Spinacia oleracea) PICADAS, PREVIAMENTE TRATADAS CON ACEITE ESENCIAL DE TOMILLO (Tymus Vulgaris).

Trabajo de Graduación Modalidad de Trabajo Estructurado de Manera Independiente, presentado como requisito previo a la obtención de Titulo de Ingeniera en Alimentos, otorgado por la Universidad Técnica de Ambato, a través de la Facultad de Ciencia e Ingeniería en Alimentos.

Este trabajo es parte del proyecto: "Estudio de aplicación de métodos combinados en la desinfección de hortalizas para evitar enfermedades transmitidas por alimentos".

AUTOR: SARA ANABEL TIXILEMA POAQUIZA

TUTOR: ING. LENIN A. GARCÉS ESPINOSA

Ambato-Ecuador

2015

i

APROBACIÓN DE TUTOR DE TESIS

Ing. Lenin Garcés

En mi calidad de Tutor del Trabajo de Graduación Modalidad **UNA TECNOLOGÍA** "DESARROLLO DE **INNOVADORA** DE PROCESAMIENTO MÍNIMO PARA LA CONSERVACIÓN DE HORTALIZAS FRESCAS LECHUGA (Lactuca sativa L.), COL (Brassica oleracea var), COL MORADA (Brassica oleracea var. Capitata), ESPINACA (Spinacia oleracea) PICADAS, PREVIAMENTE TRATADAS CON ACEITE ESENCIAL DE TOMILLO (Tymus Vulgaris)" de la Egresada, Srta. Sara Anabel Tixilema Poaquiza, declaro que el estudio es idóneo y reúne los requisitos de un Trabajo de Graduación de Ingeniería en Alimentos; por lo cual considero que el Trabajo investigativo posee los méritos suficientes para ser sometido a la evaluación de los Calificadores que sean designados por el H. Consejo Directivo de la Facultad de Ciencia e Ingeniería en Alimentos.

Ambato, Enero del 2015

.....

Ing. Lenin Garcés

AUTORÍA DE TESIS

Yo, Sara Anabel Tixilema Poaquiza declaro que:

El presente Trabajo de Investigación: "DESARROLLO DE UNA TECNOLOGÍA INNOVADORA DE PROCESAMIENTO MÍNIMO PARA LA CONSERVACIÓN DE HORTALIZAS FRESCAS LECHUGA (Lactuca sativa L.), COL DE REPOLLO (Brassica oleracea var), COL MORADA (Brassica oleracea var. Capitata) Y ESPINACA (Spinacia oleracea) PICADAS, PREVIAMENTE TRATADAS CON ACEITE ESENCIAL DE TOMILLO (Tymus Vulgaris)" es absolutamente original, auténtico y personal, en tal virtud, el contenido y efectos académicos que se desprenden del mismo son de exclusiva responsabilidad del autor.

Ambato, Enero del 2015

Sara Tixilema

C.I.020187565-5

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE CIENCIA E INGENIERÍA EN ALIMENTOS CARRERA DE INGENIERÍA EN ALIMENTOS

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del Tribunal de Grad	do aprueban el presente Trabajo de
Graduación de acuerdo a las dispo	siciones emitidas por la Universidad
Técnica de Ambato.	
	Ambato, Enero del 2015
Para constancia firman:	
PRESIDENTE DEL TRIBUNAL	
MIEMBRO DEL TRIBUNAL	MIEMBRO DEL TRIBUNAL

DEDICATORIA

Este proyecto de investigación está dedicado primeramente a Dios que me ha dado salud, vida y Me ha dado la oportunidad de llegar a culminar una etapa más en mi vida

Dedico a mi hija que ella a ha sido mi motor e inspiración para seguir y continuar con la lucha diaria y hoy poder vivir este momento tan especial.

Dedico a mis padres y hermanos/a que han Sido de gran apoyo en cada uno de los momentos con sus concejos y palabras de Ánimo para seguir con la meta propuesta y hoy poder vivir este momento inolvidable.

Dedico a mi esposo que me ha dado un apoyo incondicional, con sus palabras de ánimo y principalmente siendo comprensivo.

Dedico a todos mis amigos/a que estuvieron a mi lado apoyándome, compartiendo momentos difíciles y momentos agradables.

AGRADECIMIENTO

Un agradecimiento a DIOS, Porque fue mi apoyo fiel, quien me ha dado las fuerzas en tiempo de tempestad un sincero agradecimiento a mis padres, hermanas/o y amigos/a que siempre me brindaron comprensión, apoyo, cariño, y ayuda.

Un profundo agradecimiento para el Ingeniero Lenin Garcés Tutor, Director de tesis, por la paciencia al revisar constantemente el trabajo de investigación y por tan valiosas sugerencias.

Un especial agradecimiento a todos los docentes que en el transcurso de los semestres fueron las personas que me instruyeron a través de sus conocimientos, y sus experiencias.

INDICE GENERAL

PAGINAS PRELIMINARES

Portada		i
	del tutor	ii
Autoría de l	la tesis	iii
Aprobación	del tribunal de grado	iv
Dedicatoria		V
Agradecimi	ento	vi
Índice gene	eral	vii
Índice de ta	ıblas	Χİİ
	yráficos	XV
Resumen e	jecutivo	xvii
	CAPÍTULO I	
	EL PROBLEMA	
1.1	Tema	16
1.2	Planteamiento del problema	
1.2.1	Contextualización del problema	
1.2.1.1	Análisis macro	17
1.2.1.2	Análisis meso	18
1.2.1.3	Análisis micro	18
1.2.2	Análisis	
1.2.2.1 1.2.2.2	Arbol del problemaRelaciones causa efecto	. 20
1.2.2.2	Prognosis	
1.2.4	Formulación del problema	22
1.2.5	Interrogantes de la investigación	
1.3	Delimitación del problema	22
1.3.1	Justificación	
1.4	Objetivos	23
1.4.1	General	
1.4.2	Especifico	24
	CAPÍTULO II	
	MARCO TEORICO	
2.1	Antecedentes de investigación	
2.2	Fundamento Filosófica	
2.2.1	Soberanía Alimentaria	
2.2.2 2.3	Seguridad alimentariaFundamentación Legal	
2.3	Categorías Fundamentales	
2.4.1	Las hortalizas	
2.4.1.1	Clasificación	
2.4.1.1.1	Clasificación Botánica	
2.4.1.1.2	Clasificación las partes utilizadas como alimento	30

2.4.1.1.3	Clasificación Morfológica	30
2.4.2 2.4.2.1	Productos mínimamente procesados Temperatura en microorganismos	31 32
2.4.3	TOMILLO (THYMUS VULGARIS OIL)	
2.4.3.1	PROPIEDADES	
2.4.3.2	APLICACIONES	
2.4.3.3	Información de seguridad	34
2.5	Hipótesis	36
2.5.1	Diseño experimental	36
2.6 2.6.1	Señalamiento de variableVariable independiente	36 36
2.6.2	Variable independiente	36
2.7	Metodología de la investigación	37
2.8	Diagrama de flujo	
	CAPÍTULO III	
	METODOLOGÍA	
3.1	Enfoque de la investigación	39
3.2	Modalidad básica de la investigación	39
3.3	Población y muestra	41
3.3.1	Población	41
3.3.2	Muestra	41
3.3.3 3.4	Diseño experimental Operalizacion de variables	42 44
3.4.1	Variable independiente	44
3.4.2	Variable dependiente	45
3.5	Plan de recolección de la información	46
3.6	Plan de procesamiento de la información	46
	CAPITULO IV	
	ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	
4.	Análisis de resultado	47
	Contenido de microorganismos presentes en 4 hortalizas recien cosechadas	
4.1 4.2	Evaluar el efecto antimicrobiano del aceite esencial del tomillo en hortalizas frescas picadas	47 49
4.2	Efecto del tratamiento de mínimo proceso sobre la carga microbiana de lechuga	50
4.4	Efecto del tratamiento de mínimo proceso la carga microbiana de col de repollo.	51
4.5	Efecto del tratamiento de mínimo proceso sobre la carga microbiana de col morada	52
4.6	Efecto del tratamiento de mínimo proceso sobre la carga microbiana de espinaca	53
-		
4.7	Resultados de humedad, vitamina C, pH y acidez en hortalizas Resultados del análisis sensorial de las hortalizas tratadas con mínimo proceso	54
4.8	y almacenadas en refrigeración.	55
4,9	Vida util de hortalizas tratadas con tratamiento de mínimo proceso.	57

CAPITULO V CONCLUSIÓN Y RECOMENDACIONES

5.1 Conclusiones		
	CAPITULO VI	
	LA PROPUESTA	
6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.5 6.6 6.7 6.8 6.9 6.10	Datos informativos Antecedentes de la propuesta Justificación de la propuesta Objetivos Objetivos generales Objetivos específicos Fundamentación de la propuesta Metodología de la propuesta Administración de la propuesta Previsión de la evaluación de la propuesta Material de referencia Bibliografía	61 62 63 63 64 66 67 67 68 68
6.11	Anexos	75
	ANÁLISIS FÍSICO-QUÍMICOS, MICROBIOLÓGICOS, SENSORIALES	
	EN HORTALIZAS PREVIAMENTE TRATADAS CON ACEITE	
	ESENCIAL DE TOMILLO	
TABLAA1 TABLAA2 TABLAA3 TABLAA4 TABLAA5 TABLA A6 TABLAA7 TABLAA8 TABLAA9 TABLA 10 TABLA 11 TABLA 11 TABLA 12 TABLA A13 TABLA 14 TABLA 15 TABLA 16	Contenido de humedad en col de repollo Contenido de humedad en col morada Contenido de humedad en espinaca Contenido de pH de lechuga Contenido de pH de col de repollo Contenido de pH de espinaca Contenido de pH de espinaca Contenido de pH de espinaca Contenido de Acidez de lechuga Contenido de Acidez de lechuga Contenido de Acidez de col de repollo Contenido de Acidez de col morada Contenido de Acidez de espinaca Contenido de Vitamina C mg/100 g de lechuga Contenido de Vitamina C mg/100g de col de repollo Contenido de Vitamina C mg/100g de col morada Contenido de Vitamina C mg/100g de col morada Contenido de Vitamina C mg/100g de col morada Contenido de Vitamina C mg/100g de espinaca	
	ANEXO B	
	ANÁLISIS MICROBIOLÓGICOS DE LAS CUATRO	
	HORTALIZAS PICADAS, PREVIAMENTE TRATADAS CON	
TABLA B1 TABLA B2 TABLA B3	Contenido de mohos y levaduras ufc/g en lechuga	88 88 89
TABLA B3	Contenido de <i>monos y levaduras</i> uic/g en coi morada	89

TABLA B5	Contenido de Aerobios Mesófilos en lechuga	90
TABLA B6	Contenido de Aerobios Mesófilos en col de repollo	90
TABLA B7	Contenido de Aerobios Mesófilos en col morada	91
TABLA B8	Contenido de Aerobios Mesófilos en espinaca	91
TABLA B9	Contenido de Coliformes totales en lechuga	92
TABLA B10	Contenido de Coliformes totales en col de repollo	92
TABLA B11	Contenido de Coliformes totales en col morada	93
TABLA B12	Contenido de Coliformes totales en espinaca	93
TABLA B13	Contenido de Salmonella en lechuga	94
TABLA B14	Contenido de Salmonella en col de repollo	94
TABLA B15	Contenido de Salmonella en col	95
TABLA B16	Contenido de Salmonella en espinaca	95
TABLA B17	Contenido de Staphylococcus aureus en lechuga	96
TABLA B18	Contenido de Staphylococcus aureus en col de repollo	96
TABLA B19	Contenido de Staphylococcus aureus en col morada	98
TABLA B20	Contenido de Staphylococcus aureus ufc/g en espinaca	98

ANEXO D

TABLAS DE RESUMENES DEL DISEÑO EXPERIMENTAL, ANÁLISIS FÍSICO-QUÍMICOS Y ANÁLISIS MICROBIOLÓGICOS EN LAS CUATRO HORTALIZAS PICADAS, PREVIAMENTE TRATADAS CON ACEITE ESENCIAL DE TOMILLO CON TRATAMIENTO DE MINIMOS PROCESOS

TABLA D1	Humedad, Vitamina C, pH y acidez en los diferentes tratamientos	100
TABLA D2	Análisis de varianza para mohos y levaduras	101
TABLA D3	Analisis de tukey para temperatura en Lechuga	101
TABLA D4	Analisis de Tukey por el tiempo en lechuga	101
TABLA D5	Analisis del mejor tratamiento de lechuga	102
TABLA D6	Analisis de Tukey para temperatura para Col de repollo	102
TABLA D7	Analisis de Tukey por el tiempo en Col de repollo	102
TABLA D8	Tabla de analisis del mejor tratamiento de col de repollo	103
TABLA D9	Analisis de Tukey para temperatura para Col morada	103
TABLA D10	Analisis de Tukey por el tiempo para Col morada	103
TABLA D11	Analisis del mejor de col morada	104
TABLA D12	Analisis de Tukey para temperatura para espinaca	104
TABLA D13	Analisis de Tukey por el tiempo para espinaca	104
TABLA D14	Analisis del mejor tratamiento de espinaca	105
TABLA D15	Análisis de varianza para Aerobios mesofilos totales de hortalizas	105
TABLA D16	Analisis de Tukey para temperatura para Lechuga	106
TABLA D17	Analisis de Tukey por el tiempo lechuga	106
TABLA D18	Analisis del mejor tratamiento de lechuga	106
TABLA D19	Analisis de Tukey para temperatura para Col de repollo	106

TABLA D20	Analisis de Tukey por el tiempo para Col de repollo	107
TABLA D21	Analisis del mejor tratamiento de col de repollo	107
TABLA D22	Analisis de Tukey para temperatura para Col morada	107
TABLA D23	Analisis de Tukey por el tiempo para Col morada	108
TABLA D24	Analisis del mejor tratamiento de col de repollo	108
TABLA D25	Analisis de Tukey para temperatura para Espinaca	108
TABLA D26	Analisis de Tukey por el tiempo Espinaca	110
TABLA D27	Analisis del mejor tratamiento de espinaca	111
TABLA D28	Análisis de varianza para Aerobios mesofilos totales en hortalizas	111
TABLA D29	Analisis de Tukey para temperatura para Lechuga	111
TABLA D30	Analisis de Tukey por el tiempo Lechuga	112
TABLA D31	Analisis del mejor tratamiento de lechuga	112
TABLA D32	Analisis de Tukey para temperatura para Col de repollo	112
TABLA D33	Analisis de Tukey por el tiempo para Col de repollo	113
TABLA D34	Analisis del mejor tratamiento de la col de repollo	113
TABLA D35	Analisis de Tukey para temperatura para Col morada	113
TABLA D36	Analisis de Tukey por el tiempo para Col morada	114
TABLA D37	Analisis del mejor tratamiento col morada	114
TABLA D38	Analisis de Tukey para temperatura para Espinaca	114
TABLA D39	Analisis de Tukey por el tiempo Espinaca	115
TABLA D40	Analisis del mejor tratamiento espinaca	115
TABLA D54	Análisis de varianza para salmonella de hortalizas	115
TABLA D55	Analasis de Tukey para temperatura para Lechuga	116
TABLA D56	Analasis de Tukey por el tiempo Lechuga	116
TABLA D57	Analisis del mejor tratamiento de lechuga	116
TABLA D58	Analasis de Tukey para temperatura en Col de repollo	117
TABLA D59	Analasis de Tukey por el tiempo para Col de repollo	117
TABLA D60	Analisis del mejor tratamiento de col de repollo	117
TABLA D61	Analisis de Tukey para temperatura para Col morada	118
TABLA D62	Analisis de Tukey por el tiempo para Col morada	118
TABLA D63	Analisis del mejor tratamiento de col morada	118
TABLA D64	Analisis de Tukey para temperatura en Espinaca	119
TABLA D65	Analisis de Tukey por el tiempo en Espinaca	119
TABLA D66	Analisis del mejor tratamiento de espinaca	120
TABLA D67	Análisis de varianza para Staphylococcus aureus	120
TABLA D68	Analisis de Tukey para temperatura para Lechuga	120
TABLA D69	Analisis de Tukey por el tiempo en Lechuga	121
TABLA D70	nalisis del mejor tratamiento de lechuga	121
TABLA D71	Analisis de Tukey para temperatura en Col de repollo	121
TABLA D72	Analisis de Tukey por el tiempo en Col de repollo	122
TABLA D73	Analisis del mejor tratamiento de col de repollo	122
TABLA D74	Analisis de Tukey para temperatura en Col morada	122
TABLA D75	Analisis de Tukey por el tiempo en Col morada	123
TABLA D76	Analisis del mejor tratamiento de col morada	123
TABLA D77	Analisis de Tukey para temperatura en espinaca	123
TABLA D78	Analisis de Tukey por el tiempo Espinaca	124
TABLA D79	Analisis del mejor tratamiento de espinaca	124
TABLA D80	Porcentaje de eficiencia de disminución de carga microbiana ANEXO E	125

ANOVA Y PRUEBAS DE TUKEY PARA LA EVALUACIÓN SENSORIAL EN EL MEJOR TRATAMIENTO

DE CADA UNO DE LAS HORTALIZAS PICADAS

TABLA E1	Análisis de varianza (ANOVA) en lechuga	127
TABLA E2	Tukey para Color en lechuga	127
TABLA E3	Tukey para Olor en lechuga	127
TABLA E4	Tukey para Sabor en lechuga	128
TABLA E5	Tukey para textura en lechuga	128
TABLA E6	Tukey para Aceptabilidad en lechuga	128
TABLA E7	Tukey para pardeamiento enzimático en lechuga	129
TABLA E8	Análisis de varianza (ANOVA) para col de repollo	129
TABLA E9	Tukey para Olor en Col repollo	130
TABLA E10	Tukey para Sabor en Col repollo	131
TABLA E11	Tukey para Textura en Col repollo	131
TABLA E12	Tukey para Aceptabilidad en Col repollo	132
TABLA E13	Tukey para pardeamiento enzimático en Col repollo	132
TABLA E14	Análisis de varianza (ANOVA) para col morada	133
TABLA E15	Homogeneidad para Color en Col morada	134
TABLA E16	Tukey para Olor en Col morada	134
TABLA E17	Tukey para Sabor en Col morada	134
TABLA E18	Tukey para Textura en Col morada	135
TABLA E19	Tukey para Aceptabilidad en Col morada	135
TABLA E20	Tukey para pardeamiento enzimático en Col morada	135
TABLA E21	Análisis de varianza (ANOVA) para col espinaca	136
TABLA E22	Tukey para Olor en Espinaca	137
TABLA E23	Tukey para Sabor en Espinaca	137
TABLA E24	Tukey para Textura en en Espinaca	137
TABLA E25	Tukey para Aceptabilidad en Espinaca	138
TABLA E26	Tukey para pardeamiento enzimático en Espinaca	138
	DETERMINACIÓN DEL TIEMPO DE VIDA ÚTIL DE LAS CUATRO HORTALIZAS	
TABLA I1	Cálculo de Tiempo de vida útil (Aerobios mesofilos) en lechuga	140
TABLA 12	Cálculo de Tiempo de vida útil (Aerobios mesofilos) en col morada	140
TABLA 13	Cálculo de Tiempo de vida útil (Aerobios mesofilos) en col de repollo	140
TABLA 14	Cálculo de Tiempo de vida útil (Aerobios mesofilos) en espinaca	141
TABLA 15	Cálculo de Tiempo de vida útil (Coliformes Totales) en lechuga	143
TABLA 16	Cálculo de Tiempo de vida útil (Coliformes Totales) en col de repollo	143
TABLA 17	Cálculo de Tiempo de vida útil (Coliformes Totales) en col morada	143
TABLA 18	Cálculo de Tiempo de vida útil (Coliformes Totales) en espinaca	144
TABLA 19	Tabla resumen del tiempo de vida útil de cada hortaliza	144
	'	
	ANEXO J	
	PÉRDIDA DE PESO EN ALMACENAMIENTO	
	DE HORTALIZAS TRATADAS	
TABLA G1	Análisis de pérdida de peso de la lechuga	146
TABLA G2	Análisis de pérdida de peso de la col de repollo	147
TABLA G3	Análisis de pérdida de peso de la col de repollo	148
TABLA G4	Análisis de pérdida de peso de la col de repollo	149

ANEXO H

COSTOS DE HORTALIZAS TROCEADAS PREVIAMENTE TRATADAS CON ACEITE ESENCIAL DE TOMILLO

Costos de la materia prima Col morada	151			
Costos de la materia prima lechuga				
Costos de la materia prima espinaca				
Costos de los equipos por horas utilizadas				
Costos de los servicios básicos	152			
Costo de la mano de obra	153			
Utilidades ganadas por hortaliza	153			
ANEXO I				
FICHAS DE CATACIONES PARA LA EVALUACIÓN				
SENSORIAL DE LAS HORTALIZAS PICADAS,				
PREVIAMENTE TRATADAS CON ACEITE ESENCIAL DE TOMILLO				
Ficha de cataciones	155			
ANEXO				
FOTOGRAFIAS				
Diagrama del desarrollo de la fase experimental	159 163			
	Costos de la materia prima lechuga			

RESUMEN EJECUTIVO:

AUTOR: Sara A Tixilema P.

TUTOR: Ing. Lenin Garcés.

En los últimos años, la industria de alimentos ha priorizado la sustitución de los

aditivos químicos convencionales por compuestos naturales, como respuesta a la

demanda creciente de los consumidores de una alimentación más sana, segura y

que no contamine el medioambiente. La tecnología que se ha buscado consiste en

aplicar un tratamiento de mínimos procesos a hortalizas que contienen una alta

cantidad de microorganismos, las hortalizas fueron tratadas previamente con una

de aceite esencial de tomillo como con un antimicrobiano natural, solución

combinado con un tratamiento térmico de mínimos procesos que puede garantizar

la seguridad alimentaria y la prolongación del tiempo de vida útil de las hortalizas.

Se utilizó un diseño AxB, siendo el factor A las temperaturas (a_0 =40°C, a_1 = 45°C,

 $a_2 = 50^{\circ}$ C) y el factor B los tiempos de secado ($b_0 = 15$ minutos, $b_1 = 30$ minutos),

aplicadas a las diferentes hortalizas como lechuga, col de repollo, col morada y

espinaca. Las hortalizas previamente fueron sumergidas en una cantidad de

0,025% (v/v) de aceite esencial de tomillo durante 4 minutos.

Para las repuestas experimentales se tomaron en cuenta los cambios en las

propiedades fisicoquímicas y en la eficiencia germicida sobre los microorganismos

presentes en las diferentes hortalizas. Las hortalizas antes de ser sometidas a los

diferentes tratamientos se encontraban con cantidades altas de microorganismos y

no aptas para el consumo humano, debido a que se determinó presencia inclusive

de salmonella.

El mejor tratamiento fue cuando las hortalizas fueron tratadas con una temperatura

de tratamiento de mínimo proceso de 50°C por 15 minutos, llegando a tener

valores que superan el 99,70% de eficiencia germicida en los microorganismos

xiv

analizados, llegando inclusive al 100% de eficiencia germicida en Coliformes totales, Salmonella y *Staphylococcus aureus*,.

El tiempo de vida útil de las hortalizas, tomando en consideración los análisis sensoriales y de microorganismos durante el almacenamiento de las hortalizas en refrigeración fueron: en el tiempo de vida útil de las hortalizas fueron: 16 días para espinacas, 6 días en lechuga y de 10 a 17 días en col de repollo y 8 a 15 en col morada dependiendo de los tipos de microorganismos analizados, claramente se observa que en el caso de *coliformes totales* el tiempo de vida útil es menor.

Palabra Clave: Tecnología de mínimo proceso, temperatura y tiempo de secado, eficiencia germicida, vida útil.

CAPITULO I

EL PROBLEMA:

1.1 Tema de investigación

Desarrollo de una tecnología innovadora de procesamiento mínimo para la conservación de hortalizas frescas picadas previamente tratadas con aceite esencial de Tomillo (*Tymus vulgaris*).

1.2 PLANTEAMIENTO DEL PROBLEMA

1.2.1 CONTEXTUALIZACIÓN DEL PROBLEMA

1.2.1.1 ANÁLISIS MASCRO

En Ecuador hay 1.145 hectáreas (ha) de lechuga con un rendimiento promedio de 7.928 Kg por ha, según el Ministerio de Agricultura. De la producción total, el 70% es de lechuga criolla, mientras que el 30% es de las variedades rojo o salad. Las provincias con mayor producción son Cotopaxi (481 ha), Tungurahua (325 ha) y Carchi (96 ha) (Ministerio de Coordinación de la Producción, 2011).

Aunque la producción de lechuga en Ecuador tiene entre siete y ocho variedades, solo una se lleva el 70% del mercado. Así la lechuga criolla o repollo es la elegida por los ecuatorianos (Navas, 2010).

La col de repollo es una hortaliza que pertenece a la familia de las crucíferas y es una planta exótica que se siembra en todo el mundo y durante todo el año. Es una verdura rica en minerales como potasio, azufre, fósforo, calcio, magnesio, hierro y vitaminas (A, B, C, E, K). Su olor es intenso y se percibe a la distancia. En Ecuador hay 1.843 hectáreas sembradas con esta hortaliza, según el Ministerio de Agricultura y Ganadería 2010. Las

principales plantaciones están en Chimborazo, Pichincha, Tungurahua y Azuay, donde se siembran variedades como la col de repollo, china, de bruselas, morada, de milán y coliflor. (Comercio, 2011)

Con relación a la espinaca, existe una escasa producción industrializada, la producción de esta hortaliza se destina al mercado local.

Con estos antecedentes es importante destacar que la presente investigación emplea cuatro hortalizas: col de repollo (*Brassica oleracea var. capitata cv. bronco*), col morada (*Brassica oleracea var. capitata f. rubra*), lechuga iceberg tipo salinas (*Lactuca sativa var. capitata*) y espinaca (*Spinacia oleracea L.*), producción que se pretende sea utilizada para la elaboración en gran escala de vegetales listos para el consumo directo, al estar libres de contaminación siendo mínimamente procesadas.

Desde el punto de vista productivo, la horticultura se caracteriza por su "diversidad"; no sólo en el tipo de órgano que interesa producir para su consumo sino por sus raíces, tallos, hojas, peciolos, inflorescencias y frutos (Romero, 2012).

1.2.1.2 ANÁLISIS MESO

En Tungurahua se cultivan productos transitorios y cultivos permanentes. Los cultivos transitorios más destacados son: cebolla, col, frejol, haba, lechuga, tomate, zanahoria amarilla, coliflor, brócoli, alcachofa, nabo, acelga, ají, pepino, entre otros; legumbres como: fréjol, habas, arvejas y lenteja; tiernos o secos; cereales como: maíz suave, trigo, cebada, quinua; tubérculos como: papas, ocas, mellocos, y hierbas aromáticas. La provincia es la principal productora de hortalizas, aportando con el 47% del área sembrada de la Región 3 (Cotopaxi, Tungurahua, Pastaza, Chimborazo), y el 44% de su producción. (Ministerio de Coordinación de la Producción, 2011)

Como se aprecia en el Cuadro 1, se destaca la alta producción de hortalizas que representa el 32% de la superficie y el 59% de la producción total de hortalizas en la provincia.

Cuadro 1 Producción de hortalizas en Tungurahua

Cultivo	Condición del cultivo	Superficie sembrada (has)	Superficie cosechada (has)	Cantidad cosechada (tm)	Cantidad vendida (tm)	Rendimiento
Lechuga	Solo	850	832	5.970	5.800	7,02
Lechuga	Asociado	52	52	288	273	5,53
Col	Solo	500	429	5.762	5.707	11,51
	Asociado	52	51	268	233	5,16
Espinaca	Solo	10	10	8	8	0,79
	Asociado	2	2	1	1	0,81

Hectáreas (has), toneladas métricas (tm)

Fuente: III Censo Nacional Agropecuario, 2009

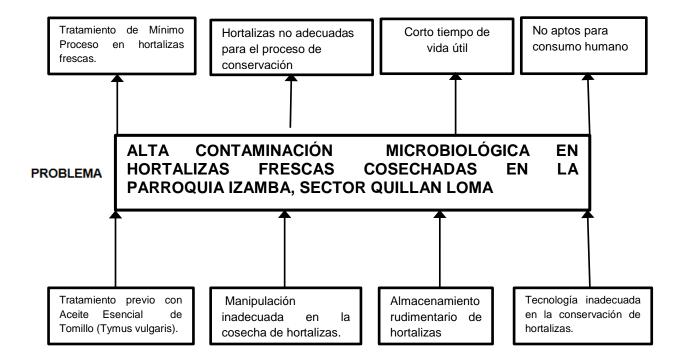
Elaboración: Cámara de Agricultura de la Primera Zona

La producción de lechuga, col de repollo, col morada y espinaca a nivel de la provincia se destaca como un cultivo transitorio; sin embargo, abastece a la región central del país, al tener una producción del 47% por lo cual se quiere elaborar el presente trabajo para beneficio de los productores quienes podrán expender su producto de una manera diferente llegando a obtener mejores ganancia y podrán incrementar su producción.

1.2.1.3 ANALISIS MICRO

En esta zona de Izamba en el sector de Quillan Loma, viven comunidades campesinas que hasta ahora no han podido mejorar su nivel de vida, pero si cuentan con capital humano como para ser "sujeto" de un proyecto que mejorar el manejo tecnológico de la elaboración hortalizas frescas picadas los cuales son elaboradas en centros artesanales de la zona; muchas de ellas sin tomar en cuenta medidas higiénicas, técnicas de elaboración, costos, rendimiento y rentabilidad; y , por ende la economía familiar, sin crear dependencia de ningún tipo.

Cualquier anormalidad, de una o más de las características señaladas, está en correspondencia con los defectos presentados en el producto: defectos en la calidad sensorial; defectos en la calidad nutricional y defectos en la calidad comercial; defectos en la calidad higiénica, por la presencia de microorganismos patógenos, en especial, bacterias del grupo *Escherichia coli*; mismos que inferiorizan su calidad o lo convierten en un producto no apto para su consumo humano.


1.2.2 ANÁLISIS CRÍTICO

El deficiente control de la calidad sensorial, microbiológica, comercial y nutricional en la producción de hortalizas frescas de la Parroquia Izamba, cantón Ambato, provincia de Tungurahua, es considerado como el problema principal y su esencia es ilustrada en el siguiente árbol de problemas:

1.2.2.1 ARBOL DEL PROBLEMA

PROBLEMA

EFECTOS (variable dependiente)

CAUSA (variable independiente)

Elaborado por: Sara Tixilema, 2014

1.2.2.2 RELACIÓN CAUSA Y EFECTO

1. Factores que contribuyen a la contaminación de hortalizas por microorganismos causantes de enfermedades alimenticias. Algunos de los factores que pudieran considerarse de riesgo en la calidad microbiológica de los productos frescos incluyen: el uso de agua de riego contaminada con heces fecales humanos y animales; procesos inadecuados en los campos de cultivo; prácticas deficientes de desinfección; condiciones inapropiadas durante el empaque; higiene deficiente de los trabajadores; y mal manejo durante el almacenamiento y transporte.

- 2. El control deficiente durante la distribución y comercialización de las hortalizas desde la cosecha hasta llegar a los consumidores; provoca pérdidas económicas significativas. Esto influye mucho en la vida útil de las hortalizas.
- 3. La manipulación inadecuada de las hortalizas causa contaminación cruzada entre los diferentes procesos: transporte, condición ambiental de almacenamiento, temperatura, tiempo y envase. Ya que son factores que directamente provocan cambios en el producto lo cual causan contaminaciones microbiológicas, la variación de temperatura en un grado crea un habitad ideal para el desarrollo de microorganismos patógenos.
- **4.** El poco conocimiento de una tecnología adecuada dificulta la correcta conservación de las hortalizas produciendo así perdidas económicas y limitando su aprovechamiento por su corto tiempo de vida útil.

1.2.3 PROGNOSIS

El resultado de esta investigación comprobará el potencial que tiene el aceite esencial de Tomillo (*Tymus vulgaris*) y el método de mínimos procesos en la elaboración de hortalizas frescas picadas, previamente tratada con aceite esencial de tomillo y sometido a un tratamiento térmico. De este modo se dará un mejor aprovechamiento en la producción artesanal de hortalizas frescas en el sector de Izamba; lo que permitirá comercializar con garantía e inocuidad mejorando así la demanda de las mismas. Ayudando así a mejorar la calidad de vida de los artesanos de la zona de la Parroquia de Izamba. Cantón Ambato, Provincia de Tungurahua.

1.2.4 Formulación del Problema

¿Cómo disminuir la alta contaminación microbiológica en hortalizas frescas

cosechadas en la parroquia Izamba, sector quillan loma, cantón Ambato,

provincia de Tungurahua?

1.2.5 Interrogantes de la Investigación

¿Cómo evaluar la actividad antimicrobiana del aceite esencial de tomillo en

la elaboración artesanal de hortalizas frescas picadas?

¿Cuál es el efecto del tratamiento de mínimo proceso en hortalizas frescas

picadas, previamente tratadas con aceite esencial (AE) de tomillo (Tymus

vulgaris)?

¿Influirá la calidad sensorial en el tiempo de vida útil del mejor tratamiento

de las hortalizas frescas picadas, previamente tratadas con aceite esencial

(AE) de tomillo (*Tymus vulgaris*)?

1.2.6 DELIMITACIÓN DEL PROBLEMA

Campo: Alimentos

Sector: Investigación conservas **Área:** Agroindustrial y alimenticios

Subárea: Hortalizas

Temporal: Septiembre 2014 – Febrero 2015

Espacial: Universidad Técnica de Ambato, Laboratorios de la Facultad de

Ciencia e Ingeniería en Alimentos, Unidad Operativa de Investigación

en Tecnología de Alimentos, UOITA.

22

1.3 JUSTIFICACIÓN

En la actualidad los consumidores son más exigentes en cuanto a: calidad nutricional, calidad microbiológica y aspectos organolépticos de las hortalizas; por lo que evitan consumir alimentos que no cumplan con las normas de higiene y de calidad; que garanticen la inocuidad de los alimentos.

La eficiencia de los métodos de conservación y desinfección de las hortalizas garantiza que los consumidores reciban productos sanos e inocuos, en cantidades adecuadas y de forma ágil y oportuna. Por esta razón es tan importante que en aquellos centros de acopio, tengan conocimientos de Buenas prácticas de Manufactura (BPM) de hortalizas desde: La cosecha, transporte, industrialización, almacenamiento y hasta llegar a los consumidores.

1.4 OBJETIVOS

1.4.1 GENERAL

✓ Desarrollar una tecnología innovadora de procesamiento mínimo para la conservación de hortalizas frescas picadas previamente tratadas con aceite esencial de tomillo (Tymus vulgaris), para los hortifruticultores de la parroquia de Izamba, Cantón Ambato, Provincia de Tungurahua.

1.4.2 ESPECÍFICOS

- ✓ Evaluar el efecto antimicrobiano del aceite esencial del tomillo (*Tymus vulgaris*) en hortalizas frescas picadas.
- ✓ Analizar el efecto del tratamiento de mínimo proceso en hortalizas frescas picadas, previamente tratadas con aceite esencial de tomillo (*Tymus vulgaris*).
- ✓ Evaluar la calidad sensorial del mejor tratamiento de las hortalizas frescas, picadas previamente tratadas con aceite esencial de tomillo (*Tymus vulgaris*).

CAPITULO II

MARCO TEÓRICO

2.1 Antecedentes Investigativos

Los alimentos procesados son productos de consumo, muy importantes para las personas y en consecuencia su calidad debe valorarse por la satisfacción de los consumidores. Por lo tanto, para su elaboración es fundamental aplicar la mejor tecnología disponible; junto a los principios constitucionales de los Derechos del Buen Vivir, de la Salud, de la Naturaleza y Soberanía Alimentaria, que permitan satisfacer las necesidades de alimentación de los distintos estratos poblacionales, con la más alta calidad posible.

Las hortalizas han sido asociadas, en repetidas ocasiones, con enfermedades transmitidas por alimentos. Bacterias como *Salmonella* spp. y *Listeria monocytogenes*, entre otras, han sido frecuentemente aisladas a partir de vegetales e identificadas como responsables de brotes de gastroenteritis o listeriosis. Lo anterior debido a diversas prácticas, incluyendo el uso de fertilizantes orgánicos, aguas de riego contaminadas, manejos deficientes de cosecha, pos cosecha y comercialización, entre otros (Arias, Chaves y Monge, 2011).

2.2 Fundamentación filosófica

La Constitución de la República del Ecuador, 2008; en el Capítulo segundo, Derechos del buen vivir, Sección primera, Agua y alimentación, Art. 13, dice:

"Las personas y colectividades tienen derecho al acceso seguro y permanente a alimentos sanos, suficientes y nutritivos; preferentemente producidos a nivel local y en correspondencia con sus diversas identidades y tradiciones culturales. El estado ecuatoriano promoverá la soberanía alimentaria" (Art. 281)

2.2.1 Soberanía Alimentaria

"Es el derecho de cada pueblo a definir sus propias políticas y estrategias sustentables de producción, distribución y consumo de alimentos que garanticen el derecho a la alimentación de toda la población, con base en la pequeña y mediana producción, respetando sus propias culturas y la diversidad de los modos campesinos, pesqueros e indígenas de producción agropecuaria, de comercialización y de gestión de los espacios rurales, en los cuales la mujer desempeña un papel fundamental" (FAO, SMIA, 2005).

2.2.2 Seguridad Alimentaria

Criterio de seguridad alimentaria:

Criterio que define la aceptabilidad de un producto o un lote de productos alimenticios. Es aplicable a los productos comercializados. (FAO, SMIA, 2003).

Criterio de higiene del proceso:

Establece un valor de contaminación indicativo por encima del cual se requieren medidas correctoras para mantener la higiene del proceso conforme a la legislación alimentaria

2.3 Fundamentación Legal

Que mediante Decreto Ejecutivo No. 3253 publicado en el suplemento del Registro Oficial No. 696 de 4 de Noviembre del 2002, se expidió el Reglamento de Buenas Prácticas de Manufactura para Alimentos Procesados, con el propósito de que las plantas procesadoras de alimentos se sujeten a lo dispuesto en el mencionado Reglamento.

NTE INEN 1750 (Spanish): Hortalizas y frutas frescas. Muestreo

NTE INEN 2104(Spanish): Hortalizas frescas. Definiciones y clasificación.

Determinación de Humedad

Balanza de humedad KERN MLS 50.

Determinación de Acidez

Norma INEN 162

Determinación de pH

pH-metro

Determinación de Vitamina C

Método AOAC 923.09 1980

Recuento total

INEN 1529-5:06

Determinación de Coliformes totales - Escherichia coli

INEN 529-7- 1990-02.

Determinación de Salmonella

Método AOAC 967.25

Determinación de Staphylococcus aureus

Método AOAC 987.09

Determinación de mohos y levaduras

INEN 1529-10: 98

2.4 Categorías Fundamentales

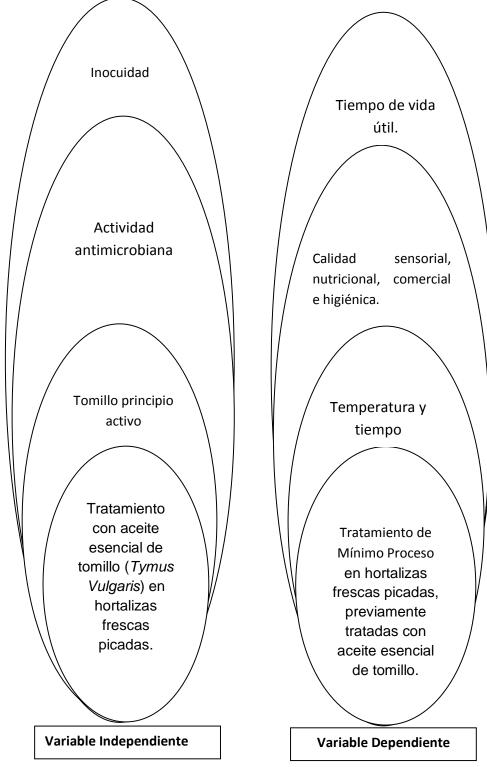


Gráfico 1: Red de Inclusiones, Elaborado por: Sara Tixilema, 2014 2.4.1 LAS HORTALIZAS

Se conoce como hortaliza a cualquier parte de la planta desde la raíz hasta la yema

principal incluyendo hojas, tallos, yemas intermedias, flores, bulbos, tubérculos,

raíces, que sean comestibles (Proyecto Pademer, 2000)

Son plantas herbáceas utilizadas para la alimentación del hombre, quien aprovecha

su bajo contenido de calorías y sus altos contenidos de proteínas, minerales y

vitaminas. Su característica especial es que se emplean sin sufrir ninguna transformación industrial, y se cultiva en forma intensiva, requiriéndose mucha

mano de obra. Las hortalizas son estudiadas por la rama de la horticultura

denominada olericultura que comprende el estudio de las hortalizas, verduras y

legumbres (FAO, 2003).

2.4.1.1 **CLASIFICACIÓN**

Las hortalizas se clasifican según: características botánicas, partes utilizadas

como alimento, características morfológicas y características fisiológicas

(Haeff y Berlijn, 1992).

2.4.1.1.1 Clasificación Botánica

Se clasifican así:

Familia Chenopodiaceae: Espinaca, Remolacha roja, Acelga.

Familia Composite: Lechuga, Alcachofa, Achiora

Familia Cruciferae: Repollo blanco, Repollo colorado, Repollito Bruselas,

Colirrábano, Brócoli, Rabano, Coliflor, Nabo.

29

2.4.1.1.2 Clasificación: las partes utilizadas como alimento

- Raíces, como la zanahoria, remolacha y rábano.
- Tallos, como el espárrago.
- Bulbos, como la cebolla y el ajo.
- Hojas y follaje, como el repollo, lechuga y espinaca.
- Flores, como la coliflor, brócoli y alcachofa.
- Frutos, como el tomate, pepino y habichuela.
- Semillas, como el maíz dulce, haba y arveja.

2.4.1.1.3 Clasificación Morfológica

- Semillas, de forma, color y tamaño variables.
- Raíces principales, con raíces secundarias y raicillas.
- Raíces engrosadas, como en remolacha.
- Tallos engrosados, como remolacha.
- Hojas. Existen una gran variedad de hojas típicas.
- Hojas engrosadas, compactadas y empalmadas, como en cebolla, repollo y lechuga.
- Flores, de autopolinización o de polinización cruzada.
- Frutos, de diferentes formas y apariencias.

2.4.2 PRODUCTOS MÍNIMAMENTE PROCESADOS

Zambrano, (2007), manifiesta que el tratamiento térmico es una de las etapas más importantes, no solo por efectos deseables que se obtienen en su calidad, sino también por su efecto conservador al destruir enzimas y provoca cambios mínimos en el valor nutritivo. La intensidad del tratamiento térmico y grado de prolongación de su vida útil se hallan determinados principalmente por el pH del alimento. Las frutas y hortalizas esterilizadas comercialmente por procesado a temperatura superior a la normal durante un tiempo relativamente corto suelen presentar una mejor retención de las vitaminas, flavor y color que aquellos procesados con las técnicas convencionales.

El procesado mínimo comprende distintas operaciones unitarias que, de forma general, se pueden resumir en las siguientes: selección del cultivo a procesar. elección del grado de madurez óptimo, clasificación. acondicionamiento, lavado del producto entero, deshojado, pelado, deshuesado, cortado, lavado y desinfectado. Una vez que los productos se procesan, se empaquetan en bolsas selladas o en bandejas cubiertas con plásticos, con o sin atmósfera modificada para, posteriormente, ser almacenados y transportados bajo refrigeración.(Wiley, 1994; Gorris y Peppelenbos, 1999).

2.4.2.1 Temperatura en microorganismos

Hay un gran número de factores físicos y químicos que influyen sobre el crecimiento de los microorganismos de las aguas. Así la temperatura, la concentración salina o pH, cuyos valores sean superiores o inferiores a los óptimos pueden alterar considerablemente el metabolismo la forma celular y la reproducción de algunas especies. Las manifestaciones vitales de los microorganismos están sometidas a la temperatura. Las bacterias, las cianobacterias y los hongos no pueden desarrollarse sino dentro de un margen de temperatura muy estrecho, que se estima entre -10 – 100°C dentro de estos límites influye la temperatura, sobre la tasa de crecimiento, las necesidades nutritivas y en medida muy escasa, sobre la composición enzimática químicas de las células. Las temperaturas cardinales están influenciadas además en mayor o menor medida, por otros factores, como la provisión de nutrientes, la concentración salina, la reacción actual (valor pH), los productos del metabolismo (Wiley, 1994; Gorris y Peppelenbos, 1999).

Se admite tres tipos de temperatura para el almacenamiento en la conservación de alimentos. Temperaturas subambientales, almacenamientos en bodega), almacenamiento en refrigeración (-1 a -14°C) y almacenamiento en congelación (-18°C o más bajas). El escaldado en hortaliza intenta disminuir los enzimas que originan cambios de aroma durante su almacenamiento en congelación. El almacenamiento en bodega su utiliza para algunas hortalizas. En tales condiciones debe controlarse la humedad pues en otro caso los tejidos de las hortalizas se marchitan o enmohecerán (Board, 1988).

Para determinar el efecto de los factores de conservación: temperatura, actividad de agua (a_w) y pH sobre el crecimiento microbiano, se usa como una herramienta útil la microbiología predictiva, que es un área de investigación de la microbiología en la que se combinan el conocimiento microbiano y matemático para desarrollar modelos que describan la

evolución microbiana. Así, es posible predecir el desarrollo de un microorganismo de interés en base a una relación matemática entre las respuestas del crecimiento microbiano y las condiciones ambientales (Carrillo M, Zabala, Alvarado, 2007)

2.4.3 TOMILLO (THYMUS VULGARIS OIL)

El tomillo (*Thymus vulgaris* L.) pertenece a la familia de las labiadas. El nombre genérico proviene del verbo griego "thym" (perfumar) en alusión al intenso y agradable aroma de la planta. El nombre específico expresa su frecuente presencia. Se trata de una planta aromática, vivaz, polimorfa. Su altura puede fluctuar entre los 10 a 40 cm, con numerosas ramas leñosas, donde las hojas son lineares, oblongas, pediceladas, opuestas, glabras y blanquecinas por su envés (Bruneton, J. (2001).)

Los principios activos concentrados en sus aceites esenciales y extractos, provenientes de hojas y flores, se caracterizan por tener propiedades antisépticas y antioxidantes, además de aromáticas, saborizantes y medicinales (Bruneton, J. (2001).).

El principal componente de la esencia es el timol, en un 20-25%, a veces reemplazado parcial o totalmente por su isómero líquido, el carvacrol. El total de estos dos fenoles puede llegar al 50% del total de la esencia. Otros componentes son cimol, l-alfa pineno, beta pineno, canfeno, terpineno, geraniol y cariofilen. Sus componentes alcanzan la mayor concentración durante la época de floración, la que en Chile corresponde a fines de primavera (Martín Escudero. Madrid, 1999).

2.4.3.1 PROPIEDADES:

Antibacteriano, antiespasmódico, antimicrobiano, antioxidante, antirreumático, antitóxico, antitusígeno, antiviral, astringente balsámico, carminativo, cicatrizante emenagogo, estimulante, fungicida, nervino, rubefaciente, sudorífico, tónico y vermífugo. (Novacosk, R.; Torres, R. S. A.2006)

2.4.3.2 APLICACIONES

El carácter astringente y antiséptico del aceite esencial de tomillo lo convierte en aliado de los cabellos grasos, la alopecia y del cutis con problemas de acné. Estimula la circulación y el sistema inmulógico, ayuda a la piel a regenerarse y regularse. Utilizan en masajes anticelulíticos y combatir la obesidad. Usan para combatir heridas infectadas y para ayudar a sanar la piel dañada por hongos (dermatosis). El aceite esencial de tomillo se utiliza como repelente insecticida y también puede ayudar en el tratamiento del mal aliento y el olor corporal. En aplicaciones cosméticas se basa en su efecto altamente dermoprotector, antioxidante, regenerador, tónico y astringente. (2004), Novacosk y Torres (2006), Soković et al. (2009) y Centeno et al. (2010).

2.4.3.3 Información de seguridad

Su manipulación en principio no entraña peligros, no obstante se recomienda seguir las normas habituales en el manejo de productos químicos.

Evítese el contacto con los ojos.

Posibilidad de sensibilización en contacto con la piel.

Conservar el envase bien cerrado y protegido de la luz, a temperatura ambie*nte*.

IFRA: Los productos están fabricados según las recomendaciones de la IFRA –Internacional Fragante Association. 39th Amendment, abril 2005- y la RIFM El Tomillo tiene una buena capacidad antioxidante y antimicrobiana contra microorganismos patógenos como Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, entre otros. Estas características son muy importantes para la industria alimentaria ya que pueden favorecer la inocuidad y estabilidad de los alimentos como también protegerlos contra alteraciones lipídicas. Existen además algunos informes sobre el efecto antimutagénico y anticarcinogénico del tomillo sugiriendo que representan una alternativa potencial para el tratamiento y/o prevención de trastornos crónicos como el cáncer (NOVACOSK, R.; TORRES, R. S. A.2006)

Se ha demostrado que para los aceites de *L. multiflora* y *L. chevalieri*, los valores de CMI y de la concentración mínima bactericida (CMB) son más bajos para inhibir los microorganismos gram negativos (*Salmonella enterica*, *Escherichia coli*, *Shigella disentería*, *Proteus mirabilis*, *Enterococcus faecalis*) que para los gram positivos (*Staphylococcus camorum*, *Staphylococcus aureus*, *Listeria innocua*, *Bacillus cereus*). *L. multiflora* presenta alta actividad antimicrobiana debido a su alto contenido de timol y sus derivados. *L. chevalieri* contiene un alto porcentaje de p-cimeno, el cual ejerce un efecto antagónico con el carvacrol y el timol, lo que explica su baja actividad antimicrobiana, (NOVACOSK, R.; TORRES, R. S. A.2006)

El creciente interés por el uso de extractos naturales como alternativa para la prevención y tratamiento de enfermedades ha revelado un importante potencial del tomillo (*Tymus vulgaris*). Se ha demostrado que el tomillo contiene sustancias antioxidantes, por lo que no sólo es benéfico para la salud humana, sino que además puede sustituir los aditivos sintéticos de los alimentos. Los aceites esenciales del tomillo son también inhibidores de la

mutagenicidad, propiedad que ha despertado el interés por este tipo de hierbas, como posible tratamiento contra el cáncer. Por otro lado, el extracto de tomillo puede funcionar como antibactericida e insecticida, siendo igual o incluso más efectivo que los compuestos típicamente utilizados para estos propósitos. (NOVACOSK, R.; TORRES, R. S. A.2006)

2.5 HIPÓTESIS

HIPÓTESIS NULA

Ho: El tratamiento previo con aceite esencial de tomillo permite que las Hortalizas frescas picadas sean mínimamente procesadas.

Hipótesis alternativa

H1: El tratamiento previo con aceite esencial de tomillo no permite que las hortalizas frescas picadas sean mínimamente procesadas.

2.5.1 Diseño experimental.

Se aplicara el diseño A X B con los siguientes niveles para cada una de las Hortalizas Lechuga (*Lactuca sativa L*), Col de repollo (*Brassica oleracea var*),Col morada (*Brassica oleracea var. capitata*), Espinaca (Spinacia oleracea).

2.6 SEÑALAMIENTO DE VARIABLES DE LA HIPÓTESIS

2.6.1 Variable Independiente:

Tratamiento previo con aceite esencial de tomillo (*Tymus vulgaris*).

2.6.2 Variable Dependiente:

Tratamiento de Mínimo Proceso en hortalizas frescas picadas, previamente tratadas con aceite esencial de tomillo.

2.7 METODOLOGÍA DE LA INVESTIGACIÓN.

Cosecha.-Se cosecharon las hortalizas siguientes: Col de repollo, col morada, lechuga y espinaca en el sector Quillan loma, ubicado en la parroquia Izamba, al cantón Ambato.

Selección.- Se inspecciono minuciosa a las hortalizas en forma visual para separar las que estén en mal estado.

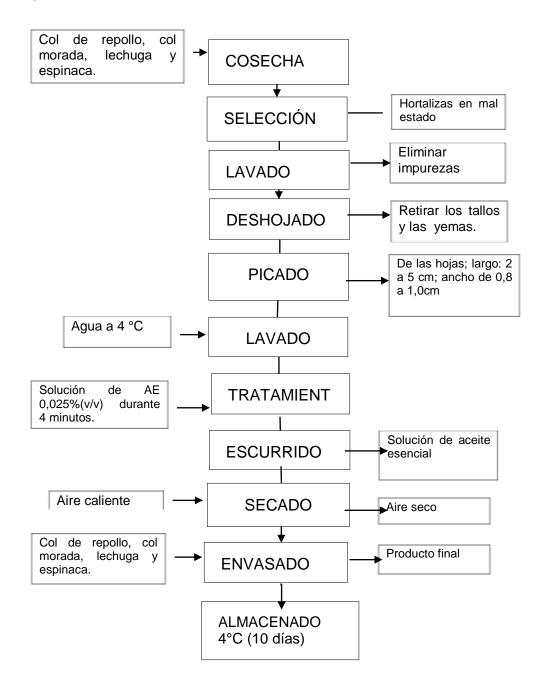
Lavado del repollo.- Se dio un lavado inicial con agua corriente.

Deshojado.- Fueron retiradas de sus tallos, de las yemas apicales, de tal manera que queden solo las hojas comestibles.

Picado.- Fueron picados en tamaños de 5 a 7 cm de largo y 1 cm de ancho.

Lavado.- Se utilizó agua hervida y enfriada a 4°C. En esta etapa se realizó un análisis microbiológico.

Tratamiento previo.- Se prepararon volúmenes de 2 litros de una solución con un agente microbiano natural como es el aceite esencial de tomillo al 0,025% (v/v) y Polisorbato 80 (Tween 80) al 0,025% (v/v), permitió emulsionar el aceite en el agua. El tiempo de inmersión fue de 4 minutos. Permitió reducir una cantidad considerable de microorganismos presentes es en las hortalizas.


Escurrido y aireado.-, Se colocaron las hortalizas picadas en bandejas de acero perforada. Aquí se escurre a través de los orificios de la bandeja el exceso de agua.

Envasado.- Se pesaron en porciones de 150g para ser envasadas en bandejas de poliestireno expandido con las siguientes dimensiones 240x180x25mm y cubiertas de material adherente,

Almacenado.- Se almacenaron a refrigeración de 4°C, para controlar el desarrollo de microorganismos patógenos y los cambios fisiológicos. Se recomienda no sobreponer las bandejas porque deterioran las hortalizas y la vida útil será menor.

DIAGRAMA DE FLUJO

Proceso de desinfección de la col de repollo, col morada, lechuga y espinaca.

Elaborado por: Tixilema Sara

CAPÍTULO III

METODOLOGÍA

3.1 Enfoque de la Investigación

La investigación desarrollo una tecnología innovadora de procesamiento mínimo para la conservación de Hortalizas Frescas Picadas, previamente tratadas con aceite esencial de Tomillo (*Tymus vulgaris*). Es eminentemente cualitativo y cuantitativo ya que se evaluó los cambios a nivel físico-químico, sensorial y microbiológico que experimentaron las hortalizas una vez aplicadas la tecnología de mínimos procesos, entonces se requiere sustentar la comprobación a través de la interpretación de las diferentes fuentes y factores que intervienen en la recolección de datos experimentales de las variables; dependiente e independiente y su correspondiente tratamiento estadístico.

Para identificar el efecto que tiene el aceite esencial sobre el crecimiento microbiano al aplicar en método de mínimos procesos, se midió el incremento o decrecimiento de la población microbiana, se calculó el % de eficiencia germicida de UFC de *E.coli Y coliformes totales*, así como se determinará la Temperatura-tiempo óptimos de procesamiento mínimo y la vida útil de los mejores tratamientos de cada uno de las hortaliza analizadas.

3.2 Modalidad básica de la investigación

El presente trabajo planteado se fundamentó en las siguientes modalidades:

Investigación documental – bibliográfica:

Permitió conocer, comparar, ampliar, profundizar y deducir diferentes enfoques, teorías, conceptualizaciones y criterios de diversos autores sobre

una cuestión determinada, basándose en documentos, libros, revistas, periódicos y otras publicaciones. Es así que, para solucionar el problema propuesto se requirió la revisión documental de manera periódica.

Investigación experimental:

Permitió manipular ciertas variables independientes para observar los efectos en las respectivas variables dependientes, con el propósito de precisar la relación causa – efecto. Realizando un control riguroso de las variables sometidas a experimentación por medio de procedimientos estadísticos.

Investigación de campo:

Se ejecutó en los laboratorios de la UOITA de la Facultad de Ciencia e Ingeniería en Alimentos de la Universidad Técnica de Ambato.

Investigación exploratoria: Este tipo de investigación reconoce, registra o averigua con diligencia una cosa o un lugar. Permitió observar el tratamiento que mejor se adaptó a la tecnología planteada en la presente investigación, es decir, aquel tratamiento que alcance los mejores parámetros de calidad. Investigación explicativa: Este tipo de investigación permitió un análisis profundo de las causas del problema en donde se puede identificar las posibles soluciones e interpretar las estrategias necesarias.

Temporal

El período establecido está circunscrito a la producción durante el trimestre 2015.

3.3 Población y muestra

3.3.1 Población

El tamaño de la muestra dependió del parámetro poblacional π (proporción) que se establecerá a partir de la observación *in situ* en la zona de la parroquia de Izamba. Cantón Ambato, Prov. de Tungurahua en cuyo caso el tamaño de muestra se calculará mediante la siguiente fórmula:

$$n = Z^2pqN/Nk^2+Z^2pq$$

Dónde:

n = tamaño de la muestra

Z = valor tipificado correspondiente al nivel de confianza seleccionado

p = la proporción estimada

q = (1 - p)

N = tamaño de la población

k = precisión o error de muestreo

3.3.2 Muestra

El estudio se realizó en los cuatro tipos de hortalizas:

Lechuga iceberg tipo salinas (Lactuca sativa var. capitata)

Col de repollo (Brassica olerace var. capitata cv. bronco)

Col morada (Brassica oleracea var. capitata f. rubra)

Espinaca (Spinacia oleracea L.).

3.3.3 Diseño experimental.

Se aplicó el diseño A X B con los siguientes niveles para cada una de las hortalizas Lechuga (*Lactuca sativa L*, Col de repollo (*Brassica oleracea var*), Col morada (*Brassica oleracea var. capitata*), espinaca (Spinacia oleracea).

El primer factor de estudio fueron las tres temperaturas:

- 40°C
- 45°C
- 50°C

El segundo factor de estudio fueron los dos tiempos:

- 15 minutos
- 30 minutos

Las respuestas experimentales del diseño fueron los siguientes:

Análisis Físico-químicos

- pH
- Acidez
- Contenido de humedad
- Contenido de vitamina C

Análisis Microbiológicos

- Recuento Total
- Mohos y Levaduras
- Salmonella
- Staphylococcus aureus.
- Coliformes totales

La combinación del diseño:

Factor A= Temperatura

A0= 40°C **A1=**45°C **A2=**50°C

Factor B Tiempo

B0 = 15 min. **B1** = 30 min.

Combinaciones del nivel A con el nivel B en Lechuga, col de repollo, col morada y espinaca.

Hortalizas	Factor A	Factor B	Niveles	Descripción
	°C	Minutos		
	40	15	a0b0	40°C ,15min.
	40	30	a0b1	40 °C, 30min.
Loobugo	45	15	a1b0	45°C ,15min.
Lechuga	45	30	a1b1	45 °C, 30min.
	50	15	a2b0	50°C ,15min.
	50	30	a2b1	50 °C, 30min.

Elaborado por: Tixilema Sara.

3.4 Operacionalización de variables

3.4.1 Variable independiente: Tratamiento con aceite esencial de tomillo (*Tymus Vulgaris*) en hortalizas fresca.

CONCEPTUALIZACIÓN	CATEGORÍA	INDICADORES	ITEMS BÁSICOS	TÉCNICAS E INTRUMENTOS DE RECOLECCIÓN DE INFORMACIÓN
	Análisis microbiológico	Presencia de microorganismos Color	¿Mejorará la vida útil de las hortalizas frescas?	Análisis microbiológico
Agentes antimicrobianos. Son agentes o sustancias que controlan o reducen la presencia de microorganismos potencialmente patógeno.	Técnicas sensoriales	Sabor Olor Textura Aceptabilidad	¿Existirá cambios en las características organolépticas que sean aceptables para los consumidores?	Análisis Sensorial Análisis estadístico
	Propiedades físicas	pH Acidez Vitamina C Humedad	¿Cómo se verán influenciadas las propiedades físicas de las hortalizas?	Análisis físicos

Elaborado por: Tixilema Sara A.

3.4.2 Variable dependiente: Tratamiento de mínimo Proceso en hortalizas frescas picadas, previamente tratadas con aceite esencial de tomillo.

CONCEPTUALIZACIÓN	CATEGORÍA	INDICADORES	ITEMS BÁSICOS	TÉCNICAS E INTRUMENTOS DE RECOLECCIÓN DE INFORMACIÓN
Tratamiento mínimos procesos: Son aquellas acciones que cambian o convierten la materia vegetal o animal cruda en un producto seguro con tratamientos suaves, sin alterar, la composición nutricional, el	Microbiología	Recuento de microorganismos	¿Qué grado de contaminación tendrán las hortalizas frescas?	Análisis microbiológico
procesamiento implica la aplicación de principios científicos y tecnológicos específicos para conservar los alimentos, atrasando o frenando los procesos naturales de degradación.	Propiedades físicos- químicas	pH Acidez Vitamina C Humedad	¿Cuál serán las características físico químicas de las hortalizas?	Análisis físicos- químicos Método.

Elaborado por: Tixilema Sara A.

3.5 Plan de recolección de la información

Todos los análisis se efectuaron en los laboratorios de la Unidad Operativa de Investigación en Tecnología de Alimentos (UOITA) de la Facultad de Ciencia e Ingeniería en Alimentos de la "Universidad Técnica de Ambato".

Fichas de Observación Cómo se realiza el proceso de elaboración de Hortalizas Frescas Picadas.

Análisis microbiológico de laboratorio

Reporte de resultados

Encuesta Cuestionario a Clientes usuales

3.6. Plan de procesamiento de la información

El proceso a seguir es el siguiente:

- 1. Se controló del proceso mediante el paquete informático Project
- Se utilizaron paquetes estadísticos Microsoft Excel y Statgraphics, por su facilidad de uso, pues lo único que hay que hacer es solicitar los análisis requeridos seleccionando las opciones apropiadas.
- 3. Se exploró los datos obtenidos.
- Se analizó descriptivamente los datos por variable, considerando el Marco Teórico
- 5. Se visualizó los datos por variable
- Se evaluó la confiabilidad, validez y objetividad de los instrumentos de medición utilizados
- 7. Se analizó e interpreto mediante pruebas estadísticas las hipótesis planteadas
- 8. Se realizó análisis adicionales
- 9. Se estableció las conclusiones y recomendaciones
- 10. Se elaboró la propuesta de solución al problema

CAPÍTULO IV

4. ANÁLISIS RESULTADOS

4.1. Contenido de microorganismos presentes en 4 hortalizas recien cosechadas sin ningun tratamiento.

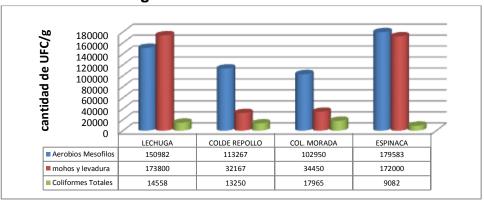


Gráfico 1a. Contenido de microorganismos presentes en hortalizas.

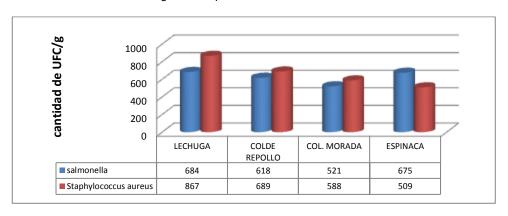


Gráfico 1b. Contenido de microorganismos presentes en hortalizas.

Tabla N° 1. Datos del contenido microorganismos con disviaciones estandar

HORTALIZAS	Aerobios	mohos y	Coliformes		Staphylococcus
HORTALIZAS	Mesofilos	levadura	Totales	salmonella	aureus
LECHUGA	150982±0,27	17380±0,54	14558±0,79	684±0,87	867±0,76
COLDE REPOLLO	113267±0,71	32167±0,78	13250±0,23	618±0,90	689±0,98
COL. MORADA	102950±0,65	34450±0,98	17965±0,77	521±0,34	588±0,89
ESPINACA	179583±0,45	17200±0,34	9082±0,78	675±0,12	509±0,54

En el gráfico 1. Se observa el contenido de microorganismos presentes en las cuatro hortalizas sin ningun tratamiento. Fueron previamente lavadas

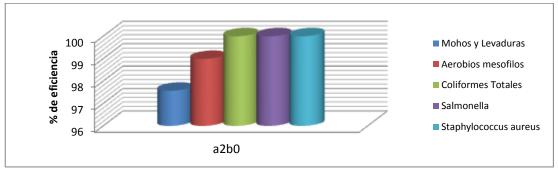
con agua corriente en la parte superficial de los repollos de: lechuga, col de repollo, col morada y hojas de espinaca. Presentan valores ppromedios de 150982 UFC de aerobios mesófilos/g de lechuga, 113267 UFC de aerobios mesófilos/g de col de repollo; 102950 UFC de aerobios mesofilos/g de col morada, 179583 UFC de aerobios mesofilos/g de espinaca; 17380 UFC de mohos y levaduras/g de lechuga, 32167 UFC de mohos y levaduras /g de col de repollo, 34450 UFC de mohos y levaduras /g de col morada, 17200 UFC de mohos y levaduras /g de espinaca; 14558 UFC de coliformes totales/g de lechuga, 13250 UFC de coliformes totales /g de col de repollo, 17965 UFC de coliformes totales /g de col morada, 9082 UFC de coliformes totales /g de espinaca; ; 648 UFC de Salmonella/g de lechuga, 618 UFC de Salmonella /g de col de repollo, 521 UFC de Salmonella /g de col morada, 675 UFC de Salmonella /g de espinaca; 867 UFC de staphylococcus aureus/g de lechuga, 689 UFC de staphylococcus aureus /g de col de repollo, 588 UFC de staphylococcus aureus/g de col morada, 509 UFC de staphylococcus aureus/g de espinaca;

Los valores del contenido de microorganismos sobrepasan los limites permitidos, que en hortalizas trozeadas son: 100.000 UFC en aerobios mesófilos, 10.000 UFC en mohos y levaduras, 10.000 UFC en coliformes totales, ausencia en Salmonella y 100 UFC Staphylococcus aureus. La mayor contaminación de las 4 hortalizas se tiene en Coliformes totales, hongos y levaduras y sobre todo existe presencia de Salmonella, que es un microorganismo que puede afectar la salud de las personas que lo consuman.

Chuquitarco, M. (2014) encuentra cantidades altas de microorganismos, se han encontrado cantidades de 1E+5 UFC *aerobios Mesófilos*/g de hortaliza cultivadas en la misma zona, 3,1 E+4 UFC de mohos y levaduras/ g de hortaliza, 5E+3 UFC de *Coliformes totales*/ g de hortaliza, 1.300 UFC de *Staphylococcus aureus*/ g de hortaliza y 800 UFC de *Salmonella*/g de

hortaliza. Valores que se encontraron sobrepasados de los parámetros permitidos.

4.2. Efecto antimicrobiano del aceite esencial del tomillo en hortalizas frescas picadas.


Tabla 2. Valores del porcentaje de eficiencia germicida en hortalizas sumergidas en aceite esencial de tomillo (antes del proceso de secado).

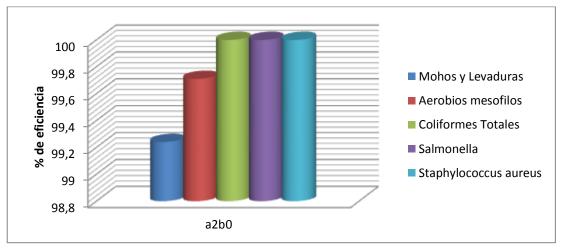
Hortalizas	Mohos y	Aerobios	Coliformes	Salmonella	Staphylococcus
	Levaduras	Mesófilos	Totales	Saimonena	aureus
Lechuga	90,1 ±0,62	88,5 ±2,06	87,8 ±2,87	92,7 ±3,73	100,0±0
Col de repollo	91,2 ±2,79	89,3 ±3,03	92,2±1,22	90,3 10,86	100,0±0
Col morada	87,9 ±0,14	86,1 ±0,77	85,2±2,99	89,6±0,01	100,0 ±0
Espinaca	81,5 ±0,68	89,7 ±1,12	89,1±0,83	89,7 ±0,45	100,0 ±0

En la tabla 2. Se presenta la eficiencia germicida en hortalizas sumergidas en aceite esencial de tomillo, sin considerar el tratamiento térmico de mínimo proceso, encontrándose una eficiencia de 100% en *Staphylococcus aureus* en la 4 hortalizas; en mohos y levaduras se tiene del 81,5 % en espinaca; 90,1 % de eficiencia germicida en lechuga; en *aerobios Mesófilos* del 86,1 % en col morada; 89,7; en espinaca; con relación a *Coliformes totales* del 87,8 en lechuga al 92,2 % en col de repollo y en *Salmonella* en 89,6 % en col morada al 92,7 % en lechuga.

La eficiencia germicida del aceite esencial de tomillo, no fue suficiente para eliminar los coliformes totales y la Salmonella por tanto las hortalizas se encuentran fuera de los parametros microbiologicos permitidos y no estan aptos para el consumo humano.

4.3. Efecto del tratamiento de mínimo proceso sobre la carga microbiana de lechuga.

Gráfico 2. Porcentaje de eficiencia germicida del tratamiento de mínimo proceso sobre los microorganismos presentes en el mejor tratamiento de lechuga.


Tabla 3. Valores del porcentaje de eficiencia germicida en hortalizas sumergidas en aceite esencial de tomillo aplicado el tratamiento de mínimo proceso, con desviación estándar en lechuga.

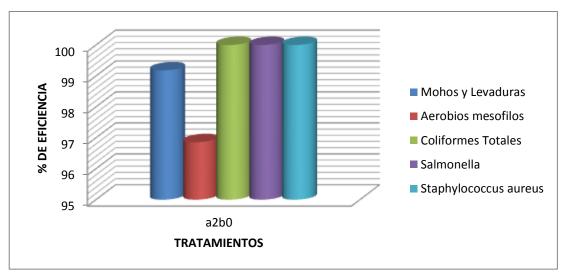
nomenclatura	Tratamientos	Mohos y	Aerobios	Coliformes	Salmonella	Staphylococcus
nomenciatura	Tratamientos	Levaduras	Mesófilos	Totales	Saimonena	aureus
a ₀ b ₀	(40°C, 15 min)	13,84±0,35 f	34,65±0,52 f	91,21±0,63b	63,43±0,45b	84,71±0,75 b
a₀b₁	(40°C, 30 min)	54,27±0,59 e	77,99±0,74e	97,71±0,43b	90,31±0,87a	90,42±0,66ba
a₁b₀	(45°C, 15 min)	70,45±0,53d	92,59±0,96d	99,54±0,71a	90,23±0,50a	98,09±0,35 a
a ₁ b ₁	(45°C, 30 min)	91,73±0,40c	95,17±0,37c	99,66±0,34a	90,31±0,66a	100,00±0 a
a ₂ b ₀	(50°C, 15 min)	97,57±0,44 b	98,99±0,70b	100,00±0,0a	100,00±0 a	100,00±0 a
a₂b₁	(50°C, 30 min)	100±0,a	99,75±0,030a	100,00±0,0a	100,00±0 a	100,00±0 a

En el gráfico 2. Se observa el efecto de la temperatura y el tiempo de tratamiento de minimo proceso en el mejor tratamiento que influye en el porcentaje germicida de microorganismos de la lechuga. La lechuga antes del tratamiento de minimo proceso, fue previamente sumergida en una solución de aceite esencial de tomillo. El los análisis de varianza, los resultados obtenidos indica que existe diferencia altamente significativa (p>0,01) en las variables, temperatura y tiempo del tratamiento de mínimo proceso, cuando se analizó la eficiencia germicida en mohos y levaduras, en aerobios mesófilos, e n coliformes totales y en salmonella, y diferencia significativa (p>0,05) en Staphylococcus aureus. Los análisis de Tukey (α =0,05) muestra que a mayor temperatura y a mayor tiempo existe mayor inactivación de microorganismos. En el gráfico 2 las diferentes letras

asignadas a los diferentes valores medios de las cantidades en cada microorganismos indica diferencia significativa (p<0,05). El mejor tratamiento fue: a2b1 (50°C, 30 min) que supera el 99,70 % de eficiencia germicida en los microorganismos analizados, llegando inclusive al 100% de eficiencia germicida en *Coliformes totales*, *Salmonella* y *Staphylococcus aureus*, luego le sigue el tratamiento a2b0 (50°C, 15 min), que tiene una eficiencia germicida mayor a 97,5 % con una desviación ±0,02 en los microorganismos analizados.

4.4. Efecto del tratamiento de mínimo proceso sobre la carga microbiana de col de repollo.

Gráfico 3. Porcentaje de eficiencia germicida del tratamiento de mínimo proceso sobre los microorganismos presentes en col de repollo.


Tabla 4. Valores del porcentaje de eficiencia germicida en hortalizas sumergidas en aceite esencial de tomillo aplicado el tratamiento de mínimo proceso, con desviación estándar col de repollo.

nomenclatura	Tratamientos	Mohos y Levaduras	Aerobios mesofilos	Coliformes Totales	Salmonella	Staphylococcus aureus
a_0b_0	(40°C, 15 min)	23,74±0,55 e	21,96±0,45e	98,99±0,61b	33,36±0,51c	90,26±0,43b
a₀b₁	(40°C, 30 min)	53,14±0,21d	78,63±0,16d	99,75±0,43a	12,15±0,41d	97,52±0,45ba
a₁b₀	(45°C, 15 min)	81,66±0,50c	89,88±0,11c	99,87±0,22a	88,95±0,43b	95,14±0,35ba
a₁b₁	(45°C, 30 min)	97,87±0,22b	94,97±0,19b	100,00±0a	100,00±0a	100,00±0a
a ₂ b ₀	(50°C, 15 min)	99,24±0,38a	98,71±0,35a	100,00±0 a	100,00±0 a	100,00±0a
a₂b₁	(50°C, 30 min)	100,00±0 a	98,95±0,20a	100,00±0 a	100,00±0 a	100,00±0a

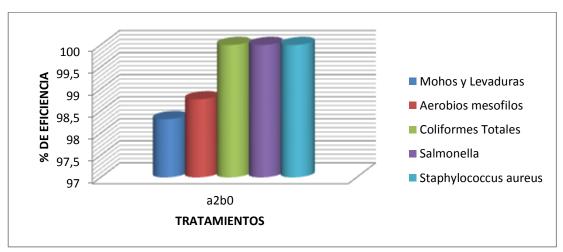
Letras diferentes indica diferencia significativa (p<0,05) Elaborado por: Sara Tixilema. P. 2014.

En col de repollo, los análisis de varianza como tukey indica también que a mayor temperatura y a mayor tiempo existe mayor inactivación de microorganismos. Los mejores tratamientos encontrados fueron: a2b0 (50°C, 15 min) y a_2b_1 (50°C, 30 min), que llegan a tener un 100% de eficiencia germicida en los microorganismos analizados, excepto en *aerobios Mesófilos* que alcanza un valor de 98,95 \pm 43% de eficiencia germicida. Como en el tratamiento de lechuga, los efectos de la temperatura y el tiempo de tratamiento de mínimo proceso influyen en la eficiencia germicida (gráfico 2).

4.5. Efecto del tratamiento de mínimo proceso sobre la carga microbiana de col morada

Gráfico 4. Porcentaje de eficiencia germicida del tratamiento de mínimo proceso sobre los microorganismos presentes en col morada

Tabla 5. Valores del porcentaje de eficiencia germicida en hortalizas sumergidas en aceite esencial de tomillo aplicado el tratamiento de mínimo proceso, con desviación estándar en col morada.


nomenclatura	Tratamientos	Mohos y Levaduras	Aerobios mesofilos	Coliformes Totales	Salmonella	Staphylococcus aureus
a_0b_0	(40°C, 15 min)	12,78± 0,37e	23,87±0,84e	99,35±0,16c	64,670,15c	74,64±0,60 b
a₀b₁	(40°C, 30 min)	50,31±1,19d	55,75±1,04d	99,58±0,14cb	87,24±0,11b	78,65±0,35 b
a₁b₀	(45°C, 15 min)	83,62±0,37c	80,54±1,04c	99,53±0,32cb	93,62±0,55ba	99,84±0,35b a
a₁b₁	(45°C, 30 min)	95,33±0,08b	85,36±1,13b	99,81±0,16ba	100,00±0 a	100,00±0 a
a ₂ b ₀	(50°C, 15 min)	99,18±0,27a	96,86±1,0 a	100,00±0 a	100,00±0 a	100,00±0 a
a₂b₁	(50°C, 30 min)	99,61±0,03 a	97,9±1,05 a	100,00±0 a	100,00±0 a	100,00±0 a

Letras diferentes indica diferencia significativa (p<0,05) Elaborado por: Sara Tixilema. P. 2014.

En col morada los mejores tratamiento fue : a2b0 (50°C, 15 min), que llega a tener un 100% de eficiencia germicida en todos los microorganismos,

excepto en *aerobios Mesófilos* que alcanza un valor de 97,9±0,90 % y mohos y levaduras 99,18± 0,3 de eficiencia germicida. Como en las hortalizas anteriores, los efectos de la temperatura y el tiempo de tratamiento de mínimo proceso, influyen en la eficiencia germicida, como se observa en el grafico 4.

4.6. Efecto del tratamiento de mínimo proceso sobre la carga microbiana de espinaca.

Gráfico 5. Porcentaje de eficiencia germicida del tratamiento de mínimo proceso sobre los microorganismos presentes en espinaca.

Tabla 6. Valores del porcentaje de eficiencia germicida en hortalizas sumergidas en aceite esencial de tomillo aplicado el tratamiento de mínimo proceso, con desviación estándar en espinaca.

nomenclatura	Tiramientos	Mohos y	Aerobios	Coliformes Salmonella		Staphylococcus
nomenciatura	Titalillelitos	Levaduras	mesofilos	Totales	Sairionella	aureus
a_0b_0	(40°C, 15 min)	21,92±0,53 e	7,17±0,83e	76,6±0,32d	48,37±0,11c	86,86±4,3 b
a₀b₁	(40°C, 30 min)	52,15±0,63d	46,16±0,64 d	96,32±0,34c	77,98±0,59b	100,00±0 a
a₁b₀	(45°C, 15 min)	75,18±0,30c	68,25±0,52 c	98,71±0,63b	97,33±0,42a	100,00±0 a
a₁b₁	(45°C, 30 min)	97,75±0,19b	92,067±0,33b	99,08±0,84a	100,00±0 a	100,00±0 a
a₂b₀	(50°C, 15 min)	98,32±0,21b	98,77±0,4a	100,00±0 a	100,00±0 a	100,00±0 a
a₂b₁	(50°C, 30 min)	100,00±0 a	99,12±0,22 a	100,00±0 a	100,00±0 a	100,00±0 a

Letras diferentes indica diferencia significativa (p<0,05) Elaborado por: Sara Tixilema. P. 2014.

En el gráfico 5 se observa el efecto del porcentaje germicida de microorganismos, los análisis de varianza indican que existe influencia en la temperatura y el tiempo de tratamiento de mínimo procesoen la eficiencia germicida de microorganismos. El mejor tratamiento es: a2b0 (50°C, 15 min)

que supera el 98,12 % de eficiencia germicida en los microorganismos, llegando inclusive al 100% de eficiencia germicida en mohos y levaduras, *Coliformes totales, Salmonella y Staphylococcus aureus*, luego le sigue el tratamiento a2b0 (50°C, 15 min), que tiene una eficiencia germicida mayor a 98,3 % en los microorganismos analizados.

4.7. Resultados de humedad, vitamina C, pH y acidez en hortalizas en los diferentes tratamientos.

Tabla 7. Contenido de humedad, pH, acidez y vitamina C en hortalizas con tratamientos de mínimo proceso.

HORTALIZAS	T (°C)	t. (minutos)	HUMEDAD (%)	PH	ACIDEZ (%)	VITAMINA C (mg/100g)
	Sin t	ratamiento.	95,2±1,01 a	6,0±0,23 a	0,12±0,21 a	16,47±0,41 a
	40	15	93,75±0,99 a	6,0±0,45 a	0,13±0,23 a	16,47±0,25 a
	40	30	91,230,98 a	6,0±0,78 a	0,13±0,45 a	15,53±0,09 ab
Lechuga	45	15	86±1,02 ab	6,1±0,23 a	0,13±0,44 a	15,12±0,45 ab
	45	30	86,35±0.78 ab	6,2±0,89 a	0,13±0,39 a	15,65±0,75 ab
	50	15	86,5±0,67 ab	6,3±0,67 a	0,13±0,14 a	13,71±0,34 c
		30	80,5±0,56 C	6,3±0,34 a	0,13±0,56 a	12,71±0,67 c
	Sin t	ratamiento	91,59±0,45 a	6,56±0,45 a	0,13±0,78 a	65,29±0,43 a
	40	15	91,23±0,98 a	6,3±0,45 a	0,13±0,58 a	60,59±0,09 a
	40	30	91,32±1,2 a	6,25±0,23 a	0,13±0,12 a	61,18±0,57 b
Col de repollo	45	15	91,88±0,97 a	6,45±0,78 a	0,13±0,78 a	56,47±0,51 bc
	45	30	90,84±0,7 a	6,54±0,26 a	0,13±0,50 a	56,47±0,65 bc
	50	15	86,73±0.79 b	6,34±0,98 a	0,13±0,78 a	54,76±0,90 bc
	50	30	83,38±0,88 c	6,45±0,76 a	0,13±0,43 a	51,76±0,56 c
	Sin	tratamiento	93,25±0,68 a	6,51±0,56 a	0,13±0,78 a	61,65±0,85 a
	40	15	92,9±0,78 a	6,55±0,65 a	0,13±0,39 a	60,71±0,44 a
	40	30	90,98±0,98 ab	6,55±0,12 a	0,10±0,59 ab	60,24±0,95 a
Col	45	15	89,22±0,75 ab	6,28±0,234 a	0,10±0,09 ab	59,29±1,4 a
morada	45	30	88,22±0,99 b	6,13±0,34 a	0,10±0,56 ab	57,88±0,45 a
	50	15	88,06±1,02 bc	6,17±0,23 a	0,10±0,12 ab	53,18±1,02 b
	50	30	85,72±0,78 c	6,32±0,76 a	0,10±0,45 b	53,76±0,94 b
	Sin tratamier	nto	92,48±0,45 a	6,48±0,98 a	0,16±0,76 a	33,88±0,43 a
	40	15	92,12±0,23 a	6,45±0,29 a	0,16±0,45 a	32,94±0,96 a
	40	30	92,21±0,34 a	6,48±0,22 a	0,16±0,32 a	32,56±0,48 a
Familian	45	15	92,77± 0,98 ^a	6,42±0,56 a	0,16±0,18 a	31,06±0,98 ab
Espinaca	45	30	91,73±0,45 a	6,47±0,87 a	0,13±0,45 ab	31,06±0,78 ab
	50	15	87,62±09,12 b	6,471±0,45 a	0,13±0,45 ab	29,18±0,45 bc
	50	30	84,27±0,23 c	6,46±0,256 a	0,13±0,45 ab	29,29±0,95 bc

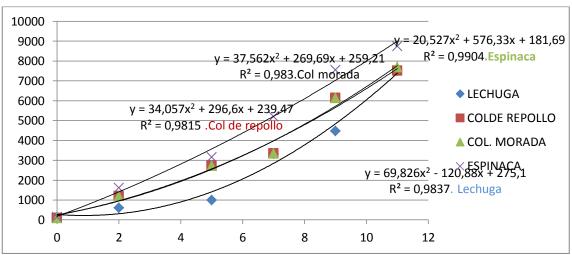
Letras diferentes indica diferencia significativa (p<0,05) Elaborado por: Sara Tixilema. P. 2014. En la tabla 7, presenta los valores del contenido de humedad, pH, acidez y vitamina C en hortalizas con el testigo sin ningun tratamiento y con tratamientos de mínimo proceso; los valores del pH y el porcentaje de acidez en las cuatro hortalizas se mantienen igual, comparadas con el pH y la acidez que poseen las hortalizas sin tratamiento. Con respecto a la humedad de las hortalizas tratadas varian con el tiempo y la temperatura de tratamientos de mínimo proceso, siendo más visible cuando se lo realiza a 50 °C, por 15 ó 30 minutos, las perdidas de humedad a esta temperatura y por 30 minutos, llegan a 8,4 % en lechuga, 5,9% en col de repollo, 8,0 % en col morada y 8,9 % en espinaca. El efecto más notorio es en el contenido de vitamina C, a la temperatura de 50°C (se tiene el mismo efecto negativo, si la hortaliza se la deja a 30 minutos). Las perdidas de vitamina C a esta temperatrura es aproximadamente del 9,4% en lechuga, el 11% en col de repollo, 10,04 % en col morada y 8,3 % en espinaca.

4.8. Resultados del análisis sensorial de las hortalizas tratadas con mínimo proceso y almacenadas en refrigeración.

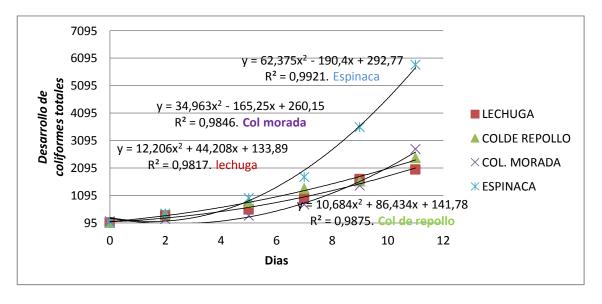
En la tabla 3 se presentan los resultados del análisis sensorial (color, olor, sabor, textura, aceptabilidad y pardeamiento enzimático) de las hortalizas tratadas con mínimo proceso, empacadas y almacenadas por 10 días en refrigeración. Se observa que no se mantienen las características sensoriales a medida que aumenta el tiempo de almacenamiento. La lechuga y la espinaca poseen valores entre 4/5 y 5/5 en el sexto día de almacenamiento, que significa que la hortaliza tiene un valor en su calidad sensorial de bueno a muy bueno. A partir del octavo día aparecen cambios, sobre todo empardeamiento, en los sitios de cortado que se les realiza en la lechuga y en la espinaca, los jueces califican a las hortalizas en el octavo día con valores entre 3 a 4 (de no gusta ni disgusta a bueno).

Con respecto a la col de repollo y a la col morada pueden mantenerse por 8 días en buenas condiciones en las diferentes características sensoriales; al

pasar a los 10 días, los catadores detectan una disminición en el sabor en la col de repollo y en textura en la col morada, con valores que van desde 3 a 4 (de no gusta ni disgusta a bueno).


Tabla 8. Valores de los resultados del análisis sensorial de las hortalizas tratadas con mínimo proceso y almacenadas por 13 días en refrigeración.

	Días	Lechuç	ja	Col de repolle		Col mo	rada	Espir	naca
	13	2,1	d	4,35	С	3,75	С	3,2	d
Color	10	2,5	С	4,45	b	4	b	3,5	С
Color	8	3,1	b	4,7	ba	4,2	ba	3,85	b
	6	4,4	а	4,9	а	4,45	а	4,25	а
	13	2,6	d	4	d	3,5	С	3,6	С
Olor	10	3,2	С	4,4	С	4	С	4,55	b
Oloi	8	4,3	b	4,55	b	4,2	ba	4,8	ba
	6	4,7	а	4,85	а	4,6	а	4,9	а
	13	2,7	d	2,7	d	3,75	С	3,55	d
Sabor	10	3,2	С	3,2	С	4	cb	3,9	С
Saboi	8	4	b	4	b	4,2	ba	4,4	b
	6	4,7	а	4,7	а	4,5	а	4,8	а
	13	2,15	d	3,7	С	4,15	b	3,85	С
Textura	10	2,95	С	3,8	cb	4,15	b	3,9	С
Textura	8	3,84	b	4	ba	4,7	а	4,3	b
	6	4,45	а	4,6	а	4,85	а	4,95	а
	13	2,05	d	3,35	b	4,15	С	3,75	b
Aceptabilidad	10	3,15	С	3,75	а	4,2	С	3,9	ba
Aceptabilidad	8	3,95	b	3,9	а	4,65	b	3,9	ba
	6	4,65	а	4	а	4,95	а	4,2	а
	13	1,85	d	3,5	b	3,3	С	3,7	b
Pardeamiento	10	3,61	С	3,9	а	3,65	b	3,9	ba
enzimático	8	3,45	b	3,9	а	3,9	а	3,9	ba
	6	4,7	а	4	а	4,05	а	4,1	а


Letras diferentes indica diferencia significativa (p<0,05)

Elaborado por: Sara Tixilema. P. 2014.

4.9. Vida util de hortalizas tratadas con tratamiento de mínimo proceso.

Gráfico10. Curvas de crecimiento de aerobios mesófilos en hortalizas tratadas con mínimo proceso empacadas y almacenadas a temperatura de refrigeración.

Gráfico11. Curvas de crecimiento de coliformes totales en hortalizas tratadas con mínimo proceso empacadas y almacenadas a temperatura de refrigeración.

Durante los 11 días de almacenamiento de las hortalizas en refrigeración, no alcanzan a llegar al tope de lo permitido, que es de 1 E + 05 en aerobios *mesófilos.* En lo relacionado a *Coliformes totales*, a los 9 días alcanzan a pasar lo máximo permitido que es de 1000 UFC/ g en espinacas y en 7 días

en col de repollo, col morada, y lechuga. Las ecuaciones del crecimiento de *aerobios mesófilos* y *coliformes totales* se comportan con ecuaciones polinomiales de segundo grado, con r² que superan los 0,98.

El tiempo de vida útil de las hortalizas, tomando en consideración los análisis sensoriales (tabla 2) y los gráficos 10 y 11, fueron: 5 días para espinacas, 7 días en lechuga y 9 días en col de repollo y col morada.

4.10 Análisis de costos de la tecnología de mínimo proceso en hortalizas.

Se estimó el costo de venta de fundas de 300 g de hortalizas picadas, cuando se emplea la tecnología de mínimo proceso, en las condiciones del mejor tratamiento a2b0 (15 minutos y 50 °C); se consideró un 25% de utilidad en la tecnología, y se encontró valores de venta de \$1,96 en fundas de 300 gr de lechugas picadas, \$1,497 en col de repollo, \$1,434 en col morada y \$1,50 en lechugas.

En los Supermercados se tiene hortalizas picadas y empacadas, con procesos de desinfección que utilizan cloro, que es un compuesto químico muy cuestionado.

La tecnología emplea como antimicrobianos compuestos naturales como el aceite esencial de tomillo y la aplicación de una temperatura de secado de la hortaliza a 50 °C por 15 minutos, que ayuda a la desinfección de microorganismos y obtener productos con bajo contenido microbiano.

CAPITULO V

CONCLUSIÓN Y RECOMENDACIONES

5.1 Conclusiones.

- Al evaluar el efecto antimicrobiano del aceite esencial de tomillo se determinó el 100% de eficiencia germicida en *Staphylococcus aureus* en la 4 hortalizas; en Mohos y levaduras se tuvo entre un 81,5% en espinaca al 90,1% de eficiencia germicida en col de repollo; en aerobios *Mesófilos* del 86,1% en col morada al 89,7 en espinaca; con relación a Coliformes totales del 87,8% en lechuga al 92,2% en col de repollo y en *Salmonella* en 89,6% en col morada al 92,7% en lechuga
- Mediante la aplicación de la tecnología de mínimo proceso (inmersión de las hortalizas en aceite esencial de tomillo y el posterior el tratamiento de mínimo proceso mejorando la calidad microbiológica sin afectar el pH y la acidez de las hortalizas, pero si disminuyendo la cantidad de humedad y de ácido ascórbico en cantidades pequeñas. El mejor tratamiento de secado fue a 50°C y por 15 minutos, llegando a tener valores que superan el 99,70% de eficiencia germicida en los microorganismos analizados, obteniéndose inclusive el 100% de eficiencia germicida en *Coliformes totales*, *Salmonella* y *Staphylococcus aureus*.
- Las hortalizas tratadas con mínimo proceso, empacadas y almacenadas por 10 días en refrigeración, se observó que ha medida que aumenta el tiempo de almacenamiento, las características sensoriales de las hortalizas decrecen. A partir del noveno día de almacenamiento, aparecen cambios, sobre todo pardiamiento enzimatico, en los sitios de cortado de la lechuga de la espinaca. En col de repollo y col morada pueden mantenerse por 8 días en buenas condiciones, a partir del noveno

día existe cambios en sus características sensoriales. Y en el tiempo de vida útil tomando en cuenta el análisis en microorganismo de las hortalizas fueron: En *Aerobios mesofilos*, 16 días para espinacas, 6 días en lechuga, 17 días en col de repollo y 15 días en col morada; en *Coliformes totales*, 5 días en lechuga, 10 días en col de repollo, 8 días en col morada y 5 en espinaca.

5.2 Recomendaciones.

- ✓ Para una más eficiencia del agente antimicrobiano como es el aceite esencial de tomillo sobre las hortalizas, se debe tomar en cuenta la época de cosecha en que se realice, principalmente el proceso de picado que es fundamente por lo que se debe realizar con mucho esmero evitando la contaminación cruzada, cabe recalcar que el tiempo entre el proceso de picado y la aplicación del agente antimicrobiano de debe ser distante por que daría paso a que se dé indicios de pardiamiento enzimático.
- Para aplicar la tecnología obtenida se debe tomar en cuento los factores analizados como es el tiempo y la temperatura establecida si en algunos de los parámetros se retrasa o se pasa será un punto muy crítico ya que influye en el tiempo de vida útil disminuyendo el tiempo del mismo.
- ✓ En tiempo de vida útil va depender del control de todo el proceso y el empacado final, por lo que el empacado es un proceso que se debe hacer con mucho cuidado evitando aglomerar en el recipiente, de igual modo no se debe empacar al instante que se termina el tratamiento de mínimo proceso si no que se debe pasar a una cámara o cuarto de acondicionamiento evitando la contaminación cruzada y finalmente empacarla.

CAPÍTULO VI LA PROPUESTA

6.1 Datos informativos

TÍTULO: Socialización de la tecnología de mínimo proceso en hortalizas frescas picadas, previamente tratadas con aceite esencial de Tomillo (*Tymus vulgaris*) para los hortifruticultores de la parroquia de Izamba, Cantón Ambato, Provincia de Tungurahua.

Unidad Ejecutora: Facultad de Ciencia e Ingeniería en Alimentos.

Beneficiario: Los hortifruticultores de la parroquia de Izamba, Cantón

Ambato, Provincia de Tungurahua.

Director del Proyecto: Ing. Lenin Garcés

Personal Operativo: Egda. Sara Anabel Tixilema Poaquiza

Tiempo de duración: 6 meses

Fecha estimada de inicio: 1 de Agosto del 2014

Lugar de ejecución: Laboratorios de la Unidad Operativa de Investigación en Tecnología de Alimentos de la Facultad de Ciencia e Ingeniería en Alimentos (UTA).

6.2 Antecedentes de la propuesta.

El uso de antimicrobianos (conservadores) es una práctica común en la industria de los alimentos, por muchos años se han utilizado antimicrobianos sintetizados químicamente (que en algunos casos han causado daño en la salud de los consumidores, si se utilizan a grandes dosis o como en el caso de los sulfitos), produciendo en los consumidores un rechazo de productos procesados, por lo cual ha surgido la necesidad de buscar otras opciones.

61

En esta búsqueda se han encontrado nuevos agentes antimicrobianos de origen natural, como sustitutos de los tradicionalmente utilizados.

Los antimicrobianos continúan estando entre los aditivos alimentarios más importantes. Actualmente, debido a la demanda por parte del consumidor de productos frescos mínimamente tratados como son las frutas frescas y cortadas envasadas bajo diferentes atmósferas y refrigeradas, está aumentando el interés por los antimicrobianos de origen natural que puedan extraerse para ser utilizados con el fin de prolongar la vida útil y la seguridad para el consumidor (Alzamora, S.M., Tapia, M.S., Argaiz, A. y Welti, J. 199).

6.3 JUSTIFICACIÓN.

La importancia del estudio planteado, es para dar a conocer a los hortifruticultores de la parroquia de Izamba, Cantón Ambato, Provincia de Tungurahua, el potencial que tiene el método de mínimos procesos en hortalizas picadas, previamente tratadas con aceite esencial de tomillo como: (lechuga, col de repollo, col morada y espinaca), ya que de esta manera se ofertaría productos de buena calidad, con un mayor tiempo de esta manera incentivando a los hortifruticultores a ofertar nuevos productos de buena calidad e inocuos a los consumidores. Mejorando paulatinamente la conservación de las hortalizas desde la cosecha, transporte, la comercialización hasta llegar al consumidor, llegando así a satisfacer las necesidades del consumidor.

6.4 OBJETIVOS

6.4.1 Objetivo general

✓ Socializar la tecnología de mínimo proceso en hortalizas frescas picadas, previamente tratadas con aceite esencial de Tomillo (*Tymus vulgaris*) a los hortifruticultores de la parroquia de Izamba, Cantón Ambato, Provincia de Tungurahua.

6.4.2 Objetivos específicos

- ✓ Caracterizar las hortalizas frescas picadas previamente tratadas con aceite esencial de tomillo (*Tymus Vulgaris*) obtenidas por el método de mínimos, mediante el análisis de microorganismos y análisis físico químico y organoléptico.
- ✓ Capacitar a los a los hortifruticultores de la parroquia de Izamba, Cantón Ambato, Provincia de Tungurahua, sobre las Buenas Prácticas de Manufactura y Buenas Prácticas Agrícolas.

6.5 FUNDAMENTACIÓN DE LA PROPUESTA

El presente proyecto de investigación, constituye una nueva alternativa para desarrollar hortalizas frescas y picadas previamente tratadas con aceite esencial de tomillo (*Tymus Vulgaris*), con el fin de brindar otra opción de producción para ofrecer al mercado y satisfacer las necesidades de los consumidores, con un valor nutritivo agregado.

Se debe tomar en cuenta el factor socio-económico, tomando en cuenta que se podrá fomentar el procesamiento de materias primas originarias del Ecuador que normalmente son consumidos de una manera rudimentaria como por ejemplo: en ensaladas, sopas, cremas. Obtener un producto de óptimas características sensoriales y con un precio de venta al público accesible para ingresar en el mercado, pero sobre todo que el costo de su elaboración sea rentable.

Las hortalizas, según la norma INEN2 104: 2.1. Toda aquella planta anual, bianual o perenne, de la que una o más partes puede ser utilizada, en estado tierno y/o verde maduro, cuyas células se mantienen en estado de turgencia y que presentan características de maduración comercial. Variedad. Conjunto de plantas de la misma especie, que poseen características definidas dentro de ciertos límites, las cuales pueden ser transmitidas hereditariamente.

Híbrido. Primera generación de un cruzamiento entre clones, líneas o variedades.

Madurez. Hortaliza, que presenta las condiciones apropiadas para su cosecha, comercialización y consumo en fresco.

Madurez fisiológica. Etapa del desarrollo de la hortaliza en que se ha producido el máximo crecimiento, acumulación de fibra, y con alto contenido de humedad.

Madurez comercial. Etapa en que la hortaliza, posee características requeridas por el mercado.

Climaterio. Período durante el cual la hortaliza inicia una serie de cambios bioquímicos (contenido de proteínas, vitaminas, almidones, etc.)

Los productos procedentes de se han convertido en alimentos básicos en todo el mundo y son necesarios para la dieta del ser humano.

6.6 Metodología de la propuesta:

Modelo operativo de la propuesta (Plan de acción)

FASES	METAS	ACTIVIDADES	RESPONSA BLES	RECURSOS	PRESUPUESTO	ТІЕМРО
Formulación de la propuesta	Socializar y comercializar las hortalizas obtenidas por el proceso de mínimos procesos con un tratamiento previo.	Revisión bibliográfica y antecedentes sobre mínimos procesos.	Investigador	Humanos Materiales Económicos	\$ 280	1 mes
Desarrollo preliminar de la propuesta	Planteamiento de los análisis a realizar durante la investigación	Capacitar con talleres de BPM, BPA	Investigador	Humanos Materiales Económicos	\$ 300	1 mes
Implementación de la propuesta	Ejecución de la propuesta	Capacitar sobre el proceso de elaboración de las hortalizas.	Investigador	Humanos Económicos Materiales	\$ 300	2-meses
Evaluación de la propuesta.	Comprobar errores y aciertos	Comercialización de las hortalizas elaboradas.	Investigador	Humanos Económicos Materiales	\$ 250	2 meses

Elaborado por: Sara Tixilema P., 2014

6.7 ADMINISTRACIÓN DE LA PROPUESTA

Para la administración del proyecto se deberá hacer énfasis en el cumplimiento de las actividades en cada una de las fases y estará coordinada por los responsables del proyecto Ing. Lenin Garcés y Egda. Sara Tixilema.

INDICADORES	SITUACIÓN	RESULTADOS	ACTIVIDAD	RESPONSA
DE MEJORA	ACTUAL	ESPERADOS	ES	BLES
Evaluar la calidad sensorial del mejor tratamiento de las Hortalizas frescas Picadas previamente tratadas con aceite esencial de tomillo (<i>Tymus vulgaris</i>).	Hortalizas con deficiente control microbiológico, hortalizas de mala calidad. Corto tiempo de vida útil	Mejoramiento de características organolépticas, Aprovechamiento de materias primas autóctonas, Comercialización.	Presentar talleres de sobre el manejo de BPM. Conferencias de BPA.	Egda. Sara Tixilema. Ing. Lenin Garcés.

Elaborado por: Sara Tixilema P., 2014

6.8 Previsión de la evaluación de la propuesta.

PREGUNTAS BÁSICAS	EXPLICACIÓN		
· Ovián povelána	Graduando		
¿Quién evalúa?	Tutor Calificadores		
	Tecnología utilizada		
¿Qué evaluar?	Materias primas		
	Resultados obtenidos		
	Producto terminado		
	Mediante instrumentos de evaluación y		
¿Cómo evaluar?	análisis		
	Porque de esta manera se garantiza un		
¿Por qué evaluar?	producto de calidad al aplicar la		
	formulación y tecnología apropiada.		
	Para determinar la calidad del producto		
¿Para qué evaluar?	Optimizar recursos durante el proceso		
	de elaboración		
¿Cuándo evaluar	Todo el tiempo		
¿Quiénes solicitan evaluar?	Productores de hortalizas		
	Productores de aceites esenciales		

Elaborado por: Sara Tixilema P., 2014

6.9 MATERIALES DE REFERENCIA

BIBLIOGRAFIA

- Artés, F. 1987. Refrigeración y comercialización hortofrutícolas en la Región de Murcia. II Edición. Ed. CEBAS-CSIC. 150 p.
- Alzamora, S.M., Tapia, M.S., Argaiz, A. y Welti, J. 1993. Application of combined method technology in minimally processed fruits. Food Research International 26: 125-130.
- Artés, F. 2000c. Productos vegetales procesados en fresco. En:
 Aplicación del frío a los alimentos. Ed: M. Lamúa. Editorial Mundi Prensa.
- 4. Arias Laura, Chaves Carolina, Monge Claudio. 2011. Comparación de la calidad bacteriológica de la lechuga (Lactuca sativa) producida en Costa Rica mediante cultivo tradicional, orgánico o hidropónico. Facultad de Microbiología, Universidad de Costa Rica. Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica. Costa Rica. Archivos Latinoamericanos de Nutrición. versión impresa ISSN 0004-0622. ALAN v.61 N. Caracas ene. 2011 Recuperado de: http://www.scielo.org.ve/scielo.php?pid=S000406222011000100009&scri pt=sci_arttext
- Board. R. 1988. Introducción a la Microbiología Moderna de los Alimentos. Editorial Acribia, S.A. Zaragoza- España. Pp. 53-54.
- Bruneton, J. (2001). Farmacognosia. Fitoquímica. Plantas Medicinales.
 2ª Ed. Zaragoza: Acribia S. A.

- 7. Carrillo M, Zabala D. Alvarado B. 2007. Modelado del Efecto de la Temperatura, Actividad de Agua y pH sobre el Crecimiento de Rhizopus oryzae. Información Tecnológica Vol. 18(4), 57-62 (2007). Universidad Autónoma de San Luis Potosí, Unidad Académica Multidisciplinaria Zona Huasteca. Calle Romualdo del Campo Nº501, Fracc. Rafael Curiel, San Luis Potosí-México. Recuperado de: http://www.scielo.cl/pdf/infotec/v18n4/art09.pdf
- Delgado-Iribaren, A.; Polanco, A.; Amich, S. (1996). Laboratorio. Clinico.
 Microbiologia. Grado Superior. Madrid: Editorial McGraw-Hill.
- FAO. 2003. La Horticultura y la Fruticultura en el Ecuador. (en línea),
 Consultado el 6 de feb 2013. Disponible en:
 tp://www.fao.org/ag/agn/pfl_report_en/_annexes/Annex4/Ecuador/Import
 ancereport.doc
- García N. et. al. "Manual de producciones hortícolas". Centro Regional de Educación Tecnológica (Ceret). 2006
- 11. Hajimehdipoor, H.; Shekarchi, M.; Khanavi, M.; ADIB, N.; AMRI, M. A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Pharmacognosy Maganize, v.6, n.23, 154-158, 2010.
- 12. Hudaib, M., Speroni, E., Pietra, A.M.D., Cavrini, V. CG/EM evaluation of thyme (Thymus Vulgaris L.) oil composition and variations during the vegetative cycle. Journal of Pharmaceutical and Biomedical Analysis. V. 29 p. 691–700, 2002.
 - J. Bact., 27: 78-82 (1964) J. App. Bact., 25: 12-19 (1962) USP 30

- (2007) Ph. Eur. 6.0 (2008) ISO 6888-1:1999 Microbiology of food and animal feeding stuffs: Horizontal method for enumeration of coagulase-positive staphylococci. Part 1: Technique using Baird-Parker agar medium.
- Hyg., 26, 374-391 (1927) Compendium of Methods for the Microbiological Examination of Food. 2nd ed. APHA. (1984)
- 14. J.B.S.Breverman. Introducción a la Bioquímica de los Alimentos. Nueva Edición por Z.BERK. Editorial El Manual Moderno, S.A de C.V. México, D-F- santa fé de Bogotá Pág., consultadas; 268, 271, 273, 274, 279, 283,284.285, 286,287.
- 15. Laurila, E. Kervinen, R. Y Ahvenainen, R. 1998. The inhibition of enzymatic browning in minimally processed vegetables and fruits.
- 16. Melida, M Chuquitarco. 2014: Aplicación de aceites esenciales de tomillo y orégano en cuatro tipo de hortalizas (LECHUGA (Lactuca sativa L.), COL DE REPOLLO (Brassica oleracea var. Capitata), COL MORADA (Brassica oleracea var. Lambarda), ESPINACA (Spinacia oleracea). Para disminuir la carga microbiana patógena. Pag.84-89.
- 17. Mc. Gillivray, Gavin. Análisis Económico e Investigación de Mercados para "Proyectos Hortofrutícolas". Colombia: Sena Reino Unido, 1998. Pag.3-4.
- 18. MIPRO; Agendas para la Transformación Productiva Territorial; Fuente: Censo Nacional Agropecuario 2011. INEC – MAGAPELABORACION, PAG: 18-24

- Microbiología de los Alimentos. FRAZIER (Jay, Prescott y Dunn) Edit.
 ACRIBIA. Zaragoza, España.
- 20. Ministerio de Coordinación de la Producción, empleo y Competitividad.
 Agendas para la transformación productiva Territorial. Mayo 2011. Pág.
 23,24 y 50.
- 21. Navas Guerrero, Sergio E. 2010. Tesis "Diagnóstico sobre la producción y Comercialización de lechuga (*Lactuca sativa L*.) en la Provincia de Cotopaxi año 2010". Tesis Universidad Técnica Estatal de Quevedo. Carrera de Ingeniería Agropecuaria. Pág. 13
- 22. Norma Técnica Ecuatoriana. NTE INEN Quito- Ecuador-
- 23. Norma Técnica Ecuatoriana. NTE INEN Quito- Ecuador.
- 24. Norma Técnica Ecuatoriana. NTE INEN 1 529-14. Control microbiológico de los alimentos. Staphylococcus aureus. Recuento en placa Quito-Ecuador.
- 25. Norma Técnica Ecuatoriana. NTE INEN (1528:2012). Norma general para Hortalizas Frescas. Requisitos. Quito- Ecuador.
- 26. Novacosk, R.; Torres, R. S. A.Atividade antimicrobiana sinérgica entre óleos ssenciais de lavanda (Lavandula offi cinalis), melaleuca (Melaleuca alternifolia), cedro (Juniperus irginiana), tomillo (Thymus vulgaris) e cravo (Eugenia caryophyllata). Revista Analytica, n.21, p.36-39, 2006.
- 27. Ph. Eur. 6.0 (2008) USP 30 (2007) ATLAS, R. M. and L. C. PARKS (1993), Handbook of Microbiological Media, CRC Press. Inc. London VANDERZANT & SPLITTSTOESSER (1992), Compendium of Methods for the Microbiological.Examination of Food III Ed., American Public

- Health Association. Washington D.C. PASCUAL ANDERSON Ma R. (1992), Microbiología Alimentaria, Díaz de Santos S.A. Madrid
- 28. Parikh, H.R, Nair G.M. and Modi, V.V. 1990. Some Structural Changes during
- **29.** Pedro Manuel De Rufino Rivas; UNIVERSIDAD DE CANTABRIA. CURSO ACADEMICO; 2012 2013, AG, 1-8. BIBLIOGRAFIA.
- Pengelly, A. (1996). The constituents of Medicinal Plants. 2nd Ed. Cabi
 Publishing, U. K.
- 31. Porte, A.; Godoy, R. L. O. Chemical composition of Thymus vulgaris L. (thyme) essential oil from Rio de Janeiro state (Brazil). Journal of the Serbian Chemical Society, v.73, n.3, p.307-310, 2008.
- 32. Proyecto Pademer. 2000. PDF. Manejo Postcosecha de Frutas Y Hortalizas. Realizados en las Veredas Galilea, San Francisco en la zona urbana del municipio de Granada entre los meses de agosto y septiembre del año 2000. Proyecto Fortalecimiento y Capacitacion Técnico Empresarial para cuatro Microempresas Agroindustriales del Municipio de Granada. Recuperado de http://190.60.31.203:8080/jspui/bitstream/123456789/2222/1/067.pdf
- 33. Rincón V., Gresleida; Ginestre P., Messaria; Romero A., Sonia; Castellano G., Maribel y Ávila R., Yeiny. Revista Kasmera 38(2): 97 105, julio-diciembre 2010. ISSN 00755222 / Depósito legal 196202ZU39. Calidad microbiológica y bacterias enteropatógenas en vegetales tipo hoja. Microbiological Quality and Enteropathogenic Bacteria in Leaf Vegetables. Cátedra de Bacteriología Clínica. _Cátedra de Bacteriología

- General. Escuela de Bioanálisis, Universidad del Zulia. Maracaibo, Venezuela. Recuperado de: http://www.scielo.org.ve/pdf/km/v38n2/art02.pdf
- 34. Romero González Irma Gabriela, 2012, "Diagnóstico de los factores que inciden en las pérdidas y aplicación de tratamientos en poscosecha del cultivo de espinaca (*Spinacia oleracea*), para los proveedores de proagrip-Izamba-Tungurahua". Universidad Técnica de Cotopaxi unidad académica de ciencias agropecuarias y recursos naturales. Carrera de Ingeniería Agronómica 36-37. Recuperado de: http://repositorio.utc.edu.ec/bitstream/27000/727/1/T-UTC-0568.pdf.
- 35. R.M. Salinas Hernández-G.A. Gonzales Aguilar-M.E.Pirovani-F Olin Montejo Universidad y Ciencia, año 2007/vol.23.Universidad Juárez Autónoma de Tabasco. Modelación del deterioro de productos vegetales frescos cortados
- 36. Saltos, H. (2011). Sensometria. Universidad Técnica de Ambato
- Sampieri, R; Fernández, C. y Baptista, P (2010). Metodología de la investigación. Mc Graw Hill, Educación. México-
- 38. Standard Methods for the Examination of Dairy Products. 11th Ed. APHA.
 (1960) Compendium of Methods for the Microbiological Examination of food 3rd edition APHA (1992).
- 39. Lopez, M. Y Moreno, J. 1994. IV Gama en España.
- 40. Watada, A.E. y QI, L. 1999. Quality of Fresh-Cut Produce.
- 41. Wiley, R.C. 1994; Gorris y Peppelenbos, 1999). Packaging of minimally processed fruits and vegetables.

42. Zambrano Ruiz Ligia Elizabeth. 2007. Incidencia de la temperatura de concentración en la Degradación de clorofila en pulpa de kiwi (Actinidia Chinensis, edad haward). Universidad Técnica de Ambato Facultad de Ciencia e ingeniería en Alimentos. Pág. 14, 15

ANEXOS

ANEXO A

FÍSICO-QUÍMICOS DE HORTA LIZASPICADAS PREVIAMENTE TRATADAS CON ACEITE ESENCIAL DE TOMILLO

ANALISIS FISICO QUIMICOS

NOTA: Nomenclaturas utilizadas son: M_1 y M_2 = Muestras tomadas para las réplicas Y R_1 , R_2 y R_3 = Réplicas experimentales

TABLA A 1: Contenido de humedad en lechuga picada, previamente tratada con aceite esencial tomillo.

		Pr	imera corric	da	Se	gunda corri	da	Tercera corrida			
TRAT.	CODIF.	M ₁	M_2	R1	M ₁	M_2	R2	M_1	M_2	R3	
Testigo		96,40	98,00	97,20	98,20	98,60	97,70	97,90	97,70	97,35	
T ₁	a_0b_0	94,00	93,00	93,15	93,00	92,50	95,75	93,70	96,70	95,20	
T ₂	a₀b₁	94,00	94,00	94,00	93,60	93,80	93,70	93,90	93,60	93,75	
T ₃	a₁b₀	87,50	89,10	88,30	83,90	87,50	85,70	88,10	83,90	86,00	
T_4	a₁b₁	85,00	87,00	86,00	86,00	87,70	86,85	86,00	86,70	86,35	
T ₅	a_2b_0	85,00	86,00	85,50	86,00	84,00	85,00	87,00	86,00	86,50	
T ₆	a₂b₁	83,00	82,00	82,50	84,00	83,00	83,50	80,00	81,00	80,50	

Realizado por. Sara Tixilema P. 2014.

TABLA A 2: Contenido de humedad en col de repollo picada, previamente tratada con aceite esencial de tomillo

		Pr	imera corrid	da	Se	gunda corri	ida	Tercera corrida			
TRAT.	CODIF.	M ₁	M_2	R1	M_1	M_2	R2	M_1	M_2	R3	
Testigo		92,17	92,43	92,30	91,94	92,17	92,06	91,23	91,94	91,59	
T ₁	a_0b_0	91,78	90,76	91,27	91,25	91,78	91,52	91,21	91,25	91,23	
T ₂	a_0b_1	91,69	91,89	91,79	91,56	91,69	91,62	91,09	91,56	91,32	
T ₃	a₁b₀	91,45	92,18	91,82	91,85	91,45	91,65	91,91	91,85	91,88	
T ₄	a₁b₁	90,95	91,00	90,97	90,91	90,95	90,93	90,77	90,91	90,84	
T ₅	a₂b₀	87,67	88,71	88,19	87,46	87,67	87,57	86,00	87,46	86,73	
T ₆	a₂b₁	86,24	85,79	86,02	84,70	86,24	85,47	82,06	84,70	83,38	

Fuente: UOITA, 2014.

TABLA A 3: Contenido de humedad en col morada picada, previamente tratada con aceite esencial de tomillo.

	Primera corrida					unda corr	ida	Tercera corrida			
TRAT.	CODIF.	\mathbf{M}_1	M_2	Prom.	M_1	M_2	Prom.	M_1	M ₂	Promedio	
Testigo		90,17	90,43	90,30	90,28	93,17	91,72	93,23	93,28	93,25	
T ₁	a_0b_0	89,78	88,76	89,27	89,58	92,78	91,18	93,21	92,58	92,90	
T ₂	a₀b₁	88,69	87,89	88,29	87,89	88,60	88,25	90,09	89,86	89,98	
T ₃	a₁b₀	88,45	88,18	88,32	88,18	86,50	87,34	90,91	89,53	90,22	
T ₄	a₁b₁	87,95	86,76	87,35	86,83	84,50	85,66	88,77	87,68	88,22	
T ₅	a₂b₀	84,67	85,71	85,19	85,13	87,67	86,40	88,00	88,13	88,06	
T ₆	a₂b₁	86,24	85,79	86,02	84,70	86,50	85,60	85,06	86,37	85,72	

Realizado por. Sara Tixilema P. 2014.

TABLA A 4: Contenido de humedad en espinaca picada, previamente tratadas con aceite esencial de tomillo

		Pri	mera corr	ida	Se	gunda co	rrida	Tercera corrida			
TRAT.	CODIF.	M_1	M_2	prom.	M_1	M_2	Prom.	M_1	M_2	Promedio	
Testigo		92,17	92,43	92,30	91,94	93,06	92,50	92,12	92,83	92,48	
T ₁	a_0b_0	91,78	90,76	91,27	91,25	92,67	91,96	92,10	92,14	92,12	
T ₂	a₀b₁	91,69	91,89	91,79	91,56	92,58	92,07	91,98	92,45	92,21	
T ₃	a₁b₀	91,45	92,18	91,82	91,85	92,34	92,09	92,80	92,74	92,77	
T ₄	a₁b₁	90,95	91,00	90,97	90,91	91,84	91,37	91,66	91,80	91,73	
T ₅	a₂b₀	87,67	88,71	88,19	87,46	88,56	88,01	86,89	88,35	87,62	
T ₆	a₂b₁	86,24	85,79	86,02	84,70	87,13	85,91	82,95	85,59	84,27	

Fuente: UOITA, 2014.

TABLA A 5: pH de lechuga previamente tratadas con aceite esencial de tomillo.

		Pri	mera corri	da	Seg	junda coi	rrida	Terc	era co	rrida
TRAT.	CODIF.	M_1	M_2	Prom.	M_1	M_2	Prom.	M_1	M ₂	Promedio
Testigo		6,40	5,90	6,15	5,70	6,40	6,05	5,90	5,70	5,80
T ₁	a_0b_0	6,10	6,20	6,15	5,90	6,10	6,00	6,00	6,10	6,05
T ₂	a₀b₁	6,45	6,34	6,40	6,10	6,00	6,05	6,00	6,00	6,00
T ₃	a₁b₀	6,30	5,96	6,13	6,10	6,20	6,15	6,10	6,20	6,15
T ₄	a₁b₁	6.60	6,20	6,20	6,00	6,10	6,05	6,20	6,30	6,25
T ₅	a₂b₀	6,02	6,20	6,11	6,02	6,30	6,16	6,30	6,47	6,38
T ₆	a₂b₁	6,08	6,09	6,09	6,30	6,40	6,35	6,10	6,10	6,10

Fuente: UOITA, 2014. Realizado por. Sara Tixilema P. 2014.

TABLA A 6: pH de col de repollo previamente tratada con aceite esencial de tomillo.

		Pri	mera corri	ida	S	egunda d	orrida	Tercera corrida			
TRAT.	CODIF.	M_1	M_2	Prom.	M_1	M_2	Prom.	M ₁	M ₂	Promedio	
Testigo		6,10	6,00	6,05	6,77	6,60	6,69	6,45	6,77	6,56	
T ₁	a_0b_0	6,40	6,40	6,40	6,50	6,67	6,59	6,20	6,40	6,30	
T ₂	a₀b₁	6,40	6,50	6,45	6,79	6,50	6,65	6,10	6,40	6,25	
T ₃	a₁b₀	6,30	6,40	6,35	6,30	6,40	6,35	6,40	6,50	6,45	
T ₄	a₁b₁	6,10	6,50	6,30	6,40	6,30	6,35	6,57	6,50	6,54	
T ₅	a₂b₀	6,40	6,50	6,45	6,30	6,50	6,40	6,37	6,30	6,34	
T ₆	a₂b₁	6,75	6,09	6,42	6,50	6,50	6,50	6,40	6,50	6,45	

Fuente: UOITA, 2014.

TABLA A 7: pH de col morada previamente tratadas con aceite esencial de tomillo.

		Pri	mera corri	da	S	orrida	Tercera corrida			
TRAT.	CODIF.	M ₁	M_2	prom.	M_1	M ₂	Prom.	M_1	M ₂	Promedio
Testigo		6,64	6,73	6,69	6,71	6,60	6,66	6,5	6,52	6,51
T ₁	a_0b_0	6,61	6,21	6,41	6,21	5,65	5,93	6,53	6,56	6,55
T ₂	a₀b₁	6,64	6,18	6,41	6,18	6,07	6,13	6,53	6,57	6,55
T ₃	a₁b₀	6,22	6,16	6,19	6,18	6,16	6,17	6,16	6,4	6,28
T ₄	a₁b₁	6,17	6,25	6,21	6,35	6,15	6,25	6,1	6,15	6,13
T ₅	a_2b_0	6,14	6,21	6,18	6,35	6,22	6,29	6,22	6,11	6,17
T ₆	a₂b₁	6,32	6,19	6,26	6,34	6,28	6,31	6,29	6,35	6,32

Realizado por. Sara Tixilema P. 2014.

TABLA A 8: pH de espinaca previamente tratada con aceite esencial de tomillo.

		Р	rimera corrid	a	9	Segunda d	orrida	Tercera corrida			
TRAT.	CODIF.	M_1	M_2	Prom.	M_1	M ₂	Prom.	M ₁	M_2	Promedio	
Testigo		6,63	6,79	6,71	6,41	6,99	6,70	6,36	6,59	6,48	
T ₁	a_0b_0	6,54	6,79	6,67	6,91	6,34	6,63	6,96	6,34	6,65	
T ₂	a₀b₁	6,53	6,69	6,61	6,94	6,35	6,65	6,98	6,77	6,88	
T ₃	a₁b₀	6,76	6,68	6,72	6,94	6,89	6,92	6,98	6,86	6,92	
T ₄	a₁b₁	6,79	6,72	6,76	6,87	6,89	6,88	6,6	6,8	6,70	
T ₅	a₂b₀	6,79	6,65	6,72	6,85	6,92	6,89	6,50	6,91	6,71	
T ₆	a₂b₁	6,69	6,63	6,66	6,83	6,46	6,65	6,52	6,99	6,76	

Fuente: UOITA, 2014.

TABLA A 9: Acidez de lechuga previamente tratada con aceite esencial de tomillo.

		Pri	mera corri	da	S	egunda d	orrida	Tercera corrida			
TRAT.	CODIF.	M_1	M_2	Prom.	M_1	M_2	Prom.	M_1	M_2	Promedio	
Testigo		0,06	0,13	0,10	0,06	0,06	0,06	0,06	0,06	0,06	
T ₁	a_0b_0	0,06	0,13	0,10	0,06	0,13	0,10	0,13	0,13	0,13	
T ₂	a₀b₁	0,13	0,13	0,13	0,06	0,13	0,10	0,13	0,13	0,13	
T ₃	a₁b₀	0,06	0,13	0,10	0,06	0,13	0,10	0,13	0,06	0,10	
T ₄	a₁b₁	0,13	0,06	0,10	0,06	0,06	0,06	0,06	0,13	0,10	
T ₅	a₂b₀	0,13	0,13	0,13	0,06	0,13	0,10	0,13	0,13	0,13	
T ₆	a₂b₁	0,13	0,13	0,13	0,06	0,13	0,10	0,13	0,13	0,13	

Fuente: UOITA, 2014.
Realizado por. Sara Tixilema P. 2014.

TABLA A 10: Acidez de col de repollo previamente tratada con aceite esencial de tomillo.

		Pr	imera corrid	da		Segunda c	orrida	Tercera corrida			
TRAT.	CODIF.	M_1	M_2	Prom.	M_1	M_2	Prom.	M_1	M ₂	Promedio	
Testigo		0,19	0,13	0,13	0,13	0,19	0,19	0,13	0,13	0,13	
T ₁	a_0b_0	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	
T ₂	a₀b₁	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	
T ₃	a₁b₀	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	
T ₄	a₁b₁	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	
T ₅	a_2b_0	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	
T ₆	a ₂ b ₁	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	

Fuente: UOITA, 2014.

TABLA A 11: Acidez de col morada previamente tratada con aceite esencial de tomillo.

		Pr	imera corri	da	S	egunda d	orrida	Tercera corrida			
TRAT.	CODIF.	M ₁	M_2	Prom.	M_1	M_2	Prom.	M ₁	M_2	Promedio	
Testigo		0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	
T ₁	a_0b_0	0,06	0,06	0,06	0,13	0,06	0,10	0,06	0,13	0,10	
T ₂	a₀b₁	0,06	0,06	0,06	0,06	0,06	0,06	0,13	0,06	0,10	
T ₃	a₁b₀	0,06	0,06	0,06	0,06	0,13	0,10	0,06	0,13	0,10	
T ₄	a ₁ b ₁	0,06	0,06	0,06	0,06	0,06	0,06	0,13	0,06	0,10	
T ₅	a₂b₀	0,06	0,06	0,06	0,13	0,06	0,10	0,06	0,13	0,10	
T ₆	a₂b₁	0,06	0,06	0,06	0,13	0,06	0,10	0,06	0,13	0,10	

Fuente: UOITA, 2014.
Realizado por. Sara Tixilema P. 2014.

TABLA A 12: Acidez de espinaca previamente tratada con aceite esencial de tomillo.

		Prin	nera corrida	a	Se	egunda co	rrida	Tercera corrida			
TRAT.	CODIF.	M_1	M_2	Prom.	M_1	M ₂	Prom.	M_1	M_2	Promedio	
Testigo		0,192	0,192	0,19	0,192	0,192	0,19	0,192	0,192	0,19	
T ₁	a_0b_0	0,128	0,128	0,13	0,128	0,128	0,128	0,192	0,064	0,13	
T ₂	a₀b₁	0,128	0,064	0,10	0,128	0,128	0,128	0,192	0,128	0,16	
T ₃	a₁b₀	0,064	0,128	0,10	0,128	0,064	0,096	0,192	0,128	0,16	
T ₄	a₁b₁	0,128	0,128	0,13	0,064	0,128	0,096	0,192	0,064	0,13	
T ₅	a₂b₀	0,128	0,064	0,10	0,128	0,128	0,128	0,192	0,064	0,13	
T ₆	a₂b₁	0,128	0,128	0,13	0,128	0,064	0,096	0,192	0,128	0,16	

Fuente: UOITA, 2014.

TABLA A 13: Vitamina C mg/100 g de lechuga previamente tratada con aceite esencial de tomillo.

		Pri	mera corri	da	Se	gunda co	orrida	Tercera corrida			
TRAT.	CODIF.	M_1	M_2	Prom.	M ₁	M ₂	Prom.	M_1	M_2	Promedio	
Testigo		16,00	15,06	15,53	16,94	17,88	17,41	16,00	16,94	16,47	
T ₁	a_0b_0	14,12	15,06	14,59	15,06	16,07	15,53	16,00	16,94	16,47	
T ₂	a₀b₁	14,12	15,06	14,59	15,06	15,06	14,59	16,00	15,06	15,53	
T ₃	a₁b₀	14,12	15,06	14,59	15,06	14,12	14,59	14,12	14,12	14,12	
T ₄	a₁b₁	14,12	15,06	14,12	14,12	14,12	14,59	14,12	13,18	13,65	
T ₅	a₂b₀	13,18	13,18	13,65	14,12	14,12	14,12	13,18	13,18	13,71	
T ₆	a₂b₁	12,24	13,18	12,71	13,18	14,12	13,65	12,24	12,24	12,71	

Realizado por. Sara Tixilema P. 2014.

TABLA A 14: Vitamina C mg/ 100g de col de repollo previamente tratada con aceite esencial de tomillo.

		Pri	mera corric	la	S	egunda coi	rida	Tercera corrida		
TRAT.	CODIF.	M ₁	M_2	Prom.	M_1	M ₂	Prom.	M_1	M ₂	Promedio
Testigo		75,29	65,88	65,88	65,29	65,88	60,59	65,29	65,29	65,29
T ₁	a_0b_0	56,47	65,88	61,18	65,88	65,88	61,18	75,29	65,88	60,59
T ₂	a₀b₁	56,47	65,88	61,18	56,47	65,88	61,18	65,88	56,47	61,18
T ₃	a₁b₀	56,47	56,47	56,47	56,47	65,88	61,18	65,88	56,47	56,47
T ₄	a₁b₁	57,06	56,47	56,76	56,47	56,47	56,47	56,47	56,47	56,47
T ₅	a_2b_0	57,06	57,06	55,76	56,47	56,47	56,47	56,47	57,06	56,76
T ₆	a₂b₁	57,65	57,06	55,35	56,47	57,06	56,47	57,06	57,06	56,76

Fuente: UOITA, 2014.

TABLA A 15: Vitamina C mg/100g de col morada previamente tratada con aceite esencial de tomillo.

		Pri	mera corri	da	Se	gunda co	rrida	Tercera corrida			
TRAT.	CODIF.	M ₁	M_2	Prom.	M_1	M_2	Prom.	M_1	M_2	Promedio	
Testigo		57,41	55,53	55,53	63,06	64	61,18	59,29	66,82	61,65	
T ₁	a_0b_0	55,53	53,65	55,06	63,06	61,18	58,35	57,41	66,82	60,71	
T ₂	a₀b₁	55,53	52,71	54,12	57,41	59,29	58,35	56,47	61,18	60,24	
T_3	a₁b₀	55,53	52,71	53,18	57,41	59,29	56,94	56,47	61,18	59,29	
T_4	a₁b₁	52,71	50,82	50,82	55,53	56,47	56,47	54,59	59,29	57,88	
T ₅	a₂b₀	49,88	49,88	50,35	52,71	55,53	56,47	53,65	53,65	53,18	
T ₆	a₂b₁	48,00	46,12	48,94	48,94	53,65	56,00	49,88	52,71	53,76	

Realizado por. Sara Tixilema P. 2014.

TABLA A16: Vitamina C mg/100g de espinaca previamente tratada con aceite esencial de tomillo.

		Pr	imera corrid	da	Se	egunda cor	rida	Tercera corrida			
TRAT.	CODIF.	M_1	M_2	Prom.	M_1	M_2	Prom.	M_1	M_2	Promedio	
Testigo		34,82	33,88	34,35	33,88	33,88	33,41	34,82	33,88	33,88	
T ₁	a_0b_0	34,82	33,88	33,88	33,88	32,94	32,94	33,88	32,94	32,94	
T ₂	a₀b₁	33,88	33,88	33,88	33,88	32,04	32,94	32,07	32,00	32,00	
T ₃	a₁b₀	33,88	32,94	32,00	32,94	32,00	32,94	31,06	31,06	31,06	
T ₄	a₁b₁	29,18	30,12	31,53	32,00	32,00	32,47	31,06	31,06	31,06	
T ₅	a₂b₀	29,18	29,18	28,71	30,12	31,06	30,59	29,18	29,18	29,18	
T ₆	a₂b₁	28,24	27,29	28,24	26,35	27,29	26,82	27,29	27,29	27,29	

Fuente: UOITA, 2014.

ANEXO B

ANÁLISIS MICROBIOLÓGICOS DE LAS CUATRO HORTALIZAS PICADAS SIN NINGUN TRATAMIENTO

TABLA B 01. Contenido de microorgaismos presentes en hortalizas sin ningun tratamientos mohos y levaduras.

HORTALIZAS	S OBSERVACIONES									
	Pr	imera corrid	la	Se	gunda corri	da	Tercera corrida			
	R1	R2	Pro.1	R1	R2	Pro.2	R1	R2	Pr.3	
LECHUGA	153000	153000	153000	149900	150000	149950	150000	149990	149995	
COL DE REPOLLO	110000	103200	106600	110000	123200	116600	110000	123200	116600	
COL MORADA	102500	108700	105600	102000	100100	101050	102700	101700	102200	
ESPINACA	179400	180000	179700	179400	179100	179250	180200	179400	179800	

Realizado por. Sara Tixilema P, 2014

TABLA B 02. Contenido de microorgaismos presentes en hortalizas sin ningun tratamientos en aerobios mesofilos.

HORTALIZAS		OBSERVACIONES									
	P	rimera corr	ida	Se	gunda corri	da	Tercera corrida				
	R1	R2	Pro.1	R1	R2	Pro.2	R1	R2	Pr.3		
LECHUGA	175700	175400	175550	175700	170400	173050	175700	169900	172800		
COL DE REPOLLO	33000	29000	31000	33000	39000	36000	30000	29000	29500		
COL MORADA	33400	35500	34450	33400	35500	34450	33400	35500	34450		
ESPINACA	175200	168800	172000	175200	168800	172000	175200	168800	172000		

Fuente: UOITA, 2014.

Realizado por. Sara Tixilema P, 2014

TABLA B 1: Contenido de *mohos y levaduras* ufc/g en lechuga tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Prime	ra corrida		Segund	a corrida	Tercera corrida			
TRAT,	CODIF,	M ₁	M_2	R ₁	M ₁	M_2	R_2	M_1	M_2	R_3	
T ₁	a_0b_0	12100	12100	12100	12100	12050	12075	12000	12100	12050	
T ₂	a₀b₁	6500	6400	6450	6400	6300	6350	6449	6400	6424	
T ₃	a₁b₀	4050	4199	4124,5	4200	4100	4150	4200	4100	4150	
T ₄	a₁b₁	1200	1150	1175	1200	1100	1150	1200	1100	1150	
T ₅	a ₂ b ₀	300	400	350	300	290	295	360	389	374	
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0	

Realizado por. Sara Tixilema P. 2014.

TABLA B 2: Contenido de *mohos y levaduras* ufc/g en col de repollo tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Primer	a corrida		Segund	la corrida	Tercera corrida		
TRAT,	CODIF,	M ₁	M ₂	R ₁	M_1	M_2	R ₂	M_1	M_2	R_3
T ₁	a_0b_0	10000	10200	10100	10100	10100	10100	10100	10200	10150
T ₂	a₀b₁	6300	6100	6200	6200	6300	6250	6200	6200	6200
T ₃	a₁b₀	2400	2600	2500	2500	2400	2450	2400	2300	2350
T ₄	a₁b₁	297	300	298	300	200	250	300	300	300
T ₅	a₂b₀	100	200	150	100	0	50	100	100	100
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0

Fuente: UOITA, 2014.

Tabla B 3: Contenido de *mohos y levaduras* ufc/g en col morada tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

		Primera corrida				Segund	a corrida	Tercera corrid		
TRAT,	CODIF,	M_1	M ₂	R ₁	M ₁	M ₂	R ₂	M ₁	M ₂	R_3
T ₁	a_0b_0	9000	9195	9098	9200	9150	9175	9200	9200	9200
T ₂	a₀b₁	5300	5321	5311	5200	5100	5150	5280	5100	5190
T ₃	a₁b₀	1800	1677	1739	1700	1750	1725	1790	1600	1695
T ₄	a ₁ b ₁	500	450	475	498	490	494	500	500	500
T ₅	a₂b₀	120	99	110	98	89	93	10	100	55
T ₆	40	37	37	37	36	44	40	48	41	44

Realizado por. Sara Tixilema P. 2014.

Tabla B 4: Contenido de *mohos y levaduras* ufc/g en espinaca tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Primer	a corrida	 				Tercei	a corrida
TRAT,	CODIF,	M ₁	M_2	R ₁	M_1	M_2	R_2	M ₁	M_2	R ₃
T ₁	a_0b_0	12400	12450	12425	12400	12350	12375	12400	12250	12325
T ₂	a₀b₁	7500	7600	7550	7600	7700	7650	7600	7500	7550
T ₃	a₁b₀	4100	4000	4050	4200	4000	4100	4150	4100	4125
T_4	a₁b₁	200	300	250	200	290	245	300	300	300
T ₅	a_2b_0	300	400	350	300	350	325	400	389	395
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0

Fuente: UOITA, 2014.

TABLA B 5: Contenido de *Aerobios Mesófilos* en lechuga tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

		Primera corrida				Segun	da corrida	Tercera corrida			
TRAT,	CODIF,	M_1	M_2	R_1	M_1	M_2	R ₂	M_1	M_2	R_3	
T ₁	a_0b_0	12500	12457	12479	12500	12489	12495	12600	12400	12500	
T ₂	a₀b₁	4100	4200	4150	4150	4197	4174	4300	4300	4300	
T ₃	a₁b₀	1200	1500	1350	1400	1500	1450	1400	1500	1450	
T ₄	a₁b₁	900	902	901	900	900	900	998	943	971	
T ₅	a₂b₀	197	200	199	180	187	184	190	200	195	
T ₆	a₂b₁	45	50	45	42	41	41	49	50	49	

Realizado por. Sara Tixilema P. 2014.

TABLA B 6: Contenido de *Aerobios mesófilos* en col de repollo tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Prime	era corrida	Segunda corrida				Tercera corrida	
TRAT,	CODIF,	M ₁	M ₂	R ₁	M ₁	M ₂	R ₂	M_1	M ₂	R ₃
T ₁	a_0b_0	11099	11100	11100	11150	11151	11151	11100	11100	11100
T ₂	a₀b₁	3037	3034	3036	3060	3050	3055	3066	3065	3066
T ₃	a₁b₀	1500	1400	1450	1450	1430	1440	1400	1500	1450
T ₄	a₁b₁	700	800	750	700	700	700	700	710	705
T ₅	a_2b_0	200	100	150	200	100	150	0	100	50
T ₆	a₂b₁	100	200	150	200	200	200	200	100	150

Fuente: UOITA, 2014.

TABLA B 7: Contenido de *Aerobios Mesófilos* en col morada tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Prime	Primera corrida Segunda corrida Tere					Terce	ra corrida
TRAT,	CODIF,	M_1	M_2	R ₁	M_1	M_2	R ₂	M_1	M_2	R_3
T ₁	a_0b_0	3700	3700	3700	3600	3600	3600	3650	3600	3625
T ₂	a₀b₁	2100	2050	2075	2100	2100	2100	2200	2150	2175
T ₃	a₁b₀	900	900	900	900	900	900	987	998	993
T ₄	a₁b₁	699	700	700	800	700	750	600	700	650
T ₅	a₂b₀	100	200	150	100	100	100	200	200	200
T ₆	a₂b₁	100	100	100	300	0	150	100	0	50

Realizado por. Sara Tixilema P. 2014.

TABLA B 8: Contenido de *Aerobios Mesófilos* en espinaca tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Prime	ra corrida		Segun	da corrida		Tercera co		
TRAT,	CODIF,	M ₁	M_2	R ₁	M ₁	M ₂	R ₂	M ₁	M ₂	R_3	
T ₁	a_0b_0	12200	12250	12225	12100	12300	12200	12150	12100	12125	
T ₂	a₀b₁	7000	7100	7050	7200	7100	7150	7000	7000	7000	
T ₃	a₁b₀	4300	4100	4200	4000	4200	4100	4300	4100	4200	
T ₄	a₁b₁	1150	1000	1075	1100	1000	1050	1000	998	999	
T ₅	a ₂ b ₀	95	100	97,5	100	100	100	200	100	150	
T ₆	a₂b₁	100	100	100	170	198	184	200	200	200	

Fuente: UOITA, 2014.

TABLA B 9: Contenido de *Coliformes totales* en lechuga tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

		Primera corrida				Segunda	a corrida	Tercera corri		
TRAT,	CODIF,	M_1	M_2	R ₁	M ₁	M_2	R_2	M_1	M_2	R_3
T ₁	a_0b_0	1200	1200	1200	1370	1300	1335	1300	1300	1300
T ₂	a₀b₁	300	400	350	300	300	300	300	400	350
T ₃	a₁b₀	0	0	0	100	98	99	0	200	100
T ₄	a₁b₁	100	0	50	0	100	50	0	100	50
T ₅	a₂b₀	0	0	0	0	0	0	0	0	0
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0

Fuente: UOITA, 2014.
Realizado por. Sara Tixilema P. 2014.

TABLA B 10: Contenido de *Coliformes totales* en col de repollo tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Primera corrida Segunda corrida Te				Tercera	a corrida		
TRAT,	CODIF,	M ₁	M_2	R ₁	M ₁	M ₂	R ₂	M ₁	M ₂	R ₃
T ₁	a_0b_0	100	0	50	100	300	200	100	200	150
T ₂	a₀b₁	0	0	0	100	100	100	0	0	0
T ₃	a₁b₀	0	0	0	100	0	50	0	0	0
T ₄	a₁b₁	0	0	0	0	0	0	0	0	0
T ₅	a₂b₀	0	0	0	0	0	0	0	0	0
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0

Fuente: UOITA, 2014.

TABLA B 11: Contenido de *Coliformes totales* en col morada tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Primer	a corrida		Segund	a corrida		Tercer	a corrida
TRAT,	CODIF,	M_1	M_2	R ₁	M_1	M_2	R_2	M_1	M_2	R_3
T ₁	a_0b_0	100	100	100	100	200	150	100	100	100
T ₂	a₀b₁	100	50	75	100	0	50	200	0	100
T ₃	a₁b₀	200	100	150	0	100	50	100	0	50
T ₄	a₁b₁	100	0	50	0	0	0	100	0	50
T ₅	a₂b₀	0	0	0	0	0	0	0	0	0
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0

Realizado por. Sara Tixilema P. 2014.

TABLA B 12: Contenido de *Coliformes totales* en espinaca tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Prime	ra corrida		Segund	da corrida		Tercera		
TRAT,	CODIF,	M ₁	M_2	R ₁	M_1	M ₂	R ₂	M ₁	M_2	R ₃	
T ₁	a₀b₀	2150	2100	2125	2100	2100	2100	2100	2200	2150	
T ₂	a₀b₁	300	300	300	300	400	350	400	300	350	
T ₃	a₁b₀	100	200	150	100	0	50	100	200	150	
T ₄	a₁b₁	100	100	100	0	0	0	200	100	150	
T ₅	a₂b₀	0	0	0	0	0	0	0	0	0	
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0	

Fuente: UOITA, 2014.

TABLA B 13: Contenido de Salmonella en lechuga tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Primer	a corrida					Tercei	Tercera corrida	
TRAT,	CODIF,	M_1	M ₂	R ₁	M_1	M_2	R ₂	M ₁	M ₂	R_3	
T ₁	a_0b_0	300	200	250	300	200	250	300	200	250	
T ₂	a₀b₁	0	0	0	100	100	100	100	100	100	
T_3	a₁b₀	0	200	100	100	0	50	100	0	50	
T_4	a₁b₁	0	0	0	200	0	100	200	0	100	
T ₅	a₂b₀	0	0	0	0	0	0	0	0	0	
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0	

Realizado por. Sara Tixilema P. 2014.

TABLA B 14: Contenido de Salmonella en col de repollo tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Primer	a corrida		Segunda corrida Tercera				
TRAT,	CODIF,	M ₁	M ₂	R ₁	M ₁	M ₂	R ₂	M ₁	M ₂	R ₃
T ₁	a_0b_0	400	390	395	450	420	435	399	410	404
T ₂	a₀b₁	500	600	550	578	577	577	500	500	500
T ₃	a₁b₀	100	100	100	99	100	99	98	98	98
T ₄	a₁b₁	0	0	0	0	0	0	0	0	0
T ₅	a₂b₀	0	0	0	0	0	0	0	0	0
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0

Fuente: UOITA, 2014. Realizado por. Sara Tixilema P. 2014.

TABLA B 15: Contenido de Salmonella en col morada tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

		Primera corrida				Segunda	a corrida	Tercera corrida			
TRAT,	CODIF,	M_1	M ₂	R ₁	M ₁	M ₂	R ₂	M ₁	M ₂	R_3	
T ₁	a_0b_0	300	200	250	100	100	100	300	100	200	
T ₂	a₀b₁	0	200	100	0	0	0	100	100	100	
T ₃	a₁b₀	100	0	50	0	0	0	100	0	50	
T ₄	a₁b₁	0	0	0	0	0	0	0	0	0	
T ₅	a₂b₀	0	0	0	0	0	0	0	0	0	
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0	

Fuente: UOITA, 2014.
Realizado por. Sara Tixilema P. 2014.

TABLA B 16: Contenido de *Salmonella* en espinaca tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

		Primera corrida				Segunda	corrida	Tercera corrida			
TRAT,	CODIF,	M ₁	M ₂	R ₁	M_1	M_2	R ₂	M ₁	M_2	R ₃	
T ₁	a₀b₀	300	200	250	400	400	400	400	400	400	
T ₂	a₀b₁	100	200	150	200	200	200	100	100	100	
T ₃	a₁b₀	0	100	50	0	0	0	0	0	0	
T ₄	a₁b₁	0	0	0	0	0	0	0	0	0	
T ₅	a₂b₀	0	0	0	0	0	0	0	0	0	
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0	

Fuente: UOITA, 2014.

TABLA B 17: Contenido de *Staphylococcus aureus* en lechuga tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Primera	a corrida					a corrida	
TRAT,	CODIF,	M_1	M_2	R ₁	M ₁	M ₂	R ₂	M ₁	M_2	R ₃
T ₁	a_0b_0	100	200	150	100	0	50	200	200	200
T ₂	a₀b₁	100	0	50	0	100	50	200	100	150
T_3	a₁b₀	0	100	50	0	0	0	0	0	0
T ₄	a₁b₁	0	0	0	0	0	0	0	0	0
T ₅	a₂b₀	0	0	0	0	0	0	0	0	0
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0

Fuente: UOITA, 2014.
Realizado por. Sara Tixilema P. 2014.

TABLA B 18: Contenido de *Staphylococcus aureus* en col de repollo tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Primer	a corrida		Segunda	a corrida		a corrida	
TRAT,	CODIF,	M ₁	M ₂	R ₁	M ₁	M ₂	R ₂	M ₁	M ₂	R_3
T ₁	a_0b_0	100	100	100	100	0	50	0	100	50
T ₂	a₀b₁	100	0	50	0	0	0	0	0	0
T ₃	a₁b₀	0	100	50	100	0	50	0	0	0
T ₄	a₁b₁	0	0	0	0	0	0	0	0	0
T ₅	a₂b₀	0	0	0	0	0	0	0	0	0
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0

Fuente: UOITA, 2014.

TABLA B 19: Contenido de *Staphylococcus aureus* en col morada tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

			Prime	era corrida		Segunda corrida			Terce	era corrida
TRAT,	CODIF,	M_1	M_2	R_1	M_1	M_2	R_2	M_1	M_2	R_3
T ₁	a_0b_0	100	100	100	100	150	125	200	250	225
T ₂	a₀b₁	100	200	150	150	100	125	100	100	100
T ₃	a₁b₀	100	100	100	100	100	100	0	100	50
T ₄	a₁b₁	0	0	0	0	0	0	0	0	0
T ₅	a_2b_0	0	0	0	0	0	0	0	0	0
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0

Realizado por. Sara Tixilema P. 2014.

TABLA B 20: Contenido de *Staphylococcus aureus* ufc/g en espinaca tratada con aceite esencial de tomillo y tratamiento térmico de mínimo proceso.

		Primera corrida				Segunda corrida			Tercera corrida		
TRAT,	CODIF,	M_1	M_2	R₁	M ₁	M_2	R_2	M_1	M_2	R_3	
T ₁	a_0b_0	100	0	50	100	100	100	100	0	50	
T ₂	a₀b₁	0	0	0	0	0	0	0	0	0	
T ₃	a₁b₀	0	0	0	0	0	0	0	0	0	
T ₄	a₁b₁	0	0	0	0	0	0	0	0	0	
T ₅	a_2b_0	0	0	0	0	0	0	0	0	0	
T ₆	a₂b₁	0	0	0	0	0	0	0	0	0	

Fuente: UOITA, 2014.

ANEXO C

DISEÑO EXPERIMENTAL, ANÁLISIS FÍSICO-QUÍMICOS Y ANÁLISIS MICROBIOLÓGICOS EN LAS CUATRO HORTALIZAS

Tabla D 2: Análisis de varianza para *mohos y levaduras* de hortalizas en tratamientos de mínimo proceso.

	Fuente	Suma de Cuadrados	Grados de libertad	Cuadrado Medio	Razón- F	Valor-P
	EFECTOS PRINCIPALES					
	A:TEMPERATURA	7132,0	2	3566,0	142,07	0,00**
LECHUGA	B:TIEMPO	1136,06	1	1136,06	45,26	0,00**
	C:REPLICAS	212,13	2	106,17	4,23	0,04
	AB	779,11	2	389,56	15,52	0,00**
	A:TEMPERATURA	5719,0	2	2859,5	137,26	0,00**
COL DE	B:TIEMPO	480,5	1	480,5	23,03	0,00**
REPOLLO	C:REPLICAS	50,33	2	25,17	1,21	0,33
	AB	446,33	2	223,17	10,71	0,00**
	A:TEMPERATURA	3223,44	2	1611,72	45,24	0,00**
COL	B:TIEMPO	460,06	1	460,06	12,91	0,00**
MORADA	C:REPLICAS	172,44	2	86,22	2,42	0,13
	AB	551,44	2	275,72	7,74	0,00**
	A:TEMPERATURA	1148,58	2	5742,89	82,72	0,00**
ESPINACA	B:TIEMPO	684,5	1	684,5	9,86	0,01
	C:REPLICAS	40,44	2	20,22	0,29	0,05
	AB	377,33	2	188,67	2,72	0,07

^{*} Diferencia significativa

TABLA D3. Analisis de tukey para temperatura para Lechuga despues de haber aplicado la tecnologia de minimos procesos.

α=0,05							
TEMPERATURA	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS				
40	6	75,5	С				
45	6	88,5	В				
50	6	97,5	Α				

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA D4. Analisis de Tukey por el tiempo para lechuga despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TIEMPO CANTIDAD MEDIA HOMOGÉNI						
15	9	71,22	В			
30	9	87,11	A			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA D5. Tabla de analisis del mejor tratamiento, despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	13,84	F
T2	2	3	54,27	E
Т3	3	3	70,45	D
T4	4	3	91,73	С
T5	5	3	97,57	В
T6	6	3	100,00	A

Fuente: Statgraphics.

TABLA D6. Analisis de Tukey para temperatura para Col de repollo despues de haber aplicado la tecnologia de minimos procesos.

α=0,05							
TEMPERATURA	GRUPOS HOMOGÉNEOS						
40	6	56,83	С				
45	6	89,33	В				
50	6	98,33	А				

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D7. Analisis de Tukey por el tiempo para Col de repollo despues de haber aplicado la tecnologia de minimos procesos.

α=0,05							
TIEMPO	GRUPOS HOMOGÉNEOS						
15	9	76,33	В				
30	9	86,66	Α				

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D8. Tabla de analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	23,74	E
T2	2	3	53,14	D
Т3	3	3	81,66	С
T4	4	3	97,87	В
T5	5	3	99,24	A
T6	6	3	100,00	Α

Fuente: Statgraphics.

TABLA D9. Analisis de Tukey para temperatura para Col morada despues de haber aplicado la tecnologia de minimos procesos.

α=0,05							
TEMPERATURA	GRUPOS HOMOGÉNEOS						
40	6	67,0	В				
45	6	90,166	Α				
50	6	98,66	А				

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

Tabla D10. Analisis de Tukey por el tiempo para Col morada despues de haber aplicado la tecnologia de minimos procesos.

α=0,05								
TIEMPO	TIEMPO CANTIDAD MEDIA							
	15	9	80,22	В				
	30	9	90,33	А				

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D11. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	12,78	E
T2	2	3	50,31	D
Т3	3	3	83,62	С
T4	4	3	95,33	В
T5	5	3	99,18	A
T6	6	3	99,61	Α

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D12. Analisis de Tukey para temperatura para Espinaca despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TEMPERATURA CANTIDAD MEDIA HOMOGÉNEOS					
40	6	40,16	В		
45	6	87,83	Α		
50	6	98,16	Α		

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA D13. Analisis de Tukey por el tiempo Espinaca despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TIEMPO	GRUPOS HOMOGÉNEOS					
15	9	69,22	В			
30	9	81,55	Α			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D14. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	21,92	E
T2	2	3	52,15	D
Т3	3	3	75,18	С
T4	4	3	97,75	В
T5	5	3	98,32	В
T6	6	3	100,00	Α

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

Tabla D 15: Análisis de varianza para *Aerobios mesofilos totales* de hortalizas en tratamientos de mínimo proceso

	Fuente	Suma de Cuadrados	Grados de libertad	Cuadrado Medio	Razón- F	Valor- P
	EFECTOS PRINCIPALES					
	A:TEMPERATURA	4700,75	2	2350,39	33,20	0,00*
LECHUGA	B:TIEMPO	512,0	1	512,00	7,23	0,02*
	C:REPLICAS	876,778	2	438,389	6,19	0,01*
	AB	374,333	2	187,167	2,64	0,01*
	A:TEMPERATURA	3306,78	2	1653,39	79,15	0,00*
COL DE	B:TIEMPO	420,5	1	420,05	20,13	0,00*
REPOLLO	C:REPLICAS	152,44	2	76,22	3,65	0,06*
	AB	511,0	2	255,05	12,23	0,00*
	A:TEMPERATURA	9666,78	2	4833,39	995,43	0,00*
COL MORADA	B:TIEMPO	555,55	1	555,55	114,42	0,00*
WIORADA	C:REPLICAS	2,78	2	1,39	0,29	0,00*
	AB	397,44	2	198,72	40,93	0,00*
	A:TEMPERATURA	4517,44	2	2258,72	166,88	0,00*
ESPINACA	B:TIEMPO	533,56	1	533,55	3,99	0,03*
	C:REPLICAS	1090,78	2	545,39	4,08	0,04*
	AB	467,44	2	233,22	1,75	0,00*

^{*} Diferencia significativa

TABLA D16. Analisis de Tukey para temperatura para Lechuga despues de haber aplicado la tecnologia de minimos procesos.

α=0,05							
TEMPERATURA	CANTIDAD	MEDIA	HOMOGÉNEOS				
40	6	60,83	В				
45	6	89,83	А				
50	6	98,66	А				

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA D17. Analisis de Tukey por el tiempo Lechuga despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TIEMPO	TIEMPO CANTIDAD MEDIA				
15	9	77,77	В		
30	0	88.44	۸		

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D18. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	34,65	F
T2	2	3	77,99	E
Т3	3	3	92,59	D
T4	4	3	95,17	С
T5	5	3	98,99	В
T6	6	3	99,75	A

Fuente: Statgraphics.

TABLA D19. Analisis de Tukey para temperatura para Col de repollo despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
	GRUPOS					
TEMPERATURA	CANTIDAD	MEDIA	HOMOGÉNEOS			
40	6	66,55	В			
45	6	91,33	Α			
50	6	98,40	А			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D20. Analisis de Tukey por el tiempo para Col de repollo despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TEMPERATURA	GRUPOS HOMOGÉNEOS					
15	9	80,44	В			
30	9	90,11	А			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D21. Analisis del mejor tratamientodespues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	21,96	E
T2	2	3	78,63	D
Т3	3	3	89,88	С
T4	4	3	94,97	В
T5	6	3	98,71	A
T6	5	3	98,95	A

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D22. Analisis de Tukey para temperatura para Col morada despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TEMPERATURA	GRUPOS HOMOGÉNEOS				
40	6	40,3	С		
45	6	79,5	В		
50	6	95,5	А		

Fuente: Statgraphics.

Realizado por. Sara Tixilema P. 2014.

TABLA D23. Analisis de Tukey por el tiempo para Col morada despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TIEMPO	GRUPOS HOMOGÉNEOS				
15	9	66,22	В		
30	9	77,33	A		

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D24. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	23,87	E
T2	2	3	55,75	D
Т3	3	3	80,54	С
T4	4	3	85,36	В
T5	5	3	96,86	Α
Т6	6	3	97,90	Α

Fuente: Statgraphics.

TABLA D25. Analisis de Tukey para temperatura para Espinaca despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TEMPERATURA CANTIDAD MEDIA HOMOGÉNEOS						
40	6	61,55	В			
45	6	89,33	A			
50	6	98,83	Α			

TABLA D26. Analisis de Tukey por el tiempo Espinaca despues de haber aplicado la tecnologia de minimos procesos.

A=0,05					
TEMPERATURA	GRUPOS HOMOGÉNEOS				
15	9	77,77	Α		
30	9	88,66	Α		

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D27. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	7,17	E
T2	2	3	46,16	D
Т3	3	3	68,25	С
T4	4	3	92,067	В
T5	6	3	98,77	A
T6	5	3	99,12	A

Fuente: Statgraphics.

TABLA D28: Análisis de varianza para *Coliformes totales* en hortalizas en tratamientos de mínimo proceso

	Fuente	Suma de Cuadrados	Grados de libertad	Cuadrado Medio	Razón- F	Valor- P
	EFECTOS PRINCIPALES					
	A :TEMPERATURA	4700,75	2	2350,39	33,20	0,00*
LECHUGA	B:TIEMPO	512,40	1	512,90	7,23	0,02*
	C:REPLICAS	876,778	2	438,38	6,19	0,01*
	AB	374,33	2	187,17	2,64	0,01*
	A:TEMPERATURA	3306,78	2	1653,39	79,15	0,00*
COL DE	B:TIEMPO	420,5	1	420,54	20,13	0,00*
REPOLLO	C:REPLICAS	152,444	2	76,22	3,65	0,06*
	AB	511,0	2	255,50	12,23	0,00*
	A:TEMPERATURA	9666,78	2	4833,39	995,43	0,00*
COL	B:TIEMPO	555,56	1	555,56	114,42	0,00*
MORADA	C:REPLICAS	2,78	2	1,38	0,29	0,00*
	AB	397,44	2	198,72	40,93	0,00*
	A:TEMPERATURA	4517,44	2	2258,72	166,88	0,00*
ESPINACA	B:TIEMPO	533,56	1	533,56	3,99	0,03*
	C:REPLICAS	1090,78	2	545,39	4,08	0,04*
	AB	467,44	2	233,72	1,75	0,00*

^{*} Diferencia significativa

TABLA D29. Analisis de Tukey para temperatura para Lechuga despues de haber aplicado la tecnologia de minimos procesos.

α=0,05							
TEMPERATURA	CANTIDAD	MEDIA	HOMOGÉNEOS				
40	6	60,83	В				
45	6	89,83	А				
50	6	98,66	А				

TABLA D30. Analisis de Tukey por el tiempo Lechuga despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TIEMPO	TIEMPO CANTIDAD MEDIA					
15	9	77,77	В			
30	0	88.44	۸			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D31. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	91,21	В
T2	2	3	97,71	В
Т3	3	3	99,54	Α
T4	4	3	99,66	A
T5	6	3	100,00	А
T6	5	3	100,00	A

Fuente: Statgraphics.

TABLA D32. Analisis de Tukey para temperatura para Col de repollo despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TEMPERATURA	GRUPOS HOMOGÉNEOS					
40	6	MEDIA 66,5	В			
45	6	91,3	А			
50	6	98,0	А			

TABLA D33. Analisis de Tukey por el tiempo para Col de repollo despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TEMPERATURA	GRUPOS HOMOGÉNEOS					
15	9	80,44	В			
30	9	90,11	Α			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D34. Analisis del mejor tratamientodespues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	98,99	В
T2	2	3	99,75	Α
Т3	3	3	99,87	Α
T4	4	3	100,00	Α
T5	6	3	100,00	Α
T6	5	3	100,00	Α

Fuente: Statgraphics.

TABLA D35. Analisis de Tukey para temperatura para Col morada despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TEMPERATURA CANTIDAD MEDIA HOMOGÉNEOS					
40	6	40,3	С		
45	6	79,5	В		
50	6	95,5	А		

TABLA D36. Analisis de Tukey por el tiempo para Col morada despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TIEMPO	GRUPOS HOMOGÉNEOS					
15	9	66,22	В			
30	9	77,33	Α			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D37. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	99,35	С
T2	3	3	99,53	СВ
Т3	2	3	99,58	СВ
T4	4	3	99,81	BA
T5	6	3	100,00	А
Т6	5	3	100,00	Α

Fuente: Statgraphics.

TABLA D38. Analisis de Tukey para temperatura para Espinaca despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TEMPERATURA	GRUPOS HOMOGÉNEOS				
40	6	61,56	В		
45	6	89,33	А		
50	6	98,83	А		

TABLA D39. Analisis de Tukey por el tiempo Espinaca despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TEMPERATURA	GRUPOS HOMOGÉNEOS				
15	9	77,77	А		
30	9	88,66	А		

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D40. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	76,60	D
T2	2	3	96,32	С
Т3	3	3	98,71	В
T4	4	3	99,08	ВА
T5	5	3	100,00	A
T6	6	3	100,00	A

Fuente: Statgraphics.

Tabla D 54: Análisis de varianza para Salmonella en las hortalizas con tratamientos de mínimo proceso.

	Fuente	Suma de Cuadrados	Grados de libertad	Cuadrado Medio	Razón-F	Valor-P
	EFECTOS PRINCIPALES					
	A:TEMPERATURA	1167,44	2	583,722	33,31	0,00*
LECHUGA	B:TIEMPO	234,722	1	234,722	13,40	0,00*
	C:REPLICAS	93,4444	2	46,722	2,67	0,11
	AB	491,444	2	245,722	14,02	0,00*
	A:TEMPERATURA	208,33	2	104,17	0,71	0,00*
COL DE	B:TIEMPO	34,72	1	34,72	0,24	0,00*
REPOLLO	C:REPLICAS	625,00	2	312,50	2,14	0,00*
	AB	486,11	2	243,06	1,67	0,02*
	A:TEMPERATURA	6102,78	2	3051,39	40,23	0,00*
COL	B:TIEMPO	490,889	1	490,889	6,47	0,02*
MORADA	C:REPLICAS	88,111	2	44,0556	0,58	0,00*
	AB	470,778	2	235,389	3,10	0,00*
	A:TEMPERATURA	2883,11	2	1441,56	43,26	0,00*
ESPINACA	B:TIEMPO	256,889	1	256,889	7,71	0,01*
	C:REPLICAS	5,44444	2	2,72222	0,08	0,06*
	AB	661,778	2	330,889	9,93	0,00*

^{*} Diferencia significativa

Elaborado por: Sara Tixilema P. 2014

TABLA D55. Analasis de Tukey para temperatura para Lechuga despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TEMPERATURA	GRUPOS HOMOGÉNEOS				
40	6	80,3	С		
45	6	93,5	В		
50	6	100,0	А		

TABLA D56. Analasis de Tukey por el tiempo Lechuga despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TIEMPO	TIEMPO CANTIDAD MEDIA				
15	9	87,0	В		
10	O	0.,0			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D57. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	63,43	В
T2	3	3	90,23	Α
Т3	4	3	90,31	А
T4	2	3	90,31	Α
T5	6	3	100,00	А
Т6	5	3	100,00	А

Fuente: Statgraphics.

TABLA D58. Analasis de Tukey para temperatura en Col de repollo despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TEMPERATURA	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS		
40	6	81,33	С		
45	6	92,5	В		
50	6	100,0	А		

TABLA D59 Analasis de Tukey por el tiempo para Col de repollo despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TIEMPO	TIEMPO CANTIDAD MEDIA				
15	9	87,07	В		
20	9	04.22	۸		

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA D60. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	12,15	D
T2	2	3	33,36	С
Т3	3	3	88,95	В
T4	4	3	100,00	Α
T5	5	3	100,00	А
T6	6	3	100,00	А

Fuente: Statgraphics.

TABLA D61. Analisis de Tukey para temperatura para Col morada despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
	GRUPOS				
TEMPERATURA	CANTIDAD	MEDIA	HOMOGÉNEOS		
40	6	55,5	С		
45	6	85,5	В		
50	6	99,7	А		

TABLA D62. Analisis de Tukey por el tiempo para Col morada despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TIEMPO	TIEMPO CANTIDAD MEDIA				
15	9	75,30	В		
30	9	85,44	А		

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA D63. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	64,67	С
T2	2	3	87,24	В
T3	3	3	93,62	BA
T4	4	3	100,00	А
T5	5	3	100,00	А
T6	6	3	100,00	A

Fuente: Statgraphics.

TABLA D64. Analisis de Tukey para temperatura en Espinaca despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TEMPERATURA	GRUPOS HOMOGÉNEOS				
40	6	77,6	В		
45	6	0, 89	А		
50	6	99,0	А		

TABLA D65. Analisis de Tukey por el tiempo en Espinaca despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TIEMPO	TIEMPO CANTIDAD MEDIA					
15	9	85,77	В			
30	9	93,33	Α			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA D66. Analisis del mejor tratamientodespues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	48,37	С
T2	2	3	77,98	В
Т3	3	3	97,33	Α
T4	4	3	100,00	Α
T5	5	3	100,00	Α
T6	6	3	100,00	Α

Fuente: Statgraphics.

TABLA D 67: Análisis de varianza para *Staphylococcus aureus* de hortalizas en tratamientos de mínimo proceso.

	Fuente	Suma de Cuadrados	Grados de libertad	Cuadrado Medio	Razón-F	Valor-P
	EFECTOS PRINCIPALES					
	A:TEMPERATURA	4700,75	2	2350,39	33,20	0,00*
LECHUGA	B:TIEMPO	512,90	1	512,0	7,23	0,02*
	C:REPLICAS	876,78	2	438,389	6,19	0,01*
	AB	374,33	2	187,167	2,64	0,01*
	A:TEMPERATURA	313,44	2	156,72	0,69	0,08*
COL DE	B:TIEMPO	14,22	1	14,22	0,06	0,04*
REPOLLO	C:REPLICAS	1101,78	2	550,89	2,42	0,07*
	AB	980,11	2	490,06	2,15	0,02*
	A:TEMPERATURA	5604,78	2	2802,39	42,64	0,00*
COL	B:TIEMPO	338,0	1	338,60	5,14	0,04
MORADA	C:REPLICAS	48,78	2	24,39	0,37	0,69
	AB	408,33	2	204,17	3,11	0,01*
	A:TEMPERATURA	11485,8	2	5742,89	82,72	0,00*
ESPINACA	B:TIEMPO	684,5	1	684,46	9,86	0,01*
	C:REPLICAS	40,44	2	20,22	0,29	0,75*
	AB	377,33	2	188,67	2,72	0,01*

* Diferencia significativa

TABLA D68. Analisis de Tukey para temperatura para Lechuga despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TEMPERATURA	GRUPOS HOMOGÉNEOS				
40	6	60,83	В		
45	6	89,83	А		
50	6	98,66	А		

TABLA D69. Analisis de Tukey por el tiempo en Lechuga despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TIEMPO	GRUPOS HOMOGÉNEOS				
15	9	77,77	В		
30	9	88,44	А		

Fuente: Statgraphics.

Realizado por. Sara Tixilema P. 2014.

TABLA D70. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	84,71	В
T2	2	3	90,42	BA
Т3	3	3	98,09	Α
T4	6	3	100,00	А
T5	5	3	100,00	A
T6	4	3	100,00	А

Fuente: Statgraphics.

TABLA D71. Analisis de Tukey para temperatura en Col de repollo despues de haber aplicado la tecnologia de minimos procesos.

α=0,05					
TEMPERATURA	GRUPOS HOMOGÉNEOS				
40	6	55,1	В		
45	6	88,5	Α		
50	6	97,0	А		

TABLA D72. Analisis de Tukey por el tiempo en Col de repollo despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TIEMPO	TIEMPO CANTIDAD MEDIA					
15	9	74,88	В			
30	9	83,55	Δ			

Fuente: Statgraphics.
Realizado por Sara Tixilema P. 2014.

TABLA D73. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	90,26	В
T2	2	3	95,14	BA
Т3	3	3	97,52	BA
T4	4	3	100,00	А
T5	5	3	100,00	А
T6	6	3	100,00	А

Fuente: Statgraphics.

TABLA D74. Analisis de Tukey para temperatura en Col morada despues de haber aplicado la tecnologia de minimos procesos.

α=0,05							
TEMPERATURA	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS				
40	6	55,6	В				
45	6	88,5	А				
50	6	97,0	А				

TABLA D75. Analisis de Tukey por el tiempo en Col morada despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TIEMPO	TIEMPO CANTIDAD MEDIA					
15	9	84,86	В			
30	9	86,67	А			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA D76. Analisis del mejor tratamiento

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	74,64	В
T2	2	3	78,65	В
Т3	3	3	99,84	BA
T4	4	3	99,84	Α
T5	5	3	100,00	A
Т6	6	3	100,00	A

Fuente: Statgraphics.

Realizado por. Sara Tixilema P. 2014.

TABLA D77. Analisis de Tukey para temperatura en espinaca despues de haber aplicado la tecnologia de minimos procesos.

α=0,05						
TEMPERATURA	GRUPOS ERATURA CANTIDAD MEDIA HOMOGÉNE					
40	6	40,17	В			
45	6	89,84	Α			
50	6	99,67	А			

TABLA D78. Analisis de Tukey por el tiempo Espinaca despues de haber aplicado la tecnologia de minimos procesos.

α=0,05							
TIEMPO	TIEMPO CANTIDAD MEDIA						
15	9	72,22	В				
30	9	86,55	Α				

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA D79. Analisis del mejor tratamiento despues de haber aplicado la tecnologia de minimos procesos.

TRATAMIENTOS	Т	REPLICAS	MEDIA	GRUPOS HOMOGÉNEOS
T1	1	3	86,86	В
T2	2	3	100,00	Α
Т3	3	3	100,00	Α
T4	4	3	100,00	A
T5	5	3	100,00	A
T6	6	3	100,00	Α

Fuente: Statgraphics.

TABLA D80. Porcentaje de eficiencia de disminución de carga microbiana, selección de mejor tratamiento por medio de la prueba de Tukey.

Tratamientos	Mohos y Levaduras	Aerobios mesofilos	Coliformes Totales	Salmonella	Staphylococcus aureus
T ₁	13,84±0,35 f	34,65±0,52 f	91,21±0,63b	63,43±0,45b	84,71±0,75 b
T ₂	54,27±0,59 e	77,99±0,74e	97,71±0,43b	90,31±0,87a	90,42±0,66ba
T ₃	70,45±0,53d	92,59±0,96d	99,54±0,71a	90,23±0,50a	98,09±0,35 a
T ₄	91,73±0,40c	95,17±0,37c	99,66±0,34a	90,31±0,66a	100,00±0 a
T ₅	97,57±0,44 b	98,99±0,70b	100,00±0,0a	100,00±0 a	100,00±0 a
T ₆	100±0,a	99,75±0,030a	100,00±0,0a	100,00±0 a	100,00±0 a
	Mohos y Levaduras	Aerobios mesofilos	Coliformes Totales	Salmonella	Staphylococcus aureus
T ₁	23,74±0,55 e	21,96±0,45e	98,99±0,61b	33,36±0,51c	90,26±0,43b
T ₂	53,14±0,21d	78,63±0,16d	99,75±0,43a	12,15±0,41d	97,52±0,45ba
T ₃	81,66±0,50c	89,88±0,11c	99,87±0,22a	88,95±0,43b	95,14±0,35ba
T ₄	97,87±0,22b	94,97±0,19b	100,00±0a	100,00±0a	100,00±0a
T ₅	99,24±0,38a	98,71±0,35a	100,00±0 a	100,00±0 a	100,00±0a
T ₆	100,00±0 a	98,95±0,20a	100,00±0 a	100,00±0 a	100,00±0a
	Mohos y Levaduras	Aerobios mesofilos	Coliformes Totales	Salmonella	Staphylococcus aureus
T ₁	12,78± 0,37e	23,87±0,84e	99,35±0,16c	64,670,15c	74,64±0,60 b
T ₂	50,31±1,19d	55,75±1,04d	99,58±0,14cb	87,24±0,11b	78,65±0,35 b
T ₃	83,62±0,37c	80,54±1,04c	99,53±0,32cb	93,62±0,55ba	99,84±0,35b a
T ₄	95,33±0,08b	85,36±1,13b	99,81±0,16ba	100,00±0 a	100,00±0 a
T ₅	99,18±0,27a	96,86±1,0 a	100,00±0 a	100,00±0 a	100,00±0 a
T ₆	99,61±0,03 a	97,9±1,05 a	100,00±0 a	100,00±0 a	100,00±0 a
	Mohos y Levaduras	Aerobios mesofilos	Coliformes Totales	Salmonella	Staphylococcus aureus
T ₁	21,92±0,53 e	7,17±0,83e	76,6±0,32d	48,37±0,11c	86,86±4,3 b
T ₂	52,15±0,63d	46,16±0,64 d	96,32±0,34c	77,98±0,59b	100,00±0 a
T ₃	75,18±0,30c	68,25±0,52 c	98,71±0,63b	97,33±0,42a	100,00±0 a
T ₄	97,75±0,19b	92,067±0,33b	99,08±0,84a	100,00±0 a	100,00±0 a
T ₅	98,32±0,21b	98,77±0,4a	100,00±0 a	100,00±0 a	100,00±0 a

Elaborado por: Sara Tixilema P, 2014

Nota: Para la selección del mejor tratamiento se tomaron en cuenta el mayor porcentaje de reducción para cada una de las hortalizas.

ANEXO E

TABLAS DE ANOVA Y PRUEBAS DE TUKEY PARA LA EVALUACIÓN SENSORIAL EN EL MEJOR TRATAMIENTO DE CADA UNO DE LAS HORTALIZAS PICADAS

TABLA E 1: Análisis de varianza (ANOVA) en hortalizas de características sensoriales.

	Fuente	Suma de Cuadrados	Grados de libertad	Cuadrado Medio	Razón-F	Valor-P
	EFECTOS PRINCIPALES					
COLOR	A:TRATAMIENTOS	63,5	3	21,17	141,94	0,00**
	B:CATADORES	43,8	19	2,26	15,46	0,00*
OLOR	A:TRATAMIENTOS	55,75	3	18,92	126,71	0,00**
	B:CATADORES	34,75	19	1,80	12,50	0,00*
SABOR	A:TRATAMIENTOS	46,6	3	15,53	94,19	0,00**
	B:CATADORES	46,2	19	2,58	14,74	0,00**
TEXTURA	A:TRATAMIENTOS	55,27	3	18,52	149,66	0,00**
	B:CATADORES	36,24	19	1,90	15,50	0,00**
	A:TRATAMIENTOS	74,8	3	24,94	197,39	0,00**
ACEPTABILIDAD	B:CATADORES	31,8	19	1,74	13,25	0,00**
PADEAMIENTO	A:TRATAMIENTOS	40,45	3	13,48	101,79	0,00**
ENZIMATICO	B:CATADORES	33,95	19	1,77	13,49	0,00**

TABLA E2. De Tukey para Color en lechuga.

α=0,05							
DIAS	DIAS CANTIDAD MEDIA		GRUPOS HOMOGÉNEOS				
13	20	2,1	D				
10	20	2,5	С				
8	20	3,1	В				
6	20	4,4	Α				

TABLA E3. De Tukey para Olor en lechuga (Lactuca sativa L).

	α=0,05								
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEO						
			D	С	В	Α			
13	20	2,6	D						
10	20	3,2		С					
8	20	4,3			В				
6	20	4,7				Α			

Fuente: Statgraphics. Realizado por. Sara Tixilema P. 2014.

TABLA E4. De Tukey para Sabor en lechuga (Lactuca sativa L).

α=0,05								
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS					
			D	С	В	Α		
13	20	2,7	D					
10	20	3,2		С				
8	20	4,0			В			
6	20	4,7				Α		

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA E5. De Tukey para TEXTURA en lechuga.

α=0,05								
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS					
			D	С	В	Α		
13	20	2,15	D					
10	20	2,95		С				
8	20	3,84			В			
6	20	4,45				Α		

TABLA E 6. De TUKEY para Aceptabilidad en lechuga.

α=0,05									
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS						
			D	С	В	Α			
13	20	2,05	D						
10	20	3,15		С					
8	20	3,95			В				
6	20	4,65				Α			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014

TABLA E 7. De Tukey para empardiamiento en lechuga.

α=0,05									
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS						
			D	С	В	Α			
13	20	1,85	D						
10	20	3,61		С					
8	20	3,45			В				
6	20	4,7				Α			

Fuente: Statgraphics.

TABLA E 8: Análisis de varianza (ANOVA) para col de repollo en sus características sensoriales

	Fuente	Suma de Cuadrados	Grados de libertad	Cuadrado Medio	Razón- F	Valor- P
	EFECTOS PRINCIPALES					
COLOR	A:TRATAMIENTOS	2,75	3	0,749	8,48	0,00*
	B:CATADORES	30,35	19	1,57	18,04	0,00*
OLOR	A:TRATAMIENTOS	3,7	3	1,23	12,12	0,00*
	B:CATADORES	9,7	19	0,05	5,02	0,00*
SABOR	A:TRATAMIENTOS	7,5	3	2,5	23,75	0,00*
	B:CATADORES	8,3	19	0,48	4,15	0,00*
TEXTURA	A:TRATAMIENTOS	10,38	3	3,46	35,75	0,00*
	B:CATADORES	20,15	19	1,59	10,39	0,00*
	A:TRATAMIENTOS	4,9	3	1,63	6,9	0,00*
ACEPTABILIDAD	B:CATADORES	28,5	19	1,56	6,30	0,00*
PARDDEAMIENTO	A:TRATAMIENTOS	2,95	3	0,94	6,20	0,00*
ENZIMATICO	B:CATADORES	23,55	19	1,24	7,81	0,00*

TABLA E9. Tukey para Olor en Col repollo.

α=0,05										
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS							
			D	С	В	Α				
13	20	4,35	D							
10	20	4,45		С	В					
8	20	4,7			В	Α				
6	20	4,9				Α				

TABLA E10. Tukey para Sabor en Col repollo.

α=0,05									
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS						
13			D	С	В	Α			
10	20	4,0		С					
8	20	4,4			В				
6	20	4,55			В				
1	20	4,85				Α			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA E11. TUKEY para Textura en Col repollo.

α=0,05									
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS						
			D	С	В	Α			
13	20	3,7		С					
10	20	3,8		С	В				
8	20	4,0			ВА				
6	20	4,6				Α			

Fuente: Statgraphics.

TABLA E12. Tukey para Aceptabilidad en Col repollo,

α=0,05									
DIAS	Cantidad	Media	GRUPOS HOMOGÉNEO						
			D	С	В	Α			
13	20	3,35			В				
10	20	3,75			В	Α			
8	20	3,90				Α			
6	20	4,00				Α			

TABLA E13. Tukey para pardeamiento enzimático en Col repollo.

α=0,05									
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS						
	ם	С	В	Α					
13	20	3,5			В				
10	20	3,9				Α			
8	20	3,9				Α			
6	20	4,0				Α			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA E 14: Análisis de varianza (ANOVA) para col morada en sus características sensoriales

	Fuente	Suma de Cuadrados	Grados de libertad	Cuadrado Medio	Razón-F	Valor-P
	EFECTOS PRINCIPALES					
COLOR	A:TRATAMIENTOS	9,7375	3	3,26	28,41	0,0005**
	B:CATADORES	41,73	19	2,197	19,23	0,0000**
OLOR	A:TRATAMIENTOS	5,3	3	1,76	16,24	0,0005**
	B:CATADORES	19,7	19	1,036	9,53	0,0000**
SABOR	A:TRATAMIENTOS	6,75	3	1,7677	16,24	0,0005**
	B:CATADORES	17,98	19	1,036	9,53	0,0000**
TEXTURA	A:TRATAMIENTOS	8,75	3	2,6792	14,95	0,0005**
	B:CATADORES	26,75	19	1,5599	8,71	0,0000**
	A:TRATAMIENTOS	8,73	3	2,9125	25,49	0,0005**
ACEPTABILIDAD	B:CATADORES	8,7573	19	0,4599	4,02	0,0000**
	A:TRATAMIENTOS	6,45	3	2,9125	25,49	0,0005**
ACEPTABILIDAD	B:CATADORES	60,95	19	0,4599	4,02	0,0000**

TABLA E15. Datos homogeneidad para Color en Col morada.

α=0,05									
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS			os			
			D	C	В	Α			
13	20	3,75		C					
10	20	4,0			В				
8	20	4,2			В	Α			
6	20	4,45				Α			

TABLA E16. Tukey para Olor en Col morada.

α=0,05										
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS							
			D	С	В	Α				
13	20	3,5		С						
10	20	4,0		С	В					
8	20	4,2			В	Α				
6	20	4,6				Α				

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA E17. Tukey para Sabor en Col morada

α=0,05										
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS							
			D	С	В	Α				
13	20	3,75		С						
10	20	4,0		С	В					
8	20	4,2			В	Α				
6	20	4,5				Α				

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA 18. Tukey para Textura en Col morada.

α=0,05										
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS							
			D	С	В	А				
13	20	4,15			В					
10	20	4,15			В					
8	20	4,70				Α				
6	20	4,85				Α				

Fuente: Statgraphics.

Realizado por. Sara Tixilema P. 2014.

TABLA 19. Tukey para Aceptabilidad en Col morada.

α=0,05										
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS							
			D	С	В	Α				
13	20	4,15		С						
10	20	4,2		С						
8	20	4,65			В					
6	20	4,95				Α				

Fuente: Statgraphics.

Realizado por. Sara Tixilema P. 2014.

TABLA E20. De Tukey para empardiamiento en Col morada.

DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS		6	
			D	С	В	Α
13	20	3,3		С		
10	20	3,65			В	
8	20	3,9				Α
6	20	4,05				Α

Fuente: Statgraphics.

TABLA E 21: Análisis de varianza (ANOVA) para espinaca en sus características sensoriales

	Fuente	Suma de Cuadrados	Grados de libertad	Cuadrado Medio	Razón-F	Valor-P
	EFECTOS PRINCIPALES					
COLOR	A:TRATAMIENTOS	12,3	3	4,1	37,69	0,0005**
	B:CATADORES	44,3	19	2,331	21,44	0,0000**
OLOR	A:TRATAMIENTOS	21,1375	3	7,0459	65,70	0,0000**
	B:CATADORES	12,645	19	0,6651	6,20	0,0000**
SABOR	A:TRATAMIENTOS	18,1375	3	6,0458	37,82	0,0000**
	B:CATADORES	23,637	19	1,2441	7,78	0,0000**
TEXTURA	A:TRATAMIENTOS	15,5	3	5,667	32,72	0,0000**
	B:CATADORES	20,5	19	1,0789	6,83	0,0000**
	A:TRATAMIENTOS	2,1375	3	0,7125	5,01	0,0000**
ACEPTABILIDAD	B:CATADORES	32,4375	19	1,70724	12,00	0,0000**
	A:TRATAMIENTOS	1,6	3	0,5333	3,85	0,0141**
ACEPTABILIDAD	B:CATADORES	31,7	19	1,6684	12,04	0,0000**

TABLA E22. Tukey para Color en Espinaca.

α=0,05									
DIAS	Cantidad	Media	GRUPOS HOMOGÉNEOS						
			D	С	В	Α			
13	20	3,20	D						
10	20	3,50		С					
8	20	3,85			В				
6	20	4,25				Α			

TABLA E 23. Tukey para Olor en Espinaca.

	α=0,05										
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEOS								
			D	С	В	Α					
13	20	3,6		С							
10	20	4,5			В						
8	20	4,8			В	Α					
6	20	4,9				Α					

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA E24. Tukey para Sabor en Espinaca.

α=0,05										
DIAS	CANTIDAD	MEDIA	GRUPOS HOMOGÉNEO							
			D	С	В	Α				
13	20	3,55	D							
10	20	3,90		С						
8	20	4,40			В					
6	20	4,80				Α				

Fuente: Statgraphics.

TABLA E25. Tukey para textura en Espinaca.

α=0,05									
DIAS	Cantidad	Media	GRUPOS HOMOGÉNEOS						
			D	С	В	Α			
13	20	3,85		С					
10	20	3,90		С					
8	20	4,30			В				
6	20	4,95				Α			

TABLA E26. Tukey para aceptabilidad en Espinaca.

α=0,05									
DIAS	Cantidad	Media	GRUPOS HOMOGÉNEOS						
			D	С	В	Α			
13	20	3,75			В				
10	20	3,90			В	Α			
8	20	3,90			В	Α			
6	20	4,20				Α			

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

TABLA E27. De Tukey para pardeamiento enzimática en Espinaca.

	α=0,05										
DIAS	Cantidad	Media	GRUPOS HOMOGÉNEOS								
			D	С	В	Α					
13	20	3,7			В						
10	20	3,9			В	Α					
8	20	3,9			В	Α					
6	20	4,1				Α					

Fuente: Statgraphics.
Realizado por. Sara Tixilema P. 2014.

ANEXO F

DETERMINACIÓN DEL TIEMPO DE VIDA ÚTIL DE LAS CUATRO HORTALIZAS

Tabla F 1.- Datos obtenidos para el cálculo de Tiempo de vida útil (Aerobios mesofilos) en lechuga picada previamente tratada con aceite esencial de tomillo.

DÍAS	HORAS	A	Aerob	ios M	esofilos	Ln C	Log C
DIAS	показ	R1	R2	R3 Promedio			
0	0	150	140	150	144	5,4120	2,3504
2	48	350	350	350	616	6,4213	2,7887
5	120	1000	1000	1000	1000	7,3234	3,1805
7	168	1150	1400	1450	3333	8,1109	3,5225
9	216	4900	4250	4300	4483	8,4060	3,6507
11	264	8300	7100	7150	7516	8,9222	3,8749

Elaborado Por: Sara Tixilema

Tabla F 2.- Datos obtenidos para el cálculo de Tiempo de vida útil (Aerobios mesofilos) en col de repollo picada, previamente tratada con aceite esencial de tomillo.

DÍAS	HORAS	As Aerobios Mesofilos					Log C
DIAS	HUKAS	R1	R2	R3	Promedio		
0	0	100	100	150	122	6,2113	2,6975
2	48	250	250	125	208	7,0958	3,0817
5	120	600	800	2800	733	7,9127	3,4364
7	168	2150	2400	2500	3350	8,1157	3,5246
9	216	6550	6000	5900	6150	8,7231	3,7884
11	264	7700	7600	7800	7700	8,9489	3,8865

Elaborado Por: Sara Tixilema

Tabla F 3.- Datos obtenidos para el cálculo de Tiempo de vida útil (Aerobios mesofilos) en col morada picada, previamente tratada con aceite esencial de tomillo.

DÍAS	HORAS	-	Aerobio	os Mes	Ln C	Log C	
DIAS	HUKAS	R1	R2	R3	Promedio	R1	R2
0	0	150	100	150	100	6,2113	2,6975
2	48	1250	1250	1125	1209	7,0958	3,0817
5	120	2600	2800	2800	2733	7,9127	3,4364
7	168	3150	3400	3500	3350	8,1157	3,5246
9	216	6550	6000	5900	6150	8,7231	3,7884
11	264	7700	7600	7800	7700	8,9489	3,8865

Elaborado Por: Sara Tixilema

Tabla F 4.- Datos obtenidos para el cálculo de Tiempo de vida útil (Aerobios mesofilos) en espinaca picada, previamente tratada con aceite esencial de tomillo.

DÍAS	HORAS		Aero	Ln C	Log C		
DIAS	HUKAS	R1	R2	R3	Promedio	R1	R2
0	48	154	156	158	156	6,8110	2,9580
2	120	1700	1500	1550	1616	7,3867	3,2080
5	168	3150	3250	3100	3166	8,0602	3,5005
7	216	5250	5000	5350	5200	8,5560	3,7158
9	264	7550	7550	7550	7550	8,9293	3,8779
11	321,6	8825	8620	8790	8745	9,0762	3,9417

Elaborado Por: Sara Tixilema

DETERMINACIÓN DEL TIEMPO DE VIDA ÚTIL DE LAS CUATRO HORTALIZAS FRESCAS PICADAS EMPACADAS UTILIZANDO LOS MEJORES TRATAMIENTOS EN COLIFORMES TOTALES.

Tabla F 5.- Datos obtenidos para el cálculo de Tiempo de vida útil (*Coliformes Totales*) en Lechuga picada, previamente tratada con aceite esencial de tomillo.

DÍAS	HORAS		Colife	Ln C	Log C		
DIAS	JIAS HUKAS	R1	R2	R3	Promedio	R1	R2
0	0	150	150	100	100	5,2768	2,2917
2	48	400	450	250	366	5,8741	2,5511
5	120	750	640	340	576	6,3035	2,7376
7	168	900	1050	950	966	6,8718	2,9844
9	216	1750	1650	1650	1683	7,4281	3,2260
11	264	2200	1950	1950	2033	7,6158	3,3075

Elaborado Por: Sara Tixilema

Tabla F 6.- Datos obtenidos para el cálculo de Tiempo de vida útil (*Coliformes Totales*) en col de repollo picada, previamente tratada con aceite esencial de tomillo.

DÍAS HORAS			Colifc	Ln C	Log C		
DIAS	HUKAS	R1	R2	R3	Promedio	R1	R2
0	0	100	100	100	100	5,6336	2,4466
2	120	550	350	350	416	6,0086	2,6095
5	168	650	750	1100	833	6,7000	2,9098
7	216	1100	1450	1500	1350	7,1985	3,1263
9	264	1500	1750	1600	1616	7,3861	3,2077
11	321,6	2350	2500	2550	2466	7,8100	3,3918

Elaborado Por: Sara Tixilema

Tabla F 7.- Datos obtenidos para el cálculo de Tiempo de vida útil (*Coliformes Totales*) en col morada picada previamente tratada con aceite esencial de tomillo.

DÍAS	HORAS		Colife	Ln C	Log C		
DIAS	HUKAS	R1	R2	R3	Promedio	R1	R2
0	0	100	150	100	150	4,9714	2,1590
2	48	200	250	250	233	5,4471	2,3656
5	120	350	350	350	350	5,8579	2,5441
7	168	850	650	800	766	6,6356	2,8818
9	216	1350	1450	1550	1450	7,2777	3,1607
11	264	2000	2150	1950	2783	7,6166	3,3078

Elaborado Por: Sara Tixilema

Tabla F8.- Datos obtenidos para el cálculo de Tiempo de vida útil (*Coliformes Totales*) en espinaca picada previamente tratada con aceiteesencial de tomillo.

DÍAS	HORAS		Colif	Ln C	Log C		
DIAS	HUKAS	R1	R2	R3	Promedio	R1	R2
0	48	150	100	100	116	4,7403	2,0587
2	120	450	500	350	433	6,0606	2,6321
5	168	950	1050	1000	1000	6,9069	2,9996
7	216	1650	1850	1800	1766	7,4757	3,2466
9	264	3600	3600	3550	3583	8,1840	3,5543
11	321,6	6000	5950	5600	5850	8,6737	3,7670

Elaborado Por: Sara Tixilema

Tabla F9. Tabla resumen del tiempo de vida útil de cada hortaliza.

	TIEMPO DE VIDA ÚTIL Días						
HORTALIZAS	Aerobios mesofilos	Coliformes Totales					
Lechuga	10	5					
Col de repollo	17	10					
Col morada	15	8					
Espinaca	16	5					

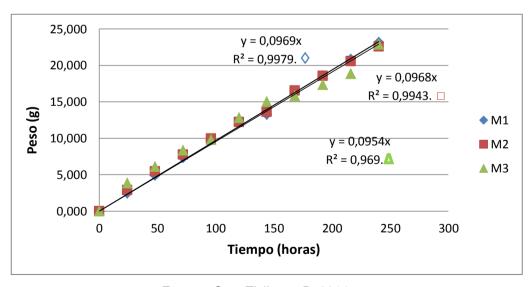
Elaborado Por: Sara Tixilema

PARÁMETROS MICROBIOLÓGICOS EMPLEADOS PARA LAS HORTALIZAS TROCEADAS

Especificaciones microbiológicas de la empresa PROVEFRUT S. A.

Prueba	Especificación		
T.V.C Mesófilos totales	Max. 100,000 ufc/g		
Enterobacterias	Max. 1,000 ufc/g		
Coliformes totales	Max. 1,000 ufc/g		
Staph. Aureus	Max. 100 ufc/g		
E. Coli	Max. 10 ufc/g		
Mohos y Levaduras	Max. 10,000 ufc/g		

Fuente: Provefrut S.A, 2013

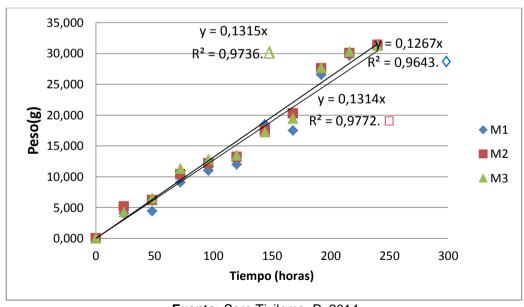

ANEXOG

PÉRDIDA DE PESO EN ALMACENAMIENTO DE HORTALIZAS TROCEADAS TRATADAS

TABLA G 1. Análisis de pérdida de peso de la lechuga durante el tiempo de vida útil del mejor tratamiento.

TIEMPO	PESO (g)			PERDIDA DE PESO (%)		
(h)	MUESTRA 1	MUESTRA 2	MUESTRA 3	MUESTRA 1	MUESTRA 2	MUESTRA 3
0	11,8657	11,8950	11,9701	0,000	0,000	0,000
24	11,5763	11,5526	11,5104	2,439	2,879	3,840
48	11,2869	11,2455	11,2379	4,878	5,460	6,117
72	10,9975	10,9735	10,9718	7,317	7,747	8,340
96	10,7081	10,7115	10,7957	9,756	9,950	9,811
120	10,4187	10,4430	10,4396	12,195	12,207	12,786
144	10,2930	10,2750	10,1735	13,254	13,619	15,009
168	9,9334	9,9261	10,0760	16,284	16,552	15,824
192	9,6616	9,6871	9,8952	18,576	18,562	17,334
216	9,3897	9,4481	9,7145	20,867	20,571	18,844
240	9,1179	9,2091	9,2337	23,158	22,580	22,860

Gráfico G1. Análisis de pérdida de peso de la lechuga durante el tiempo de vida útil del mejor tratamiento.

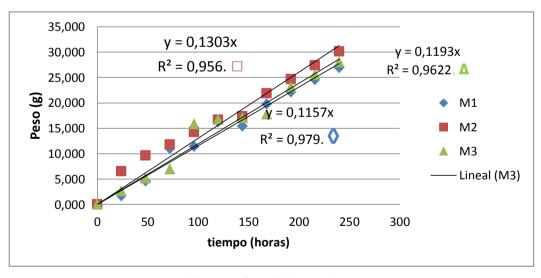


Fuente: Sara Tixilema. P, 2014 Realizado por. Sara Tixilema P. 2014.

TABLA G 2. Análisis de pérdida de peso de la col de repollo durante el tiempo de vida útil del mejor tratamiento.

TIEMPO		PESO (g)		PERDIDA DE PESO (%)		
(h)	MUESTRA	MUESTRA	MUESTRA	MUESTRA	MUESTRA	MUESTRA
(,	1	2	3	1	2	3
0	12,7200	12,8422	12,8636	0,000	0,000	0,000
24	12,2010	12,1797	12,3181	4,080	5,159	4,241
48	12,1562	12,0505	12,0314	4,432	6,165	6,469
72	11,5650	11,5068	11,4132	9,080	10,399	11,275
96	11,3227	11,2811	11,2159	10,985	12,156	12,809
120	11,1941	11,1483	11,1324	11,996	13,190	13,458
144	10,3706	10,5989	10,6489	18,471	17,468	17,217
168	10,4969	10,2401	10,3654	17,477	20,262	19,421
192	9,3482	9,3016	9,3096	26,508	27,570	27,628
216	8,9480	8,9888	8,9701	29,654	30,006	30,267
240	8,7241	8,8161	8,8439	31,414	31,350	31,249

GRAFICO G2. Análisis de pérdida de peso de la col de repollo durante el tiempo de vida útil del mejor tratamiento.

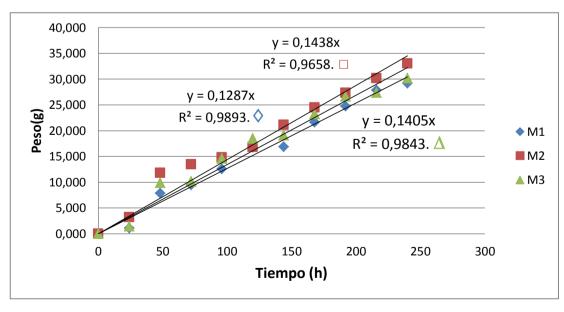


Fuente: Sara Tixilema. P, 2014 Realizado por. Sara Tixilema P. 2014.

TABLA G 3. Análisis de pérdida de peso de la col de repollo durante el tiempo de vida útil del mejor tratamiento.

TIEMPO		PESO (g)		PERDIDA DE PESO (%)		
_	MUESTRA	MUESTRA	MUESTRA	MUESTRA	MUESTRA	MUESTRA
(h)	1	2	3	1	2	3
0	12,1518	12,1206	12,2056	0,000	0,000	0,000
24	11,9451	11,3271	11,8790	1,701	6,547	2,676
48	11,5928	10,9501	11,5748	4,600	9,657	5,168
72	10,8124	10,6910	11,3546	11,022	11,795	6,972
96	10,7657	10,3895	10,2701	11,407	14,282	15,857
120	10,1781	10,1022	10,1618	16,242	16,653	16,745
144	10,2772	10,0155	10,1245	15,427	17,368	17,050
168	9,7483	9,4672	10,0370	19,779	21,892	17,767
192	9,4596	9,1341	9,3848	22,155	24,640	23,111
216	9,1708	8,8011	9,0858	24,531	27,388	25,560
240	8,8821	8,4680	8,7869	26,907	30,135	28,009

GRAFICO G3. Análisis de pérdida de peso de la col de repollo durante el análisis del tiempo de vida útil del mejor tratamiento.



Fuente: Sara Tixilema. P, 2014 Realizado por. Sara Tixilema P. 2014.

TABLA G 4. Análisis de pérdida de peso de la col de repollo durante el análisis del tiempo de vida útil del mejor tratamiento.

TIEMPO		PESO (g)		PERDIDA DE PESO (%)			
(h)	MUESTRA 1	MUESTRA 2	MUESTRA 3	MUESTRA 1	MUESTRA 2	MUESTRA 3	
0	12,4016	12,8402	12,3453	0,000	0,000	0,000	
24	12,2670	12,4302	12,1633	1,085	3,193	1,474	
48	11,4281	11,3230	11,1223	7,850	11,816	9,907	
72	11,2267	11,1115	11,0935	9,474	13,463	10,140	
96	10,8393	10,9429	10,5420	12,598	14,776	14,607	
120	10,3227	10,6811	10,0671	16,763	16,815	18,454	
144	10,3093	10,1288	9,9879	16,871	21,116	19,096	
168	9,7201	9,6972	9,4797	21,623	24,478	23,212	
192	9,3360	9,3327	9,0567	24,720	27,317	26,639	
216	8,9519	8,9681	8,9634	27,817	30,156	27,395	
240	8,7811	8,6036	8,6211	29,194	32,995	30,167	

GRAFICO G4. Análisis de pérdida de peso de la col de repollo durante el análisis del tiempo de vida útil del mejor tratamiento.

ANEXOH

COSTOS DE HORTALIZAS TROCEADAS PREVIAMENTE TRATADAS CON ACEITE ESENCIAL DE TOMILLO

Tabla H 1: Costos de la materia prima col de repollo.

Materiales	Unidad	Cantidad	Valor unitario (\$)	Valor total (\$)
Col de repollo	Unidad	10	0,50	5,00
AE canela	ml	5	2,15	10,75
Bandejas plásticas	Unidad	30	0,08	2,40
Film adherente	Caja	1	2,95	2,95
Tween 80	OZ	1	1,00	1,00
			Total	22,1

Realizado por. Sara Tixilema P. 2014.

Tabla H 2: Costos de la materia prima Col morada.

Materiales	Unidad	Cantidad	Valor unitario (\$)	Valor total (\$)
Col morada	Unidad	10	0,3	3,00
AE canela	ml	5	2,15	10,75
Bandejas plásticas	Unidad	30	0,08	2,40
Film adherente	Caja	1	2,95	2,95
Tween 80	OZ	1	1,00	1,00
			Total	20,10

Realizado por. Sara Tixilema P. 2014.

Tabla H 3: Costos de la materia prima lechuga

Materiales	Unidad	Cantidad	Valor unitario (\$)	Valor total (\$)
Lechuga	Unidad	10	0,15	1,50
AE canela	ml	5	2,15	10,75
Bandejas plásticas	Unidad	30	0,08	2,40
Film adherente	Caja	1	2,95	2,95
Tween 80	OZ	1	1,00	1,00
			Total	18.60

Tabla H 4: Costos de la materia prima espinaca.

Materiales	Unidad	Cantidad	Valor unitario (\$)	Valor total (\$)
Espinaca	kg	5	1	5,00
AE canela	ml	5	2,15	10,75
Bandejas plásticas	Unidad	25	0,08	2,00
Film adherente	Caja	1	2,95	2,95
Tween 80	OZ	1	1	1,00
	•	•	Total	21,70

Realizado por. Sara Tixilema P. 2014.

Tabla H 5: Costos de los equipos por horas utilizadas

Equipos	Costos (\$)	Horas utilizadas	Vida útil (Años)	Costo Anual (\$)	Costo día (\$)	Costo hora (\$)	Total (\$)
Balanza electrónica	200	5	12	16,67	0,07	0,01	0,04
Balanza de humedad	1600	6	12	133,33	0,56	0,07	0,42
Licuadora	75	2	15	5,00	0,02	0,003	0,01
pH-metro	1300	1	5	260,00	1,08	0,14	0,14
Varios elementos	150	8	5	30,00	0,13	0,02	0,13
						Total	0,73

Realizado por. Sara Tixilema P. 2014.

Tabla H 6: Costos de los servicios básicos

Servicios	Unidad	Consumo	Valor unitario (\$)	Valor total (\$)
Agua	m ³	5	0,09	0,45
Luz	kwh	5	0,24	1,20
Gas	kg	25	0,10	2,50
			Total	4,15

Tabla H 7: Costo de la mano de obra.

PERSONAL	SUELDO (\$)	C, DÍA (\$)	C, HORA (\$)	HORAS UTILIZADAS	TOTAL (\$)
Obrero	318	15,9	1,99	8	15,9
				Total	15,9

Realizado por. Sara Tixilema P. 2014.

Tabla H 8: Utilidades ganadas por hortaliza

COSTOS	HORTALIZAS					
	Col de repollo	Col morada	Lechuga	Espinaca		
Costo total (\$)	42,88	40,88	39,38	42,48		
Costo unitario (\$)	1,43	1,36	1,31	1,42		
Precio de venta (\$)	1,79	1,70	1,64	1,77		
Utilidad por bandeja (\$)	0,36	0,34	0,33	0,35		
Utilidad neta (\$)	10,72	10,22	9,84	10,62		

ANEXO I

FICHAS DE CATACIONES PARA LA EVALUACIÓN SENSORIAL DE LAS HORTALIZAS PICADAS, PREVIAMENTE TRATADAS CON ACEITE ESENCIAL DE TOMILLO

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE CIENCIA E INGENIERÍA EN ALIMENTOS

1700E170 DE GIENOIA E INCENIENA EN AEIMENTO	
1: FICHA DE CATACIÓN	
Fecha:,	

Instrucciones: Deguste las siguientes muestras y marque con una x la alternativa que mejor describa su percepción.

Verde muy claro brillante Verde poco claro brillante Verde poco claro brillante Verde opaco Verde opaco Verde opaco Verde muy opaco Muy desagradable Desagradable Desagradable Olor Ni agrada ni desagrada Gusta Gusta mucho Muy desagradable Desagradable Desagradable Olor Ni agrada ni desagrada Gusta Gusta mucho Olor Ni agrada ni desagrada Olor O	ESPECTOS		
Verde poco claro brillante		ESCALA	MUESTRAS
Verde poco claro brillante		Vordo muy claro brillanto	
Ni brillante ni opaco Verde opaco Verde opaco Verde muy opaco Verde muy opaco Muy desagradable Desagradable OLOR Ni agrada ni desagrada Gusta Gusta mucho Muy desagradable Desagradable Ni agrada ni desagrada Gusta mucho Muy desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy dura Dura Muy dura Dura Ni dura ni suave Suave Muy suave Muy suave Muy desagradable Desagradable Desagradable Desagradable Desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Poco severo Poco moderado Poco			
Verde opaco Verde muy opaco Verde muy opaco Muy desagradable Desagradable Obesagradable Obesagra	COLOR		
Verde muy opaco Muy desagradable Desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy dura Dura Ni dura ni suave Suave Muy suave Muy suave Muy desagradable Desagradable Desagradable Desagradable Desagradable Desagradable Ni agrada ni desagrada Gusta Gusta Gusta mucho Muy severo Poco severo Poco severo Ni severo ni moderado Poco moderado Poco moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo ni moderado Poco	JOLOIK		
Muy desagradable			
Desagradable			
OLOR Ni agrada ni desagrada Gusta Gusta Gusta mucho Muy desagradable Desagradable Ni agrada ni desagrada Ni agrada ni desagrada Gusta Gusta mucho Muy dura Dura Ni dura ni suave Suave Muy suave Muy desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco moderado Poco moderado		, ,	
Gusta Gusta mucho Muy desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy dura Dura Ni dura ni suave Suave Muy suave Muy suave Muy desagradable Desagradable Desagradable Desagradable Desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco moderado Opco moderado	OL OR	Ni ograda ni decograda	
Gusta mucho Muy desagradable Desagradable Ni agrada ni desagrada Gusta Gusta Gusta mucho Muy dura Dura Ni dura ni suave Suave Muy suave Muy suave Muy desagradable Desagradable Desagradable Desagradable Ni agrada ni desagrada Gusta Gusta Gusta Gusta Gusta Gusta Gusta Muy severo Poco severo Ni severo ni moderado Poco moderado Poco moderado Poco moderado Muy severo Poco moderado Poco moderado Poco moderado Muy severo Poco moderado Po	OLOK		
Muy desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy dura Dura Ni dura ni suave Suave Muy suave Muy desagradable Desagradable Desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco moderado			
Desagradable Ni agrada ni desagrada Gusta Gusta Gusta mucho Muy dura Dura Ni dura ni suave Suave Muy suave Muy desagradable Desagradable Desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco moderado Poco moderado Desagradable			
Ni agrada ni desagrada Gusta Gusta Gusta Gusta Muy dura Dura Ni dura ni suave Suave Muy suave Muy desagradable Desagradable Desagradable Ni agrada ni desagrada Gusta Gusta Gusta Gusta Gusta Muy severo Poco severo Ni severo ni moderado Poco			
SABOR Gusta Gusta mucho Gusta mucho Gusta mucho Gusta mucho Gusta mucho Gusta mucho Gusta Gusta Gusta mucho Gusta much			
Custa mucho Muy dura Dura Ni dura ni suave Suave Muy suave Muy suave Muy desagradable Desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco m	CAPOD		
Muy dura Dura Ni dura ni suave Suave Muy suave Muy desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco moderado Poco moderado Dura Ni severo Ni severo ni moderado Poco moderado Ni severo Poco moderado Poco moderado Ni severo Poco moderado Ni severo Poco moderado Ni severo moderado Ni se	SABUR		
Dura Ni dura ni suave Suave Muy suave Desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco moderado Poco moderado Poco moderado Poco moderado Poco mod			
Ni dura ni suave Suave Muy suave Muy desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco moderado Poco moderado Poco moderado Ni dura ni suave Suave Nuy severo Ni severo ni moderado Poco moderado Poco moderado Ni severo ni moderado Poco moderado Ni severo			
Number Suave Muy suave Muy desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Poco severo Ni severo ni moderado Poco moderado Poco moderado Ni severo Poco moderado Poco moderado Ni severo Poco moderado Poco			
Muy suave	TEXTURA		
Muy desagradable Desagradable Ni agrada ni desagrada Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco mod			
Desagradable		-	
Ni agrada ni desagrada Gusta Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco moderado Po			
Gusta Gusta mucho Muy severo Poco severo Ni severo ni moderado Poco moderado Poc			
Gusta mucho	ACEPTABILIDAD	Ni agrada ni desagrada	
Muy severo			
PARDIAMIENTO ENZIMATICO Poco severo Ni severo ni moderado Poco moderado			
PARDIAMIENTO ENZIMATICO Ni severo ni moderado Poco moderado			
ENZIMATICO Ni severo ni moderado Poco mod		Poco severo	
		Ni severo ni moderado	
Nada moderado		Nada moderado	

Comentarios:		
	Gracias por su colaboración	

Para cada una de las hortalizas la caracterización del color será diferente así: para col de repollo

Aspecto	Escala	Muest	ras	
	Blanco muy brillante			
	Blanco poco brillante			
COLOR	Ni brillante ni opaco			
	Blanco opaco			
	Blanco muy brillante			

Col morada

Aspecto	Escala	Muestras
	Morado muy brillante	
	Morado poco brillante	
COLOR	Ni brillante ni opaco	
	Morado opaco	
	Morado muy opaco	

Espinaca

Aspecto	Escala	Muestras
COLOR	Verde muy claro brillante	
	Verde poco claro brillante	
	Ni brillante ni opaco	
	Verde opaco	
	Verde muy opaco	

ANEXO

FOTOGRAFIAS

I1 DIAGRAMA DEL DESARROLLO DE LA FASE EXPERIMENTAL

7. DESINFECCIÓN

8. ESCURRIDO DE LAS HORTALIZAS

9. SECADO

10. ENVASADO

11.ENVASADO

13. COL DE REPOLLO ENVASADA

12. ANALISIS MICROBIOLOGICO DE LAS HORTALIZAS TRATADAS CON ACEITE ESENCIA DE TOMILLO.

Figura 1: Toma de muestras

Figura 2: Pesado de la muestras

Figura 3: Solución 100

Figura 4: Diluciones

Figura 5: Siembra del 1ml de muestra

Figura 6: Adición de medio de cultivo

13. Observación de microorganismos presentes en hortalizas observados a través de una microscopia a 10 X mediante la tensión de gram.

