# UNIVERSIDAD TÉCNICA DE AMBATO



# FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL

### MAESTRÍA EN FÍSICA APLICADA, MENCIÓN FÍSICA COMPUTACIONAL

Tema:

### "SIMULACIÓN DE UN COLECTOR SOLAR TÉRMICO DE TUBOS DE VACÍO"

Trabajo de Titulación, previo a la obtención del Grado Académico de Magister Física Aplicada, mención Física Computacional

Modalidad de titulación "Proyecto de desarrollo"

AutoraLic. Narcisa de Jesús Sánchez SalcánDirectoraIng. Cristina Isabel Reinoso Astudillo, PhD

Ambato-Ecuador

### APROBACIÓN DEL TRABAJO DE TITULACIÓN

A la Unidad Académica de Titulación de la Facultad de Ingeniería en Sistemas, Electrónica e Industrial.

El Tribunal receptor de la defensa del Trabajo de Titulación presidido por la Ingeniera Elsa Pilar Urrutia Urrutia Magister, e integrado por los señores: Biofísico Cristian Isaac Vacacela Gómez PhD, Ingeniero José Luis Gavidia García Magister designados por la unidad académica de titulación de la Facultad de Ingeniería en Sistemas, Electrónica e Industrial de la Universidad Técnica de Ambato, para receptar el trabajo de titulación con el tema: "SIMULACIÓN DE UN COLECTOR SOLAR TÉRMICO DE TUBOS DE VACÍO" elaborado y presentado por la señora, Licenciada Narcisa de Jesús Sánchez Salcán, para optar por el Grado Académico de Magister en Física Aplicada mención Física Computacional; una vez escuchada la defensa oral del Trabajo de Titulación el Tribunal aprueba y remite el trabajo para uso y custodia en las bibliotecas de la Universidad Técnica de Ambato.

> Ing. Elsa Pilar Urrutia Urrutia Mg. Presidente y Miembro del Tribunal de Defensa

Biofísico Cristian Isaac Vacacela Gómez, PhD. Miembro del Tribunal de Defensa

> Ing. José Luis Gavidia García, Mg. **Miembro del Tribunal de Defensa**

# AUTORÍA DEL TRABAJO DE TITULACIÓN

La responsabilidad de las opiniones, comentarios y críticas emitidas en el trabajo de titulación presentado con el tema: "SIMULACIÓN DE UN COLECTOR SOLAR TÉRMICO DE TUBOS DE VACÍO", le corresponde exclusivamente a: Lic. Narcisa de Jesús Sánchez Salcán, autora bajo la dirección de la Ing. Cristina Isabel Reinoso Astudillo, PhD directora del trabajo de titulación; y el patrimonio intelectual a la Universidad Técnica de Ambato.

Lic. Narcisa de Jesús Sánchez Salcán

#### AUTORA



Ing. Cristina Isabel Reinoso Astudillo, PhD.

DIRECTORA

### **DERECHOS DE AUTOR**

Autorizo a la Universidad Técnica de Ambato, para que el Trabajo de Titulación, sirva como un documento disponible para su lectura, consulta y proceso de investigación, según las normas de la Institución.

Cedo los derechos de mi trabajo de Titulación, con fines de difusión pública, además apruebo la reproducción de este, dentro de las regulaciones de la Universidad Técnica de Ambato.

> Lic. Narcisa de Jesús Sánchez Salcán C.C. 0602924250

# ÍNDICE GENERAL

### Contenido

| PORTADA                              | i     |
|--------------------------------------|-------|
| APROBACIÓN DEL TRABAJO DE TITULACIÓN | ii    |
| AUTORÍA DEL TRABAJO DE TITULACIÓN    | iii   |
| DERECHOS DE AUTOR                    | iv    |
| ÍNDICE DE TABLAS                     | X     |
| ÍNDICE DE FIGURAS                    | xii   |
| LISTA DE SÍMBOLOS                    | xiii  |
| AGRADECIMIENTO                       | xiv   |
| DEDICATORIA                          | XV    |
| RESUMEN EJECUTIVO                    | xvi   |
| EXECUTIVE SUMMARY                    | xviii |
| CAPÍTULO I                           | 1     |
| I El problema de investigación       | 1     |
| 1.1 Introducción                     | 1     |
| 1.2 Justificación                    | 3     |
| 1.3 Objetivos                        | 5     |
| 1.3.1 Objetivo general               | 5     |

|     |              | 1.3.2            | Objetivos específicos                                          | 5  |
|-----|--------------|------------------|----------------------------------------------------------------|----|
| CA  | <b>PÍT</b> U | U <b>LO II</b>   |                                                                | 6  |
| II  | Ante         | ecedente         | es investigativos                                              | 6  |
|     | 2.1          | Estado           | del arte                                                       | 6  |
|     | 2.2          | Marco            | teórico                                                        | 10 |
|     |              | 2.2.1            | Colector solar                                                 | 10 |
|     |              | 2.2.2            | Tipos de colectores solares térmicos                           | 10 |
|     |              | 2.2.3            | Sistemas solares térmicos de tubo de vacío                     | 12 |
|     |              | 2.2.4            | Principio de funcionamiento del sistema de colector de tubo de |    |
|     |              |                  | vacío (ETC):                                                   | 14 |
|     |              | 2.2.5            | Especificaciones de los tubos de vidrio evacuados              | 16 |
|     |              | 2.2.6            | Principales ángulos solares y de los paneles solares           | 16 |
|     |              | 2.2.7            | Energía térmica                                                | 21 |
|     |              | 2.2.8            | Radiación Solar (La energía del sol)                           | 23 |
|     |              | 2.2.9            | Radiación del haz en superficies inclinadas                    | 25 |
|     |              | 2.2.10           | Radiación difusa en superficies inclinadas                     | 25 |
|     |              | 2.2.11           | Radiación reflejada en el suelo                                | 27 |
|     |              | 2.2.12           | Modelo completo para la radiación global en el plano inclinado | 28 |
|     |              | 2.2.13           | Irradiancia                                                    | 28 |
|     |              | 2.2.14           | Análisis termodinámico del colector con tubos de vacío         | 29 |
|     |              | 2.2.15           | Factor de eficiencia del colector                              | 33 |
|     |              | 2.2.16           | Eficiencia instantánea del colector                            | 34 |
|     |              | 2.2.17           | Temperatura media del colector                                 | 37 |
|     |              | 2.2.18           | Cálculo del área absorbente del colector                       | 37 |
|     |              | 2.2.19           | Diseños factoriales con dos factores                           | 38 |
|     |              | 2.2.20           | Replica de corrida                                             | 38 |
|     | 2.3          | Model            | o estadístico e hipótesis de interés                           | 38 |
| CA  | <b>PÍT</b> I | U <b>LO II</b> I | I                                                              | 40 |
| III | Mar          | co Meto          | odológico                                                      | 40 |
|     | 3.1          | Ubicac           | ión                                                            | 40 |

| 3.2    | Equipos y materiales    |                                                               | 41 |
|--------|-------------------------|---------------------------------------------------------------|----|
| 3.3    | 3 Tipo de investigación |                                                               | 41 |
|        | 3.3.1                   | Según el enfoque                                              | 41 |
|        | 3.3.2                   | Según el tiempo                                               | 41 |
|        | 3.3.3                   | Según su profundidad de alcance                               | 41 |
| 3.4    | Prueba                  | de hipótesis                                                  | 42 |
|        | 3.4.1                   | Hipótesis de investigación o trabajo:                         | 42 |
|        | 3.4.2                   | Hipótesis nula:                                               | 42 |
| 3.5    | Poblaci                 | ón o muestra                                                  | 43 |
| 3.6    | Recolec                 | cción de la información                                       | 43 |
| 3.7    | Procesa                 | miento de la información y análisis estadístico               | 44 |
|        | 3.7.1                   | Validados del modelo de simulación                            | 45 |
| 3.8    | Variable                | e respuesta o resultados alcanzados                           | 45 |
| CADÍT  |                         |                                                               | 17 |
| CAPII  | ULUIV                   |                                                               | 4/ |
| IV Res | ultados y               | discusión                                                     | 47 |
| 4.1    | Especifi                | icaciones técnicas del colector de tubo de vacío              | 47 |
|        | 4.1.1                   | Propiedades del tubo de vidrio de borosilicato                | 48 |
|        | 4.1.2                   | Dimensiones del colector de tubos de vacío                    | 48 |
| 4.2    | Análisis descriptivo    |                                                               | 49 |
|        | 4.2.1                   | Análisis descriptivo de las temperaturas de entrada           | 49 |
| 4.3    | Proceso                 | de simulación de la temperatura de agua en el colector solar. | 53 |
|        | 4.3.1                   | Ángulo de inclinación                                         | 53 |
|        | 4.3.2                   | Ángulo de declinación del sol                                 | 54 |
|        | 4.3.3                   | Ángulo de hora solar                                          | 54 |
|        | 4.3.4                   | Ángulo de incidencia del sol                                  | 54 |
|        | 4.3.5                   | Ángulo cenital                                                | 55 |
|        | 4.3.6                   | Radiación solar                                               | 56 |
|        | 4.3.7                   | Factor de eficiencia del colector solar                       | 57 |
|        | 4.3.8                   | Cálculo del área absorbente del colector                      | 58 |
| 4.4    | Simulac                 | ción de la temperatura                                        | 59 |
|        | 4.4.1                   | Simulación de la temperatura 1 en el colector solar           | 59 |

|                            | 4.4.2        | Simulación de la temperatura 2 del colector solar | 62 |
|----------------------------|--------------|---------------------------------------------------|----|
|                            | 4.4.3        | Simulación de la temperatura 3 del colector solar | 64 |
| 4.5 Contraste de Hipótesis |              |                                                   | 67 |
|                            | 4.5.1        | Prueba de normalidad                              | 67 |
|                            | 4.5.2        | Validados del modelo de simulación                | 69 |
|                            | 4.5.3        | Contraste de correlación                          | 70 |
| CAPÍT                      | ULO V        |                                                   | 82 |
| V Con                      | clusion      | es y recomendaciones                              | 82 |
| 5.1                        | Conclu       | usiones                                           | 82 |
| 5.2                        | Recon        | nendaciones                                       | 86 |
| Referen                    | icias        |                                                   | 87 |
| Append                     | Appendices 9 |                                                   |    |

# ÍNDICE DE TABLAS

| Tabla 2.1:    | Clasificación de los colectores solares según el grado de con- |    |
|---------------|----------------------------------------------------------------|----|
| centr         | ación                                                          | 12 |
| Tabla 2.2:    | Especificaciones de los tubos de vidrio evacuados              | 16 |
| Tabla 2.3:    | Tipos de colectores planos y sus características               | 37 |
| Tabla 4 1.    | Propiedades del tubo de vidrio de borosilicato                 | 48 |
| Tabla 4 2.    | Dimensiones del colector de tubos de vacío                     | 48 |
| Tabla 4 3.    | Estadísticos descriptivos de las tres temperaturas iniciales   | 49 |
| Table $4.3$ . | Estadísticos descriptivos de las tres temperaturas finales     | 50 |
| Table $4.5$   | Análicis descriptivos de la variable Temperatura ambiente y    | 50 |
| radia         | ción                                                           | 51 |
| raula         |                                                                | 51 |
| Tabla 4.6:    | Angulos de inclinación                                         | 53 |
| Tabla 4.7:    | Datos promedios de la temperatura final 1                      | 60 |
| Tabla 4.8:    | Raíz del error cuadrático medio de la temperatura 1            | 61 |
| Tabla 4.9:    | Datos promedios de la temperatura final 2                      | 62 |
| Tabla 4.10:   | Raíz del error cuadrático medio de la temperatura 2            | 64 |
| Tabla 4.11:   | Datos promedios de la temperatura final 3                      | 64 |
| Tabla 4.12:   | Raíz del error cuadrático medio de la temperatura 3            | 66 |
| Tabla 4.13:   | Prueba de normalidad de la temperatura experimental            | 68 |
| Tabla 4.14:   | Temperatura de salida 1 con $0^\circ$ de orientación           | 68 |
| Tabla 4.15:   | Coeficiente de eficiencia de la temperatura 1                  | 69 |
| Tabla 4.16:   | Coeficiente de eficiencia de la temperatura 2                  | 70 |
| Tabla 4.17:   | Coeficiente de eficiencia de la temperatura 3                  | 70 |
| Tabla 4.18:   | Test de correlación de la temperatura 1                        | 71 |
| Tabla 4.19:   | Test de correlación de la temperatura 2                        | 72 |

| Tabla 4.20: | Test de correlación de la temperatura 3                                | 72 |
|-------------|------------------------------------------------------------------------|----|
| Tabla 4.21: | Análisis ANOVA de la Temperatura 1                                     | 74 |
| Tabla 4.22: | Análisis ANOVA de la Temperatura 2                                     | 76 |
| Tabla 4.23: | Análisis ANOVA temperatura 3                                           | 78 |
| Tabla 4.24: | Supuestos del modelo factorial $6 \times 4$ en los residuos $\ldots$ . | 80 |

# ÍNDICE DE FIGURAS

| Figura. 2.1: | (a) muestra el tubo de vidrio interior de menor diámetro re-                |    |
|--------------|-----------------------------------------------------------------------------|----|
|              | cubierto selectivamente para la absorción de la radiación so-               |    |
|              | lar dentro del tubo de vacío. (Gholami et al., 2020) y la                   |    |
|              | Figura 2.1 (b) muestra el montaje experimental del calenta-                 |    |
|              | dor de agua solar de tubo de vacío de agua con tubo de vacío                |    |
|              | (Kyekyere et al., 2021)                                                     | 13 |
| Figura. 2.2: | Principio de funcionamiento del sistema de colector de tubo                 |    |
|              | de vacío (Industries, 2020)                                                 | 15 |
| Figura. 2.3: | (a) muestra los ángulos horarios durante el día., (Pinho et                 |    |
|              | al.,2008) y la Figura 2.3 (b) se muestran los ángulos que                   |    |
|              | definen la posición del Sol con respecto a la Tierra y a la                 |    |
|              | esfera celeste; la declinación $\delta$ y el ángulo horario $\omega$ (Widen |    |
|              | y Munkhammar,2019)                                                          | 19 |
| Figura. 2.4: | Principales ángulos solares y del colector solar. (Al-                      |    |
|              | Khazzar, 2015)                                                              | 21 |
| Figura. 2.5: | Variación de la radiación atmosférica solar (Alonso-                        |    |
|              | Lorenzo, 2019)                                                              | 24 |
| Figura. 2.6: | Relación entre la radiación del haz en la superficie inclinada              |    |
|              | y en la superficie horizontal (Martínez-Gracia et al., 2019) .              | 25 |
| Figura. 2.7: | (a) muestra el sistema típico de captación de energía solar,                |    |
|              | (Dasari, N. y Sridhar, K., 2017) y la Figura 2.7 (b) se mues-               |    |
|              | tran el balance de energía en el colector solar (Lozano,2019)               |    |
|              |                                                                             | 30 |

| Figura. 2.8:  | Eficiencia de los colectores solares con diferentes diferen-       |    |
|---------------|--------------------------------------------------------------------|----|
|               | cias de temperatura e insolación solar (Shamshirgaran et al.,      |    |
|               | 2020)                                                              | 35 |
| Figura. 3.1:  | Ubicación de la Facultad de Ciencias de la ESPOCH                  | 40 |
| Figura. 4.1:  | Temperaturas de entrada                                            | 50 |
| Figura. 4.2:  | Temperaturas finales                                               | 51 |
| Figura. 4.3:  | Radiación solar                                                    | 52 |
| Figura. 4.4:  | Temperatura ambiente                                               | 53 |
| Figura. 4.5:  | Simulación de la temperatura 1 en el colector solar                | 61 |
| Figura. 4.6:  | Simulación de la temperatura 2 del colector solar                  | 63 |
| Figura. 4.7:  | Simulación de la temperatura 3 del colector solar                  | 66 |
| Figura. 4.8:  | Interacción entre ángulos de inclinación y orientación de la $T_1$ | 75 |
| Figura. 4.9:  | Comparación de medias múltiples de Tukey de la temper-             |    |
|               | atura 1                                                            | 76 |
| Figura. 4.10: | Interacción entre ángulos de inclinación y orientación de la $T_2$ | 77 |
| Figura. 4.11: | Comparación de medias múltiples de Tukey de la temper-             |    |
|               | atura 2                                                            | 78 |
| Figura. 4.12: | Interacción entre ángulos de inclinación y orientación de la $T_3$ | 79 |
| Figura. 4.13: | Comparación de medias múltiples de Tukey de la temper-             |    |
|               | atura 3                                                            | 80 |

# LISTA DE SÍMBOLOS

| Símbolo          | Descripción                                    |
|------------------|------------------------------------------------|
| $\phi$           | Latitud                                        |
| δ                | Ángulo de inclinación                          |
| n                | Número del día en el año                       |
| $\theta_z$       | Ángulo cenital                                 |
| $\alpha_s$       | Ángulo de altitud solar                        |
| ω                | Ángulo horario                                 |
| $H_s$            | Tiempo solar aparente                          |
| $\gamma$         | Ángulo de azimut de la superficie              |
| $\gamma_s$       | Ángulo de azimut solar                         |
| $\beta$          | Pendiente                                      |
| $\theta$         | Ángulo de incidencia                           |
| au               | Transmitancia del acristalamiento del colector |
| $\alpha$         | Coeficiente de absorción de la placa           |
| $\eta$           | Eficiencia del colector (%)                    |
| $\eta_o$         | Rendimiento óptico del colector (%)            |
| $\dot{m}$        | Flujo masivo (kg/s)                            |
| $\mu$            | Media general                                  |
| $lpha_i$         | Efecto debido al i-ésimo nivel del factor A    |
| $\beta_j$        | Efecto del j-ésimo nivel del factor B          |
| $lpha_{ij}$      | Efecto de interacción en la combinación ij     |
| $\epsilon_{ijk}$ | Error aleatorio                                |
| $ ho^2$          | Varianza                                       |

### AGRADECIMIENTO

A Dios por darme la sabiduría, la fuerza y la tenacidad para culminar con éxito ésta etapa académica.

A mi amada familia por todo el apoyo brindado durante mis estudios.

A mis padres, nunca podría haber hecho esto sin la fe, el apoyo y el ánimo constante. Gracias por enseñarme a creer en mí misma, en Dios y en mis sueños.

A mi directora de tesis por su orientación y apoyo a lo largo del proceso de investigación. Al grupo de Energías Alternativas y Ambiente (GEAA) de la Facultad de Ciencias de la Escuela Superior Politécnica de Chimborazo, por la información entregada para lograr los objetivos trazados en este proyecto.

### DEDICATORIA

Este proyecto de investigación va dedicado a cuatro pilares fundamentales en mi vida, que me han ayudado a realizarme profesionalmente. Primero a Dios, por ser la fuente de todos mis logros y bendiciones. A mi difunto padre Víctor Rafael por enseñarme valores y fortalezas que me sirvieron para nunca rendirme. A mi esposo Fabián Patricio por su apoyo incondicional. A mis queridos y adorables hijos: Steven y Katherine a quienes les amo mucho y son el motor que me ha inspirado para alcanzar con éxito ésta meta propuesta.

# UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL MAESTRÍA EN FÍSICA APLICADA, MENCIÓN FÍSICA COMPUTACIONAL

#### **TEMA:**

# SIMULACIÓN DE UN COLECTOR SOLAR TÉRMICO DE TUBOS DE VACÍO

AUTORA: Lic. Narcisa de Jesús Sánchez Salcán, Dra
DIRECTORA: Ing. Cristina Isabel Reinoso Astudillo, PhD
LÍNEA DE INVESTIGACIÓN: Energías Renovables y desarrollo sostenible

**FECHA:** Marzo 21, 2022

#### **RESUMEN EJECUTIVO**

La energía solar es la más abundante, inagotable y limpia de todos los recursos energéticos renovables hasta la fecha, permite reducir tanto el consumo de combustibles fósiles como la emisión de contaminantes nocivos introducidos a la atmósfera. Actualmente las tecnologías solares son parte de la estrategia energética mundial, en virtud que no presentan riesgos ambientales o para la salud. La presente investigación permite determinar el posicionamiento óptimo del colector solar de tubos de vacío ubicado en la Escuela Superior Politécnica de Chimborazo para la obtención de energía térmica útil. El tipo de investigación es correlacional con un enfoque cuantitativo y un diseño experimental. Se revisan estudios que incluyen modelos experimentales y de simulación, lo que ayuda a comparar enfoques anteriores con el tratamiento actual del problema. El modelo matemático de simulación se realizó en el software estadístico Rstudio, con tres temperaturas iniciales  $(T_1, T_2, T_3)$  y con diferentes ángulos de inclinación empezando en 10° hasta los 60° y con 4 ángulos orientación (0°, 30°, 60° y 90°). Se concluye que la temperatura del agua en el sistema de colector solar se relaciona inversamente con el ángulo de inclinación, ya que al aumentar dicho ángulo de 10° hasta 60° se observó que la temperatura del agua desciende, por lo tanto si se desea maximizar la temperatura del agua se debe colocar con un ángulo de inclinación de 10° y 0° de orientación.

**Palabras clave:** Colectores solares, Colectores de tubo de vacío, Ángulo de inclinación, Simulación

# UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL MAESTRÍA EN FÍSICA APLICADA, MENCIÓN FÍSICA COMPUTACIONAL

#### **THEME:**

# SIMULATION OF A VACUUM TUBE SOLAR THERMAL COLLECTOR

AUTHOR: Lic. Narcisa de Jesús Sánchez Salcán, Dra

DIRECTED BY: Ing. Cristina Isabel Reinoso Astudillo, PhD

LINE OF RESEARCH: Renewable energy and sustainable development

**DATE:** March 21, 2022

#### **EXECUTIVE SUMMARY**

Solar energy is the most abundant, inexhaustible and clean of all renewable energy resources to date, it allows to reduce both the consumption of fossil fuels and the emission of harmful pollutants introduced into the atmosphere. Solar technologies are currently part of the global energy strategy, by virtue of which they do not present environmental or health risks. The present research allows to determine the optimal positioning of the vacuum tube solar collector located at the Escuela Politécnica Superior de Chimborazo for obtaining useful thermal energy. The type of research is correlational with a quantitative approach and an experimental design. Studies that include experimental and simulation models are reviewed, which helps to compare previous approaches with the current treatment of the problem. The mathematical model simulation was performed in the statistical software Rstudio, with three temperatures initials  $(T_1, T_2, T_3)$  and with different angles of tilt starting at 10° to 60° and with 4 angles orientation (0°, 30°, 60° and 90°). It is concluded that the water temperature in the solar collector system is inversely related to the angle of inclination, since when increasing said angle from 10° to 60° it was observed that the water temperature decreases, therefore if you want to maximize the water temperature it should be placed with an angle of inclination of 10° and 0° orientation.

**Key words:** Solar collectors, Vacuum tube collectors, Tilt angle, Simulation

# **CAPÍTULO I**

### El problema de investigación

### 1.1 Introducción

El aumento de la población y los avances tecnológicos han contribuido a un importante aumento de la demanda de energía (Kannan, N. y Vakeesan, D., 2016). La demanda mundial de energía aumentó un 2,3% en 2018 con respecto al año anterior. Esto ha contribuido a la actual crisis energética existente, que es de considerable interés a nivel mundial (Kyekyere et al., 2021). Los colectores o paneles solares han sido el punto focal de la investigación en el campo de la energía solar, muchos estudios pretenden encontrar la inclinación óptima que maximice el nivel de insolación anual. Sin embargo, hasta ahora no se ha logrado un consenso generalizado, en parte debido a las diferentes hipótesis de los modelos aplicados (Schuster, 2020).

En la década de los 80 el Instituto Ecuatoriano de Electrificación (IN-ECEL) promueve investigaciones acerca de recursos energéticos que pueden ser generados a través del uso del viento, recursos hídricos, geotermia, energía solar etc. Esto surge tras la necesidad de mejorar el medio en que vivimos, ya que la explotación de combustibles fósiles con el fin de cubrir las necesidades del hombre provoca daños que a largo plazo serán irreversibles (Poveda-Burgos et al., 2017). En diferentes cantones del Ecuador se ha realizado estudios e implementaciones de colectores solares de placa plana y de tubos de vacío, donde el objetivo principal es analizar el comportamiento de la temperatura del agua al momento de ingresar dentro del sistema, además analizan la eficiencia con la cual trabaja el dispositivo solar, a diferentes especificaciones climáticos, localización, inclinación de la placa plana o de los tubos especificados por los fabricantes del colector.

Ecuador es rico en recursos renovables, en el año 2016 se presentó el Plan Nacional de Eficiencia Energética 2016-2035 (PLANEE) que fue aprobado por la Asamblea Nacional en abril de 2019 para fomentar la sustitución de combustibles y fuentes de energía con alto impacto ambiental por otros con bajo o nulo contenido de carbono, incluyendo fuentes de energía renovable (Cárdenas, 2020).

El presente estudio surge de la necesidad de ahorrar recursos al momento de diseñar calentadores solares de tubos evacuados, busca determinar el ángulo de inclinación óptimo de un colector solar en una determinada región para obtener la eficiencia de energía máxima. Se centra en un diseño de investigación experimental, la metodología empleada para la determinación del ángulo óptimo se realiza de manera teórica y experimental, se analiza el modelo matemático a utilizar tomando en consideración la caracterización de las condiciones climáticas de la ciudad de Riobamba, según la literatura el ángulo de inclinación varía principalmente según la ubicación geográfica y el clima del lugar donde se realiza el estudio. Por último, se utiliza el modelo matemático para elaborar la simulación.

El centro de Energías Alternativas y Ambiente (CEAA) de la Escuela Superior Politécnica de Chimborazo (ESPOCH) es un grupo de investigación, el cual se ha creado con la finalidad de explorar energías limpias y renovables que ayuden a mejorar la calidad de vida del hombre. Además que ayuden a reforzar y actualizar conocimientos referentes a energías alternativas y cambio climático.

La investigación se realizó en tres fases, la primera fase se enfoca en el problema de investigación, justificación del problema a investigar, posterior a esto se realiza una amplia búsqueda bibliográfica para la elaboración de los antecedentes investigativos; la segunda fase constituye la elaboración del marco metodológico y obtención de resultados; finalmente se presenta las conclusiones y recomendaciones.

### 1.2 Justificación

El calentamiento global se está convirtiendo en uno de los problemas más urgentes en el mundo de hoy, por lo que se necesita encontrar la manera de utilizar la energía para el beneficio de todos. El rápido crecimiento de la población ha llevado a un aumento de la demanda de energía a nivel mundial y el uso de recursos no renovables.

En Ecuador la idea de diseñar colectores solares más eficientes y baratos que los ya existentes se vuelve una necesidad, debido al gran incremento en el mercado. Además, la necesidad de optimizar sus diseños, permita tener un panorama del cual sería el adecuado en cuanto a materiales, dimensiones y posicionamiento de los colectores solares para alcanzar su máxima efectividad.

Es en este sentido, donde el proceso de simulación se vuelve una opción viable, ya que ayuda a trabajar en la optimización de los diseños variando los parámetros que se considere pertinentes, así como pueden reducir los costos de la experimentación.

La preocupación de la contaminación tóxica, las fugas de combustible, la radiación nuclear, el calentamiento global y lo que sucederá si los precios de producción de energía aumenten, por todos estos problemas es necesario encontrar nuevas fuentes disponibles y sostenibles como es la energía renovable.

Los beneficiarios del presente estudio serán los profesionales técnicos, mecánicos, electromecánicos, eléctricos y empresas o industrias las que están dedicadas a realizar construcciones, instalaciones y montajes de los sistemas de colectores solares de tubos de vacío. Así también se beneficiarán los estudiantes y profesores de la Facultad de Ciencias de la Escuela Superior Politécnica de Chimborazo puesto que el procedimiento obtenido puede ser usado en clases para diseños y análisis de un sistema eficiente de consumo de energía en sistemas de colectores solares de tubos de vacío.

Para ello, se propone elaborar un modelo matemático para el cálculo del ángulo de instalación óptimo para paneles de células solares fijas, la cual es de gran utilidad porque reduciría los costos de implementación y ensayo experimental de las mejoras producidas.

Esto permitirá que al momento de tener el sistema y verificado con datos experimentales ya existentes, se puedan emplear cambios de geometría

(posiciones del colector) o de materiales, lo que representa la posibilidad de otros proyectos para optimizar este tipo de sistemas. Además del ahorro de tiempo implica el conocer el comportamiento del calentador en diversas condiciones meteorológicas a lo largo del tiempo, con lo que se pueden hacer diversas proyecciones y conocer las condiciones de operación mínimas y máximas para una región específica.

### 1.3 Objetivos

### **1.3.1** Objetivo general

Determinar el posicionamiento óptimo del colector solar de tubos de vacío ubicado en la Escuela Superior Politécnica de Chimborazo para la obtención de energía térmica útil.

### 1.3.2 Objetivos específicos

Recolectar datos experimentales del dispositivo solar térmico ubicando a  $0^{\circ}$  y  $30^{\circ}$ .

Simular el colector solar térmico de tubos de vacío con 6 ángulos desde 10° a 60° con incrementos de 10° para determinar la eficiencia de la energía térmica recolectada.

Comparar los resultados obtenidos de la simulación con los del colector solar de tubos de vacío a diferentes ángulos de inclinación.

# **CAPÍTULO II**

### **Antecedentes investigativos**

El uso de energías limpias y renovables ha tomado relevancia durante las últimas décadas, por lo que diversos países de potencia mundial elaboran planes de contingencia ante la explotación de recursos fósiles no renovables, esto ha establecido diversas investigaciones que busquen mitigar la contaminación del medio ambiente y preservar la calidad de vida del hombre.

A continuación, se muestra un resumen de los trabajos seleccionados, en relación al tema de estudio.

### 2.1 Estado del arte

El acceso a energía confiable, asequible y sostenible es esencial para mejorar los niveles de vida, el desarrollo y el crecimiento económico (Franco et al., 2017), la gravedad de los problemas de contaminación atmosférica, clima y seguridad energética en todo el mundo requiere una transformación masiva y prácticamente inmediata de la infraestructura energética mundial hacia una energía 100% limpia y renovable que produzca cero emisiones (Jacobson et al., 2017). La energía solar como fuente renovable tiene el potencial de reducir la huella ecológica.

Los estudios de Ike et al. (2020), señala que el consumo de energía renovable está directamente vinculado a la reducción de la contaminación en los países industrializados de Europa. Así mismo, Saidi y Omri (2020) afirman que la eficiencia energética de las energías renovables mitiga las emisiones de carbono y amplía el crecimiento económico a corto y largo plazo. De igual forma Ciulla et al. (2020) menciona que es necesario un diseño óptimo de un sistema solar térmico para minimizar el tiempo de recuperación y difundir el uso de energía renovable para la producción de agua caliente sanitaria en áreas residenciales.

Coetzee et al. (2017), desarrollaron e implementaron un modelo de rendimiento teórico del sistema que se resolvió numéricamente utilizando el Engineering Equation Solver, los resultados muestran el rendimiento térmico del sistema durante las estaciones secuenciales a diferentes ángulos de inclinación.

Se obtuvieron y presentaron los parámetros óptimos de rendimiento que influyen en el rendimiento global del colector, en función del consumo de agua de los ocupantes. En verano, un ángulo de inclinación de 25° produjo la mayor tasa de calor útil y en invierno, un ángulo de inclinación de 40° produjo la mayor.

Por último, un sistema de colectores de 20 tubos funcionó al máximo en septiembre, alcanzando una temperatura de salida de 103,98°C y produciendo una tasa de calor útil de 1 919,85 W. En otoño y primavera, el colector produjo resultados similares durante los ángulos de pendiente con pequeñas diferencias. El ángulo de pendiente estacional óptimo para un sistema solar water heating (SWH) se identificó como 30°.

Yadav y Saikhedkar (2017) realizó un modelo de simulación del rendimiento para un colector de tubos de vacío en el software MATLAB comparó los datos experimentales con los resultados teóricos, este modelo permitió evaluar la eficiencia térmica del colector de tubos de vacío, se comprobó que el rendimiento del colector depende en gran medida de la radiación térmica incidente en el colector, la eficiencia promedio del colector se determinó en el rango de 71,4 % a 75,6% que está en el rango permitido de eficiencia máxima y mínima de la configuración física del modelo de colector.

Mao et al. (2019) elaboran un modelo genérico a partir del modelo de cielo difuso isotrópico para evaluar los ángulos de inclinación óptimos de los colectores y los reflectores. La energía solar total máxima recolectada durante la temporada de calefacción puede variar de 118,877 MJ a 239,806 MJ. La máxima reducción posible de la radiación solar puede variar de 13.524 MJ a 16.234 MJ. Tanto para la calefacción como para la temporada de verano, los colectores deben estar inclinados en un ángulo de inclinación obtuso comprendidos desde 0° hasta los 180° y acoplados con reflectores inferiores en un ángulo de inclinación agudo en el intervalo [0°, 90°].

Sassine (2016) desarrolla un estudio acerca de la posición óptima de los paneles solares, donde se considera constante el índice de cielo claro para la determinación de la irradiación solar de Beirut para diferentes paneles en cualquier momento del año (día y hora). Analiza tres configuraciones óptimas: un ángulo de inclinación constante, un ángulo de

inclinación ajustable mensualmente y un sistema de seguimiento solar. Los resultados muestran que el ángulo de inclinación óptimo para la ciudad de Beirut es cercano a los 30° (27,9°). Al variar este ángulo mensualmente, se obtiene un aumento del 6% de la energía recogida en comparación con un ángulo óptimo constante; determinó la posición óptima de los colectores solares según el Algoritmo de Gradiente Reducido Generalizado (GRG2).

Por otra parte, los resultados experimentales del estudio: El efecto del ángulo de inclinación en el rendimiento del colector de aire solar de tubo de vacío, realizado por Dabra et al. (2013) revelaron que la diferencia de temperatura del aire y la eficiencia térmica del colector de aire solar de tubo evacuado a un ángulo de inclinación de 30° es mejor en comparación con el ángulo de inclinación de 45°. Los resultados también mostraron que el ángulo de inclinación con el ángulo de inclinación de 30° con reflector tenía mas rendimiento térmico en comparación con el ángulo de 45° con y sin reflector. De acuerdo a estos resultados se concluye que si aumenta el ángulo de inclinación el rendimiento térmico del colector de aire solar disminuye.

Ndiaye (2015) propone un modelo de eficiencia térmica simplificado para panel solar utilizando colectores de tubos de vacío con tanque de almacenamiento estratificado, el modelado del colector lo realiza considerando 3 nodos de temperatura: los de la envoltura de vidrio, los del absolvedor y los del fluido.

Los resultados del estudio experimental del rendimiento térmico de un colector solar de tubería de calor de tubo de vacío en las condiciones

climáticas de Polonia realizado por Siuta-Ochoa et al. (2021), demuestran que el valor promedio de rendimiento energético en el colector solar se obtuvo en el nivel de  $4, 28MJ/(m^2 \cdot d)$ . Las eficiencias energéticas mensuales promedio del colector solar en julio y agosto fueron del 45,3% y 32,9%. El aumento de la velocidad del viento a 0,86 m/s disminuye la eficiencia térmica y la eficiencia de energía en un 67% y un 41%, respectivamente.

### 2.2 Marco teórico

#### 2.2.1 Colector solar

Los colectores solares son dispositivos utilizado para convertir la radiación solar en calor (Das y Saha, 2019), son el componente clave de los sistemas de calefacción solar activa. Recogen la energía del sol, transforman su radiación en calor y lo transfieren a un fluido (normalmente agua o aire) (Struckmann, 2008). Los colectores solares capturan la energía electromagnética del sol y la convierten en energía térmica (Aisa, 2017).

### 2.2.2 Tipos de colectores solares térmicos

Existen dos tipos principales de colectores de energía solar: los paneles fotovoltaicos y los colectores solares térmicos.

### **Paneles fotovoltaicos**

Un panel fotovoltaico es un dispositivo que convierte la energía electromagnética del sol en energía eléctrica, se compone de una combinación de módulos solares. Las células solares se conectan en paralelo y/o en serie para proporcionar una tensión de salida deseada. Estas células solares están fabricadas con materiales semiconductores, de los cuales el silicio es el más utilizado. La absorción de la energía electromagnética (luz) del sol la realizan los electrones de valencia de los átomos que componen el semiconductor (Alhaidari, 2017).

#### **Paneles solares térmicos**

Un colector solar térmico es un dispositivo que convierte la energía electromagnética del sol en energía térmica de un fluido. El colector solar empleado va a depender de la utilización que se le entregue. Por ejemplo, si queremos calentar una piscina hasta una temperatura de 25-28 grados Celsius, en primavera, necesitamos un captador solar simple, ya que fácilmente la temperatura ambiente será de este orden o incluso superior. Por otra parte, si queremos calentar un fluido hasta temperaturas de 200°C necesitaremos colectores solares de concentración para que concentren la radiación solar y la transfieran a un volumen pequeño de fluido (Ver Tabla 2.3).

Actualmente, en el mercado de la energía solar podemos diferenciar los siguientes tipos de colectores solares térmicos:

- El colector solar térmico de placa plana o plano. Este tipo de panel solar capta la radiación solar recibida en una superficie para calentar un fluido. A menudo se utiliza el efecto invernadero para capturar el calor.
- El colector solar térmico de tubos de vacío. Este colector solar térmico consta de un conjunto de tubos cilíndricos, formados por un absorbedor selectivo, situado sobre un asentamiento reflector y

rodeado de un cilindro de vidrio transparente.

El colector solar térmico de concentración de la radiación solar.
 Este tipo de colectores captan la radiación recibida en una superficie relativamente grande ya la concentran mediante espejos en una superficie más pequeña.

Tabla 2.1: Clasificación de los colectores solares según el grado de concentración

| Categoría           | Ejemplo             | Temperatura,(°C) | Eficiencia,(%) |
|---------------------|---------------------|------------------|----------------|
| Sin agrantus ián    | Placa plana         | hasta 75         | 30-50          |
| Sin concentracion   | Tubo de vacío       |                  |                |
| Concentración media | Cilindro parabólico | hasta 200        | 50-70          |
| Alta concentración  | Paraboloidal        | 1500 y más       | 60-75          |

Fuente: Jesco Z., (2008)

La principal diferencia en el rendimiento entre los colectores de placa plana y los de tubo de vacío es el hecho de que los colectores de tubos de vacío tienen menos pérdidas térmicas y, por tanto, pueden alcanzar temperaturas de salida más elevadas (Grahovac, 2010).

#### 2.2.3 Sistemas solares térmicos de tubo de vacío

Akhtar y Alvarez (como se citó en Gond et al., 2016) asegura que los sistemas térmicos solares de tubos evacuados es uno de los sistemas térmicos solares más populares en funcionamiento. y funcionan mejor que los calentadores de agua solares de placa como resultado de su mayor superficie expuesta a la absorción de la luz solar (Kyekyere et al., 2021).

Un sistema solar evacuado es el medio más eficiente y común de generación de energía solar térmica con una tasa de eficiencia del 70%. Por ejemplo, si el colector genera 3000 kilovatios-hora de energía en un año, se utilizarían 2100 kilovatios-hora en el sistema para calentar agua. La tasa de eficiencia se logra debido a la forma en que se construyen los sistemas de tubos de vacío, lo que significa que tienen un excelente aislamiento y prácticamente no se ven afectados por las temperaturas del aire.

Estos, captadores permiten calentar agua hasta temperaturas de 110 °C, hecho que posibilita la utilización de sistemas de distribución de calor convencionales en aplicaciones de calefacción con agua. En general, el rendimiento del captador de vacío es superior al del captador plano convencional, y se mantiene más constante ante variaciones en la temperatura ambiente o en la radiación solar incidente. Estos colectores solares constan de un tubo de calor dentro de un tubo sellado al vacío (Kalogirou, 2014), como se muestra en la Fig. II.1(a) y es el componente principal, que absorbe la energía solar. En una instalación real, muchos tubos están conectados al mismo colector, como se muestra en la figura II.1(b).



Figure 2.1: (a) muestra el tubo de vidrio interior de menor diámetro recubierto selectivamente para la absorción de la radiación solar dentro del tubo de vacío. (Gholami et al., 2020) y la Figura 2.1 (b) muestra el montaje experimental del calentador de agua solar de tubo de vacío de agua con tubo de vacío (Kyekyere et al., 2021)

Las grandes ventajas que presentan los colectores solares de tubos de vacío son su alto rendimiento. Por otro lado, en caso de que uno de los tubos se estropeará, no es necesario cambiar todo el panel por uno nuevo, sino que sólo hay que cambiar el tubo afectado. Por el contrario, como inconveniente tenemos que, en relación con los colectores solares de placa plana, estos resultan más caros.

# 2.2.4 Principio de funcionamiento del sistema de colector de tubo de vacío (ETC):

Los sistemas solares de calentamiento de agua que utilizan tubos de vacío hechos de vidrio de borosilicato con un revestimiento especial para absorber la energía solar se denominan sistema colector de tubo de vacío.

Se evacua el aire entre el espacio de dos tubos de vidrio. Da como resultado un alto nivel de vacío, que actúa como el mejor aislamiento para minimizar la pérdida de calor del tubo interior. El revestimiento negro de la cámara de aire absorbe la energía solar y la transfiere al agua. El agua en la parte superior del tubo de vacío se calienta y, por lo tanto, se vuelve más liviana, por lo que comienza a moverse hacia arriba en el tanque. Al mismo tiempo, el agua fría, que es pesada, desciende del tanque y se almacena en el fondo. El fenómeno se denomina circulación termosifónica natural, que se produce en todos los tubos.

Sistemas de termosifón: en este tipo el agua fluye a través del sistema y cuando el agua se calienta sube a medida que el agua más fría se hunde. El colector se instala debajo del tanque de almacenamiento para que el agua caliente suba al tanque. Estos sistemas no involucran ninguna bomba y son más confiables.

El tubo de vacío, como se muestra en la Fig. 2.2, es el componente principal, que absorbe la energía solar. El tubo de vacío es un conjunto de dos tubos de vidrio de borosilicato concéntricos.



Figure 2.2: Principio de funcionamiento del sistema de colector de tubo de vacío (Industries, 2020)

En la tabla 2.2, se presenta las especificaciones de los tubos de vidrio evacuados.

### 2.2.5 Especificaciones de los tubos de vidrio evacuados

| Material                             | Descripción                                                      |
|--------------------------------------|------------------------------------------------------------------|
| Material de vidrio                   | Vidrio de borosilicato                                           |
| Largo                                | 1800 mm y 2100 mm                                                |
| Diámetro externo                     | 58 mm                                                            |
| Diámetro interno                     | 47 mm                                                            |
| Espesor del tubo de vidrio           | Espesor del tubo exterior 1,8mm, grosor del tubo interior: 1,6mm |
| Tipo de revestimiento selectivo      | AIN/AIN-SS/CU-Pulverización                                      |
| Valor de absortancia y emitancia del | Absorción: $\alpha \geq 93,5\%.$ Tasa de                         |
| revestimiento negro                  | emisión: $\epsilon \leq 5\%$                                     |
| Tasa de vacío                        | $P \leq 5,0 \times 10^{-4} Pa$                                   |
| Presión operativa recomendada        | 0,2kg/sq.cm                                                      |
| Parámetro de estancamiento           | $\mathbf{Y} \geq 290 M^{2\circ} C/KW$                            |
| Coeficiente de expansión termal      | $3,3 	imes 10^{-6}/k$                                            |

Tabla 2.2: Especificaciones de los tubos de vidrio evacuados

*Fuente:* Industries, (2020)

### 2.2.6 Principales ángulos solares y de los paneles solares

A continuación, se presenta algunos ángulos importantes para el cálculo de la energía solar la cual describen la orientación del panel solar y la ubicación angular del sol en el cielo. Estos ángulos, sus nombres y el símbolo utilizado para representarlos se enumeran a continuación con una breve descripción de su significado.

### **Ángulos solares**

 Latitud (φ), es la medida angular que tiene como origen la línea ecuatorial, es decir la medida desde Ecuador a cualquier punto del planeta tierra y varía desde  $-90^{\circ} \le \phi \le 90^{\circ}$ .

Ángulo de declinación (δ), varía estacionalmente debido a la inclinación de la Tierra sobre su eje de rotación y la rotación de la Tierra alrededor del sol. La Tierra está inclinada 23,45°. Solo en los equinoccios de primavera y otoño el ángulo de declinación es igual a 0°.

La declinación  $\delta$  (en grados) se calcula a partir de la ecuación (2.1) aproximada de Cooper (1969) (Duffie y Beckman, 2013).

$$\delta = 23.54^{\circ} \cdot \sin\left[360 \cdot \left(\frac{284+n}{365}\right)\right]$$
 (2.1)

Donde n es el número del día en el año.

En esta ecuación se supone que la declinación permanece constante a lo largo de un mismo día. Así mismo, el criterio de signos supone considerar positivos los ángulos situados al norte del Ecuador terrestre (Perpiñan-Lamigueiro, 2018).

Ángulo cenital (θ<sub>z</sub>), El ángulo cenital es el ángulo entre el sol y la vertical, es similar al ángulo de elevación, pero se mide desde la vertical en lugar de la horizontal y está en función de los ángulos de declinación solar, hora solar y latitud, se calcula mediante la ecuación (2.2) (Al-Hilaly y Muhsin, 2018).

$$\cos\left(\theta_{z}\right) = \cos\left(\phi\right)\cos\left(\delta\right)\cos\left(\omega\right) + \sin\left(\phi\right)\sin\left(\delta\right)$$
(2.2)

 Ángulo de altitud solar (α<sub>s</sub>), es la altura angular del sol en el cielo medida desde la horizontal. La elevación es de 0° al amanecer y
de 90° cuando el sol está directamente arriba (lo que ocurre, por ejemplo, en el Ecuador en los equinoccios de primavera y otoño). El ángulo de elevación varía a lo largo del día. También depende de la latitud de un lugar en particular y del día del año. El ángulo de elevación máximo se produce al mediodía solar y depende de la latitud y el ángulo de declinación

Ángulo horario (ω), nos informa sobre la ubicación del sol en el cielo y es el ángulo horario medido desde la línea cenital hasta el horizonte, tal como se muestra en la Fig. 2.3 (Al-Hilaly y Muhsin, 2018) y se puede estimar a partir de la ecuación (2.3)

$$\omega = 15 \cdot (H_s - 12) \tag{2.3}$$

Donde  $H_s$  es el tiempo solar aparente, que significa la posición del sol antes, después y al mediodía solar (cuando el sol está en el meridiano del observador). Así, el ángulo horario tiene un valor negativo antes del mediodía solar local, un valor positivo después del mediodía solar y cero en la hora solar local (cuando  $H_s = 12:00$ del mediodía) (Hassan et al, 2017).

Ángulo de azimut solar (γ<sub>s</sub>), es el ángulo azimut de la posición del sol y es la distancia angular entre el azimut cero (hacia el Sur o hacia el Norte, dependiendo de lo que seleccione en la pantalla de entrada) y la proyección de la línea de visión del Sol sobre el suelo. Los desplazamientos al este del sur son negativos y al oeste del sur son positivos. El ángulo azimut se mide en el sentido de las agujas del reloj desde el azimut cero. Por ejemplo, si se encuentra

en el hemisferio norte y el azimut cero está fijado en el sur, el valor del ángulo azimut será negativo antes del mediodía solar y positivo después del mediodía solar, tal como se muestra en la Fig. 2.3 (b).



Figure 2.3: (a) muestra los ángulos horarios durante el día., (Pinho et al.,2008) y la Figura 2.3 (b) se muestran los ángulos que definen la posición del Sol con respecto a la Tierra y a la esfera celeste; la declinación  $\delta$  y el ángulo horario  $\omega$  (Widen y Munkhammar,2019)

#### **Ángulos de los paneles solares**

- Pendiente (β), es el ángulo entre el plano del colector (o apertura) y la horizontal, (0<sup>o</sup> ≤ β ≤ 180<sup>o</sup>, si β > 90<sup>o</sup> significa que la superficie tiene un componente orientado hacia abajo.
- Ángulo de azimut de la superficie (γ), es la dirección de la brújula desde la que proviene la luz del sol. Al mediodía solar, el sol siempre está directamente al sur en el hemisferio norte y directamente al norte en el hemisferio sur. El ángulo de acimut varía a lo largo del día. Los ángulos de acimut varían de 90° al amanecer y 270° al atardecer.
- Ángulo de incidencia (θ), es el ángulo entre los rayos del sol y la normal en una superficie. Para un plano horizontal, el ángulo de

incidencia ( $\theta$ ), y el ángulo cenital ( $\theta_z$ ), son iguales.

La modelización del ángulo de incidencia para un panel solar arbitrariamente inclinado y orientado se puede realizar a partir de las ecuaciones (2.4) y (2.5), donde relacionan el ángulo de incidencia de la radiación del rayo en una superficie ( $\theta$ ), con los otros ángulos (Duffie y Beckman, 2013).

$$\cos \theta = \sin \delta \sin \phi \cos \beta - \sin \delta \cos \phi \cdot \sin \beta \cos \gamma + \cos \delta \cos \phi \cdot \cos \beta \cos \omega + \cos \delta \sin \phi \cdot \sin \beta \cos \gamma \cos \omega$$
(2.4)  
$$+ \cos \delta \sin \beta \cdot \sin \gamma \sin \omega$$

$$\cos\theta = \cos\theta_z \cos\beta + \sin\theta_z \sin\beta \cos(\gamma_s - \gamma) \qquad (2.5)$$

El ángulo  $\theta$  puede exceder 90°, lo que significa que el sol está detrás de la superficie.

Las relaciones geométricas entre un plano de cualquier orientación particular con respecto a la tierra en cualquier momento y la posición del sol con respecto a ese plano, se describen en la Fig. 2.4



Figure 2.4: Principales ángulos solares y del colector solar. (Al-Khazzar, 2015)

# 2.2.7 Energía térmica

La energía térmica es un tipo de energía producida por el movimiento de partículas atómicas y moleculares dentro de una sustancia. Fue descubierto por primera vez en 1847 por el físico y matemático inglés James Prescott Joule , de quien se nombran la unidad de energía y la Ley de Joule (Just energy, 2022).

El calor es una forma de energía que se mide en julios. El calor y la temperatura no son lo mismo y se necesitan diferentes cantidades de energía térmica para causar un aumento igual en la temperatura de diferentes cantidades de la misma sustancia. La energía térmica que fluye hacia o desde una sustancia, mientras que la temperatura permanece constante, se denomina calor latente.

La energía térmica se puede almacenar y recuperar de manera efectiva mediante los principios del calor sensible y el calor latente. La otra forma de almacenar y liberar energía térmica se puede realizar a través de principios de reacción química (Kalaiselvam y Parameshwara, 2014). La energía térmica se puede transferir como calor en una de tres formas, ellos son: conducción, convección y radiación.

# ¿Qué es la radiación en la energía térmica?

La radiación, el tercer tipo de transferencia de energía térmica, ocurre en ondas que viajan a la velocidad de la luz. No necesita material ni un objeto para viajar a través de él. El sol es el mejor ejemplo de esta radiación, la transferencia de energía mediante ondas electromagnéticas, viajando por el espacio como una onda de luz, o radiación electromagnética. Notas un cambio de temperatura cuando sales de la sombra a la luz del sol en un día soleado.

El calor del sol no puede llegar a la Tierra por convección o conducción; no hay forma de que las moléculas choquen porque ninguna superficie se toca.

El equilibrio térmico ocurre cuando los objetos a la misma temperatura dentro del mismo sistema no intercambian energía térmica precisamente porque están a la misma temperatura. No hay diferencia de temperatura entre los objetos.

# ¿Cómo hacemos uso de la energía térmica?

Hay varias formas de energía térmica, la más obvia es cuando calentamos el agua para nuestros baños, colocamos la tetera en la estufa para que hierva o usamos una plancha en nuestra ropa. Aquí, nos beneficiamos de la propiedad inherente de la energía térmica de ser transferida en forma de calor para nuestro uso.

Otras formas de energía térmica incluyen energía solar, energía geotérmica, energía oceánica y baterías de celdas de combustible. El uso de energía térmica está recibiendo mucha atención como preferible a las fuentes típicas de energía que pueden contribuir a las emisiones de gases de efecto invernadero. Pero también puede presentar peligros para el medio ambiente.

# ¿Cómo utilizamos la energía solar térmica?

La energía solar térmica suele obtenerse mediante reflectores y receptores que recogen y concentran la energía del sol. Aumentan la energía del sol a muchas veces su fuerza normal, y algunos sistemas aumentan su intensidad a más de 100 veces lo normal.

Estas tecnologías generalmente enfocan la energía del sol en un tubo que contiene un fluido de transferencia de calor que se usa para activar una turbina de agua para producir electricidad. Algunos sistemas también tienen un sistema de almacenamiento que les permite almacenar energía durante la noche y otros momentos en los que no hay luz solar. Este sistema garantiza que la energía esté siempre disponible. (Tara energy, 2022).

# ¿Hay un lugar para la energía térmica en nuestro futuro?

Sin duda, el conocimiento de la energía térmica y sus aplicaciones ha recorrido un largo camino desde los días de James Prescott Joules. Ahora depende de los humanos aprovechar este conocimiento de una manera que pueda beneficiar a nuestro planeta.

# 2.2.8 Radiación Solar (La energía del sol)

El sol produce una cantidad de energía constante  $(1367 W/m^2)$  que, en el momento de incidir sobre la superficie terrestre pierde parte de su potencia debido a distintos fenómenos ambientales. De hecho, tal como se muestra en la Fig. 2.5, debido a la órbita elíptica, la radiación que alcanza la atmósfera es mayor en los meses de invierno que en los meses de verano, pues, como decimos, debido a la órbita elíptica, la Tierra está más próxima a sol en esos meses.



Figure 2.5: Variación de la radiación atmosférica solar (Alonso-Lorenzo, 2019)

La radiación solar que llega a la tierra se puede dividir en tres componentes:

Radiación Directa: Afectada por el fenómeno de absorción, es la que recibimos directamente del sol. Varía en función de la nubosidad del momento y también de la estación del año en que se mida.

Radiación Difusa: Se genera por los efectos de dispersión de las moléculas de aire y los aerosoles, afectada por el fenómeno de difusión, es la que recibimos debido al reflejo de la radiación solar sobre las nubes, partículas del aire en días nublados es la que más recibimos.

Radiación de albedo: Es básicamente la radiación reflejada, por ejemplo en superficies blancas y similar. Se aprovecha mucho en módulos bifaciales.

#### 2.2.9 Radiación del haz en superficies inclinadas

Al convertir la radiación del rayo entre planos utilizamos el factor geométrico  $R_b$  que define la relación entre la radiación del haz en el plano inclinado y la radiación del haz en el plano horizontal: (Widén y Munkhammar, 2019), tal como se muestra en la ecuación (2.6) y en la Fig. 2.6

$$R_{b} = \frac{I_{b,T}}{I_{b}} = \frac{I_{b,n} \cdot \cos(\theta)}{I_{b,n} \cdot \cos(\theta_{z})} = \frac{\cos(\theta)}{\cos(\theta_{z})}$$
(2.6)



Figure 2.6: Relación entre la radiación del haz en la superficie inclinada y en la superficie horizontal (Martínez-Gracia et al., 2019)

Podemos entonces expresar la radiación del haz en el plano inclinado mediante la ecuación (2.7):

$$I_{bT} = R_b \cdot I_b = \frac{\cos(\theta)}{\cos(\theta_z)} \cdot I_b$$
(2.7)

# 2.2.10 Radiación difusa en superficies inclinadas

Ahora que podemos manejar la radiación del haz, necesitamos una ponderación similar para la radiación difusa dispersa. Si suponemos que la radiación difusa del cielo es puramente isotrópica, este factor de ponderación se calcula mediante la ecuación 2.8:

$$R_{vista,cielo} = \frac{1 + \cos\left(\beta\right)}{2} \tag{2.8}$$

que es el factor de visión del cielo de la superficie y describe qué parte del cielo es visible para la superficie. Es fácil ver que esta expresión tiene sentido, observando, por ejemplo, que  $R_{vista,cielo} = 1$  cuando la superficie es horizontal,  $R_{vista,cielo} = 1/2$  cuando está inclinada 90° y  $R_{vista,cielo} = 0$  cuando está orientada hacia el suelo. De forma análoga, el factor de visión a la radiación isotrópica del suelo puede encontrarse mediante la ecuación 2.9:

$$R_{vista,suelo} = \frac{1 - \cos\left(\beta\right)}{2} \tag{2.9}$$

Normalmente se considera que la componente de radiación difusa consta de tres partes: la difusa isotrópica, la difusa circunsolar y el brillo del horizonte, que difieren en su origen en el cielo. La parte difusa isotrópica es uniforme desde todas las direcciones, la parte difusa circunsolar se concentra alrededor de la posición del sol en el cielo y el brillo del horizonte se concentra cerca del horizonte. Se han formulado diferentes modelos para describir la radiación difusa en el plano inclinado. En el modelo de Hay y Davies, la radiación difusa en la superficie inclinada se expresada mediante la ecuación (2.10)

$$I_{dT} = I_d \left[ (1 - A_i) \left( \frac{1 + \cos\left(\beta\right)}{2} \right) + A_i R_b \right]$$
(2.10)

Cuando no hay radiación del haz,  $A_i$  es cero, y la radiación difusa se

considera puramente isotrópica:

$$I_{dT} = I_d \left[ \frac{1 + \cos\left(\beta\right)}{2} \right] \tag{2.11}$$

donde  $I_d$  se modifica únicamente por el factor de visión hacia el cielo (Widén y Munkhammar, 2019).

#### 2.2.11 Radiación reflejada en el suelo

La tercera y última componente de la radiación total en el plano inclinado es la radiación reflejada por el suelo. En realidad, numerosos objetos como edificios, diferentes materiales del suelo, árboles, etc., reflejan la radiación incidente en la superficie inclinada. Un enfoque simplificado pero estándar es suponer la radiación reflejada de una fuente compuesta, un suelo horizontal, y difusamente reflectante. La radiación reflejada en el suelo en el plano inclinado depende entonces sólo de la reflectancia del suelo y del factor de visión hacia el suelo de la superficie inclinada: (Widén y Munkhammar, 2019).

$$I_{gT} = I\rho_g \left[\frac{1 - \cos\left(\beta\right)}{2}\right] \tag{2.12}$$

donde  $\rho_g$  es la reflectancia del suelo e  $I = I_b + I_d$  es la radiación global en el plano horizontal. La reflectancia del suelo  $\rho_g$  depende del entorno. En latitudes altas, es probable que haya una variación estacional de la reflectancia del suelo debido a la cobertura de nieve en invierno.

# 2.2.12 Modelo completo para la radiación global en el plano inclinado

El modelo completo de radiación global en un plano inclinado esta dado por la ecuación (2.13) :

$$I_T = I_{bT} + I_{dT} + I_{gT} (2.13)$$

Con las fórmulas para cada componente en las ecuaciones (2.7), (2.11) y (2.12) el modelo completo se obtiene con la ecuación (2.14):

$$I_T = I_b \cdot \left[\frac{\cos(\theta)}{\cos(\theta_z)}\right] + I_d \cdot \left[\frac{1 + \cos(\beta)}{2}\right] + I \cdot \rho_g \cdot \left[\frac{1 - \cos(\beta)}{2}\right]$$
(2.14)

# 2.2.13 Irradiancia

- La irradiancia normal directa (Ib) es la cantidad de radiación solar recibida por unidad de área por una superficie que siempre se mantiene perpendicular (o normal) a los rayos que vienen en línea recta desde la dirección del sol en su posición actual en el cielo.
  Normalmente, puede maximizar la cantidad de irradiancia que recibe anualmente una superficie manteniéndola normal a la radiación entrante. Esta cantidad es de especial interés para las instalaciones termosolares de concentración e instalaciones que rastrean la posición del sol.
- La irradiancia horizontal difusa  $(I_d)$  es la cantidad de radiación recibida por unidad de área por una superficie (no sujeta a ninguna sombra o sombra) que no llega en un camino directo desde el sol, sino que ha sido dispersada por moléculas y partículas en la atmós-

fera. y viene igualmente de todas las direcciones

• La irradiancia horizontal global  $(I_g)$  es la cantidad total de radiación de onda corta recibida desde arriba por una superficie horizontal al suelo.

La irradiancia horizontal global se calcula mediante la ecuación (2.15).

$$I_g = I_d + I_b \cdot \cos(\theta_z) \tag{2.15}$$

#### 2.2.14 Análisis termodinámico del colector con tubos de vacío

Hay una serie de factores que hay que tener en cuenta para entender el funcionamiento de un colector solar tal como se muestra en la Fig. 2.7. La eficiencia del colector solar se considera uno de los factores esenciales. Así también, es necesario definir paso a paso las ecuaciones de flujo de calor singulares con el fin de encontrar las ecuaciones gobernantes del sistema de colector

Si G es la intensidad de la radiación solar, en  $W/m^2$  que incide en el plano de apertura del colector solar con una superficie del colector  $(A_c)$ , entonces la cantidad de radiación solar recibida por el colector esta dada por la ecuación (2.16):

$$Q_i = G \cdot A_c \tag{2.16}$$



Figure 2.7: (a) muestra el sistema típico de captación de energía solar, (Dasari, N. y Sridhar, K., 2017) y la Figura 2.7 (b) se muestran el balance de energía en el colector solar (Lozano,2019)

Un concepto fundamental para el análisis térmico de cualquier sistema térmico es la conservación de la energía, que puede analizarse mediante el cálculo del balance de energía en condiciones de estado estacionario. En estado estacionario, la producción de energía útil del colector es la diferencia entre la radiación solar absorbida y las pérdidas térmicas totales del colector (Lucas Witmer, 2020).

Energía útil = Energía solar absorbida - Pérdidas térmicas

Obviamente, cuanto mayor sea la producción de energía útil de un diseño en particular, mayor será la eficiencia esperada. La eficiencia térmica del colector es un parámetro importante a considerar en este tipo de análisis, ya que crea la base para la comparación de diferentes materiales y modificaciones de los sistemas de colectores.

#### Calor perdido por el colector

A medida que el colector absorbe el calor, su temperatura aumenta que la del entorno y el calor se pierde en la atmósfera por convección y radiación. La tasa de pérdida de calor  $(Q_o)$  depende del coeficiente global de transferencia de calor del captador  $(U_L)$  y de la temperatura del colector

$$Q_o = U_L A_c (T_c - T_a)$$
 (2.17)

En el caso de los colectores en estado estacionario, la energía útil extraída por el colector es la diferencia entre la radiación solar absorbida por el colector y las pérdidas térmicas, como se muestra en la ecuación (2.18) (Duffie y Beckman, 2013):

$$Q_u = Q_i - Q_o \tag{2.18}$$

Como se mencionó anteriormente, para encontrar cuánta energía queda disponible para el trabajo térmico útil, debemos comprender el balance de energía dentro del colector: energía absorbida - pérdidas. El balance de energía también se puede expresar a través de la ecuación (2.19)

$$Q_u = SA_c - U_L A_c (T_c - T_a)$$
(2.19)

donde S es la radiación solar absorbida,  $U_L$  son las pérdidas totales,  $T_c$  es la temperatura de la placa absorbente,  $T_a$  es la temperatura del aire y  $A_c$  es el área de la superficie del colector.

Se necesita entender cómo se pueden obtener las cantidades S y  $U_L$ . En un caso general, cuando se dispone de medidas de radiación solar incidente, la aproximación conveniente para la energía absorbida viene dada por:  $S = (\tau \alpha)_{av} I_T$ , donde  $(\tau \alpha)_{av}$  es el producto de la transmitancia de la cubierta del colector y la absorbancia de la placa promediada sobre diferentes tipos de radiación. De hecho,  $(\tau \alpha)_{av} \approx 0.96(\tau \alpha)_{rayo}$  basado en estimaciones prácticas (Lucas Witmer, 2017). Realizando el reemplazo respectivo se obtiene la ecuación (2.20)

$$Q_u = A_c \left[ (\tau \alpha) I_T - U_L (T_c - T_a) \right]$$
(2.20)

Siendo,  $Q_u$  la energía útil producida por el colector,  $A_c$  es la superficie del colector, I es la irradiancia global sobre el colector,  $\tau$  coeficiente de transmisión de la cubierta,  $\alpha$  coeficiente de la absorbancia de la placa colectora,  $U_L$  es el coeficiente global de transferencia de calor,  $T_c$  es la temperatura del fluido térmico a la entrada del colector,  $T_a$  es la temperatura ambiente.

La ecuación (2.20) es una relación ampliamente utilizada para medir ganancia de energía del colector y se conoce generalmente como la "ecuación de Hottel-Whillier-Bliss".

También se sabe que la tasa de extracción de calor del colector puede medirse por medio de la cantidad de calor transportada en el fluido que lo atraviesa a través de él, esto es a través de la ecuación (2.21)

$$\dot{Q}_u = \dot{m}c_p(T_s - T_e) \tag{2.21}$$

donde  $\dot{Q}_u$  es el flujo de calor útil (que se transfiere al fluido que se calienta) la ganancia de calor diaria [W],  $\dot{m}$  flujo masivo del fluido que se calienta [kg/s],  $c_p$  es el calor específico del fluido que se calienta  $[J/(kg \cdot K]$  (lo suponemos constante),  $T_e$  es la temperatura inicial del agua en el depósito [°C] y  $T_s$  es la temperatura del agua a la salida del depósito [°C] (Kyekyere, 2021). También la energía útil producida por el colector se puede calcular con la ecuación 2.22

$$Q_u = F_R \left[ I_T A_{abs} \tau \alpha - U_L (T_i - T_a) - U_{L/T} (T_i - T_a)^2 \right]$$
(2.22)

### 2.2.15 Factor de eficiencia del colector

La ecuación (2.20) resulta un tanto inconveniente debido a la dificultad para definir la temperatura media del colector. Es conveniente definir una cantidad que relacione la ganancia de energía útil de un colector con la ganancia útil si toda la superficie del colector estuviera a la temperatura de entrada del fluido. Esta cantidad se denomina "factor de extracción de calor del colector ( $F_R$ )" y se deduce a partir de las ecuaciones (2.20) y (2.21), obteniéndose así la ecuación (2.23)

$$F_{R} = \frac{\dot{m}c_{p}(T_{s} - T_{e})}{A_{c}[I_{T}(\tau\alpha) - U_{L}(T_{c} - T_{a})]}$$
(2.23)

donde  $\dot{m}$  es el caudal másico del fluido de calor específico  $c_p$ . El numerador es la ganancia de energía útil en el fluido a medida que aumenta su temperatura, desde la entrada  $T_c$  a la temperatura de salida  $T_a$ . El denominador representa la ganancia útil de un colector a la temperatura de entrada del fluido (es decir, el caso límite para pérdidas mínimas) (Vieira da Rosa y Ordóñez, 2022).

En la forma alternativa el factor de eliminación del colector se puede reescribir de acuerdo a la ecuación (2.24)

$$F_R = \frac{\dot{m}c_p}{A_c U_L} \left[ 1 - exp\left( -\frac{A_c U_L F'}{\dot{m}c_p} \right) \right]$$
(2.24)

donde F' es el factor de eficiencia del colector, un parámetro de diseño que tiene en cuenta los factores de diseño que influyen en la resistencia térmica entre el fluido y el ambiente, esta dado por la ecuación (2.25):

$$F' = \frac{1/U_L}{l \cdot \left[\frac{1}{U_L \cdot [D + (W - D) \cdot F]} + \frac{1}{C_b} + \frac{1}{\pi \cdot D_i \cdot h_{f_i}}\right]}$$
(2.25)

Siendo, l el espaciado del tubo, D es el diámetro exterior del tubo, F es la eficiencia estándar con perfil rectangular,  $C_b$  es la conductancia,  $D_i$ el diámetro del tubo interior,  $h_{fi}$  el coeficiente de transferencia de calor entre el fluido y la pared del tubo (Vieira da Rosa y Ordóñez, 2022).

## 2.2.16 Eficiencia instantánea del colector

La eficiencia de captación de energía solar ( $\eta$ ), tanto de los colectores térmicos como de los fotovoltaicos, se define como la relación entre la tasa de energía térmica útil que sale del colector y la irradiancia solar utilizable que cae sobre el área de apertura. La eficiencia del colector se expresa mediante la ecuación (2.26), pero esta definición general de eficiencia del colector difiere según el tipo de colector.

$$\eta = \frac{\dot{Q}_u}{Q_i} = \frac{\dot{Q}_u}{G_T \cdot A_c} \tag{2.26}$$

donde:

 $\dot{Q}_u$ = Es la salida de energía útil de un colector (W)

 $A_c$  = Área de apertura del colector ( $m^2$ )

 $G_T$  = Es el flujo de radiación solar incidente (irradiencia) ( $W/m^2$ )

Para los calentadores de agua solares, la fuente de energía que ingresa al

sistema es la energía solar. La irradiación solar recibida y absorbida por los tubos es la potencia de entrada. Esta energía luego se transfiere al agua en los tubos. Se produce un mecanismo de transferencia de calor de circulación natural que calienta el agua en el tanque de almacenamiento.

Se pueden considerar dos eficiencias principales, la óptica y la térmica, para la conversión de energía en los colectores solares térmicos, como se muestra en la Fig. 2.8



Figure 2.8: Eficiencia de los colectores solares con diferentes diferencias de temperatura e insolación solar (Shamshirgaran et al., 2020)

La eficiencia térmica se describe en base a la fracción de energía solar recibida, que se entrega como energía térmica utilizable. Las curvas de la Fig. 2.8 muestran que las pérdidas térmicas aumentan con el incremento de la diferencia de temperatura entre el colector y el aire ambiente. Mientras tanto la tasa de disminución de la eficiencia en las irradiaciones solares bajas es mayor (Shamshirgaran et al., 2020).

Usando la ecuación (2.20) de Hottel-Whillier-Bliss, se obtiene la ecuación general para la eficiencia instantánea del colector ecuación

(2.27) (Vieira da Rosa y Ordóñez, 2022)

$$\eta = F_R \cdot (\tau \alpha)_n - F_R \cdot U_L \cdot \frac{(T_i - T_a)}{I_T} - F_R \cdot U_{L/T} \cdot \frac{(T_i - T_a)^2}{I_T}$$
(2.27)

Así también la eficiencia energética del sistema está determinada por la ecuación 2.28 (Duffie et al, 1980). Los valores recomendados por el fabricante de los colectores, los coeficientes de correlación de la eficiencia,  $\eta_o = 0.8, a = 1.2$  y b = 0.007 (Juantorea et al, 2017)

$$\eta = \eta_o - a \left[ \frac{(T_i - T_a)}{G} \right] - b \left[ \frac{(T_i - T_a)^2}{G} \right]$$
(2.28)

siendo  $\eta_o$  el rendimiento óptico del captador, *a* el coeficiente lineal de pérdidas térmicas y *b* el coeficiente cuadrático de pérdidas térmicas (Ríos, 2021)

A partir de lo expuesto resulta fácil entender que, aproximadamente, la eficiencia en servicio de los colectores depende de sus parámetros característicos  $\eta_o$ , *a* y *b*. En función de los valores típicos de estos parámetros para distintos tipos de colectores planos pueden deducirse las temperaturas de trabajo en que su utilización resulta más interesante. (Ibáñez et al, 2005) proporcionan los valores orientativos mostrados en la Tabla 2.3

| Diseño                      | $\eta_o$    | $a_1[W/(m^2 \cdot K)]$ | $t_m[^oC]$ |
|-----------------------------|-------------|------------------------|------------|
| Sin cubierta ni aislamiento | 0,85 - 0,90 | 15 - 25                | 10- 40     |
| Cubierta simple             | 0,75 - 0,85 | 7 - 9                  | 10 - 60    |
| Cubierta doble              | 0,65 - 0,80 | 4 - 6                  | 10 - 80    |
| Superficie selectiva        | 0,75 - 0,85 | 5 - 6                  | 10 - 80    |
| Tubos de vacio              | 0,65 - 0,75 | 2 - 3                  | 10 - 130   |

Tabla 2.3: Tipos de colectores planos y sus características.

Fuente: Lozano, (2019)

## 2.2.17 Temperatura media del colector

La tradición USA consistió en considerar  $t_c = t_e$ . Por el contrario, la tradición Europea ha considerado como mejor aproximación tomar la temperatura media del fluido a su paso por el colector (Lozano, 2019),es mediante la ecuación: (2.29):

$$t_m = \frac{T_e + T_s}{2} \tag{2.29}$$

Para evaluar la temperatura final del agua en el colector podemos calcular a partir de la ecuación (2.30).

$$T_o = T_e + \frac{Q_u}{m \cdot C_p} \tag{2.30}$$

#### 2.2.18 Cálculo del área absorbente del colector

Para el cálculo del área absorbente del colector usamos la ecuación (2.31)

$$A_{abs} = \frac{d_e \cdot \pi \cdot L}{2} \tag{2.31}$$

Siendo,  $A_{abs}$  el área absorbente,  $d_e$  es el diámetro exterior del tubo y L la longitud útil.

#### 2.2.19 Diseños factoriales con dos factores

Considere los factores A y B con a y b  $(a, b \ge 2)$  niveles de prueba, respectivamente. Con ellos se puede construir el arreglo o diseño factorial  $a \times b$ , el cual consiste en  $a \times b$  tratamientos. Algunos casos particulares de uso frecuente son: el diseño factorial  $2^2$ , el diseño factorial  $3^2$  y el diseño factorial  $3 \times 2$ .

#### 2.2.20 Replica de corrida

Se llama réplica a cada corrida completa del arreglo factorial. Los diseños factoriales que involucran menos de cuatro factores por lo regular se corren replicados para tener la potencia necesaria en las pruebas estadísticas sobre los efectos de interés. Si se hacen n réplicas, el número total de corridas experimentales es  $n(a \times b)$ .

# 2.3 Modelo estadístico e hipótesis de interés

El modelo estadístico de efectos para este tipo de diseño está dado por la ecuación 2.32:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$
(2.32)

$$i = 1, \dots a; \quad j = 1, \dots, b; \quad k = 1, \dots, n$$

Donde,  $\mu$  es la media general,  $\alpha_i$  es el efecto debido al i-ésimo nivel del factor A,  $\beta_j$  es el efecto del j-ésimo nivel del factor B,  $(\alpha.\beta)_{ij}$  representa al efecto de interacción en la combinación ij,  $\epsilon_{ijk}$  es el error aleatorio que se supone sigue una distribución normal con media cero y varianza constante  $\sigma^2$  (Gutiérrez, H. y De la vara, R., 2008).

Se desea demostrar las siguientes hipótesis:

- $H_0$ : Efecto del Factor A = 0
- $H_a$ : Efecto del Factor $A \neq 0$
- $H_0$ : Efecto del FactorB = 0
- $H_a$ : Efecto del Factor $B \neq 0$
- $H_0$ : Efecto del Factor A · Efecto del Factor B = 0
- $H_a$ : Efecto del Factor A · Efecto del Factor  $B \neq 0$

# CAPÍTULO III

# Marco Metodológico

# 3.1 Ubicación

El equipo solar térmico de tubos de vacío utilizado para el presente trabajo de investigación se encuentra ubicado en la facultad de Ciencias de la Escuela Superior Politécnica de Chimborazo (ESPOCH) ver Fig. 3.1, cuyas coordenadas geográficas son: latitud -1.655789° y longitud -78.678604° con una elevación de 2820 m.



Figure 3.1: Ubicación de la Facultad de Ciencias de la ESPOCH

# 3.2 Equipos y materiales

Los equipos e instrumentos utilizados fueron: un dispositivo solar térmico, un sistema de recolección de datos, sensores de temperatura, un computador, servicio de internet, bases de datos digitales (WoS, Scopus, Google Académico), Software Open Source Rstudio.

# 3.3 Tipo de investigación

La tipología de la presente investigación se basa en Sanca, M. (2011), donde muestra criterios vinculados a aspectos significativos de la investigación.

# 3.3.1 Según el enfoque

La investigación es de carácter cuantitativo porque implica el uso de herramientas estadísticas y matemáticas para obtener resultados.

#### 3.3.2 Según el tiempo

La investigación es de tipo longitudinal porque se realizan mediciones continuas o repetidas durante las estaciones de verano e invierno.

#### 3.3.3 Según su profundidad de alcance

La investigación es correlacional porque se analiza la eficiencia del modelo respecto a las variables que actúen dentro del proceso de calentado de agua del dispositivo solar térmico. El diseño de la investigación es experimental, porque se manipula la variable independiente, para conocer los efectos en la variable dependiente, es decir manipular la posición angular de los tubos del dispositivo solar térmico influye directamente en la variable respuesta de la eficiencia térmica.

# 3.4 Prueba de hipótesis

#### **3.4.1** Hipótesis de investigación o trabajo:

El colector solar de tubos de vacío que se considera tanto para la experimentación como para la simulación numérica tiene un efecto positivo entre el ángulo de inclinación y la captación máxima de la energía térmica útil.

#### 3.4.2 Hipótesis nula:

El colector solar de tubos de vacío que se considera tanta para la experimentación como para la simulación numérica no tiene un efecto positivo con el ángulo de inclinación para la captación máxima de la energía solar.

Así también para la comprobación de la hipótesis, se trabajó con un nivel de confianza del 98% y un nivel de significancia del 2%; para la selección de la prueba estadística se verificó previamente la normalidad de los datos con el test Shapiro-Wilks por ser aplicable a muestras menores de 50.

# 3.5 Población o muestra

La población representa la temperatura que se genera en el sistema de colector solar de tubos, durante las horas luz del día a diferentes ángulos de inclinación y dirección.

La muestra es tomada en el horario de 11h00 hasta las 12h00 con un intervalo de 3 minutos, con el fin de analizar la temperatura máxima generada, dentro del sistema de colector solar.

# 3.6 Recolección de la información

El procedimiento para la recolección de los datos se realizó de la siguiente manera:

- Ubicar los colectores solares con uno y dos tanques en un lugar donde los rayos solares inciden directamente y no se produzcan sombras sobre el instrumento o equipos durante la experimentación.
- Llenar con agua los colectores solares y tanques de almacenamientos.
- Instalar los sensores de temperatura en la parte superior de los tanques de almacenamiento de los colectores solares (al nivel de salida del agua caliente), dos sensores para cada colector solar. Luego conectar los sensores al recolector de datos.
- Monitorear los datos de temperatura del agua de los colectores y radiación solar en horizontal, en intervalos de 10 y 30 s, respectivamente.

- Realizar el registro de datos durante minuto, de acuerdo a los dos periodos climáticos existentes en nuestro país: Época húmeda o invierno (mes de enero hasta el mes de abril o mayo, dependiendo de las condiciones climáticas externas y generales). Época seca o verano (mes de mayo o junio y se extiende hasta el mes de diciembre).
- Concluidas las mediciones, descargar el agua de los colectores solares.

# 3.7 Procesamiento de la información y análisis estadístico

Para realizar el procesamiento de la información es imprescindible analizar el dispositivo solar térmico ya que las condiciones de esta influyen en el modelo matemático. El objetivo principal del estudio es determinar la posición óptima del colector solar, para ello se define un diseño experimental con dos factores de 6 y 4 niveles respectivamente, para ello se define un modelo matemático de la eficiencia del colector solar permita simular la temperatura del agua a diferentes ángulos de inclinación y dirección, y determinar la eficiencia del dispositivo a diferentes ángulos de inclinación. Para esto se considera como una ecuación inicial la curva característica.

Una vez determinado el modelo matemático se realiza ensayos o experimentos modificando el ángulo, referente a la posición de los tubos al vacío del dispositivo solar térmico. Los resultados son analizados respecto a la eficiencia térmica que genera en los diferentes ángulos de posición, mediante la raíz del error cuadrático medio (RECM), eficiencia del modelo matemático y evaluar a que posición se obtiene una mayor temperatura.

La implementación del algoritmo de simulación matemática se realizó en el software R, con la codificación de los parámetros respectivos del modelo, los ángulos fueron transformados utilizando el sistema radian puesto que el software R trabaja bajo esta condición, las especificaciones del colector solar fueron tomadas como variables que se usaron para la simulación. Del total de datos de temperatura se separaron en observaciones que fueron realizadas por la mañana y tarde, esto para considerar temperatura inicial y final como parámetros necesarios en el modelo. Los resultados fueron procesados con la librería ggplot2 para los gráficos respectivos.

#### 3.7.1 Validados del modelo de simulación

**Coeficiente de eficiencia del modelo de simulación**: El coeficiente de eficiencia del modelo de Nash-Sutcliffe ( $C_{ef}$ ) se utiliza para cuantificar lo bien que una simulación del modelo puede predecir la variable de resultado, para ello se aplica la ecuación (3.1) (Shein y Mady, 2016).

$$C_{ef} = 1 - \frac{\sum_{i=1}^{n} |(T_{sim})_i - (T_{exp})_i|^2}{\sum_{i=1}^{n} |(T_{sim})_i - (\bar{T}_{exp})_i|^2}$$
(3.1)

# **3.8** Variable respuesta o resultados alcanzados

Como variable dependiente se tiene la eficiencia térmica y la variable independiente la posición angular de los tubos del dispositivo solar térmico.

La variable cuantitativa dependiente corresponde a la eficiencia térmica y se toma como variables cuantitativas independientes a las magnitudes de: radiación solar incidente, temperatura del agua entrante y saliente, coeficiente de pérdidas de los tubos, esto se lo realizó durante las horas existentes de luz solar.

# **CAPÍTULO IV**

# Resultados y discusión

# 4.1 Especificaciones técnicas del colector de tubo de vacío

El tubo de vacío está formado por dos tubos de vidrio fabricados con vidrio de borosilicato extremadamente resistente. El tubo exterior es transparente para permitir el paso de los rayos de luz con una mínima reflexión y el tubo interior está recubierto con un revestimiento selectivo especial (Al-Níquel/Al) que presenta una excelente absorción de la radiación solar y unas características de reflexión mínimas. absorción de la radiación solar y unas características de reflexión mínimas. Este vacío desempeña un papel importante en el rendimiento de los tubos evacuados de flujo directo (Yadav y Saikhedkar, 2017).

En las Tablas 4.1 y 4.2 se describe las propiedades del tubo de vidrio de borosilicato y las dimensiones del colector de tubos de vacío.

# 4.1.1 Propiedades del tubo de vidrio de borosilicato

| Descripción                      | Especificación           |
|----------------------------------|--------------------------|
| Conductividad térmica (k)        | 0,038 W/( m°C)           |
| Transmitancia solar ( $\tau_g$ ) | 0,74                     |
| Absorción solar $\alpha_g$       | 0,99                     |
| Reflectancia solar $\rho_g$      | 0.23 (incidencia normal) |
| <i>Fuente:</i> GEAA-ESPOCH       |                          |

Tabla 4.1: Propiedades del tubo de vidrio de borosilicato

# 4.1.2 Dimensiones del colector de tubos de vacío

Tabla 4.2: Dimensiones del colector de tubos de vacío

| Descripción                                | Especificaciones |
|--------------------------------------------|------------------|
| Cantidad de tubos                          | 20               |
| Longitud del tubo                          | 1764 mm          |
| Diámetro exterior de la cubierta de vidrio | 60 mm            |
| Diámetro interior del tubo                 | 49 mm            |
| Distancia entre tubos                      | 20 mm            |

Fuente: GEAA-ESPOCH

Se considera la longitud de los tubos de 1764 mm ya que es la media que está expuesta a la luz solar diaria, el diámetro exterior del tubo es de 60 mm es una cubierta de vidrio, el diámetro interior está cubierta con una capa de borosilicato y cada tubo es colocado a una cierta distancia lo que representa 20 mm entre tubos.

# 4.2 Análisis descriptivo

# 4.2.1 Análisis descriptivo de las temperaturas de entrada

El análisis descriptivo se realiza con el fin de conocer las características de cada una de las variables en estudio. La Tabla 4.3 muestra las estadísticas descriptivas de las tres temperaturas iniciales.

| Estadísticos      | $T_1(^{\circ}\mathbf{C})$ | $T_2(^{\circ}\mathbf{C})$ | $T_3(^{\circ}\mathbf{C})$ |
|-------------------|---------------------------|---------------------------|---------------------------|
| Media             | 30,29                     | 40,49                     | 49,36                     |
| Mediana           | 29,50                     | 40,25                     | 49,10                     |
| Desviación típica | 3,37                      | 7,39                      | 6,05                      |
| Varianza          | 11,35                     | 54,54                     | 36,62                     |
| Mínimo            | 25,90                     | 29,70                     | 40,60                     |
| Máximo            | 36,90                     | 52,90                     | 59,80                     |

Tabla 4.3: Estadísticos descriptivos de las tres temperaturas iniciales

Fuente: Sánchez, (2022) a partir de los datos recolectados

En la Fig. 4.1 la temperatura inicial con fecha 21 de mayo del 2014, durante las horas de estudio se encuentra en promedio de 30,29°C en el punto 1; 40,49°C en el punto 2 y en el punto tres de 49,36°C, con una temperatura mínima de 25,9°C; 29,7°C y 40,6°C y un máximo de 36,9°C; 52,9°C y 59,8°C. Las desviaciones estándar de las temperaturas se encuentran alrededor de su media aritmética en 3,37°C; 7,39°C y 6,05°C en cada uno de los puntos respectivamente.



Figure 4.1: Temperaturas de entrada

La Tabla 4.4 muestra las estadísticas descriptivas de las tres temperaturas finales experimentales, las cuales serán utilizadas para inferir en la validez del modelo simulación.

| Estadísticos      | $T_1(^{\circ}\mathbf{C})$ | $T_2(^{\circ}\mathbf{C})$ | $T_3(^{\circ}\mathbf{C})$ |
|-------------------|---------------------------|---------------------------|---------------------------|
| Media             | 47,02                     | 68,05                     | 72,98                     |
| Mediana           | 47,05                     | 68,05                     | 72,70                     |
| Desviación típica | 6,01                      | 8,76                      | 7,59                      |
| Varianza          | 36,16                     | 76,7                      | 57,62                     |
| Mínimo            | 37,80                     | 54,20                     | 61,90                     |
| Máximo            | 57,10                     | 82,20                     | 85,80                     |

Tabla 4.4: Estadísticos descriptivos de las tres temperaturas finales

Fuente: Sánchez, (2022) a partir de los datos recolectados

Como se muestra en la Fig. 4.2 la temperatura que alcanza una vez finalizada el tiempo del experimento con fecha 21 de mayo del 2014, corresponde a un promedio de 47,02°C; 68,05°C y 72,98°C para el punto 1, 2 y 3 respectivamente, con una temperatura mínima de 37,8°C; 54,20°C; y 61,90°C alcanzando un máximo de 57,10°C; 82,20°C y

85,80°C. Con una desviación respecto al valor promedio de su temperatura de 6,01°C; 8,76°C y 7,59°C.



Figure 4.2: Temperaturas finales

La Tabla 4.5 muestra el análisis descriptivo de la variable temperatura ambiente, radiación solar global, radiación solar difusa y la radiación solar directa.

| Estadísticos      | T. ambiente (°C) | R. Difusa | R. Global | R. Directa |
|-------------------|------------------|-----------|-----------|------------|
| Media             | 19,50            | 154,60    | 1005,60   | 923,30     |
| Mediana           | 19,29            | 148,69    | 994,12    | 922,18     |
| Desviación típica | 0,85             | 13,83     | 40,16     | 23,80      |
| Varianza          | 0,72             | 191,35    | 1612,81   | 566,24     |
| Mínimo            | 18,19            | 145,41    | 951,40    | 890,61     |
| Máximo            | 21,08            | 194,22    | 1088,39   | 963,01     |

Tabla 4.5: Análisis descriptivos de la variable Temperatura ambiente y radiación

Fuente: Sánchez, (2022) a partir de los datos recolectados

La temperatura ambiente con fecha 21 de mayo del 2014, tuvo un promedio de 19,50°C; la superficie terrestre tuvo en promedio una ra-

diación solar difusa de 154,60 w/ $m^2$ , un promedio de radiación solar global de 1005,60 w/ $m^2$ . Con un mínimo de 18,19°C; 145,41 y 951,40 w/ $m^2$  y un máximo de 21,08°C; 194,22 y 1088,39 w/ $m^2$  para la temperatura ambiente, radiación difusa y radiación global respectivamente.

En la Fig. 4.3 se observa las diferentes radiaciones en función del tiempo con su respectiva intensidad, donde la radiación solar global es la sumatoria de las difusa y directa.



Figure 4.3: Radiación solar

En la Fig. 4.4 indica la temperatura ambiente desde las 11h00 hasta las 12h00 con fecha 21 de mayo del 2014, donde se observa una temperatura baja cerca de los 18°C y alcanza un máximo de 21°C aproximadamente.



Figure 4.4: Temperatura ambiente

# 4.3 Proceso de simulación de la temperatura de agua en el colector solar

Para la realización de la simulación se tomó en cuenta el balance de energía que interviene en el proceso, a diferentes ángulos de inclinación de los tubos captadores de energía.

# 4.3.1 Ángulo de inclinación

Para analizar la eficiencia del sistema de colector solar se realiza una simulación empezando con una inclinación de  $10^{\circ}$  hasta los  $60^{\circ}$  con una diferencia de  $10^{\circ}$ , en total se tiene 6 ángulos de inclinación.

Tabla 4.6: Ángulos de inclinación

Ángulos  $10^{\circ}$   $20^{\circ}$   $30^{\circ}$   $40^{\circ}$   $50^{\circ}$   $60^{\circ}$
#### 4.3.2 Ángulo de declinación del sol

Para el cálculo del ángulo de la declinación solar se tiene como referencia la fecha del 21 de mayo del 2014, que corresponde al día 141 del año, éste dato es el valor de n, el mismo que se reemplaza en la ecuación (2.1), obteniéndose un ángulo de declinación del sol de 20,138°.

$$\delta = 23,45 \cdot \sin\left[360 \cdot \left(\frac{284 + 141}{365}\right)\right]$$
$$\delta = 20,138^{\circ}$$

### 4.3.3 Ángulo de hora solar

El ángulo del sol varia de -180° a 180° y esta variación se calcula respecto al periodo de estudio, para el cálculo se aplica la ecuación (2.3), con  $H_s$  de 11h31 que corresponde a la hora del día, obteniéndose un ángulo de hora sol de -7, 25° y este valor se puede visualizar en la Fig. 2.3 (a) Se detalla que 31/60 es la conversión de minutos a horas.

$$\omega = 15 \cdot (H_s - 12)$$
$$\omega = 15 \cdot \left[ \left( 11 + \frac{31}{60} \right) - 12 \right]$$
$$\omega = -7, 25^{\circ}$$

#### 4.3.4 Ángulo de incidencia del sol

Para el cálculo de la incidencia del sol se aplica la ecuación (2.4), para ello se requiere el valor de la latitud a la cual se encuentra la facultad de Ciencias de la Escuela Superior Politécnica de Chimborazo (ESPOCH) siendo un valor de latitud ( $\phi$ ) igual a -1.655789, ángulo de declinación del sol ( $\delta$ ) de 20,138°, ángulo de inclinación de la superficie captadora ( $\beta$ ) de 20° y un ángulo acimut o de orientación de ( $\gamma$ ) de 90°, obteniéndose un ángulo de incidencia del sol ( $\theta$ ) de 34,416°.

$$\cos (\theta) = \sin (20, 138) \sin (-1.655789) \cos (20)$$
  
- sin (20, 138) cos (20) sin (-1, 655789) cos (90)  
+ cos (20, 138) cos (-1, 655789) cos (20) cos (-7, 25)  
+ cos (20, 138) sin (-1.655789) sin (20) cos (90) cos (-7, 25)  
+ cos (20, 138) sin (20) sin 90 sin (-7, 25)  
$$\cos (\theta) = 0,825$$
  
$$\theta = cos^{-1}(0,825)$$
  
$$\theta = 34,416^{\circ}$$

# 4.3.5 Ángulo cenital

Tomando datos del cálculo anterior, y empleando la ecuación (2.2) se tiene un ángulo cenital ( $\theta_z$ ) de 22,92°

$$\cos (\theta_z) = \cos (-1, 655789) \cdot \cos (20, 138) \cdot \cos (-7, 25)$$
$$+ \sin (-1, 655789) \cdot \sin (20, 138)$$
$$\cos (\theta_z) = 0.9210$$
$$\theta_z = \cos^{-1} (0, 9210)$$
$$\theta_z = 22, 92^{\circ}$$

#### 4.3.6 Radiación solar

Para el calculo de la irradiación normal directa  $(I_b)$  se realiza mediante la ecuación (2.15), cabe mencionar que los datos de la irradiancia solar global $(I_g)$  y la irradiancia difusa  $(I_d)$  fueron proporcionados por el GEAA, del mismo modo se realiza a manera de ejemplo con la información planteada en ejemplos anteriores.

$$I_{g} = I_{b} \cdot \cos(\theta_{z}) + I_{d}$$

$$I_{b} = \frac{I_{g} - I_{d}}{\cos(\theta_{z})}$$

$$I_{b} = \frac{(992, 08 - 145, 822)W/m^{2}}{\cos(22, 92^{\circ})}$$

$$I_{b} = 918, 83 W/m^{2}$$

La radiación solar reflejada se calcula de acuerdo a la superficie donde está implementado el colector solar y mediante la ecuación (2.12), se toma en consideración el coeficiente de reflexión o albedo de  $\rho_g = 0,23$ por ser una superficie de hormigón.

Una vez determinado los parámetros necesarios se calcula el modelo difuso isotrópico donde intervienen tres tipos de radiación solar: radiación directa, difusa y reflejada definido por la ecuación (2.14)

$$I_T = I_b \left[ \frac{\cos(\theta)}{\cos(\theta_z)} \right] + I_d \left[ \frac{1 + \cos(\beta)}{2} \right] + I\rho_g \left[ \frac{1 - \cos(\beta)}{2} \right]$$
$$I_T = (918, 73) \left[ \frac{\cos(34, 416)}{\cos(22, 92)} \right] + (145, 822) \left[ \frac{1 + \cos(20)}{2} \right] + (992, 08)(0, 23) \left[ \frac{1 - \cos(20)}{2} \right]$$
$$I_T = 971, 47 W/m^2$$

La irradiancia solar que recibe la superficie terrestre a un ángulo de inclinación de los tubos del colector solar a 20° y con una orientación de 90°, determina aproximadamente un total de 971,47 W/ $m^2$ .

#### 4.3.7 Factor de eficiencia del colector solar

Para el calculo del factor de eficiencia del colector solar, se requiere de la temperatura media del colector, para esto se aplica la ecuación (2.29), obteniéndose para la temperatura 1 un promedio de 37,45°C.

$$t_m = \frac{T_e + T_s}{2} \\ t_m = \frac{46, 3^\circ + 28, 6^\circ}{2} \\ t_m = 37, 45^\circ C$$

Para determinar el factor de eficiencia con la cual trabaja el colector solar de tubos, se aplica la ecuación (2.27)

$$\eta = F_R \cdot (\tau \alpha)_n - F_R \cdot U_L \left[ \frac{(T_i - T_a)}{I_T} \right] - F_R \cdot U_{L/T} \left[ \frac{(T_i - T_a)^2}{I_T} \right]$$
$$\eta = 0, 8 - 2, 5 \left[ \frac{(37, 45 - 19, 153)}{971, 47} \right] - 0,007 \left[ \frac{(37, 45 - 19, 153)^2}{971, 47} \right]$$
$$\eta = 0,7528$$

el modelo indica que la eficiencia del colector solar es de 75,28%.

Ahora se calcula la energía útil producida por el colector mediante la

ecuación 2.22

$$Q_u = F_R \left[ I_T A_{abs} \tau \alpha - U_L (T_i - T_a) - U_{L/T} (T_i - T_a)^2 \right]$$

$$Q_u = (F_R \tau \alpha) I_T A_{abs} - (F_R U_L) (T_m - T_a) - (F_R U_{L/T}) (T_m - T_a)^2$$

$$Q_u = (0, 8) (971, 3709) (3, 3250) - (2, 5) (37, 45 - 19, 153)$$

$$- (0, 007) (37, 45 - 19, 153)^2$$

$$Q_u = 2536, 02 W$$

Y finalmente para calcular la temperatura de salida, se calcula con la ecuación (2.30)

$$T_o = 29, 6 + \frac{2558, 02}{(0, 03)(4180)}$$
$$T_o = 49, 82^{\circ}$$

Si en el sistema de colector solar con un ángulo de inclinación de  $20^{\circ}$  y con un ángulo de orientación de  $90^{\circ}$  se tiene una temperatura de salida de  $49,82^{\circ}$ , esta temperatura se obtiene con una eficiencia de 0,7528 lo que implica que el colector funciona al 75,28%.

#### 4.3.8 Cálculo del área absorbente del colector

Se calcula el área absorbente del colector mediante la ecuación (2.31).

$$A_{abs} = \frac{(0,060)(\pi)(1,764)}{2}$$
$$A_{abs} = 0,166m^2$$

Se obtiene que el área absorbente es de 0,166  $m^2$  determinado para cada tubo, dentro del estudio se trabaja con un total de 20 tubos por lo tanto se tiene un área total absorbente de aproximadamente 3.3250  $m^2$ .

### 4.4 Simulación de la temperatura

El algoritmo de simulación del modelo matemático se realizó en el software estadístico Rstudio, con tres temperaturas iniciales  $(T_1, T_2, T_3)$ . El colector solar utilizado se encuentra ubicado en las instalaciones de GEAA-ESPOCH, las dimensiones y características están detalladas en la Tablas 4.1 y 4.2. El cálculo de la temperatura de agua a diferentes ángulos de inclinación  $\beta$  (10°, 20°, 30°, 40°, 50°, 60°) empezando en 10° hasta los 60° esto respecto a la superficie con los tubos de vacío y con 4 ángulos orientación  $\gamma$  (0°, 30°, 60°, 90°) en relación a giro de este a oeste. El ángulo solar fue calculado considerando la hora y el día de la obtención de los datos de manera experimental. Estas y otras consideraciones se detallan paso a paso para una de las iteraciones de la simulación en el apartado 4.3, donde se puntualiza los cálculos empleados para un caso puntual.

#### 4.4.1 Simulación de la temperatura 1 en el colector solar

Para comenzar se realiza una simulación con la información existente con los diferentes ángulos de inclinación. La Tabla 4.7 muestra los promedios de temperatura final en cada uno de los ángulos de inclinación y su respectivo ángulo de orientación.

| Ángulo      | Inclinación |              |       |              |              |              |
|-------------|-------------|--------------|-------|--------------|--------------|--------------|
| Orientación | 10°         | $20^{\circ}$ | 30°   | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ |
| 0°          | 52,88       | 51,93        | 50,45 | 48,48        | 46,09        | 43,34        |
| 30°         | 52,65       | 51,51        | 49,85 | 47,72        | 45,19        | 42,32        |
| 60°         | 52,45       | 51,20        | 49,43 | 47,20        | 44,59        | 41,65        |
| 90°         | 52,34       | 51,08        | 49,30 | 47,07        | 44,45        | 41,51        |

Tabla 4.7: Datos promedios de la temperatura final 1

Fuente: Sánchez, (2022) a partir de los datos recolectados

El análisis del promedio de temperatura final 1, a los  $10^{\circ}$  y  $20^{\circ}$  de inclinación se observa que se mantiene alrededor de los 52 y  $51^{\circ}$ C respectivamente, mientras los ángulos de inclinación de  $30^{\circ}$  hasta  $60^{\circ}$  existen cambios alrededor de  $7^{\circ}$ C.

Observando la Fig. 4.5 se afirma que, sin importar el ángulo de orientación de los tubos, se obtiene mayor temperatura del agua con una inclinación de  $10^{\circ}$  con respecto a la superficie, además esta temperatura disminuye según aumente el ángulo de inclinación. Respecto a los datos experimentales de la temperatura 1 va de forma ascendente y próxima a un ángulo de inclinación de  $40^{\circ}$ .



Figure 4.5: Simulación de la temperatura 1 en el colector solar

La Tabla 4.8 muestra los resultados del cálculo del error cuadrático medio para la simulación de la temperatura 1.

| Ángulo      | Inclinación |      |      |      |      |      |
|-------------|-------------|------|------|------|------|------|
| Orientación | 10°         | 20°  | 30°  | 40°  | 50°  | 60°  |
| 0°          | 6,41        | 5,57 | 4,33 | 3,05 | 2,86 | 4,60 |
| 30°         | 6,15        | 5,09 | 3,65 | 2,35 | 2,86 | 5,17 |
| 60°         | 5,94        | 4,73 | 3,18 | 1,95 | 3,05 | 5,65 |
| 90°         | 5,82        | 4,60 | 3,03 | 1,84 | 3,10 | 5,74 |

Tabla 4.8: Raíz del error cuadrático medio de la temperatura 1

Fuente: Sánchez, (2022) a partir de los datos recolectados

El error que existe entre los datos simulados y con los datos experimentales de la temperatura 1 del colector solar se llega a la misma conclusión realizada mediante los gráficos y con una RECM = 1,84 como el valor mínimo que se aproxima más a realidad de la temperatura del agua en el colector solar.

#### 4.4.2 Simulación de la temperatura 2 del colector solar

La Tabla 4.9 muestra los datos promedios de la temperatura final 2, en cada uno de los ángulos de inclinación y su respectivo ángulo de orientación.

| Ángulo       | Inclinación |              |       |       |       |       |
|--------------|-------------|--------------|-------|-------|-------|-------|
| Orientación  | 10°         | $20^{\circ}$ | 30°   | 40°   | 50°   | 60°   |
| 0°           | 62,97       | 62,02        | 60,54 | 58,58 | 56,18 | 53,44 |
| 30°          | 52,54       | 51,40        | 49,74 | 47,62 | 45,08 | 42,22 |
| $60^{\circ}$ | 52,35       | 51,09        | 49,32 | 47,10 | 44,48 | 41,55 |
| 90°          | 62,54       | 61,28        | 59,51 | 57,28 | 54,65 | 51,72 |

Tabla 4.9: Datos promedios de la temperatura final 2

Fuente: Sánchez, (2022) a partir de los datos recolectados

El análisis del promedio de la temperatura final 2, indica que se obtiene una mayor eficiencia con una inclinación de  $10^{\circ}$  y una orientación de  $0^{\circ}$  alcanzando un promedio de 62,97°C; por otro lado, la temperatura promedio más baja fue de 41,55°C con un ángulo de inclinación y orientación de 60°.

Estos resultados coinciden con los obtenidos por Kyekyere et al. (2021), las temperaturas finales en la salida del calentador de agua solar estaban por encima de 55°C dada una temperatura inicial de 25°C para una colección de calor de todo el día con un rango de eficiencia del sistema diario de 0.58 - 0.65.

Observando la Fig. 4.6 se identifica que el modelo se aproxima más al comportamiento del colector solar, a un ángulo de inclinación de  $10^{\circ}$  y un ángulo de orientación de  $0^{\circ}$ . Cuando se tiene un ángulo de ori-

entación de  $30^{\circ}$  y  $60^{\circ}$  no se obtiene la temperatura máxima experimental.



Figure 4.6: Simulación de la temperatura 2 del colector solar

Los resultados experimentales del estudio realizado por Dabra et al. (2013) revelaron que la diferencia de temperatura del aire y la eficiencia térmica del colector de aire solar de tubo evacuado a un ángulo de inclinación de 30° es mejor en comparación con el ángulo de inclinación de 45°. Los resultados también mostraron que el ángulo de inclinación de 30° con reflector tenía más rendimiento térmico en comparación con el ángulo de 45° con y sin reflector. Estos indicaron que el ángulo de inclinación de inclinación del colector empinado (45°) disminuye el rendimiento térmico del colector de aire solar de tubo evacuado.

La Tabla 4.10 presenta los resultados del cálculo del error cuadrático medio para la simulación de la temperatura 2.

| Ángulo      | Inclinación |              |       |              |              |              |
|-------------|-------------|--------------|-------|--------------|--------------|--------------|
| Orientación | 10°         | $20^{\circ}$ | 30°   | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ |
| 0°          | 5,16        | 6,09         | 7,56  | 9,52         | 11,91        | 14,65        |
| 30°         | 16,28       | 17,34        | 18,91 | 20,97        | 23,43        | 26,24        |
| 60°         | 16,44       | 17,59        | 19,26 | 21,40        | 23,95        | 26,82        |
| 90°         | 5,55        | 6,79         | 8,55  | 10,78        | 13,40        | 16,34        |

Tabla 4.10: Raíz del error cuadrático medio de la temperatura 2

Fuente: Sánchez, (2022) a partir de los datos recolectados

Al calcular el error que existe entre los datos simulados y con los datos experimentales de la temperatura 2 del colector solar se llega a la misma conclusión realizada mediante los gráficos y con una RECM = 5,16 como el valor mínimo que se aproxima más a realidad del colector solar, lo cual corresponde a un 0° y 10° de orientación e inclinación respectivamente.

#### 4.4.3 Simulación de la temperatura 3 del colector solar

La Tabla 4.11 muestra los datos promedios de la temperatura final 3, en cada uno de los ángulos de inclinación y su respectivo ángulo de orientación.

| Ángulo      | Inclinación |              |       |              |       |              |
|-------------|-------------|--------------|-------|--------------|-------|--------------|
| Orientación | 10°         | $20^{\circ}$ | 30°   | $40^{\circ}$ | 50°   | $60^{\circ}$ |
| $0^{\circ}$ | 71.88       | 70,93        | 69.45 | 67.49        | 65.09 | 62.35        |
| 30°         | 71,65       | 70.51        | 68,85 | 66,72        | 64.19 | 61.32        |
| 60°         | 71.45       | 70.20        | 68.43 | 66.20        | 63,59 | 60,66        |
| 90°         | 71.43       | 70.17        | 68.40 | 66.17        | 63.54 | 60,61        |

Tabla 4.11: Datos promedios de la temperatura final 3

Fuente: Sánchez, (2022) a partir de los datos recolectados

El análisis del promedio de temperatura final 3, alcanza una temperatura máxima promedio de 71,88°C a una inclinación de  $10^{\circ}$  y ángulo de orientación de  $0^{\circ}$ , por otro lado, la temperatura promedio mínima fue de 60,61°C a un ángulo de inclinación de  $60^{\circ}$  y de orientación de  $90^{\circ}$ .

Estos resultados experimentales coinciden con los obtenidos por Gond et al. (2016) donde el rendimiento del calentador solar de agua utilizando todos los materiales produjo la máxima eficiencia de alrededor del 40% al 47 % respectivamente. La temperatura máxima del agua de salida alcanzada es por debajo de 70° respectivamente. El orden de prioridad de los materiales para una mejor eficiencia es el cobre, el aluminio, que el acero inoxidable.

Observando la Fig. 4.7 se identifica que las temperaturas al inicio del periodo de estudio están por encima y por debajo de la temperatura experimental, sin embargo, las temperaturas finales del periodo de estudio se encuentran por debajo de la temperatura experimental. Y del mismo modo la temperatura más eficiente se logra con un ángulo de inclinación de  $10^{\circ}$ .



Figure 4.7: Simulación de la temperatura 3 del colector solar

La Tabla 4.12 muestra los resultados del cálculo del error cuadrático medio para la simulación de la temperatura 3.

| Ángulo       | Inclinación |              |      |              |      |              |
|--------------|-------------|--------------|------|--------------|------|--------------|
| Orientación  | 10°         | $20^{\circ}$ | 30°  | $40^{\circ}$ | 50°  | $60^{\circ}$ |
| 0°           | 3,08        | 3,54         | 4,57 | 6,22         | 8,42 | 11,04        |
| 30°          | 3,11        | 3,70         | 4,94 | 6,81         | 9,18 | 11,95        |
| $60^{\circ}$ | 3,16        | 3,86         | 5,24 | 7,24         | 9,72 | 12,57        |
| 90°          | 3,15        | 3,85         | 5,25 | 7,26         | 9,75 | 12,61        |

Tabla 4.12: Raíz del error cuadrático medio de la temperatura 3

Fuente: Sánchez, (2022) a partir de los datos recolectados

El error que existe entre los datos simulados y con los datos experimentales de la temperatura 3 del colector solar se llega a la misma conclusión realizada mediante los gráficos y con una RECM = 3,08 como el valor mínimo que se aproxima más a realidad de la temperatura del agua en el colector solar, corresponde a  $0^{\circ}$  y  $10^{\circ}$  de orientación e inclinación respectivamente.

La tendencia de usar un dispositivo eficiente de energía crecerá rápidamente en las próximas décadas.

# 4.5 Contraste de Hipótesis

Antes de realizar la prueba de hipótesis se realiza un análisis estadístico sobre la prueba de normalidad de los datos.

## 4.5.1 Prueba de normalidad

1. Planteamiento de hipótesis

 $H_o$ : Los datos de temperatura de agua provienen de una distribución normal

 $H_1$ : Los datos de temperatura de agua no provienen de una distribución normal

2. Nivel de significancia

Se aplica el nivel de significancia  $\alpha$ = 0,02

3. Cálculos estadísticos

Para analizar la normalidad de los datos se aplica el test de Shapiro-Wilks. Como se muestra en la Tabla 4.13, para las tres temperaturas experimentales de entrada o iniciales y de salida o finales no se rechaza la hipótesis nula, porque el p-valor es mayor que el nivel de significancia es decir que 0,02; por lo tanto, se

|                     | Temperatura             | Variable          | Estadístico             | p.valor                 | Decisión                                        |
|---------------------|-------------------------|-------------------|-------------------------|-------------------------|-------------------------------------------------|
| W<br>$W_1$<br>$W_2$ | Inicial<br>experimental | $T_1$ $T_2$ $T_3$ | 0,926<br>0,950<br>0,944 | 0,101<br>0,320<br>0,238 | NO rechazo Ho<br>NO rechazo Ho<br>NO rechazo Ho |
| W<br>$W_1$<br>$W_2$ | Salida<br>experimental  | $T_1$ $T_2$ $T_3$ | 0,956<br>0,956<br>0,940 | 0,416<br>0,418<br>0,201 | NO rechazo Ho<br>NO rechazo Ho<br>NO rechazo Ho |

Tabla 4.13: Prueba de normalidad de la temperatura experimental

Fuente: Sánchez, (2022) a partir de los datos recolectados

#### Normalidad en datos simulados

Para las tres temperaturas simuladas con  $0^{\circ}$  de dirección y a diferentes ángulos de inclinación de los tubos no se rechaza la hipótesis nula, porque el p-valor es mayor que el nivel de significancia (0,02) por lo tanto, se considera que las informaciones se aproximan a una distribución normal.

Tabla 4.14: Temperatura de salida 1 con 0° de orientación

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,910       | 0,047   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,910       | 0,047   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,911       | 0,049   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,911       | 0,050   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,913       | 0,054   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,915       | 0,059   | NO rechazo Ho |

Fuente: Sánchez, (2022) a partir de los datos recolectados

Nota: Este contraste se realiza para cada una de las temperaturas simuladas a los diferentes ángulos de inclinación y ángulo de dirección. Y como cumplen con los supuestos de normalidad se aplica pruebas de hipótesis paramétricas.

#### 4.5.2 Validados del modelo de simulación

En la Tabla 4.15 se aprecia el cálculo del coeficiente de eficiencia como uno de los parámetros indicativos de la validez del modelo de simulación se obtuvo mediante la ecuación 3.1, se afirma que la temperatura 1 experimental se ajusta de mejor manera con la temperatura simulada con un ángulo de inclinación de 40° y un ángulo de dirección de 90°. Sin embargo, la temperatura 1 se logró maximizar mediante la simulación, lo que permitió obtener mayor resultado a un ángulo de inclinación de 10° y dirección de 0°.

| Ángulo      | Inclinación |       |       |       |       |       |
|-------------|-------------|-------|-------|-------|-------|-------|
| Orientación | 10°         | 20°   | 30°   | 40°   | 50°   | 60°   |
| 0°          | 0,172       | 0,211 | 0,299 | 0,445 | 0,453 | 0,219 |
| 30°         | 0,212       | 0,307 | 0,484 | 0,706 | 0,627 | 0,342 |
| 60°         | 0,244       | 0,380 | 0,610 | 0,821 | 0,668 | 0,381 |
| 90°         | 0,258       | 0,408 | 0,650 | 0,849 | 0,684 | 0,398 |

Tabla 4.15: Coeficiente de eficiencia de la temperatura 1

Fuente: Sánchez, (2022) a partir de los datos recolectados

Como se muestra en la Tabla 4.16 el análisis de la eficiencia con el modelo de simulación para la temperatura 2 se tiene en claro que la mayor eficiencia se logra un ángulo de inclinación de  $10^{\circ}$  y un ángulo de dirección de  $0^{\circ}$  lo que implica un 69,5% de eficiencia.

| Ángulo      | Inclinación |             |             |             |             |             |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Orientación | <b>10</b> ° | <b>20</b> ° | <b>30</b> ° | <b>40</b> ° | <b>50</b> ° | <b>60</b> ° |
| 0°          | 0,695       | 0,618       | 0,510       | 0,394       | 0,290       | 0,209       |
| 30°         | 0,221       | 0,319       | 0,500       | 0,717       | 0,621       | 0,337       |
| 60°         | 0,253       | 0,393       | 0,627       | 0,826       | 0,660       | 0,375       |
| 90°         | 0,197       | 0,232       | 0,287       | 0,374       | 0,508       | 0,690       |

Tabla 4.16: Coeficiente de eficiencia de la temperatura 2

Fuente: Sánchez, (2022) a partir de los datos recolectados

La Tabla 4.17 muestra el modelo de simulación para la temperatura 3 se puede afirmar que la mayor eficiencia se logra un ángulo de inclinación de 10  $^{\circ}$  y un ángulo de dirección de 0 $^{\circ}$  lo que implica un 78,1% de eficiencia.

| Ángulo      | Inclinación |       |       |       |       |       |
|-------------|-------------|-------|-------|-------|-------|-------|
| Orientación | 10°         | 20°   | 30°   | 40°   | 50°   | 60°   |
| 0°          | 0,781       | 0,727 | 0,613 | 0,456 | 0,309 | 0,200 |
| 30°         | 0,057       | 0,064 | 0,075 | 0,092 | 0,118 | 0,161 |
| 60°         | 0,059       | 0,069 | 0,084 | 0,106 | 0,139 | 0,194 |
| 90°         | 0,060       | 0,071 | 0,086 | 0,109 | 0,145 | 0,202 |

Tabla 4.17: Coeficiente de eficiencia de la temperatura 3

Fuente: Sánchez, (2022) a partir de los datos recolectados

#### 4.5.3 Contraste de correlación

#### 1. Planteamiento de hipótesis

 $H_1$ : El colector solar de tubos de vacío que se considera tanto para la experimentación como para la simulación numérica tiene un efecto positivo con el ángulo de inclinación para la captación máxima de la energía solar.

 $H_o$ : El colector solar de tubos de vacío que se considera tanto para la experimentación como para la simulación numérica no tiene un efecto positivo con el ángulo de inclinación para la captación máxima de la energía solar.

2. Nivel de significancia

Se trabaja con un nivel de significancia del  $\alpha = 0.02$ 

3. Cálculos estadísticos

#### Test de correlación

Para un nivel de significancia del 2% se rechaza la hipótesis nula y se afirma la existencia de correlación entre la temperatura 1 de agua y el ángulo de inclinación colector solar. Mientras el ángulo de inclinación aumenta la temperatura del agua disminuye. La correlación es máxima negativa - 0,647 (Ver Tabla 4.18).

| Test de correlación de la temperatura 1 |        |   |        |  |  |  |
|-----------------------------------------|--------|---|--------|--|--|--|
| Método Estadístico p.valor Correlaciór  |        |   |        |  |  |  |
| Pearson's correlation                   | -9.665 | 0 | -0.647 |  |  |  |
| Pearson's correlation                   | -9.514 | 0 | -0.641 |  |  |  |
| Pearson's correlation                   | -9.311 | 0 | -0.633 |  |  |  |
| Pearson's correlation                   | -9.111 | 0 | -0.624 |  |  |  |

Tabla 4.18: Test de correlación de la temperatura 1

Fuente: Sánchez, (2022) a partir de los datos recolectados

Para un nivel de significancia del 2% se rechaza la hipótesis nula y se afirma la existencia de correlación entre la temperatura 2 de agua y el ángulo de inclinación colector solar. Mientas el ángulo de inclinación aumenta la temperatura del agua disminuye. La correlación máxima negativa es de -0.64 (Ver Tabla 4.19).

| Método                | Estadístico | p.valor | Correlación |
|-----------------------|-------------|---------|-------------|
| Pearson's correlation | -4.815      | 0       | -0.389      |
| Pearson's correlation | -9.488      | 0       | -0.64       |
| Pearson's correlation | -9.287      | 0       | -0.632      |
| Pearson's correlation | -4.925      | 0       | -0.397      |

Tabla 4.19: Test de correlación de la temperatura 2

Fuente: Sánchez, (2022) a partir de los datos recolectados

Para un nivel de significancia del 2% se rechaza la hipótesis nula y se afirma la existencia de correlación entre la temperatura 3 de agua y el ángulo de inclinación colector solar. Mientas el ángulo de inclinación aumenta la temperatura del agua disminuye. La correlación máxima negativa es de -0.463 (Ver Tabla 4.20).

Tabla 4.20: Test de correlación de la temperatura 3

| Método                | Estadístico | p.valor | Correlación |
|-----------------------|-------------|---------|-------------|
| Pearson's correlation | -5.805      | 0       | -0.454      |
| Pearson's correlation | -5.934      | 0       | -0.462      |
| Pearson's correlation | -5.957      | 0       | -0.463      |
| Pearson's correlation | -5.879      | 0       | -0.458      |
|                       |             | -       |             |

Fuente: Sánchez, (2022) a partir de los datos recolectados

#### Test de comparación de medias de los datos simulados

Se plantea el proceso de la simulación como un diseño factorial con 2 factores ya que se considera como factores a: Ángulo de inclinación y Ángulo de orientación, con sus niveles de  $(10^\circ, 20^\circ, 30^\circ, 40^\circ, 50^\circ, 60^\circ)$ y  $(0^\circ, 30^\circ, 60^\circ, 90^\circ)$  Por tanto, el diseño factorial será de  $6 \times 4$ ,  $(a \times b)$ .

El modelo estadístico aplicado se realiza en función de la ecuación 2.32, para lo cual se desea demostrar las hipótesis específicas:

• Hipótesis específica 1

Ho: Efecto del ángulo de inclinación es igual a cero

 $H_a$ : Efecto del ángulo de inclinación es diferente a cero

• Hipótesis específica 2

 $H_o$ : Efecto del ángulo de dirección es igual a cero

 $H_a$ : Efecto del ángulo de dirección es diferente a 0

• Hipótesis específica 3

 $H_o$ : Inclinación · orientación es igual a cero

 $H_a$ : Inclinación · orientación es diferente a 0

#### Análisis ANOVA de la temperatura 1

Para el análisis ANOVA de la temperatura 1 se aprecia que el ángulo de inclinación si tiene efecto sobre la variable respuesta el p-valor  $(2 \times 10^{-16})$  es menor al nivel de significancia (0,02); sin embargo, el efecto del ángulo de orientación no tiene efecto significativo el p-valor (0,0966) es mayor al nivel de significancia (0,02); lo mismo ocurre con la combinación de los dos factores (Ver Tabla 4.21).

|                           | Df  | Sum Sq | Mean Sq | F value | Pr(>F) |
|---------------------------|-----|--------|---------|---------|--------|
| Inclinación               | 5   | 6859   | 1371,8  | 70,617  | <2e-16 |
| orientación               | 3   | 124    | 41,2    | 2,121   | 0,0966 |
| Inclinación : orientación | 15  | 17     | 1,1     | 0,059   | 1,00   |
| Residuals                 | 504 | 9791   | 19,4    |         |        |

Tabla 4.21: Análisis ANOVA de la Temperatura 1

Fuente: Sánchez, (2022) a partir de los datos recolectados

La temperatura según el ángulo de inclinación muestra diferencias significativas para los diferentes pares de variables esto significa que los resultados obtenidos a diferentes ángulos de inclinación varían, sin embargo, esto no indica que todos los pares de variables sean diferentes el rechazar la Hipótesis nula indica que existe algún o algunos pares de variables con diferencias significativas en sus resultados. El p valor del ángulo de orientación y la combinación de inclinación-orientación resultó no significativos, y se concluye que la temperatura de agua no tiene diferencia significativa.

En la Fig. 4.8 se observa que mientras más se aumente el ángulo de inclinación de los tubos la temperatura del agua desciende, esto es corroborado con la correlación negativa encontrada en el test de correlación. Por otro lado, si se cambia los ángulos de orientación se observa un descenso leve de la temperatura del agua. Además se observa que los resultados máximos muestran con un ángulo de inclinación y orientación de  $10^{\circ}$  y  $0^{\circ}$  respectivamente.



Figure 4.8: Interacción entre ángulos de inclinación y orientación de la  $T_1$ 

#### Comparación de medias múltiples de Tukey de la temperatura 1

Las diferencias entre medias en las que el intervalo de confianza que engloba los límites inferior y superior no contienen el valor 0, son estadísticamente significativas, en el caso del ángulo de inclinación no son estadísticamente significativas para tres pares de medias (20-10; 30-20 y 40-30), y de igual forma para el ángulo de orientación en todos los pares de medias también no son estadísticamente significativas, tal como se muestra en la Fig. 4.9



Figure 4.9: Comparación de medias múltiples de Tukey de la temperatura 1

#### Análisis ANOVA de la temperatura 2

Para el análisis ANOVA de la temperatura 2 se aprecia que el ángulo de inclinación si tiene efecto sobre la variable respuesta, del mismo modo que existe efecto para el ángulo de orientación. Por otro lado, la combinación de las dos no es significativo (Ver Tabla 4.22).

|                           | Df  | Sum Sq | Mean Sq | F value | <b>Pr(&gt;F</b> ) |
|---------------------------|-----|--------|---------|---------|-------------------|
| Inclinación               | 5   | 6859   | 1372    | 30,430  | <2e-16            |
| orientación               | 3   | 14702  | 4901    | 108,712 | <2e-16            |
| Inclinación : orientación | 15  | 17     | 1       | 0,025   | 1                 |
| Residuals                 | 504 | 22720  | 45      |         |                   |

Tabla 4.22: Análisis ANOVA de la Temperatura 2

Fuente: Sánchez, (2022) a partir de los datos recolectados

La temperatura según el ángulo de inclinación muestra diferencias significativas para los diferentes pares de variables esto significa que los resultados obtenidos a diferentes ángulos de inclinación varían. El p valor de la combinación de inclinación y orientación resultó no significativos, y se concluye que la temperatura de agua no tiene diferencia significativa. En la Fig. 4.10 se observa que mientras más se aumente el ángulo de inclinación de los tubos la temperatura del agua desciende, por otro lado, si se cambia los ángulos de orientación se observa un descenso hasta lo 30°, no varía mucho hasta los 60° y para 90° asciende nuevamente la temperatura del agua.



Figure 4.10: Interacción entre ángulos de inclinación y orientación de la  $T_2$ 

#### Comparación de medias múltiples de Tukey de la temperatura 2

La comparación de medias pareadas para cada uno de los factores muestra que para el ángulo de inclinación se rechazan la hipótesis nula para seis pares de medias (20-10; 30-10 y 30-20; 40-30; 50-40; 50-60), mientras que para el ángulo de orientación se rechazan la hipótesis nula para dos pares de medias (90-0, 60-30), esto se corrobora del gráfico de efectos, esto se muestra en la Fig. 4.11



Figure 4.11: Comparación de medias múltiples de Tukey de la temperatura 2

#### Análisis ANOVA de la temperatura 3

Para el análisis ANOVA de la temperatura 3 se aprecia que el ángulo de inclinación si tiene efecto sobre la variable respuesta, no existe efecto para el ángulo de orientación. Y la combinación de las dos no es significativo (Ver Tabla 4.23).

|                           | Df  | Sum Sq | Mean Sq | F value | <b>Pr(&gt;F)</b> |
|---------------------------|-----|--------|---------|---------|------------------|
| Inclinación               | 5   | 6859   | 1371,8  | 27.683  | <2e-16           |
| orientación               | 3   | 112    | 37,5    | 0,756   | 0,519            |
| Inclinación : orientación | 15  | 17     | 1,1     | 0,023   | 1.000            |
| Residuals                 | 504 | 24975  | 49,6    |         |                  |

Tabla 4.23: Análisis ANOVA temperatura 3

Fuente: Sánchez, (2022) a partir de los datos recolectados

La temperatura según el ángulo de inclinación muestra diferencias significativas para los diferentes pares de análisis. El p valor del ángulo de orientación y la combinación de inclinación y orientación resultaron no significativos, y se concluye que la temperatura de agua no diferencia significativa.

#### Comparación de medias múltiples de Tukey de la temperatura 3

En la Fig. 4.12 se aprecia que mientras más se aumente el ángulo de inclinación de los tubos la temperatura del agua desciende, por otro lado, si se cambia los ángulos de orientación se observa un descenso no tan pronunciado.



Figure 4.12: Interacción entre ángulos de inclinación y orientación de la  $T_3$ 

#### Comparación de medias múltiples de Tukey de la temperatura 3

La comparación de medias pareadas para cada uno de los factores muestra que para el ángulo de inclinación se rechazan la hipótesis nula para seis pares de medias (20-10; 30-10 y 30-20; 40-30; 50-40; 50-60), mientras que para el ángulo de orientación se rechazan la hipótesis nula para todas las medias pareadas, esto se evidencia en la Fig. 4.13



Figure 4.13: Comparación de medias múltiples de Tukey de la temperatura 3

#### Supuestos del modelo factorial 6 x 4 en los residuos

Los supuestos del modelo factorial  $6 \times 4$  indican que no cumplen con el supuesto de normalidad en los residuos, mientras que homocedasticidad cumple la  $T_1$  y  $T_2$  a un nivel de significancia del 1%. Casos que ocurre con experimentos aproximados a la realidad de estudio (Ver Tabla 4.24).

| Temperatura | Normalidad             | Homocedasticidad             |
|-------------|------------------------|------------------------------|
| $T_1$       | W = 0,92077; p-value = | Chisquare = 1,70721; Df = 1; |
|             | 4,91e-16               | p = 0,19135                  |
| $T_2$       | W = 0,98045; p-value = | Chisquare = 48,02717; Df =   |
|             | 1,606e-06              | 1; p = 4,2035e-12            |
| $T_3$       | W = 0,94187; p-value = | Chisquare = 0,6390586; Df =  |
|             | 1,633e-13              | 1; p = 0,42405               |

Tabla 4.24: Supuestos del modelo factorial  $6 \times 4$  en los residuos

Fuente: Sánchez, (2022) a partir de los datos recolectados

El análisis de los residuos del modelo factorial muestra un valor p menor al nivel de significancia y por ende se rechaza Ho y se asume que estos no provienen de una distribución normal para la Temperatura 1, Temperatura 2 y Temperatura 3. los residuos tienen varianzas iguales para la temperatura 1 y temperatura 3, con los residuos de la temperatura 2 se tiene heterocedasticidad (Varianzas diferentes).

La temperatura del agua varia dependiendo de la incidencia de la radiación solar durante el día, además la latitud juega un punto clave cuando se considera utilizar los ángulos de posicionamiento de los tubos ya sea en su inclinación como en su ángulo de orientación en este caso el estudio fue centrado en la facultad de Ciencias de la Escuela Superior Politécnica de Chimborazo, donde los resultados muestras diferencias claves respecto al ángulo de inclinación y al ángulo de orientación

Esto se corrobora con el estudio realizado por Skerlic et al. (2018) donde afirma que la orientación de un colector puede describirse con la ayuda de sus ángulos de inclinación y acimut. Estos dos parámetros pueden variar en códigos informáticos para encontrar la orientación óptima.

# **CAPÍTULO V**

# **Conclusiones y recomendaciones**

### 5.1 Conclusiones

El modelo de la eficiencia del colector solar empleado para simular la temperatura final de agua (Anexo 5) dentro del sistema del colector solar de tubos, analizando tres muestras tomadas de manera experimental de 11h00 a 12h00, estas son comparadas con datos simulado con 4 ángulos de dirección (0°, 30°, 60°, 90°) y 6 ángulos de inclinación (10°, 20°,  $30^{\circ}$ ,  $40^{\circ}$ ,  $50^{\circ}$ ,  $60^{\circ}$ ), además se toma en cuenta en ángulo horario de 15° por cada hora transcurrido.

Los datos obtenidos mediante la simulación se reflejan en la Fig. 4.5, Fig. 4.6 y Fig. 4.7 que representan la  $(T_1, T_2 \ y \ T_3)$  temperatura final o de salida de agua, donde la eficiencia del colector solar se maximiza con un ángulo de inclinación de 10° y a un ángulo de orientación de 0° con respecto al movimiento del sol (de este a oeste), además se pudo notar que el aumento del ángulo de inclinación y de orientación la temperatura del agua comienza a descender. Por lo tanto, para obtener mayor temperatura del agua es necesario utilizarlo a un ángulo de inclinación de 10°, esto se recalca con la latitud ubicado de la Facultad de Ciencias de la Escuela Superior Politécnica de Chimborazo.

Para  $T_1, T_2, T_3$ , se obtuvo un total de 24 curvas en cada caso, y mediante el cálculo de la raíz del error cuadrático medio (RECM) se pudo especificar el error de ajuste del modelo respecto a los datos experimentales, para  $T_1$  el mejor ajuste fue para 40° de inclinación y 90° de dirección (Tabla 4.8), sin embargo esto denotó que la mayor eficiencia del modelo debe ser a un 10° de inclinación y 0° de dirección, para  $T_2$  y  $T_3$  el ajuste con una RECM mínimo fue a un ángulo de inclinación de 10° y con un ángulo de dirección de 0° (Tabla 4.10 y 4.12). Los pronósticos realizados mediante el modelo de simulación, obtiene una RECM mínimo de 1,84 a un ángulo de orientación de 90° y un ángulo de inclinación de 40° para la temperatura 1; de 5,16 y 3,08 a un ángulo de orientación de 0° y de inclinación a 10° para la temperatura 2 y 3 respectivamente.

La validación del modelo se realiza mediante la RECM la cual con valores mínimos indica la factibilidad del uso del modelo de simulación, además el cálculo del coeficiente de eficiencia indica, la eficiencia con la que trabaja el modelo donde para la temperatura 1, temperatura 2, temperatura 3, se tiene 0,849; 0,695; 0,781 respectivamente, del mismo modo estos valores maximizan la realidad de los datos simulados. Sin embargo, para la temperatura 1 se tiene una eficiencia de 0,849 pues se asemeja al comportamiento del colector solar con un ángulo de inclinación de 40° y orientación de 90°, a pesar de ello se logró mejores resultados en cada uno de los modelos de simulación con un ángulo de inclinación de 10° y 0° de orientación.

La temperatura del agua en el sistema de colector solar se relaciona in-

versamente con el ángulo de inclinación, ya que al aumentar dicho ángulo de  $10^{\circ}$  hasta  $60^{\circ}$  se observó que la temperatura del agua desciende, por lo tanto, si se desea maximizar la temperatura del agua se debe colocar con un ángulo de inclinación de  $10^{\circ}$  y  $0^{\circ}$  de orientación.

El ángulo de inclinación tiene efecto para cada una de las variables en estudio mientras que el ángulo de orientación es significativo en la  $T_2$ , lo que indica que hay variación en los resultados obtenido, por lo que se realiza una comparación de medias por el método de Tukey, donde se concluye que la temperatura del agua 1 y 3 son diferentes para cada ángulo de orientación, mientras que en  $T_2$  existe medias significativamente iguales cuando se trabaja con un ángulo de 0°-90° y 30°-60°. Para el ángulo de inclinación se encontró que las medias eran distintas cuando se traba a un ángulo de 20°-10° para las tres temperaturas. Corroborando con el análisis de correlación se concluye que a mayor ángulo de inclinación existe menos aprovechamiento de la radiación solar la cual actúa como potencia clave en el calentamiento del agua en el colector solar.

Al comparar los datos de temperaturas obtenidos de manera experimental con los obtenidos mediante la simulación, para  $T_1$  los datos simulados contienen una RECM mínimo, sin embargo, el modelo matemático mostro una mayor eficiencia a un ángulo de inclinación de 10° y de dirección a 0°; para  $T_2$  y  $T_3$  el dato experimental se mantiene por encima de los datos simulados, del mismo modo se obtuvo curvas más próximas simuladas a 10° de inclinación y 0° de dirección. Estos datos fueron sometidos a una comparación de medias (promedios) mediante el test de comparación de Tukey (Fig. 4.8 – Fig. 4.12) donde existen diferencias entre los promedios de ángulos de inclinación y dirección.

Cabe mencionar que el siguiente trabajo de investigación se realizó con la información recolectada en el año 2014, por motivo que el centro de investigación GEAA no monitoriza la recolección de información de estos dispositivos, por tanto, la reactivación de estos equipos fue cancelado por la crisis sanitaria que se vive actualmente. Es necesario recalcar la importancia del estudio primero por la metodología que se implementó para realizar este trabajo, lo que conlleva a ocupar este estudio en describir la matemática implicada en estos tipos de procesos, y por otra parte para el centro de energías alternativas y ambiente ESPOCH les servirá al momento de instalar o diseñar un sistema de colector solar de tubos de vacío pues podrán utilizar esta información para colocar el sistema de colector solar en la posición óptima con el fin de que recolecte la mayor cantidad de energía útil y que la temperatura del agua sea máximo, además el estudio aporta a la reutilización del modelo de predicción de temperatura de agua en futuros trabajos en distintas partes del país y si de ser posible del mundo.

Otra de las aportaciones de esta investigación es para el grupo GEAA quienes realizan diversas investigaciones a modo de ayudar al planeta y a mejorar la calidad de vida de los habitantes en la zona central Andina, el apoyo principal del estudio es en la "Aplicación de la energía solar para el diseño y adaptación tecnológica de dispositivos solares para la eficiencia energética en edificaciones en la zona central Andina", esto será aporte a la reducción del consumo eléctrico y el consumo de gas en calefones.

# 5.2 Recomendaciones

Según la latitud de la Facultad de Ciencias de la Escuela Superior Politécnica de Chimborazo (ESPOCH), se recomienda utilizar los tubos del colector solar a una inclinación de 10° y mantener una orientación de los mismos a 0°, para obtener mayor eficiencia el momento de calentar el agua.

Existen diversos modelos para analizar el ingreso de la radiación solar, sin embargo es recomendable utilizar un modelo que se ajuste a las condiciones del lugar de estudio, con el fin de obtener resultados más próximos a la realidad estudiada.

Se recomienda usar el diseño experimental de acuerdo al número de factores con sus respectivos niveles, en este trabajo se realiza un diseño experimental de dos factores con niveles mayores a dos y diferentes.

Es recomendable analizar el modelo de simulación y analizar los fenómenos que actúan dentro del sistema del colector solar, así como la radiación solar, temperatura ambiente, flujo del agua y entre otras.

El modelo matemático de la eficiencia del colector solar parte del balance de energías que entra en el sistema, perdidas dentro del sistema y la salida del sistema y algunos de los parámetros fueron tomados a referencia bibliográfica.

# Referencias

- [1] Aisa, A. M. (2017). Modeling and simulation of solar water heating system with thermal storage (Tesis de maestria). Faculty of Engineering and Applied Science Memorial University of Newfoundland, St. John's, Newfoundland, Canada. [CrossRef]
- [2] Al-Hilaly, E. y Muhsin, I. J. (2018). Gaussian equation to describe the percent of shadow length in satellite imagen. *International Journal of Engineering Research and Technology*, 11. [CrossRef]
- [3] Al-Khazzar, A. (2015). A comprehensive solar angles simulation and calculation using matlab. *International Journal of Energy and environment*, 6, 367–376 [CrossRef]
- [4] Alhaidari, S. (2017). A look at the optimum tilt angle of a fixed solar panel for maximum energy collection for a one year time frame (Tesis de maestría). Wright State University, B.Sc., University of Babylon, Iraq, 2008. [CrossRef]
- [5] Alonso-Lorenzo, J. A. (2019). Radiación, Geometría, Recorrido óptico, Irradiancia y HSP. departamento técnico de SunFields Europe
  Proveedor de Equipos Energía Solar, C/Lope Gomez de Marzoa S/N, Feuga, 15706 Santiago de Compostela (España). [CrossRef]

- [6] Cardenas, N. (2020). ¿cuáles son los retos energéticos para ecuador en 2020?. [mensaje en un blog]. [CrossRef]
- [7] Ciulla, G., D'Amico, A., Brano, V. L., y A.Buscemi (2020). Regression analysis to design a solar thermal collector for occasional use. *Sustainable Energy Technologies and Assessments*, 37, 100638 [CrossRef]
- [8] Coetzee, R. A. M., Mwesigye, A., and Huan, Z. (2017). Optimal slope angle selection of an evacuated tube collector for domestic solar water heating. *Journal of Energy in Southern Africa*, 28, 104 – 119 [CrossRef]
- [9] Dabra, V., Yadav, L., y Yadav, A. (2013). The effect of tilt angle on the performance of evacuated tube solar air collector: experimental analysis. *International Journal of Engineering, Science and Technology*, 5, 100–110 [CrossRef]
- [10] Das, A. y Saha, A. (2019). Study of Influence of Tilt Angle and Flow Rate on the Performance of Evacuated Tube Solar Collector. *International Journal of Engineering Research Technology (IJERT)*, 8(8), 60–63 [CrossRef]
- [11] Dasari, N., y Sridhar, K. (2017). Thermal Analysis of a Solar Flat-Plate Collector. *International Journal of Engineering Technology*, *Management and Applied Sciences*, 5(4), 472–475. [CrossRef]
- [12] Duffie, J. A. y Beckman, W. A. (2013). Solar Engineering of Thermal Processes. *John Wiley*, Hoboken, New Jersey, fourth edition [CrossRef]

- [13] Franco, A., Shaker, M., Kalubi, D., y Hostettler, S. (2017). A review of sustainable energy access and technologies for healthcare facilities in the global south. *Journal Sustainable Energy Technologies and Assessments*, 22, 92–105 [CrossRef]
- [14] Grahovac, M.1, Liedl, P., Frisch, J., Tzscheutschler. Condicion for multi-Energy Optimization. *Conference: 41st International Congress and Exhibition on Heating, Refrigeration and Air ConditioningAt: Belgrade, Serbia.* [CrossRef]
- [15] Gholami, Z., Rahmati, M. H., y Gharzi, M. (2020). Investigation of absorber tubes types in the solar thermal collectors. VII Congreso Nacional de Investigación Aplicada en Ciencias Agrícolas, En: Universidad Shahid Beheshti, Teherán, Irán [CrossRef]
- [16] Gond, B. K., Mittal, S., Prajapati, P., and Khare, R. (2016). Analysis of solar flat plate collector. *International Journal of Research* and Scientific Innovation (IJRSI), 3, 105–110 [CrossRef]
- [17] Gutiérrez, H. and De la vara, R. (2008). Análisis y diseño de experimentos. McGRAW-HILL/Interamericana editores, S.A. de C.V [CrossRef]
- [18] Hassan, J. M., Abdul-Ghafour, Q. J., y Mohammed, M. F. (2017). Cfd simulation of enhancement techniques in flat plate solar water collectors. *Al-Nahrain Journal for Engineering Sciences*, 20(3):751–761 [CrossRef]
- [19] Ike, G. N., Usman, O., Alola, A. A., y Sarkodie, S. A. (2020).Environmental quality effects of income, energy prices and trade:
The role of renewable energy consumption in g-7 countries. Science of The Total Environment, *721*, 137-813 [CrossRef]

- [20] Ibañez M, Rosell JR, Rosell JI. (2005). Tecnología solar. Ediciones Mundi-Prensa. Recuperado de [CrossRef]
- [21] Industries, R. S. (2020). Calentadores de agua solares de colector de tubo de vacío. [CrossRef]
- [22] Jacobson, M. Z., Delucchi, M. A., Bauer, Z. A., Wang, J., Weiner, E., and Yachanin, A. S. (2017). 100 % clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. *Joule*, *1*, 108–120 [CrossRef]
- [23] Jesko, Z. (2008). Classification of solar collectors. *Engineering for rural development*. Recueptado de [CrossRef]
- [24] Juantorea-Ugás J., Godínez-Mena, A., Hernandez-Galvez, A.C.
  (2017). Evaluación experimental de un calentador solar de agua de tubos evacuados. *Revista de Aplicación Científica y Técnica. 3*(8), 24-34. [CrossRef]
- [25] Just Energy (2022). Energía térmica: qué es, cómo funciona y su impacto ambiental. [Mensaje en un blog], Recuperado de [Cross-Ref]
- [26] Kalogirou, S. A. (2014). Chapter 3 solar energy collectors. *Solar Energy Engineering (Second Edition)*, 125–220. Academic Press, Boston [CrossRef]
- [27] Kalaiselvam, S. y Parameshwaran, R. (2014). Chapter 6 Thermochemical Energy Storage. *Thermal Energy Storage Technologies for*

Sustainability, 127-144. [CrossRef]

- [28] Kannan, N. and Vakeesan, D. (2016). Solar energy for future world: - areview. *Renewable and Sustainable Energy Reviews*, 62, 1092–1105. [CrossRef]
- [29] Kyekyere, E., Ndiritu, H., Hawi, M., y Mwambe, P. (2021). Performance of water in glass evacuated tube solar water heater under kenya climatic condition. *Computational Water, Energy, and Environmental Engineering*, 10, 37–48 [CrossRef]
- [30] Lozano, M. (2019). Colectores solares térmicos. Departamento de Ingeniería Mecánica - Universidad de Zaragoza. Recuperado de [CrossRef]
- [31] Lucas Witmer. (2017). Energy Balance in Flat-Plate Collectorsy. Department of Energy and Environmental Engineering, College of Earth and Mineral Sciences, The Pennsylvania State Universit. Recuperado de [CrossRef]
- [32] Martinez-Gracia, A., Arauzo, I., Uche, U. (2019). Capítulo 5 -Disponibilidad de energía solar. *Producción de hidrógeno solar Procesos, Sistemas y Tecnologías*, 113-149 [CrossRef]
- [33] Mao, C., Li, M., Li, N., Shan, M., y Yanga, X. (2019). Mathematical model development and optimal design of the horizontal allglass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting. *Applied Energy*, 238, 54–68 [CrossRef]
- [34] Ndiaye, D. (2015). Simplified model for dynamic simulation of solar systems with evacuated tube collector. *Procedia Engineering*,

11, 1250–1257. [CrossRef]

- [35] Perpiñan-Lamigueiro, O. (2018). Energía solar fotovoltaica. Recuperado de [CrossRef]
- [36] Pinho, João Tavares et al. (2008). Sistemas híbridos. Soluções energéticas para a Amazônia. Ministerio de Minas e Energía, Brasília. Recuperado de [CrossRef]
- [37] Poveda-Burgos, G., Ruiz-Molina, K., y González-Ruiz, J. (2017). Desarrollo de energías renovables en el ecuador del siglo xxi, optimización de recursos económicos y conservación del medio ambiente. *Revista Observatorio de la Economía Latinoamericana*, 12. [CrossRef]
- [38] Rios, J. (2021). Evaluación de la eficiencia de un colector solar con tubos al vacío para el precalentamiento de agua para la cocción de alimentos. Tesis de maestria. Universidad Internacional SEK. [Cross-Ref]
- [39] Saidi, K. and Omri, A. (2020). The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. *Environmental Research*, 186, 10956 [CrossRef]
- [40] Sanca, M. (2011). Tipos de investigación científica. Rev. Act. Clin. Med [online], *12*, 621–624 [CrossRef]
- [41] Sassine, E. (2016). Posicionamiento óptimo de los paneles solares para beirut. In 7th International Renewable Energy Congress (IREC), 1-5 [CrossRef]

- [42] Schuster, C. S. (2020). The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation. *Renewable Energy*, 152, 1186–1191 [CrossRef]
- [43] Shamshirgaran, S. R., Al-Kayiem, H. H., Sharma, K. V., y Ghasemi, M. (2020). State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment. *Sustainability*, *12*(21), 9119. [CrossRef]
- [44] Shein, EV y Mady, AY (2016). Evaluación de los parámetros térmicos del suelo por método directo y modelos matemáticos. *Revista de Ciencias del Suelo y Gestión Ambiental*, 7(10), 166-172.[CrossRef]
- [45] Skerlic, J., Nikolic, D., Cvetkovic, D., y Miškovic, A. (2018). Optimal position of solar collectors: A review. *Applied Engineering Letters*, 3(4), 129–134. [CrossRef]
- [46] Struckmann, F. (2008). Analysis of a flat-plate solar collector. Project report, Dept. of Energy Sciences, Faculty of Engineering, Lund University, Box 118, 22100 Lund, Sweden. 2008 MVK160 Heat and Mass Transport [CrossRef]
- [47] Siuta-Ochoa, A., Cholewa, T., y Dopieralska-Howoruszko, K.
   (2021). Experimental studies of thermal performance of an evacuated tube heat pipe solar collector in polish climatic conditions. *Environmental Science and Pollution Research*, 28, 14319–14328.
   [CrossRef]
- [48] Tara Energy (2022). ¿Qué es la energía térmica y cómo la aprovechamos?. [Mensaje en un blog], Recuperado de [CrossRef]

- [49] Vieira da Rosa, A. y Ordóñez, J. (2022). Capítulo 12 Radiación solar. Fundamentos de Procesos de Energías Renovables (Cuarta edición), 519-576. [CrossRef]
- [50] Widén, J. y Munkhammar, J. (2019). Solar Radiation Theory. Publicaciones de la Universidad de Uppsala, 1, 50 [CrossRef]
- [51] Yadav, M. y Saikhedkar, N. (2017). Simulation Modelling For the Performance of Evacuated Tube Solar Collector. *International Journal of Innovative Research in Science, Engineering and Technology*, 6(4), 5634–5642. [CrossRef]

Appendices

Anexo 1:Prueba de normalidad de las temperaturas de salida 1 con los ángulos de orientación

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,912       | 0,051   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,913       | 0,054   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,914       | 0,058   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,916       | 0,061   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,917       | 0,065   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,919       | 0,072   | NO rechazo Ho |

Temperatura de salida 1 con 30° de orientación

#### Temperatura de salida 1 con 60° de orientación

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,912       | 0,052   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,914       | 0,058   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,916       | 0,063   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,917       | 0,067   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,919       | 0,073   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,920       | 0,078   | NO rechazo Ho |

#### Temperatura de salida 1 con 90° de orientación

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,913       | 0,054   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,915       | 0,060   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,917       | 0,065   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,918       | 0,070   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,920       | 0,076   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,921       | 0,080   | NO rechazo Ho |

Anexo 2: Prueba de normalidad de las temperaturas de salida 2 con los ángulos de orientación

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,952       | 0,342   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,952       | 0,343   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,952       | 0,343   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,952       | 0,344   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,952       | 0,346   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,952       | 0,349   | NO rechazo Ho |

Temperatura de salida 2 con  $0^\circ$  de orientación

**Anexo 3**:Prueba de normalidad de las temperaturas de salida 2 con los ángulos de orientación

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,912       | 0,052   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,913       | 0,055   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,915       | 0,059   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,916       | 0,062   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,917       | 0,066   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,919       | 0,072   | NO rechazo Ho |

Temperatura de salida 2 con 30° de orientación

#### Temperatura de salida 2 con 60° de orientación

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,912       | 0,053   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,914       | 0,058   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,916       | 0,064   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,917       | 0,067   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,919       | 0,074   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,921       | 0,078   | NO rechazo Ho |

| Temperatura de salida 2 con | n 90° de orientación |
|-----------------------------|----------------------|
|-----------------------------|----------------------|

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,952       | 0,348   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,953       | 0,355   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,953       | 0,361   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,953       | 0,367   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,954       | 0,370   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,954       | 0,373   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,954       | 0,373   | NO rechazo Ho |

Anexo 4: Prueba de normalidad de las temperaturas de salida 3 con los ángulos de orientación

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,942       | 0,221   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,942       | 0,223   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,943       | 0,226   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,943       | 0,231   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,944       | 0,236   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,944       | 0,242   | NO rechazo Ho |

Temperatura de salida 3 con 0° de orientación

### Temperatura de salida 3 con 30° de orientación

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,942       | 0,218   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,942       | 0,215   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,942       | 0,214   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,942       | 0,216   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,942       | 0,219   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,942       | 0,223   | NO rechazo Ho |

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,942       | 0,213   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,941       | 0,209   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,941       | 0,207   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,941       | 0,206   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,941       | 0,211   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,941       | 0,211   | NO rechazo Ho |

# Temperatura de salida 3 con $60^\circ$ de orientación

### Temperatura de salida 3 con 90° de orientación

| Método                      | Variable | Estadístico | p.valor | Decisión      |
|-----------------------------|----------|-------------|---------|---------------|
| Shapiro-Wilk normality test | Tf10     | 0,941       | 0,211   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf20     | 0,941       | 0,206   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf30     | 0,940       | 0,202   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf40     | 0,941       | 0,205   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf50     | 0,941       | 0,207   | NO rechazo Ho |
| Shapiro-Wilk normality test | Tf60     | 0,941       | 0,207   | NO rechazo Ho |

Anexo 5: Raíz del error cuadrático medio (RECM) de la Temperatura



Raíz del error cuadrático medio (RECM) de la Temperatura 1



Raíz del error cuadrático medio (RECM) de la Temperatura 2



Raíz del error cuadrático medio (RECM) de la Temperatura 3

Anexo 6: Código de la simulación numérica

```
1
   #directorio
 2
 3
   setwd("C:/Users/LENOVO/OneDrive - Universidad Nacional de Chimborazo
 4
   /Estudios/Tesis/resultados en R")
 5 source('funciones auxiliares.R')
 6
 7 - # Datos de entrada-----
 8 dtemperatura <- read.xlsx("Copia de TEMPERATURA SPER.xlsx ",
9
                          sheetName = 'Temperatura')
10
11 tentrada <- dtemperatura[1:22,] %>% mutate(HORA = hour(Time),
12
                     MINUTO = minute(Time)) %>% data.frame()
13 tsalida <- dtemperatura[23:44,] %>% data.frame
14
   drad <- read.xlsx('Copia de TEMPERATURA SPER.xlsx',</pre>
15
                   sheetName = 'RADIACIÓN', startRow = 2)
16 dbase <- merge(tentrada, drad,</pre>
               by = c('HORA', 'MINUTO'), all.x = T) %>% arrange(Time)
17
18
19 - #Datos del colector solar-----
20 Ntubos <- 20 #Numero de tubos
21 Ltubos <- 1.764 #Longitud de tubos rior del tubo en m
22D <- 0.06</th>#Diametro externo de tubo23Di <- 0.049</td># Diametro interno del tubo
24 mt <- 0.03 # Kg/s
25 Cp <- 4180 # J/Kg°C
29 #transformador a radianes
 30 rad <- pi/180
 31
 32 #transformador de grados
 33
    gra <- 180/pi
 34
 35 # Angulos de colector salar de tubos
 36 B <- c(10, 20, 30, 40, 50, 60) # grados
 37
 38
    # Temperatura ambiente
 39 Ta <- select(dbase, temperatura.ambiente)
 40
 41
    # Temperatura de inicial o de entrada al modelo
 42
 43
    Tin <- select(tentrada, T1)
 44
 45
    #Temperatura de salida
 46
 47
    ts1 <- select(tsalida, T1)</pre>
 48
 49
    # Tiempo de analisis en minutos
 50
 51 hm <- hms(hours = dbase$HORA, minutes = dbase$MINUTO)
 52 hmf <- hms(hours = hour(tsalida$Time),
           minutes = minute(tsalida$Time))
 53
```

```
54 # Radiacion difusa
55 Idif <- select(dbase, DIFUSA)
56
57
   # Angulo de declinacion del sol el 21 de mayo del 2014
58 da <- 141 # Numero de dia del estudio
59
    del <- (23.45 * sin((360*rad)*((284+da)/365)))
60
61
   # Angulo de hora solar
62 w <- angulo solar(hm)
63
    cbind.data.frame(hm,w)
64
    #Angulo de incidencia del
65
   teta <- angulo incidenciasol(w, B, del,</pre>
            fi = -1.655789, qa = 90)
66
67
    gra * acos(sin(del*rad)*sin(-1.655789*rad)*
68
        cos(20*rad)-sin(del*rad)*sin(-1.655789*rad)
69
        *cos(90*rad)+cos(del*rad)*cos(-1.655789*rad)
70
        *cos(20*rad) *cos(-7.25*rad)+cos(del*rad)
71
        *sin(-1.655789*rad) *sin(20*rad) *cos(90*rad)
72
        *cos(-7.25*rad)+cos(del*rad)*sin(20*rad)
73
        *sin(90*rad)*sin(-7.25*rad))
74
75 # Angulo cenital
76 tetaz <- angulo_cenital(w, del, fi = -1.655789)
77 gra * acos(cos(-1.655789*rad)*cos(del*rad)*cos(-7.25*rad)
78
        +sin(-1.655789*rad)*sin(del*rad))
79 # Radiacion directa
   Idir <- (select(dbase, Directa = GLOBAL)</pre>
80
81
          - select(dbase, DIFUSA))/cos(tetaz*rad)
83 # Irradiancia global
84 Ig <- select(dbase, GLOBAL)
85
86 # Radiacion reflejada donde p es la reflectancia
87
    p <- 0.23
88
    Iref <- p * Ig
89
90
    # modelo difuso Isotropico
91
```

```
92
    Rb <- radb(teta, tetaz)
 93
 94
   Rd < - radD(B)
 95
 96
    Rr <- radr(B)
 97
 98
    Itb <- ITang(Idir, Rb)
99
100
    #
         1*64 64*4 1*64 1*4 1*64 1*4
101 IT <- as.matrix(Itb) + as.matrix(Idif)%*%as.matrix(Rd)
102
       + as.matrix(Iref)%*%as.matrix(Rr)
```

```
104 # Area total absorvente de tubos
105 A s <- (D*pi*Ltubos/2) * Ntubos
106 A s
107
108 # Temperatura media
109 Ti <- data.frame(Tin + ts1)/2
110
111 # Factor de eficiencia n
112 ni <- eficiencia(IT, FrTA = 0.8, FrUL = 2.5,
113
           FrULt = 0.007, Ti, Ta)
114
115
    # Calor util
116 Qu <- calor util(A s, IT, tint = Tin, Ti, FrTA = 0.8,
117
          FrUL = 2.5, FrULt = 0.007)
```

```
119 # Temperatura del fluido saliente
120
    to1 <- tempout(Qu, Tin, mt, Cp)
121
    e90 <- error(Texp = to1, Tobs = ts1)
122
123
124
    # # # #
           Gráfico de temperatura de salida
125
126 pcolor <- c('red', 'cyan', 'blue', 'green', 'orange',</pre>
                 'purple', 'black')
127
128
129 tan1 <- data.frame(Texp = ts1, to1) %>%
130
             gather(key = 'T °C', value = 'Temp') %>%
131
             cbind.data.frame(h = rep(tsalida$Time,
132
             time = ncol(ts1) + ncol(to1)))
133
134 a90 <- ggplot(tan1, aes(x = h, y = Temp)) +
             geom line(aes(color = `T °C`)) +
135
136
             scale color manual(values = pcolor) +
137
             theme bw() + ggtitle(TeX("Simulación de temperatura
138
            final de agua: (\) = 90^{0}) +
139
            theme(plot.title = element text(hjust = 0.5,
140
            size = rel(1.5)) + xlab('Hora')
            + ylab('Temperatura final (°C)')
141
```

Anexo 7: Datos de la temperatura 1 del agua obtenidos mediante la simulación

| Ángulo      | Inclinación |              |        |        |              |              |  |  |
|-------------|-------------|--------------|--------|--------|--------------|--------------|--|--|
| Orientación | 10°         | $20^{\circ}$ | 30°    | 40°    | $50^{\circ}$ | $60^{\circ}$ |  |  |
| 0°          | 51.485      | 50.568       | 49.124 | 47.224 | 44.906       | 42.259       |  |  |
| 0°          | 48.909      | 47.982       | 46.521 | 44.600 | 42.255       | 39.578       |  |  |
| 0°          | 48.035      | 47.124       | 45.688 | 43.798 | 41.493       | 38.861       |  |  |
| 0°          | 48.154      | 47.220       | 45.748 | 43.812 | 41.449       | 38.751       |  |  |
| 0°          | 49.338      | 48.409       | 46.945 | 45.019 | 42.669       | 39.986       |  |  |
| 0°          | 49.165      | 48.224       | 46.742 | 44.792 | 42.413       | 39.697       |  |  |
| 0°          | 50.154      | 49.205       | 47.710 | 45.744 | 43.345       | 40.607       |  |  |
| 0°          | 49.925      | 48.986       | 47.508 | 45.563 | 43.190       | 40.481       |  |  |
| 0°          | 49.446      | 48.534       | 47.096 | 45.205 | 42.898       | 40.264       |  |  |
| 0°          | 50.203      | 49.284       | 47.836 | 45.933 | 43.609       | 40.957       |  |  |
| 0°          | 50.842      | 49.906       | 48.431 | 46.491 | 44.124       | 41.402       |  |  |
| 0°          | 51.697      | 50.739       | 49.279 | 47.333 | 44.958       | 42.228       |  |  |
| 0°          | 52.572      | 51.620       | 50.170 | 48.238 | 45.880       | 43.169       |  |  |
| 0°          | 53.768      | 52.821       | 51.349 | 49.387 | 46.993       | 44.240       |  |  |
| 0°          | 54.410      | 53.459       | 51.980 | 50.010 | 47.605       | 44.840       |  |  |
| 0°          | 54.743      | 53.801       | 52.335 | 50.381 | 47.997       | 45.256       |  |  |
| 0°          | 55.909      | 54.937       | 53.425 | 51.411 | 48.952       | 46.125       |  |  |
| 0°          | 57.093      | 56.112       | 54.585 | 52.550 | 50.068       | 47.213       |  |  |
| 0°          | 58.059      | 57.077       | 55.551 | 53.517 | 51.035       | 48.181       |  |  |
| 0°          | 58.615      | 57.633       | 56.107 | 54.073 | 51.591       | 48.737       |  |  |

**Temperatura** 1

| 0°         | 59.721 | 58.730 | 57.187 | 55.130 | 52.620 | 49.734 |
|------------|--------|--------|--------|--------|--------|--------|
| 0°         | 61.046 | 60.051 | 58.501 | 56.436 | 53.916 | 51.018 |
| 30°        | 51.029 | 49.695 | 47.871 | 45.629 | 43.007 | 40.095 |
| 30°        | 48.467 | 47.137 | 45.330 | 43.063 | 40.430 | 37.503 |
| <u>30°</u> | 47.620 | 46.349 | 44.573 | 42.382 | 39.812 | 36.934 |
| 30°        | 47.747 | 46.464 | 44.682 | 42.436 | 39.821 | 36.891 |
| 30°        | 48.972 | 47.715 | 45.942 | 43.746 | 41.146 | 38.251 |
| 30°        | 48.813 | 47.559 | 45.803 | 43.579 | 40.985 | 38.054 |
| 30°        | 49.818 | 48.574 | 46.822 | 44.600 | 42.003 | 39.067 |
| 30°        | 49.612 | 48.420 | 46.688 | 44.529 | 41.961 | 39.077 |
| 30°        | 49.162 | 48.022 | 46.376 | 44.277 | 41.799 | 39.014 |
| 30°        | 49.936 | 48.807 | 47.169 | 45.074 | 42.598 | 39.812 |
| 30°        | 50.608 | 49.457 | 47.826 | 45.711 | 43.188 | 40.369 |
| 30°        | 51.482 | 50.367 | 48.731 | 46.629 | 44.137 | 41.309 |
| 30°        | 52.378 | 51.290 | 49.685 | 47.617 | 45.162 | 42.354 |
| <u>30°</u> | 53.610 | 52.525 | 50.934 | 48.854 | 46.361 | 43.530 |
| 30°        | 54.271 | 53.202 | 51.624 | 49.554 | 47.071 | 44.246 |
| 30°        | 54.626 | 53.585 | 52.021 | 49.989 | 47.527 | 44.746 |
| <u>30°</u> | 55.808 | 54.755 | 53.162 | 51.087 | 48.567 | 45.700 |
| 30°        | 57.012 | 55.989 | 54.401 | 52.306 | 49.782 | 46.907 |
| 30°        | 57.998 | 56.976 | 55.409 | 53.334 | 50.832 | 47.957 |
| 30°        | 58.554 | 57.552 | 55.985 | 53.931 | 51.428 | 48.554 |
| 30°        | 59.700 | 58.689 | 57.126 | 55.069 | 52.559 | 49.673 |
| 30°        | 61.046 | 60.051 | 58.522 | 56.457 | 53.957 | 51.059 |
| 60°        | 50.668 | 49.049 | 46.978 | 44.490 | 41.659 | 38.595 |

| 60° | 48.121 | 46.541 | 44.465 | 41.987 | 39.162 | 36.081 |
|-----|--------|--------|--------|--------|--------|--------|
| 60° | 47.298 | 45.783 | 43.779 | 41.380 | 38.622 | 35.612 |
| 60° | 47.437 | 45.922 | 43.907 | 41.466 | 38.677 | 35.631 |
| 60° | 48.663 | 47.194 | 45.228 | 42.840 | 40.104 | 37.074 |
| 60° | 48.519 | 47.070 | 45.118 | 42.738 | 39.988 | 36.939 |
| 60° | 49.542 | 48.120 | 46.191 | 43.810 | 41.076 | 38.041 |
| 60° | 49.359 | 47.991 | 46.122 | 43.807 | 41.122 | 38.140 |
| 60° | 48.935 | 47.644 | 45.865 | 43.633 | 41.061 | 38.180 |
| 60° | 49.726 | 48.464 | 46.711 | 44.502 | 41.930 | 39.049 |
| 60° | 50.393 | 49.146 | 47.378 | 45.165 | 42.584 | 39.668 |
| 60° | 51.287 | 50.074 | 48.340 | 46.159 | 43.589 | 40.683 |
| 60° | 52.203 | 51.038 | 49.355 | 47.209 | 44.677 | 41.830 |
| 60° | 53.452 | 52.308 | 50.638 | 48.499 | 45.947 | 43.076 |
| 60° | 54.133 | 53.024 | 51.386 | 49.257 | 46.734 | 43.870 |
| 60° | 54.508 | 53.409 | 51.805 | 49.734 | 47.252 | 44.433 |
| 60° | 55.707 | 54.613 | 53.000 | 50.904 | 48.365 | 45.477 |
| 60° | 56.930 | 55.867 | 54.279 | 52.183 | 49.660 | 46.764 |
| 60° | 57.916 | 56.894 | 55.327 | 53.253 | 50.730 | 47.876 |
| 60° | 58.493 | 57.471 | 55.924 | 53.850 | 51.347 | 48.493 |
| 60° | 59.639 | 58.648 | 57.105 | 55.069 | 52.559 | 49.694 |
| 60° | 61.005 | 60.051 | 58.542 | 56.518 | 54.038 | 51.181 |
| 90° | 50.497 | 48.821 | 46.674 | 44.129 | 41.260 | 38.139 |
| 90° | 47.948 | 46.291 | 44.177 | 41.641 | 38.777 | 35.658 |
| 90° | 47.128 | 45.556 | 43.515 | 41.059 | 38.263 | 35.234 |
| 90° | 47.282 | 45.708 | 43.655 | 41.176 | 38.348 | 35.263 |

| 90° | 48.509 | 47.001 | 44.997 | 42.570 | 39.795 | 36.746 |
|-----|--------|--------|--------|--------|--------|--------|
| 90° | 48.383 | 46.875 | 44.903 | 42.484 | 39.694 | 36.646 |
| 90° | 49.404 | 47.942 | 45.993 | 43.593 | 40.819 | 37.765 |
| 90° | 49.222 | 47.835 | 45.927 | 43.592 | 40.888 | 37.886 |
| 90° | 48.821 | 47.492 | 45.694 | 43.463 | 40.871 | 37.972 |
| 90° | 49.611 | 48.330 | 46.558 | 44.349 | 41.759 | 38.878 |
| 90° | 50.277 | 49.029 | 47.261 | 45.029 | 42.428 | 39.531 |
| 90° | 51.189 | 49.956 | 48.222 | 46.042 | 43.472 | 40.565 |
| 90° | 52.106 | 50.941 | 49.258 | 47.132 | 44.599 | 41.753 |
| 90° | 53.353 | 52.209 | 50.559 | 48.420 | 45.888 | 43.017 |
| 90° | 54.054 | 52.944 | 51.307 | 49.218 | 46.694 | 43.850 |
| 90° | 54.410 | 53.350 | 51.766 | 49.695 | 47.233 | 44.433 |
| 90  | 55.626 | 54.573 | 52.980 | 50.884 | 48.365 | 45.498 |
| 90° | 56.848 | 55.826 | 54.258 | 52.204 | 49.680 | 46.825 |
| 90° | 57.835 | 56.854 | 55.327 | 53.273 | 50.791 | 47.937 |
| 90° | 58.411 | 57.451 | 55.924 | 53.890 | 51.428 | 48.574 |
| 90° | 59.578 | 58.628 | 57.126 | 55.130 | 52.661 | 49.816 |
| 90° | 60.944 | 60.051 | 58.583 | 56.600 | 54.161 | 51.324 |

Anexo 8: Datos de la temperatura 2 del agua obtenidos mediante la simulación

| Ángulo      | Inclinación |        |        |        |        |        |  |  |
|-------------|-------------|--------|--------|--------|--------|--------|--|--|
| Orientación | 10°         | 20°    | 30°    | 40°    | 50°    | 60°    |  |  |
| 0°          | 51.422      | 50.506 | 49.061 | 47.162 | 44.844 | 42.197 |  |  |
| 0°          | 52.072      | 51.145 | 49.684 | 47.763 | 45.418 | 42.741 |  |  |
| 0°          | 52.508      | 51.597 | 50.160 | 48.271 | 45.966 | 43.334 |  |  |
| 0°          | 53.939      | 53.004 | 51.532 | 49.596 | 47.233 | 44.536 |  |  |
| 0°          | 55.017      | 54.088 | 52.624 | 50.698 | 48.348 | 45.665 |  |  |
| 0°          | 56.154      | 55.213 | 53.730 | 51.781 | 49.402 | 46.686 |  |  |
| 0°          | 57.642      | 56.694 | 55.199 | 53.233 | 50.834 | 48.095 |  |  |
| 0°          | 58.419      | 57.481 | 56.002 | 54.058 | 51.685 | 48.976 |  |  |
| 0°          | 58.845      | 57.933 | 56.495 | 54.605 | 52.297 | 49.663 |  |  |
| 0°          | 60.302      | 59.383 | 57.935 | 56.032 | 53.708 | 51.056 |  |  |
| 0°          | 61.847      | 60.911 | 59.436 | 57.496 | 55.129 | 52.408 |  |  |
| 0°          | 63.006      | 62.048 | 60.587 | 58.642 | 56.267 | 53.537 |  |  |
| 0°          | 64.180      | 63.228 | 61.779 | 59.847 | 57.489 | 54.778 |  |  |
| 0°          | 65.669      | 64.722 | 63.250 | 61.288 | 58.894 | 56.142 |  |  |
| 0°          | 66.917      | 65.966 | 64.488 | 62.517 | 60.112 | 57.347 |  |  |
| 0°          | 67.851      | 66.908 | 65.442 | 63.488 | 61.104 | 58.363 |  |  |
| 0°          | 69.717      | 68.744 | 67.233 | 65.218 | 62.759 | 59.933 |  |  |
| 0°          | 71.201      | 70.219 | 68.692 | 66.658 | 64.175 | 61.321 |  |  |
| 0°          | 72.466      | 71.485 | 69.959 | 67.925 | 65.443 | 62.589 |  |  |
| $0^{\circ}$ | 73.723      | 72.742 | 71.215 | 69.181 | 66.699 | 63.845 |  |  |

# Temperatura 2

| 0°         | 75.532 | 74.541 | 72.998 | 70.941 | 68.431 | 65.545 |
|------------|--------|--------|--------|--------|--------|--------|
| 0°         | 76.959 | 75.964 | 74.414 | 72.349 | 69.829 | 66.931 |
| 30°        | 50.866 | 49.532 | 47.708 | 45.467 | 42.845 | 39.932 |
| 30°        | 48.330 | 47.000 | 45.193 | 42.926 | 40.293 | 37.366 |
| 30°        | 47.492 | 46.222 | 44.445 | 42.254 | 39.684 | 36.807 |
| 30°        | 47.631 | 46.348 | 44.566 | 42.320 | 39.705 | 36.775 |
| 30°        | 48.851 | 47.594 | 45.821 | 43.625 | 41.025 | 38.130 |
| 30°        | 48.701 | 47.448 | 45.691 | 43.468 | 40.874 | 37.943 |
| 30°        | 49.707 | 48.462 | 46.711 | 44.488 | 41.892 | 38.956 |
| 30°        | 49.507 | 48.315 | 46.583 | 44.424 | 41.856 | 38.971 |
| 30°        | 49.061 | 47.922 | 46.275 | 44.176 | 41.699 | 38.913 |
| 30°        | 49.835 | 48.706 | 47.068 | 44.973 | 42.497 | 39.711 |
| 30°        | 50.513 | 49.363 | 47.732 | 45.617 | 43.094 | 40.275 |
| 30°        | 51.391 | 50.276 | 48.640 | 46.537 | 44.046 | 41.218 |
| 30°        | 52.286 | 51.198 | 49.593 | 47.525 | 45.071 | 42.263 |
| <u>30°</u> | 53.511 | 52.426 | 50.836 | 48.755 | 46.263 | 43.431 |
| 30°        | 54.179 | 53.109 | 51.531 | 49.462 | 46.978 | 44.154 |
| 30°        | 54.533 | 53.492 | 51.928 | 49.896 | 47.434 | 44.654 |
| <u>30°</u> | 55.715 | 54.662 | 53.069 | 50.994 | 48.475 | 45.607 |
| <u>30°</u> | 56.919 | 55.896 | 54.309 | 52.213 | 49.689 | 46.814 |
| <u>30°</u> | 57.905 | 56.883 | 55.316 | 53.242 | 50.739 | 47.865 |
| <u>30°</u> | 58.462 | 57.460 | 55.894 | 53.839 | 51.337 | 48.462 |
| 30°        | 59.612 | 58.600 | 57.037 | 54.980 | 52.470 | 49.584 |
| 30°        | 60.959 | 59.964 | 58.435 | 56.370 | 53.870 | 50.972 |
| 60°        | 50.506 | 48.887 | 46.816 | 44.327 | 41.496 | 38.432 |

| $60^{\circ}$ | 47.984 | 46.404 | 44.328 | 41.850 | 39.024 | 35.944 |
|--------------|--------|--------|--------|--------|--------|--------|
| 60°          | 47.171 | 45.655 | 43.652 | 41.253 | 38.494 | 35.484 |
| 60°          | 47.321 | 45.806 | 43.791 | 41.351 | 38.561 | 35.515 |
| 60°          | 48.542 | 47.073 | 45.107 | 42.719 | 39.983 | 36.953 |
| 60°          | 48.408 | 46.959 | 45.007 | 42.627 | 39.876 | 36.828 |
| $60^{\circ}$ | 49.431 | 48.008 | 46.079 | 43.699 | 40.965 | 37.930 |
| $60^{\circ}$ | 49.254 | 47.886 | 46.017 | 43.702 | 41.017 | 38.035 |
| $60^{\circ}$ | 48.834 | 47.543 | 45.764 | 43.532 | 40.960 | 38.080 |
| 60°          | 49.625 | 48.363 | 46.610 | 44.401 | 41.830 | 38.948 |
| 60°          | 50.299 | 49.051 | 47.283 | 45.071 | 42.489 | 39.573 |
| 60°          | 51.195 | 49.982 | 48.248 | 46.068 | 43.498 | 40.592 |
| $60^{\circ}$ | 52.111 | 50.946 | 49.263 | 47.118 | 44.586 | 41.739 |
| 60°          | 53.353 | 52.209 | 50.539 | 48.400 | 45.848 | 42.977 |
| $60^{\circ}$ | 54.040 | 52.931 | 51.294 | 49.165 | 46.641 | 43.777 |
| $60^{\circ}$ | 54.415 | 53.316 | 51.713 | 49.642 | 47.160 | 44.340 |
| $60^{\circ}$ | 55.614 | 54.521 | 52.907 | 50.812 | 48.272 | 45.385 |
| $60^{\circ}$ | 56.837 | 55.774 | 54.186 | 52.090 | 49.567 | 46.672 |
| $60^{\circ}$ | 57.824 | 56.802 | 55.235 | 53.160 | 50.637 | 47.783 |
| $60^{\circ}$ | 58.401 | 57.379 | 55.833 | 53.758 | 51.255 | 48.401 |
| $60^{\circ}$ | 59.551 | 58.559 | 57.016 | 54.980 | 52.470 | 49.605 |
| 60°          | 60.918 | 59.964 | 58.455 | 56.431 | 53.951 | 51.094 |
| 90°          | 50.532 | 48.857 | 46.710 | 44.164 | 41.295 | 38.174 |
| 90°          | 51.213 | 49.556 | 47.441 | 44.905 | 42.041 | 38.923 |
| 90°          | 51.704 | 50.132 | 48.091 | 45.635 | 42.838 | 39.810 |
| 90°          | 53.171 | 51.597 | 49.543 | 47.064 | 44.236 | 41.151 |

| 90° | 54.293 | 52.785 | 50.781 | 48.354 | 45.579 | 42.530 |
|-----|--------|--------|--------|--------|--------|--------|
| 90° | 55.478 | 53.970 | 51.998 | 49.579 | 46.789 | 43.741 |
| 90° | 56.999 | 55.537 | 53.588 | 51.188 | 48.414 | 45.360 |
| 90° | 57.824 | 56.437 | 54.529 | 52.194 | 49.490 | 46.488 |
| 90° | 58.329 | 57.000 | 55.202 | 52.970 | 50.379 | 47.480 |
| 90° | 59.819 | 58.538 | 56.766 | 54.557 | 51.966 | 49.085 |
| 90° | 61.392 | 60.144 | 58.377 | 56.144 | 53.544 | 50.647 |
| 90° | 62.609 | 61.377 | 59.643 | 57.462 | 54.892 | 51.986 |
| 90° | 63.825 | 62.660 | 60.977 | 58.851 | 56.319 | 53.472 |
| 90° | 65.367 | 64.222 | 62.573 | 60.433 | 57.901 | 55.030 |
| 90° | 66.673 | 65.563 | 63.926 | 61.837 | 59.313 | 56.469 |
| 90° | 67.631 | 66.571 | 64.987 | 62.916 | 60.454 | 57.654 |
| 90° | 69.548 | 68.495 | 66.902 | 64.806 | 62.287 | 59.420 |
| 90° | 71.071 | 70.049 | 68.481 | 66.427 | 63.903 | 61.048 |
| 90° | 72.359 | 71.378 | 69.852 | 67.797 | 65.315 | 62.461 |
| 90° | 73.637 | 72.677 | 71.150 | 69.116 | 66.654 | 63.800 |
| 90° | 75.507 | 74.557 | 73.054 | 71.059 | 68.590 | 65.745 |
| 90° | 76.974 | 76.080 | 74.613 | 72.630 | 70.191 | 67.354 |

Anexo 9: Datos de la temperatura 3 del agua obtenidos mediante la simulación

| Ángulo      | Inclinación |              |              |        |              |        |  |  |
|-------------|-------------|--------------|--------------|--------|--------------|--------|--|--|
| Orientación | 10°         | $20^{\circ}$ | $30^{\circ}$ | 40°    | $50^{\circ}$ | 60°    |  |  |
| 0°          | 72.338      | 71.422       | 69.977       | 68.078 | 65.759       | 63.113 |  |  |
| 0°          | 65.830      | 64.903       | 63.442       | 61.521 | 59.176       | 56.499 |  |  |
| 0°          | 63.141      | 62.229       | 60.793       | 58.904 | 56.598       | 53.967 |  |  |
| 0°          | 62.750      | 61.816       | 60.344       | 58.408 | 56.045       | 53.347 |  |  |
| 0°          | 63.642      | 62.713       | 61.249       | 59.323 | 56.973       | 54.290 |  |  |
| 0°          | 64.573      | 63.632       | 62.150       | 60.200 | 57.821       | 55.105 |  |  |
| 0°          | 65.263      | 64.315       | 62.820       | 60.854 | 58.455       | 55.716 |  |  |
| 0°          | 66.753      | 65.815       | 64.336       | 62.391 | 60.018       | 57.310 |  |  |
| 0°          | 67.980      | 67.068       | 65.630       | 63.740 | 61.432       | 58.798 |  |  |
| 0°          | 69.950      | 69.032       | 67.584       | 65.680 | 63.357       | 60.705 |  |  |
| 0°          | 69.579      | 68.643       | 67.168       | 65.228 | 62.861       | 60.139 |  |  |
| 0°          | 70.927      | 69.968       | 68.508       | 66.562 | 64.188       | 61.458 |  |  |
| 0°          | 71.589      | 70.637       | 69.187       | 67.255 | 64.898       | 62.187 |  |  |
| 0°          | 72.893      | 71.946       | 70.473       | 68.512 | 66.118       | 63.365 |  |  |
| 0°          | 74.651      | 73.700       | 72.221       | 70.251 | 67.846       | 65.081 |  |  |
| 0°          | 75.685      | 74.742       | 73.276       | 71.323 | 68.939       | 66.198 |  |  |
| 0°          | 76.957      | 75.985       | 74.473       | 72.458 | 70.000       | 67.173 |  |  |
| 0°          | 78.326      | 77.344       | 75.818       | 73.783 | 71.301       | 68.446 |  |  |
| 0°          | 81.201      | 80.220       | 78.694       | 76.660 | 74.178       | 71.324 |  |  |
| 0°          | 81.447      | 80.466       | 78.940       | 76.906 | 74.423       | 71.569 |  |  |

# Temperatura 3

| 0°  | 81.960 | 80.969 | 79.426 | 77.370 | 74.860 | 71.974 |
|-----|--------|--------|--------|--------|--------|--------|
| 0°  | 83.885 | 82.889 | 81.340 | 79.275 | 76.755 | 73.857 |
| 30° | 71.882 | 70.548 | 68.724 | 66.482 | 63.860 | 60.948 |
| 30° | 65.388 | 64.058 | 62.251 | 59.984 | 57.351 | 54.424 |
| 30° | 62.725 | 61.455 | 59.678 | 57.487 | 54.917 | 52.040 |
| 30° | 62.343 | 61.060 | 59.278 | 57.032 | 54.417 | 51.487 |
| 30° | 63.276 | 62.019 | 60.246 | 58.050 | 55.449 | 52.555 |
| 30° | 64.221 | 62.967 | 61.211 | 58.988 | 56.393 | 53.462 |
| 30° | 64.928 | 63.683 | 61.931 | 59.709 | 57.113 | 54.177 |
| 30° | 66.441 | 65.249 | 63.516 | 61.357 | 58.789 | 55.905 |
| 30° | 67.696 | 66.557 | 64.910 | 62.811 | 60.334 | 57.548 |
| 30° | 69.683 | 68.555 | 66.916 | 64.822 | 62.346 | 59.560 |
| 30° | 69.345 | 68.194 | 66.563 | 64.448 | 61.925 | 59.106 |
| 30° | 70.711 | 69.596 | 67.960 | 65.858 | 63.366 | 60.538 |
| 30° | 71.395 | 70.307 | 68.702 | 66.634 | 64.179 | 61.372 |
| 30° | 72.735 | 71.650 | 70.059 | 67.979 | 65.486 | 62.655 |
| 30° | 74.512 | 73.443 | 71.865 | 69.795 | 67.311 | 64.487 |
| 30° | 75.567 | 74.527 | 72.963 | 70.931 | 68.468 | 65.688 |
| 30° | 76.856 | 75.803 | 74.210 | 72.134 | 69.615 | 66.748 |
| 30° | 78.244 | 77.222 | 75.634 | 73.538 | 71.015 | 68.140 |
| 30° | 81.140 | 80.118 | 78.551 | 76.477 | 73.974 | 71.100 |
| 30° | 81.386 | 80.385 | 78.818 | 76.763 | 74.261 | 71.386 |
| 30° | 81.940 | 80.929 | 79.365 | 77.309 | 74.799 | 71.913 |
| 30° | 83.885 | 82.889 | 81.360 | 79.295 | 76.795 | 73.897 |
| 60° | 71.521 | 69.902 | 67.831 | 65.343 | 62.512 | 59.448 |

| 60°         | 65.042 | 63.462 | 61.386 | 58.908 | 56.083 | 53.002 |
|-------------|--------|--------|--------|--------|--------|--------|
| 60°         | 62.404 | 60.888 | 58.885 | 56.486 | 53.727 | 50.717 |
| 60°         | 62.033 | 60.518 | 58.503 | 56.062 | 53.273 | 50.227 |
| 60°         | 62.967 | 61.498 | 59.532 | 57.144 | 54.408 | 51.378 |
| 60°         | 63.927 | 62.478 | 60.526 | 58.146 | 55.396 | 52.347 |
| 60°         | 64.651 | 63.229 | 61.300 | 58.920 | 56.185 | 53.151 |
| 60°         | 66.187 | 64.820 | 62.951 | 60.635 | 57.950 | 54.968 |
| 60°         | 67.469 | 66.178 | 64.399 | 62.167 | 59.595 | 56.715 |
| 60°         | 69.474 | 68.212 | 66.459 | 64.250 | 61.678 | 58.797 |
| 60°         | 69.131 | 67.883 | 66.115 | 63.903 | 61.321 | 58.405 |
| 60°         | 70.516 | 69.303 | 67.569 | 65.388 | 62.818 | 59.912 |
| 60°         | 71.220 | 70.055 | 68.372 | 66.227 | 63.694 | 60.848 |
| 60°         | 72.577 | 71.433 | 69.763 | 67.624 | 65.072 | 62.201 |
| 60°         | 74.374 | 73.264 | 71.627 | 69.498 | 66.975 | 64.111 |
| 60°         | 75.450 | 74.350 | 72.747 | 70.676 | 68.194 | 65.374 |
| 60°         | 76.755 | 75.661 | 74.048 | 71.952 | 69.413 | 66.525 |
| 60°         | 78.163 | 77.100 | 75.512 | 73.416 | 70.892 | 67.997 |
| 60°         | 81.059 | 80.037 | 78.470 | 76.395 | 73.872 | 71.018 |
| 60°         | 81.325 | 80.303 | 78.757 | 76.682 | 74.179 | 71.325 |
| 60°         | 81.879 | 80.888 | 79.345 | 77.309 | 74.799 | 71.933 |
| 60°         | 83.844 | 82.889 | 81.381 | 79.357 | 76.877 | 74.020 |
| <u>90</u> ° | 71.396 | 69.720 | 67.573 | 65.028 | 62.159 | 59.038 |
| 90°         | 64.945 | 63.288 | 61.173 | 58.637 | 55.774 | 52.655 |
| 90°         | 62.322 | 60.750 | 58.709 | 56.253 | 53.456 | 50.428 |
| 90°         | 61.977 | 60.403 | 58.349 | 55.870 | 53.042 | 49.957 |

| 90° | 62.906 | 61.399 | 59.394 | 56.967 | 54.193 | 51.144 |
|-----|--------|--------|--------|--------|--------|--------|
| 90° | 63.888 | 62.380 | 60.408 | 57.989 | 55.200 | 52.151 |
| 90° | 64.610 | 63.148 | 61.200 | 58.800 | 56.026 | 52.971 |
| 90° | 66.142 | 64.755 | 62.847 | 60.512 | 57.808 | 54.806 |
| 90° | 67.447 | 66.118 | 64.321 | 62.089 | 59.498 | 56.598 |
| 90° | 69.445 | 68.164 | 66.392 | 64.183 | 61.593 | 58.711 |
| 90° | 69.109 | 67.861 | 66.093 | 63.861 | 61.260 | 58.363 |
| 90° | 70.519 | 69.287 | 67.553 | 65.372 | 62.802 | 59.896 |
| 90° | 71.228 | 70.063 | 68.380 | 66.254 | 63.722 | 60.875 |
| 90° | 72.579 | 71.434 | 69.785 | 67.645 | 65.113 | 62.242 |
| 90° | 74.390 | 73.281 | 71.644 | 69.554 | 67.031 | 64.187 |
| 90° | 75.449 | 74.389 | 72.805 | 70.734 | 68.271 | 65.472 |
| 90° | 76.770 | 75.717 | 74.124 | 72.028 | 69.509 | 66.642 |
| 90° | 78.184 | 77.162 | 75.594 | 73.539 | 71.016 | 68.161 |
| 90° | 81.077 | 80.095 | 78.569 | 76.515 | 74.033 | 71.179 |
| 90° | 81.349 | 80.388 | 78.862 | 76.828 | 74.366 | 71.511 |
| 90° | 81.922 | 80.971 | 79.469 | 77.474 | 75.004 | 72.159 |
| 90° | 83.886 | 82.993 | 81.525 | 79.542 | 77.103 | 74.267 |

# Anexo 10: Base de datos de las temperaturas obtenidas del colector

| Date                                                          | Time     | T1                         | T2   | Т3   |  |
|---------------------------------------------------------------|----------|----------------------------|------|------|--|
| 21/05/2014                                                    | 11:01:25 | 29.6                       | 29.7 | 50.5 |  |
| 21/05/2014                                                    | 11:04:25 | 26.8                       | 30.1 | 43.8 |  |
| 21/05/2014                                                    | 11:07:25 | 26.3                       | 30.9 | 41.5 |  |
| 21/05/2014                                                    | 11:10:25 | 25.9                       | 31.8 | 40.6 |  |
| 21/05/2014                                                    | 11:13:25 | 27.2                       | 33   | 41.6 |  |
| 21/05/2014                                                    | 11:16:25 | 26.8                       | 33.9 | 42.3 |  |
| 21/05/2014                                                    | 11:19:25 | 27.6                       | 35.2 | 42.8 |  |
| 21/05/2014                                                    | 11:22:25 | 27.6                       | 36.2 | 44.5 |  |
| 21/05/2014                                                    | 11:25:25 | 27.7                       | 37.2 | 46.3 |  |
| 21/05/2014                                                    | 11:28:25 | 28.3                       | 38.5 | 48.1 |  |
| 21/05/2014                                                    | 11:31:25 | 28.6                       | 39.7 | 47.4 |  |
| 21/05/2014                                                    | 11:34:25 | 29.4                       | 40.8 | 48.7 |  |
| 21/05/2014                                                    | 11:37:25 | 30.4                       | 42.1 | 49.5 |  |
| 21/05/2014                                                    | 11:40:25 | 31.3                       | 43.3 | 50.5 |  |
| 21/05/2014                                                    | 11:43:25 | 31.8                       | 44.4 | 52.1 |  |
| 21/05/2014                                                    | 11:45:25 | 32.3                       | 45.5 | 53.3 |  |
| 21/05/2014                                                    | 11:48:25 | 32.8                       | 46.7 | 53.9 |  |
| 21/05/2014                                                    | 11:51:25 | 33.7                       | 47.9 | 55   |  |
| 21/05/2014                                                    | 11:53:25 | 34.6                       | 49.1 | 57.8 |  |
| 21/05/2014                                                    | 11:54:25 | 35.1                       | 50.3 | 58   |  |
| 21/05/2014                                                    | 11:57:25 | 35.7                       | 51.6 | 58   |  |
| 21/05/2014                                                    | 12:00:25 | 36.9                       | 52.9 | 59.8 |  |
| 21/05/2014                                                    | 12:03:25 | 37.8                       | 54.2 | 61.9 |  |
| 21/05/2014                                                    | 12:06:25 | 38.3                       | 55.5 | 62.7 |  |
| 21/05/2014                                                    | 12:09:25 | 39.2                       | 56.8 | 63.7 |  |
| 21/05/2014                                                    | 12:12:25 | 40.2                       | 58   | 65.3 |  |
| 21/05/2014                                                    | 12:15:25 | 41.1                       | 59.3 | 65.1 |  |
| 21/05/2014                                                    | 12:18:25 | 42                         | 60.6 | 66.7 |  |
| 21/05/2014                                                    | 12:21:25 | 42.8                       | 61.9 | 67.1 |  |
| 21/05/2014                                                    | 12:24:25 | 43.5                       | 63   | 67.5 |  |
| 21/05/2014                                                    | 12:27:25 | 44.4                       | 64.4 | 69.4 |  |
| 21/05/2014                                                    | 12:30:25 | 45                         | 65.7 | 69.7 |  |
| 21/05/2014                                                    | 12:33:25 | 46.3                       | 67.3 | 71.3 |  |
| 21/05/2014                                                    | 12:36:25 | 47.8                       | 68.8 | 74.1 |  |
| 21/05/2014                                                    | 12:39:25 | 48.6                       | 69.9 | 75.9 |  |
| 21/05/2014                                                    | 12:42:25 | 49.1                       | 71.4 | 75.7 |  |
| 21/05/2014                                                    | 12:45:25 | 50.1                       | 72.4 | 76.1 |  |
| 21/05/2014                                                    | 12:48:25 | 51.1                       | 74   | 77.7 |  |
| 21/05/2014                                                    | 12:51:25 | 51.9                       | 75.5 | 78   |  |
| 21/05/2014                                                    | 12:54:25 | 53                         | 76.9 | 80.8 |  |
| 21/05/2014                                                    | 12:57:25 | 54.2                       | 78.4 | 82.7 |  |
| 21/05/2014                                                    | 13:00:25 | 55                         | 79.8 | 84.3 |  |
| 21/05/2014                                                    | 13:03:25 | 55.9                       | 81.1 | 84   |  |
| 21/05/2014                                                    | 13:06:25 | 57.1                       | 82.2 | 85.8 |  |
|                                                               |          | CELSO Firmado digitalmente |      |      |  |
| Certifico que la información entregadada sinar capita sanchez |          |                            |      |      |  |
| Desde el GEAA de la ESPOCH RECALDE                            |          |                            |      |      |  |

MORENO Fecha: 2021.11.04 17:02:28 -05'00' MORENO