"EVALUACIÓN DE SUSTRATOS ORGÁNICOS PARA LA PRODUCCIÓN DE PLÁNTULAS DE BRÓCOLI (*Brassica oleracea* Var. Itálica)"

LUCIA AZUCENA ILBAY ILVAY

TRABAJO DE INVESTIGACIÓN ESTRUCTURADO DE MANERA INDEPENDIENTE COMO REQUISITO PARA OPTAR EL TÍTULO DE INGENIERA AGRÓNOMA

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA AGRONÓMICA

AMBATO - ECUADOR 2012 La suscrita LUCIA AZUCENA ILBAY ILVAY, portadora de cédula de identidad número: 1804242079, libre y voluntariamente declaro que el trabajo de investigación titulado "EVALUACIÓN DE SUSTRATOS ORGÁNICOS PARA LA PRODUCCIÓN DE PLÁNTULAS DE BRÓCOLI (*Brassica oleracea Var. Itálica*)", es original, auténtica y personal. En tal virtud, declaro que el contenido será de mi sola responsabilidad legal y académica.

Lucia Azucena Ilbay Ilvay

DERECHO DE AUTOR

Al presentar este trabajo de investigación como uno de los requisitos previos para la

obtención del título de Tercer Nivel en la Universidad Técnica de Ambato, autorizo a

la Biblioteca de la Facultad, para que haga de éste un documento disponible para su

lectura, según las normas de la Universidad.

Estoy de acuerdo en que se realice cualquier copia del documento dentro de las

regulaciones de la Universidad, siempre y cuando esta reproducción no suponga una

ganancia económica potencial.

Sin perjuicio de ejercer mi derecho de autor, autorizo a la Universidad Técnica de

Ambato la publicación de este trabajo o de parte de el.

Lucia Azucena Ilbay Ilvay	

Fecha:

"EVALUACIÓN DE SUSTRATOS ORGÁNICOS PARA LA PRODUCCIÓN DE PLÁNTULAS DE BRÓCOLI (Brassica oleracea Var. Itálica)"

REVISADO POR:		
	Ing. Agr. Mg.Sc. Hernán Zu TUTOR	urita V.
	Ing. Agr. M.Sc. Alberto Guti ASESOR DE BIOMET	érrez A. RÍA
APROBADO POR	LOS MIEMBROS DEL TRIBUN	IAL DE GRADO:
		Fecha
Ing. Agr. M.Sc. Julio	o Benítez R.	
Ing. Agr. Mg. Segur	ndo Curay Q.	
Ing. Agr. Mg. Giova		·

DEDICATÓRIA

A Dios, quien me dio la fe, la fortaleza necesaria para salir siempre adelante pese a las dificultades, por colocarme en el mejor camino, iluminando cada paso de mi vida, y por darme la salud y la esperanza para terminar este trabajo.

A mi padre que no alcanzo a ver los resultados pues partió tempranamente de esta vida y aunque ya no esté entre nosotros sigue vivo en mi pensamiento; fue su estimulo mi impulso para llegar al final.

A mi madre por su paciencia, por su comprensión, por su empeño, por su fuerza, por su amor.

A todas las personas que han creído en mí.

AGRADECIMIENTOS

A Dios todo poderoso que me ha conservado con vida, con salud, que me dio inteligencia, y ha guiado y cuidado hasta hoy.

A mi madre, por su amor y apoyo incondicional. Al Ing. Agr. Hernán Zurita V. Tutor, por su paciencia y colaboración en la realización de este trabajo. Mil palabras no bastarían para agradecerles su apoyo, su comprensión y sus consejos en los momentos difíciles, espero no defraudarlos y contar siempre con su valioso apoyo, sincero e incondicional.

ÍNDICE DE CONTENIDOS

		Pág
CAPÍ	TULO 1	01
EL PR	ROBLEMA DE INVESTIGACIÓN	01
1.1.	PLANTEAMIENTO DEL PROBLEMA	01
1.2.	ANÁLISIS CRÍTICO DEL PROBLEMA	01
1.3.	JUSTIFICACIÓN	02
1.4.	OBJETIVOS	02
	1.4.1 Objetivo general	02
	1.4.2. Objetivos específicos	03
CAPÍ	TULO 2	04
MAR	CO TEÓRICO E HIPÓTESIS	04
2.1.	ANTECEDENTES INVESTIGATIVOS	04
2.2.	MARCO CONCEPTUAL	05
	2.2.1. Ácido húmico 75%	05
	2.2.1.1. Composición química	05
	2.2.1.2. Instrucciones de uso	05
	2.2.2. Sustratos.	06
	2.2.2.1. Propiedades físicas	06
	2.2.2.2. Propiedades químicas	08
	2.2.3. Sustratos naturales	09
	2.2.3.1. Turbas	09
	2.2.3.2. Suelo de páramo	10
	2.2.4. Manejo del cultivo	11
	2.2.4.1. Sustratos	11
	2.2.4.2. Semillero	12
2.3.	HIPÓTESIS	13
2.4.	VARIABLES DE LA HIPÓTESIS	13
	2.4.1. Variable independiente	13
	2.4.2. Variable dependiente	13
2.5.	OPERACIONALIZACIÓN DE VARIABLES	13
CAPÍ	TULO 3	15
METO	ODOLOGÍA DE LA INVESTIGACIÓN	15
3.1.	ENFOQUE, MODALIDAD Y TIPO DE INVESTIGACIÓN	15

		Pág.
3.2.	UBICACIÓN DEL ENSAYO	15
3.3.	CARACTERISACIÓN DEL LUGAR	15
3.4.	FACTORES EN ESTUDIO	16
3.5.	TRATAMIENTOS	16
	3.5.1. Análisis	16
3.6.	CARACTERÍSTICAS DEL ENSAYO	17
3.7.	DATOS TOMADOS	18
3.8.	MANEJO DE LA INVESTIGACIÓN	21
CAPÍ	ΓULO 4	23
4.1.	RESULTADOS, ANÁLISIS ESTADÍSTICOS Y DISCUSIÓN	23
	4.1.1. En el laboratorio	23
	4.1.1.1. Porcentaje de germinación	23
	4.1.1.2. Densidad aparente	23
	4.1.1.3. Densidad real	24
	4.1.1.4. Porosidad	24
	4.1.2. En el campo	25
	4.1.2.1. Altura de planta a los 15 y 30 días	25
	4.1.2.2. Número de hojas a los 15 y 30 días	32
	4.1.2.3. Volumen del sistema radicular	40
	4.1.2.4. Longitud del sistema radicular	45
	4.1.2.5. Tiempo de vida de las plántulas	51
4.2.	RESULTADOS, ANÁLISIS ECONÓMICO Y DISCUSIÓN	52
4.3.	VERIFICACIÓN DE HIPÓTESIS	54
CAPÍ	TULO 5	55
CONC	CLUSIONES Y RECOMENDACIONES	55
5.1.	CONCLUSIONES	55
5.2.	RECOMENDACIONES	57
CAPÍ	TULO 6	58
PROP	UESTA	58
6.1.	TÍTULO	58
6.2.	FUNDAMENTACIÓN	58
6.3.	OBJETIVOS	58
6.4.	JUSTIFICACIÓN E IMPORTANCIA	59

	Pág.
6.5. IMPLEMENTACIÓN Y PLAN DE ACCIÓN	59
BIBLIOGRAFÍA	61
APÉNDICE	64

ÍNDICE DE CUADROS

		Pág
CUADRO 1.	PROPIEDADES DE LAS TURBAS	10
CUADRO 2.	OPERACIONALIZACIÓN DE VARIABLES	14
CUADRO 3.	TRATAMIENTOS	16
CUADRO 4.	DENSIDAD APARENTE PARA TRATAMIENTOS	24
CUADRO 5.	DENSIDAD REAL PARA TRATAMIENTOS	25
CUADRO 6.	POROSIDAD PARA CADA TRATAMIENTO	25
CUADRO 7.	ANÁLISIS DE VARIANCIA PARA LA VARIABLE AL-	
	TURA DE PLANTA A LOS 15 Y 30 DÍAS	26
CUADRO 8.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS EN	
	LA VARIABLE ALTURA DE PLANTA A LOS 15 Y 30	
	DÍAS	27
CUADRO 9.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE	
	TURBA EN LA VARIABLE ALTURA DE PLANTA A	
	LOS 15 Y 30 DÍAS	28
CUADRO 10.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE	
	SUELO DE PÁRAMO EN LA VARIABLE ALTURA DE	
	PLANTA A LOS 15 Y 30 DÍAS	29
CUADRO 11.	PRUEBA DE DIFERENCIA MÍNIMA SIGNIFICATIVA	
	AL 5% PARA LA COMPARACIÓN TURBA VERSUS	
	SUELO DE PÁRAMO EN LA VARIABLE ALTURA DE	
	PLANTA A LOS 15 Y 30 DÍAS	31
CUADRO 12.	ANÁLISIS DE VARIANCIA PARA LA VARIABLE NÚ-	
	MERO DE HOJAS A LOS 15 Y 30 DÍAS	33
CUADRO 13.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS EN	
	LA VARIABLE NÚMERO DE HOJAS A LOS 15 Y 30	
	DÍAS	34
CUADRO 14.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE	
	TURBA EN LA VARIABLE NÚMERO DE HOJAS A LOS	
	15 Y 30 DÍAS	35
CUADRO 15.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE	
	SUELO DE PÁRAMO EN LA VARIABLE NÚMERO DE	
	HOJAS A LOS 15 Y 30 DÍAS	37

		Pág.
CUADRO 16.	PRUEBA DE DIFERENCIA MÍNIMA SIGNIFICATIVA	
	AL 5% PARA LA COMPARACIÓN TURBA VERSUS	
	SUELO DE PÁRAMO EN LA VARIABLE NÚMERO DE	
	HOJAS A LOS 30 DÍAS	39
CUADRO 17.	ANÁLISIS DE VARIANCIA PARA VOLUMEN DEL SIS-	
	TEMA RADICULAR	40
CUADRO 18.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS EN	
LA VARIABLE	VOLUMEN DEL SISTEMA RADICULAR	41
CUADRO 19.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE	
	TURBA EN LA VARIABLE VOLUMEN DEL SISTEMA	
	RADICULAR	41
CUADRO 20.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE	
	SUELO DE PÁRAMO EN LA VARIABLE VOLUMEN	
	DEL SISTEMA RADICULAR	43
CUADRO 21.	PRUEBA DE DIFERENCIA MÍNIMA SIGNIFICATIVA	
	AL 5% PARA LA COMPARACIÓN TURBA VERSUS	
	SUELO DE PÁRAMO EN LA VARIABLE VOLUMEN	
	DEL SISTEMA RADICULAR	44
CUADRO 22.	ANÁLISIS DE VARIANCIA PARA LONGITUD DEL	
	SISTEMA RADICULAR	46
CUADRO 23.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS EN	
	LA VARIABLE LONGITUD DEL SISTEMA RADICU-	
	LAR	46
CUADRO 24.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE	
	TURBA EN LA VARIABLE LONGITUD DEL SISTEMA	
	RADICULAR	47
CUADRO 25.	PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE	
	SUELO DE PÁRAMO EN LA VARIABLE LONGITUD	
	DEL SISTEMA RADICULAR	48
CUADRO 26.	PRUEBA DE DIFERENCIA MÍNIMA SIGNIFICATIVA	
	AL 5% PARA LA COMPARACIÓN TURBA VERSUS	
	SUELO DE PÁRAMO EN LA VARIABLE LONGITUD	
	DEL SISTEMA RADICULAR	50

		Pág.
CUADRO 27.	ANÁLISIS DE VARIANCIA PARA TIEMPO DE VIDA	
	DE LAS PLÁNTULAS	51
CUADRO 28.	COSTOS DE INVERSIÓN DEL ENSAYO (Dólares)	52
CUADRO 29.	COSTOS DE INVERSIÓN DEL ENSAYO POR TRA-	
	TAMIENTO	53
CUADRO 30.	INGRESOS TOTALES DEL ENSAYO POR TRATAMI-	
	ENTO	53
CUADRO 31.	CÁLCULO DE LA RELACIÓN BENEFICIO COSTO DE	
	LOS TRATAMIENTOS CON TASA DE INTERÉS AL 11%	54

ÍNDICE DE ILUSTRACIONES

		Pág
FIGURA 1.	Regresión lineal entre porcentaje de ácidos húmicos versus altura	
	de planta a los 15 días, dentro de los tratamientos de turba	28
FIGURA 2.	Regresión lineal y cuadrática entre porcentaje de ácidos húmicos	
	versus altura de planta a los 30 días, dentro de los tratamientos	
	de turba	29
FIGURA 3.	Regresión lineal entre porcentaje de ácidos húmicos versus altura	
	de planta a los 15 días, dentro de los tratamientos de suelo de pá-	
	ramo	30
FIGURA 4.	Regresión lineal entre porcentaje de ácidos húmicos versus altura	
	de planta a los 30 días, dentro de los tratamientos de suelo de pá-	
	ramo	31
FIGURA 5.	Regresión lineal y cuadrática entre porcentaje de ácidos húmicos	
	versus número de hojas a los 15 días, dentro de los tratamientos	
	de turba	35
FIGURA 6.	Regresión lineal entre porcentaje de ácidos húmicos versus nú-	
	mero de hojas a los 30 días, dentro de los tratamientos de turba	36
FIGURA 7.	Regresión lineal y cuadrática entre porcentaje de ácidos húmicos	
	versus número de hojas a los 15 días, dentro de los tratamientos	
	de suelo de páramo	37
FIGURA 8.	Regresión lineal entre porcentaje de ácidos húmicos versus nú-	
	mero de hojas a los 30 días, dentro de los tratamientos de suelo	
	de páramo	38
FIGURA 9.	Regresión lineal entre porcentaje de ácidos húmicos versus vo-	
	lumen del sistema radicular, dentro de los tratamientos de turba	42
FIGURA 10.	Regresión lineal entre porcentaje de ácidos húmicos versus vo-	
	lumen del sistema radicular, dentro de los tratamientos de suelo	
	de páramo	43
FIGURA 11.	Regresión lineal entre porcentaje de ácidos húmicos versus lon-	
	gitud del sistema radicular, dentro de los tratamientos de turba	48
FIGURA 12.	Regresión lineal y cuadrática entre porcentaje de ácidos húmi-	
	cos versus longitud del sistema radicular, dentro de los trata-	
	mientos de suelo de páramo	49

RESUMEN EJECUTIVO

El trabajo de investigación se realizó en la propiedad del Ing. Mauricio López, ubicada en la provincia de Tungurahua, cantón Ambato, parroquia Augusto N. Martínez, ubicado a 8 km de la ciudad de Ambato. Sus coordenadas geográficas son: latitud 01° 24′ S y longitud 78° 25′ O. Se encuentra a una altitud de 2 620 msnm, con el propósito de: determinar el sustrato orgánico más adecuado para la producción de plántulas de brócoli (*Brassica oleracea Var. Itálica*).

Los tratamientos fueron seis, resultantes de la combinación de los dos sustratos utilizados (turba y suelo de páramo) con la adición de ácidos húmicos en tres porcentajes (25%, 50% y 75%), ajustando al 100% de elemento total. El tratamiento siete fue el testigo que se conformó de 100% turba.

Se utilizó el diseño experimental de bloques completamente al azar (DBCA), con siete tratamientos y tres repeticiones.

Se efectuó el análisis de variancia (ADEVA) de acuerdo al diseño experimental planteado, pruebas de significación de Tukey al 5%, para diferenciar entre tratamientos. Se efectuaron también análisis de variancia grupales para cada sustrato de enraizamiento, cálculo de Diferencia Mínima Significativa al 5% para la comparación sustratos de turba versus sustratos de suelo de páramo y cálculo de correlación y regresión para ácidos húmicos. El análisis económico de los tratamientos se realizó siguiendo la metodología de la relación beneficio costo (RBC).

El sustrato preparado con turba 75% + ácidos húmicos 25%, fue el que produjo mejores resultados, con mayor crecimiento en altura a los 15 días (6,14 cm), como a los 30 días (9,58 cm). El número de hojas por plántula fue mayor, tanto a los 15 días (2,31 hojas), como a los 30 días (3,53 hojas). El crecimiento de las raíces se desatacaron con las plántulas de mayor volumen del sistema radicular (2,10 cc) y mejor longitud del sistema radicular (8,21 cm).

Dentro de los tratamientos del sustratos conformado por suelo de páramo, se destacó principalmente el sustrato preparado con suelo de páramo 75% + ácidos húmicos 25%, en el mismo que se obtuvo mayor crecimiento en altura de planta a los 15 días (4,12 cm) y a los 30 días (6,90 cm). El número de hojas por plántula fue mayor a los 15 días (2,29 hojas) y a los 30 días (2,69 hojas), consecuentemente, las plántulas reportaron mejor volumen del sistema radicular (1,40 cc) y longitud del sistema radicular (6,65 cm).

Al comparar entre sustratos de turba versus sustratos de suelo de páramo, se observó que, mejores resultados se alcanzaron con la utilización de turba, al reportar las plántulas mayor altura de planta a los 15 días (4,87 cm), como a los 30 días (7,92 cm), mayor número de hojas a los 30 días (2,96 hojas), mejor volumen del sistema radicular (1,43 cc) y mayor longitud del sistema radicular (6,89 cm).

Del análisis económico se deduce que, el tratamiento T1A1 (turba 75% + ácidos húmicos 25%), alcanzó la mayor relación beneficio costo de 0,38 donde los beneficios netos obtenidos fueron 0,38 veces lo invertido, siendo desde el punto de vista económico el tratamiento de mayor rentabilidad.

CAPÍTULO 1 EL PROBLEMA DE INVESTIGACIÓN

1.1. PLANTEAMIENTO DEL PROBLEMA

El inadecuado porcentaje de elementos que conforman un sustrato orgánico para la producción de plántulas de brócoli (*Brassica oleracea Var. Itálica*), ha generado una alta mortalidad de pilones teniendo como consecuencia una pérdida económica significativa para los productores.

1.2. ANALISIS CRÍTICO DEL PROBLEMA

Un sustrato debe sostener física y nutritivamente a la planta, debe tener un buen drenaje, para dejar pasar el agua con facilidad, pero conservando la capacidad de mantenerse húmedo. También debe contener aire. De ser posible, se debe controlar el pH. Para darle un buen soporte a la planta debe ser compacto, con moderación (Clavijo, 2008).

El mismo autor menciona que no obstante, debido al alto costo de los sustratos importados, surge la necesidad de disponer de un material producido localmente, estable y de probada calidad e inocuidad, valiéndose para ello de subproductos de la agroindustria local. Esto además de ser importante ahorro de divisas, evitaría los problemas de diseminación de plagas y enfermedades de una región a otra.

Para el cultivo de brócoli, uno de los puntos de mayor importancia para culminar el cultivo con éxito, es el manejo de los sustratos. La utilización de un sustrato de mala calidad, asegura un cultivo con problemas y bajos rendimientos. Es por ello que se debe seleccionar minuciosamente el sustrato que se vaya a usar (Terres et al, 1997).

La base de todo sustrato preparado es la materia orgánica. Los minerales que se utilizan para mejorar las propiedades físicas de los sustratos son subproductos orgánicos como la corteza, el aserrín o las compostas. En una revisión sobre el manejo de los sustratos para horticultura destacó la importancia de la retención de humedad, sin mencionar cantidades ni el tipo de materiales que deben usarse para mejorar esa característica (Cásseres, 1971).

En un trabajo realizado en el que se probó diferentes materiales, se concluyó que, los sustratos basados en aserrín descompuesto y turba son ligeros y presentan excelente capacidad de retención de humedad, sin aclararlos niveles de los materiales utilizados y menciona que un sustrato debe retener del 50% al 70% de humedad (Alsina Grau, 1980).

1.3. JUSTIFICACIÓN

Un sustrato es todo material sólido distinto del suelo, natural, de síntesis o residual, mineral u orgánico, que colocado en un contenedor, en forma pura o en mezcla, permite el anclaje del sistema radicular de la planta, desempeñando por tanto, un papel de soporte para la planta. El sustrato puede intervenir o no en el complejo proceso de la nutrición mineral de la planta (Llurba, 1997).

Un sustrato óptimo esta definido por la especie vegetal, las condiciones ambientales del área de producción y del costo de los materiales para su formulación. Un buen sustrato puede reconocerse por sus propiedades físicas, debe ser liviano, esponjoso y con buena capacidad de almacenar agua, químicas y se miden a través de técnicas de laboratorio utilizadas a nivel internacional y específicos para sustratos (Sade, 1997).

1.4. OBJETIVOS

1.4.1 Objetivo general

Aportar con el mejoramiento del manejo técnico en la producción masiva de plántulas de brócoli (*Brassica oleracea Var. Itálica*), con el fin de dotar de plantas de mejor calidad.

1.4.2. Objetivos específicos

Determinar el complemento orgánico más adecuado para la elaboración del sustrato con turba que determine las mejores características de las plántulas de brócoli.

Establecer el porcentaje más adecuado del complemento para la elaboración del sustrato con turba que determine las mejores características de las plántulas de brócoli.

Evaluar el ácido húmico granulado en tres dosis en la producción de plántulas de brócoli.

CAPÍTULO 2 MARCO TEÓRICO E HIPÓTESIS

2.1. ANTECEDENTES INVESTIGATIVOS

Los ácidos húmicos son moléculas complejas orgánicas formadas por descomposición de materia orgánica. Los ácidos húmicos influyen en la fertilizada del suelo por su efecto en el aumento de su capacidad de retener agua, además contribuyen significativamente a la estabilidad y fertilidad del suelo, resultando en crecimiento excepcional de la planta y en el incremento en la absorción de nutrientes (Clavijo 2009).

Reportes sobre ácidos húmicos han indicado un incremento en la permeabilidad de las membranas de las plantas, estimulando la absorción de nutrientes. Muchos investigadores han observado un efecto positivo en el crecimiento de varios grupos de microorganismos, hay una evidencia también que parte de las materia húmicas contienen poblaciones grandes de actinomicetos (microorganismos que tienen en común propiedades de hongos y también de baterías) que pueden degradar una amplia gama de sustancias inclusive de celulosas, proteínas y ligninas (Clavijo 2009).

Los ácidos húmicos son una mezcla compleja de material orgánico, procedente de las hojas, ramas, troncos y demás, que están decayendo en el suelo, el proceso es llevado a cabo por microorganismos y hongos, produciéndose el ácido fúlvico (Maroto, 1990).

Estos ácidos tienen la propiedad de formar compuestos de muy bajo peso molecular con iones de carga positiva, un proceso conocido como quelación (permite a las plantas almacenar vitaminas como minerales) los compuestos quelatados de minerales son altamente absorbidos por las plantas y animales (Fernández, 1998).

2.2. MARCO CONCEPTUAL

2.2.1. <u>Ácido húmico 75%</u>

Recomendado para la distribución superficial o incorporación en suelos que contienen bajos niveles de material orgánica, tales como; arenosos, pedregosos, arcillosos o limo arcillosos. Incrementa la capacidad de intercambio catiónico (CIC) en el suelo y mejora la porosidad y estructura del suelo (Fernández, 1998).

2.2.1.1. Composición química

Propiedades: es una sustancia húmica natural que provee materia orgánica, ácido húmico y ácido fúlvico de forma natural y liberación lenta. El ácido húmico 75% granular es secado al aire, no higroscópico y se mezcla fácilmente con suelos neutros y otros materiales para mejorar su capacidad de intercambio catiónico por varios años. Puede ser aplicado directamente al suelo en forma granulada, como una enmienda de suelo o mezclado con fertilizantes granulados (Agrocosta, 2012).

2.2.1.2. Instrucciones de uso

Dependiendo del tipo de suelo, su humedad y pH, use entre 0,10% a 10%, es decir de 25 a 220 kg por hectárea.

Para suelos con altos contenidos de sales de boro, cloro y sodio, use de 220 a 330 kg/ha.

Para suelos con bajos contenidos de materia orgánica:

Para suelos arenosos, gruesos o arenoso limosos: use 220

kg/ha.

Para suelos arcillosos o suelos pesados use de 165 a 195

kg/ha.

Para suelos francos use 110 kg/ha.

Para suelos agrícolas use de 25 a 90 kg/ha.

Presentación: saco por 50 lb (Agrocosta, 2012).

2.2.2. Sustratos

Un sustrato es todo material sólido distinto del suelo, natural de síntesis o residual, mineral u orgánico, que, colocado en un contenedor, en forma pura o en mezcla, permite el anclaje del sistema radicular de la planta, desempeñando por tanto, un papel de soporte para la planta. El sustrato puede intervenir o no en el complejo proceso de la nutrición mineral de la planta (Maroto, 1990).

El mejor medio de cultivo depende de numerosos factores como son el tipo de material vegetal con el que se trabaja (semillas, plantas, estacas, etc), especie vegetal, condiciones climáticas, sistemas y programas de riego y fertilización, aspectos económicos (Terres et al, 1997).

Para obtener buenos resultados durante la germinación, el enraizamiento y el crecimiento de las plantas, el medio de cultivo requiere las siguientes características:

2.2.2.1. Propiedades físicas

Elevada capacidad de retención de agua fácilmente disponible.

Suficiente suministro de aire

Distribución del tamaño de las partículas que mantenga las condiciones anteriores.

Baja densidad aparente.

Elevada porosidad.

Estructura estable, que impida la contracción (o inchazón del medio) (Artetxe, 1997).

2.2.2.1.1. Porosidad

Es el volumen total del medio no ocupado por las partículas sólidas, y por tanto, lo estará por aire o agua en una cierta proporción. Su valor óptimo no debería ser inferior al 80-85%, aunque sustratos de menor porosidad pueden ser usados ventajosamente en determinadas condiciones (Boutherin, 1994).

La porosidad debe ser abierta, pues la porosidad ocluida, al no estar en contacto con el espacio abierto, no sufre intercambio de fluidos con él y por tanto no sirve como almacén para la raíz. El menor peso del sustrato será el único efecto positivo. El espacio o volumen útil de un sustrato corresponderá a la porosidad abierta. El grosor de los poros condiciona la aireación y retención de agua del sustrato. Poros gruesos suponen una menor relación superficie/volumen, por lo que el equilibrio, tensión superficial/fuerzas gravitacionales se restablece cuando el poro queda solo parcialmente lleno de agua, formando una película de espesor determinado (Buzeta, 1997).

El equilibrio aire/agua se representa gráficamente mediante las curvas de humectación. Se parte de un volumen unitario saturado de agua y en el eje de ordenadas se representa en porcentaje el volumen del material sólido más el volumen de porosidad útil. Se le somete a presiones de succión crecientes expresadas en centímetros de columnas de agua, que se van anotando en el eje de abscisas. A cada succión corresponderá una extracción de agua cuyo volumen es reemplazado por el equivalente de aire. De modo que a un valor de abscisas corresponde una ordenada de valor igual al volumen del material sólido más el volumen del aire. El volumen restante hasta el 100% corresponde al agua que aún retiene el sustrato (Llurba, 1997).

2.2.2.1.2. Estructura

Puede ser granular como la de la mayoría de los sustratos minerales o bien fibrilares. La primera no tiene forma estable, acoplándose fácilmente a la forma del contenedor, mientras que la segunda, dependerá de las

características de las fibras. Si son fijadas por algún tipo de material de cementación, conservan formas rígidas y no se adaptan al recipiente, pero tienen cierta facilidad de cambio de volumen y consistencia cuando pasan de secas a mojadas (Terres et al, 1997).

2.2.2.1.3. Granulometría

El tamaño de los gránulos o fibras, condiciona el comportamiento del sustrato, ya que además de su densidad aparente varía su comportamiento hídrico a causa de su porosidad externa, que aumenta de tamaño de poros conforme sea mayor la granulometría.

2.2.2.2. Propiedades químicas

2.2.2.2.1. Densidad

La densidad de un sustrato se puede definir bien a la del material sólido que lo compone y entonces se habla de densidad real, o bien a la densidad calculada considerando el espacio total ocupado por los componentes sólidos más el espacio poroso y se denomina porosidad aparente (Buzeta, 1997).

La densidad real tiene un interés relativo. Su valor varía según la materia de que se trate y suele oscilar entre 2,5-3 para la mayoría de los de origen mineral. La densidad aparente indica indirectamente la porosidad del sustrato y su facilidad de transporte y manejo. Los valores de densidad aparente se prefieren bajos (0,7-1) y que garanticen una cierta consistencia de la estructura (Weichmann, 1987).

Baja o apreciable capacidad de intercambio catiónico, dependiendo de que la fertirrigación se aplique permanentemente o de modo intermitente, respectivamente.

Suficiente nivel de nutrientes asimilables. Baja salinidad. Elevada capacidad tampón y capacidad para

mantener constante el pH.

Mínima velocidad de descomposición.

2.2.2.2. Otras propiedades

Libre de semillas de malas hierbas, nematodos y otros patógenos y sustancias fitotóxicas.

Reproductividad y disponibilidad.

Bajo coste.

Fácil de mezclar.

Fácil de desinfectar y estabilidad frente a la

desinfección.

Resistencia a cambios externos físicos, químicos y ambientales (Boutherin, 1994).

2.2.3. <u>Sustratos naturales</u>

2.2.3.1. Turbas

Las turbas son materiales de origen vegetal, de propiedades físicas y químicas variables en función de su origen. Se pueden clasificar en dos grupos: turbas rubias y negras. Las turbas rubias tienen un mayor contenido de materia orgánica y están menos descompuestas. Las turbas negras están más mineralizadas teniendo un menor contenido de materia orgánica (Clavijo, 2008).

Es más frecuente el uso de turbas rubias en el cultivo sin suelo, debido a que las negras tienen una aireación deficiente y unos contenidos elevados de sales solubles. Las turbas rubias tienen un buen nivel de retención de agua y aireación, pero muy variable en cuanto a su composición ya que depende de su origen. La inestabilidad de su estructura y su alta capacidad de intercambio catiónico interfiere en la nutrición vegetal, presentan un pH que oscila entre 5 y 7. Se emplea en la producción ornamental y de plántulas hortícolas en semillero (Clavijo, 2008).

El cuadro 1, muestra las propiedades de las turbas, según Fernández et al (1998).

CUADRO 1. PROPIEDADES DE LAS TURBAS

Propiedades	Turbas rubias	Turbas negras
Densidad aparente (g/cm ³)	0,06-0,1	0,3-0,5
Densidad real (g/cm ³)	1,35	1,65 - 1,85
Espacio poroso (%)	94 o más	80 - 84
Capacidad de absorción de agua (g/100 g m.s.)	1 049	287
Aire (% volumen)	29	7,6
Agua fácilmente disponible (% volumen)	33,5	24
Agua de reserva (% volumen)	6,5	4,7
Agua difícilmente disponible (% volumen)	25,3	47,7
C.I.C. (meq/100 g)	110 - 130	250 o más

2.2.3.2. Suelo de páramo

Juscafresa (1979) menciona que, mucha de las importantes propiedades del suelo, tales como retención de humedad, reserva de bases intercambiables, capacidad de suministro de nitrógeno, azufre y otros elementos nutritivos de las plantas aireación, estabilidad estructural, etc, dependen marcadamente de la cantidad de materia orgánica que se encuentra en la tierra negra.

Este tipo de suelo se caracteriza porque en él existen complejos entre partículas minerales y orgánicas que retienen el agua y que protegen el humus de la descomposición, lo que quiere decir que tienen un alto contenido de materia orgánica y retienen mucha agua. El sustrato (tierra negra rica en nutrientes), es la cubierta superficial del suelo localizada generalmente a profundidades promedio de 10 cm., es un agregado de minerales y de partículas orgánicas producidas por la acción combinada del viento, el agua y los procesos de desintegración orgánica con textura, estructura y espacio poroso conocido como horizonte A generalmente de un color gris a negro. Para obtener buenos resultados durante la germinación, el

enraizamiento y el crecimiento de las plantas, se requieren las siguientes características del medio de cultivo como son propiedades físicas y químicas que dan como resultado el mejor tipo de suelo para planta, denominado tierra negra. La tierra negra tiene cantidades proporcionales de limo, arcilla y arena (Acosta, 1984).

2.2.4. Manejo del cultivo

2.2.4.1. Sustratos

Para obtener buenos resultados durante la germinación, el enraizamiento y el crecimiento de las plantas, se requieren las siguientes características del medio de cultivo:

2.2.4.1.1. Propiedades físicas

Elevada capacidad de retención de agua

fácilmente disponible.

Suficiente suministro de aire.

Distribución del tamaño de las partículas que mantenga las condiciones anteriores.

Baja densidad aparente.

Elevada porosidad.

Estructura estable que impida la contracción (o hinchazón del medio) (Terres et al, 1997).

2.2.4.1.2. Propiedades químicas

Baja o apreciable capacidad de intercambio catiónico, dependiendo de que la fertirrigación se aplique permanentemente o de modo intermitente, respectivamente.

Suficiente nivel de nutrientes asimilables.

Baja salinidad

Elevada capacidad tampón y capacidad para

mantener constante el pH.

Mínima velocidad de descomposición (Terres et

al, 1997).

2.2.4.1.3. Otras propiedades

Libre de semillas de malas hierbas, nematodos y otros patógenos y sustancias fitotóxicas.

Reproductividad y disponibilidad.

Bajo costo.

Fácil de mezclar.

Fácil de desinfectar y estabilidad frente a la

desinfección.

Resistencia a cambios externos físicos, químicos y ambientales (Terres et al, 1997).

2.2.4.2. Semillero

Un semillero es un sitio donde se siembran los vegetales o un lugar donde se guardan las semillas. Es un área de terreno preparado y acondicionado especialmente para colocar las semillas con la finalidad de producir su germinación bajo las menores condiciones y cuidados, a objeto de que pueda crecer sin dificultad hasta que la plántula este lista para el trasplante (Boutherin, 1994).

El semillero es el sitio adecuado para que la semilla inicie su primera fase de desarrollo. Luego la planta crecerá y será trasplantada al terreno definitivo.

Todas las semillas utilizadas son importadas principalmente desde Estados Unidos, por distribuidoras locales.

2.2.4.2.1. Siembra

El brócoli se propaga por semilla. El trasplante se hace cuando las plántulas han desarrollado entre tres y cuatro hojas verdaderas, lo que ocurre aproximadamente treinta días después de la siembra. Si las plantas se trasplantan más desarrolladas puede haber serias pérdidas en el rendimiento, ya que muchas plantas no formarán cabezas. La siembra se puede hacer en lomillos distanciados 40 cm y entre plantas 40 cm o bien en eras de 0,75 cm de ancho y 1 m entre centros, en las que se siembran dos hileras separadas 30 cm y entre plantas 25 cm (Canovas y Díaz, 1993).

2.3. HIPÓTESIS

La incorporación de complementos orgánicos permite mejorar la calidad de los sustratos para la producción de plántulas de brócoli (*Brassica oleracea Var. Itálica*).

2.4. VARIABLES DE LAS HIPÓTESIS

2.4.1. Variable independiente

Sustratos: turba, suelo de páramo y ácidos húmicos.

2.4.2. Variable dependiente

Altura de plántula, número de hojas por plántula, volumen y longitud del sistema radicular, tiempo de vida de las plántulas.

2.5. OPERACIONALIZACIÓN DE VARIABLES

La operacionalización de variables para los tratamientos en estudio se muestra en el cuadro 2.

CUADRO 2. OPERACIONALIZACIÓN DE VARIABLES

Variable	Concepto	Categoría	Indicadores	Índices	
	Sustancia húmica natural que		Altura de plántula	cm	
	provee de materia	25%	Número de hojas	No.	
Ácidos húmicos	orgánica, ácido	50%			
	húmico y ácido	75%	Porcentaje de	%	
	fúlvico de forma		germinación		
	natural		<u></u>		
	Suelos humíferos		Volumen de la raíz	cc	
	utilizados como	25%			
Suelo de páramo	sustratos para la	50%	Longitud de la raíz	cm	
	propagación de	75%			
	plántulas		Días de vida de las	días	
			plántulas		
	Sustrato poroso y			2	
	de alta retención	25%	Densidad aparente	g/cm ³	
Turba	de agua utilizado	50%		2	
	en propagación de	75%	Densidad real	g/cm ³	
	plántulas				
			Porosidad	%	

CAPÍTULO 3 METODOLOGÍA DE LA INVESTIGACIÓN

3.1. ENFOQUE, MODALIDAD Y TIPO DE INVESTIGACIÓN

El enfoque predominante es cuali cuantitativo. La modalidad fue netamente experimental de campo y laboratorio. En este trabajo se realizó una asociación de variables donde se probaron dos sustratos de enraizamiento con adición de ácidos húmicos.

3.2. UBICACIÓN DEL ENSAYO

El trabajo de investigación se realizó en la propiedad del Ing. Mauricio López, ubicada en la provincia de Tungurahua, cantón Ambato, parroquia Augusto N. Martínez, ubicado a 8 km de la ciudad de Ambato. Sus coordenadas geográficas son: latitud 01° 24′ S y longitud 78° 25′ O. Se encuentra a la altitud de 2 620 msnm (Sistema de posicionamiento global, GPS).

3.3. CARACTERIZACIÓN DEL LUGAR

3.3.1. Clima

El clima que predomina en el lugar es templado seco, la temperatura media fluctúa entre 14 y 19°C, precipitación media anual entre 800 y 1 200 mm; vientos livianos, la velocidad media es de 3,5 m/s (Anuarios meteorológicos estación Chachoán de los años 2001 al 2007).

3.3.2. Suelo

Los suelos de esta zona, pertenecen al grupo Entic Eutrandept del orden de los Inceptisoles. Son muy profundos, originados por depósitos eólicos sucesivos de material volcánico, predomina las texturas franco arenosas y franco limosas. La estructura es bastante desarrollada en bloque subangular, de consistencia suelta, de color pardo, la actividad biológica es buena en las capas superficiales,

además es notoria la presencia de material volcánico como ceniza y piedra pómez (Instituto Geográfico Militar, 1986).

3.3.3. Ecología

La ubicación de lote corresponde a la zona de vida bosque seco Montano Bajo (bs-MB) (Holdridge, 1982).

3.4. DISEÑO EXPERIMENTAL

Se utilizó el diseño experimental de bloques completamente al azar (DBCA), con siete tratamientos y tres repeticiones.

3.5. TRATAMIENTOS

Los tratamientos fueron seis, resultantes de la combinación de los dos sustratos (turba y suelo de páramo) con la adición de ácidos húmicos en tres porcentajes (25%, 50% y 75%), ajustando al 100% de elemento total. El tratamiento siete fue el testigo, el que se conformó de 100% turba, como consta en el cuadro 3.

CUADRO 3. TRATAMIENTOS

No.	Símbolo	Sustratos	+	Ácidos húmicos
1	T1A1	Turba 75%	+	25%
2	T2A2	Turba 50%	+	50%
3	T3A3	Turba 25%	+	75%
4	S1A1	Suelo de páramo 75%	+	25%
5	S2A2	Suelo de páramo 50%	+	50%
6	S3A3	Suelo de páramo 25%	+	75%
7	T	Turba 100%		

3.5.1. Análisis

Se efectuó el análisis de variancia (ADEVA) de acuerdo al diseño experimental planteado, pruebas de significación de Tukey al 5%, para diferenciar

entre tratamientos. Se efectuaron también análisis de variancia grupales para cada sustrato de enraizamiento, cálculo de Diferencia Mínima Significativa al 5% para la comparación sustratos de turba versus sustratos de suelo de páramo y cálculo de correlación y regresión para ácidos húmicos.

El análisis económico de los tratamientos se realizó siguiendo la metodología de la relación beneficio costo (RBC).

3.6. CARACTERÍSTICAS DEL ENSAYO

3.6.1. Características de las bandejas

Bandeja A-BA 162 cavidades 9 x 18

Dimensión externa: 55 x 29 cm

3 Ancho: 29 cm

Largo: 55 cm

Área total: 1.51 m^2

Número de plántulas por bandeja: 162

Número de plántulas/parcela neta: 112

3.6.2. Características de la parcela neta

Ancho: 29 cm

Largo: 55 cm

Área total: 1.51 m^2

Número de plántulas a analizar: 90

Número total de bandejas: 21

Área total de bandejas: 31,71 m²

Área total del ensayo: 31,71 m²

Número total de plántulas: 3 402

3.6.3. Esquema de distribución de las parcelas

Ι	II	III	
S2A2	T2A2	T3A3	
T1A1	S1A1	T	Detalle de una bandeja
T	T3A3	S1A1	
S3A3	T1A1	T2A2	X X X X X X X X X X X X X X X X X X X
T2A2	S2A2	S3A3	X X X X X X X X X X X X X X X X X X X
S1A1	Т	S2A2	XXXXXXXXXXXXXXXX
T3A3	S3A3	T1A1	

3.7. DATOS TOMADOS

3.7.1. En el laboratorio

La siguientes variables fueron tomadas en el laboratorio de Biotecnología de la Facultad de Ingeniería Agronómica de la Universidad Técnica de Ambato.

3.7.1.1. Porcentaje de germinación

El objeto de la prueba de germinación es determinar el potencial máximo de germinación de una muestra de semillas; se puede utilizar para comparar la viabilidad de la semilla.

Se contaron 100 semillas colocadas sobre un papel filtro humedecido con agua en la caja petri. Se mantuvieron las semillas húmedas hasta cuando germinaron el total de semillas. El porcentaje se calculo mediante la siguiente fórmula:

Semilla germinadas

% de germinación = ----- x 100

Número total de semillas

3.7.1.2. Densidad aparente

Una vez preparados los sustratos, utilizando un cilindro metálico, se calculó el volumen del mismo, se introdujo la muestra de suelo en el corte del perfil, se separó el excedente utilizando un cuchillo, se tapó y se secó a la estufa (105-110°C) hasta obtener un peso constante. La densidad aparente se obtuvo mediante la siguiente fórmula:

Da = P/V

En donde

Da = Densidad aparente

P = Peso del suelo seco

 $V = Volumen del cilindro (3,1416*r^2*h)$

3.7.1.3. Densidad real

Se pesó exactamente 1,5 g de suelo tamizado con tamiz de 2 mm y seco en la estufa. Se pesó el Picnómetro de volumen conocido, limpio, seco (tarado). Se agregó al Picnómetro el suelo pesado. Se determinó el peso del Picnómetro más el suelo. Se agregó lentamente agua destilada al Picnómetro hasta la cuarta parte de su volumen, agitando para desplazar el aire. Se aforó el picnómetro hasta la señal procurando que todo el suelo quede cubierto con el agua y sin dejar burbujas de aire. Se pesó el picnómetro más el suelo más el agua destilada; y, finalmente se lavó el picnómetro con agua destilada, se aforó hasta la señal y se peso el picnómetro lleno de agua. La densidad real se calculó utilizando la siguiente fórmula:

En donde

Da = densidad del agua a la temperatura observada (1 g/cc)

Pps = Peso del picnómetro más el suelo

Pa = Peso del picnómetro con aire

Ppsag- = Peso del picnómetro más el suelo llevado a volumen

Ppag = Peso del picnómetro lleno de agua

3.7.1.4. Porosidad

Se determinó el porcentaje de porosidad de los sustratos estudiados, mediante la siguiente fórmula:

3.7.2. En el campo

3.7.2.1. Altura de planta

La altura de planta se tomó a los 15 y 30 días de la emergencia de las plántulas, midiendo desde la base del sustrato hasta el ápice de la ultima hoja verdadera, con la ayuda de una regla graduada, a 18 plántulas tomadas al azar de cada parcela neta.

3.7.2.2. Número de hojas

El número de hojas por plántula se determinó a los 15 y 30 días de la emergencia, registrando a 18 plantas tomadas al azar de cada parcela neta.

3.7.2.3. Volumen del sistema radicular

A los 30 días de la emergencia de las plántulas, se determinó el volumen del sistema radicular, a nueve plántulas tomadas al azar de cada parcela

neta, mediante el método volumétrico, utilizando una probeta graduada, obteniendo el valor por desplazamiento del líquido.

3.7.2.4. Longitud del sistema radicular

A los 30 días de la emergencia de las plántulas, se midió con regla graduada, la longitud del sistema radicular, a nueve plantas tomadas al azar de cada parcela neta.

3.7.2.5. Tiempo de vida de las plántulas

A partir de los 30 días de la emergencia, se sometieron a las plantas a un período de stress hídrico, para determinar cual de los sustratos retiene mejor la humedad y por más tiempo. Para tal efecto, se contaron los días transcurridos hasta cuando las plántulas presentaron características de marchitez permanente.

3.8. MANEJO DE LA INVESTIGACIÓN

3.8.1. Adquisición de la semilla

Las semillas de brócoli se adquirieron en la casa comercial Alaska, las mismas que estuvieron previamente desinfectadas.

3.8.2. Características de la cubierta plástica

La cubierta plástica fue una estructura de madera, tipo capilla, con plástico color transparente calibre 7, de altura máxima de 3,5 m y mínima de 2,0 m y un área de 50 m².

3.8.3. Preparación de los sustratos

Los sustratos motivo de la investigación, se prepararon efectuando las diferentes combinaciones necesarias, para obtener los tratamientos del ensayo.

3.8.4. Decontaminación de los sustratos

La descontaminación de los sustratos, se efectuó utilizando Captan en dosis de 3 g/kg de sustrato, con 15 días de anterioridad a la siembra.

3.8.5. Características de las bandejas germinadoras

Las bandejas germinadoras fueron de material plástico, de 55 cm de largo por 29 cm de ancho y altura de 4,5 cm, con capacidad para germinar 162 semillas por bandeja.

3.8.6. Colocación y distribución de los sustratos en las bandejas

Se colocaron los distintos sustratos, según los tratamientos, en las bandejas germinadoras designadas para el efecto.

3.8.7. Siembra

Se procedió a la siembra (una semilla por golpe) en cada una de las bandejas distribuidas de acuerdo al diseño experimental establecido.

3.8.8. Riegos

Se realizaron riegos manuales en las primeras horas de la mañana y en la tarde, utilizando una ducha.

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN

4.1. RESULTADOS, ANÁLISIS ESTADÍSTICO Y DISCUSIÓN

4.1.1. En el laboratorio

4.1.1.1. Porcentaje de germinación

El porcentaje de germinación se efectuó con el objeto de determinar el potencial máximo de germinación de las semillas; para comparar la calidad de diversas muestras y estimar un valor de campo. Para tal efecto, se contaron 100 semillas colocadas sobre un papel filtro humedecido con agua en una caja petri. Se mantuvieron las semillas húmedas hasta cuando germinaron. Los resultados obtenidos demostraron que, las semillas reportaron un alto porcentaje de germinación con 90,00% en la primera repetición, 92,00% en la segunda repetición y 91,00% en la tercera repetición, valores que confieren una aceptable confiabilidad en la viabilidad de las semillas, lo que asegura el crecimiento y desarrollo de suficientes plántulas para el normal desarrollo posterior de la investigación.

4.1.1.2. Densidad aparente

Una vez preparados los sustratos, utilizando un cilindro metálico, se calculó el volumen del mismo, se introdujo la muestra de suelo en el corte del perfil, se separó el excedente utilizando un cuchillo, se tapó y se secó a la estufa (105-110°C) hasta obtener un peso constante, con lo cual se calculó la densidad aparente de los sustratos, el mismo que consta en el cuadro 4. En el mismo se puede observar que, la densidad aparente fue menor en los tratamientos que se utilizó turba como sustrato, con densidades de 0,44 g/cm³ en los tratamientos T1A1 (turba 75% + ácidos húmicos 25%) y T3A3 (turba 25% + ácidos húmicos 75%) y 0,47 g/cm³ en el tratamiento T2A2 (turba 50% + ácidos húmicos 50%); mientras que, la densidad aparente fue mayor en los tratamientos de suelo de páramo con 0,99 g/cm³ en S1A1 (suelo de páramo 75% + ácidos húmicos 25%), 0,88 g/cm³ en S2A2

(suelo de páramo 50% + ácidos húmicos 50%) y 1,02 g/cm³ en S3A3 (suelo de páramo 25% + ácidos húmicos 75%). El testigo cuyo sustrato fue únicamente turba reportó la densidad aparente de 0,39 g/cm³, la cual es significativamente menor al los tratamientos de turba más ácidos húmicos y suelo de páramo más ácidos húmicos.

CUADRO 4. DENSIDAD APARENTE PARA TRATAMIENTOS

Tra	tamientos	Densidad aparente
No.	Símbolo	(g/cm^3)
1	T1A1	0,44
2	T2A2	0,47
3	T3A3	0,44
4	S1A1	0,99
5	S2A2	0,88
6	S3A3	1,02
7	T	0,39

4.1.1.3. Densidad real

Al finalizar la preparación de los sustratos, se calculó la densidad real, cuyos resultados constan en el cuadro 5. En el mismo se puede observar que, la densidad real fue menor en los tratamientos conformados con el sustrato turba, con densidades real de 0,81 g/cm³ en el tratamiento T1A1 (turba 75% + ácidos húmicos 25%), 0,96 g/cm³ en el tratamiento T2A2 (turba 50% + ácidos húmicos 50%) y 1,11 g/cm³ en el tratamiento T3A3 (turba 25% + ácidos húmicos 75%); mientras que, la densidad real fue mayor en los tratamientos conformados con suelo de páramo con 2,14 g/cm³ en S1A1 (suelo de páramo 75% + ácidos húmicos 25%), 2,46 g/cm³ en S2A2 (suelo de páramo 50% + ácidos húmicos 50%) y 2,24 g/cm³ en S3A3 (suelo de páramo 25% + ácidos húmicos 75%). El testigo cuyo sustrato fue únicamente turba reportó la densidad real de 0,52 g/cm³, valor que es significativamente menor de la densidad real de los tratamientos de turba más ácidos húmicos y suelo de páramo más ácidos húmicos.

4.1.1.4. Porosidad

El porcentaje de porosidad registrado en cada tratamiento, se reporta en el cuadro 6. En el mismo se detectó que, en general el porcentaje de porosidad de los sustratos conformados por turba no superar relevantemente a los

CUADRO 5. DENSIDAD REAL PARA TRATAMIENTOS

Tra	tamientos	Densidad real		
No.	Símbolo	(g/cm^3)		
1	T1A1	0,81		
2	T2A2	0,96		
3	T3A3	1,11		
4	S1A1	2,14		
5	S2A2	2,46		
6	S3A3	2,24		
7	T	0,52		

tratamientos del sustrato de suelo de páramo, siendo éste último el que presenta un mayor valor. Al observar los porcentajes de ácidos húmicos, se observó que los tratamientos conformados por 50% y 75% de ácidos húmicos reportaron mayor porcentaje de porosidad, especialmente en los tratamientos de suelo de páramo, destacándose con el mayor valor el tratamiento S2A2 (suelo de páramo 50% + ácidos húmicos 50%) con 64,25% de porosidad. El testigo, que se conformó por turba al 100%, reportó el menor porcentaje de porosidad con 26,13%, siendo significativamente menor al resto de tratamientos.

CUADRO 6. POROSIDAD PARA CADA TRATAMIENTO

Tra	ntamientos	Porosidad	
No.	Símbolo	(%)	
1	T1A1	45,27	
2	T2A2	50,67	
3	T3A3	60,49	
4	S1A1	53,75	
5	S2A2	64,25	
6	S3A3	54,56	
7	T	26,13	

4.1.2. En el campo

4.1.2.1. Altura de planta a los 15 y 30 días

El crecimiento en altura de planta a los 15 y 30 días de la emergencia de las plántulas, para cada tratamiento, se reporta en los anexos 1y 2, respectivamente, cuyos promedios generales fueron de 3,96 cm a los 15 días y 6,80 cm a los 30 días. El análisis de variancia para las dos lecturas (cuadro 7), estableció

diferencias estadísticas altamente significativas para tratamientos. Dentro de éstos, los tratamientos de turba se diferenciaron a nivel del 5% a los 15 días, con tendencia lineal altamente significativa y a nivel del 1% a los 30 días, con tendencia lineal significativa y cuadrática altamente significativa. Los tratamientos de suelo de páramo fueron significativos a nivel del 5% a los 15 días, con tendencia lineal altamente significativa y a nivel del 1% a los 30 días, con tendencia lineal a este mismo nivel. La comparación tratamientos de turba versus tratamientos de suelo de páramo fue altamente significativa. El testigo se diferenció del resto de tratamientos a nivel del 1% en las dos lecturas. El coeficiente de variación fue de 12,63% y 6,42% para cada lectura, en su orden.

CUADRO 7. ANÁLISIS DE VARIANCIA PARA LA VARIABLE ALTURA DE PLANTA A LOS 15 Y 30 DÍAS

	Condenda	A los 1	5 días	A los :	30 días
Fuente de variación	Grados de - libertad	Cuadrados medios	Valor de F	Cuadrados medios	Valor de F
Repeticiones	2	0,096	0,36 ns	0,100	0,53 ns
Tratamientos	6	4,871	19,50 **	10,493	55,04 **
Tratam. de turba (T)	2	6,520	12,50 *	17,933	39,09 **
Tendencia lineal	1	12,499	23,97 **	29,927	65,23 **
Tendencia cuadrática	1	0,541	1,04 ns	5,940	12,95 *
Tratam. suelo pár. (S)	2	1,523	15,12 *	2,162	29,88 **
Tendencia lineal	1	2,898	28,78 **	3,937	54,41 **
Tendencia cuadrática	1	0,148	1,47 ns	0,387	5,35 ns
TxS	1	10,565	42,30 **	12,718	66,71 **
Testigo vs. Resto	1	2,574	10,31 **	10,053	52,73 **
Error experimental	12	0,250	•	0,191	•
Total	20	•		•	
Coef. de var. (%) =		12,63	3%	6,4	-2%

Coef. de var. (%) = ns = no significativo

Según la prueba de significación de Tukey al 5% para tratamientos en el crecimiento en altura de planta a los 15 y 30 días, se establecieron tres rangos de significación en las dos lecturas (cuadro 8). El mayor crecimiento en altura se registró en el tratamiento T1A1 (turba 75% + ácidos húmicos 25%) con promedio 6,14 cm en la lectura a los 15 días y 9,58 cm en la lectura a los 30 días, ubicados estos dos valores en el primer rango. Se destacó también el tratamiento T2A2 (turba 50% + ácidos húmicos 50%) que compartió el primer rango, a los 30

^{* =} significativo al 5%

^{** =} significativo al 1%

días, con promedio de 9,07 cm. Les siguen varios tratamientos que compartieron y se ubicaron en rangos inferiores; mientras que, el testigo, cuyo sustrato se conformo de 100% de turba, reportó las plántulas de menor altura, al ubicarse en el último rango y lugar en la prueba, con promedios de 3,10 cm a los 15 días y 5,10 cm a los 30 días.

CUADRO 8. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS EN LA VARIABLE ALTURA DE PLANTA A LOS 15 Y 30 DÍAS

Trat	atamientos Promedios (cm) y rangos				
No.	Símbolo	A los 1	A los 15 días		30 días
1	T1A1	6,14	a	9,58	a
2	T2A2	5,21	ab	9,07	a
4	S1A1	4,12	bc	6,90	b
5	S2A2	3,15	c	6,53	b
6	S3A3	2,73	c	5,28	c
3	T3A3	3,25	c	5,11	c
7	T	3,10	c	5,10	c

Dentro de los tratamientos de turba, en la evaluación de la altura de planta a los 15 y 30 días, la prueba de significación de Tukey al 5% separó los promedios en dos rangos de significación (cuadro 9). Las plántulas reportaron mayor altura en el tratamiento T1A1 (turba 75% + ácidos húmicos 25%) con promedio 6,14 cm a los 15 días y 9,58 cm a los 30 días, ubicados éstos dos valores en el primer rango. Se destacó también el tratamiento T2A2 (turba 50% + ácidos húmicos 50%) que compartió el primer rango a los 30 días, con promedio de 9,07 cm. La menor altura de planta, por su parte, reportó el tratamiento T3A3 (turba 25% + ácidos húmicos 75%), con promedios de 3,25 cm a los 15 días y 5,11 cm a los 30 días, ubicados en el segundo rango en la prueba, respectivamente.

La figura 1, muestra la regresión lineal entre porcentaje de ácidos húmicos versus el crecimiento en altura de planta a los 15 días, dentro de los tratamientos de turba, en donde la tendencia lineal negativa de la recta, ubicó los mejores resultados, en los tratamientos que se utilizó ácidos húmicos al 25%, en donde se reportaron las plántulas de mayor altura, con correlación altamente significativa de -0,90.

CUADRO 9. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE TURBA EN LA VARIABLE ALTURA DE PLANTA A LOS 15 Y 30 DÍAS

Tratamientos de		Promedios (cm) y rangos	
turba –	A los 1	5 días	A los 3	30 días
T1A1	6,14	a	9,58	a
T2A2	5,21	ab	9,07	a
T3A3	3,25	b	5,11	b

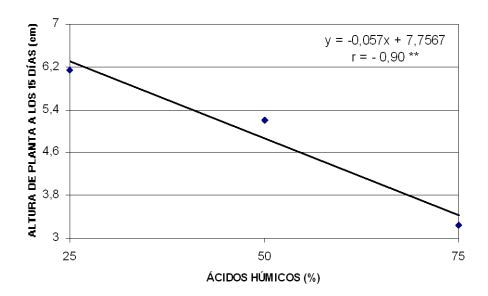


FIGURA 1. Regresión lineal entre porcentaje de ácidos húmicos versus altura de planta a los 15 días, dentro de los tratamientos de turba

Mediante la figura 2, se muestra la regresión lineal y cuadrática entre porcentaje de ácidos húmicos versus el crecimiento en altura de planta a los 30 días, dentro de los tratamientos de turba, en donde la tendencia lineal negativa de la recta y la parábola, ubicaron los mejores resultados, en los tratamientos que se utilizaron ácidos húmicos al 25%, reportaron las plántulas de mayor altura, con correlación lineal altamente significativa de -0,89 y cuadrática altamente significativa de -0,97.

Con respecto a tratamientos de suelo de páramo, en el crecimiento en altura de planta a los 15 y 30 días, la prueba de significación de Tukey al 5% separó los promedios en dos rangos e significación bien definidos

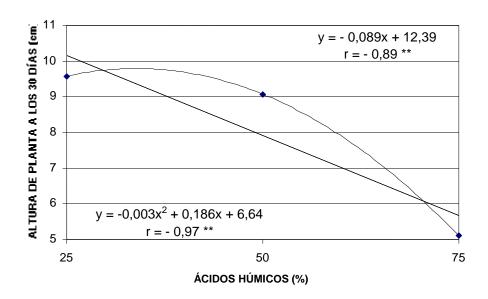


FIGURA 2. Regresión lineal y cuadrática entre porcentaje de ácidos húmicos versus altura de planta a los 30 días, dentro de los tratamientos de turba

(cuadro 10). La mayor altura de planta reportaron las plántulas del tratamiento S1A1 (suelo de páramo 75% + ácidos húmicos 25%) con promedio 4,12 cm a los 15 días y 6,90 cm a los 30 días, ubicados éstos dos valores en el primer rango. Se destacó también el tratamiento S2A2 (suelo de páramo 50% + ácidos húmicos 50%) que compartió el primer rango a los 30 días, con promedio de 6,53 cm. La menor altura de planta, por su parte, reportó el tratamiento S3A3 (suelo de páramo 25% + ácidos húmicos 75%), con promedios de 2,73 cm a los 15 días y 5,28 cm a los 30 días, ubicados en el segundo rango y último lugar en la prueba, respectivamente.

CUADRO 10. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE SUELO DE PÁRAMO EN LA VARIABLE ALTURA DE PLANTA A LOS 15 Y 30 DÍAS

Tratamientos de		Promedios ((cm) y rangos	
suelo de páramo	A los 1	15 días	A los 3	30 días
S1A1	4,12	a	6,90	a
S2A2	3,15	b	6,53	a
S3A3	2,73	b	5,28	b

Gráficamente, mediante la figura 3, se indica la regresión lineal entre porcentaje de ácidos húmicos versus el crecimiento en altura de planta a los 15 días, dentro de los tratamientos de suelo de páramo, en donde la tendencia lineal negativa de la recta, ubicó los mejores resultados, en los tratamientos que se conformaron de ácidos húmicos al 25%, en donde se reportaron las plántulas de mayor altura, con correlación lineal altamente significativa de -0,89.



FIGURA 3. Regresión lineal entre porcentaje de ácidos húmicos versus altura de planta a los 15 días, dentro de los tratamientos de suelo de páramo

La ilustración de la figura 4, presenta la regresión lineal entre porcentaje de ácidos húmicos versus el crecimiento en altura de planta a los 30 días, dentro de los tratamientos de suelo de páramo, demostrando la tendencia lineal negativa de la recta, que los mejores resultados se obtuvieron en los tratamientos que se conformaron de ácidos húmicos al 25%, en donde se reportaron las plántulas de mayor altura, con correlación lineal altamente significativa de -0,91.

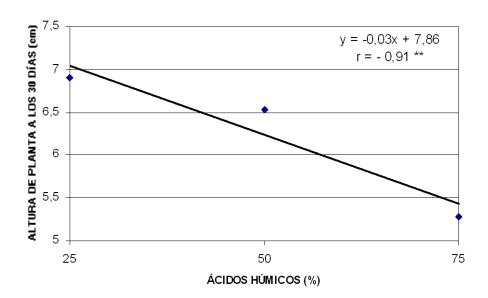


FIGURA 4. Regresión lineal entre porcentaje de ácidos húmicos versus altura de planta a los 30 días, dentro de los tratamientos de suelo de páramo

La prueba de Diferencia Mínima Significativa al 5% para la comparación tratamientos de turba versus tratamientos de suelo de páramo, al analizar el crecimiento en altura de planta a los 15 y 30 días, separó los promedios en dos rangos de significación bien definidos (cuadro 11). En general, mayor altura de planta experimentaron las plántulas de los tratamientos de turba (T), con promedio de 4,87 cm a los 15 días y 7,92 cm a los 30 días, al ubicarse en el primer rango; mientras que, menor altura de planta reportaron las plántulas de los tratamientos de suelo de páramo (S), con promedio de 3,33 cm a los 15 días y 6,24 cm a los 30 días, ubicados en el segundo rango, respectivamente.

CUADRO 11. PRUEBA DE DIFERENCIA MÍNIMA SIGNIFICATIVA AL 5% PARA LA COMPARACIÓN TURBA VERSUS SUELO DE PÁRAMO EN LA VARIABLE ALTURA DE PLANTA A LOS 15 Y 30 DÍAS

TxS	Promedios (cm) y rangos				
1 X S	A los	5 días A lo		s 30 días	
T	4,87	a	7,92	a	
S	3,33	b	6,24	b	

Los resultados obtenidos permiten deducir que, la utilización de sustratos orgánicos compuestos por turba, suelo de páramo y ácidos húmicos, para la obtención de plántulas de brócoli, influenciaron favorablemente, por cuanto, en general, con éstos sustratos se alcanzaron plántulas de mayor crecimiento en altura, que lo reportado por el testigo, que se conformó de sustrato 100% de turba. Los mejores resultados se obtuvieron con el sustrato conformado por turba 75% más ácidos húmicos 25%, con el cual el crecimiento en altura de plántula se incrementó en promedio de 3,04 cm a los 15 días y 4,48 cm a los 30 días, al comparar con el testigo, que fue de menor crecimiento. Dentro de los tratamientos de suelo de páramo, los mejores resultados se alcanzaron con el tratamiento compuesto por suelo de páramo 75% y 25% de ácidos húmico; mientras que, en general, los tratamientos conformados por turba superaron el crecimiento en altura de planta en promedio de 1,54 cm a los 15 días y 1,68 cm a los 30 días, que lo reportado por los tratamientos de suelo de páramo; lo que permite inferir que, la utilización de turba 75% más ácidos húmicos 25% es el sustrato orgánico apropiado, con lo cual las plántulas de brócoli alcanzan mayor crecimiento en altura. Es posible que la combinación de turba y ácidos húmicos de este sustrato dote de los nutrientes adecuados para facilitar su mejor crecimiento, como lo manifestado por Fainstein (s.f.), que las características de un buen sustrato, es estabilidad y que en un tiempo razonable no pierda sus cualidades físicas, no se apelmace con demasiada rapidez e incrementa la densidad, para que no sea ni muy pesado ni muy ligero para poder mantener la humedad para las plántulas. Igualmente se beneficiaron de la aplicación de sustancias húmicas, por el aumento en la población y la actividad microbiana del sustrato; la capacidad de retención de agua; aumento en la capacidad de intercambio de cationes; la retención de nutrientes por efecto aditivo (Archivo.abc, 2012), especialmente utilizando ácidos húmicos al 25%.

4.1.2.2. Número de hojas a los 15 y 30 días

Mediante los anexos 3 y 4, se indican los valores del número de hojas por plántula para cada tratamiento a los 15 y 30 días de la emergencia, respectivamente, cuyos promedios generales fueron de 1,89 hojas a los 15 días y 2,62 hojas a los 30 días. Según el análisis de variancia para las dos lecturas (cuadro 12), se detectaron diferencias estadísticas altamente significativas para tratamientos. Dentro

de éstos, los tratamientos de turba se diferenciaron a nivel del 1% a los 15 días, con tendencia lineal y cuadrática altamente significativa y a nivel del 5% a los 30 días, con tendencia lineal altamente significativa. Los tratamientos de suelo de páramo fueron significativos a nivel del 1% a los 15 días, con tendencia lineal altamente significativa y cuadrática significativa y a nivel del 5% a los 30 días, con tendencia lineal altamente significativa. La comparación tratamientos de turba versus tratamientos de suelo de páramo fue significativa a nivel del 1% únicamente a los 30 días. El testigo se diferenció del resto de tratamientos a nivel del 1% en las dos lecturas. El coeficiente de variación fue de 6,87% y 10,92% para cada lectura, en su orden.

CUADRO 12. ANÁLISIS DE VARIANCIA PARA LA VARIABLE NÚMERO DE HOJAS A LOS 15 Y 30 DÍAS

	Grados de -	A los 1	A los 15 días		A los 30 días	
Fuente de variación	libertad	Cuadrados medios	Valor de F	Cuadrados medios	Valor de F	
Repeticiones	2	0,011	0,63 ns	0,001	0,01 ns	
Tratamientos	6	0,585	34,84 **	0,895	10,90 **	
Tratam. de turba (T)	2	0,640	315,70 **	1,345	11,38 *	
Tendencia lineal	1	1,092	538,65 **	2,574	21,76 **	
Tendencia cuadrática	1	0,188	92,76 **	0,117	0,99 ns	
Tratam. suelo pár. (S)	2	0,698	43,75 **	0,178	13,33 *	
Tendencia lineal	1	1,188	74,52 **	0,327	24,50 **	
Tendencia cuadrática	1	0,207	12,98 *	0,029	2,16 ns	
TxS	1	0,005	0,30 ns	0,961	11,71 **	
Testigo vs. resto	1	0,832	49,52 **	1,362	16,59 **	
Error experimental	12	0,017		0,082		
Total	20					
C . C 1 (0/)		C 970	\/	10.0	20/	

Coef. de var. (%) = 6.87% 10.92%

Aplicando la prueba de significación de Tukey al 5% para tratamientos en el número de hojas por plántula a los 15 y 30 días, se establecieron dos rangos de significación a los 15 días y tres rangos a los 30 días (cuadro 13). El número de hojas fue mayor en el tratamiento T1A1 (turba 75% + ácidos húmicos 25%) con promedio 2,31 hojas en la lectura a los 15 días y 3,53 hojas en la lectura a los 30 días, ubicados estos dos valores en el primer rango. Se destacan también los

ns = no significativo * = significativo al 5%

^{** =} significativo al 1%

tratamientos T2A2 (turba 50% + ácidos húmicos 50%), S1A1 (suelo de páramo 75% + ácidos húmicos 25%) y S2A2 (suelo de páramo 50% + ácidos húmicos 50%), que compartieron el primer rango a los 15 días, con promedios de 2,19 hojas, 2,29 hojas y 2,17 hojas, respectivamente, en su orden. Les siguen varios tratamientos que compartieron y se ubicaron en rangos inferiores; mientras que, el testigo, cuyo sustrato se conformo de 100% de turba, reportó las plántulas con menor número de hojas, ubicados en el último rango y lugar en la prueba, con promedios de 1,40 hojas a los 15 días y 2,00 hojas a los 30 días.

CUADRO 13. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS EN LA VARIABLE NÚMERO DE HOJAS A LOS 15 Y 30 DÍAS

Trat	amientos	Promedios y rangos				
No.	Símbolo	A los	15 días	A los 3	0 días	
1	T1A1	2,31	a	3,53	a	
2	T2A2	2,19	a	3,12	ab	
4	S1A1	2,29	a	2,69	bc	
5	S2A2	2,17	a	2,58	bc	
3	T3A3	1,46	b	2,22	c	
6	S3A3	1,40	b	2,22	c	
7	T	1,40	b	2,00	c	

Dentro de los tratamientos de turba, en la evaluación del número de hojas por plántula a los 15 y 30 días, mediante la prueba de significación de Tukey al 5%, se establecieron dos rangos de significación (cuadro 14). Las plántulas reportaron mayor número de hojas en el tratamiento T1A1 (turba 75% + ácidos húmicos 25%) con promedio 2,31 hojas a los 15 días y 3,53 hojas a los 30 días, ubicados éstos dos valores en el primer rango. Se destacó también el tratamiento T2A2 (turba 50% + ácidos húmicos 50%) que compartió el primer rango a los 15 días, con promedio de 2,19 hojas. El menor número de hojas por plántula, por su parte, reportó el tratamiento T3A3 (turba 25% + ácidos húmicos 75%), con promedios de 1,46 hojas a los 15 días y 2,22 hojas a los 30 días, ubicados en el segundo rango en la prueba, respectivamente.

CUADRO 14. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE TURBA EN LA VARIABLE NÚMERO DE HOJAS A LOS 15 Y 30 DÍAS

Tratamientos de	Promedios y rangos			
turba —	A los 15 días		A los 3	80 días
T1A1	2,31	a	3,53	a
T2A2	2,19	a	3,12	ab
T3A3	1,46	b	2,22	b

La figura 5, ilustra la regresión lineal y cuadrática entre porcentaje de ácidos húmicos versus el número de hojas a los 15 días, dentro de los tratamientos de turba, en donde la tendencia lineal negativa de la recta y la parábola, ubicaron los mejores resultados, en los tratamientos que se utilizaron ácidos húmicos al 25%, los cuales reportaron las plántulas con mayor número de hojas, con correlación lineal altamente significativa de -0,92 y cuadrática altamente significativa de -0,99.

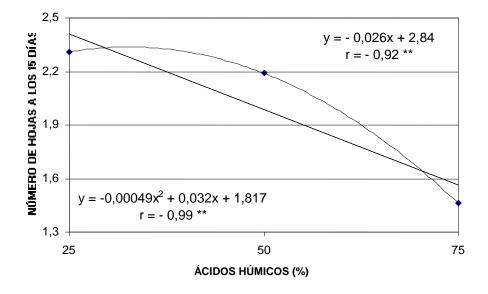


FIGURA 5. Regresión lineal y cuadrática entre porcentaje de ácidos húmicos versus número de hojas a los 15 días, dentro de los tratamientos de turba

Gráficamente, mediante la figura 6, se caracteriza la regresión lineal entre porcentaje de ácidos húmicos versus el número de hojas a los 30 días, dentro de los tratamientos de turba, en donde la tendencia lineal negativa de la recta, ubicó los mejores resultados, en los tratamientos que se utilizó ácidos húmicos al 25%, alcanzándose las plántulas con mayor número de hojas, con correlación lineal altamente significativa de -0,86.

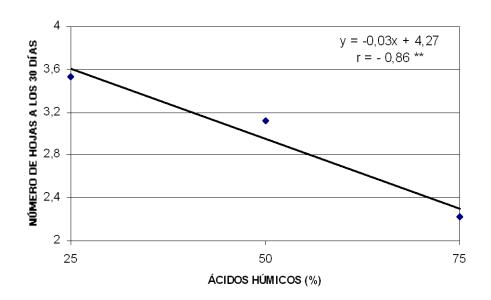


FIGURA 6. Regresión lineal entre porcentaje de ácidos húmicos versus número de hojas a los 30 días, dentro de los tratamientos de turba

En relación a tratamientos de suelo de páramo, en el número de hojas por plántula a los 15 y 30 días, según la prueba de significación de Tukey al 5% se detectaron dos rangos de significación bien definidos (cuadro 15). El mayor número de hojas reportaron las plántulas del tratamiento S1A1 (suelo de páramo 75% + ácidos húmicos 25%) con promedio 2,29 hojas a los 15 días y 2,69 hojas a los 30 días, ubicados éstos dos valores en el primer rango. Les siguen las plántulas del tratamiento S2A2 (suelo de páramo 50% + ácidos húmicos 50%) que compartió el primer rango con promedio de 2,17 hojas y 2,58 hojas para las dos lecturas, respectivamente. El menor número de hojas, por su parte, reportaron las plántulas del tratamiento S3A3 (suelo de páramo 25% + ácidos húmicos 75%), con promedios de

1,40 hojas a los 15 días y 2,22 hojas a los 30 días, ubicados en el segundo rango y último lugar en la prueba, respectivamente.

CUADRO 15. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE SUELO DE PÁRAMO EN LA VARIABLE NÚMERO DE HOJAS A LOS 15 Y 30 DÍAS

Tratamientos de		Promedio	os y rangos	
suelo de páramo	A los 15 días		A los 30 días	
S1A1	2,29	a	2,69	a
S2A2	2,17	a	2,58	a
S3A3	1,40	b	2,22	b

Mediante la figura 7, se representa la regresión lineal y cuadrática entre porcentaje de ácidos húmicos versus el número de hojas a los 15 días, dentro de los tratamientos de suelo de páramo, en donde la tendencia lineal negativa de la recta y la parábola, ubicaron los mejores resultados, en los tratamientos que se utilizaron ácidos húmicos al 25%, los cuales reportaron las plántulas con mayor número de hojas, con correlación lineal altamente significativa de -0,87 y cuadrática altamente significativa de -0,94.

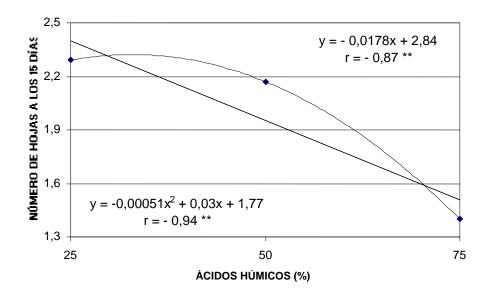


FIGURA 7. Regresión lineal y cuadrática entre porcentaje de ácidos húmicos versus número de hojas a los 15 días, dentro de los tratamientos de suelo de páramo

Mediante la figura 8, se ilustra la regresión lineal entre porcentaje de ácidos húmicos versus el número de hojas a los 30 días, dentro de los tratamientos de suelo de páramo, en donde la tendencia lineal negativa de la recta, ubicó los mejores resultados, en los tratamientos que se utilizó ácidos húmicos al 25%, alcanzándose las plántulas con mayor número de hojas, con correlación lineal altamente significativa de -0,77.

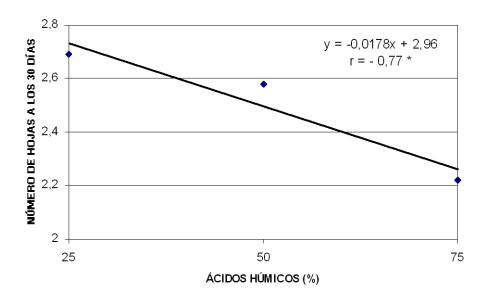


FIGURA 8. Regresión lineal entre porcentaje de ácidos húmicos versus número de hojas a los 30 días, dentro de los tratamientos de suelo de páramo

Según la prueba de Diferencia Mínima Significativa al 5% para la comparación tratamientos de turba versus tratamientos de suelo de páramo, en el número de hojas por plántula a los 30 días, se detectaron dos rangos de significación bien definidos (cuadro 16). Mayor número de hojas por plántula en general experimentaron las plántulas de los tratamientos de turba (T), con promedio de 2,96 hojas, al ubicarse en el primer rango; en tanto que, menor número de hojas

reportaron las plántulas de los tratamientos de suelo de páramo (S), con promedio de 2,50 hojas, ubicados en el segundo rango en la prueba.

CUADRO 16. PRUEBA DE DIFERENCIA MÍNIMA SIGNIFICATIVA AL 5% PARA LA COMPARACIÓN TURBA VERSUS SUELO DE PÁRAMO EN LA VARIABLE NÚMERO DE HOJAS A LOS 30 DÍAS

TxS	Promedios	Rangos
T	2,96	a
S	2,50	b

Evaluando los resultados del número de hojas por plántula, es posible deducir que, la utilización de sustratos orgánicos compuestos por turba, suelo de páramo y ácidos húmicos, para la obtención de plántulas de brócoli, influenciaron favorablemente, por cuanto, en general, con éstos sustratos se alcanzaron plántulas de mayor número de hojas, que lo reportado por el testigo, que se conformó de sustrato 100% de turba. En este sentido, los mejores resultados se obtuvieron con el sustrato conformado por turba 75% más ácidos húmicos 25%, con el cual el número de hojas se incrementó en promedio de 0,91 hojas a los 15 días y 1,53 hojas a los 30 días, al comparar con el testigo, que fue de menor crecimiento. Dentro de los tratamientos de suelo de páramo, los mejores resultados se alcanzaron con el tratamiento compuesto por suelo de páramo 75% y 25% de ácidos húmico; mientras que, en general, los tratamientos conformados por turba superaron el número de hojas en promedio de 0,46 hojas a los 30 días, que lo reportado por los tratamientos de suelo de páramo; por lo que es posible inferir que, la utilización del sustrato compuesto por turba 75% más ácidos húmicos 25% es el tratamiento adecuado, con lo cual las plántulas encuentran mejores condiciones de desarrollo, obteniéndose mayor número de hojas. Esta respuestas pueden deberse a lo manifestado por Hartmann y Kester (1974), que el medio de enraizamiento proporciona humedad a las plántulas, da aireación y las sostiene durante el crecimiento, un medio propicio es aquel que tenga la suficiente porosidad, para permitir buena aireación, capacidad elevada de retención de agua pero al mismo tiempo que esté bien drenado, lo que se consiguió con la combinación de turba 75% más ácidos húmicos 25%, dotando de mejores

condiciones para el desarrollo de las plántulas y consecuentemente, mayor número de hojas

4.1.2.3. Volumen del sistema radicular

El anexo 5, muestra el volumen del sistema radicular para cada tratamiento, cuyo promedio general fue de 1,15 cc. Aplicando el análisis de variancia (cuadro 17), se registraron diferencias estadísticas altamente significativas para tratamientos. Dentro de éstos, los tratamientos de turba se diferenciaron a nivel del 1% con tendencia lineal altamente significativa. Los tratamientos de suelo de páramo fueron significativos a nivel del 5%, con tendencia lineal altamente significativa. La comparación tratamientos de turba versus tratamientos de suelo de páramo fue altamente significativa. El testigo se diferenció del resto de tratamientos a nivel del 1%; mientras que el coeficiente de variación fue de 14,30%.

CUADRO 17. ANÁLISIS DE VARIANCIA PARA VOLUMEN DEL SISTEMA RADICULAR

Fuente de variación	Grados de libertad	Suma de cuadrados	Cuadrados medios	Valor de F
Repeticiones	2	0,001	0,00048	0,018 ns
Tratamientos	6	4,826	0,804	29,63 **
Tratam. de turba (T)	2	2,540	1,270	23,81 **
Tendencia lineal	1	2,535	2,535	47,53 **
Tendencia cuadrática	1	0,005	0,005	0,09 ns
Tratam. suelo pár. (S)	2	0,740	0,370	15,86 *
Tendencia lineal	1	0,735	0,735	31,50 **
Tendencia cuadrática	1	0,005	0,005	0,21 ns
ΤxS	1	0,720	0,720	26,53 **
Testigo vs. resto	1	0,826	0,826	30,42 **
Error experimental	12	0,326	0,027	
Total	20	5,152		

Coef. de var. 14,30%

ns = no significativo

La prueba de significación de Tukey al 5% para tratamientos en el volumen del sistema radicular, registró tres rangos de significación (cuadro 18). El sistema radicular experimentó mayor volumen en el tratamiento T1A1 (turba 75% + ácidos húmicos 25%) con promedio 2,10 cc, ubicado en el primer rango. Les

^{* =} significativo al 5%

^{** =} significativo al 1%

siguen varios tratamientos que compartieron y se ubicaron en rangos inferiores; en tanto que, el testigo, cuyo sustrato se conformo de 100% de turba, reportó las plántulas con menor volumen radicular, al ubicarse en el último rango y lugar en la prueba, con promedio de 0,67 cc.

CUADRO 18. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS EN LA VARIABLE VOLUMEN DEL SISTEMA RADICULAR

Trat	amientos	ientos Promedio Rango	
No.	Símbolo	(cc)	Kango
1	T1A1	2,10	a
2	T2A2	1,40	b
4	S1A1	1,40	b
5	S2A2	1,00	bc
3	T3A3	0,80	c
6	S3A3	0,70	c
7	T	0,67	c

Dentro de los tratamientos de turba, en la evaluación del volumen del sistema radicular, según la prueba de significación de Tukey al 5%, se registraron dos rangos de significación bien definidos (cuadro 19). Las plántulas experimentaron mayor volumen radicular en el tratamiento T1A1 (turba 75% + ácidos húmicos 25%) con promedio 2,10 cc, al ubicarse en el primer rango; en tanto que, la raíces de las plántulas de los tratamientos T2A2 (turba 50% + ácidos húmicos 50%) y T3A3 (turba 25% + ácidos húmicos 75%), reportaron menor volumen radicular, con promedios de 1,40 cc y 0,80 cc, respectivamente, al compartir el segundo rango en la prueba, en su orden.

CUADRO 19. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE TURBA EN LA VARIABLE VOLUMEN DEL SISTEMA RADICULAR

Tratamientos de turba	Promedio (cc)	Rango
T1A1	2,10	a
T2A2	1,40	b
T3A3	0,80	b

La figura 9, describe la regresión lineal entre porcentaje de ácidos húmicos versus el volumen del sistema radicular, dentro de los tratamientos de turba, en donde la tendencia lineal negativa de la recta, ubicó los mejores resultados, en los tratamientos que se utilizó ácidos húmicos al 25%, alcanzándose las plántulas con mayor desarrollo de las raíces, con correlación lineal altamente significativa de -0,96.

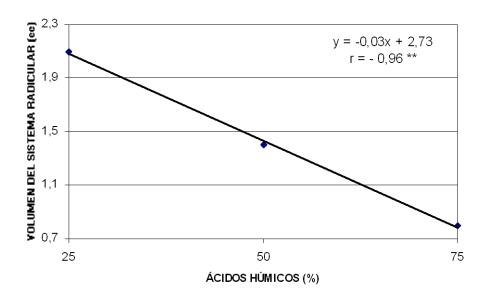


FIGURA 9. Regresión lineal entre porcentaje de ácidos húmicos versus volumen del sistema radicular, dentro de los tratamientos de turba

En cuanto a tratamientos de suelo de páramo, en el volumen del sistema radicular, aplicando la prueba de significación de Tukey al 5% se detectaron dos rangos de significación (cuadro 20). El sistema radicular reportó mayor volumen en las plántulas del tratamiento S1A1 (suelo de páramo 75% + ácidos húmicos 25%) con promedio 1,40 cc, al ubicarse en el primer rango. Les siguen las plántulas del tratamiento S2A2 (suelo de páramo 50% + ácidos húmicos 50%) que compartió el primero y segundo rangos con promedio de 1,00 cc. El menor volumen del sistema radicular reportaron las plántulas del tratamiento S3A3 (suelo

de páramo 25% + ácidos húmicos 75%), con promedio de 0,70 cc, al ubicarse en el segundo rango y último lugar en la prueba.

CUADRO 20. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE SUELO DE PÁRAMO EN LA VARIABLE VOLUMEN DEL SISTEMA RADICULAR

Tratamientos de suelo de páramo	Promedio (cc)	Rango
S1A1	1,40	a
S2A2	1,00	ab
S3A3	0,70	b

Gráficamente, mediante la figura 10, se ilustra la regresión lineal entre porcentaje de ácidos húmicos versus el volumen del sistema radicular, dentro de los tratamientos de suelo de páramo, en donde la tendencia lineal negativa de la recta, ubicó los mejores resultados, en los tratamientos conformados por ácidos húmicos al 25%, alcanzándose las plántulas con mayor desarrollo radicular, con correlación lineal altamente significativa de -0,94.

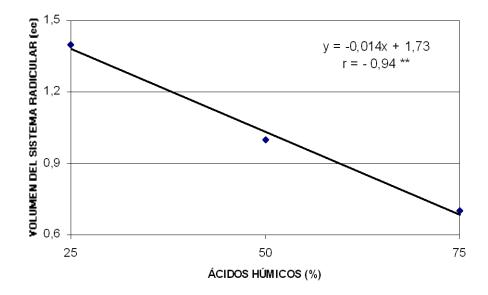


FIGURA 10. Regresión lineal entre porcentaje de ácidos húmicos versus volumen del sistema radicular, dentro de los tratamientos de suelo de páramo

Según la prueba de Diferencia Mínima Significativa al 5% para la comparación tratamientos de turba versus tratamientos de suelo de páramo, en el volumen del sistema radicular, se establecieron dos rangos de significación bien definidos (cuadro 21). El volumen del sistema radicular fue mayor, en general, en las plántulas de los tratamientos de turba (T), con promedio de 1,43 cc, al ubicarse en el primer rango; en tanto que, el menor volumen del sistema radicular reportaron las plántulas de los tratamientos de suelo de páramo (S), con promedio de 1,03 cc, ubicado en el segundo rango en la prueba.

CUADRO 21. PRUEBA DE DIFERENCIA MÍNIMA SIGNIFICATIVA AL 5% PARA LA COMPARACIÓN TURBA VERSUS SUELO DE PÁRAMO EN LA VARIABLE VOLUMEN DEL SISTEMA RADICULAR

(cc)	
T 1,43 a	
S 1,03 b	

Analizando los resultados de la evaluación estadística del volumen del sistema radicular, permite informar que, la utilización de sustratos orgánicos compuestos por turba, suelo de páramo y ácidos húmicos, para la obtención de plántulas de brócoli, influenciaron favorablemente, por cuanto, en general, con éstos sustratos se alcanzaron plántulas con sistema radicular más desarrollado, que lo reportado por el testigo, que se conformó de sustrato 100% de turba. Es así que, los mejores resultados se obtuvieron con la utilización del sustrato conformado por turba 75% más ácidos húmicos 25%, con el cual el volumen del sistema radicular se incrementó en promedio de 1,43 cc, al comparar con el testigo, que fue de menor crecimiento radicular. Dentro de los tratamientos de suelo de páramo, los mejores resultados se alcanzaron con el tratamiento compuesto por suelo de páramo 75% y ácidos húmico 25%; mientras que, en general, las plántulas de los tratamientos conformados por turba superaron el volumen del sistema radicular en

promedio de 0,40 cc que lo reportado por los tratamientos de suelo de páramo; lo que permite afirmar que, la utilización del sustrato preparado con turba 75% más ácidos húmicos 25% es el tratamiento apropiado, con lo cual las plántulas al encontrar mejores condiciones de desarrollo, reportaron el sistema radicular de mayor volumen. Una sustancia húmica natural provee materia orgánica, ácido húmico y ácido fúlvico de forma natural y de liberación lenta. Los ácidos húmicos se mezclan fácilmente con suelos neutros y otros materiales para mejorar su capacidad de intercambio catiónico por varios años. Puede ser aplicado directamente al suelo en forma granulada, como una enmienda de suelo o mezclado con fertilizantes granulados (Archivo.abc, 2012), lo que beneficio a las plántulas para su mejor desarrollo. Igualmente, la turba es un producto orgánico derivado de la descomposición anaeróbica de vegetales que quedaron sumergidos bajo agua por varios milenios y se extrae de zonas de pantanos. Es un material inerte con excelentes características para fabricar sustratos con gran porosidad y capacidad de retención de agua (Jardisen, 2012), características que influenciaron en el mejor crecimiento y desarrollo de las plántulas, obteniéndose consecuentemente mayor volumen radicular.

4.1.2.4. Longitud del sistema radicular

En el anexo 6, se presentan los valores del crecimiento en longitud del sistema radicular para cada tratamiento, cuyo promedio general fue de 6,30cm. Mediante el análisis de variancia (cuadro 22), se establecieron diferencias estadísticas altamente significativas para tratamientos. Dentro de éstos, los tratamientos de turba se diferenciaron a nivel del 1% con tendencia lineal altamente significativa. Los tratamientos de suelo de páramo fueron significativos a nivel del 1%, con tendencia lineal y cuadrática altamente significativa. La comparación tratamientos de turba versus tratamientos de suelo de páramo fue altamente significativa. El testigo se diferenció del resto de tratamientos a nivel del 1%; mientras que el coeficiente de variación fue de 5,72%.

CUADRO 22. ANÁLISIS DE VARIANCIA PARA LONGITUD DEL SISTEMA RADICULAR

Fuente de variación	Grados de libertad	Suma de cuadrados	Cuadrados medios	Valor de F
Repeticiones	2	0,639	0,320	2,46 ns
Tratamientos	6	18,759	3,127	24,07 **
Tratam. de turba (T)	2	8,529	4,234	18,91 **
Tendencia lineal	1	7,981	7,981	35,39 **
Tendencia cuadrática	1	0,548	0,548	2,43 ns
Tratam. suelo pár. (S)	2	3,424	1,712	180,85 **
Tendencia lineal	1	3,096	3,096	327,04 **
Tendencia cuadrática	1	0,328	0,328	34,65 **
T x S	1	2,993	2,993	23,04 **
Testigo vs. Resto	1	3,813	3,813	29,35 **
Error experimental	12	1,559	0,130	
Total	20	20,958		

Coef. de var. 5,72% ns = no significativo ** = significativo al 1%

Mediante la prueba de significación de Tukey al 5% para tratamientos en la longitud del sistema radicular, se obtuvieron tres rangos de significación (cuadro 23). El sistema radicular experimentó mayor crecimiento en longitud en el tratamiento T1A1 (turba 75% + ácidos húmicos 25%) con promedio 8,21 cm, ubicado en el primer rango. Les siguen varios tratamientos que compartieron y se ubicaron en rangos inferiores; en tanto que, el testigo, cuyo sustrato se conformo de 100% de turba, reportó las plántulas con raíces de menor longitud, al ubicarse en el tercer rango y último lugar en la prueba, con promedio de 5,22 cm.

CUADRO 23. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS EN LA VARIABLE LONGITUD DEL SISTEMA RADICULAR

Trat	Tratamientos Promedio		Dance
No.	Símbolo	(cm)	Rango
1	T1A1	8,21	a
4	S1A1	6,65	b
2	T2A2	6,54 6,34	b
5	S2A2	6,34	b
3	T3A3	5,91	bc
7	T	5,26	c
6	S3A3	5,22	c

Dentro de los tratamientos de turba, en la longitud del sistema radicular, aplicando la prueba de significación de Tukey al 5%, se establecieron dos rangos de significación bien definidos (cuadro 24). Las plántulas experimentaron mayor crecimiento en longitud del sistema radicular en el tratamiento T1A1 (turba 75% + ácidos húmicos 25%) con promedio 8,21 cm, al ubicarse este valor en el primer rango; en tanto que, la raíces de las plántulas de los tratamientos T2A2 (turba 50% + ácidos húmicos 50%) y T3A3 (turba 25% + ácidos húmicos 75%), reportaron menor longitud radicular, con promedios de 6,54 cm y 5,91 cm, respectivamente, al compartir el segundo rango en la prueba, en su orden.

CUADRO 24. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE TURBA EN LA VARIABLE LONGITUD DEL SISTEMA RADICULAR

Tratamientos de turba	atamientos de turba Promedio (cm) Rango	
T1A1	8,21	a
T2A2	6,54	b
T3A3	5,91	b

La figura 11, grafica la regresión lineal entre porcentaje de ácidos húmicos versus la longitud del sistema radicular, dentro de los tratamientos de turba, en donde la tendencia lineal negativa de la recta, ubicó los mejores resultados, en los tratamientos conformados por ácidos húmicos al 25%, alcanzándose las plántulas con mayor desarrollo radicular, con correlación lineal altamente significativa de -0,88.

Examinando los tratamientos de suelo de páramo, en la longitud del sistema radicular, la prueba de significación de Tukey al 5% separó los promedios en tres rangos de significación bien definidos (cuadro 25). El crecimiento en longitud radicular fue mayor en las plántulas del tratamiento S1A1 (suelo de páramo 75% + ácidos húmicos 25%) con promedio 6,65 cm, al ubicarse en el primer rango. Les siguen las plántulas del tratamiento S2A2 (suelo de páramo 50% + ácidos

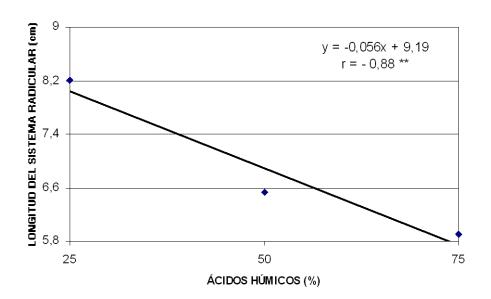


FIGURA 11. Regresión lineal entre porcentaje de ácidos húmicos versus longitud del sistema radicular, dentro de los tratamientos de turba

húmicos 50%) que se ubicó en el segundo rango con promedio de 6,34 cm. La longitud del sistema radicular fue significativamente menor en las plántulas del tratamiento S3A3 (suelo de páramo 25% + ácidos húmicos 75%), con promedio de 5,22 cm, al ubicarse en el tercer rango y último lugar en la prueba.

CUADRO 25. PRUEBA DE TUKEY AL 5% PARA TRATAMIENTOS DE SUELO DE PÁRAMO EN LA VARIABLE LONGITUD DEL SISTEMA RADICULAR

Tratamientos de suelo de páramo	Promedio (cm)	Rango
S1A1	6,65	a
S2A2	6,34	b
S3A3	5,22	c

Gráficamente, mediante la figura 12, se presenta la regresión lineal y cuadrática entre porcentaje de ácidos húmicos versus la longitud del sistema radicular, dentro de los tratamientos de suelo de páramo, en donde la tendencia lineal

negativa de la recta y la parábola, ubicaron los mejores resultados, en los tratamientos que se utilizaron ácidos húmicos al 25%, los cuales reportaron las plántulas con mayor longitud de las raíces, con correlación lineal altamente significativa de -0,93 y cuadrática altamente significativa de -0,98.

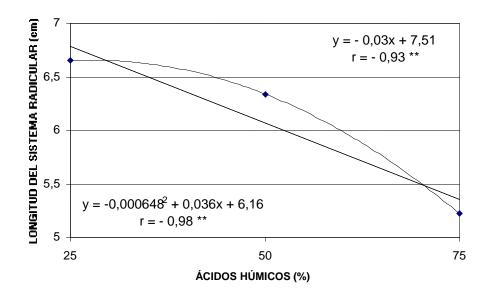


FIGURA 12. Regresión lineal y cuadrática entre porcentaje de ácidos húmicos versus longitud del sistema radicular, dentro de los tratamientos de suelo de páramo

Mediante la prueba de Diferencia Mínima Significativa al 5% para la comparación tratamientos de turba versus tratamientos de suelo de páramo, en la longitud del sistema radicular, se detectaron dos rangos de significación bien definidos (cuadro 26). La longitud del sistema radicular fue mayor, en las plántulas de los tratamientos de turba (T), con promedio de 6,89 cm, ubicado en el primer rango; en tanto que, la longitud del sistema radicular fue significativamente menor en las plántulas de los tratamientos de suelo de páramo (S), con promedio de 6,07 cm, ubicado en el segundo rango en la prueba.

CUADRO 26. PRUEBA DE DIFERENCIA MÍNIMA SIGNIFICATIVA AL 5% PARA LA COMPARACIÓN TURBA VERSUS SUELO DE PÁRAMO EN LA VARIABLE LONGITUD DEL SISTEMA RADICULAR

TxS	Promedios (cm)	Rangos
T	6,89	a
S	6,07	b

Examinando los resultados del análisis estadístico de la longitud del sistema radicular, es posible apreciar que, la utilización de sustratos orgánicos compuestos por turba, suelo de páramo y ácidos húmicos, para la obtención de plántulas de brócoli, influenciaron favorablemente, por cuanto, en general, con éstos sustratos se alcanzaron plántulas con sistema radicular más desarrollado, que lo reportado por el testigo, que se conformó de sustrato 100% de turba. Los mejores resultados se obtuvieron con la utilización del sustrato conformado por turba 75% más ácidos húmicos 25%, con el cual la longitud del sistema radicular se incrementó en promedio de 2,99 cm, al comparar con el testigo, que fue de menor crecimiento radicular. Dentro de los tratamientos de suelo de páramo, los mejores resultados se alcanzaron con el tratamiento compuesto por suelo de páramo 75% y ácidos húmico 25%; en tanto que, en general, las plántulas de los tratamientos conformados por turba superaron la longitud del sistema radicular en promedio de 0,82 cm que lo reportado por los tratamientos de suelo de páramo; lo que permite afirmar que, el sustrato preparado con turba 75% más ácidos húmicos 25% influenció significativamente en el crecimiento de plántulas, las mismas que al encontrar mejores condiciones de desarrollo, reportaron el sistema radicular de mayor longitud. Es posible que haya sucedido lo manifestado por Árboles ornamentales (2012), que las turbas al ser materiales más empleados en la elaboración de sustratos debido a sus cualidades como poseer una excelente porosidad y buena receptora de soluciones nutritivas, proporcionando gran aireación a las raíces y es bastante ligera, lo que mejoró significativamente la calidad del sustrato. Mainardi (1980), por su parte, cita que la función principal de los sustratos de enraizamiento es fijar las raíces, protegiéndolas de la luz y los cambios térmicos,

manteniendo un adecuado grado de humedad y funciona como depósito de sustancias nutritivas, lo que causó la combinación de turba 75% más ácidos húmicos 25%.

4.1.2.5 Tiempo de vida de las plántulas

El tiempo de vida de las plántulas para cada tratamiento evaluado se detalla en el anexo 7, cuyo promedio general fue de 6,40 días. Al realizar el análisis de variancia (cuadro 27), no se registraron diferencias estadísticas significativas para tratamientos. Igualmente dentro de éstos, los tratamientos de turba no se diferenciaron, como también los tratamientos de suelo de páramo. La comparación tratamientos de turba versus tratamientos de suelo de páramo fue no significativa y el testigo no se diferenció del resto de tratamientos. El coeficiente de variación fue de 17,83%.

CUADRO 27. ANÁLISIS DE VARIANCIA PARA TIEMPO DE VIDA DE LAS PLÁNTULAS

Fuente de variación	Grados de libertad	Suma de cuadrados	Cuadrados medios	Valor de F
Repeticiones	2	4,667	2,333	1,75 ns
Tratamientos	6	0,571	0,095	0,07 ns
Tratam. de turba (T1)	2	0,222	0,111	2,50 ns
Tendencia lineal	1	0,167	0,167	0,15 ns
Tendencia cuadrática	1	0,056	0,056	0,05 ns
Tratam. suelo pár. (S)	2	0,222	0,111	0,08 ns
Tendencia lineal	1	0,167	0,167	0,12 ns
Tendencia cuadrática	1	0,056	0,058	0,04 ns
TxS	1	0,056	0,056	0,04 ns
Testigo vs. resto	1	0,071	0,071	0,05 ns
Error experimental	12	16,000	1,333	
Total	20	21,238		

Coef. de var. 17,83% ns = no significativo

Examinando los resultados del análisis estadístico del tiempo de vida de las plántulas, se deduce que, la utilización de sustratos orgánicos compuestos por turba, suelo de páramo y ácidos húmicos, no se diferenciaron significativamente, por cuanto las plántulas alcanzaron el punto de marchitez permanente prácticamente al mismo tiempo (a los 6,40 días de promedio desde que

se dejó de regar); por lo que la consistencia de los sustratos y la capacidad de retención de humedad no es significativamente diferente, lo que no sucedió con el crecimiento y desarrollo de las plántulas, en donde se desatacó especialmente el sustrato preparado con 75% de turba y 25% de ácidos húmicos.

4.2. RESULTADOS, ANÁLISIS ECONÓMICO Y DISCUSIÓN

Para evaluar la rentabilidad de la utilización de sustratos orgánicos compuestos por turba, suelo de páramo y ácidos húmicos en diferentes proporciones, para la producción de plántulas de brócoli, se determinaron los costos de producción del ensayo en 31,71 m² que constituyó el área de la investigación (cuadro 28), considerando entre otros los siguientes valores: \$ 105,00 para mano de obra, \$ 196,09 para costos de materiales, dando el total de \$ 301,09.

CUADRO 28. COSTOS DE INVERSIÓN DEL ENSAYO (Dólares)

	N	Iano de o	bra	Materiales					
Labores	No.	Costo unit. \$	Sub total \$	Nombre	Unid.	Cant.	Costo unit. \$	Sub total \$	Costo total \$
Arriendo de la cubierta				Cubierta	unid.	1,00	40,00	40,00	40,00
Adquisic. de sustratos	1,00	10,00	10,00	Turba T S1	kg	10,00	2,00	20,00	30,00
-				Suelo de páramo	kg	15,00	1,50	22,50	22,50
				Ácido húmico	kg	25,00	1,10	27,50	27,50
Preparación de sustratos	1,00	10,00	10,00	Pala	día	1,00	2,00	2,00	12,00
Decontam. de sustratos	0,50	5,00	2,50	Captan	kg	1,00	4,65	4,65	7,15
Colocac. en bandejas	0,50	5,00	2,50	bandejas	unid.	21,00	0,40	8,40	10,90
Siembra	2,00	10,00	20,00	semilla	unid.	3402,00	0,02	68,04	88,04
Riegos	6,00	10,00	60,00	Regadera	día	1,00	3,00	3,00	63,00
Total			105,00					196,09	301,09

El cuadro 29, indica los costos de inversión del ensayo desglosados por tratamiento. La variación de los costos está dada básicamente por el diferente precio de cada sustrato de acuerdo a las proporciones utilizadas. Los costos de producción se detallan en tres rubros que son: costos de mano de obra, costos de materiales y costos de la preparación de los sustratos orgánicos en el ensayo.

CUADRO 29. COSTOS DE INVERSIÓN DEL ENSAYO POR TRATAMIENTO

Tratamiento	Mano de obra (\$)	Materiales (\$)	Costos de sustratos (\$)	Costo total (\$)
T1A1	15,00	18,01	8,29	41,30
T2A2	15,00	18,01	8,58	41,60
T3A3	15,00	18,01	8,88	41,89
S1A1	15,00	18,01	13,54	46,55
S2A2	15,00	18,01	12,08	45,10
S3A3	15,00	18,01	10,63	43,64
T	15,00	18,01	8,00	41,01

El cuadro 30, presenta los ingresos totales del ensayo por tratamiento. A pesar que las plántulas fueron sometidas a una condición de marchitez permanente por efectos de analizar el tiempo de vida en la permanencia de los sustratos; se asumió el cálculo del rendimiento de acuerdo al número de plántulas obtenidas al final del ensayo en las tres repeticiones, considerando el precio de una plántula en \$ 0,12, para la época en que se sacó a la venta. El precio de venta de las plántulas del testigo se consideró en \$ 0,10, por presentar menor tamaño y calidad.

CUADRO 30. INGRESOS TOTALES DEL ENSAYO POR TRATAMIENTO

Tratamiento	Número de plántulas	Precio de una plántula \$	Ingreso total
T1A1	486,00	0,12	58,32
T2A2	486,00	0,12	58,32
T3A3	486,00	0,12	58,32
S1A1	486,00	0,12	58,32
S2A2	486,00	0,12	58,32
S3A3	486,00	0,12	58,32
T	486,00	0,10	48,60

Los beneficios netos actualizados, presentan valores positivos en todos los tratamientos, en donde los ingresos superaron a los costos. La actualización de los costos se hizo con la tasa de interés bancaria del 11% anual y considerando los dos meses que duró el ensayo. La relación beneficio costo, presenta valores positivos, encontrando que el tratamiento T1A1 (turba 75% + ácidos húmicos 25%), alcanzó la mayor relación beneficio costo de 0,38 en donde los beneficios netos obtenidos

fueron 0,38 veces lo invertido, siendo desde el punto de vista económico el tratamiento de mayor rentabilidad (cuadro 31).

CUADRO 31. CÁLCULO DE LA RELACIÓN BENEFICIO COSTO DE LOS TRATAMIENTOS CON TASA DE INTERÉS AL 11%

Tratamiento	Ingreso total	Costo total	Factor de actual.	Costo total actual.	Beneficio neto actual.	RBC
T1A1	58,32	41,30	0,9784	42,22	16,10	0,38
T2A2	58,32	41,60	0,9784	42,52	15,80	0,37
T3A3	58,32	41,89	0,9784	42,81	15,51	0,36
S1A1	58,32	46,55	0,9784	47,58	10,74	0,23
S2A2	58,32	45,10	0,9784	46,09	12,23	0,27
S3A3	58,32	43,64	0,9784	44,60	13,72	0,31
T	48,60	41,01	0,9784	41,92	6,68	0,16

Factor de actualización
$$Fa = \frac{1}{(1+i)^n}$$

Tasa de interés anual i = 11% a marzo del 2012 Período n = 2 meses de duración del ensayo

4.3. VERIFICACIÓN DE HIPÓTESIS

Los resultados obtenidos en el análisis estadístico de las variables de crecimiento y desarrollo de las plántulas de brócoli (*Brassica oleracea Var. Itálica*), permiten aceptar la hipótesis, por cuanto, la incorporación de complementos orgánicos permitió mejorar la calidad de los sustratos, consecuentemente, se alcanzaron plántulas de mejor calidad, tanto en el crecimiento en altura, como en el número de hojas, como también mejorando el desarrollo radicular en volumen y longitud.

CAPÍTULO 5 CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

El sustrato preparado con turba 75% + ácidos húmicos 25%, fue el que produjo mejores resultados, al ser la mejor mezcla de sus proporciones, por cuanto las plántulas que se desarrollaron en él, respondieron mejor en su crecimiento y desarrollo, incrementando el sistema radicular. En este sentido, se alcanzó el mayor crecimiento en altura a los 15 días (6,14 cm), como a los 30 días (9,58 cm). El número de hojas por plántula fue mayor, tanto a los 15 días (2,31 hojas), como a los 30 días (3,53 hojas). El crecimiento de las raíces se destacaron con las plántulas de mayor volumen del sistema radicular (2,10 cc) y mejor longitud del sistema radicular (8,21 cm); por lo que utilizar turba con adición de 25% de ácidos húmicos es el complemento orgánico más adecuado para la elaboración de los sustratos con turba, que permite obtener las mejores características de las plántulas de brócoli. También se destacó el tratamiento compuesto por (turba 50% + ácidos húmicos 50%), con el segundo mejor crecimiento en altura de planta a los 30 días (9,07 cm)

Dentro de los tratamientos del sustratos conformado por suelo de páramo, se destacó principalmente el sustrato preparado con suelo de páramo 75% + ácidos húmicos 25%, en el mismo que se obtuvo mayor crecimiento en altura de planta a los 15 días (4,12 cm) y a los 30 días (6,90 cm). El número de hojas por plántula fue mayor a los 15 días (2,29 hojas) y a los 30 días (2,69 hojas), consecuentemente, las plántulas reportaron mejor volumen del sistema radicular (1,40 cc) y longitud del sistema radicular (6,65 cm), siendo los porcentajes más adecuados de suelo páramo y ácidos húmicos para la elaboración de sustratos, determinando la obtención de mejores características de las plántulas de brócoli.

Al comparar entre sustratos de turba versus sustratos de suelo de páramo, se observó que, mejores resultados se alcanzaron con la utilización de turba, al reportar las plántulas mayor altura de planta a los 15 días (4,87 cm), como a los 30 días (7,92 cm), mayor número de hojas a los 30 días (2,96 hojas), mejor volumen del sistema radicular (1,43 cc) y mayor longitud del sistema radicular (6,89 cm).

El testigo que se conformó de 100% de turba, reportó las plántulas de menor crecimiento y desarrollo, con altura de planta a los 15 días de 3,10 cm, y a los 30 días de 5,10 cm. Número de hojas a los 15 días de 1,40 y a los 30 días de 2,00. Registraron así mismo el menor volumen del sistema radicular (0,67 cc) y la menor longitud del sistema radicular (5,22 cm).

Del análisis económico se deduce que, el tratamiento T1A1 (turba 75% + ácidos húmicos 25%), alcanzó la mayor relación beneficio costo de 0,38 en donde los beneficios netos obtenidos fueron 0,38 veces lo invertido, siendo desde el punto de vista económico el tratamiento de mayor rentabilidad.

La densidad aparente fue menor en los tratamientos que se utilizó turba, con densidades de 0,44 g/cm³ en los tratamientos T1A1 (turba 75% + ácidos húmicos 25%) y T3A3 (turba 25% + ácidos húmicos 75%) y 0,47 g/cm³ en el tratamiento T2A2 (turba 50% + ácidos húmicos 50%); mientras que, la densidad aparente fue mayor en los tratamientos de suelo de páramo con 0,99 g/cm³ en S1A1 (suelo de páramo 75% + ácidos húmicos 25%), 0,88 g/cm³ en S2A2 (suelo de páramo 50% + ácidos húmicos 50%) y 1,02 g/cm³ en S3A3 (suelo de páramo 25% + ácidos húmicos 75%). El testigo cuyo sustrato fue únicamente turba reportó la densidad aparente de 0,39 g/cm³, la cual es significativamente menor al los tratamientos de turba y y suelo de páramo más ácidos húmicos.

La densidad real fue menor en los tratamientos conformados con el sustrato turba, con densidades real de 0,81 g/cm³ en el tratamiento T1A1 (turba 75% + ácidos húmicos 25%), 0,96 g/cm³ en el tratamiento T2A2 (turba 50% + ácidos húmicos 50%) y 1,11 g/cm³ en el tratamiento T3A3 (turba 25% + ácidos húmicos 75%); mientras que, la densidad real fue mayor en los tratamientos conformados con suelo de páramo con 2,14 g/cm³ en S1A1 (suelo de páramo 75% + ácidos húmicos 25%), 2,46 g/cm³ en S2A2 (suelo de páramo 50% + ácidos húmicos 50%) y 2,24 g/cm³ en S3A3 (suelo de páramo 25% + ácidos húmicos 75%). El testigo cuyo sustrato fue únicamente turba reportó la densidad real de 0,52 g/cm³, valor que es significativamente menor de la densidad real de los tratamientos de turba más ácidos húmicos y suelo de páramo más ácidos húmicos.

El porcentaje de porosidad de los sustratos conformados por turba no superar relevantemente a los tratamientos del sustrato de suelo de páramo, siendo éste último

el que presenta un mayor valor. Al observar los porcentajes de ácidos húmicos, se observó que los tratamientos conformados por 50% y 75% de ácidos húmicos reportaron mayor porcentaje de porosidad, especialmente en los tratamientos de suelo de páramo, destacándose con el mayor valor el tratamiento S2A2 (suelo de páramo 50% + ácidos húmicos 50%) con 64,25% de porosidad. El testigo, que se conformó por turba al 100%, reportó el menor porcentaje de porosidad con 26,13%, siendo significativamente menor al resto de tratamientos.

5.2. RECOMENDACIONES

Para obtener plántulas de brócoli con mayor crecimiento en altura, mayor número de hojas y sistema radicular más desarrollado, con raíces de mejor volumen y longitud, utilizar el sustrato orgánico conformado por turba 75% + ácidos húmicos 25%, por cuanto fue el tratamiento que mejores resultados reportó en la mayoría de variables analizadas, siendo el sustrato orgánico más adecuado que determinó la obtención de mejores características de las plántulas de brócoli, en las condiciones de manejo que se desarrolló el ensayo. A más ello, éste tratamiento reportó la mayor relación beneficio costo, siendo desde el punto de vista económico el de mayor rentabilidad.

Efectuar ensayos de obtención de plántulas de brócoli con la utilización de sustratos enriquecidos con macro y micro elementos, que permitan incrementar el desarrollo inicial de las nuevas plántulas, así como experimentar con otros sustratos de enraizamiento, combinados con fertilización química y foliar y/o abonadura orgánica, con el fin de dotar de nuevas alternativas para el productor de esta hortaliza de importancia en serranía ecuatoriana.

Probar la aplicación de bioestimulantes en diferentes dosis y frecuencias de aplicación, en el crecimiento y desarrollo de las plántulas de brócoli, que permitan el incremento en vigorosidad, asegurando su posterior trasplante y desarrollo definitivo, disminuyendo los problemas de mortalidad.

CAPÍTULO 6 PROPUESTA

6.1. TÍTULO

Utilización de sustratos orgánicos para la producción de plántulas de brócoli (brassica oleracea Var. Itálica)"

6.2. FUNDAMENTACIÓN

El brócoli *Brassica olerácea* var. Itálica, es una de las hortalizas más importantes por su gran valor nutritivo y enorme consumo a nivel mundial. En algunos países europeos es la base de la alimentación y constituye un gran margen de ingresos para el sector agrícola e industrial, destinado a la preparación, conservación y transformación de la misma (Maroto, 1983).

En el Ecuador, por su alto valor nutritivo y contenido de proteína, vitaminas y minerales, así como, por su demanda en el mercado interno, el brócoli ha llegado a constituirse en una hortaliza esencial en la dieta alimentaria de los pueblos (INIAP, 1980).

La base de todo sustrato preparado es la materia orgánica. Los minerales que se utilizan para mejorar las propiedades físicas de los sustratos son subproductos orgánicos como la corteza, el aserrín o las compostas. En una revisión sobre el manejo de los sustratos para horticultura destacó la importancia de la retención de humedad, sin mencionar cantidades ni el tipo de materiales que deben usarse para mejorar esa característica (Cásseres, 1971).

6.3. OBJETIVOS

6.3.1. General

Aportar con el mejoramiento del manejo técnico en la producción masiva de plántulas de brócoli (*Brassica oleracea Var. Itálica*), con el fin de dotar de plantas de mejor calidad.

6.3.2. Específico

Utilizar el sustrato orgánico compuesto por turba 75% + ácidos húmicos 25%, en la producción de plántulas de brócoli, para obtener las mejores características del material vegetativo.

6.4. JUSTIFICACIÓN E IMPORTANCIA

Ecuador figura entre los diez primeros países exportadores de brócoli congelado en el mundo y entre los tres primeros proveedores de la Unión Europea, que son los principales mercados de destino. Durante el año 2000 se exportó un total de USD 13 338 100. La Sierra ecuatoriana es la región productiva por excelencia; las provincias más representativas en el país son Cotopaxi y Pichincha. En los últimos años están creciendo las superficies sembradas en Chimborazo, Imbabura, Cañar y Azuay. La producción de brócoli congelado genera aproximadamente 3 500 empleos, en su mayor parte en áreas rurales. La principal variedad cultivada es Legacy (83%), seguida de Marathon (9%) y Shogum (8%) (Corporación de Promoción de Exportaciones e Inversión (2000).

Un sustrato óptimo esta definido por la especie vegetal, las condiciones ambientales del área de producción y del costo de los materiales para su formulación. Un buen sustrato puede reconocerse por sus propiedades físicas, debe ser liviano, esponjoso y con buena capacidad de almacenar agua, químicas y se miden a través de técnicas de laboratorio utilizadas a nivel internacional y específicos para sustratos (Canovas y Díaz, 1993).

6.5. IMPLEMENTACIÓN Y PLAN DE ACCIÓN

6.5.1. Adquisición de la semilla

Las semillas de brócoli se adquirirán en casas comerciales, las mismas que deberán estar previamente desinfectadas.

6.5.2. Características de la cubierta plástica

La cubierta plástica deberá ser de estructura de madera, tipo capilla, con plástico color transparente calibre 7, de altura máxima de 3,5 m y mínima de 2,0 m y un área disponible de 50 m².

6.5.3. Preparación del sustrato

El sustrato se preparará con la utilización de turba y ácidos húmicos en proporción de 75% de turba y 25% de ácidos húmicos.

6.5.4. Decontaminación del sustrato

La descontaminación del sustrato, se efectuará utilizando Captan en dosis de 1 kg/100 kg de sustrato, con 15 días de anterioridad a la siembra.

6.5.5. Características de las bandejas germinadoras

Las bandejas germinadoras serán de material plástico, de 55 cm de largo por 29 cm de ancho y altura de 4,5 cm, con capacidad para germinar 162 semillas por bandeja.

6.5.6. Colocación y distribución de los sustratos en las bandejas

El sustrato se colocará en las bandejas germinadoras designadas para el efecto.

6.5.7. Siembra

Se procederá a la siembra (una semilla por golpe) en las bandejas distribuidas en la cubierta plástica.

6.5.8. Riegos

Se realizarán riegos manuales en las primeras horas de la mañana y en la tarde, utilizando una regadera.

BIBLIOGRAFÍA

Acosta, S. 1984. Los páramos andinos del Ecuador. Ed. MAS, Quito, Ecuador. 220 p.

Agrocosta. 2012. Composición química de los ácidos húmicos. En línea. Consultado 12 de junio del 2012. Disponible en http://www.agrocosta.net/files/productos/16_ftgreenleaf997.pdf.

Alsina Grau, L. 1980. Horticultura especial. 3 ed. Barcelona, Sintes. p. 47-52.

Árboles ornamentales. 2012. Turbas. El línea. Consultado 18 de febrero del 2012. Disponible en http://www.arbolesornamentales.es/Turbas.htm.

Archivo.abc. 2012. Sustancias húmicas. En línea. Consultado 18 de febrero del 2012. Disponible en http://archivo.abc.com.py/suplementos/rural/articulos.php-?pid=461994.

Boutherin, D. 1994. Suelos. Zaragoza, España, Acribia. 431 p.

Buzeta, A. 1997. Suelos y sus propiedades. Chile. 539 p.

Canovas, F.; Díaz, J.R. 1993. Cultivos sin suelo. Curso superior de especialización. Ed. Instituto de Estudios Almerienses. Fundación para la Investigación Agraria en la provincia de Almeria. Almeria. 187 p.

Cásseres, E. 1971. producción de hortalizas. 2 ed. México, Herrero. 310 p.

Clavijo, J. 2008. Sustratos. Universidad de Almeria. Editorial servicio de publicaciones.

Corporación de Promoción de Exportaciones e Inversiones. 2000. Webmaster@corpei.org.ec

Ecuador. Instituto Nacional de Estadísticas y Censos. 1991. Sistema estadístico agropecuario nacional. Encuesta de la superficie por muestreo de áreas. Quito. INEC. 221 p.

Ecuador. Instituto Nacional de Investigaciones Agropecuarias. 1980. Guía de recomendaciones de fertilización para los principales cultivos del Ecuador. Quito. Boletín Técnico No. 32.

Ecuador. Instituto Nacional de Meteorología e Hidrología. 2000. Anuarios meteorológicos de los años 2001 al 2007. Quito. p. irr.

Ecuador. Instituto Geográfico Militar. 1986. Mapa general de los suelos de Ecuador. Quito. Esc. 1: 1 000 000. Color.

España. Biblioteca práctica agrícola y ganadera. 1988. Práctica de los cultivos. Barcelona, Océano. 222 p.

Fainstein, R. s.f. Manual para el cultivo de rosas en latinoamérica. Quito, Ecuaoffset. 247 p.

Fernández, M.M.; Aguilar, M.I.; Carrique, J.R.; Tortosa, J.; Gracía, C.; López, M.; Pérez, J.M. 1998. Suelo y medio ambiente en invernaderos. Conserjería de Agricultura y Pesca. Junta de Andalucía. Sevilla, España. 302 p.

Hartmann, H. Kester, D. 1974. Propagación de plantas. 3 impresión. México, CECSA. 810 p.

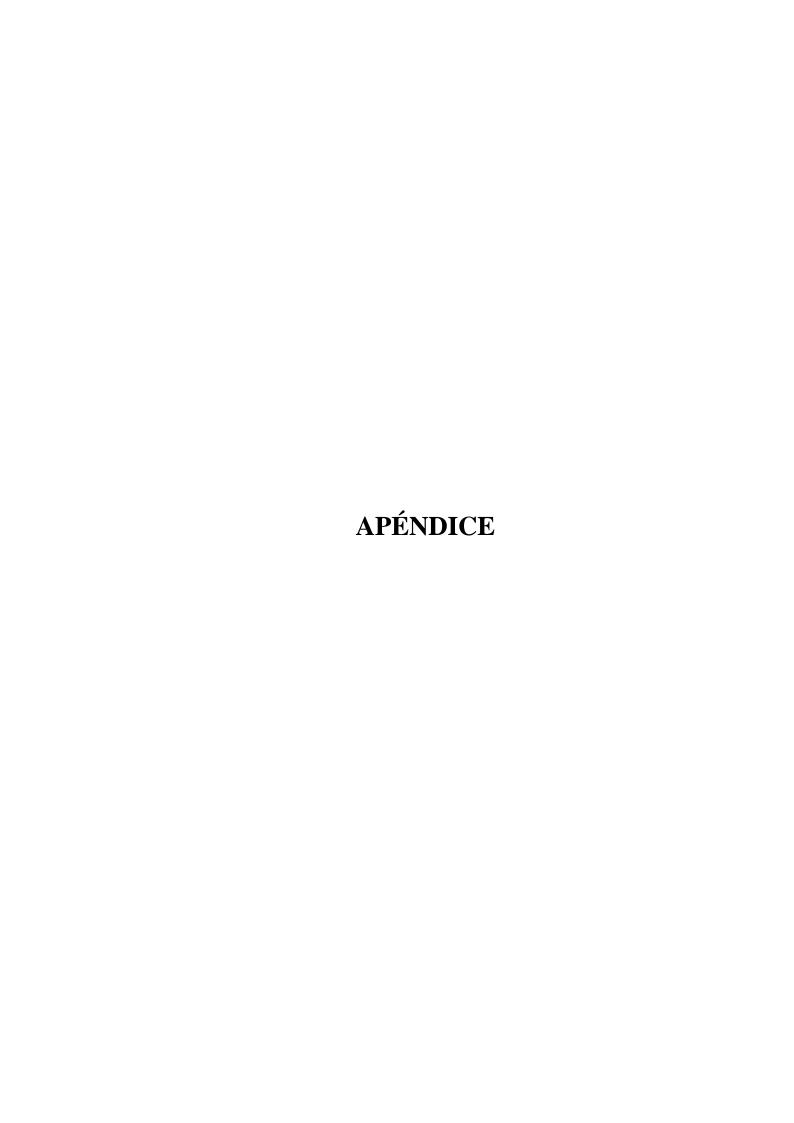
Holdridge, L.R. 1982. Ecología basado en las zonas de vida. Trad. por Humberto Jiménez Saa. San José, C.R., IICA. p. 44,45. (Serie de libros y materiales educativos no. 34).

Jardisen. 2012. Sustratos. En línea. Consultado 18 de febrero del 2012. Disponible en http://www.jardisen.cl/parts/sustratos.htm.

Juscafresa, B. 1979. Jardinería fin de semana. Creación de aficiones. Barcelona, España, Aedos. 32 p.

Llurba, M. 1997. Parámetros a tener en cuenta en los sustratos. Revista horticultura. No. 125-Diciembre 1997.

Mainardi, F. 1980. El huerto y el jardín en su piso. Barcelona, De Verchi. 221 p.


Maroto, J.V. 1990. Elementos de horticultura general. Madrid, Mundi Prensa. 533 p.

Maroto, J.V. 1983. Horticultura herbácea especial. Madrid, Mundi Prensa. 533 p.

Sade, A. 1997. Cultivos bajo condiciones forzadas. Nociones generales. Ed. Hazera. Barcelona, España. 305 p.

Terres, V.; Artetxe, A.; Beunza, A. 1997. Caracterización física de los sustratos de cultivo. Revista Horticultura No. 125 – Diciembre 1997.

Weichmann, J. 1987. Fisiología hortalizas. New York, US. 597 p.

ANEXO 1. ALTURA DE PLANTA A LOS 15 DÍAS (cm)

Tra	ntamientos	R	e p e t i c i o n e	e s	Total	Promedio	
No.	Símbolo	I	II	III	Total	Promedio	
1	T1A1	5,11	6,30	7,00	18,41	6,14	
2	T2A2	5,04	5,30	5,30	15,64	5,21	
3	T3A3	3,55	3,60	2,60	9,75	3,25	
4	S1A1	3,86	3,90	4,60	12,36	4,12	
5	S2A2	3,46	2,90	3,10	9,46	3,15	
6	S3A3	2,98	2,57	2,64	8,19	2,73	
7	T	2,90	3,10	3,30	9,30	3,10	

ANEXO 2. ALTURA DE PLANTA A LOS 30 DÍAS (cm)

Tra	ntamientos	R	epeticione	: S	Total	Promedio	
No.	Símbolo	I	II	III	- Total	Promedio	
1	T1A1	9,44	10,10	9,20	28,74	9,58	
2	T2A2	9,12	8,99	9,10	27,21	9,07	
3	T3A3	5,84	4,10	5,40	15,34	5,11	
4	S1A1	6,85	6,96	6,90	20,71	6,90	
5	S2A2	6,77	6,33	6,50	19,60	6,53	
6	S3A3	5,08	5,05	5,72	15,85	5,28	
7	T	5,02	5,09	5,20	15,31	5,10	

ANEXO 3. NÚMERO DE HOJAS A LOS 15 DÍAS

Tra	atamientos	R	Repeticiones			Promedio
No.	Símbolo	I	II	III	Total	Promedio
1	T1A1	2,30	2,33	2,30	6,93	2,31
2	T2A2	2,17	2,20	2,20	6,57	2,19
3	T3A3	1,47	1,53	1,37	4,37	1,46
4	S1A1	2,40	2,10	2,37	6,87	2,29
5	S2A2	2,36	1,90	2,24	6,50	2,17
6	S3A3	1,50	1,40	1,30	4,20	1,40
7	T	1,30	1,50	1,40	4,20	1,40

ANEXO 4. NÚMERO DE HOJAS A LOS 30 DÍAS

Tra	atamientos	R	e p e t i c i o n o	e s	Total	Promedio
No.	Símbolo	I	II	III	Total	riomedio
1	T1A1	3,20	4,23	3,17	10,60	3,53
2	T2A2	3,00	3,13	3,23	9,36	3,12
3	T3A3	2,23	2,27	2,17	6,67	2,22
4	S1A1	2,87	2,47	2,73	8,07	2,69
5	S2A2	2,69	2,31	2,73	7,73	2,58
6	S3A3	2,20	2,17	2,30	6,67	2,22
7	T	2,10	1,87	2,03	6,00	2,00

ANEXO 5. VOLUMEN DEL SISTEMA RADICULAR (cc)

Tra	ntamientos	R	e p e t i c i o n e	e s	Total	Promedio	
No.	Símbolo	I	II	III	Total	Promedio	
1	T1A1	2,40	1,90	2,00	6,30	2,10	
2	T2A2	1,20	1,50	1,50	4,20	1,40	
3	T3A3	0,80	0,90	0,70	2,40	0,80	
4	S1A1	1,30	1,50	1,40	4,20	1,40	
5	S2A2	1,10	0,80	1,10	3,00	1,00	
6	S3A3	0,60	0,80	0,70	2,10	0,70	
7	T	0,60	0,70	0,70	2,00	0,67	

ANEXO 6. LONGITUD DEL SISTEMA RADICULAR (cm)

Tra	ntamientos	R	e p e t i c i o n e	e s	Total	Promedio
No.	Símbolo	I	II	III	Total	Fromedio
1	T1A1	8,09	8,57	7,98	24,64	8,21
2	T2A2	7,38	6,45	5,78	19,61	6,54
3	T3A3	5,84	6,37	5,51	17,72	5,91
4	S1A1	6,75	6,55	6,66	19,96	6,65
5	S2A2	6,59	6,11	6,32	19,02	6,34
6	S3A3	5,35	5,18	5,12	15,65	5,22
7	T	5,15	5,59	5,04	15,78	5,26

ANEXO 7. TIEMPO DE VIDA DE LAS PLÁNTULAS (días)

Tra	atamientos	R	epeticion	e s	Total	Promedio	
No.	Símbolo	I	II	III	- Total	Promedio	
1	T1A1	5,00	8,00	7,00	20,00	6,33	
2	T2A2	6,00	7,00	6,00	19,00	6,33	
3	T3A3	5,00	6,00	8,00	19,00	6,33	
4	S1A1	8,00	6,00	6,00	20,00	6,67	
5	S2A2	6,00	7,00	7,00	20,00	6,67	
6	S3A3	5,00	7,00	7,00	19,00	6,33	
7	T	6,00	5,00	8,00	19,00	6,33	