

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

Trabajo Estructurado de Manera Independiente previo a la obtención del Título de Ingeniera Civil

TEMA

"Las aguas residuales domesticas y su incidencia en la calidad de vida de los moradores de la lotización Rio Pastaza, Parroquia Madre Tierra, Provincia de Pastaza"

Autor: Sisa Pilco Mónica Paulina

Tutor: PhD. Vinicio Jaramillo Garcés

Ambato - Ecuador 2013

<u>CERTIFICACIÓN</u>

Certifico que el trabajo de investigación, previó a la obtención del título de Ingeniera Civil realizado por la señorita Sisa Pilco Mónica Paulina, egresada de la Facultad de Ingeniería Civil y Mecánica de la Universidad Técnica de Ambato, se desarrolló bajo mi dirección, es un trabajo estructurado de manera independiente, personal e inédito y ha sido concluido bajo el título "LAS AGUAS RESIDUALES DOMESTICAS Y SU INCIDENCIA EN LA CALIDAD DE VIDA DE LOS MORADORES DE LA LOTIZACIÓN RIO PASTAZA, PARROQUIA MADRE TIERRA, PROVINCIA DE PASTAZA".

Es todo cuanto puedo certificar en honor a la verdad.

Ambato, julio 2013

PhD. Vinicio Jaramillo Garcés

TUTOR DE TESIS

AUTORÍA DEL TRABAJO

Yo, MONICA PAULINA SISA PILCO, con C.I. 160051692-4, soy responsable de las ideas, resultados y propuestas expuestas en el presente trabajo, a la vez confiero derechos de autoría a la Universidad Técnica de Ambato – Facultad de Ingeniería Civil y Mecánica.

Mónica Paulina Sisa Pilco

DEDICATORIA

Dedico el presente trabajo a:

Dios por ser el pilar fundamental en mi vida, por haberme encontrado y por aun ahora estar siempre conmigo a ti papito Dios por llenarme de fortaleza y sabiduría por mantenerme con salud para poder culminar una meta tan anhelada, a mi mayor y grande argullo, mis padres quienes son mi sustento, mi inspiración y mi ejemplo mismo, los que permitieron que hoy en día cumpla una de mis metas, gracias por sus consejos, sus enseñanzas, por los ánimos que me inculcaron para seguir adelante, a mi hermano y a mi familia quienes a pesar de los tropiezos siempre estuvieron conmigo. A los amigos que de una u otra forma pusieron su granito de arena en mi vida.

Mónica Paulina

AGRADECIMIENTO

El más sincero agradecimiento a mis padres Juanita y Segundo, quienes han sido mi apoyo incondicional para que hoy en día haya cumplido una de mis metas que me he propuesto.

De igual forma es grato para mí, agradecer a la Universidad Técnica de Ambato, como también a nuestra querida Facultad de Ingeniería Civil y Mecánica, y a todo el personal que labora en tan prestigiosa Institución.

Además agradezco de una manera muy especial al **PhD. Vinicio Jaramillo Garcés,** tutor de éste trabajo de investigación quien con su experiencia, sabiduría y excelente calidad humana supo enriquecer mis conocimientos, facilitándome la realización de este trabajo.

Mónica Paulina Sisa Pilco

INDICE GENERAL

A. PÁGINAS PRELIMINARES	
PORTADA	I
CERTIFICACIÓN DEL TUTOR	II
AUTORÍA	III
DEDICATORIA	IV
AGRADECIMIENTO	V
ÍNDICE GENERAL	VI
RESUMEN EJECUTIVO	XIII
B. TEXTO: INTRODUCCIÓN	
CAPÍTULO I: EL PROBLEMA	
1.1. Tema	
1.2. Planteamiento del problema	1
1.2.1. Contextualización	2
1.2.2. Análisis crítico	4
1.2.3. Prognosis	4
1.2.4. Formulación del problema	5
1.2.5. Interrogantes	5
1.2.6. Delimitación del objetivo de investigación	5
1.3. Justificación	6
1.4. Objetivos	7
1.4.1. General	8
1 4 2. Específicos	8

CAPÍTULO II: MARCO TEÓRICO

2.1 antecedentes investigativos	9
2.2. Fundamentación filosófica	11
2.3. Fundamentación legal	11
2.4. Categorías fundamentales	13
2.4.1. Aguas residuales domesticas	13
2.4.2. Mejorar la calidad de vida	14
2.5. Hipótesis	40
2.6. Señalamiento de variables	41
2.6.1. Variable independiente	41
2.6.2. Variable dependiente	41
2.6.3. Unidad de observación	41
CAPÍTULO III: METODOLOGÍA	
3.1. Modalidad básica de la investigación	42
3.1.1. Enfoque	42
3.1.2. Modalidad	42
3.2. Nivel o tipo de investigación	43
3.3. Población o Muestra	43
3.3.1. Población o universo	43
3.3.2. Muestra	44
3.3.3. Técnicas e instrumentos	44
3.4. Operacionalizacion	45
3.5. Plan de recolección de información	47
3.6. Plan de procesamiento y análisis	48

CAPÍTULO IV: ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.1. Análisis de los resultados	49
4.2. Interpretación de resultados	59
4.3. Verificación de hipótesis	61
CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES	
5.1. Conclusiones	70
5.2. Recomendación	71
CAPÍTULO VI: PROPUESTA	
5.1. Datos informativos	72
5.2. Antecedentes de la propuesta	76
5.3. Justificación	76
5.4. Objetivos	77
5.5. Análisis de factibilidad	78
5.6. Fundamentación	78
6.6.1. Sistema de alcantarillado	78
6.6.1.1. Tipos de alcantarillado	78
5.6.2. Componentes de un sistema de alcantarillado	80
6.6.2.1. Red de tuberías	80
6.6.2.2. Trazado de alcantarillado	81
6.6.2.3. Componentes de un sistema de alcantarillado	83
6.6.2.4. Conexiones domiciliarias	84
5.6.3. Componentes y parámetros para el diseño del sistema de alcantarillado	o85
6.6.3.1. Velocidades máximas y mínimas	85
6.6.3.2. Diámetro mínimo	86
6.6.3.3. Tensión Tractiva	86

6.6.3.4. Profundidades	88
6.6.3.5. Tipo de tubería	88
6.6.4. Parámetros de diseño	89
6.6.4.1. Periodo de diseño	89
6.6.4.2. Factores de importancia para periodo de diseño	89
6.6.4.3. Área del proyecto	91
6.6.4.4. Población de diseño	91
6.6.4.5. Dotaciones de agua potable	99
6.6.4.6. Áreas de aportación	101
6.6.4.7. Caudales de diseño para aguas residuales	101
6.6.4.8. Caudales de proyecciones futuras	108
6.6.4.9. Velocidades en tuberías	110
6.6.4.10. Coeficientes de Rugosidad	110
6.6.5. Impactos ambientales	118
6.7. Metodología. Modelo operativo	130
6.7.1. Presupuesto	130
6.7.2. Especificaciones técnicas	150
6.8. Administración	188
6.9. Previsión de la evaluación	188

C. MATERIALES DE REFERENCIA

BIBLIOGRAFÍA	189
ANEXOS	190
ÍNDICE DE TABLAS	
Tabla III.1. Técnicas e Instrumentos	44
Tabla III.2.Operacionalizacion V.I	45
Tabla III.3. Operacionalizacion V.D	40
Tabla III.4. Plan de Recolección de Información	47
Tabla IV.1. Pregunta 1	49
Tabla IV.2.Pregunta 2	50
Tabla IV.3.Pregunta 3	51
Tabla IV.4.Pregunta 4	52
Tabla IV.5.Pregunta 5	53
Tabla IV.6.Pregunta 6	54
Tabla IV.7.Pregunta 7	55
Tabla IV.8.Pregunta 8	56
Tabla IV.9.Pregunta 9	57
Tabla IV.10.Pregunta 10	58
Tabla IV.11.CHI - CUADRADO	63
Tabla VI.1.Población	74
Tabla VI.2.Diametro de Tuberías y Pozos	84
Tabla VI.3.Velocidades Máximas	86
Tabla VI.4.Coeficiente de Rugosidad	89
Tabla VI.5.Periodos de Diseño para los sistemas	9(
Tabla VI.6.Periodos de Diseño Económico	90
Tabla VI.7.Poblacion INEC	93
Tabla VI.8.Poblacion Futura	96
Tabla VI.9.Dotación de agua - Zona	100
Tabla VI.10.Dotacion de agua - Niveles	100

Tabla VI.11.Caudal de Infiltración	106
Tabla VI.12.Tipo de Tubería	106
Tabla VI.13.Coeficientes de Rugosidad	110
Tabla VI.13.Coeficientes de Rugosidad	110
Tabla VI.14.Calculo Sanitario	112
Tabla VI.15.Calculo Sanitario	113
Tabla VI.16.Calculo Hidráulico	115
Tabla VI.17.Calculo Hidráulico	116
Tabla VI.18.Calculo Hidráulico	117
Tabla VI.19.Matriz de Impacto Ambiental	120
Tabla VI.20.Matriz de LEOPOLD	127
Tabla VI.21.Medidas de Mitigación	129
INDICE DE FIGURAS	
Figura I.1.Delimitación Espacial	6
Figura II.1.Esquema Variable Independiente	
Figura II.2.Esquema Variable Dependiente	14
Figura II.3.Esquema Colector	26
Figura II.4.Esquema Camas Filtrantes	28
Figura II.5.Esquema Depurador	30
Figura II.6.Esquema Tanque IMHOFF	35
Figura VI.1.Esquema Ubicación del Proyecto	72
Figura VI.2.Trazado Bayoneta	81
Figura VI.3.Trazado Peine	82
Figura VI.4.Trazado Combinado	83
INDICE DE GRAFICAS	
Grafico IV.1.Pregunta 1	50
Grafico IV.2.Pregunta 2	51
Grafico IV.3.Pregunta 3	52
Grafico IV.4.Pregunta 4	53

Grafico IV.5.Pregunta 5	5
Grafico IV.6.Pregunta 6	55
Grafico IV.7.Pregunta 7	56
Grafico IV.8.Pregunta 8	57
Grafico IV.9.Pregunta 9	58
Grafico IV.10.Pregunta 10	59
Grafico IV.10.Pregunta 10	59

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

TEMA: LAS AGUAS RESIDUALES DOMÉSTICAS Y SU INCIDENCIA EN

LA CALIDAD DE VIDA DE LOS MORADORES DE LA LOTIZACIÓN RIO

PASTAZA, PARROQUIA MADRE TIERRA, PROVINCIA DE PASTAZA.

Autor: Mónica Paulina Sisa Pilco

Fecha: Julio 2013

RESUMEN EJECUTIVO

El Barrio "18 de Julio", está ubicado en la parroquia Madre Tierra del Cantón

Mera, Provincia de Pastaza.

De acuerdo con la investigación cuali-cuantitativa realizada a través de encuestas

y con la investigación de campo y exploratoria, es indudable la necesidad de

introducir un sistema de evacuación de aguas residuales domésticas, debido a las

condiciones en las que actualmente se encuentra el Barrio "18 de julio".

Con lo anteriormente mencionado, se dispuso solucionar el problema diseñando la

red de alcantarillado sanitario, el cual tendrá como función transportar las aguas

servidas de las viviendas por medio de la fuerza gravitacional a través de un

conducto circular de PVC; éstas aguas servidas serán evacuadas al alcantarillado

existente en el barrio continuo que se comunica con la lotización, Para el

desarrollo del mismo, se necesitan tomar en cuenta factores como: el crecimiento

poblacional y el estudio topográfico.

XIII

Para el diseño del alcantarillado sanitario, es necesario considerar parámetros como: área que se va a servir, periodo de diseño, caudales de infiltración, conexiones ilícitas; todo basado en normas generales para el diseño de redes de alcantarillado.

Con el diseño completamente terminado, se elaboró un juego de planos, se calculó los materiales y mano de obra necesarios para la ejecución del proyecto.

Al término de este proceso, se entregó el estudio y diseño completo del sistema de alcantarillado al GADPPz, para que en un futuro pueda realizar el proyecto de la mejor manera.

CAPITULO I

1.-PROBLEMA

1.1.- TEMA

Las Aguas residuales domésticas y su incidencia en la calidad de vida de los moradores de la lotización Rio Pastaza, Parroquia Madre Tierra, Provincia de Pastaza.

1.2.-PLANTEAMIENTO DEL PROBLEMA

Desde la antigüedad el hombre ha tenido la impetuosa tarea de investigar todo cuanto ocurre a su alrededor, buscando dar solución a dichos inconvenientes que se presentan en la naturaleza, como por ejemplo: la conducción de aguas servidas, aguas lluvias, contaminación de los suelos y enfermedades entre otras, para esto es necesario contar con un servicio básico como es un sistema d alcantarillado acorde a las necesidades del lugar y el desarrollo del mismo.

La recolección y el transporte de aguas residuales desde los diversos puntos en que se origina constituyen el primer paso del saneamiento de una población. La salud es el eje principal en la sociedad la misma que necesita urgentes soluciones encaminadas a cubrir los diferentes servicios básicos.

Un alcantarillado se denomina como un sistema de estructuras y tuberías que funcionan a gravedad, usadas para el transporte de aguas servidas y aguas lluvias desde el lugar que se generan hasta el sitio que se disponen a tratar, mejorando el desarrollo de la comunidad, por lo que un alcantarillado sanitario se lo construye con la finalidad de conducir aguas residuales domésticas y prevenir enfermedades.

Toda comunidad genera residuos tanto sólidos como líquidos, la fracción líquida (aguas residuales) es el agua de la cual se desprende la población una vez q ha cumplido con su ciclo o función.

En la actualidad el barrio 18 de julio de la lotización rio Pastaza Parroquia Madre Tierra, Provincia de Pastaza, no cuenta con el sistema de alcantarillado para el desalojo de las aguas servidas producidas por la comunidad del sector. Debido a que no cuentan con este servicio los moradores están expuestos a posibles enfermedades ocasionadas por este problema, actualmente las redes de alcantarillado son un requisito fundamental para la aprobar la construcción de nuevas lotizaciones.

El transporte de esta agua, enviada como descarga a los ríos, quebradas, necesita ser tratada para que el impacto en el medio ambiente sea menos perjudicial, la carencia del sistema de alcantarillado va asociada a la falta de suministros de agua y al bajo nivel económico de la población rural.

Podemos definir el agua residual como la combinación de los residuos líquidos procedentes tanto de residencias como de instituciones públicas, establecimientos industriales y comerciales.

1.2.1. CONTEXTUALIZACIÓN

El crecimiento poblacional del país ha generado un aumento en la extracción y consumo del líquido vital, el mismo que ha ocasionado mayor presencia de aguas residuales.

Las aguas residuales domésticas contienen diversos compuestos potencialmente dañinos. La descarga de aguas residuales crudas en el ambiente afecta a la salud y por ende la calidad de vida del ser humano debido a un gran número de enfermedades que en gran parte son responsables de la mortalidad en los países del Tercer Mundo.

La salud es el eje principal en la sociedad la misma que necesita soluciones urgentes orientadas a cubrir servicios como son: el alcantarillado y el tratamiento de aguas residuales acorde a las necesidades del lugar.

La carencia de este servicio favorece a que aparezcan insectos, roedores y otros animales transmisores de enfermedades debido a que las aguas servidas contienen grandes cantidades de materia orgánica que se descomponen con mucha facilidad dando origen a microorganismos, gases, etc.

En la provincia de Pastaza existen distintos lugares que carecen de este servicio ya sea por la falta de preocupación de sus autoridades o por la falta de recursos económicos es por eso que este es uno de los principales problemas sanitarios que enfrenta el país.

"La red de alcantarillado se considera un servicio básico, sin embargo la cobertura de estas redes es ínfima en relación con la cobertura de las redes de agua potable, esto genera importantes problemas sanitarios. Durante mucho tiempo, la preocupación de las autoridades municipales o departamentales estaba más ocupada en construir redes de agua potable, dejando para un futuro indefinido la construcción de las redes de alcantarillado". (Tesis Martínez 2006).

"En el cantón Pastaza el servicio de alcantarillado es proporcionado por el municipio y brinda una cobertura de 100% en el casco central, y un 70% en las parroquias.

Respecto al manejo de aguas residuales en la actualidad el barrio 18 de julio de la lotización rio Pastaza Parroquia Madre Tierra, Provincia de Pastaza, no cuenta con un alcantarillado sanitario para la evacuación de las aguas residuales domésticas, ya que no se han realizado gestiones necesarias para su construcción.

Los servicios básicos como son agua potable y alcantarillado deben estar siempre a la par ya que si existe consumo de agua existirán recursos que deberán ser recolectados. Al realizar la construcción de este servicio mejorara considerablemente la calidad de vida de cada uno de los habitantes del sector.

1.2.2. ANÁLISIS CRÍTICO

El barrio 18 de julio de la lotización rio Pastaza, Parroquia Madre Tierra, Provincia de Pastaza, posee una población aproximada de 1588 habitantes y sigue creciendo, el mismo que no cuenta con uno de los principales servicios básicos como es el alcantarillado lo que causa molestias a los habitantes del lugar debido al sin número de peligros que se enfrentan cuando el invierno llega, como la presencia de enfermedades perjudiciales para el ser humano, también la presencia de mosquitos y roedores causantes de dichas enfermedades. Por lo que es necesaria la construcción de una red de alcantarillado en esta localidad para beneficio y desarrollo de la misma.

1.2.3. PROGNOSIS

Si continúa la carencia de un adecuado sistema de alcantarillado los problemas que afectan en la actualidad a la parroquia Madre Tierra se convertirán en un peligro inminente que irá creciendo hasta limitar el desarrollo de la comunidad e impedir la producción agrícola y comercial que allí se realiza, aumentando la falta de saneamiento y poniendo el peligro el medio ambiente como la salud misma de los moradores de la comunidad.

Es así, que se debe buscar alternativas para atender la demande de un sistema de alcantarillado sanitario manteniendo una adecuada viabilidad técnica y económica de soluciones que reduzcan costos y mantenga su eficiencia.

En el caso de no realizar la implantación de un sistema de alcantarillado existirá una degradación en la calidad de vida de sus habitantes, debido a que no cuentan con los servicios básicos necesarios para tener un buen vivir.

1.2.4. FORMULACION DEL PROBLEMA

¿Qué adecuado sistema de alcantarillado será necesario para mejorar la calidad de vida de los habitantes del barrio 18 de julio de la lotización rio Pastaza, Parroquia Madre Tierra, Provincia de Pastaza?

1.2.5. INTERROGANTES (Subproblemas)

¿Por qué no se realizó los respectivos estudios con anterioridad?

¿Existe o no estudios para realizar una recolección adecuada de las aguas residuales domesticas?

¿Cómo se tratan las aguas residuales domesticas actualmente?

¿Qué tipo de procesos existen para una adecuada recolección de las aguas residuales domesticas?

1.2.6. DELIMITACION DEL OBJETO DE INVESTIGACION

1.2.6.1 CONTENIDO

Para determinar las condiciones actuales de la parroquia Madre Tierra y así conocer la calidad de vida de los habitantes el presente trabajo de investigación se desarrollara en el ámbito de la Ingeniería Civil, Ingeniería Sanitaria, en el área de Alcantarillado.

1.2.6.2. **ESPACIAL**

Este proyecto se realizara en la provincia de Pastaza cantón Mera en el barrio 18 de julio de la lotización rio Pastaza Parroquia Madre Tierra, Provincia de Pastaza.

La ciudad de Puyo se encuentra ubicada sobre el pintoresco valle del rio que lleva su mismo nombre, el que se extiende sobre las cordilleras del Pindo Mirador, del Tiz,el Siguin, y el margen izquierdo del importante y caudaloso rio Pastaza.

Figura I.1: Fuente GADPPz

Delimitación espacial del proyecto

1.2.6.3. TEMPORAL

Esta investigación se realizara desde el mes de noviembre de 2012 hasta el mes de mayo del año 2013

1.3. JUSTIFICACION

El estudio proyectado para el Barrio 18 de julio de la lotización rio Pastaza Parroquia Madre Tierra, Provincia de Pastaza, procura dar soluciones al problema de la evacuación de aguas residuales domesticas existente, para satisfacer las necesidades y aspiraciones de sus habitantes, de contar con un servicio elemental como es el alcantarillado.

Con la realización del sistema de alcantarillado la comunidad podrá mejorar su calidad de vida para de esta manera evitar la propagación de enfermedades y la contaminación del ambiente que son algunos de los problemas que aquejan a este sector. Esto le permitirá crecer y tener un desarrollo socio – económico.

Con la realización de este proyecto se espera disminuirán enfermedades que se han generado por la contaminación de las aguas residuales, lo cual llevará a un desarrollo comunitario que beneficiara a la población.

Dentro de las necesidades básicas que necesita una comunidad para su desarrollo es contar con un sistema adecuado de alcantarillado el cual brinde un servicio de recolección de aguas sanitarias y pluviales correctas, las cuales son producidas por la población, el cual estará contemplada dentro de los parámetros de análisis, diseño y cierre del mismo, y las correspondientes medidas de mitigación de impactos ambientales.

El presente trabajo va hacer estudiado principalmente de acuerdo a las características de la zona, topografía del sector, para el mismo se realizaran estudios de tipos de suelo, estudios topográficos, estudios hidrológicos, clima y temperatura. De acuerdo a las necesidades en las que se basan este proyecto, es ineludible establecer un adecuado manejo y tratamiento de aguas sanitarias, debido a que el grado de contaminación ambiental que existe en la actualidad se encuentra dentro de los parámetros controlables. Por lo tanto es prudente para las autoridades actuales que se encuentran al frente de la administración de la provincia, mitigarlos creando un sistema de alcantarillado en el cual se pueda depositar y controlar dichas aguas.

1.4. OBJETIVOS

1.4.1. GENERAL

 Desarrollar qué apropiado sistema de alcantarillado mejora la calidad de vida de los habitantes barrio 18 de julio de la lotización rio Pastaza, Parroquia Madre Tierra, Provincia de Pastaza.

1.4.2. ESPECIFICOS

- Analizar como incide en la calidad de vida de los habitantes del Barrio 18 de Julio de la lotización rio Pastaza, parroquia Madre Tierra, Provincia de Pastaza la falta de un sistema adecuado para la evacuación del agua residual.
- Proponer un estudio eficiente para el diseño de la red de alcantarillado para la evacuación de aguas residuales y así mejorar la calidad de vida de los habitantes del barrio 18 de Julio de la lotización rio Pastaza, parroquia Madre Tierra, Provincia de Pastaza.

CAPITULO II

2.0. MARCO TEORICO

2.1. ANTECEDENTES INVESTIGATIVOS

La Parroquia Madre Tierra debe constar con un buen sistema de alcantarillado

sanitario razón por la cual nos hemos visto en la necesidad de realizar estudios

encaminados a mejorar las condiciones de vida de sus habitantes en especial la salud

de ellos y además proteger el medio ambiente de la contaminación que dichas aguas

producen.

Fuente de Información: Tesis 600

Autor, Apellido y Nombre: DefazBucheli Milton

Año de Realización: 2011

Lugar Específico de la Realización: Cantón La Mana, Provincia de Cotopaxi

Tema: Estudio del sistema de alcantarillado pluvial para el Cantón la Mana,

Provincia de Cotopaxi para mejorar la calidad de vida de sus habitantes.

Objetivo General:

Evaluar las condiciones de desfogue de las aguas lluvias e inundaciones en el Cantón la Mana, Provincia de Cotopaxi.

Fuente de Información: Tesis 628

Autor, Apellido y Nombre: María Gabriela Manzano Roldán

Año de Realización: 2011

Lugar Específico de la Realización: Parroquia San Miguelito del cantón Píllaro Provincia de Tungurahua.

Tema:

"Las aguas residuales y su incidencia en la calidad de vida de los habitantes del barrio el rosario pertenecientes a la Parroquia San Miguelito del cantón Píllaro Provincia de Tungurahua.

Objetivo General:

Analizar la evacuación de las aguas residuales y su incidencia en la calidad de vida de los habitantes del Barrio El Rosario de la Parroquia San Miguelito del cantón Píllaro Provincia de Tungurahua.

2.2. FUNDAMENTACION FILOSÓFICA

La principal finalidad de la investigación tiene como aspecto primordial la investigación de las aguas residuales domesticas para que los habitantes de la parroquia Madre Tierra mejoren su calidad de vida, identificar posibles cambios que ocurran en el transcurso de la investigación. El estudio y posteriormente la construcción del sistema de alcantarillado es la mejor forma de mejor la calidad de vida de los moradores del sector. El tipo de investigación es abierta y participativa lo que permite desarrollar de una mejor madera dicha investigación, y conocer los beneficios que brinda el sistema de alcantarillado. Por último es conveniente notar un énfasis en el análisis cualitativo con la finalidad de transmitir alternativas o soluciones con el nivel investigativo.

2.3. FUNDAMENTACION LEGAL

CONSTITUCIÓN DE LA REPUBLICA DEL ECUADOR

- "Art. 314.- El Estado será responsable de la provisión de los servicios públicos de agua potable y de riego, saneamiento, energía eléctrica, telecomunicaciones, vialidad, infraestructuras portuarias y aeroportuarias, y los demás que determine la ley. El Estado garantizará que los servicios públicos y su provisión respondan a los principios de obligatoriedad, generalidad, uniformidad, eficiencia, responsabilidad, universalidad, accesibilidad, regularidad, continuidad y calidad. El Estado dispondrá que los precios y tarifas de los servicios públicos sean equitativos, y establecerá su control y regulación."
- "Art. 318.- El agua es patrimonio nacional estratégico de uso público, dominio inalienable e imprescriptible del Estado, y constituye un elemento vital para la naturaleza y para la existencia de los seres humanos. Se prohíbe toda forma de privatización del agua. La gestión del agua será exclusivamente pública o comunitaria. El servicio público de saneamiento, el abastecimiento de agua potable y el riego serán prestados únicamente por personas jurídicas estatales o comunitarias."
- "Art. 264.- Los gobiernos municipales tendrán las siguientes competencias exclusivas sin perjuicio de otras que determine la ley:
 - Planificar el desarrollo cantonal y formular los correspondientes planes de ordenamiento territorial, de manera articulada con la planificación nacional,

- regional, provincial y parroquial, con el fin de regular el uso y la ocupación del suelo urbano y rural.
- Ejercer el control sobre el uso y ocupación del suelo en el cantón.
- Planificar, construir y mantener la vialidad urbana.
- Prestar los servicios públicos de agua potable, alcantarillado, depuración de aguas residuales, manejo de desechos sólidos, actividades de saneamiento ambiental y aquellos que establezca la ley."

LEY ORGANICA DE SALUD

"Art. 102.- Es responsabilidad del Estado, a través de los municipios del país y en coordinación con las respectivas instituciones públicas, dotar a la población de sistemas de alcantarillado sanitario, pluvial y otros de disposición de excretas y aguas servidas que no afecten a la salud individual, colectiva y al ambiente; así como de sistemas de tratamiento de aguas servidas."

"Art. 103.- Se prohíbe a toda persona, natural o jurídica, descargar o depositar aguas servidas y residuales, sin el tratamiento apropiado, conforme lo disponga en el reglamento correspondiente, en ríos, mares, canales, quebradas, lagunas, lagos y otros sitios similares. Se prohíbe también su uso en la cría de animales o actividades agropecuarias."

2.4. CATEGORIAS FUNDAMENTALES

2.4.1 Supraordinación de las Variables

Aguas Residuales Domesticas

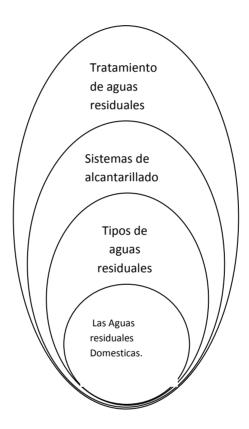


Figura II.1. Esquema de la Variable Independiente

V.I

VARIABLE INDEPENDIENTE

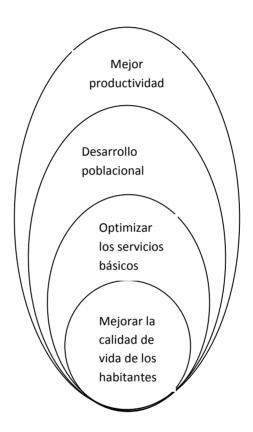


Figura II.2. Esquema de la Variable Dependiente

V.D

VARIABLE DEPENDIENTE

2.4.2. DEFINICIONES

VARIABLE INDEPENDIENTE

2.4.2.1. LAS AGUAS RESIDUALES

El término agua residual define un tipo de agua que está contaminada con sustancias fecales y orina, procedentes de desechos orgánicos humanos o animales. Su importancia es tal que requiere sistemas de canalización, tratamiento y desalojo. Su tratamiento nulo o indebido genera graves problemas de contaminación.

A las aguas residuales también se les llama aguas servidas, fecales o cloacales. Son residuales, habiendo sido usada el agua, constituyen un residuo, algo que no sirve para el usuario directo; y cloacales porque son transportadas mediante cloacas (del latín *cloaca*, alcantarilla), nombre que se le da habitualmente al colector. Algunos autores hacen una diferencia entre aguas servidas y aguas residuales en el sentido que las primeras solo provendrían del uso doméstico y las segundas corresponderían a la mezcla de aguas domésticas e industriales. En todo caso, están constituidas por todas aquellas aguas que son conducidas por el alcantarillado e incluyen, a veces, las aguas de lluvia y las infiltraciones de agua del terreno.

El término aguas negras también es equivalente debido a la coloración oscura que presentan.

Todas las aguas naturales contienen cantidades variables de origen y tamaño de sustancias en concentración como sólidos en suspensión DQO, DBO que varían de unos pocos mg/litro en el agua de lluvia a cerca de 35 mg/litro en el agua de mar. A esto hay que añadir, en las aguas residuales, las impurezas procedentes del proceso productor de desechos, que son los propiamente llamados vertidos. Las aguas residuales pueden estar contaminadas por desechos urbanos o bien proceder de los variados procesos industriales.

La composición y su tratamiento pueden diferir mucho de un caso a otro, por lo que en los residuos industriales es preferible la depuración en el origen del vertido que su depuración conjunta posterior.

Por su estado físico se puede distinguir:

- Fracción suspendida: desbaste, decantación, filtración.
- Fracción coloidal: precipitación química.
- Fracción soluble: oxidación química, tratamientos biológicos, etc.

2.4.2.2. TIPOS DE AGUAS RESIDUALES

La clasificación se hace con respecto a su origen, ya que este origen es el que va a determinar su composición.

Aguas residuales urbanas

Son aquellas provenientes de inodoros, lavaderos, cocinas y otros elementos domésticos. Esta agua están compuestas por sólidos suspendidos (generalmente materia orgánica biodegradable), sólidos sedimentables (principalmente materia inorgánica), nutrientes (nitrógeno y fósforo) y organismos patógenos.

Son los vertidos que se generan en los núcleos de población urbana como consecuencia de las actividades propias de éstos.

Los aportes que generan esta agua son:

- aguas negras o fecales
- aguas de lavado doméstico
- aguas de limpieza de calles

• aguas de lluvia y lixiviados

Las aguas residuales urbanas presentan una cierta homogeneidad cuanto a composición y carga contaminante, ya que sus aportes van a ser siempre los mismos. Pero esta homogeneidad tiene unos márgenes muy amplios, ya que las características de cada vertido urbano van a depender del núcleo de población en el que se genere, influyendo parámetros tales como el número de habitantes, la existencia de industrias dentro del núcleo, tipo de industria, etc.

Aguas residuales industriales

Se originan de los desechos de procesos industriales o manufactureros y, debido a su naturaleza, pueden contener, además de los componentes citados anteriormente, elementos tóxicos tales como plomo, mercurio, níquel, cobre y otros, que requieren ser removidos en vez de ser vertidos al sistema de alcantarillado.

Son aquellas que proceden de cualquier actividad o negocio en cuyo proceso de producción, transformación o manipulación se utilice el agua. Son enormemente variables en cuanto a caudal y composición, difiriendo las características de los vertidos no sólo de una industria a otro, sino también dentro de un mismo tipo de industria.

A veces, las industrias no emites vertido s de forma continua, si no únicamente en determinadas horas del día o incluso únicamente en determinadas épocas de año, dependiendo del tipo de producción y del proceso industrial. También son habituales las variaciones de caudal y carga a lo largo del día.

Son mucho más contaminadas que las aguas residuales urbanas, además, con una contaminación mucho más difícil de eliminar.

Su alta carga unida a la enorme variabilidad que presentan, hace que el tratamiento de las aguas residuales industriales sea complicado, siendo preciso un estudio específico para cada caso.

Aguas domésticas

Las aguas servidas domésticas son desechos líquidos provenientes de viviendas, instituciones y establecimientos comerciales.

Aguas grises

Aguas residuales provenientes de las tinas y las duchas, lavaplatos y otros similares, excluyendo las aguas negras.

Aguas negras

Las aguas negras son fundamentalmente las aguas de abastecimiento de una población después de haber sido impurificadas por diversos usos, las que pueden ser originados por:

- Desechos Humanos y animales
- Desperdicios caseros
- Corrientes pluviales
- Infiltración de aguas subterráneas
- Desechos industriales

Aguas industriales

Desechos líquidos provenientes de las Industria. Depende del tipo de Industria podría contener, además de residuos tipo doméstico desechos de tipos industriales.

Aguas agrarias

Son aguas procedentes de actividades agrícolas y ganaderas. La denominación de aguas agrarias se debe reservar a las procedentes exclusivamente de la actividad agrícola, aunque está muy generalizada ya que su aplicación también procede de actividades ganaderas.

2.4.2.3. SISTEMAS DE ALCANTARILLADO

Un sistema de alcantarillado está constituido por un conjunto de tuberías, instalaciones y equipos destinados a colectar y transportar aguas residuales y/o aguas de lluvia a un sitio final conveniente, de forma continua y segura para el medio ambiente.

Un sistema de alcantarillado que transporta en forma conjunta aguas residuales y aguas de lluvia, se denomina sistema combinado o mixto, si el sistema tiene como objetivo transportar únicamente aguas residuales se denomina sistema sanitario, y si sólo transporta aguas de lluvia, se denomina sistema pluvial. En el módulo, se desarrollan las acciones de operación y mantenimiento para los sistemas de alcantarillado sanitario y pluvial, por ser estos dos sistemas que con mayor frecuencia se construyen en el país. La conducción de agua en los sistemas de alcantarillado son por gravedad o por impulsión mediante estaciones elevadoras, accionadas con sistemas de bombeo de aguas residuales.

Existen tres tipos de alcantarillado:

- Alcantarillado Sanitario
- Alcantarillado Pluvial
- Alcantarillado Combinado

Componentes de un sistema de alcantarillado sanitario

Los componentes de un Sistema de Alcantarillado Sanitario son los siguientes:

- a) **Instalación sanitaria domiciliaria:** Es el conjunto de tuberías de agua potable, alcantarillado, accesorios y artefactos sanitarios, que se encuentran dentro del límite de una propiedad privada.
- b) **Tubería de conexión domiciliaria**: Es el colector particular o secundario, que conduce las aguas residuales de una propiedad privada, hasta la red de alcantarillado sanitario.
- c) Colectores principales: Son las tuberías, que reciben las aguas residuales provenientes de los colectores secundarios de nivel domiciliar.
- d) **Cámara de inspección**: Es el pozo de visita construido en la intersección de dos o más colectores principales, con acceso, a través de una abertura en su parte superior, y cubierta por una tapa a nivel (rasante) de la calle. La cámara, tiene el objeto de permitir la inspección y la realización de las tareas de limpieza y mantenimiento.
- e) **Terminal de limpieza**: Es la prolongación del colector principal en forma vertical, que permite efectuar la limpieza en los tramos de arranque de la red.
- f) **Tubo de inspección y limpieza**: Tubo vertical conectado a los colectores principales, que permite la inspección e introducción de las herramientas o equipos de limpieza, puede estar instalado en cualquier punto de la red, en algunos casos reemplazando a las cámaras de inspección, generalmente en tramos rectos extensos.
- g) **Caja de paso**: Es una cámara sin acceso, localizada en puntos singulares de la red por necesidad constructiva.
- h) **Sifón Invertido**: Estructura construida con uno o más colectores principales que trabajan a presión.
- i) **Interceptor:** o lector que recibe la contribución de varios colectores principales, localizados en forma paralela y a lo largo de las márgenes de quebradas y ríos, o en la parte inferior de la cuenca.

- j) **Emisario:** Colector de mayor diámetro, que recibe la contribución de los interceptores, tiene como origen el punto más bajo de la cuenca y conduce las aguas al punto de descarga hacia el cuerpo receptor, o (en su caso) hacia la planta de depuración. Se caracteriza porque a lo largo de su desarrollo no recibe contribución alguna.
- k) **Estación elevadora:** Cárcamo de bombeo de aguas residuales que incluye rejillas de retención de basuras o material grueso, compuertas, bombas tuberías de impulsión y succión y sistemas de mando y control.

Componentes de un sistema de alcantarillado pluvial

- a) Instalación pluvial domiciliaria: Es el conjunto de canaletas, tuberías de desagüe, accesorios y artefactos, que se encuentran dentro del límite de una propiedad privada. Tubería de conexión domiciliaria: Es el colector particular que conduce las aguas pluviales de una propiedad hasta la red de alcantarillado pluvial.
- c) **Cuneta:** Canal de sección triangular o rectangular, que se forma entre el cordón de la acera y la calzada, destinado a conducir las aguas pluviales que escurren superficialmente, hacia los sumideros.
- d) **Sumidero:** Estructura hidráulica destinada a captar las aguas superficiales, consistente en una rejilla conectada a una cámara receptora, ubicada debajo de la acera o la cuneta.

Los sumideros, generalmente, están ubicados en las esquinas y cerca de las cámaras de inspección.

- e) **Tuberías de conexión de sumideros**: Son las tuberías que conducen las aguas captadas por los sumideros y se conectan directamente a las cámaras de inspección.
- f) **Cámara de inspección**: Es el pozo de visita construido en la intersección de dos o más colectores domiciliarios, con acceso a través de una abertura en su parte superior, cubierta por una tapa a nivel (rasante) de la calle. Permite la inspección y la realización de las tareas de limpieza y mantenimiento.

g) Colectores principales: Son las tuberías que reciben las aguas pluviales provenientes de los colectores secundarios domiciliarios, y que a su vez, reciben los aportes de los sumideros mediante las cámaras de inspección. Los colectores principales descargan las aguas en los cuerpos receptores más cercanos de acuerdo a las características topográficas del lugar.

2.4.2.4 TRATAMIENTO DE AGUAS RESIDUALES

El tratamiento de aguas residuales consiste en una serie de procesos físicos, químicos y biológicos que tienen como fin eliminar los contaminantes físicos, químicos y biológicos presentes en el agua efluente del uso humano. El objetivo del tratamiento es producir agua limpia (o efluente tratado) o reutilizable en el ambiente y un residuo sólido o fango (también llamado biosólido o lodo) convenientes para su disposición o re-uso. Es muy común llamarlo depuración de aguas residuales para distinguirlo del tratamiento de aguas potables.

Las aguas residuales son provenientes de tocadores, baños, regaderas o duchas, cocinas, etc. que son desechados a las alcantarillas o cloacas. En muchas áreas, las aguas residuales también incluyen algunas aguas sucias provenientes de industrias y comercios. La división del agua casera drenada en aguas grises y aguas negras es más común en el mundo desarrollado, el agua negra es la que procede de inodoros y orinales y el agua gris, procedente de piletas y bañeras, puede ser usada en riego de plantas y reciclada en el uso de inodoros, donde se transforma en agua negra. Muchas aguas residuales también incluyen aguas superficiales procedentes de las lluvias. Las aguas residuales municipales contienen descargas residenciales, comerciales e industriales, y pueden incluir el aporte de precipitaciones pluviales cuando se usa tuberías de uso mixto pluvial - residuales.

Los sistemas de alcantarillado que trasportan descargas de aguas sucias y aguas de precipitación conjuntamente son llamados sistemas de alcantarillas combinado. La práctica de construcción de sistemas de alcantarillas combinadas es actualmente menos común en los Estados Unidos y Canadá que en el pasado, y se acepta menos dentro de las regulaciones del Reino Unido y otros países europeos, así como en otros países como Argentina. Sin embargo, el agua sucia y agua de lluvia son recolectadas y transportadas en sistemas de alcantarillas separadas, llamados alcantarillas sanitarias y alcantarillas de tormenta de los Estados Unidos, y "alcantarillas fétidas" y "alcantarillas de agua superficial" en Reino Unido, o cloacas y conductos pluviales en otros países europeos. El agua de lluvia puede arrastrar, a través de los techos y la superficie de la tierra, varios contaminantes incluyendo partículas del suelo, metales pesados, compuestos orgánicos, basura animal, aceites y grasa. Algunas jurisdicciones requieren que el agua de lluvia reciba algunos niveles de tratamiento antes de ser descargada al ambiente. Ejemplos de procesos de tratamientos para el agua de lluvia incluyen tanques de sedimentación, humedales y separadores de vórtice (para remover sólidos gruesos).

El sitio donde el proceso es conducido se llama Planta de tratamiento de aguas residuales. El diagrama de flujo de una planta de tratamiento de aguas residuales es generalmente el mismo en todos los países:

Tratamiento físico químico

- Remoción de gas.
- Remoción de arena.
- Precipitación con o sin ayuda de coagulantes o floculantes.
- Separación y filtración de sólidos.

El agregado de cloruro férrico ayuda a precipitar en gran parte a la remoción de fósforo y ayuda a precipitar biosólidos.

Tratamiento biológico

Artículo principal: Saneamiento ecológico.

Lechos oxidantes o sistemas aeróbicos.

• Post – precipitación.

• Liberación al medio de efluentes, con o sin desinfección según las

normas de cada jurisdicción.

• Biodigestión anaerobia y humedales artificiales utiliza la materia

orgánica biodegradable de las aguas residuales, como nutrientes de

una población bacteriana, a la cual se le proporcionan condiciones

controladas para controlar la presencia de contaminantes.

Tratamiento químico

Este paso es usualmente combinado con procedimientos para remover sólidos como

la filtración. La combinación de ambas técnicas es referida en los Estados Unidos

como un tratamiento físico-químico.

Eliminación de los fosfatos de las aguas residuales domésticas

El tratamiento de las aguas residuales domésticas incluye la eliminación de los

fosfatos. Un método muy simple consiste en precipitar los fosfatos con cal apagada.

Los fosfatos pueden estar presentes de muy diversas formas como el ion Hidrógeno

fosfato.

Eliminación de nitratos de las aguas residuales domésticas y procedentes de la

industria

Se basa en dos procesos combinados de nitrificación y desnitrificación que conllevan

una producción de fango en forma de biomasa fácilmente decantable.

24

Etapas del Tratamiento

• Tratamiento primario

El tratamiento primario es para reducir aceites, grasas, arenas y sólidos gruesos. Este paso está enteramente hecho con maquinaria, de ahí conocido también como tratamiento mecánico.

Remoción de sólidos

En el tratamiento mecánico, el afluente es filtrado en cámaras de rejas para eliminar todos los objetos grandes que son depositados en el sistema de alcantarillado, tales como trapos, barras, compresas, tampones, latas, frutas, papel higiénico, etc. Éste es el usado más comúnmente mediante una pantalla rastrillada automatizada mecánicamente. Este tipo de basura se elimina porque esto puede dañar equipos sensibles en la planta de tratamiento de aguas residuales, además los tratamientos biológicos no están diseñados para tratar sólidos.

Remoción de arena

Esta etapa (también conocida como escaneo o maceración) típicamente incluye un canal de arena donde la velocidad de las aguas residuales es cuidadosamente controlada para permitir que la arena y las piedras de ésta tomen partículas, pero todavía se mantiene la mayoría del material orgánico con el flujo. Este equipo es llamado colector de arena. La arena y las piedras necesitan ser quitadas a tiempo en el proceso para prevenir daño en las bombas y otros equipos en las etapas restantes del tratamiento. Algunas veces hay baños de arena (clasificador de la arena) seguido por un transportador que transporta la arena a un contenedor para la deposición. El

Figura II.3: Colector

contenido del colector de arena podría ser alimentado en el incinerador en un procesamiento de planta de fangos, pero en muchos casos la arena es enviada a un terraplén.

Sondeo

El líquido libre de abrasivos es pasado a través de pantallas arregladas o rotatorias para remover material flotante y materia grande como trapos; y partículas pequeñas como maíz. Los escaneos son recolectados y podrán ser regresados a la planta de tratamiento de fangos o podrán ser dispuestos al exterior hacia campos o incineración. En la maceración, los sólidos son cortados en partículas pequeñas a través del uso de cuchillos rotatorios montados en un cilindro revolvente, es utilizado en plantas que pueden procesar esta basura en partículas. Los maceradores son, sin embargo, más caros de mantener y menos confiables que las pantallas físicas.

Sedimentación

Muchas plantas tienen una etapa de sedimentación donde el agua residual se pasa a través de grandes tanques circulares o rectangulares. Estos tanques son comúnmente llamados clarificadores primarios o tanques de sedimentación primarios. Los tanques son lo suficientemente grandes, tal que los sólidos fecales pueden situarse y el

material flotante como la grasa y plásticos pueden levantarse hacia la superficie y desnatarse. El propósito principal de la etapa primaria es producir generalmente un líquido homogéneo capaz de ser tratado biológicamente y unos fangos o lodos que puede ser tratado separadamente. Los tanques primarios de establecimiento se equipan generalmente con raspadores conducidos mecánicamente que llevan continuamente los fangos recogido hacia una tolva en la base del tanque donde mediante una bomba puede llevar a éste hacia otras etapas del tratamiento.

Tratamiento secundario

El tratamiento secundario está diseñado para degradar sustancialmente el contenido biológico del agua residual, el cual deriva de residuos humanos, residuos de alimentos, jabones y detergentes. La mayoría de las plantas municipales utilizan procesos biológicos aeróbicos para este fin.

Desbaste

Consiste habitualmente en la retención de los sólidos gruesos del agua residual mediante una reja, manual o autolimpiante, o un tamiz, habitualmente de menor paso o luz de malla. Esta operación no sólo reduce la carga contaminante del agua a la entrada, sino que permite preservar los equipos como conducciones, bombas y válvulas, frente a los depósitos y obstrucciones provocados por los sólidos, que habitualmente pueden ser muy fibrosos: tejidos, papeles, etc.

Los filtros de desbaste son utilizados para tratar particularmente cargas orgánicas fuertes o variables, típicamente industriales, para permitirles ser tratados por procesos de tratamiento secundario. Son filtros típicamente altos, filtros circulares llenados con un filtro abierto sintético en el cual las aguas residuales son aplicadas en una cantidad relativamente alta. El diseño de los filtros permite una alta descarga hidráulica y un alto flujo de aire. En instalaciones más grandes, el aire es forzado a través del medio

usando sopladores. El líquido resultante está usualmente con el rango normal para los procesos convencionales de tratamiento.

Fangos activos

Las plantas de fangos activos usan una variedad de mecanismos y procesos para usar oxígeno disuelto y promover el crecimiento de organismos biológicos que remueven substancialmente materia orgánica. También puede atrapar partículas de material y puede, bajo condiciones ideales, convertir amoniaco en nitrito y nitrato, y en última instancia a gas nitrógeno.

Camas filtrantes (camas de oxidación)

Figura II.4: Camas Filtrantes de oxidación

Filtro oxidante en una planta rural.

Se utiliza la capa filtrante de goteo utilizando plantas más viejas y plantas receptoras de cargas más variables, las camas filtrantes son utilizadas donde el licor de las aguas residuales es rociado en la superficie de una profunda cama compuesta de coque (carbón, piedra caliza o fabricada especialmente de medios plásticos). Tales medios deben tener altas superficies para soportar las biopeliculas que se forman. El licor es distribuido mediante unos brazos perforados rotativos que irradian de un pivote

central. El licor distribuido gotea en la cama y es recogido en drenes en la base. Estos drenes también proporcionan un recurso de aire que se infiltra hacia arriba de la cama, manteniendo un medio aerobio. Las películas biológicas de bacterias, protozoarios y hongos se forman en la superficie media y se comen o reducen los contenidos orgánicos. Esta biopelícula es alimentada a menudo por insectos y gusanos.

Reactor biológico de cama móvil

El reactor biológico de cama móvil (MBBR, por sus siglas en inglés) asume la adición de medios inertes en vasijas de fangos activos existentes para proveer sitios activos para que se adjunte la biomasa. Esta conversión hace como resultante un sistema de crecimiento. Las ventajas de los sistemas de crecimiento adjunto son:

- 1) Mantener una alta densidad de población de biomasa
- 2) Incrementar la eficiencia del sistema sin la necesidad de incrementar la concentración del licor mezclado de sólidos (MLSS)
- 3) Eliminar el costo de operación de la línea de retorno de fangos activos (RAS).

Filtros aireados biológicos

Filtros aireados (o anóxicos) biológicos (BAF) combinan la filtración con reducción biológica de carbono, nitrificación o desnitrificación. BAF incluye usualmente un reactor lleno de medios de un filtro. Los medios están en la suspensión o apoyados por una capa en el pie del filtro. El propósito doble de este medio es soportar altamente la biomasa activa que se une a él y a los sólidos suspendidos del filtro. La reducción del carbón y la conversión del amoniaco ocurre en medio aerobio y alguna vez alcanzado en un sólo reactor mientras la conversión del nitrato ocurre en una

manera anóxica. BAF es también operado en flujo alto o flujo bajo dependiendo del diseño especificado por el fabricante.

Sedimentación secundaria

El paso final de la etapa secundaria del tratamiento es retirar los flóculos biológicos del material de filtro, y producir agua tratada con bajos niveles de materia orgánica y materia suspendida. En una planta de tratamiento rural, se realiza en el tanque de sedimentación secundaria.

• Tratamiento Terciario

El tratamiento terciario proporciona una etapa final para aumentar la calidad del efluente al estándar requerido antes de que éste sea descargado al ambiente receptor (mar, río, lago, campo, etc.) Más de un proceso terciario del tratamiento puede ser usado en una planta de tratamiento. Si la desinfección se practica siempre en el proceso final, es siempre llamada pulir el efluente.

Filtración

La filtración de arena remueve gran parte de los residuos de materia suspendida. El carbón activado sobrante de la filtración remueve las toxinas residuales.

Lagunaje

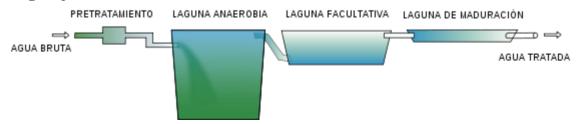


Figura II.5: Esquema de una depuradora por lagunaje.

El tratamiento de lagunas proporciona el establecimiento necesario y fomenta la mejora biológica de almacenaje en charcos o lagunas artificiales. Se trata de una imitación de los procesos de autodepuración que somete un río o un lago al agua residual de forma natural. Estas lagunas son altamente aerobias y la colonización por los macrofitos nativos, especialmente cañas, se dan a menudo. Los invertebrados de alimentación del filtro pequeño tales como Daphnia y especies de Rotifera asisten grandemente al tratamiento removiendo partículas finas.

El sistema de lagunaje es barato y fácil de mantener pero presenta los inconvenientes de necesitar gran cantidad de espacio y de ser poco capaz para depurar las aguas de grandes núcleos.

Tierras húmedas construidas

Las tierras húmedas construidas incluyen camas de caña y un rango similar de metodologías similares que proporcionan un alto grado de mejora biológica aerobia y pueden ser utilizados a menudo en lugar del tratamiento secundario para las comunidades pequeñas, también para la fitoremediacion.

Un ejemplo es una pequeña cama de cañas (o camas de lámina) utilizada para limpiar el drenaje del lugar de los elefantes en el parque zoológico de Chester en Inglaterra.

Remoción de nutrientes

Las aguas residuales pueden también contener altos niveles de nutrientes (nitrógeno y fósforo) que eso en ciertas formas puede ser tóxico para peces e invertebrados en concentraciones muy bajas (por ejemplo amoníaco) o eso puede crear condiciones insanas en el ambiente de recepción (por ejemplo: mala hierba o crecimiento de algas). Las malas hierbas y las algas pueden parecer ser una edición estética, pero las algas pueden producir las toxinas, y su muerte y consumo por las bacterias

(decaimiento) pueden agotar el oxígeno en el agua y asfixiar los peces y a otra vida acuática. Cuando se recibe una descarga de los ríos a los lagos o a los mares bajos, los nutrientes agregados pueden causar pérdidas entrópicas severas perdiendo muchos peces sensibles a la contaminación en el agua. La retirada del nitrógeno o del fósforo de las aguas residuales se puede alcanzar mediante la precipitación química o biológica.

La remoción del nitrógeno se efectúa con la oxidación biológica del nitrógeno del amoníaco a nitrato (nitrificación que implica nitrificar bacterias tales como Nitrobacter y Nitrosomonus), y entonces mediante la reducción, el nitrato es convertido al gas nitrógeno (desnitrificación), que se lanza a la atmósfera. Estas conversiones requieren condiciones cuidadosamente controladas para permitir la formación adecuada de comunidades biológicas. Los filtros de arena, las lagunas y las camas de lámina se pueden utilizar para reducir el nitrógeno. Algunas veces, la conversión del amoníaco tóxico al nitrato solamente se refiere a veces como tratamiento terciario.

La retirada del fósforo se puede efectuar biológicamente en un proceso llamado retiro biológico realzado del fósforo. En este proceso específicamente bacteriano, llamadas Polyphosphate que acumula organismos, se enriquecen y acumulan selectivamente grandes cantidades de fósforo dentro de sus células. Cuando la biomasa enriquecida en estas bacterias se separa del agua tratada, los biosólidos bacterianos tienen un alto valor del fertilizante. La retirada del fósforo se puede alcanzar también, generalmente por la precipitación química con las sales del hierro (por ejemplo: cloruro férrico) o del aluminio (por ejemplo: alumbre). El fango químico que resulta, sin embargo, es difícil de operar, y el uso de productos químicos en el proceso del tratamiento es costoso. Aunque esto hace la operación difícil y a menudo sucia, la eliminación química del fósforo requiere una huella significativamente más pequeña del equipo que la de retiro biológico y es más fácil de operar.

Desinfección

El propósito de la desinfección en el tratamiento de las aguas residuales es reducir substancialmente el número de organismos vivos en el agua que se descargará nuevamente dentro del ambiente. La efectividad de la desinfección depende de la calidad del agua que es tratada (por ejemplo: turbiedad, pH, etc.), del tipo de desinfección que es utilizada, de la dosis de desinfectante (concentración y tiempo), y de otras variables ambientales. El agua turbia será tratada con menor éxito puesto que la materia sólida puede blindar organismos, especialmente de la luz ultravioleta o si los tiempos del contacto son bajos. Generalmente, tiempos de contacto cortos, dosis bajas y altos flujos influyen en contra de una desinfección eficaz. Los métodos comunes de desinfección incluyen el ozono, la clorina, o la luz UV. La Cloramina, que se utiliza para el agua potable, no se utiliza en el tratamiento de aguas residuales debido a su persistencia.

La desinfección con cloro sigue siendo la forma más común de desinfección de las aguas residuales en Norteamérica debido a su bajo historial de costo y del largo plazo de la eficacia. Una desventaja es que la desinfección con cloro del material orgánico residual puede generar compuestos orgánicamente clorados que pueden ser carcinógenos o dañinos al ambiente. La clorina o las "cloraminas" residuales puede también ser capaces de tratar el material con cloro orgánico en el ambiente acuático natural. Además, porque la clorina residual es tóxica para especies acuáticas, el efluente tratado debe ser químicamente desclorinado, agregándose complejidad y costo del tratamiento.

La luz ultravioleta (UV) se está convirtiendo en el medio más común de la desinfección en el Reino Unido debido a las preocupaciones por los impactos de la clorina en el tratamiento de aguas residuales y en la clorinación orgánica en aguas receptoras. La radiación UV se utiliza para dañar la estructura genética de las

bacterias, virus, y otros patógenos, haciéndolos incapaces de la reproducción. Las desventajas dominantes de la desinfección UV son la necesidad del mantenimiento y del reemplazo frecuentes de la lámpara y la necesidad de un efluente altamente tratado para asegurarse de que los microorganismos objetivo no están blindados de la radiación UV (es decir, cualquier sólido presente en el efluente tratado puede proteger microorganismos contra la luz UV).

El ozono O3 es generado pasando el O2 del oxígeno con un potencial de alto voltaje resultando un tercer átomo de oxígeno y que forma O3. El ozono es muy inestable y reactivo y oxida la mayoría del material orgánico con que entra en contacto, de tal manera que destruye muchos microorganismos causantes de enfermedades. El ozono se considera ser más seguro que la clorina porque, mientras que la clorina que tiene que ser almacenada en el sitio (altamente venenoso en caso de un lanzamiento accidental), el ozono es colocado según lo necesitado. La ozonización también produce pocos subproductos de la desinfección que la desinfección con cloro. Una desventaja de la desinfección del ozono es el alto costo del equipo de la generación del ozono, y que la cualificación de los operadores deben ser elevada.

TANQUE IMHOFF

Es un tipo de tanque de doble función -recepción y procesamiento- para aguas residuales. J Pueden verse tanques Imhoff en muchas formas, rectangulares y hasta circulares, pero siempre disponen de una cámara o cámaras superiores por las que pasan las aguas negras en su período de sedimentación, además de otra cámara inferior donde la materia recibida por gravedad permanece en condiciones tranquilas para su digestión anaeróbica. De la forma del tanque se obtienen varias ventajas:

- 1. los sólidos sedimentables alcanzan la cámara inferior en menor tiempo;
- 2. la forma de la ranura y de las paredes inclinadas que tiene la cámara acanalada de sedimentación, fuerza a los gases de la digestión a tomar un camino hacia arriba que no perturba la acción sedimentadora.

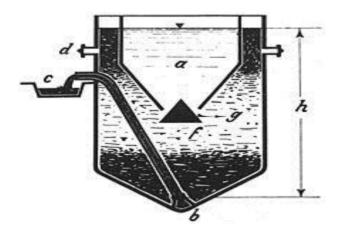


Figura II.6: Tanque IMHOFF

El agua que llega por el alcantarillado entra en la cámara (a) los sólidos van descendiendo lentamente y llegan al espacio (f). En el espacio (f) se producen reacciones anaerobias, es decir sin la intervención del oxígeno. Los fangos se depositan en la parte baja del espacio (f) y son retirados periódicamente por medio del tubo inclinado (b-c) y llevados a las piletas de secado de lodos. El agua sale a través de las salidas (d) y pasan al paso siguiente del tratamiento.

2.4.3. VARIABLE DEPENDIENTE

2.4.3.1 MEJORAR LA CALIDAD DE VIDA

Día a día mejora más, claro que no alcanzamos niveles de excelencia, pero creo que vamos por el camino correcto, a pesar de todo lo que nos pasa a nivel político, social y cultural "El Cielo sería el límite".

Calidad de vida y los términos que le han precedido en su genealogía ideológica remiten a una evaluación de la experiencia que de su propia vida tienen los sujetos. Tal evaluación no es un acto de razón, sino más bien un sentimiento. Lo que mejor designa la calidad de vida es la calidad de la vivencia que de la vida tienen los sujetos. Analizar la calidad de vida de una sociedad significa analizar las experiencias subjetivas de los individuos que la integran y que tienen de su existencia en la mencionada sociedad. Exige, en consecuencia, conocer cómo viven los sujetos, sus condiciones objetivas de existencia y qué expectativas de transformación de estas condiciones desean, y evaluar el grado de satisfacción que se consigue.

La calidad de vida es el objetivo al que debería tender el estilo de desarrollo de un país que se preocupe por el ser humano integral. Este concepto alude al bienestar en todas las facetas del hombre, atendiendo a la creación de condiciones para satisfacer sus necesidades materiales (comida y cobijo), psicológicas (seguridad y afecto), sociales (trabajo, derechos y responsabilidades) y ecológicas (calidad del aire, del agua). Se podría considerar que una sociedad ha alcanzado una buena calidad de vida cuando ha satisfecho todas las necesidades básicas. Por lo tanto para que una persona pueda cumplir a cabalidad y de forma amena y eficiente su trabajo debe gozar de una buena salud.

La salud de un individuo o colectividad depende de la condición en que se encuentra el ambiente en que vive y en que se desarrolla la comunidad. Un ambiente que se encuentra en mejores condiciones proporcione igualmente las mejores condiciones de vida de las personas.

Factores materiales

Los factores materiales son los recursos que uno tiene:

- Ingresos disponibles
- Posición en el mercado de trabajo
- Salud,
- Nivel de educación, etc.
- Muchos autores asumen una relación causa efecto entre los recursos y las condiciones de vida: mientras más y mejores recursos uno tenga mayor es la probabilidad de una buena calidad de vida.

Factores ambientales

Los factores ambientales son las características del vecindario/comunidad que pueden influir en la **calidad de vida**, tales como:

- Presencia y acceso a servicios, grado de seguridad y criminalidad, transporte y
 movilización, habilidad para servirse de las nuevas tecnologías que hacen la
 vida más simple
- También, las características del hogar son relevantes en determinar la calidad de las condiciones de vida.

2.4.3.2. INDICADORES DE CALIDAD DE VIDA

Un indicador de calidad es una medida cuantitativa que refleja la cantidad de calidad que posee dicha actividad. Por tanto, sirve no sólo para evaluar un determinado aspecto de la calidad del servicio, si no para realizar un seguimiento de dicha medida a lo largo del tiempo y poder comparar la calidad asistencial bien en un mismo centro en diferentes periodos de tiempo (obtención de datos longitudinal), o entre diferentes

centros de un mismo sector en el mismo periodo de tiempo (obtención de datos transversal).

Más en concreto, se puede decir que la misión de la calidad de vida es medir:

La seguridad en la alimentación y en la salud, principalmente.

La disponibilidad y el uso del agua.

El sentimiento de pertenencia a un grupo social.

El deseo de poseer cosas materiales, es decir de propiedad.

El deseo de comunicación.

El de educación.

La necesidad de proteger y preservar el medio ambiente. Involucrando las áreas de nutrición, salud, educación, derechos humanos, seguridad social, vivienda, seguridad laboral.

La población, vista como sociedad en general como beneficiarios o no de un trabajo y de su respectiva remuneración; la salud, o la facilidad y pertinencia de acceder a servicios de salubridad social, la educación, es decir, el grado de conocimientos formales adquiridos para desempañarse profesionalmente y obtener un mejor recurso pecuniario, la vivienda y con ella todos los bienes y servicios que son posibles acceder para vivir cómodamente, y finalmente, el medio ambiente como expresión de la conciencia y atención o no, de los problemas de contaminación y deterioro producto de la vida en sociedad.

FUENTE:[https://www.itescam.edu.mx/principal/sylabus/fpdb/.../r36707.PPT]

2.4.3.3 DIFERENTES ALTERNATIVAS METODOLÓGICAS EN LA MEDICIÓN DE LA CALIDAD DE VIDA

Para la medición de la calidad de vida existe actualmente un debate entre los filósofos; unos defienden la medición mediante el ingreso per cápita, es decir, la utilidad. Y se basan en modelos mayoritariamente pecuniarios. Otros incorporan la

distribución de la riqueza y del ingreso, y evalúan otras áreas de la vida humana para determinar lo bien que les va a las personas.

De una o de otra manera, se debe medir la capacidad de las personas con respecto al hacer y al ser en varios aspectos de la vida, no solamente en el tener. Para ello, se requiere de una larga lista de las capacidades de las personas; es decir, la combinación en una persona en concreto de sus quehaceres y seres, a los que genéricamente se puede dar el nombre de funcionamientos.

Éstos varían desde aspectos elementales como el estar bien nutrido, tener dónde vivir, estar mínimamente alfabetizado y libre de enfermedades hasta llegar a complejidades como el respeto propio, la preservación de la dignidad humana, tomar parte en la vida de la comunidad, es decir, tener capacidad de decisión y responsabilidad civil.

Según Ernst Fidel Fürntratt-Kloep los científicos sociales escandinavos han utilizado, para este propósito, por algún tiempo el enfoque que se concentra en los funcionamientos y capacidades. Se observa que el área de mayor problema para la medición de la calidad de vida con respecto a los funcionamientos es el que pertenece a la vida de las mujeres, pues han sufrido de algún tipo de discriminación al no tener las mismas oportunidades que los hombres, en cuanto a desarrollo económico, educativo, político o social.

Estas son algunas metodologías para medir la calidad de vida de una población específica:

> EL MÉTODO DE LA LÍNEA DE POBREZA

Es un esfuerzo entre tantos, para efectuar una medición del modo de vida de algún grupo o sociedad dada. Consiste en comparar el ingreso o consumo de un hogar con un nivel mínimo llamado línea de pobreza. La definición de este nivel o de esta línea es el punto clave del presente método. Las necesidades que lo conforman son:

- 1.- Alimentación.
- 2.- Combustible.
- 3.- Higiene personal y del hogar.
- 4.- Vestido y calzado.
- **5**.- Transporte.
- 6.- Comunicaciones.
- 7.- Recreación y cultura.
- 8.- Gastos en servicios de la vivienda.
- 9.- Gastos asociados a las transferencias públicas en salud y educación.

> MÉTODO DE NECESIDADES BÁSICAS INSATISFECHAS (NBI).

Compara cada hogar con un grupo de necesidades específicas, que se consideran básicas para vivir dignamente, expresando así el nivel mínimo de satisfacción de éstas. El grupo de necesidades a las que se refiere este método es:

- **1**.- Agua.
- 2.- Drenaje.
- 3.- Electricidad.
- 4.- Vivienda.
- 5.- Nivel educativo de los adultos.
- **6**.- Asistencia escolar a menores.
- 7.- Tiempo disponible.
- **8**.- Mobiliario y equipo del hogar.

2.5. HIPOTESIS

La recolección y transporte adecuado de las aguas servidas domesticas mejorará la calidad de vida de los habitantes del barrio 18 de julio de la lotización rio Pastaza Parroquia Madre Tierra, Provincia de Pastaza.

2.6. SEÑALAMIENTO DE VARIABLES DE LA HIPOTESIS

2.6.1. Variable Independiente

Las Aguas residuales domesticas

2.6.2. Variable Dependiente

Mejoramiento de la calidad de vida de los habitantes

2.6.3. Unidad de Observación

• Parroquia Madre Tierra, barrio 18 de julio de la lotización rio Pastaza

CAPITULO III

METODOLOGIA

3.1. MODALIDAD BÁSICA DE LA INVESTIGACIÓN

3.1.1. ENFOQUE

El enfoque de la presente investigación es de tipo Cuali – Cuantitativo.

Cualitativo porque busca una comprensión de los hechos, observación, es materialista, perspectiva desde adentro, está orientado al descubrimiento de la hipótesis y a su vez participa con la comunidad; y es cuantitativa porque busca las causas y explicación de los hechos, asume una realidad estable, utiliza las normas y también explica las técnicas empleadas en la investigación.

3.1.2. MODALIDAD

La investigación será de campo y de laboratorio

✓ De campo, la cual permitirá recolectar datos específicos y necesarios para el desarrollo de la investigación tales como: muestras de suelo, muestras de agua, recolección de datos, etc.

✓ De laboratorio que arrojará resultados de las muestras obtenidas en el campo, los mismos que serán de gran importancia para poder determinar la resistencia del suelo y la calidad de agua del sector.

3.2. NIVEL O TIPO DE INVESTIGACIÓN

De tipo Exploratorio, se generó un estudio poco estructurado del problema de la carencia del sistema de alcantarillado en la parroquia Madre Tierra, para lo cual se pudo tentativamente plantear varias hipótesis al problema, proponer pistas idóneas e identificar las variables más importantes

De tipo descriptivo, dentro de este nivel puede definirse que la ausencia de un sistema de alcantarillado repercute notablemente el modo de vida de los habitantes por lo cual afectada la salud misma de las personas.

3.3. POBLACIÓN Y MUESTRA

3.3.1 Población o Universo (N)

De acuerdo al último recuento realizado para la Parroquia Madre tierra los habitantes del sector son 1588.

La población estadística a investigarse fue la totalidad de la población de la parroquia Madre Tierra del Cantón Mera. Debido a que en el barrio 18 de Julio la población es pequeña.

Población =1588hab

$$e = 5\%$$

$$z = 90\%$$

3.3.2 Muestra

La muestra se calcula con la siguiente ecuación

$$n = \frac{N}{E^2(N-1)+1}$$

$$n = \frac{1588}{0.05^2(1588-1)+1}$$

$$n = 320$$

Dónde:

n=Tamaño de la muestra de la población

E= Error de muestreo (5%)

N= Población o Universo.

3.3.3. TÉCNICAS E INSTRUMENTOS

TECNICAS	INSTRUMENTOS
ENCUESTA	CUESTIONARIO

Tabla III.1. Técnicas e Instrumentos

3.4. OPERACIONALIZACION DE VARIABLES

Variable Independiente: Las Aguas Residuales Domesticas

CONCEPTUALIZACION	DIMENSION	INDICADORES	ITEM	TECNICAS E INSTRUMENTOS
El término agua residual define un tipo de agua que está contaminada con sustancias fecales y orina, procedentes de desechos orgánicos humanos o animales. Su importancia es tal que requiere sistemas de canalización, tratamiento y desalojo.	Aguas Domesticas Aguas Industriales	Grasas Aceites Sólidos suspendidos Metales pesados Grasas Aceites Pesticidas Sólidos en suspensión	¿Qué tipo de Aguas Domesticas serán transportadas mediante el sistema de alcantarillado? ¿Qué tipo de sustancias presenciamos en las aguas industriales?	Observaciones Ficha de campo Encuestas Observaciones Ficha de campo Encuestas

Tabla III.2. Operacionalización de la Variable Independiente.

Variable Dependiente: Mejorar Calidad de vida de los Habitantes

CONCEPTUALIZACION	DIMENSION	INDICADORES	ITEM	TECNICAS E INSTRUMENTOS
Vivir en un ambiente digno dentro de un estatus social de calidad y calidez, contar con los diferentes servicios	Estatus social de calidad y calidez		¿Qué servicios básicos se debe implementar para mejorar la calidad de vida de los habitantes?	Observaciones Ficha de campo Encuestas
básicos y fomentar así una vida impulsada al desarrollo económico y social.	Desarrollo económico y social.	servicios básicos	¿Qué se debe hacer para fomentar el desarrollo social en la comunidad de Madre Tierra?	Ficha de campo Encuestas

Tabla III.3. Operacionalización de la Variable Dependiente.

3.5. PLAN DE RECOLECCION DE INFORMACION

PREGUNTAS	EXPLICACION
BASICAS	
¿Para qué?	Determinar cómo incide en la calidad de vida de los habitantes la falta de un sistema de alcantarillado para la evacuación de aguas residuales. Determinar un adecuado control de aguas residuales para prevenir enfermedades en los moradores del sector.
¿De qué personas u objetos?	Autoridades, profesionales y de los moradores de la Parroquia Madre Tierra, Provincia de Pastaza.
¿Sobre qué aspectos?	Aguas Residuales domésticas y su incidencia en la calidad de vida de los moradores del sector.
¿Quién o quiénes?	El investigador: Mónica Sisa Pilco.
¿Dónde?	En la Parroquia Madre Tierra, Provincia de Pastaza
¿Cómo?	Realizando una encuesta

Tabla III.4. Plan de recolección de la información

3.7.- PLAN DE PROCESAMIENTO Y ANÁLISIS

Mediante la información recogida en la encuesta estructurada se realizó un procesamiento de información que genero resultados mediante tabulaciones y posteriormente conclusiones y recomendaciones de acuerdo a la investigación.

CAPITULO IV

ANALISIS E INTERPRETACION DE RESULTADOS

4.1. Análisis de los Resultados.

Las encuestas que se realizó a los jefes de hogar conto fueron claras de tal manera, los resultados arrojados son claros, estas preguntas nos ayudaron a determinar cómo se encuentran el barrio en la actualidad.

4.1.1 TABULACIÓN DE ENCUESTAS (ANEXO A)

PREGUNTA 1

¿Cuántas personas habitan en su vivienda?

PERSONAS	N° DE PERSONAS	PORCENTAJE
HOMBRES	162	50,625
MUJERES	158	49,3750
TOTAL	320	100

Tabla IV.1: Resultados de la pregunta 1

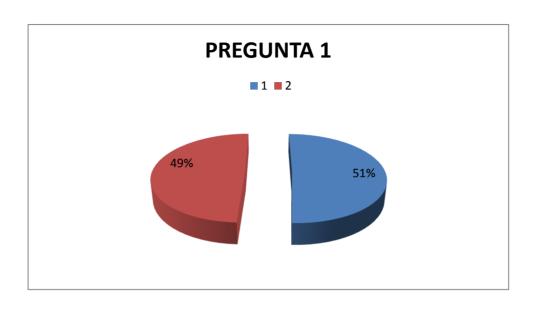


Grafico IV.1: Esquema de la pregunta 1

¿El agua que consume es?

AGUA DE CONSUMO	N° DE ENCUESTADOS	% DE AGUA CONSUMO
Permanente	258	80,63%
Por horas	62	19,38%
TOTAL	320	100%

Tabla IV.2: Resultados pregunta 2

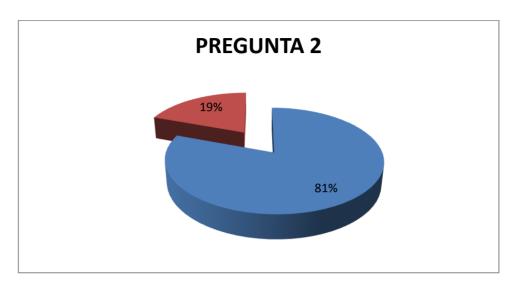


Grafico IV.2: Esquema de la pregunta 2

¿De dónde obtiene el agua para su vivienda?

DE DONDE OBTIENE EL AGUA CONSUMO	N° DE ENCUESTADOS	% DE AGUA CONSUMO
Agua entubada	320	100%
Rio, quebrada	0	0%
Agua lluvia	0	0%
Agua Embotellada o bolsa	0	0%
TOTAL	320	100%

Tabla IV.3: Resultados de la pregunta 3

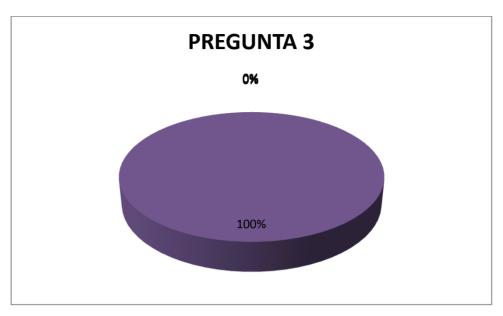


Grafico IV.3: Esquema de la pregunta 3

¿Cómo es la evacuación de las aguas servidas de su vivienda?

EVACUACION DE A.RESIDUALES	N° DE ENCUESTADOS	%DE EVACUACION A.R.
No tienen	0	0%
Inodoro sin conexión	117	36,56%
Inodoro conectado a pozo	203	63,44%
Inodoro conectado a alcantarillado	0	0%
TOTAL	320	100%

Tabla IV.4: Resultado de la pregunta 4

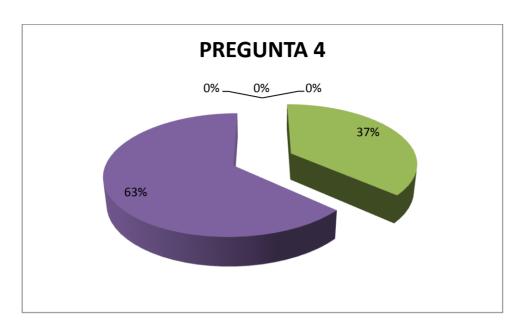


Grafico IV.4: Esquema de la pregunta 4

¿Qué servicios adicionales tiene su vivienda?

SERVICIOS ADICIONALES	N° DE ENCUESTADOS	%DESERVICIOS ADICIONALES
Ninguno	0	0%
Tv cable	268	83,75%
Internet	0	0%
Teléfono	52	16,25%
TOTAL	320	100%

Tabla IV.5: Resultados de la pregunta 5

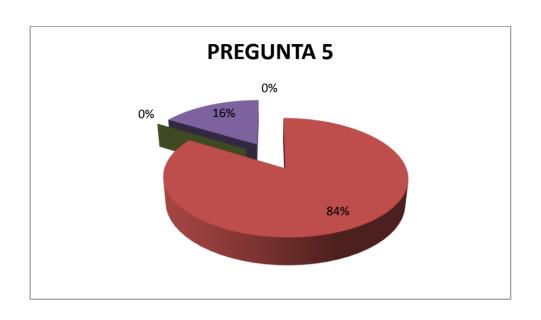


Grafico IV.5: Esquema de la pregunta 5

¿Tiene resguardo policial su vivienda o sector?

RESGUARDO POLICIAL	N° DE ENCUESTADOS	%DE RESGUARDO
No	273	85,31%
Si	47	14,69%
TOTAL	320	100%

Tabla IV.6: Resultados de la pregunta 6

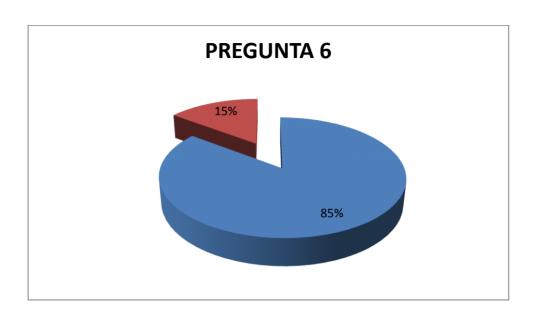


Grafico IV.6: Esquema de la pregunta 6

¿Cuenta su vivienda con servicio de recolección de basura?

RECOLECCIÓN	N° DE ENCUESTADOS	% DE RECOLECCIÓN DE BASURA
SI	320	100,00%
NO	0	0,00%
TOTAL	320	100%

Tabla IV.7: Resultados de la pregunta 7

Grafico IV.7: Esquema de la pregunta 7

¿Cree Ud. que es necesario un sistema de alcantarillado sanitario para mejorar el bienestar de los habitantes del Barrio "18 de julio"?

ALTERNATIVA	N° DE ENCUESTADOS	PORCENTAJE
SI	320	100%
NO	0	0%
TOTAL	320	100%

Tabla IV.8: Resultado de la pregunta 8

Grafico IV.8: Esquema de la pregunta 8

¿Qué tipo de sistema de alcantarillado cree usted que es necesario en su sector?

TIPO DE ALCANTARILLADO	N° DE ENCUESTADOS	PORCENTAJE
COMBINADO	158	49%
SANITARIO	133	42%
PLUVIAL	29	9%
TOTAL	320	100%

Tabla IV.9: Resultado de la pregunta 9

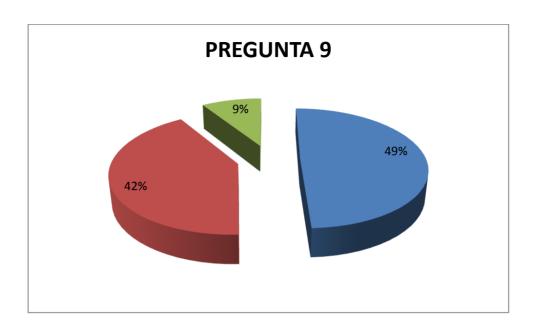


Grafico IV.9: Esquema de la pregunta 9

¿En su barrio existe un sub-centro de salud?

ALTERNATIVA	N° DE ENCUESTADOS	PORCENTAJE
SI	0	0%
NO	320	100%
TOTAL	320	100%

Tabla IV.10: Resultado de la pregunta 10

Grafico IV.10: Esquema de la pregunta 10

4.2. INTERPRETACIÓN DE RESULTADOS

- El 50,63% de los moradores del barrio son hombres mientras que el 49,375% son mujeres pertenecientes a la parroquia Madre Tierra.
- El agua de consumo de los moradores del barrio 18 de Julio es permanente en un 80,63%.
- El agua para el consumo de su vivienda la obtienen de tuberías no existe agua potable en el sector.

- La evacuación de las aguas servidas domesticas de la vivienda es mediante inodoro conectado a pozo en un 100%
- Los moradores del sector cuentan con servicios adicionales como tv cable y teléfono
- El 85,31% de los moradores del sector no tienen resguardo policial
- Los habitantes del barrio 18 de Julio si cuentan con servicio de recolección de basura
- Los moradores de la parroquia Madre Tierra en un 100% creen que es necesaria la construcción de un sistema de alcantarillado para mejorar el bienestar de los moradores.
- El 49% que representa a 158 personas encuestadas requieren un alcantarillado combinado, el 42% sugiere un sistema sanitario mientras que el 9% sugiere un sistema pluvial.

4.3. CERTIFICACIÓN DE LA HIPÓTESIS

¿Cuál fue la hipótesis?

La recolección y transporte adecuado de las aguas servidas domesticas mejorará la calidad de vida de los habitantes del barrio 18 de julio de la lotización rio Pastaza Parroquia Madre Tierra, Provincia de Pastaza.

HIPÓTESIS NULA (HO):

La recolección y transporte adecuado de las aguas servidas domesticas no mejorará la calidad de vida de los habitantes del barrio 18 de julio de la lotización rio Pastaza Parroquia Madre Tierra, Provincia de Pastaza.

HIPÓTESIS ALTERNATIVA (H1):

La recolección y transporte adecuado de las aguas servidas domesticas si mejorará la calidad de vida de los habitantes del barrio 18 de julio de la lotización rio Pastaza Parroquia Madre Tierra, Provincia de Pastaza

PRUEBA CHI - CUADRADO

$$x^{2} = \sum_{j=1}^{k} \frac{\left(o_{j} - e_{j}\right)^{2}}{e_{j}}$$

Donde

 x^2 = medida de la discrepancia existente entre las frecuencias observadas y esperadas.

 o_i = frecuencias observadas

 e_i = frecuencias esperadas

Nivel de significancia: es el error que se puede cometer al rechazar la hipótesis nula siendo esta verdadera, en nuestro caso el nivel de significancia será de 0,05, lo cual no indica que se tendrá una posibilidad del 0,95 de que la hipótesis nula sea verdadera es decir un 95% de probabilidad de encontrar un valor mayor o igual que el valor del chi- cuadrado tabulado.

$$= 1 - 0.05 = 0.95$$

Lo cual expresa que la investigación en marcha trabajará con un 95% de probabilidad de encontrar un valor mayor o igual que el valor del chi cuadrado tabulado.

El número de grados de libertad v está dado por v = k - 1

Donde

k = número de categorías o clases

Donde

k = número de categorías o clases

El valor crítico $x_{0.95}^2$ para 1 grado de libertad = 3.84

El valor crítico $x_{0.95}^2$ para 2 grado de libertad = 5.991

El valor crítico $x_{0.95}^2$ para 3 grado de libertad = 7.815

Cradas	AREAS DE EXTREMOS SUPERIOR (α)					
Grados de	0.25	0.10	0.05	0.025	0.01	0.005
Libertad						
1	1.323	2.706	3.841	5.024	6.635	7.879
2	2.773	4.605	5.991	7.378	9.210	10.597
3	4.108	6.251	7.815	9.348	11.345	12.838
4	5.385	7.779	9.488	11.143	13.277	14.860
5	6.626	9.236	11.071	12.833	15.086	16.750
6	7.841	10.645	12.592	14.449	16.812	18.548
7	9.037	12.017	14.067	16.013	18.475	20.278
8	10.219	13.362	15507	17.535	20.090	21.955
9	11.389	14.684	16.919	19.023	21.666	23.589
10	12.549	15.987	18.307	20.483	23.209	25.188
11	13.701	17.275	19.675	21.920	24.725	26.757
12	14.845	18.549	21.026	23.337	26.217	28.299
13	15.984	19.812	22.362	24.736	27.688	29.819
14	17.117	21.064	23.685	26.119	29.141	31.319
15	18.245	22.307	24.996	27.488	30.578	32.801
16	19.369	23.542	26.296	28.845	32.000	34.267
17	20.489	24.769	27.587	30.191	33.409	35.718
18	21.605	25.989	28.869	31.526	34.805	37.156
19	22.718	27.204	30.144	32.852	36.191	38.582
20	23.828	28.412	31.410	34.170	37.566	39.997
21	24.935	29.615	32.671	35.479	38.832	41.401
22	26.039	30.813	33.924	36.781	40.289	42.796
23	27.141	32.007	35.172	38.076	41.638	44.181
24	28.241	33.196	36.415	39.364	42.980	45.559
25	29.339	34.382	37.652	40.646	44.314	46928
26	30.435	35.563	38.885	41.923	45.642	48.290
27	31.528	36.741	40.113	43.194	46.963	49.645
28	32.620	37.916	41.337	44.461	48.278	50.993
29	33.711	39.087	42.557	45.722	49.588	52.336
30	34.800	40.256	43.773	46.979	50.892	53.672

Tabla IV.11: Distribución CHI-CUADRADO

Fuente: Bioestadística, AUTOR: R. Clifford Blair, Richard A. Taylor.

PREGUNTA 1

¿Cuántas personas habitan en su vivienda?

ALTERNATIVAS	HOMBRES	MUJERES
OBSERVADOS	162	158
ESPERADOS	160	160

$$x^2 = \frac{(162 - 160)^2}{160} + \frac{(158 - 160)^2}{160} = 0.050$$

Entonces, las respuestas observadas y teóricas concuerdan.

PREGUNTA 2

¿El agua que llega a su vivienda es?

ALTERNATIVAS		POR HORAS
OBSERVADOS	258	62
ESPERADOS	160	160

$$x^2 = \frac{(258 - 160)^2}{160} + \frac{(62 - 160)^2}{160} = 120$$

Entonces, pues que 120 > 3.84, se rechaza la hipótesis de las respuestas sean equitativas al nivel de significación del 0.05.

PREGUNTA 3

¿De dónde obtiene el agua para su vivienda?

	AGUA	RIO,	AGUA	A.
ALTERNATIVAS	ENTUBADA	QUEBRADA	LLUVIA	EMBOTELLADA
OBSERVADOS	320	0	0	0
ESPERADOS	80	80	80	80

$$x^{2} = \frac{(320 - 80)^{2}}{80} + \frac{(0 - 80)^{2}}{80} + \frac{(0 - 80)^{2}}{80} + \frac{(0 - 80)^{2}}{80} = 960$$

Entonces, pues que 960 > 7.815, se rechaza la hipótesis de las respuestas sean equitativas al nivel de significación del 0.05.

PREGUNTA 4

¿Cómo es la evacuación de las aguas servidas de su vivienda?

ALTERNATIVAS	NO TIENE	I. SIN CONEX	I. CONECT.POZ	I.CONECT.ALCA
OBSERVADOS	0	117	203	0
ESPERADOS	80	80	80	80

$$x^{2} = \frac{(0-80)^{2}}{80} + \frac{(117-80)^{2}}{80} + \frac{(203-80)^{2}}{80} + \frac{(0-80)^{2}}{80} = 366.22$$

Entonces, pues que 366.22 > 7.815, se rechaza la hipótesis de las respuestas sean equitativas al nivel de significación del 0.05.

Pregunta 5

¿Qué servicios adicionales tiene su vivienda?

		TV.		
ALTERNATIVAS	NINGUNO	CABLE	INTERNET	TELEFONO
OBSERVADOS	0	268	0	52
ESPERADOS	80	80	80	80

$$x^{2} = \frac{(0-80)^{2}}{80} + \frac{(268-80)^{2}}{80} + \frac{(0-80)^{2}}{80} + \frac{(52-80)^{2}}{80} = 611.60$$

Entonces, pues que 611.60 > 7.815, se rechaza la hipótesis de las respuestas sean equitativas al nivel de significación del 0.05.

Pregunta 6

¿Tiene resguardo policial su vivienda o sector?

ALTERNATIVAS	NO	SI
OBSERVADOS	273	47
ESPERADOS	160	160

$$x^2 = \frac{(273 - 160)^2}{160} + \frac{(47 - 160)^2}{160} = 159.62$$

Entonces, pues que 159.62> 3.84, se rechaza la hipótesis de las respuestas sean equitativas al nivel de significación del 0.05.

Pregunta 7

¿Cuenta su vivienda con servicio de recolección de basura?

ALTERNATIVAS	NO	SI
OBSERVADOS	0	320
ESPERADOS	160	160

$$x^2 = \frac{(0 - 160)^2}{160} + \frac{(320 - 160)^2}{160} = 320$$

Entonces, pues que 320 > 3.84, se rechaza la hipótesis de las respuestas sean equitativas al nivel de significación del 0.05.

Pregunta 8

¿Cree Ud. Que es necesario un sistema de alcantarillado sanitario para mejorar el bienestar de los habitantes del "barrio 18 de Julio"?

ALTERNATIVAS	NO	SI
OBSERVADOS	0	320
ESPERADOS	160	160

$$x^2 = \frac{(0 - 160)^2}{160} + \frac{(320 - 160)^2}{160} = 320$$

Entonces, pues que 320 > 3.84, se rechaza la hipótesis de las respuestas sean equitativas al nivel de significación del 0.05.

Pregunta 9

¿Qué tipo de alcantarillado cree usted que es necesario en su sector?

ALTERNATIVAS	COMBINADO	SANITARIO	PLUVIAL
OBSERVADOS	158	133	29
ESPERADOS	107	107	106

$$x^{2} = \frac{(158 - 107)^{2}}{107} + \frac{(133 - 107)^{2}}{107} + \frac{(29 - 107)^{2}}{107} = 87.49$$

Entonces, pues que 87.49> 5.991, se rechaza la hipótesis de las respuestas sean equitativas al nivel de significación del 0.05.

Pregunta 10

¿En su barrio existe un Sub- Centro de salud?

ALTERNATIVAS	NO	SI
OBSERVADOS	320	0
ESPERADOS	160	160

$$x^2 = \frac{(320 - 160)^2}{160} + \frac{(0 - 160)^2}{160} = 320$$

Entonces, pues que 320 > 3.84, se rechaza la hipótesis de las respuestas sean equitativas al nivel de significación del 0.05.

En base a los resultados estadísticos arrojados mediante la prueba Chi — cuadrado, se verifica y se acepta la hipótesis de trabajo planteada. "La recolección y transporte adecuado de las aguas servidas domesticas mejorará la calidad de vida de los habitantes del barrio 18 de julio de la lotización rio Pastaza Parroquia Madre Tierra, Provincia de Pastaza."

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES.

La parroquia Madre Tierra en el barrio 18 de julio, en la actualidad no cuenta con un sistema de alcantarillado para la evacuación de las aguas residuales domésticas, razón por la cual se ven afectados por dichas aguas que existen en el sector.

Con la construcción del sistema de alcantarillado se pretende mejorará la calidad de vida de los habitantes del sector de la misma manera disminuirá la contaminación ambiental que se produce por las aguas domésticas.

Los habitantes de la parroquia Madre Tierra estarían dispuestos a colaborar con mingas para la mejora del sector.

5.2. RECOMENDACIONES.

Se recomienda la construcción del sistema de alcantarillado para el barrio 18 de julio para así mejorar la calidad de vida de los moradores del sector.

Cumplir con las normas ambientales de seguridad y diseño para que sea seguro funcional y económico.

CAPITULO VI PROPUESTA

6.1 DATOS INFORMATIVOS

La Zona del Proyecto está Ubicada en la parte Centro Oriental del Ecuador, la Topografía es relativamente Plana, presentándose pequeñas depresiones y elevaciones de poca consideración.

AL NORTE: Con la parroquia Shell.

AL SUR: Con la provincia de Morona Santiago.

AL ESTE: Con la parroquia Tarqui.

AL OESTE: Con la provincia de Morona Santiago.

Su superficie es de 135 Km2

Figura VI.1: Ubicación del proyecto

Fuente: GADPPz.

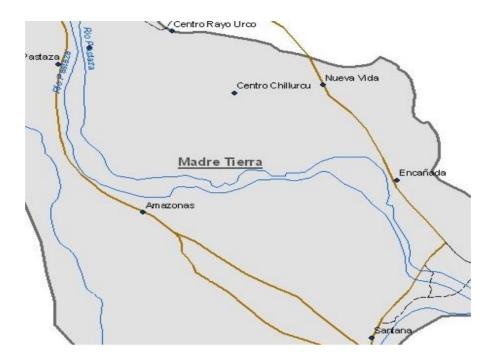


Figura VI.1.1: Ubicación de la parroquia Madre Tierra.

Fuente: GADPPz.

El área del proyecto del alcantarillado sanitario en el Barrio 18 de Julio de la Lotización rio Pastaza, Parroquia Madre Tierra, Cantón Mera se encuentra ubicado al noreste del centro de la Parroquia Madre Tierra, a tres cuadras hacia el Norte de la Cancha de césped sintético.

Actividad económica:

Las actividades económicas que predominan en la parroquia, están relacionadas con los sectores básicos de la economía en general, estos son:

Sector Primario: Agricultura

Silvicultura

Caza y Pesca

Demografía:

Posee una población de 1588 habitantes de los cuales 794 son hombres y 794 son mujeres.

POBLACION		
MUJERES	794	
HOMBRES	794	
TOTAL	1588HAB.	

Tabla VI.1: Población-Parroquia Madre Tierra.

Fuente: GADPPz.

Clima:

La temperatura media multianual en la zona de estudio es alta, con un valor entre 26 a 28°C, relativamente constantes durante casi todo el año, siendo el mes de julio el mes relativamente más frío, con una temperatura inferior a 20°C.

Geología:

Existen cinco variedades de suelos predominantes en la Provincia que se indican a continuación:

- a) vertiente andina
- b) pie de monte andino próximo
- e) pie de monte andino lejano
- d) cuenca amazónica colinada
- e) cuenca amazónica baja plana y pantanosa

La Parroquia se encuentra localizada en la zona de paisaje de Pie de Monte Andino Próximo, cuyos suelos predominantes son: Hidron que son sueltos y profundos; Pre húmedos y esponjosos, que se caracterizan por tener contacto jabonoso, color pardo amarillento, fertilidad baja, fuerte susceptibilidad a la erosión por tránsito de maquinaria y ganado. A menudo se encuentran suelos esterilizados debido al sobre pastoreo y con aluminio tóxico.

Caseríos e Hidrografía:

Entre los más importantes podemos mencionar: La Encañada, Amazonas, Rayo Urco, Puyopungo, Playas del Pastaza, Puerto Santa Ana, Nueva Vida, Campo Alegre, San José, Paushiyacu, Putuimi; la población mayoritariamente es indígena de nacionalidad kichwa.

El Pastaza, Putuimi y Puyo son los ríos que bañan a sus territorios.

Producción:

Sus terrenos son fértiles para la agricultura por encontrarse en una playa, en donde se da buena guayaba, caña de azúcar, yuca, plátano, cítricos, etc.

6.2. ANTECEDENTES DE LA PROPUESTA

El barrio 18 de julio de la parroquia Madre Tierra en la actualidad no cuenta con un sistema de alcantarillado lo que provoca molestias en los habitantes de dicho barrio. Por lo que resulta necesario e indispensable realizar los respectivos estudios, diseños y posteriormente la construcción del sistema de alcantarillado para así evacuar las aguas residuales domesticas que causan molestias en la actualidad en los moradores del barrio. Continuamente los habitantes del barrio 18 de Julio están expuestos a enfermedades ya que no cuentan con una red de alcantarillado, el medio ambiente también se ve afectado por la ausencia del sistema de alcantarillado ya que las aguas residuales del barrio son desalojadas sin ningún control. Viendo la necesidad del sector es necesario la construcción de la red de alcantarillado sanitario.

6.3. JUSTIFICACION

La disposición de las aguas residuales domesticas no es la adecuada ya que la mayor parte la realizan a pozos sin conexión, causando contaminación, dadas las actuales condiciones de vida de los moradores del sector es primordial la construcción de una red de alcantarillado.

El diseño de la red de alcantarillado permitirá la evacuación adecuada de las aguas residuales domésticas, minimizando así la emisión de malos olores y brindándoles a los habitantes del sector un servicio básico que es el alcantarillado.

Dependiendo del tipo de área urbana a servirse las normas EX – IEOS considera que el sistema de alcantarillado dependerá de dicha área.

En general existirán tres niveles incrementando su complejidad desde el nivel 1, al nivel 3.

Para seleccionar el tipo de nivel de alcantarillado que se utilizara dependerá de la situación económica de la comunidad, de la topografía, de la densidad poblacional, etc.

En el nivel uno corresponde a comunidades rurales con casas dispersas y que cuenten con calles sin ningún tipo de acabado.

En el nivel dos corresponde a comunidades que ya tengan algún tipo de trazado de calles, con tránsito vehicular y que tengan una mayor concentración de casas de tal forma que se justifique la construcción del sistema de alcantarillado.

En el nivel tres corresponde a ciudades más desarrolladas en las que los diámetros calculados caigan dentro de un patrón de un alcantarillado convencional.

Analizados los tres niveles de alcantarillado se concluye que el más adecuado es el nivel dos, basándose en la situación económica, topográfica, y de la densidad poblacional, etc.

Según las normas EX – IEOS las tuberías serán de Hormigón Simple con un diámetro mínimo de 150mm.

6.4. OBJETIVOS:

- Realizar un estudio previo para determinar las condiciones del lugar.
- Investigar normas de diseño para la construcción del sistema de alcantarillado sanitario para aguas residuales domésticas.
- Realizar el trazado adecuado del alcantarillado mediante la topografía en el sector.
- Diseñar la red de alcantarillado para la evacuación de aguas residuales domésticas.

- Realizar cálculos y planos correspondientes al diseño hidráulico del alcantarillado sanitario.
- Proponer un presupuesto estimado para le ejecución del proyecto.

6.5. ANALISIS DE FACTIBILIDAD

El proyecto de alcantarillado sanitario para le evacuación de aguas residuales domesticas cuenta con el apoyo del GADPPz de la provincia de Pastaza.

La parroquia Madre Tierra tiene como accesos principales la vía Puyo – Madre Tierra y Puyo – Tarqui - Madre Tierra lo cual facilita el ingreso y salida de todo tipo de maquinarias para la ejecución del proyecto.

Razones por lo cual se concluye que el presente proyecto es factible.

6.6. FUNDAMENTACION

Mediante las normas EX – IEOS se procederá al diseño y cálculo del sistema de alcantarillado sanitario.

6.6.1. SISTEMA DE ALCANTARILLADO SANITARIO

Sistemas de estructuras y tuberías usadas para el transporte de aguas residuales o aguas lluvias desde el lugar en que se generan hasta el sitio en que se vierten.

6.6.1.1 TIPOS DE ALCANTARILLADO:

Los sistemas de recolección y evacuación de aguas residuales domésticas y pluviales se clasifican según su tipo en:

SISTEMAS CONVENCIONALES:

Los alcantarillados convencionales son los sistemas tradicionales utilizados para la recolección y transporte de aguas residuales o lluvias hasta los sitios de disposición final.

Los sistemas convencionales de alcantarillado se clasifican en:

- ➤ Alcantarillado separado: es aquel en el cual se independiza la evacuación de aguas residuales y lluvia.
- a) **Alcantarillado sanitario:** sistema diseñado para recolectar exclusivamente las aguas residuales domésticas e industriales.
- b) **Alcantarillado pluvial:** sistema de evacuación de la escorrentía superficial producida por la precipitación.
 - ➤ Alcantarillado combinado: conduce simultáneamente las aguas residuales, domesticas e industriales, y las aguas de lluvia.

SISTEMAS NO CONVENCIONALES:

Los sistemas de alcantarillado no convencionales se clasifican según el tipo de tecnología aplicada y en general se limita a la evacuación de las aguas residuales.

- Alcantarillado simplificado: un sistema de alcantarillado sanitario simplificado se diseña con los mismos lineamientos de un alcantarillado convencional, pero teniendo en cuenta la posibilidad de reducir diámetros y disminuir distancias entre pozos al disponer de mejores equipos de mantenimiento.
- ➤ Alcantarillado condominiales: Son los alcantarillados que recogen las aguas residuales de un pequeño grupo de viviendas, menor a una hectárea, y las conduce a un sistema de alcantarillado convencional.

➤ Alcantarillado sin arrastre de sólidos: Conocidos también como alcantarillados a presión, son sistemas en los cuales se eliminan los sólidos de los efluentes de la vivienda por medio de un tanque interceptor. El agua es transportada luego a una planta de tratamiento o sistema de alcantarillado convencional a través de tuberías de diámetro de energía uniforme y que, por tanto, pueden trabajar a presión en algunas secciones.

6.6.2. COMPONENTES DE UN SISTEMA DE ALCANTARILLADO

6.6.2.1. RED DE TUBERIAS

Tiene por objeto recolectar y transportar las descargas de aguas residuales domésticas, comerciales e industriales, para conducir los caudales acumulados hacia los subcolectores luego a los colectores y finalmente a los emisores.

Esta red está constituida por un conjunto de tuberías por las que circula las aguas residuales.

El ingreso de agua a esas tuberías es paulatino acumulándose poco a poco el caudal lo que da lugar al aumento permanente de la sección de tubería.

La red de atarjeas inicia con la descarga domiciliaria. La descarga domiciliaria en la mayoría de los casos es de 4" siendo este el mínimo aceptable llegando en algunos casos a ser de hasta 6".

La conexión entre la descarga domiciliaria y la tubería debe ser hermética.

6.6.2.2. TRAZADO DE ALCANTARILLADOS

TRAZO EN BAYONETA

Se denomina así al trazo que, iniciando en una cabeza de atarjea, tiene un desarrollo en zigzag o en escalera. La ventaja de utilizar este tipo consiste en reducir el número de cabezas de atarjeas y permitir un mayor desarrollo de las atarjeas, incrementando el número de descargas para facilitar que los conductos adquieran un régimen hidráulico establecido, logrando con ello aprovechar eficientemente la capacidad de los conductos. La desventaja es que para su utilización el trazo requiere que el terreno tenga pendientes suaves y uniformes.

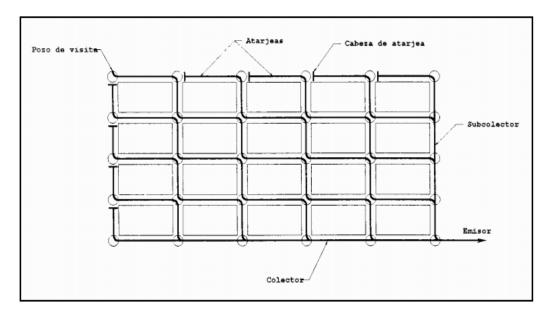


Figura VI.2: Trazado de la red de atarjeas en Bayoneta.

TRAZO EN PEINE:

Es el trazo que se forma cuando existen varias atarjeas con tendencia al paralelismo. Las ventajas de este sistema consisten en garantizar la aportación rápida y directa del agua pluvial de la cabeza de atarjea a la tubería común de cada peine y de éstas a los colectores, propiciando que se presente rápidamente un régimen hidráulico establecido. Además, se tiene una amplia gama de valores para

las pendientes de las atarjeas, lo cual resulta útil en el diseño cuando la topografía es prácticamente plana.

El sistema también tiene desventajas, entre las que se pueden mencionar que debido al corto desarrollo que tienen las atarjeas en el inicio de la red, a partir de la cabeza de atarjea, antes de descargar a un conducto mayor, en la mayoría de los casos aquellas trabajan por debajo de su capacidad, ocasionando que se desaproveche parte de dicha capacidad.

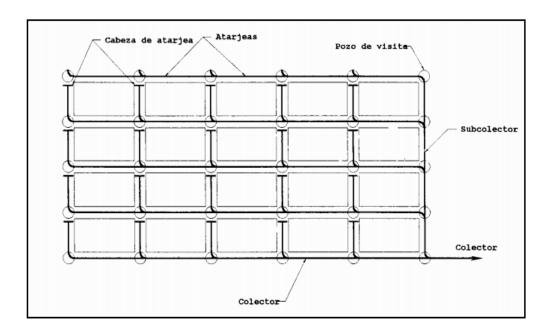


Figura VI.3: Trazado de la red de atarjeas en Peine.

TRAZO COMBINADO:

Como su nombre lo indica, es una combinación de los dos sistemas mencionados anteriormente. Se emplea de acuerdo a la topografía que se presente en el área de proyecto teniendo como objetivo el reducir los costos de construcción.

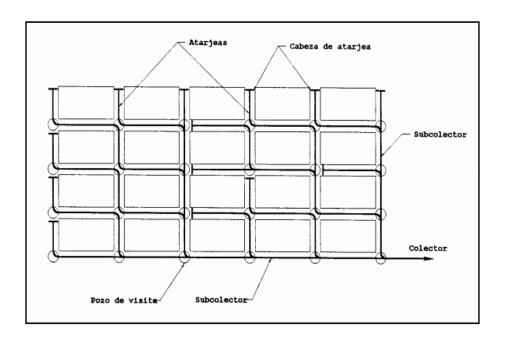


Figura VI.4: Trazado de la red de atarjeas en Combinado.

6.6.2.3. COMPONENTES DE UN SISTEMA DE ALCANTARILLADO

Según las normas INNE (Sistema de Alcantarillado).

POZOS Y CAJAS DE REVISIÓN

En sistemas de alcantarillado, los pozos de revisión se colocarán en todos los cambios de pendientes, cambios de dirección, exceptuando el caso de alcantarillas curvas, y en las confluencias de los colectores.

La máxima distancia entre pozos de revisión será de 100 m para diámetros menores de 350 mm; 150 m para diámetros comprendidos entre 400 mm y 800 mm; y, 200 m para diámetros mayores que 800 mm.

Los pozos de alcantarillado sanitario deberán ubicarse de tal manera que se evite el flujo de escorrentía pluvial hacia ellos. Si esto es inevitable, se diseñarán tapas herméticas especiales que impidan la entrada de la escorrentía superficial.

La abertura superior del pozo será como mínimo 0,6 m. El cambio de diámetro desde el cuerpo del pozo hasta la superficie se hará preferiblemente usando un tronco de cono excéntrico, para facilitar el descenso al interior del pozo.

El diámetro del cuerpo del pozo estará en función del diámetro de la máxima tubería conectada al mismo, de acuerdo a la tabla.

DIÁMETRO DE LA TUBERÍA	DIÁMETRO DEL POZO
mm	m
Menor o igual a 550	0,9
Mayor a 550	Diseño especial

Tabla VI.2: Diámetro de tuberías y Pozos

Fuente EX – IEOS.

6.6.2.4. CONEXIONES DOMICILIARIAS.

Las conexiones domiciliarias en alcantarillado tendrán un diámetro mínimo de 0,1 para sistemas sanitarios y 0,15m para sistemas pluviales y una pendiente mínima de 1%.

Toda acometida domiciliaria constara de una caja de revisión, y tubería de conexión entre la red principal y la caja. Para su diseño se deben considerar algunos aspectos:

Las cajas de revisión tendrán como mínimo, una sección de 0.60*0.60 m, y una profundidad máxima de 0.90 m, si excede de 0.90 m Se utilizara un pozo de revisión.

- La calidad de la conexión domiciliaria será de tal manera que impidaninfiltraciones innecesarias, tanto en la tubería, corno en la unión a la alcantarilla receptora.
- ➤ En ningún caso se permitirá la introducción de la tubería de conexión domiciliaria en la alcantarilla, de manera que se generen protuberancias en su interior y que la unión sea impermeable. La apertura del orificio en la alcantarilla, solo se podrá hacer cortándola con un equipo especial que permita un perfecto acoplamiento entre las dos.
- ➤ El diámetro mínimo para las conexiones domiciliarias serán de 150 mm. Los tubos de conexión deben ser conectados a la tubería principal, de manera que este que de por encima del nivel máximo de las aguas que circulan por el canal central.

6.6.3. COMPONENTES Y PARAMETROS PARA EL DISEÑO DEL SISTEMA DE ALCANTARILLADO.

6.6.3.1. VELOCIDADES MAXIMAS Y MINIMAS.

La velocidad del flujo está determinada por la pendiente del terreno, el diámetro de la tubería y el tipo de tubería que se utiliza.

Las velocidades mínimas de circulación de las aguas residuales deben diseñarse para evitar la sedimentación de los sólidos y garantizar la auto limpieza de la tubería. Mientras que las velocidades máximas deben diseñarse para evitar la erosión y el desgaste que produce las velocidades en la tubería.

MATERIAL	VELOCIDAD MÁXIMA m/s	COEFICIENTE DE RUGOSIDAD
Hormigón simple: Con uniones de mortero. Con uniones de neopreno para nivel freático alto	4 3,5 – 4	0,013 0,013
Asbesto cemento Plástico	4,5 – 5 4,5	0,011 0,011

Tabla VI.3: Velocidades máximas y coeficientes de rugosidad

6.6.3.2. DIAMETROS MINIMOS

En el diseño de sistemas de alcantarillado se deben adoptar diámetros de tubería que existen en los mercados, tomando en cuenta que para alcantarillados combinados y pluviales el diámetro mínimo es de $\phi=250$ mm, y para alcantarillado sanitario el diámetro mínimo es de $\phi=200$, ya que estos diámetros facilitan la limpieza, por ningún motivo se podrá colocar tubería de diámetros menor aunque hidráulicamente funcione correctamente.

6.6.3.3. TENSIÓN TRACTIVA

La tensión tractiva o tensión de arrastre (τ) es el esfuerzo tangencial unitario ejercido por el líquido sobre el colector y en consecuencia sobre el material depositado. Se expresa mediante:

$$\tau = \rho *g*R*S$$
 Ecuación 6.1

Dónde:

ρ= Densidad del agua (1000kg/m³)

 τ = Tensión Tractiva en pascal (Pa)

g = Aceleración de la gravedad (9,81 m/s²)

r = Radio Hidráulico (m)

s = Pendiente de la Tubería (mm)

Para que se cumplan las condiciones mínimas de arrastre la tensión tractiva será de 1Pa

$$\tau$$
 min = 1Pa

$$Smin = \frac{\tau min}{\rho * g * R} Ecuaci\'{o}n 6.2$$

Para tuberías con sección llena:

El radio hidráulico es:

$$R = \frac{D}{4}$$
 Ecuación 6.3

Dónde:

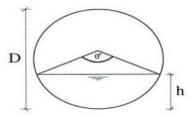
D= Dímetro (m)

Sustituyendo el valor de (R), la fórmula de Manning para tuberías a sección llena es:

$$V = \frac{0.397}{n} D^{\frac{2}{3}} S^{\frac{1}{2}}$$
 Ecuación 6.4

En función del caudal, con:

$$Q = V*A$$


Dónde:

Q= Caudal (m^3/s)

A= Área de la sección circular (m^2)

$$Q = \frac{0,397}{n} D^{\frac{2}{3}} S^{\frac{1}{2}}$$
 Ecuación 6.5

Para tuberías con sección parcialmente llena:

El ángulo central θ° (en grado sexagesimal):

$$\theta^{\circ} = 2 arcos \left(1 - \frac{2h}{D}\right)$$
 Ecuación 6.6

6.6.3.4. PROFUNDIDADES

Las redes se diseñarán manteniendo la pendiente natural del terreno y que tengan profundidades mínimas de 1,20 m sobre la corona de la tubería para garantizar la evacuación de aguas servidas desde las viviendas aledañas y para evitar daños por efecto del tráfico vehicular.

6.6.3.5. TIPO DE TUBERIA

Para los sistemas de alcantarillado existen diferentes materiales para tuberías. Cada una posee características propias, tales como rugosidad e irregularidades del canal Dichas características se evalúan en un factor que influye en el cálculo de las velocidades en los conductos. Para el caso de la ecuación de Manning se presentan dichos valores en la siguiente tabla:

Material	Valor de η
Hormigón Simple	0.013 – 0.015
Asbesto	0.011
P.V.C	0.011

Tabla VI.4: Coeficiente de rugosidad η para la formula de Mannig.

En el caso de la población en estudio, el material más usado y económico es el hormigón simple. Por ello este es el material adoptado para las tuberías de la conducción.

6.6.4. PARAMETROS DE DISEÑO

6.6.4.1. PERIODO DE DISEÑO

Las obras hidráulicas se proyectaran con capacidad para el funcionamiento correcto durante un plazo que se efectuara de acuerdo al crecimiento estimado de la población, con la vida útil de los elementos del sistema y tomando en consideración la cristalización del proyecto. El periodo de diseño estará relacionado a la capacidad económica nacional y local y deberá ser justificada por el calculista.

PERIODO DE DISEÑO= VIDA UTIL + PLANEACION -----CONSTRUCCION

6.6.4.2. FACTORES DE IMPORTANCIA PARA PERIODO DISEÑO

✓ Vida útil de las estructuras y equipo, tomados en cuenta obsolescencia, desgate y daños.

Tipo de Estructura	Características Especiales	Período de Diseño (Años)
Presas, ductos grandes	Difíciles y costosos de agrandar	25 – 50
equipos de bombeo,	a) Fáciles de ampliar cuando el crecimiento y las tasas de interés son bajas. Menor del 3% anual	20 – 25
pottometron	b) Cuando el crecimiento y las tasas de interés son altas. Mayor del 3% anual	10 – 15
•	Reemplazar tuberías pequeñas es más costoso a largo plazo	20 – 25
· ·	Los requerimientos pueden cambiar rápidamente en áreas limitadas	Para el desarrollo completo
Alcantarillas	-	40 – 50

Tabla VI.5: períodos de diseño para los sistemas

Tipos de componentes	Periodos de diseño en años
Pozos excavados	10
Pozos perforados	15
Captaciones superficiales y manantiales	20
Desarenado	20
Filtro lento	20
Líneas de conducción	15
Tanque de almacenamiento	20
Red de distribución	15

Tabla VI.6: Periodo de diseño económico de los elementos

Fuente: Normas técnicas INEN.

- ✓ Ampliaciones Futuras y planeaciones de las etapas de construcción del proyecto.
- ✓ Cambios en el desarrollo social y económico de la población: La fijación de un período económico está íntimamente ligada a factores económicos y su asignación está ajustado a criterios económicos, los cuales están regidos por los costos de construcción que inducirán a mayores o menores periodos de inversión, para atender la demanda que el crecimiento poblacional obliga.
- ✓ **Comportamiento hidráulico:** El análisis hidráulico de las obras cuando no estén funcionando a su plena capacidad.
- ✓ Tendencias de crecimiento de la población: el crecimiento poblacional es función de factores económicos y sociales. De acuerdo a las tendencias de crecimiento de la población es conveniente elegir periodos de diseño más largos para crecimientos lentos y viceversa
- ✓ Posibilidad de financiamiento y tasa de interés: basado en estimaciones de tasa de interés y de costo capitalizado para que pueda aprovecharse máximo la inversión hecha.

6.6.4.3. ÁREA DEL PROYECTO

Un parámetro muy importante a tomar en cuenta es el área del proyecto. Este valor nos ayudara a la determinación de la magnitud del proyecto.

6.6.4.4. POBLACION DE DISEÑO

Se deberá considera la población actual, lo que posteriormente a través de los diferentes métodos nos permitirá la población futura y diseñar el sistema.

Los métodos a considerar son:

- Método Aritmético
- Método Geométrico
- Método Exponencial

Para ello se deberá conocer inicialmente la población de los dos últimos censos realizados en la población de Madre Tierra.

MÉTODO ARITMÉTICO

La tasa de crecimiento utilizando el método aritmético se obtiene mediante la siguiente formula.

$$r = \frac{\frac{Pf}{Pa} - 1}{n} * 100 Ecuación 6.1$$

La población futura con el método aritmético se determina con:

$$Pf = Pa(1 + r * n)$$
 Ecuación 6.2

MÉTODO GEOMÉTRICO

La tasa de crecimiento utilizando el método geométrico se obtiene de la siguiente manera:

$$r = \left[\left(\frac{Pf}{Pa} \right)^{1/n} - 1 \right] * 100 Ecuación 6.3$$

La población futura con el método geométrico se determina con:

$$Pf = Pa(1+r)^n$$
 Ecuación 6.4

MÉTODO EXPONENCIAL

La tasa de crecimiento utilizando el método exponencial se obtiene mediante la siguiente formula.

$$r = \frac{ln\left(\frac{Pf}{Pa}\right)}{n} * 100 Ecuación 6.5$$

La población futura con el método exponencial se determina con:

$$Pf = Pa * e^{n*r} Ecuación 6.6$$

Dónde:

r = Tasa de crecimiento

Pf= Población Futura

Pa = Población Actual

n = Intervalo de tiempo entre años censales

TASA DE CRECIMIENTO

Es necesario contar con los censos de los últimos años realizados por el INEC (INSTITUTO ECUATORIANO DE ESTADISTICAS Y CENSOS) para la parroquia Madre Tierra es la siguiente:

POBLACION PARROQUIA MADRE TIERRA	HOMBRES	MUJERES	TOTAL
2001	551	531	1082
2012	794	794	1588

Tabla VI.7: Población

Fuente: INEC.

Método Aritmético

$$r = \frac{\frac{Pf}{Pa} - 1}{n} * 100 \ Ecuación 6.1$$

Dónde:

Pf (2010)= 1588 hab

Pa (2001)= 1082 hab

r= Taza de crecimiento

n= Periodo de consideración de 9 Años

$$r = \frac{\frac{1588}{1082} - 1}{9} * 100$$

$$r = 5,20\%$$

Método Geométrico

$$r = \left[\left(\frac{Pf}{Pa} \right)^{1/n} - 1 \right] * 100 Ecuación 6.2$$

Dónde:

Pf (2010)= 1588 hab

Pa (2001)= 1082 hab

r= Taza de crecimiento

n= Periodo de consideración de 9 Años

$$r = \left[\left(\frac{1588}{1082} \right)^{1/9} - 1 \right] * 100$$

$$r = 4.36\%$$

Método Exponencial

$$r = \frac{ln\left(\frac{Pf}{Pa}\right)}{n} * 100 \ Ecuación 6.3$$

Dónde:

Pf (2010)= 1588 hab

Pa (2001)= 1082 hab

r= Taza de crecimiento

n= Periodo de consideración de 9 Años

$$r = \frac{\ln\left(\frac{1588}{1082}\right)}{9} * 100$$

$$r = 4.26\%$$

POBLACION FUTURA:

El cálculo de población futura consiste en estimar el crecimiento poblacional que tendrá la zona donde se desarrolla el proyecto, para los intervalos de tiempos futuros. Para ello es necesario conocer el dato de la (Población Actual).

ПУ	PROYECCION DE LA POBLACION FUTURA DE LOS HABITANTES DEL BARRIO 18 DE JULIO, CANTON MERA													
ПА	Método	Método	Método											
AÑO	Aritmético	Geométrico	Exponencial											
	r=5,20%	r=4.36%	r=4,26%											
2013	1588	1588	1588											
2014	1671	1657	1657											
2015	1753	1729	1729											
2016	1836	1805	1804											
2017	1918	1884	1883											
2018	2001	1966	1965											
2019	2083	2051	2050											
2020	2166	2141	2140											
2021	2249	2234	2233											
2022	2331	2332	2330											
2023	2414	2433	2431											
2024	2496	2539	2537											
2025	2579	2650	2648											
2026	2661	2766	2763											
2027	2744	2886	2883											
2028	2827	3012	3009											
2029	2909	3143	3140											
2030	2992	3280	3276											
2031	3074	3423	3419											
2032	3157	3573	3568											
2033	3240	3728	3723											
2034	3322	3891	3885											
2035	3405	4061	4054											
2036	3487	4238	4230											
2037	3570	4423	4414											
2038	3652	4615	4607											

Tabla VI.8: Población Futura

Método Aritmético.

$$Pf = Pa(1 + r * n) Ecuaci\'{o}n 6.2$$

Dónde:

Pf (2037)= Población futura (hab)

Pa (2012)= 1588 habitantes

r= Taza de crecimiento de 5,20%

n= Periodo de consideración de 25 años

$$Pf = 1588(1 + 0.052 * 25)$$

 $Pf = 3652.4 \, Hab.$

Método Geométrico.

$$Pf = Pa(1+r)^n$$
 Ecuación 6.4

Dónde:

Pf (2037)= Población futura (hab)

Pa (2012)= 1588 habitantes

r= Taza de crecimiento de 4,36%

n= Periodo de consideración de 25 años

$$Pf = 1588(1 + 0.0436)^{25}$$

 $Pf = 4615 \ hab.$

Método Exponencial.

$$Pf = Pa * e^{n*r}$$
 Ecuación 6.5

Dónde:

Pf (2037)= Población futura (hab)

Pa (2012)= 1588 habitantes

r= Taza de crecimiento de 4,26%

n= Periodo de consideración de 25 años

$$Pf = 1588 * e^{25*0.0426}$$

$$Pf = 4561 \, Hab.$$

DENSIDAD POBLACIONAL

La densidad poblacional se refiere a la distribución del número de habitantes a través de un territorio o superficie. La densidad poblacional se puede medir en habitantes por hectárea (hab/Ha).

$$Dp = \frac{Población}{Area}$$
 Ecuación 6.6

Para la determinación de Densidad Poblacional Actual se lo realiza de la siguiente manera:

 $Pa = 1588 \ hab.$

A = 5.647 ha

$$Dp = \frac{1588(Hab)}{5.647\ (Ha)}$$

$$Dp = 281,21 \ hab/ha$$

Para la determinación de Densidad Poblacional Futura se lo realiza de la siguiente manera:

 $Pf = 4615 \ hab.$

A = 5.647 Ha

$$Dp = \frac{Pf(hab)}{A(Ha)}$$

$$Dp = \frac{4615hab}{5.647Ha}$$

$$Dp = 817,248 \frac{hab}{Ha}$$

6.6.4.5. DOTACIONES DE AGUA POTABLE

La producción de agua para satisfacer las necesidades de la población y otros requerimientos, se fijara en base a estudios de las condiciones particulares de la población, considerando: condiciones climáticas, necesidades de los distintos

servicios públicos, agua potable por habitante, la protección contra incendios; pero básicamente tendremos que tener en cuenta que depende de las características económicas y culturales de la zona.

POBLACIÓN (habitantes)	CLIMA	DOTACIÓN MEDIA FUTURA (l/hab/día)
Hasta 5000	Frío Templado Cálido	120 - 150 130 - 160 170 - 200
5000 a 50000	Frío Templado Cálido	180 – 200 190 – 220 200 – 230
Más de 50000	Frío Templado Cálido	> 200 > 220 > 230

Tabla VI.9: Dotaciones de agua actual - Zona

NIVELES DE INGRESO	DOTACIÓN (Lts/hab/día)
ALTO	250 - 200
MEDIO	180 - 120
BAJO	100 - 60

Tabla VI.10: Dotaciones de agua actual – Niveles

La dotación de agua optada para diseño según la zona es 160 lts/hab/dia.

ESTIMACIÓN DE LA DOTACIÓN FUTURA

Para la determinación de la dotación futura se lo puede realizar por dos maneras:

Utilizando la Siguiente expresión:

$$D_{futura} = Da \left(1 + \frac{p}{100}\right)^t Ecuación 6.7$$

Donde

Da= Dotación Actual Lts/Hab/Dia

t = Periodo de Diseño en años

$$0.5 \% < = p < = 2\%$$

Otra expresión es la Siguiente

$$Dfutura = Da + ((1Lt/Hab)/Dia) * n$$

Donde

n= Periodo de Diseño en años

Da= Dotación Actual Lts/Hab/Dia

$$Dfutura = Da + ((1Lt/Hab)/Dia) * n$$

$$D_{futura} = (160\,lts/hab/dia) + (1\,lts/hab/dia) * 25$$

$$D_{futura} = 185 \, lts/hab/dia$$

6.6.4.6. ÁREAS DE APORTACIÓN

Las áreas de aportación se calcularan con la planimetría de la zona, dividiendo el área del terreno en áreas geométricas, dependiendo de las pendientes del sector una vez realizada la topografía.

6.6.4.7. CAUDALES DE DISEÑO PARA AGUAS RESIDUALES.

Para determinar el caudal de aguas servidas o caudal de diseño se deberá considerar algunas aportaciones de caudal siendo el resultante el que se utilice para el diseño del alcantarillado.

Mediante la siguiente ecuación:

$$Qdise\tilde{n}o = Qi + Qe + Qinf$$
 Ecuación 6.8

$$Qmax = M * Qmedio$$

Qd= Caudal de diseño

Qi= Caudal Instantáneo

Qe= Caudal de conexiones erradas

QInf= Caudal Por Infiltración.

CALCULO DEL CAUDAL SANITARIO

Caudal Medio Diario de Agua Potable (Qma)

Se determina con base en la población del proyecto y dotación, de acuerdo a la siguiente expresión:

$$Qma = \frac{Pf * Df}{86400} Ecuacion 6.9$$

Donde

Pf = Población Futura

Df= Dotación Futura

$$Qma = \frac{Pf * Df}{86400}$$

$$Qma = \frac{4615 \, Hab * 185 Lts / Hab / día}{86400}$$

$$Qma = 9,88Lts/seg$$

Caudal Doméstico (Qmd)

El caudal domestico se determina multiplicando el factor de Retorno C Para el caudal Medio Diario ya que no toda el agua que se suministra a las viviendas va a la red de Alcantarillado.

$$Qmd = C * Qma Ecuacion 6.10$$

Donde

C= Factor de Retorno (60% - 80%)

Qmd= Caudal Medio Diario

$$Qmd = C * Qma$$

$$Qmd = 0.8 * 9,88 Lts/seg$$

$$Qmd = 7,90 Lts/seg$$

Caudal Instantáneo

El caudal Instantáneo se determina Multiplicando el coeficiente de Flujo Máximo M para el Caudal Domestico. En base a la siguiente expresión:

$$Qi = M * Qmd$$
 Ecuación 6.11

Donde

M= Coeficiente de Flujo Máximo

Qd= Caudal Domestico

Coeficiente de Flujo Máximo (m)

La relación entre el caudal medio diario y el caudal máximo horario se denomina coeficiente de flujo máximo. Este coeficiente varía d acuerdo a los mismos factores que influye en la variación de los caudales de abastecimiento de agua potable es decir este coeficiente varía de acuerdo al clima, etc. No será el mismo coeficiente.

$$M = 1 + \frac{14}{4 + \sqrt{Pf}}$$
 HARMON Ecuación 6. 13

Dónde:

M = Coeficiente de Mayoración

P = Población en miles

$$M = 1 + \frac{14}{4 + \sqrt{Pf}}$$

$$M = 1 + \frac{14}{4 + \sqrt{4,615}}$$

$$M = 3.27$$

• BABIT

$$M = \frac{5}{P^{0.2}}$$
 BABIT Ecuación 6.14

$$M = \frac{5}{4,615^{0.2}}$$

$$M = 3,68$$

• POPEL

POBLACION (miles)	M
< 5	2,4 – 2,0
5 – 10	2,0 – 1,85
10 – 50	1,85 – 1,60
50 – 250	1,60 – 1,33
> 250	1,33

• EX – IEOS

$$K=M$$

$$K = \frac{2.228}{Q^{0.073325}}$$
 Ecuación 6.15

$$K = \frac{2.228}{7,90^{0.073325}}$$

$$K = 1,91$$

El valor máximo del coeficiente de Mayoración es de 3.68 razón por la cual asumimos este valor.

$$Qins = M * Qmd$$

$$Qins = 3.68 * 7,90 lts/seg$$

$$Qins = 29.07 lts/seg$$

Caudal de infiltración

Este aporte adicional se estima por las siguientes causas

- 1. Altura del nivel freático sobre el fondo del colector, ingresa por las uniones o por las roturas.
- 2. Permeabilidad del suelo y la cantidad de precipitación
- 3. Dimensiones, estado y tipo de alcantarillado
- 4. Material de tubería y tipo de unión.

Tipo tubería	Alta	Media	Baja
H.S	4	3	2
PVC	1,5	1	0,5

Tabla VI.11: Caudal de Infiltración

Qinf= aporte de inflación * longitud de tubería (lt/seg/km)

	TUBO C	EMENTO	TUBO) PVC
	Mortero	Caucho	Pega	Caucho
N.F.BAJO	0.0005	0.0002	0.0001	0.00005
N.F.ALTO	0.0008	0.0002	0.00015	0.0005

Tabla VI.12: Tipo de tuberías (lt/seg/m)

Según la tabla y la ubicación del sitio en el cual se llevara a cabo el proyecto, se optó por tomar el coeficiente I= 0.0005 para tuberías de PVC, un nivel freático alto.

Para calcular el caudal de infiltración se aplicara la siguiente fórmula:

$$Qinf = I * long Ecuación 6.16$$

Dónde:

Qinf= Caudal de infiltración (lts/seg)

I = Coeficiente tomado de la Tabla

Long= longitud de la tubería 22,54 (Km)

$$Qinf = 0.0005 lts/seg/m * 2254m$$

$$Qinf = 1.13 lts/seg$$

Caudal Por Conexiones Erradas

Este aporte proviene principalmente de las conexiones que equivocadamente se hacen de las aguas lluvias domiciliarias y las conexiones clandestinas.

Sector Urbano: el caudal de conexiones erradas es (5 - 10%)

Dónde:

Qe = Caudal por Conexiones Erradas

Qins = Caudal Instantáneo

$$Qe = 0.1 * Qins Ecuación$$

$$Qe = 0.1 * (29.07 lts/seg)$$

$$Qe = 2,91 lts/seg$$

Caudal de Diseño

$$Qd = Qi + Qe + Qinf$$
 Ecuación 6. 18
 $Qd = (29.07 + 2.91 + 1.13)$ lts/seg
 $Qd = 33.11$ lts/seg

6.6.4.8. Caudales de Proyecciones Futuras

Tomando en cuenta la ubicación del Barrio "18 de Julio", se estimó que el área poblacional aumentará y por lo tanto es necesario el cálculo de caudales de proyecciones futuras.

Para el cálculo de caudales de proyecciones futuras, se utilizaran datos iníciales como: La densidad poblacional y la dotación futura.

Calculo típico:

Pozo 1

Área= 0.063 Ha

Longitud= 50 m

Densidad Poblacional= 817 hab/Ha

Dotación futura= 185 lts/hab/dia

Población futura

$$Pf = Area * D.Poblacional$$

 $Pf = 0.063 Ha * 817 hab/Ha$
 $Pf = 51 hab$

Caudal Medio Diario Sanitario

$$Qmd(S.A.) = C \frac{P * D_{futura}}{86400}$$

$$Qmd(S.A.) = 0.80 * \frac{51 \, hab * \, 185 \, lts/hab/dia}{86400}$$

$$Qmd(S.A.) = 0.087 lts/seg$$

Caudal Instantánea (Qins)

$$Qins = M * Qmd$$

 $Qins = 3.68 * 0.087 lts/seg$
 $Qins = 0.32 lts/seg$

Caudal por Conexiones Erradas (Qe)

$$Qe = 0.1 * Qins$$

 $Qe = 0.1 * 0.32 lts/seg$
 $Qe = 0.032 ts/seg$

Caudal por Infiltración (Qinf)

$$Qinf = I * long$$

 $Qinf = 0.0005 lts/seg/m * 50m$
 $Qinf = 0.025 lts/seg$

Caudal de Diseño

$$Qd = Qins + Qinf + Qe$$

 $Qd = (0.32 + 0.025 + 0.032) lts/seg$
 $Qd = 0.377 lts/seg$

6.6.4.9. VELOCIDADES EN TUBERÍAS

La velocidad del líquido en los colectores sean estos primarios, secundarios o terciarios, bajo condiciones de caudal máximo instantáneo, en cualquier año del periodo de diseño, no sea menor que 0,45 m/s y que preferiblemente sea mayor que 0,6 m/s, para impedir la acumulación de gas sulfhídrico en el líquido.

6.6.4.10. COEFICIENTES DE RUGOSIDAD

COEFICIENTE DE RUGOSIDAD	Min	Prom	Max
FLUJO EN CONDUCTOS CERRADO	OS		
Atarjea de metal corrugado	0.021	0.026	0.030
Superficie de mortero de cemento	0.011	0.013	0.014
Canales de tierra, empedrados	0.016	0.020	0.023
Canales de hormigón simple	0.014	0.015	0.016
Superficie de calles terminadas	1.018	1.019	1.020
Asbesto Cemento	0.009	0.011	0.012
Tuberia de PVC	0.008	0.009	0.010

Tabla VI.13: Coeficientes de Rugosidad

TABLA DE CÁLCULO PARA EL DISEÑO SANITARIO

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERIA CIVIL Y MECÁNICA CÁLCULO DEL CAUDAL SANITARIO (CAUDAL DE DISEÑO) Realizado por : Monica Sisa Pilco Tabla VI.14: Diseño Sanitario Fecha: 18 de junio de 2013 Parte 1 de 2 Area de Dotacion Caudal Medio Coef. De Caudal Coef. De Caudal. Q. Conex. Caudal de Caudal Densidad Poblacion Longitud Pozo С Diario Sanitario Mayoración nfiltración Diseño Tramo Aportación Futura nstantaneo Infiltración Erradas Acumulad Poblacional futura (Hab) (Há) hab/Há/día) (Lts/s) (lts/s) Ki (lts/s) (lts/s) (lts/s) o (lts/s) P1-P2 0,063 50,00 817 51 185 0,088 3,7 0,325 0,0005 0,025 0,032 0,382 0,382 CALLE A P2-P3 0,063 50,000 817 51 185 3,7 0,325 0,382 0,80 0,088 0,0005 0,764 P3-P4 0,062 50,000 817 51 185 0.80 0,087 3,7 0,319 0.0005 0,025 0,032 0,376 1,140 P5-P6 0,126 50,000 817 103 0,80 0,176 3,7 0,649 0,0005 0,025 0,065 0,739 0,739 CALLEB P6-P7 185 3,7 0,124 50,000 817 101 0,80 0,174 0,639 0,0005 0,025 0,064 0,728 1,467 P7-P8 0,124 50,000 817 101 185 0,80 0,174 3,7 0,639 0,0005 0,025 0,064 0,728 2,194 P9-P10 0,126 50,000 817 103 185 0,80 0,176 3,7 0,649 0,0005 0,025 0,065 0,739 0,739 CALLEC P10-P11 0,124 50,000 817 101 185 0,80 0,174 3,7 0,639 0,0005 0,025 0,064 0,728 1,467 P11-P12 0,124 50,000 817 101 185 0,80 0,174 3,7 0,639 0,0005 0,025 0,064 0,728 2,194 P13-P14 0,124 50,000 101 3,7 0,639 0,0005 0,025 0,064 0,728 0,728 CALLED 1,455 P14-P15 0,124 50,000 817 101 185 0.80 0.174 3,7 0,639 0.0005 0.025 0.064 0,728 P15-P16 0,124 50,000 3,7 0,728 817 101 0,80 0,174 0,639 0,0005 0,025 0,064 2,183 P17-P18 0,062 50,000 0,087 0,319 0,0005 0,032 0,376 0,376 817 51 185 0,80 3,7 0,025 CALLEE P18-P19 0,062 50,000 817 51 185 0,80 0,087 3,7 0,319 0,0005 0,025 0,032 0,376 0,753

P19-P20

0,063

50,000

817

51

185

0,80

0,088

Tabla VI.14.Calculo Sanitario (1de2)

3,7

0,325

0,0005

0,025

0,032

0,382

1,135

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERIA CIVIL Y MECÁNICA

CÁLCULO DEL CAUDAL SANITARIO (CAUDAL DE DISEÑO)

Realizado por : Monica Sisa P.

Fecha: 18 de Junio de 2013

Tabla VI. 15: Diseño Sanitario Parte 2 de 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Tramo	Pozo	Area de Aportación (Há)	Longitud (m)	Densidad Poblacional	Poblacion futura (Hab)	Dotacion Futura (hab/Há/día)	С	Caudal Medio Diario Sanitario (Lts/s)	Coef. De Mayoración M	Caudal Instantaneo (Its/s)	Coef. De Infiltración Ki	Caudal. Infiltración (Its/s)	Q. Conex. Erradas (lts/s)	Caudal de Diseño (lts/s)	Caudal Acumulad o (lts/s)
	P1-P5	0,173	94,000	817	141	185	0,80	0,242	3,7	0,891	0,0005	0,047	0,089	1,027	1,027
CALLE 4	P5-P9	0,173	94,000	817	141	185	0,80	0,242	3,7	0,891	0,0005	0,047	0,089	1,027	2,055
CALLET	P9-P13	0,173	94,000	817	141	185	0,80	0,242	3,7	0,891	0,0005	0,047	0,089	1,027	3,082
	P13-P17	0,173	94,000	817	141	185	0,80	0,242	3,7	0,891	0,0005	0,047	0,089	1,027	4,109
	P2-P6	0,346	94,000	817	283	185	0,80	0,484	3,7	1,782	0,0005	0,047	0,178	2,008	2,008
CALLE 3	P6-P10	0,346	94,000	817	283	185	0,80	0,484	3,7	1,782	0,0005	0,047	0,178	2,008	4,015
OFFICE O	P10-P14	0,346	94,000	817	283	185	0,80	0,484	3,7	1,782	0,0005	0,047	0,178	2,008	6,023
	P14-P18	0,346	94,000	817	283	185	0,80	0,484	3,7	1,782	0,0005	0,047	0,178	2,008	8,031
	P3-P7	0,346	94,000	817	283	185	0,80	0,484	3,7	1,782	0,0005	0,047	0,178	2,008	2,008
CALLE 2	P7-P11	0,346	94,000	817	283	185	0,80	0,484	3,7	1,782	0,0005	0,047	0,178	2,008	4,015
OALLE 2	P11-P15	0,346	94,000	817	283	185	0,80	0,484	3,7	1,782	0,0005	0,047	0,178	2,008	6,023
	P15-P19	0,346	94,000	817	283	185	0,80	0,484	3,7	1,782	0,0005	0,047	0,178	2,008	8,031
	P4-P8	0,173	94,000	817	141	185	0,80	0,242	3,7	0,891	0,0005	0,047	0,089	1,027	1,027
CALLE 1	P8-P12	0,173	94,000	817	141	185	0,80	0,242	3,7	0,891	0,0005	0,047	0,089	1,027	2,055
OALLET	P12-P16	0,173	94,000	817	141	185	0,80	0,242	3,7	0,891	0,0005	0,047	0,089	1,027	3,082
	P16-P20	0.173	94,000	817	141	185	0.80	0.242	3.7	0.891	0.0005	0.047	0.089	1.027	4.109

Tabla VI.15.Calculo Sanitario (2de2)

TABLA DE CÁLCULO PARA EL DISEÑO HIDRAULICO

						FACU	LTAD DE	INGEN	ERIA CIV	IL Y ME	CANIC	۹.					
							DIS	SEÑO H	IIDRÁUL	ICO							
Realizados	por:Mo	nica Pauli	ina Sira P.						coefn-	0,011					Tabla VI.16:	Direña Hie	draulica
Føcha: 18 d	le junio	do 2013							p - 1000	Kqfm!					Parte 1 de 3		
1	2	3	4	5	6	7	1 8	9	10	11	12	13	14	15	16	17	18
				TAS	Ť		G4:		i			LLENO			ARCIALMENT		i i
Trama	Pozo	Langitu d (m)	Torrona (m.s.n.m)	Prayecta (m.r.n.m)	Carte	Pondionto do torrono J(%)	1 .	Caudal de Direña (It/rq)	Diametrra Calculada (mm)	Diamotr a (mm)	QTLL (lt/h4)	VTLL (m/r4)	(4PLL/QT LL) ×100	VPLL (m/r)	Altura Efectiva (mm)	RPLL (m)	Tenrio: Tractiv (Pa)
	P-1		902,53	901,030	1,50												
		50,00				-0,780	0,220	0,382	19,8	200	18,20	0,58	2,099	0,233	20,100	0,013	0,03
	P-2		902,92	900,920	2,00												
CALLEA		50,00				0,160	0,760	0,764	20,4	200	33,83	1,08	2,259	0,443	20,800	0,013	0,10
	P-3		902,84	900,540	2,30												
		50,00				-2,140	0,260	1,140	28,9	200	19,78	0,63	5,764	0,342	32,600	0,020	0,05
	P-4		903,91	900,410	3,50												
	P-5		902,53	901,030	1,50												
		50,00				-0,380	0,220	0,739	25,4	200	18,20	0,58	4,061	0,284	27,500	0,012	0,03
	P-6		902,72	900,920	1,80												
CALLEB		50,00			2.00	0,040	0,440	1,467	28,8	200	25,74	0,82	5,699	0,444	32,400	0,020	0,09
	P-7	50,00	902,70	900,700	2,00	-0,360	0,640	2,194	31,2	200	31.04	0,99	7,069	0,570	36,000	0.022	1,38
-	P-8	50,00	902,88	900,380	2,50	-0,360	0,640	2,174	31,2	200	31,04	0,99	1,069	0,510	36,000	0,022	1,30
	P-9		901,79	900,290	1,50												
	• •	50,00	201,112	200,220	1,50	0,840	1,440	0,739	17,8	200	46,56	1,48	1,587	0,620	0,017	0,016	2,27
1	P-10	24,44	901,37	899,570	1,80	7,177	1,117	*,,			17,00	1,11	1,000	*,,***	4,411	*1***	
CALLEC		50,00			-,	0,740	1,140	1,467	24,1	200	41,43	1,32	3,540	0,547	17,600	0,011	1,25
	P-11		901,00	899,000	2,00												
		50,00				-0,460	0,140	2,194	41,5	200	14,52	0,46	15,115	0,333	52,600	0,031	0,04
	P-12		901,23	898,930	2,30												
	P-13		899,53	898,030	1,50												
l		50,00				-0,040	0,560	0,728	21,2	200	29,04	0,92	2,506	0,596	16,600	0,011	0,06
	P-14		899,55	897,750	1,80												
CALLED		50,00				-2,020	0,380	1,455	54,7	200	23,92	0,76	6,085	0,620	25,800	0,016	0,06
	P-15		900,56	897,560	3,00												
⊢																	

Tabla VI.16.Calculo Hidráulico (1de3)

									CNICA IERIA CIV)					
							- DI	orño II	IDRÁUL	100							
							DI	SENO H	IDRAUL	ICO							
Realizado	por:N	lonica Pau	llina Sisa P.						coef n=	0,011					Tabla VI.17	: Diseño H	idraulico
Fecha: 18	de junio	de 2013							p = 1000	Kg/m¹					Parte 2 de	3	
1	2	3	4	5	6	7	*	9	10	11	12	13	14	15	16	17	18
				TAS	_ •	<u> </u>	_ •	7	- 10			LLENO			ARCIALMENT		10
Tramo	Pozo	Langitud (m)	Torrona (m.r.n.m)	Prayecta (m.r.n.m)	Carto	Pondionto do torrona J(%)	Gradiente Hidraulica S(%)	Caudal de Direño (It/rq)	Diamotrra Calculada (mm)	Diamotra (mm)	(lt/t/4)	VTLL (m/rq)	(4PLL/QT LL) ×100	VPLL (m/r)	Altura Efectiva (mm)	RPLL (m)	Tenrior Tractiv (Pa)
	P-17		899,28	897,780	1,50										•		
		50,00				-2,280	0,320	0,376	42,6	200	21,95	0,70	1,715	0,264	18,200	0,012	0,04
	P-18		900,42	897,620	2,80												
CALLEZ		50,00				0,800	1,200	0,753	43,1	200	42,50	1,35	1,771	0,516	18,500	0,012	1,39
	P-19		900,02	897,020	3,00												
[50,00				0,180	0,580	1,135	56,5	200	29,55	0,94	3,840	0,453	26,800	0,017	0,10
	P-20		899,93	896,730	3,20												
	P-1		902,53	901,030	1,50												
	\vdash	94,00				0,000	0,213	1,027	65,0	200	17,90	0,57	5,740	0,309	32,500	0,020	0,04
	P-5		902,53	900,830	1,70												
		94,00				0,787	0,894	2,055	64,5	200	36,68	1,17	5,602	0,629	32,200	0,020	0,17
CALLET	P-9	94,00	901,79	899,990	1,80	2,404	2,511	3,082	45.4	200	61,48	4.44	5,013	1,020	30,500	0,019	0,46
	P-13	94,00	899,53	897,630	1,90	2,404	2,511	3,082	62,0	200	61,48	1,96	5,013	1,020	30,500	0,019	0,46
	F-13	94,00	077,53	071,030	1,70	0,266	0,372	4,109	96,2	200	23,68	0,75	17,357	0,565	56,400	0,033	1,19
	P-17	74,00	899,28	897,280	2,00	0,200	0,512	4,107	70,2	200	25,00	0,15	11,551	0,505	30,400	0,000	1,17
	P-2		902,92	900,920	2,00												
	-	94,00		,	-,	0,213	0,319	2,008	76,7	200	21,92	0,70	9,159	0,435	40,900	0,025	0,08
	P-6		902,72	900,620	2,10												
	${}$	94,00				1,436	1,543	4,015	74,2	200	48,19	1,53	8,332	0,929	39,000	0,023	3,48
CALLEZ	P-10		901,37	899,170	2,20												
		94,00				1,904	2,011	6,023	81,7	200	55,02	1,75	10,948	1,150	44,700	0,027	0,52
	P-14		899,58	897,280	2,30												
		94,00				-0,894	0,383	8,031	121,9	200	24,01	0,76	33,445	0,688	79,700	0,043	1,60
	P-18		900,42	896,920	3,50												

Tabla VI.17.Calculo Hidráulico (2de3)

									CNICA IERIA CIV)					
							DI	SEÑO H	IDRÁUL	ICO							
Realizado	por : N	lonica Pau	ilina Sisa P.						coef n=	0,011					Tabla VI.10	8: Diseño H	idraulico
Fecha: 18	de junio	de 2013							p = 1000	0 Kg/m ^r					Parte 3 de	3	
1	1 2	3	4	5	6	7	 	9	10	1 44	12	13	14	15	16	17	18
1	2			TAS	_ •	<u> </u>		7	10	11		LLENO	19		ARCIALMENT		18
Tramo	Pozo	Longitud (m)	Torrona (m.r.n.m)	Prayecta (m.s.n.m)	Carto	Pendiente de terrena J(%)	Gradionto Hidraulica S(%)	Caudal do Diroña (It/rq)	Diametrra Calculada (mm)	Diamotra (mm)	OTLL (ltr/tr4)	(m/rq)	(4PLL/QT LL) ×100	VPLL (m/x)	Altura Efectiva (mm)	RPLL (m)	Tension Tractive (Pa)
	P-3		902,84	900,540	2,30												
		94,00				0,149	0,255	2,008	79,8	200	19,61	0,62	10,241	0,401	43,300	0,026	0,06
	P-7		902,70	900,300	2,40												
		94,00				1,809	1,915	4,015	71,4	200	53,69	1,71	7,479	1,003	37,000	0,023	4,23
CALLES	P-11		901,00	898,500	2,50												
E		94,00				0,468	0,574	6,023	102,1	200	29,41	0,94	20,481	0,735	61,500	0,035	1,97
	P-15		900,56	897,960	2,60												
	\vdash	94,00				0,574	0,787	8,031	107,0	200	34,43	1,10	23,328	0,893	65,800	0,037	2,84
	P-19		900,02	897,220	2,80												
	P-4		903,91	900,410	3,50												
	P-8	94,00	902,88	899,080	3,80	1,096	1,415	1,027	46,7	200	46,15	1,47	2,226	0,600	20,600	0,013	0,18
	F-0	94,00	702,00	077,000	3,00	1,755	1,968	2,055	56,1	200	54,43	1,73	3,775	0,830	26,600	0,017	3,20
CALLE 4	P-12	7-4,7-7	901,23	897,230	4,00	4,122	1,777	2,455	241.	244	24,42	4,15	5,5	*,***	24,444	4,411	5,27
		94,00				-0,234	0,191	3,082	97,8	200	16,98	0,54	18,152	0,410	57,800	0,033	0,04
	P-16		901,45	897,050	4,40												
		94,00				1,617	1,723	4,109	73,3	200	50,94	1,62	8,068	0,973	38,400	0,023	0,39
	P-20		899,93	895,430	4,50												
	P-17																
	igspace									ш					ш		
	P-18																
	\vdash									\Box					ш		
	P-19																

Tabla VI.18.Calculo Hidráulico (3de3)

6.6.5. IMPACTOS AMBIENTALES

6.6.5.1. Introducción

El impacto ambiental es sin duda alguna un problema que nos concierne a todos los seres humanos, ya que somos nosotros los causantes de este desgaste.

Somos capaces de transformar el ambiente para satisfacer nuestras necesidades como ninguna otra especie en la tierra ha podido.

La capacidad de solucionar problemas es la inteligencia, sin embargo no hemos considerado los daños ocasionados a la naturaleza.

En vista de todo esto estamos sufriendo las consecuencias del egoísmo y no vemos que respiramos aire impuro; totalmente contaminado, que han dejado de existir especies animales.

El ambiente es todo lo que rodea a un organismo; lo constituyen componentes como el agua, el aire, los animales, las personas, el suelo, los cuales se relacionan entre sí. El efecto que produce una determinada actividad humana sobre el ambiente se denomina impacto ambiental.

Con el transcurrir de los años el ser humano ha utilizado la tecnología para modificar el ambiente para su beneficio; sin embargo, esta tecnología también ha contribuido a perjudicar el ambiente.

Los componentes del ambiente han sufrido un serio impacto en la medida en que el progreso tecnológico ha avanzado y se han aplicado en las actividades industriales, mineras y agropecuarias.

6.6.5.2. ¿Qué es un Impacto Ambiental?

El llamado impacto o efecto ambiental es el conjunto de perturbaciones de carácter físico, químico, biológico, económico, social y cultural que incide sobre el ambiente como consecuencia de una obra o actividad en proyección o ya realizado.

6.6.5.3. Objetivos

- Evaluar los posibles efectos (positivos o negativos) que puede producir, en su entorno la instalación y desarrollo del proyecto.
- Identificar y evaluar los posibles impactos ambientales que pueden generar la construcción de dicho proyecto.
- Generar la alternativa para las medidas de mitigación y plan de manejo.

6.6.5.4. Plan de Manejo Ambiental

Para lograr mantener los impactos negativos de una magnitud ambiental aceptable, de modo que pueda aceptarse una calidad ambiental y un equilibrio ecológico compatible con los estándares y metas, debe diseñarse el plan de manejo ambiental.

Este plan se hará efectivo en las distintas fases de construcción, operación y mantenimiento del sistema.

El plan de manejo ambiental incluye las siguientes medidas:

- ✓ Mitigación
- ✓ Rehabilitación Ambiental
- ✓ Control y prevención de impactos ambientales
- ✓ Vigilancia de calidad ambiental
- ✓ Integración al desarrollo local y regional
- ✓ Prevención de desastres
- ✓ Contingencia y compensación.

Todas y cada una de ellas deberán hacer referencia a los aspectos ambientales, en base a su magnitud e importancia de los impactos dichos anteriormente.

6.6.5.5. Análisis sobre el Impacto.

El propósito es hacer una identificación de todos los posibles impactos positivos y negativos, que podrían causar las posibles alternativas para el proyecto e identificar aquellas que serían no factibles desde el punto de vista ambiental.

Una vez que, desde el punto de vista ambiental se haya dado el visto bueno a las alternativas para ser analizadas en el estudio de factibilidad técnica, debe identificarse cuáles serían los impactos ambientales más relevantes del proyecto, que se estudiará más profundamente en el estudio de impacto ambiental.

El resultado final de este análisis debe ser un informe preliminar de todos los impactos significativos, en el cual identifique las alternativas factibles desde el punto de vista ambiental, y se descarten aquellas que presentes efectos ambientales intolerables y que, por lo tanto, sean inconvenientes.

El informe final deberá presentar una calificación de las diversas alternativas, desde el punto de vista ambiental, de acuerdo a los criterios que a continuación se detallan:

	MAGNITUD		I	MPORTANCI	[A
Calificación	Intensidad	Afectación	Calificación	Duración	Influencia
1	Baja	Baja	1	Temporal	Puntual
2	Baja	Media	2	Media	Puntual
3	Baja	Alta	3	Permanente	Puntual
4	Media	Baja	4	Temporal	Local
5	Media	Media	5	Media	Local
6	Media	Alta	6	Permanente	Local
7	Alta	Baja	7	Temporal	Regional
8	Alta	Media	8	Media	Regional
9	Alta	Alta	9	Permanente	Regional
10	Muy Alta	Alta	10	Permanente	Nacional

Tabla VI.19: Nomenclatura para la matriz de Impacto Ambiental.

6.6.5.5.1. Impacto Ambiental Positivo.

- Reducción de los índices de mortalidad y morbilidad infantil por enfermedades de origen hídrico.
- Mejora general del nivel de aseo de la ciudad.
- Mejora del nivel de salud de la población.
- Mejorar el estado nutricional infantil conducente, a su vez, al descenso de la mortalidad por muchas causas.
- Mejora las prácticas de higiene personal doméstica de la población y de comodidad para su realización.
- Reducción de gastos para tratamiento médico por la curación de enfermedades de origen hídrico.
- Estímulo al desarrollo local al disponerse de un servicio necesario para la comunidad.
- Creación de puestos temporales de trabajos durante la ejecución del proyecto.
- Revaloración de las propiedades urbanas servidas por la red de alcantarillado.
- Eliminación de los focos de infección, de fuentes de malos olores.

6.6.5.5.2. Impacto Ambiental Negativo.

- Derechos legales sobre el uso de recursos hídricos.
- Contaminación y efectos negativos en comunidades aguas abajo.
- Cambios en el valor de la tierra.
- Problemas de re asentamiento humanos.

6.6.5.6. MATRIZ CAUSA EFECTO DE LEOPOLD

La matriz de Leopold, es un método que relaciona: las acciones que causa el desarrollo de un proyecto y sus posibles efectos en el medio ambiente, arrojando resultados cuali-cuantitativos, que permitirá evaluar el impacto

ambiental de dicho proyecto, y por lo tanto, para la evaluación de costos y beneficios ecológicos.

La ventaja de la matriz es su recordatorio de toda la gama de acciones, factores, e impactos. En la medida de lo posible, la asignación de magnitud debe basarse en información de hecho. Sin embargo, la asignación de importancia puede dejar cierto margen para la opinión subjetiva del evaluador. Esta separación explícita de hecho y opinión es una ventaja de la matriz de Leopold.

El procedimiento de elaboración de la matriz de Leopold es el siguiente:

- 1. Se elabora un cuadro (fila), donde aparecen las acciones del proyecto.
- 2. Se elabora otro cuadro (columna), donde se ubican los factores ambientales.
- 3. Construir la matriz con las acciones (columnas) y condiciones ambientales (filas).
- 4. Para la identificación se confrontan ambos cuadros se revisan las filas de las variables ambientales y se seleccionan aquellas que pueden ser influenciadas por las acciones del proyecto.
- 5. Evaluar la magnitud e importancia en cada celda, para lo cual se realiza lo siguiente:
 - ✓ Trazar una diagonal en las celdas donde puede producirse un impacto.
 - ✓ En la esquina superior izquierda de cada celda, se coloca un número entre 1 y 10 para indicar la magnitud del posible impacto delante de

cada número se colocará el signo (-) si el impacto es perjudicial y (+) si es beneficioso.

- ✓ En la esquina superior derecha se coloca un número entre 1 y 10 para indicar la importancia del posible impacto.
- ✓ En la parte inferior y exterior derecha, adicionar dos filas y dos columnas de celdas de cómputos.
- ✓ En la primera celda de computo se suma los índices (-) del producto de la magnitud e importancia.
- ✓ En la segunda celda se suma los índices (+) del producto de la magnitud e importancia.
- 6. Los resultados indican cuales son las actividades más perjudiciales o beneficiosas para el ambiente y cuáles son las variables ambientales más afectadas, tanto positiva como negativamente.
- 7. Para la identificación de efectos de segundo, tercer grado se pueden construir matrices sucesivas, una de cuyas entradas son los efectos primarios y la otra los factores ambientales.

Una de las desventajas de la matriz de Leopold es que no refleja la secuencia temporal de impactos, pero es posible construir una serie de matrices ordenadas en el tiempo.

Matriz Causa y Efecto de Leopold

Proyecto: Alcantarillado Sanitario para el Barrio 18 de Julio

Determinación de las acciones que ejerce el proyecto sobre el medio

- Modificación del Hábitat
 - Modificación de espacios abiertos.
 - Construcción de bodegas para materiales.
 - Construcción de cerramientos.
 - Circulación vehicular.
 - Elaboración de hormigones.
 - Determinación de áreas para depósitos.
- Alteración de la cobertura vegetal.
 - Circulación de maquinaria.
 - Limpieza y desbroce del terreno.
 - Movimientos de tierra manual
- Ruido y vibraciones
 - Movimientos de tierra a máquina.
 - Circulación de maquinaria.
 - Elaboración de hormigones con concretar.
 - Uso de herramientas manuales.
- Desbroce y Limpieza
 - Corte de árboles, hiervas, y cultivos de la zona
 - Movimiento de tierras (daño en el suelo)
 - Daño en la capa vegetal
- Cortes y Rellenos.
 - Excavación de tierra a máquina.
 - Excavación de tierra mano.

- Relleno de zanjas a máquina.
- Relleno de zanjas a mano.

Excavación a maquina

- Eliminación total de plantas existentes en la zona.
- Movimiento de tierra por causa de la maquina
- Contaminación del aire por presencia de la maquina

Relleno y Compactación

- Contaminación en el aire.
- Contaminación del suelo
- Presencia de polvo.

Aguas residuales.

- Disposición de las aguas residuales durante el proyecto.
- Colocación de tuberías para las aguas residuales.
- Funcionamiento de tuberías para aguas residuales.

Descargas de efluentes.

- Replanteo y nivelación para la descarga.
- Colocación de tuberías para el efluente.
- Funcionamiento de tuberías para la descarga.

Tanques Sépticos.

- Adecuaciones de Terreno
- Construcción del sistema
- Operación de la planta
- Generación de desechos
- Limpieza y mantenimiento.

- a) Determinación de los factores ambientales que son afectados por las acciones según en literal anterior.
 - Calidad del suelo.
 - Erosión
 - Asentamientos.
 - Calidad del agua.
 - Calidad del agua de efluentes superficiales.
 - Calidad del Aire
 - Sonido ambiental.
 - Flora y Fauna
 - Afectación a animales y vegetación del sitio.
 - * Recreativos.
 - Pesca
 - Turismo
 - Estética y de interés humano.
 - Cambio del paisaje
 - Cambios en la naturaleza
 - Nivel cultural.
 - Cambios en los estilos de vida
 - Fuetes de empleo
 - Afección a la salud y seguridad

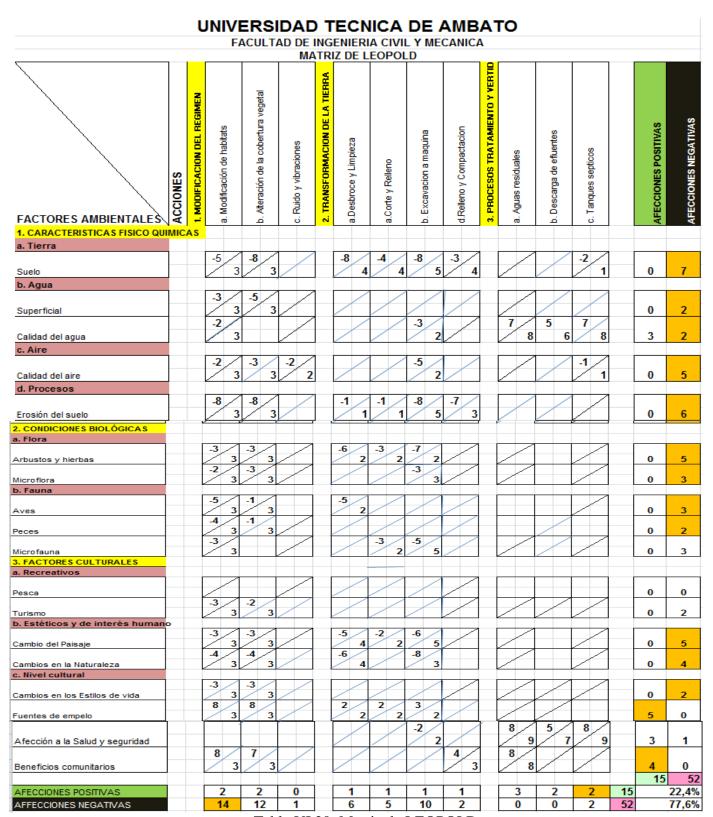


Tabla VI.20: Matriz de LEOPOLD

6.6.5.7. RESULTADOS Y MEDIDAS DE MITIGACIÓN

Al realizar un sistema de alcantarillado se espera controlar la mala disposición de las aguas residuales domésticas, de esta manera reducir los niveles contaminantes. Por esta razón se considera que este proyecto tendrá un impacto positivo durante su funcionamiento.

Durante la construcción de este proyecto se debe tomar ciertas medidas de mitigación, las cuales tienen como finalidad prevenir que ocurran impactos ambientales negativos.

Se tiene como objetivo de las medidas de mitigación:

- Reducir y controlar los efectos que producirán los impactos negativos en el ambiente.
- Promover programas de reforestación con especies nativas.
- Promover e incentivar mediante programas de capacitación el manejo de los recursos naturales.

MEDIDAS DE MITIGACIÓN

Para desarrollar las medidas de mitigación, se debe implementar las medidas y controles para la prevención de impactos nocivos, en cuanto a factores tales como: seguridad de la población, circulación vehicular, servicios públicos y prevención de accidentes en las áreas afectadas por el proyecto.

ELEMENTOS DEL MEDIO	IMPACTOS OCACIONADOS	MEDIDAS DE MITICACIÓN
Agua	Afectación en la calidad del agua por la contaminación de desechos sólidos.	Diseño de estructura para la eliminación o aislamiento de desechos líquidos y sólidos.
Suelo	Descomposición del suelo por falta de aireación natural. Alteraciones en la capa fértil del suelo.	Reforestación con plantas nativas de la zona para que mejoren las condiciones del suelo.
Aire	Emisión de gases por operación de las maquinas que trabajan en el proyecto.	Control en la emisión de gases y escapes en los vehículos pesados.
Flora y Fauna	Deforestación. Perdidas de especies nativas.	Diseño de alcantarillas y plantas de tratamiento para favorecer la recuperación de corredores biológicos. Reforestación con vegetación nativa del sector.
Población	Afectación a la salud por contaminación del aire, suelo, agua y otros factores que influyen en la salud de la personas.	Diseño de estructuras para la conducción y tratamiento de las aguas de los desechos sólidos y líquidos.

Tabla VI.21: Medidas de Mitigación.

6.7. METODOLOGÍA. MODELO OPERATIVO.

6.7.1. PRESUPUESTO

La elaboración de un presupuesto se realiza por medio de análisis de precios unitarios, es decir obteniendo el costo de cada componente q intervendrá en el proceso constructivo. El análisis de precios unitarios, consiste en la suma de los costos de todos los componentes que intervendrán en la elaboración de cada rubro para su construcción, los gastos que produce la ejecución de la obra y la utilidad por los trabajos realizados, esto se resume que el análisis de precios unitarios es la suma de los costos directos y costos indirectos.

COSTOS DIRECTOS

Los costos directos se refiere a aquellos costos que intervienen en la elaboración directa del rubro considerado y esto es: equipo, mano de obra y materiales, es decir, son los elementos necesarios para la ejecución del trabajo.

COSTOS INDIRECTOS

Los costos indirectos se refieren a los costos imputables a la obra y se calcula mediante un porcentaje de los costos directos, entre estos costos directos tenemos: imprevistos, gastos de campo, gastos de oficina, financiamiento, impuestos, utilidad.

Una vez obtenido el valor por cada unidad del rubro se multiplica por la cantidad necesaria de cada uno con lo que tenemos el costo total por cada rubro y con la suma de los costos totales de los rubros necesarios para la ejecución de la obra obtenemos el valor total del proyecto.

ANALISIS DE PRECIOS UNITARIOS

Precio unitario es la remuneración que percibe el contratista por concepto de trabajos, se incluyen en este precio unitario los costos directos e indirectos, la manera de obtener el costo de los precios unitarios ya se anotó al inicio del apartado, por lo que señalamos en esta parte una referencia sobre los rendimientos que intervienen en el análisis de precios.

Presupuesto Referencial:

INSTITUCION: UNIVERSIDAD TECNICA DE AMBATO

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO.

UBICACION: PUYO, PARROQUIA MADRE TIERRA.

ELABORADO: EGDO MONICA SISA FECHA: 05 DE JUNIO DE 2013

TABLA DE DESCRIPCIÓN DE RUBROS, UNIDADES, CANTIDADES Y PRECIOS								
<u>RUBRO</u>	<u>DESCRIPCION</u>	<u>UNIDAD</u>	<u>CANTIDAD</u>	P.UNITARIO	P.TOTAL			
1	Replanteo y Nivelación Redes de Alcantarillado	ml	2.254,07	0,49	1.104,49			
2	Excavacion sin clasificar Máquina 0.00 A 2,50m	m3	3.774,00	2,56	9.661,44			
3	Excavación sin clasificar Máquina 2,51 A 5.00m	m3	3.735,00	3,09	11.541,15			
4	Excavación manual sin clasificar	m3	150,00	6,21	931,50			
5	Entibado de zanja	m2	500,00	6,80	3.400,00			
6	Razanteo de zanja e=0.20m	m2	2.254,07	0,48	1.081,95			
7	Relleno compactado con suelo natural (capas 20 cm)	m3	2.406,54	7,46	17.952,79			
8	Relleno compactado/Mejoramiento*capas=20cm	m3	299,98	14,90	4.469,70			
9	Material petreo para acondicionamiento de tuberia	m3	450,89	21,41	9.653,55			
10	Sum.y coloc. Tub. corrugada para alcantarillado S6 D=200mm	ml	2.254,07	18,05	40.685,96			
11	Pozos de revisión H.Simple f`c=180kg/cm2(1-2,50m)	u	12,00	345,60	4.147,20			
12	Pozos de revisión H.Simple f´c=180kg/cm2(2,51 - 5,00m)	u	12,00	548,73	6.584,76			
13	Suministro y colocacion de tapas y cercos H.F-210lb	u	24,00	186,55	4.477,20			
14	Hormigon Simple f'c= 210 kg/cm2 en estructuras	m3	150,00	281,26	42.189,00			
15	Acero de Refuerzo fy=4200 kg/cm3 en estructuras	Kg	2.500,00	2,28	5.700,00			
16	Acometida domiciliaria de Alcantarillado D=160 Incluye	u	168,00	217,08	36.469,44			
_	accesorio Silla							
17	Desalojo de material con maquina	m3	1.803,25	2,91	5.247,46			
				TOTAL:	205.297.59			
				TOTAL:	200.297,59			

SON: DOSCIENTOS CINCO MIL DOSCIENTOS NOVENTA Y SIETE, 59/100 DÓLARES

EGDO MONICA SISA ELABORADO PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

	ANAL	ISIS DE PRE	CIOS UNITAR	RIOS		HOJA 1 DE 17
RUBRO : 1						UNIDAD: ml
DETALLE: Replanteo y Nivelación Ro	edes de Al	cantarillado				
EQUIPO DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Herramienta Menor 5% de M.O.						0,01
Equipo topografico		1,00	20,00	20,00	0,010	0,20
SUBTOTAL M						0,21
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Cadenero	EO D2	1,00	2,82	2,82	0,030	0,08
Topografo 2	EO C1	1,00	3,02	3,02	0,010	0,03
SUBTOTAL N						0,11
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Clavos			Kg	0,001	1,70	0,00
Madera, puntales			ml	0,120	0,38	
Pintura esmalte			Gln	0,001	20,24	0,02
SUBTOTAL O						0,07
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB
SUBTOTAL P						0,00
		-	TOTAL COSTO [DIRECTO (M+N+C)+P)	0,39
		1	INDIRECTOS Y U	ITILIDADES(%)	25,00	0,10
		(OTROS INDIREC	TOS(%)		0,00
		(COSTO TOTAL I	DEL RUBRO		0,49
		,	VALOR UNIT	ARIO		0,49

SON: CUARENTA Y NUEVE CENTAVOS DE DÓLAR ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

RUBRO : 2	ANAL	ISIS DE PRE	CIOS UNITAF	RIOS		HOJA 2 DE 17 UNIDAD: m3
DETALLE: Excavacion sin clasificar	Máguina (0.00 A 2.50m				UNIDAD. MS
DETAILED : Excuración din diadinda	maqama (
EQUIPO		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION		Α	В	C=AxB	R	D=CxR
Herramienta Menor 5% de M.O. Excavadora		1.00	35.00	35.00	0.050	0,01
Excavadora		1,00	35,00	35,00	0,050	1,75
SUBTOTAL M						1,76
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Ayudante de maquinaria	ST D2	1,00	2,82	2,82	0,050	0,14
Operador 1	OP C1	1,00	3,02	3,02	0,050	0,15
SUBTOTAL N						0,29
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
SUBTOTAL O						0,00
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB
SUBTOTAL P						0,00
			TOTAL COSTO [DIRECTO (M+N+C)+P)	2,05
			INDIRECTOS Y U	JTILIDADES(%)	25,00	0,51
			OTROS INDIREC	TOS(%)		0,00
			COSTO TOTAL I	DEL RUBRO		2,56
			VALOR UNIT	ARIO		2,56

SON: DOS DÓLARES CON CINCUENTA Y SEIS CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

	ANAL	ISIS DE PRE	CIOS UNITAR	RIOS		HOJA 3 DE 17
RUBRO : 3						UNIDAD: m3
DETALLE : Excavación sin clasificar	Máquina 2	2,51 A 5.00m				
EQUIPO		CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION		A	В	C=AxB	R	D=CxR
Herramienta Menor 5% de M.O.						0,02
Excavadora		1,00	35,00	35,00	0,060	2,10
SUBTOTAL M						2,12
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Ayudante de maquinaria	ST D2	1,00	2,82	2,82	0,060	0,17
Operador 1	OP C1	1,00	3,02	3,02	0,060	0,18
SUBTOTAL N						0,35
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
SUBTOTAL O						0,00
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB
SUBTOTAL P						0,00
			TOTAL COSTO I	DIRECTO (M+N+C)+P)	2,47
			INDIRECTOS Y U	•	25,00	0,62
			OTROS INDIREC	TOS(%)		0,00
			COSTO TOTAL I	DEL RUBRO		3,09
		,	VALOR UNIT	ARIO		3,09

SON: TRES DÓLARES CON NUEVE CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

RUBRO : 4	ANAL	ISIS DE PRE	CIOS UNITAF	RIOS		HOJA 4 DE 17 UNIDAD: m3
DETALLE : Excavación manual sin cl	asificar					
EQUIPO DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Herramienta Menor 5% de M.O.						0,24
SUBTOTAL M						0,24
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Peón	EO E2	1,00	2,78	2,78	1,700	4,73
SUBTOTAL N						4,73
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB =======
SUBTOTAL O						0,00
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB ========
SUBTOTAL P						0,00
			TOTAL COSTO [DIRECTO (M+N+C)+P)	4,97
			INDIRECTOS Y U	ITILIDADES(%)	25,00	1,24
			OTROS INDIREC	TOS(%)		0,00
			COSTO TOTAL I	DEL RUBRO		6,21
			VALOR UNIT	ARIO		6,21

SON: SEIS DÓLARES CON VEINTIÚN CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

ANALISIS DE PRECIOS UNITARIOS HOJA 5							
RUBRO : 5						UNIDAD: m2	
DETALLE : Entibado de zanja							
EQUIPO DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR	
Herramienta Menor 5% de M.O.						0,08	
SUBTOTAL M						0,08	
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR	
Albañil/carpintero/fierrero	EO D2	1,00	2,82	2,82	0,270	0,76	
Peón	EO E2	1,00	2,78	2,78	0,270	0,75	
SUBTOTAL N						1,51	
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB	
Madera, tabla encofrado/ 20 cm			u	0,910	1,50	1,37	
Clavos			Kg	0,080	1,70	0,14	
Madera, puntales			ml	5,000	0,38	1,90	
Alambre de amarre galvanizado			kg	0,080	3,08	0,25	
Madera, alfajia			ml	1,750	0,11	0,19 ======	
SUBTOTAL O						3,85	
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB	
SUBTOTAL P						0,00	
			TOTAL COSTO I	DIRECTO (M+N+C)+P)	5,44	
		1	INDIRECTOS Y L	JTILIDADES(%)	25,00	1,36	
			OTROS INDIREC	TOS(%)		0,00	
			COSTO TOTAL I	DEL RUBRO		6,80	
VALOR UNITARIO							

SON: SEIS DÓLARES CON OCHENTA CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

Al	NALISIS DE PRE	CIOS UNITAR	RIOS		HOJA 6 DE 17
RUBRO : 6					UNIDAD: m2
DETALLE: Razanteo de zanja e=0.20m					
EQUIPO	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	A	B	C=AxB	RENDIMIENTO	D=CxR
Herramienta Menor 5% de M.O.					0,00
Motoniveladora	1,00	32,00	32,00	0,010	0,32
					=======
SUBTOTAL M					0,32
MANO DE OBRA DESCRIPCION	CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Operador 1 OP	C1 1,00	3,02	3,02	0,010	0,03
Ayudante de maquinaria ST	D2 1,00	2,82	2,82	0,010	,
SUBTOTAL N					0.06
			CANTIDAD	DD50/0/19/7	-,
MATERIALES DESCRIPCION		UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
				_	=======
SUBTOTAL O					0,00
TRANSPORTE		UNIDAD	CANTIDAD	TARIFA	COSTO
DESCRIPCION			Α	В	C=AxB ========
SUBTOTAL P					0,00
					-,
		TOTAL COSTO	DIRECTO (M+N+C)+P)	0,38
		INDIRECTOS Y L	JTILIDADES(%)	25,00	0,10
		OTROS INDIREC	TOS(%)		0,00
		COSTO TOTAL I	DEL RUBRO		0,48
		VALOR UNIT	ARIO		0,48
		VALOR ONL	AINO		0,40

SON: CUARENTA Y OCHO CENTAVOS DE DÓLAR ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

AI	NALISIS DE PR	ECIOS UNITAF	RIOS	-	10JA 7 DE 17
RUBRO : 7				l	JNIDAD: m3
DETALLE: Relleno compactado con suelo	natural (capas 20	cm)			
EQUIPO	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DESCRIPCION	A	В	C=AxB	R	D=CxR
Herramienta Menor 5% de M.O.					0,27
Compactadora de plancha	1,0	0 4,00	4,00	0,100	0,40
SUBTOTAL M					0,67
MANO DE OBRA DESCRIPCION	CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Peón EO	E2 1,0	0 2,78	2,78	1,800	5,00
Maestro mayor EO	C1 1,0	0 3,02	3,02	0,100	0,30
SUBTOTAL N					5,30
MATERIALES DESCRIPCION		UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
SUBTOTAL O					0,00
TRANSPORTE DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB
DESCRIPCION			A	В	========
SUBTOTAL P					0,00
		TOTAL COSTOL	DIRECTO (M+N+C)+P)	5,97
		INDIRECTOS Y U	•	25.00	1,49
				25,00	•
		OTROS INDIREC	. ,		0,00
		COSTO TOTAL I	DEL RUBRO		7,46
		VALOR UNIT	ARIO		7,46

SON: SIETE DÓLARES CON CUARENTA Y SEIS CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

RUBRO : 8	IALISIS DE PRI	ECIOS UNITAF	RIOS		HOJA 8 DE 17 UNIDAD: m3
DETALLE: Relleno compactado/Mejorami	ento*capas=20cm				
EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Herramienta Menor 5% de M.O. Compacatador(sapo)	1,00	5,00	5,00	0,250	0,22) 1,25 =======
SUBTOTAL M					1,47
MANO DE OBRA DESCRIPCION	CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Peón EO	E2 1,00	2,78	2,78	1,600	4,45
SUBTOTAL N					4,45
MATERIALES DESCRIPCION		UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Petreos, material de relleno		m3	1,200	5,00	6,00
SUBTOTAL O					6,00
TRANSPORTE DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB =======
SUBTOTAL P					0,00
		TOTAL COSTO	DIRECTO (M+N+C)+P)	11,92
		INDIRECTOS Y U	JTILIDADES(%)	25,00	2,98
		OTROS INDIREC	CTOS(%)		0,00
		COSTO TOTAL I	DEL RUBRO		14,90
		VALOR UNIT	ARIO		14,90

SON: CATORCE DÓLARES CON NOVENTA CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

ANALISIS DE PRECIOS UNITARIOS RUBRO : 9						
DETALLE: Material petreo para acondicio	onamiento de tuberia					
EQUIPO DESCRIPCION Herramienta Menor 5% de M.O.	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR 0,32	
SUBTOTAL M					0,32	
MANO DE OBRA DESCRIPCION	CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR	
Peón EC	D E2 1,00	2,78	2,78	2,286	6,36	
SUBTOTAL N					6,36	
MATERIALES DESCRIPCION		UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB	
Petreos,arena negra		m3	1,100	9,50	10,45	
SUBTOTAL O					10,45	
TRANSPORTE DESCRIPCION		UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB	
SUBTOTAL P					0,00	
		TOTAL COSTO [DIRECTO (M+N+O	+P)	17,13	
		INDIRECTOS Y U	ITILIDADES(%)	25,00	4,28	
		OTROS INDIREC	TOS(%)		0,00	
		COSTO TOTAL [DEL RUBRO		21,41	
		VALOR UNIT	ARIO		21,41	

SON: VEINTIÚN DÓLARES CON CUARENTA Y UN CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

						JA 10 DE 17 NIDAD: ml
DETALLE : Sum.y coloc. Tub. corrugada	la para al	cantarillado S6	D=200mm			
EQUIPO DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Herramienta Menor 5% de M.O.						0,04
SUBTOTAL M						0,04
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Peón E	EO E2	1,00	2,78	2,78	0,150	0,42
·	EO D2	1,00	2,82	2,82	0,150	0,42
SUBTOTAL N						0,84
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Tuberia alcantar. S6 D=200mm			ml	1,000	12,67	12,67
Polipega			gln	0,001	45,69	0,05
Anillo de caucho d=200 mm			u	0,167	5,00	0,84 ======
SUBTOTAL O						13,56
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB
SUBTOTAL P						0,00
		-	TOTAL COSTO [DIRECTO (M+N+C)+P)	14,44
		1	NDIRECTOS Y U	ITILIDADES(%)	25,00	3,61
		(OTROS INDIREC	TOS(%)		0,00
		(COSTO TOTAL [DEL RUBRO		18,05
		,	VALOR UNIT	ARIO		18,05

SON: DIECIOCHO DÓLARES CON CINCO CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

						JA 11 DE 17 NIDAD: u
EQUIPO DESCRIPCION Herramienta Menor 5% de M.O.		CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR 6.20
Concretera 1 saco Vibrador		1,00 1,00	5,00 4,00	5,00 4,00	8,000 8,000	40,00 32,00
SUBTOTAL M						78,20
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Peón	E0 E2	3,00	2,78	8,34	8,000	66,72
Albañil/carpintero/fierrero	EO D2	2,00	2,82	5,64	8,000	45,12
Maestro mayor	EO C1	1,00	3,02	3,02	4,000	12,08
SUBTOTAL N						123,92
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Cemento Portland			saco	5,500	6,90	37,95
Petreos,arena negra			m3	0,470	9,50	4,47
Petreos,tamizado			m3	0,730	9,50	6,94
Agua			m3	0,100	0,01	0,00
Encofrado			glb	1,000	25,00	25,00 ======
SUBTOTAL O						74,36
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB
SUBTOTAL P						0,00
		-	TOTAL COSTO [DIRECTO (M+N+O)+P)	276,48
		1	NDIRECTOS Y U	ITILIDADES(%)	25.00	69,12
			OTROS INDIREC		,	0,00
			COSTO TOTAL D	DEL RUBRO		345,60
		,	VALOR UNIT	ARIO		345,60

SON: TRESCIENTOS CUARENTA Y CINCO DÓLARES CON SESENTA CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

ANALISIS DE PRECIOS UNITARIOS

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

Pozos de revisión H.Simple f'c=180kg/cm2(2,51 - 5,00m)

COSTO HORA RENDIMIENTO costo **EQUIPO** CANTIDAD TARIFA DESCRIPCION Α В C=AxB R D=CxR Herramienta Menor 5% de M.O. 6,97 Vibrador 1,00 4,00 4,00 9,000 36,00 Concretera 1 saco 5 00 5 00 9 000 45,00 1 00 SUBTOTAL M 87.97 MANO DE OBRA CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO COSTO DESCRIPCION C=AxB D=CxR Peón EO E2 3,00 2,78 8,34 9,000 75,06 Albañil/carpintero/fierrero EO D2 2,00 2,82 5,64 9,000 50,76 Maestro mayor E0 C1 1,00 3,02 3,02 4,500 13,59 SUBTOTAL N 139,41 MATERIALES UNIDAD CANTIDAD PRECIO UNIT. costo DESCRIPCION C=AxB 19.680 6.90 Cemento Portland saco 135.79 1,349 13,50 Petreos, ripio triturado m3 18,21 Petreos, arena negra m3 2,050 9,50 19,48 9,640 1,36 13,11 Hierro estructural Kg Agua m3 0,610 0,01 0,01 Encofrado 25,00 25,00 glb 1,000

UNIDAD

 TOTAL COSTO DIRECTO (M+N+O+P)
 438,98

 INDIRECTOS Y UTILIDADES(%)
 25,00
 109,75

 OTROS INDIRECTOS(%)
 0,00

 COSTO TOTAL DEL RUBRO
 548,73

 VALOR UNITARIO
 548,73

TARIFA

В

CANTIDAD

Α

SON: QUINIENTOS CUARENTA Y OCHO DÓLARES CON SETENTA Y TRES CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

RUBRO :

DETALLE :

SUBTOTAL O

TRANSPORTE

DESCRIPCION

SUBTOTAL P

EGDO MONICA SISA ELABORADO

HOJA 12 DE 17

211,60

0,00

costo

C=AxB

UNIDAD: u

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

ANALISIS DE PRECIOS UNITARIOS HO. RUBRO : 13						
DETALLE : Suministro y colocacion	de tapas y	cercos H.F-210I	b		_	
EQUIPO DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Herramienta Menor 5% de M.O.						0,85
SUBTOTAL M						0,85
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Peón	E0 E2	1,00	2,78	2,78	3,000	8,34
Albañil/carpintero/fierrero	EO D2	1,00	2,82	2,82	2,000	5,64
Maestro mayor	EO C1	1,00	3,02	3,02	1,000	3,02
SUBTOTAL N						17,00
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Cemento Portland			saco	0,350	6,90	2,42
Petreos, arena negra			m3	0,060	9,50	0,57
Petreos, ripio triturado			m3	0,090	13,50	1,22
Clavos			Kg	0,100	1,70	0,17
Tapa y cerco de h.f. 210lib			u	1,000	127,00	127,00
Agua			m3	0,500	0,01	0,01
SUBTOTAL O						131,39
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB
SUBTOTAL P						0,00
		-	TOTAL COSTO I	DIRECTO (M+N+C)+P)	149,24
			NDIRECTOS Y L	•	25.00	37,31
			OTROS INDIREC			0,00
			COSTO TOTAL I	. ,		186,55
	VALOR UNITARIO 186,55					
			on on			.00,00

PUYO, 05 DE JUNIO DE 2013

ESTOS PRECIOS NO INCLUYEN IVA

SON: CIENTO OCHENTA Y SEIS DÓLARES CON CINCUENTA Y CINCO CENTAVOS

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

ANALISIS DE PRECIOS UNITARIOS HOJA RUBRO : 14 UNI									
DETALLE : Hormigon Simple fc= 210 kg/cm2 en estructuras									
EQUIPO DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR			
Herramienta Menor 5% de M.O.						4,70			
Concretera 1 saco		1,00	5,00	5,00	1,070	5,35			
Vibrador		1,00	4,00	4,00	1,070	4,28			
SUBTOTAL M						14,33			
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR			
Peón	E0 E2	10,00	2,78	27,80	2,750	76,45			
Albañil/carpintero/fierrero	EO D2	2,00	2,82	5,64	2,750	15,51			
Maestro mayor	EO C1	0,25	3,02	0,76	2,750	2,09			
SUBTOTAL N						94,05			
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB			
Cemento Portland			saco	7,000	6,90	48,30			
Petreos,arena negra			m3	0,440	9,50	4,18			
Petreos, ripio triturado			m3	0,710	13,50	9,59			
Agua			m3	0,168	0,01	0,00			
Madera, tabla encofrado/ 20 cm			u	12,500	1,50	18,75			
Madera, puntales			ml	60,000	0,38	22,80			
Madera, tabla encofrado/ 7 cm			u	8,000	1,00	8,00			
Clavos			Kg	2,500	1,70	4,25			
Aditivo			Kg	0,300	2,53	0,76			
SUBTOTAL O						116,63			
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB			
SUBTOTAL P						0,00			
		-	TOTAL COSTO [DIRECTO (M+N+C)+P)	225,01			
		1	INDIRECTOS Y U	JTILIDADES(%)	25,00	56,25			
			OTROS INDIREC	TOS(%)		0,00			
		(COSTO TOTAL [DEL RUBRO		281,26			
		,	VALOR UNIT	ARIO		281,26			

SON: DOSCIENTOS OCHENTA Y UN DÓLARES CON VEINTE Y SEIS CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

ANALISIS DE PRECIOS UNITARIOS HOJA RUBRO : 15 UNI						
DETALLE : Acero de Refuerzo fy=42	200 kg/cm3	en estructuras				Ü
EQUIPO DESCRIPCION Herramienta Menor 5% de M.O.		CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Cizalla manual		1,00	0,20	0,20	0,030	0,02 0,01 ======
SUBTOTAL M						0,03
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Albañil/carpintero/fierrero	EO D2	1,00	2,82	2,82	0,030	0,08
Peón	EO E2	3,00	2,78	8,34	0,030	0,25 =======
SUBTOTAL N						0,33
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
Hierro estructural			Kg	1,050	1,36	1,43
Alambre de amarre galvanizado			kg	0,010	3,08	0,03
SUBTOTAL O						1,46
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB
SUBTOTAL P						0,00
			τοται costo ι	DIRECTO (M+N+C)+P)	1,82
			INDIRECTOS Y U	•	25.00	0,46
			OTROS INDIREC		20,00	0,00
			COSTO TOTAL I			2,28
			VALOR UNIT			2,28
			VALUE ONLI	ANIO		2,20

SON: DOS DÓLARES CON VEINTE Y OCHO CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

ANALISIS DE PRECIOS UNITARIOS HO. RUBRO : 16 UI									
DETALLE : Acometida domiciliaria de Alcantarillado D=160 Incluye accesorio Silla									
EQUIPO DESCRIPCION		CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR			
Herramienta Menor 5% de M.O.						0,95			
SUBTOTAL M						0,95			
MANO DE OBRA DESCRIPCION		CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR			
Peón	EO E2	1,00	2,78	2,78	3,400	9,45			
Albañil/carpintero/fierrero	EO D2	1,00	2,82	2,82	3,400	9,59			
SUBTOTAL N						19,04			
MATERIALES DESCRIPCION			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB			
Tubo PVC 160mm			ml	8,000	8,67	69,36			
Cemento Portland			saco	2,340	6,90	16,15			
Petreos,arena negra			m3	0,180	9,50	1,71			
Alambre de amarre galvanizado			kg	0,070	3,08	0,22			
Hierro estructural			Kg	5,580	1,36	7,59			
Petreos, ripio triturado			m3	0,280	13,50	3,78			
Madera, tabla encofrado/ 20 cm			u	2,150	1,50	3,23			
Madera, listone de 3cm*3cm			ml	6,240	0,35	2,18			
Clavos			Kg	0,100	1,70	0,17			
Silla en Y/T PVC 160mm a 315mm			u	1,000	35,00	35,00			
Abrazadera 8"			u	2,000	7,00	14,00			
Polipega			lt	0,022	8,21	0,18			
Polilimpia			lt	0,022	4,66	0,10 ======			
SUBTOTAL O						153,67			
TRANSPORTE DESCRIPCION			UNIDAD	CANTIDAD A	TARIFA B	COSTO C=AxB			
SUBTOTAL P						0,00			
			TOTAL COSTO I	DIRECTO (M+N+C)+P)	173,66			
			INDIRECTOS Y L	JTILIDADES(%)	25,00	43,42			
			OTROS INDIREC	TOS(%)		0,00			
			COSTO TOTAL I	DEL RUBRO		217,08			
			VALOR UNIT	ARIO		217,08			

SON: DOSCIENTOS DIECISIETE DÓLARES CON OCHO CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

PROYECTO: ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO LOTIZACION RIO PASTAZA.

•	ANALISIS DE PRE	CIOS UNITAF	RIOS		JA 17 DE 17
RUBRO : 17 DETALLE : Desalojo de material con ma	quina			U	INIDAD: m3
	4				
EQUIPO DESCRIPCION	CANTIDAD A	TARIFA B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
Herramienta Menor 5% de M.O.	A	В	C-AXB	K	0,01
Volguete	1.00	19.00	19.00	0.038	0.72
Excavadora	1,00	35,00	35,00	0,038	1,33
AUDTOTAL M					========
SUBTOTAL M					2,06
MANO DE OBRA DESCRIPCION	CANTIDAD A	JORNAL/HR B	COSTO HORA C=AxB	RENDIMIENTO R	COSTO D=CxR
	D C1 1,00	4,16	4,16	0,038	0,16
Operador 1 O	P C1 1,00	3,02	3,02	0,038	0,11
SUBTOTAL N					0,27
			04477040	DDEOIG / WIT	
MATERIALES DESCRIPCION		UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=AxB
					=======
SUBTOTAL O					0,00
TRANSPORTE DESCRIPCION		UNIDAD	CANTIDAD	TARIFA B	COSTO C=AxB
DESCRIPCION			Α	В	========
SUBTOTAL P					0,00
		TOTAL COSTO	DIRECTO (M+N+C)+P)	2,33
		INDIRECTOS Y U	JTILIDADES(%)	25,00	0,58
		OTROS INDIREC	TOS(%)		0,00
		COSTO TOTAL I	DEL RUBRO		2,91
		VALOR UNIT	ARIO		2,91

SON: DOS DÓLARES CON NOVENTA Y UN CENTAVOS ESTOS PRECIOS NO INCLUYEN IVA

PUYO, 05 DE JUNIO DE 2013

UNIVERSIDAD TECNICA DE AMBATO

PRESUPUESTO ALCANTARILLADO SANITARIO BARRIO 18 DE JULIO PARROQUIA MADRE TIERRA

	CRONOGRAMA VALORADO DE TRABAJOS PERIODOS (MESES/SEMANAS)							
						1 MES	2 MES	3 MES
_	DESCRIPCION	UNIDAD	CANTIDAD		P. TOTAL	1 2 3 4	5 6 7 8	9 10 11 12
1	Replanteo y Nivelación Redes de Alcantarillado	ml	2.254,07	0,49	1.104,49	441,80	441,80	220,88
2	Excavacion sin clasificar Máquina 0.00 A 2,50m	m3	3.774,00	2,56	9.661,44	3.864,58	3.864,58	1.93 2 ,28
3	Excavación sin clasificar Máquina 2,51 A 5.00m	m3	3.735,00	3,09	11.541,15	4.616,46	4.616,46	2/308,23
4	Excavación manual sin clasificar	m3	150,00	6,21	931,50	372,60	372,60	186,30
5	Entibado de zanja	m2	500,00	6,80	3.400,00	1.360,00	1.360,00	680,00
6	Razanteo de zanja e=0.20m	m2	2.254,07	0,48	1.081,95	432,78	432,78	/ 216,39
7	Relleno compactado con suelo natural (capas 20 cm)	m3	2.406,54	7,46	17.952,79	4.488,20	8.976,40	4.488,19
8	Relleno compactado/Mejoramiento*capas=20cm	m3	299,98	14,90	4.469,70	1.117,42	2.234,85	1.117,43
9	Material petreo para acondicionamiento de tuberia	m3	450,89	21,41	9.653,55	2.896,06	4.9/26,77	1.930,72
10	Sum.y coloc. Tub. corrugada para alcantarillado S6 D=200mm	ml	2.254,07	18,05	40.685,96	12.205,79	20 .34 2 ,98	8.137,19
11	Pozos de revisión H.Simple f`c=180kg/cm2(1-2,50m)	u	12,00	345,60	4.147,20	1.410,05	1,368,58	1.368,57
12	Pozos de revisión H.Simple f´c=180kg/cm2(2,51 - 5,00m)	u	12,00	548,73	6.584,76		/3.292,38	3.292,38
13	Suministro y colocacion de tapas y cercos H.F-210lb	u	24,00	186,55	4.477,20		2.238,60	2.238,60
14	Hormigon Simple f'c= 210 kg/cm2 en estructuras	m3	150,00	281,26	42.189,00	,	21.094,50	21.094,50
15	Acero de Refuerzo fy=4200 kg/cm3 en estructuras	Kg	2.500,00	2,28	5.700,00			5.700,00
16	Acometida domiciliaria de Alcantarillado D=160 Incluye accesorio Silla	u	168,00	217,08	36.469,44		18.234,72	18.234,72
17	Desalojo de material con maquina	m3	1.803,25	2,91	5.247,46	1.049,49	2.623,73	1.574,24
AVANCE INVERSION AVANCE INVERSION	DN MENSUAL MENSUAL (%) DN ACUMULADA AL 100% (linea e=1p) ACUMULADO (%) DN ACUMULADA AL 80% (linea e=0.5p) ACUMULADO (%)	•			205.297,59	34.255,23 16,69 34.255,23 16,69 27.404,18 13,35	96.321,73 46,92 130.576,96 63,60 104.461,57 50,88	74.720,63 36,40 205.297,59 100,00 164.238,07 80,00

EGDO MONICA SISA ELABORADO PUYO, 05 DE JUNIO DE 2013

6.7.2 ESPECIFICACIONES TÉCNICAS PARA LA CONSTRUCCIÓN DEL ALCANTARILLADO SANITARIO.

A continuación se presenta normas, disposiciones, requisitos, condiciones e instrucciones, formas de control de calidad, mediciones, formas de pago, etc. Que se establecen y describen para los diferentes rubros de trabajo, para la contratación y ejecución de la obra, a las cuales debe sujetarse el Contratista.

Estas especificaciones cumplirán su objetivo cuando el Gobierno Autónomo Descentralizado Provincial de Pastaza complemente con especificaciones técnicas particulares para cada rubro.

RUBRO.- REPLANTEO Y NIVELACION

Definición.-

Replanteo y nivelación es la ubicación de un proyecto en el terreno, en base a los datos que constan en los planos respectivos y/o las órdenes del ingeniero Fiscalizador, como paso previo la construcción.

Especificación.-

Todos los trabajos de replanteo y nivelación deben ser realizados con aparatos de precisión y por personal técnico capacitado y experimentado. Se deberá colocar mojones de hormigón perfectamente identificados con la cota y abscisa correspondiente y su número estará de acuerdo a la magnitud de la obra y necesidad de trabajo y/o órdenes del ingeniero fiscalizador.

Conjuntamente con la fiscalización se dará al contratista como datos de campo, el BM y referencias que constarán en los planos, en base a las cuales el contratista, procederá a replantear la obra a ejecutarse.

Medición y forma de pago.-

El replanteo se medirá en metros lineales, con aproximación a dos decimales. El pago se realizará en acuerdo con el proyecto, al precio unitario establecido en el contrato y la cantidad real ejecutada medida en el terreno y aprobada por el ingeniero fiscalizador.

RUBRO.- EXCAVACIONES DE ZANJAS SUELO NATURAL (SIN CLASIFICAR), A MAQUINA

Definición.-

Se entiende por excavaciones de zanjas suelo natural sin clasificar a máquina, en general al conjunto de actividades necesarias para remover cualquier suelo clasificado que son aflojados por métodos ordinarios utilizando máquinas excavadoras, incluyen boleos cuya remoción no significan actividad complementaria, incluye también el suelo fino combinados o no con arenas, gravas y con piedra, en cualquier condición de trabajo, con el fin de conformar espacios para alojar las tuberías y la infraestructura sanitaria en general.

Especificaciones.-

La excavación de zanjas para tuberías, será efectuada de acuerdo con los trazados indicados en los planos y memorias técnicas, excepto cuando se encuentren inconvenientes imprevistos en cuyo caso aquellos pueden ser modificados de conformidad con el criterio técnico del ingeniero Fiscalizador.

Los tramos de canal comprendido entre dos pozos consecutivos seguirán una línea recta y tendrán una sola gradiente.

El fondo de la zanja será lo suficientemente ancho para permitir libremente el trabajo de los obreros colocadores de tubería o construcciones de colectores y para la ejecución de un buen relleno. En ningún caso, el ancho del fondo de la zanja será menor que el diámetro exterior del tubo más 0.40 m., sin entibados; con entibados se considerará un ancho del fondo de zanja no mayor que el diámetro exterior del tubo más 0.80m.

El dimensionamiento de la parte superior de la zanja, para el tendido de los tubos varía según el diámetro y la profundidad a la que van a ser colocados. Para profundidades de entre 0 y 2.00 m., se procurará que las paredes de las zanjas sean verticales, sin taludes.

La excavación de zanjas para tuberías se hará de acuerdo a las dimensiones, pendientes y alineaciones indicadas en las especificaciones y planos del proyecto y no deben contener raíces, troncos, rocas ni otro material que obstruya la colocación de la tubería.

En lo posible, las paredes de la zanja en terrenos estables serán verticales y en terrenos inestables según la profundidad de la zanja, las paredes podrán tener taludes y/o para su estabilidad, se podrá colocar soportes o entibamientos.

Fondo de la zanja: La tubería se debe instalar de acuerdo a las condiciones de la fundación natural o lecho a proveer en el fondo de la excavación. El lecho debe ser firme, uniforme y estable para la base del tubo y su unión. Se colocará una capa de arena de 10cm. de espesor en la parte inferior de la tubería.

Para profundidades mayores de 2.50 m., preferiblemente las paredes tendrán un talud de 1:6 que se extienda hasta el fondo de las zanjas.

En ningún caso se excavará con maquinaria, tan profundo que la tierra del plano de asiento de los tubos sea aflojada o removida. El último material que se va excavar será removido con pico y pala, en una profundidad de 0.10 m y se le dará al fondo de la zanja la forma definitiva que el diseño y las especificaciones lo indiquen.

Las excavaciones deberán ser afinadas de tal forma que cualquier punto de las paredes de las mismas no disten en ningún caso más de 10 cm. de la sección del proyecto cuidándose que esta desviación no se repita en forma sistemática. El fondo de la excavación deberá ser afinado cuidadosamente a fin de que la tubería que posteriormente se instale en la misma quede a la profundidad señalada y con la pendiente del proyecto.

La realización de los últimos 10 cm. de la excavación se deberá efectuar con la menor anticipación de la tubería. Si por exceso en el tiempo transcurrido entre la conformación final de la zanja y el tendido de la tubería se requiere un nuevo trabajo antes de tender la tubería, este será por cuenta exclusiva del Constructor.

Cuando la excavación de zanjas en material sin la consistencia adecuada para soportar la tubería, a juicio del Ingeniero Fiscalizador, la parte central de la zanja se excavará en forma redonda de manera que la tubería se apoye sobre el terreno en todo el desarrollo de su cuadrante inferior y en toda su longitud. A este mismo efecto antes de bajar la tubería a la zanja o durante su instalación deberá excavarse en los lugares en que quedarán las juntas, cavidades o conchas que alejen las campanas o cajas que formarán las uniones. Esta conformación deberá efectuarse inmediatamente antes de tender la tubería.

Deberá vigilar para que desde el momento en que se inicie la excavación hasta que se termine el relleno de la misma, incluyendo el tiempo necesario para la colocación y prueba de la tubería, no transcurra un lapso mayor de siete días calendario. Salvo condiciones especiales que serán absueltas por el Ingeniero Fiscalizador.

Cuando a juicio del Ingeniero Fiscalizador el terreno que constituya el fondo de las zanjas sea poco resistente o inestable se procederá a realizar sobre excavación hasta encontrar terreno conveniente.

Dicho material, se removerá y se reemplazará hasta el nivel requerido con un relleno de la tierra, material granular, u otro material probado por el Ingeniero Fiscalizador.

La compactación se realizará con un óptimo contenido de agua, en capas que no excedan de 20 cm. de espesor y con el empleo de un compactador mecánico adecuado para el efecto.

Si los materiales de fundación natural son alterados o aflojados durante el proceso de excavación, más de lo indicado en los planos, dicho material será removido, reemplazado y compactado, usando un material conveniente aprobado por el Ingeniero Fiscalizador.

El material excavado en exceso será desalojado del lugar de la obra. Si estos trabajos son necesarios realizarlos por culpa del Constructor, será exclusivamente de su cargo.

Cuando los bordes superiores de las excavaciones de las zanjas estén ubicados en pavimentos, los cortes deberán ser lo más rectos y regulares que sean posibles.

Cuando el suelo lo permita y si el caso lo requiere será preciso dejar aproximadamente cada 20 m. tachos de 2 m. de largo en los cuales en vez de abrir zanjas, se construirá túneles, sobre los cuales se permitirá el paso de peatones.

Posteriormente estos túneles serán derrocados para proceder a una adecuada compactación en el relleno de este sector.

Presencia de agua: La realización de excavación de zanjas con presencia de agua puede ocasionarse por la presencia de agua en el subsuelo, de aguas lluvias, de inundaciones, de operaciones de construcción, aguas servidas y otros.

Como el agua dificulta el trabajo, disminuye la seguridad de personas y de la obra misma, es necesario tomar las debidas precauciones y protecciones.

Los métodos o formas de eliminar el agua de las excavaciones, pueden ser tabla estacados, ataguías, bombeo, drenaje, cunetas y otros.

En los lugares sujetos a inundaciones de aguas lluvias se debe prohibir efectuar excavaciones en tiempo lluvioso. Todas las excavaciones no deberán tener agua antes de colocar las tuberías y colectores, bajo ningún concepto se colocarán bajo agua. Las zanjas se mantendrán secas hasta que las tuberías hayan sido completamente acopladas.

Condiciones de seguridad y disposición del trabajo: Cuando las condiciones del terreno o las dimensiones de la excavación sean tales que pongan en peligro la estabilidad de las paredes de la excavación, a juicio del Ingeniero Fiscalizador, éste ordenará al Constructor la colocación de entibados y puntales que juzgue necesarios para la seguridad pública de los trabajadores de la obra y de las estructuras o propiedades adyacentes o que exijan las leyes o reglamentos vigentes. El Ingeniero Fiscalizador debe exigir que estos trabajos sean realizados con las debidas seguridades y en la cantidad y calidad necesaria.

El Ingeniero Fiscalizador está facultado para suspender total o parcialmente las obras cuando considere que el estado de las excavaciones no garantiza la seguridad necesaria para las obras y/o las personas, hasta que se efectúen los trabajos de entibamiento o apuntalamiento necesarios.

En cada tramo de trabajo se abrirán no más de 200 m. de zanja con anterioridad a la colocación de la tubería y no se dejará más de 200 m. de zanja sin relleno luego de haber colocado los tubos, siempre y cuando las condiciones de terreno y climáticas sean las deseadas.

En otras circunstancias, será el Ingeniero Fiscalizador quien indique las mejores disposiciones para el trabajo. La zanja se mantendrá sin agua durante todo el tiempo que dure la colocación de los tubos. Cuando sea necesario deberán colocarse puentes temporales sobre las excavaciones aún no rellenadas, en las intersecciones de las calles, en acceso a garajes o cuando haya lotes de terrenos afectados por la excavación; todos esos puentes serán mantenidos en servicio hasta que los requisitos de las especificaciones que rigen el trabajo anterior al relleno, hayan sido cumplidos. Los puentes temporales estarán sujetos a la aprobación del Ingeniero Fiscalizador.

Manipuleo y desalojo de material excavado: Los materiales se colocarán lateralmente a lo largo de la zanja; este material se mantendrá ubicado en la forma que no cause inconvenientes al tránsito del público.

Se preferirá colocar el material excavado a un solo lado de la zanja. Se dejará libre acceso a todos los hidrantes contra incendios, válvulas de agua y otros servicios que requiera facilidades para su operación y control. La capa vegetal removida en forma separada será acumulada y desalojada del lugar.

Durante la construcción y hasta que se haga la repavimentación definitiva o hasta la recepción del trabajo, se mantendrá la superficie de la calle o camino, libre de polvo, lodo, desechos o escombros que constituyan una amenaza o peligro para el público.

El polvo será controlado en forma continua, ya sea esparciendo agua o mediante el empleo de un método que apruebe la Fiscalización.

Los materiales excavados que no vayan a utilizarse como relleno, serán desalojados fuera del área de los trabajos.

Todo el material sacado de las excavaciones que no será utilizado y que ocupa un área dentro del derecho de vía, será transportado fuera y depositado en los sitios que designe la fiscalización.

Medición y forma de pago.-

La excavación de zanjas se medirá en metros cúbicos con aproximación de dos decimales, determinándose los volúmenes en obras según el proyecto. No se considerará las excavaciones hechas fuera del proyecto, ni la remoción de derrumbes por causas imputables al Constructor. Se pagará al precio unitario establecido en el contrato.

Se tomará en cuenta las sobre excavaciones cuando éstas sean debidamente aprobadas por el Ingeniero Fiscalizador, y se pagará al mismo precio unitario establecido para este rubro.

RUBRO.- EXCAVACION A MANO EN SUELO SIN CLASIFICAR

Definición.-

Cuando se requiera excavar las zanjas en zonas donde existen redes de infraestructuras instaladas (agua potable, alcantarillado, teléfono, etc.), de acuerdo a la instrucción de la Fiscalización, su ejecución se hará cuidadosamente, de modo manual utilizando cunas, barrederas, picos, combos etc., o por cualquier otro procedimiento que no dañen las estructuras existentes.

Medición y forma de pago.-

La medición se hará en obra y el pago se realizara por metro cúbico y al precio unitario establecido en el contrato.

RUBRO.- RASANTEO DE ZANJA A MANO

Definición.-

Se entiende por rasanteo de zanja a mano la conformación manual del fondo de la zanja para adecuar la estructura del lecho, de tal manera que la tubería quede asentada sobre una superficie uniforme y consistente.

Especificación.-

El arreglo del fondo de la zanja se realizará a mano, por lo menos en una profundidad de 10 cm., de tal manera que la estructura quede apoyada en forma adecuada, para resistir los esfuerzos exteriores, considerando la clase de suelo de la zanja, de acuerdo a lo que se especifique en los planos, o disponga el fiscalizador.

Medición y forma de pago.-

La unidad de medida de este rubro será el metro cuadrado y se pagará de acuerdo al precio unitario estipulado en el contrato. Se medirá con una aproximación de 2 decimales, toda el área del fondo de la zanja, conformada para asentar la tubería.

RUBRO.- RELLENO COMPACTADO MATERIAL DE EXCAVACIÓN

Definición.-

Se entiende por relleno el conjunto de operaciones que deben realizarse para restituir con materiales y técnicas apropiadas, las excavaciones que se hayan realizado para alojar las tuberías, hasta el nivel de la subrasante o hasta los niveles determinados en el proyecto y/o las órdenes del Ingeniero Fiscalizador. Se incluye además los terraplenes que deben realizarse.

Especificación.-

No se deberá proceder a efectuar ningún relleno de excavaciones sin antes obtener la aprobación del Ingeniero Fiscalizador, pues en caso contrario, éste podrá ordenar la total extracción del material utilizado en rellenos no aprobados por él, sin que el Constructor tenga derecho a ninguna retribución por ello. El Ingeniero Fiscalizador debe comprobar la pendiente y alineación del tramo.

En el relleno se utilizará preferentemente el material producto de la propia excavación, solamente cuando éste no sea apropiado, o lo dispongan los planos, el fiscalizador autorizará el empleo de material de préstamo para la ejecución del relleno.

El material y el procedimiento de relleno deben tener la aprobación del Ingeniero Fiscalizador. El Constructor será responsable por cualquier desplazamiento de la tubería u otras estructuras, así como de los daños o inestabilidad de los mismos causados por el inadecuado procedimiento de relleno.

La primera parte del relleno se hará invariablemente empleando en ella tierra fina seleccionada, exenta de piedras, ladrillos, tejas y otros materiales duros; los espacios entre la tubería y el talud de la zanja deberán rellenarse simultáneamente los dos costados, cuidadosamente con pala y apisonamiento suficiente hasta alcanzar un nivel de 30 cm. para las tuberías de alcantarillado sanitario y pluvial, y de 20cm. para la tubería de agua potable, sobre la superficie superior del acostillado de arena. Como norma general el apisonado hasta los 60 cm. sobre el acostillado de arena, será ejecutado cuidadosamente y con pisón de mano; de allí en adelante se podrá emplear otros elementos mecánicos, como rodillos o compactadores neumáticos.

Se debe tener el cuidado de no transitar ni ejecutar trabajos innecesarios sobre la tubería, hasta que el relleno tenga un mínimo de 30 cm. sobre la misma.

Cuando se utilice tabla estacados cerrados de madera colocados a los costados de la tubería antes de hacer el relleno de la zanja, se los cortará y dejará en su lugar hasta una altura de 40 cm. sobre el tope de la tubería a no ser que se utilice material granular para realizar el relleno de la zanja. En este caso, la remoción de tabla estacado deberá hacerse por etapas, asegurándose que todo el espacio que ocupa la tabla estacado sea rellenado completa y perfectamente con un material granular adecuado de modo que no queden espacios vacíos.

Compactación:

El grado de compactación que se debe dar a un relleno, varía de acuerdo a la ubicación de la zanja; en las calles importantes o en aquellas que van a ser pavimentadas, se requiere el 95 % del ASSHTO-T180; en calles de poca importancia o de tráfico menor y, en zonas donde no existen calles ni posibilidad de expansión de la población se requerirá el 90 % de compactación del ASSHTO-T180.

Para material cohesivo, esto es, material arcilloso, se usarán compactadores neumáticos; si el ancho de la zanja lo permite, se puede utilizar rodillos pata de cabra. Cualquiera que sea el equipo, se pondrá especial cuidado para no producir daños en las tuberías. Con el propósito de obtener una densidad cercana a la máxima, el contenido de humedad de material de relleno debe ser similar al óptimo; con ese objeto, si el material se encuentra demasiado seco se añadirá la cantidad necesaria de agua; en caso contrario, si existiera exceso de humedad es necesario secar el material extendiéndole en capas delgadas para permitir la evaporación del exceso de agua.

Una vez que la zanja haya sido rellenada y compactada, el Constructor deberá limpiar la rasante de todo sobrante de material de relleno o cualquier otra clase de material. Si así no se procediera, el Ingeniero Fiscalizador podrá ordenar la paralización de todos los demás trabajos hasta que la mencionada limpieza se haya efectuado y el Constructor no podrá hacer reclamos por extensión del tiempo o demora ocasionada.

Medición y forma de pago.-

El relleno y compactación de zanjas que efectúe el Constructor le será medido para fines de pago en m3, con aproximación de dos decimales. Al efecto se medirán los volúmenes efectivamente colocados en las excavaciones, y se pagará al precio unitario establecido en el contrato. El material empleado en el relleno de sobre

excavación o derrumbes imputables al Constructor, no será cuantificado para fines de estimación y pago.

RUBRO.- RELLENO COMPACTADO CON MATERIAL DE MEJORAMIENTO

Definición.-

Este trabajo consistirá en la construcción de la capa de material de mejoramiento (lastre) de 40 cm. de espesor, compuesto por agregados con diámetros máximos de hasta 20 cm. La capa de lastre se colocará sobre la superficie de la subrasante previamente preparada y aprobada, de conformidad con las alineaciones, pendientes y sección transversal señalada en los planos, o determinada por el Fiscalizador.

Especificación.-

La superficie de apoyo deberá hallarse conformada de acuerdo a las cotas, pendientes y anchos determinados. La cantidad a pagarse por la construcción de la capa de lastre, será el número de metros cúbicos efectivamente ejecutados y colocados en la obra, aceptados por el Fiscalizador y medidos en sitio después de la compactación.

Medición y forma de pago.-

Las cantidades determinadas se pagarán a los precios establecidos en el contrato. Este pago constituirá la compensación total por la preparación y suministro del lastre, mezcla, distribución, tendido, hidratación, conformación y compactación, incluyendo la mano de obra, equipo herramientas, materiales y más operaciones conexas que se hayan empleado para la realización completa de los trabajos.

RUBRO: SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC

Se entiende al conjunto de operaciones necesarias para hacer llegar la tubería al sitio de la obra, colocación y sellado adecuado de los mismo hasta realizar la prueba respectiva de corrimiento de flujo.

ESPECIFICACIONES

La instalación de tuberías de alcantarillado comprende las siguientes actividades:

La carga en camiones que deberán transportarla hasta el lugar de su colocación o almacenamiento provisional; las maniobras y acarreo locales que deba hacer el Constructor para distribuirla a lo largo de las zanjas; la operación de bajar la tubería a la zanja; su instalación propiamente dicha y finalmente la prueba de las tuberías ya instaladas para su aceptación.

Las tuberías serán instaladas de acuerdo a los trazados y pendientes indicados en los planos. Cualquier cambio deberá ser aprobado por el Ingeniero Fiscalizador.

La colocación de la tubería se hará de tal manera que en ningún caso se tenga una desviación mayor de 5 mm, en la alineación o nivel del proyecto. Cada pieza deberá tener un apoyo completo y firme en toda su longitud, para lo cual se colocará de modo que el cuadrante inferior de su circunferencia descanse en toda su superficie sobre la plantilla o fondo de la zanja. No se permitirá colocar los tubos sobre piedras, calzas de madera y soportes de cualquier otra índole.

La colocación de la tubería se comenzará por la parte inferior de los tramos y se trabajará hacia arriba de tal manera que la campana o la caja de espiga quede situada hacia la parte más alta del tubo.

Los tubos serán cuidadosamente revisados antes de colocarlos en la zanja, rechazándose los deterioros por cualquier causa.

No se permitirá agua en la zanja durante la colocación de la tubería. El interior de la tubería deberá quedar completamente liso y libre de suciedad y materias extrañas. Las superficies interiores de los tubos en contacto deberán quedar exactamente rasantes. Cuando sea necesario realizar suspensiones temporales del trabajo debe corcharse la tubería con tapones adecuados.

PRUEBA HIDROSTÁTICA ACCIDENTAL.

Esta prueba consistirá en dar a la parte más baja de la tubería, una carga de agua que no excederá de un tirante de 2 m. Se hará anclando con relleno de material producto de la excavación, la parte central de los tubos y dejando completamente libre las juntas de los mismos. Si las juntas están defectuosas y acusaran fugas, el Constructor procederá a descargar las tuberías y rehacer las juntas defectuosas. Se repetirán estas pruebas hasta que no existan fugas en las juntas y el Ingeniero Fiscalizador quede satisfecho. Esta prueba hidrostática accidental se hará solamente en los casos siguientes:

Cuando el Ingeniero Fiscalizador tenga sospechas fundadas de que las juntas están defectuosas.

Cuando el Ingeniero Fiscalizador, recibió provisionalmente, por cualquier circunstancia un tramo existente entre pozo y pozo de visita.

Cuando las condiciones del trabajo requieran que el Constructor rellene zanjas en las que, por cualquier circunstancia se puedan ocasionar movimientos en las juntas, en este último caso el relleno de las zanjas servirá de anclaje de la tubería.

PRUEBA HIDROSTÁTICA SISTEMÁTICA

Esta prueba se hará en todos los caso en que no se haga la prueba accidental. Consiste en vaciar, en el pozo de visita aguas arriba del tramo por probar, el contenido de 5 m³ de agua, que desagüe al mencionado pozo de visita con una manguera de 15 cm (6") de diámetro, dejando correr el agua libremente a través del tramo a probar. En el pozo de visita aguas abajo, el Contratista colocará una bomba para evitar que se forme un tirante de agua. Esta prueba tiene por objeto comprobar que las juntas estén bien hechas, ya que de no ser así presentaran fugas en estos sitios. Esta prueba debe hacerse antes de rellenar las zanjas. Si se encuentran fallas o fugas en las juntas al efectuar la prueba, el Constructor procederá a reparar las juntas defectuosas, y se repetirán las pruebas hasta que no se presenten fallas y el Ingeniero Fiscalizador apruebe.

El Ingeniero Fiscalizador solamente recibirá del Constructor tramos de tubería totalmente terminados entre pozo y pozo de visita o entre dos estructuras sucesivas que formen parte del alcantarillado; habiéndose verificado previamente la prueba de impermeabilidad y comprobado que la tubería se encuentra limpia, libre de escombros u obstrucciones en toda su longitud.

MEDICION Y PAGO

El suministro e instalación de tuberías de PVC, se medirán en metros lineales, con aproximación de una décima, de conformidad al diámetro y tipo.

Se tomará en cuenta solamente la tubería que haya sido aprobada. Las muestras para ensayo son de cuenta del contratista.

RUBRO: POZO DE REVISION DE H. SIMPLE fc=180 Kg/cm2, h=0-2.50m,

incluye encofrado

RUBRO: POZO DE REVISION DE H. SIMPLE fc=180 Kg/cm2, h=2.51-5.0m,

incluye encofrado

RUBRO: POZO DE REVISION DE H. SIMPLE fc=180 Kg/cm2, h=5.01-7.50m,

incluye encofrado

Definición.-

Se entenderán por pozos de revisión, las estructuras diseñadas y destinadas para permitir el acceso al interior de las tuberías o colectores de alcantarillado, para las operaciones de mantenimiento y especialmente limpieza; este rubro incluye: material, encofrados, transporte e instalación.

Especificación.-

Los pozos de revisión serán construidos en donde señalen los planos y/o el Ingeniero Fiscalizador durante el transcurso de la instalación de tuberías o construcción de colectores.

No se permitirá que existan más de 160 metros de tubería o colectores instalados, sin que oportunamente se construyan los respectivos pozos.

Los pozos de revisión se construirán de acuerdo a los planos del proyecto.

La construcción de la cimentación de los pozos de revisión, deberá hacerse previamente a la colocación en ese sitio de la tubería o colector, para evitar que se tenga que excavar bajo los extremos.

Todos los pozos de revisión deberán ser construidos sobre una fundación adecuada, de acuerdo a la carga que estos producen y de acuerdo a la calidad del terreno soportante.

Se usarán para la construcción los planos de detalle existentes. Cuando la subrasante está formada por material poco resistente, será necesario renovarla y reemplazarla por material granular, o con hormigón de espesor suficiente para construir una fundación adecuada en cada pozo.

Los pozos de revisión serán construidos de hormigón ciclopeo f´c = 180 Kg/cm2, en una proporción de 60 a 40 (60% HS de f´c = 180kg/cm2 y 40% de piedra bola con un diámetro no mayor de 15cm.) y de acuerdo a los diseños del proyecto. En la planta de los pozos de revisión se realizarán los canales de media caña correspondientes, debiendo pulirse y acabarse perfectamente de acuerdo con los planos. Los canales se realizarán con uno de los procedimientos siguientes:

- a) Al hacerse el fundido del hormigón de la base se formarán directamente las "medias cañas", mediante el empleo de cerchas.
- b) Se colocarán tuberías cortadas a "media caña" al fundir el hormigón, para lo cual se continuarán dentro del pozo los conductos de alcantarillado, colocando después del hormigón de la base, hasta la mitad de los conductos del alcantarillado, cortándose a cincel la mitad superior de los tubos. La utilización de este método no implica el pago adicional de longitud de tubería.

Para la construcción, los diferentes materiales se sujetarán a lo especificado en los numerales correspondientes de estas especificaciones y deberá incluir en el costo de este rubro los siguientes materiales: hierro, cemento, agregados, agua, encofrado del pozo

Se deberá dar un acabado liso a la pared interior del pozo, en especial al área inferior ubicada hasta un metro del fondo.

Para el acceso por el pozo se dispondrá de estribos o peldaños formados con varillas de hierro triple galvanizado de 16 mm. De diámetro, con recorte de aleta en las extremidades para empotrarse, en una longitud de 80 cm. y colocados a 40 cm. de espaciamiento; los peldaños irán debidamente empotrados y asegurados formando un saliente de 15 cm. por 30 cm. de ancho, deberán ser pintados con dos manos de pintura anticorrosiva y deben colocarse en forma alternada a derecha e izquierda del eje vertical.

La armadura de las tapas de HA estará de acuerdo a los respectivos planos de detalle y el hormigón será de f'c = 210 Kg/cm2.

Medición y forma de pago.-

La construcción de los pozos de revisión se medirá en unidades, determinándose en obra el número construido de acuerdo al proyecto y órdenes del Ingeniero Fiscalizador, de conformidad con las profundidades.

La construcción del pozo incluye: losa de fondo, paredes, y tapa de H.A.

La altura que se indica en estas especificaciones corresponde a la altura libre del pozo, es decir desde la superficie de la calzada hasta la superficie superior de la losa de fondo.

El pago se hará con los precios unitarios estipulados en el contrato.

RUBRO.- CAJA DE REVISION 60x60 cm (h=0.60-1.20m), INCL. ENCOFRADO f'c=180Kg/cm2 TAPA DE H. A.

Definición.-

Se entiende por construcción de cajas domiciliarias de hormigón simple, al conjunto de acciones que debe ejecutar el constructor para poner en obra la caja de revisión que se unirá con una tubería a la red de alcantarillado.

Especificación.-

Las cajas domiciliarias serán de hormigón simple de 180 kg/cm2, fabricadas en el sitio de la obra, y de profundidad mínima de 0,60m. Se colocarán frente a toda casa o lote donde pueda haber una construcción futura y/o donde indique el Ingeniero Fiscalizador. Las cajas domiciliarias frente a los predios sin edificar se los dejará igualmente a la profundidad adecuada, y la guía que sale de la caja de revisión se taponará con bloque o ladrillo y un mortero pobre de cemento Portland. Ver detalle en planos.

Estas cajas serán de hormigón simple f'c=180 Kg/cm2, de sección cuadrada de 0.60m x 0.60m en el interior, con paredes de 0.10m de espesor y tapa cuadrada de 0.70m x 0.70m, con espesor de 8.00cm. La tapa será de hormigón armado, con hormigón f'c=180 Kg/cm2 con una parrilla de hierro de D=8mm cada 20cm en ambos sentidos, tendrá una tiradera elaborada con varilla de acero de D=12mm. Estarán conectadas al colector principal mediante una tubería de PVC desagüe de D=110mm para alcantarillado sanitario y de D=160 mm para alcantarillado pluvial.

Cada propiedad deberá tener una acometida propia al alcantarillado, con caja de revisión y tubería con un diámetro mínimo del ramal de 110 mm para alcantarillado sanitario y 160 mm para alcantarillado pluvial.

Los tubos de conexión deben ser enchufados a las cajas domiciliarias de hormigón simple, en ningún punto el tubo de conexión sobrepasará las paredes interiores, para permitir el libre curso del agua.

Una vez que se hayan terminado de instalar los tubos y accesorios de las conexiones domiciliarias, con la presencia del fiscalizador, se harán las pruebas correspondientes de funcionamiento y la verificación de que no existan fugas.

Medición y forma de pago.-

Las cantidades a cancelarse por las cajas domiciliarias de hormigón simple de las conexiones domiciliarias serán las unidades efectivamente realizadas, al precio unitario establecido en el contrato. En este precio se incluye el valor de la tapa de H.A. que se construirá de conformidad con los planos. De hormigón simple de 180 Kg/cm2 y acero de F'y=4200 kg/cm2.

RUBRO.- SUMISTRO Y COLOCACIÓN DE CERCO Y TAPA HF 600 PARA POZO REVISIÓN

Definición.-

Se entiende por colocación de cercos y tapas, al conjunto de operaciones necesarias

para poner en obra, las piezas especiales que se colocan como remate de los pozos de revisión, a nivel de la calzada.

Especificación.-

Los cercos y tapas para los pozos de revisión serán de hierro fundido; su localización y tipo a emplearse se indican en los planos respectivos.

Los cercos y tapas de HF para pozos de revisión deberán cumplir con la Norma ASTM-A48. La fundición de hierro gris será de buena calidad, de grano uniforme, sin protuberancias, cavidades, ni otros defectos que interfieran con su uso normal. Todas las piezas serán limpiadas antes de su inspección y luego cubiertas por una capa gruesa de pintura bitumástica uniforme, que dé en frío una consistencia tenaz y elástica (no vidriosa); Llevarán las marcas ordenadas para cada caso

Las tapas de los pozos son de Hierro Fundido Dúctil K=7, los que se utilizara serán de clase D 400 para tráfico intenso, con rótula, junta de elastómetro, cajeras de maniobra estancas, cerradura antirrobo adaptable en opción en la tapa, Asas de izado integradas en el marco.

Ventaja de levantar la tapa para una inspección visual sin esfuerzo en posición de pie; resulta fácil con una barra de hierro colocada a 35 grados en el nuevo orificio, que completa las posibilidades de aperturas tradicionales.

Los cercos y tapas deben colocarse perfectamente nivelados con respecto a pavimentos y aceras; serán asentados con mortero de cemento-arena de proporción 1:3.

Para cercos y tapas de pozos de revisión se seguirán las siguientes indicaciones:

a) Diámetro exterior del cerco: 0.86 m

b) Diámetro interior del cerco: 0.60 m

c) Altura total del cerco: 0.13 m

d) Diámetro de la tapa en la parte superior: 0.60 m

e) Grueso mínimo de la tapa (con nervios radiales) 0.03 m

f) Grueso mínimo del cerco: 0.015 m

g) Peso de la tapa: 110-115 lb

h) Peso del cerco: 110-115 lb

- i) La sujeción de la tapa al cerco será mediante una bisagra o cadena (ver detalle de los planos), que sus partes componentes serán conformadas monolíticamente cuando se fabriquen el cerco y la tapa, de acuerdo a los planos de detalle. En la fase de montaje se colocará solamente un pasador metálico que sirve para completar el gozne, el mismo que será remachado una vez colocada la tapa.
- j) Las medidas de todas las piezas se ceñirán lo más aproximadamente posible a los diseños.

La fundición de hierro gris será de buena calidad, de grano uniforme, sin protuberancias, cavidades, ni otros defectos que interfieran con su uso normal. Todas las piezas serán limpiadas antes de su inspección y luego cubiertas por una capa

gruesa de pintura bitumástica uniforme, que dé en frío una consistencia tenaz y elástica (no vidriosa).

Llevarán las marcas ordenadas para cada caso. En general la fundición corresponderá a la norma ASTM C48 DIN-1691, CG-14, y deberá ser aprobada por el Fiscalizador.

Medición y forma de pago.-

Los cercos y tapas de pozos de revisión serán medidos en unidades, determinándose su número en obra y de acuerdo con el proyecto y/o las órdenes del Ingeniero Fiscalizador, se pagarán en unidades y de acuerdo al precio unitario establecido en el contrato.

RUBRO.- HORMIGÓN SIMPLE f'c= 210kg/cm2, incluye encofrado

Definición.-

Consiste en la elaboración de hormigón simple f'c = 210 Kg/cm2.

En el alcantarillado sanitario se utilizará para la construcción de las tapas de los pozos de revisión. En el alcantarillado pluvial se utilizará para la construcción de las tapas de los pozos de revisión y construcción de la descarga.

Especificación.-

El hormigón simple será monolítico sin poros, para lo que se utilizará el equipo adecuado de hormigonado como concreteras, para luego ser colocado en los sitios que determine el Proyecto.

El Hormigón se elaborara exclusivamente en los sitios que la Fiscalización autorice para tal efecto.

El contratista deberá estudiar los materiales que se propone emplear en la fabricación del hormigón y deberá preparar el diseño del hormigón, y las dosificaciones con las que obtendrá la resistencia requerida. El diseño del hormigón deberá ser aprobado por el fiscalizador antes de iniciar cualquier fundición.

Los agregados gruesos que se utilizarán en la preparación del hormigón deberán tener un desgaste no mayor al 40%, determinado según los métodos de ensayo especificado en las normas INEN 860-861.

El cemento a utilizarse será Portland Tipo I; de acuerdo a lo especificado en las normas INEN 151-152; para la confección del hormigón se utilizará un solo tipo de cemento.

ENSAYOS Y TOLERANCIAS:

La resistencia a la compresión del hormigón se determinará en base al ensayo establecido en la norma ASSHTO T-22 con cilindros de hormigón elaborados y curados de acuerdo con los métodos que se indican en la norma AASHTO T-23 o T-126.

Las muestras para los ensayos de resistencia de cada clase de hormigón, deberán tomarse al menos una vez diaria o una vez por cada 12 m3 o por cada 45 m2 de superficie fundida, lo que fuere menor en todo.

El ensayo consistirá en la resistencia media de tres cilindros elaborados con material tomado de la misma mezcla del hormigón, los resultados serán satisfactorios si los promedios es igual o excede el valor de f'c requerida.

REFERENCIAS:

Código Ecuatoriano de la Construcción.

Norma INEN.

Especificaciones generales del MOP.

HORMIGONES

MATERIALES

CEMENTO PÓRTLAND.- Será tipo I y cumplirá con lo exigido por las normas del INEN. El cemento a emplearse deberá ser fresco y será almacenado en óptimas condiciones en un lugar seco, impermeable.

El Contratista deberá mantener el cemento en un lugar que facilite la inspección periódica de la Fiscalización.

AGREGADOS.

AGREGADO FINO.-Consistirá en arena, puede ser natural o de mina, y artificial o de cantera. Para cualquiera de estos casos deberá cumplir con los requerimientos de calidad en cuanto a contenido orgánico y granulometría.

El Fiscalizador podrá solicitar todas las pruebas que sean necesarias para comprobar la calidad y requerimientos mínimos que deberá cumplir el agregado.

El agregado fino deberá estar libre de impurezas tales como arcilla, material carbonoso, micas, partículas blandas, material en general que quite a la arena la condición de materia inerte.

AGREGADO GRUESO.- Consistirá en material inerte como piedra que provendrá de la trituración de material pétreo, o de mina, con características de limpieza, dureza, durabilidad y buena graduación.

El agregado grueso puede ser obtenido de acopia natural (centro rodado) o de canteras siempre y cuando presenten todas las características exigidas para hormigones.

La mezcla de los agregados finos y gruesos en el hormigón debe también cumplir con los requerimientos límites de granulometría de acuerdo a las normas del INEN y del código Ecuatoriano de la Construcción

AGUA

El agua a emplearse en la preparación de los hormigones presentará las características más cercanas que se podrían considerar para consumo humano.

El agua será limpia, libre de materiales orgánicos, sales disueltas, aceite, etc. En la prueba de acidez deberá PH comprendido entre 5.5 y 8.

La norma bajo la cual se harán los ensayos de calidad será la AASHTO T26 – 51. De cualquier manera, el diseño del hormigón se lo deberá hacer utilizando para las pruebas, el agua que el Constructor piensa emplear en la obra.

ADITIVOS

En los casos en que el Contratista considere necesario, así se lo indique en el análisis de precios unitarios o previa autorización del Fiscalizador se emplearán aditivos para mejorar las características del hormigón. Previo a la aprobación del fiscalizador, el Constructor presentará a consideración el aditivo que se propone utilizar, con la debida certificación del fabricante.

CONTROL DE CALIDAD

Para un adecuado control de la calidad del aditivo, el Contratista hará los ensayos pertinentes en los cual se demuestra la bondad del aditivo sobre todo que este no afecte a la calidad y seguridad del hormigón, ya que los cementos varían notablemente en su composición química.

FABRICACION

DOSIFICACIÓN

Previa la fabricación de hormigones y por lo menos con quince días de anticipación, el constructor deberá presentar los diseños de dosificación y los ensayos de materiales descritos en la primera parte de este capítulo, como respaldo del diseño de hormigones que se emplearán en la construcción.

Los ensayos de materiales y diseño de hormigones se los hará en un laboratorio de ensayos de materiales de reconocida solvencia, el que también deberá ser sometido a la aprobación de Fiscalizador antes de la realización del trabajo.

El diseño de hormigones se lo hará en proporción al peso, con la alternativa de dosificación al volumen.

Para las proporciones al volumen de los agregados, se proveerán cajones o medidas de tales dimensiones que la proporción sea en unidades completas (sin fracciones). Las proporciones de la dosificación podrán ser modificadas solamente con la expresa autorización del Fiscalizador.

PREPARACION Y MEZCLADO

Será conveniente que el hormigón sea fabricado en un sitio predeterminado dentro de la obra, localizado de tal manera que el apilamiento de material se lo haga en óptimas condiciones, y que el transporte del hormigón tenga el menor recorrido posible, tomando en cuenta a todos los sectores donde el hormigón tenga que ser colocado.

Si por cualquier motivo el hormigón no puede o no justifica ser producido en un centro de fabricación, el mezclado se lo hará en un sitio aprobado por el Fiscalizador que permita el apilamiento más adecuado de los áridos, la medida o pasaje de los mismos, sin alterar las condiciones de graduación. El sitio aprobado para la fabricación, deberá también cumplir con las condiciones óptimas de transporte para colado, toma de muestras, etc.

El Fiscalizador no autorizará la fundición de hormigones, mientras no se encuentre en obra el material necesario para cubrir la totalidad de la fundición programada, ni la maquinaria necesaria para el mezclado. Junto con el equipo mecánico de mezclado, el Constructor deberá contar por lo menos con una concretera, un vibrador y un elevador de reserva si es el caso, para prevenir cualquier desperfecto en la maquinaria prevista como principal para el mezclado. Dentro del equipo mínimo para la fabricación de hormigones se contará con cinco moldes para toma de muestras para ensayos de la resistencia del hormigón a la compresión cilíndrica, y un cono de Abrahams para medir el asentamiento de la mezcla.

CONTROL DE CALIDAD

Una vez que se hayan realizado las inspecciones del caso en los materiales componentes, previa la fiscalización de hormigones. Dentro del proceso deberán tomarse muestras representativas de cada etapa de colado de los elementos, muestras que no serán en número menor que cinco. Se tomará como mínimo un juego de muestras por cada fundición, o cada 40 m³, o 450 m², de superficie

fundida, en caso de fundiciones de magnitud mayor a lo señalado. En todo caso, la que a juicio del Fiscalizador fuera la más representativa. En lo que corresponda, regirá la norma ASTMC - 172.

La toma de muestras de hormigón, se llevará en un registro especial previsto para el efecto, en el que se identificará fecha y hora de la toma de la muestra, elemento colado, asentamiento ensayo, y otros datos relevantes. Este registro será revisado por el Fiscalizador durante y después de cada fundición, de lo cual dejará constancia con su firma o rúbrica.

La toma de muestras, almacenamiento y ensayo, estará de acuerdo con las normas ASTMC-51. Los ensayos de las probetas a la resistencia a la compresión cilíndrica se ensayarán a los siete, catorce y veinte y ocho días de edad. Las dos primeras edades, a criterio del Fiscalizador. Los cilindros de prueba del hormigón deberán curarse en el lugar más adecuado. El que también será aprobado por la fiscalización una vez que se cumplan las condiciones de la norma ASTM respectiva.

El ensayo de las muestras se lo hará en un laboratorio, de reconocida solvencia profesional, previa aprobación del Fiscalizador. Los resultados de los ensayos deberán adjuntarse al trámite de las planillas respectivas, en caso de no hacerlo no se dará trámite a planilla alguna, por lo tanto el Contratista no tendrá opción a reclamo alguno por fechas de pago. Los resultados de los ensayos que difieran en más del 25% serán descartados, en caso de que los resultados no satisfagan las necesidades, al criterio del Fiscalizador se deberá realizar ajuste a la dosificación. Se realizarán pruebas no destructivas en los hormigones (estructura fabricada) y si los resultados así lo ameritan se procederá a la demolición de los elementos que contengan hormigones de mala calidad.

COLADO DE HORMIGONES

ENCOFRADO Y APUNTALAMIENTOS

Los encofrados deberán tener la forma y dimensiones exactas de manera que el elemento colado sea de las dimensiones previstas en los planos.

Será necesario que antes de determinar en obra el tipo de encofrado a emplearse, se revise el tipo de acabado final de los hormigones, previstos en los planos o cuadros de acabados, con la finalidad de obtener una superficie del hormigón lo más conveniente para el trabajo de acabado.

Independientemente del tipo de encofrado a emplearse, este será trabajado de manera que no deje aberturas, en las juntas ni la posibilidad de que se pierda mortero de hormigón por filtraciones no controladas.

Si por el tipo de encofrado, o elemento que se trabaje es necesaria la lubricación de los encofrados, para la actividad de desencofrado ésta lubricación se la hará antes de la colocación de las armaduras o acero de refuerzo, y un tipo de lubricación que no afecte a las características físicas del acabado.

Para el diseño y disposición de los encofrados será necesario considerar alineaciones y pendientes, tomando en cuenta la presión del hormigón en las paredes que podrán producir desviaciones de alineación, de niveles, etc.

No se podrán fundir elementos en alturas mayores de tres metros. En el caso de que el Constructor decida emplear un encofrado de elementos muy altos, a la altura máxima de tres metros se dejarán en el encofrado aberturas suficientemente amplias por las cuales se depositara en hormigón en el elemento y se pueda controlar el colado.

Previa a la fundición o colado de cualquier elemento, el Contratista someterá los encofrados a la aprobación del Fiscalizador, quién deberá controlar además del acabado, la seguridad de los moldes en cuando a que no sufran deformaciones durante la colocación del hormigón.

Los elementos de soporte de los moldes deberán presentar las mejores condiciones de seguridad, evitando remiendos, empalmes defectuosos, longitudes de pandeo excesivo, etc.

Antes de iniciar el apuntalamiento, se tendrá cuidado de preparar el piso soportante. Si es sobre el suelo con una buena compactación y sobre retazos de madera, o de cualquier elemento capaz de destruir la carga para evitar que el puntal se hinque, deformando el encofrado y sobre cargando a la estructura del soporte.

De preferencia los puntales de madera no deben tener juntas, en caso de tener si son a tope el corte será normal aje del puntal, con cubre juntas no menores de 60cm. Si los puntales son redondos los cubre justas serán tres y si son cuadrados, estas cubre juntas serán cuatro.

El sistema de apuntalamiento deberá prever su seguridad no sólo para soportar el peso del hormigón y encofrados sino la inestabilidad producida por la introducción de fuerzas laterales.

Para prevenir el pandeo de los puntales muy largos será necesario introducir arriostramientos laterales a media altura por lo menos, localizando dichos arriostramientos en las dos direcciones normales.

Todo apuntalamiento será diseñado tomando en cuenta que será necesario el desencofrado, evitando vibraciones, golpes y cualquier esfuerzo que produzca daños o averías en el hormigón.

Antes de proceder al colado, el Constructor, someterá a la aprobación de fiscalización, el sistema de encofrados y apuntalamientos, tomando todas las precauciones en el control de seguridad, simulando cargas y vibraciones que se producen durante el trabajo.

COLADO

Previo al inicio del calado de hormigones, el constructor contará con la autorización o visto bueno del fiscalizador tanto de encofrados, como de las armaduras de acero de refuerzo.

Para el caso de cimentaciones, será necesario limpiar todo residuo, material blando y suelto, y en el caso de hallarse inundado el sitio de colado, anotar el agua de la excavación, limpiar residuos, material blando y suelto, y preparar la recepción del hormigón.

Deberá evitarse para el colado del hormigón un exceso de transporte y manipuleo, con el fin de evitar que se introduzcan materiales extraños, y que se produzcan segregación o disgregación del material.

No se arrojará el hormigón durante el colado, desde alturas mayores a 1,50m, para lo cual se emplearán canales o mangas cuyo diseño aprobará el Fiscalizador.

Se deberá tener absoluto cuidado en no colocar en el elemento colado, hormigón media hora después de mezclado, o el volver a mezclarlo cuando aparentemente este seco. Se deberá tener cuidado también, en cuanto a no permitir aumentar agua al hormigón ya mezclado.

Al momento de la colocación del hormigón todos los encofrados deberán encontrarse húmedos.

Todo hormigón deberá ser vibrado al momento de la colocación, sin dejar transcurrir un tiempo mayor que media hora de colocado. Para iniciar el proceso de vibración, será necesario acumular suficiente volumen de hormigón, para que a la introducción del vibrador no se produzca disgregación.

El proceso del vibrado, deberá mantenerse por un tiempo tal que elimine los vacíos dentro del hormigón, dando una buena compactación, y, que no se exceda, produciendo un exceso de lechada en la superficie expuesta durante el colado.

El número mínimo de vibraciones, será tal que no se exceda del promedio de 8,0m³, por hora y por cada vibrador, sin perjuicio de que exista por lo menos un vibrador de emergencia, debidamente probado y en buen estado de funcionamiento.

Para los casos que corresponda, no se deberá caminar, ni tender andamios para transportar el hormigón, sobre las superficies ya coladas, perturbando así el proceso de fraguado del hormigón. Esta precaución se deberá tener por lo menos durante las siguientes treinta y seis horas de la fundición. Además durante el período descrito, será conveniente no mover los hierros que sobresalgan del hormigón.

No se deberá colar el hormigón durante la lluvia. Solamente si fuera necesario y a criterio del Fiscalizador se continuará con el trabajo, siempre y cuando se provea de la protección adecuada a los materiales y a la superficie expuesta del hormigón.

CUIDADO DEL HORMIGÓN

Todo hormigón será curado mediante humedad, esto es manteniendo mojadas o húmedas las superficies expuestas, por un tiempo de por lo menos una semana.

Con la finalidad de mantener húmedas las caras expuestas del hormigón, se podrá emplear arena, aserrín, papel, Cañamo, etc.

En todo caso, el hormigón fresco deberá protegerse del sol en cuanto tiene que ver que no reseque, hasta que no haya sido correctamente curado.

DESENCOFRADO

Los puntales y estructura soportante del encofrado podrán retirarse una vez que el hormigón haya alcanzado la resistencia suficiente para soportar su peso propio, más una ligera sobrecarga, sin sufrir deformaciones que afecten la geometría y estabilidad de la estructura.

Sin embargo, el apuntalamiento y encofrado deberán mantenerse como mínimo el siguiente tiempo después de la fundición, de acuerdo a la característica del elemento colado:

- Superficies verticales que soportan exclusivamente su peso propio: 2 días
- Superficies verticales que soportan flexión en el sentido de esta superficie: 4 días
- Superficies horizontales que soportan flexión en el sentido de esta superficie: 21 días

En caso de que la Fiscalización apruebe el uso de aditivos para realizar el desencofrado en tiempos menores deberá hacerse constar en el libro de obra.

Inmediatamente después de retirado el encofrado, se procederá e examinar las superficies del hormigón para proceder a resanar las partes que presentaren defectos en el colado, que no provoquen inestabilidad en la estructura, caso contrario la Fiscalización podrá ordenar la demolición del elemento que tenga fallas.

Medición y forma de pago.-

La unidad de medida será el metro cúbico de hormigón de f'c=210kg/cm2 fundido. En el precio unitario está incluido el encofrado, desencofrado y uso de aditivos de ser procedente.

Se pagará al precio unitario establecido en el contrato

RUBRO.- ACERO DE REFUERZO f'y=4200 Kg/cm2 (Suministro, colocación y corte)

Definición.-

Acero en barras: El trabajo consiste en el suministro, transporte, corte, figurado y colocación de barras de acero, para el refuerzo de las tapas de las cajas de revisión y las tapas de los pozos de conformidad con los diseños y detalles mostrados en los planos en cada caso y/o las órdenes del ingeniero fiscalizador.

Especificación.-

Acero en barras: El Constructor suministrará dentro de los precios unitarios consignados en su propuesta, todo el acero en varillas necesario, estos materiales deberán ser nuevos y aprobados por el Ingeniero Fiscalizador de la obra. Se usarán barras redondas corrugadas con esfuerzo de fluencia de 4200kg/cm2, grado 60, de acuerdo con los planos y cumplirán las normas INEN 102:03 varillas con resaltes de acero al carbono laminado en caliente para hormigón armado Requisitos. El acero usado o instalado por el Constructor sin la respectiva aprobación será rechazado.

Las distancias a que deben colocarse las varillas de acero que se indique en los planos, serán consideradas de centro a centro, salvo que específicamente se indique otra cosa; la posición exacta, el traslape, el tamaño y la forma de las varillas deberán ser las que se consignan en los planos.

Antes de procederse a su colocación, las varillas de hierro deberán limpiarse del óxido, polvo grasa u otras substancias y deberán mantenerse en estas condiciones hasta que queden sumergidas en el hormigón.

Las varillas deberán ser colocadas y mantenidas exactamente en su lugar, por medio de soportes, separadores, etc., preferiblemente metálicos, o moldes de HS, que no sufran movimientos durante el vaciado del hormigón hasta el vaciado inicial de este. Se deberá tener el cuidado necesario para utilizar de la mejor forma la longitud total de la varilla de acero de refuerzo.

A pedido del ingeniero fiscalizador, el constructor está en la obligación de suministrar los certificados de calidad del acero de refuerzo que utilizará en el proyecto; o realizará ensayos mecánicos que garanticen su calidad.

Toda armadura o características de éstas, serán comprobadas con lo indicado en los planos estructurales correspondientes. Para cualquier reemplazo o cambio se consultará con fiscalización.

Medición y forma de pago.-

La medición del suministro y colocación de acero de refuerzo se medirá en kilogramos (kg) con aproximación a la décima.

Para determinar el número de kilogramos de acero de refuerzo colocados por el Constructor, se verificará el acero colocado en la obra, con la respectiva planilla de aceros del plano estructural. Se pagará de acuerdo al precio unitario establecido en el contrato.

RUBRO.-DESALOJO DE MATERIAL DE EXCAVACION

Definición.-

Se refiere al transporte que sea necesario efectuar para desalojar los sobrantes del material producto de la excavación de las zanjas. Los sobrantes que el Fiscalizador estime convenientes, podrán quedar en los sitios por él indicados.

Especificaciones.-

El retiro de sobrantes se llevará a cabo con equipo adecuado proporcionado por el Contratista y aprobado por el Fiscalizador.

El Constructor deberá tener especial cuidado de no arrojar los sobrantes del material excavado en sitios no permitidos como ríos y otros sectores, ni en sitios que puedan perjudicar o molestar a los pobladores.

En caso de que el Constructor no ejecute estos trabajos, el ingeniero Fiscalizador podrá ordenar este desalojo a expensas del Constructor de la obra, deduciendo el importe de los gastos, de los saldos que el Constructor tenga en su favor en las liquidaciones con el Contratante.

Medición y forma de pago.-

La medida será el número de metros cúbicos de material desalojado desde la construcción hasta el lugar escogido por el Contratista, de acuerdo con las disposiciones Municipales, de cuyo cumplimiento será responsable.

El pago se lo hará de acuerdo con lo anteriormente descrito, advirtiéndose que en el precio unitario debe incluirse el costo de carga y descarga de los sobrantes y será el establecido en el contrato.

6.8. ADMINISTRACIÓN

El control y la administración del presente proyecto estarán a cargo del Gobierno Autónomo Descentralizado Provincial de Pastaza, en el Departamento de Obras Públicas. Que en la actualidad es quien se encarga de la parte de alcantarillado.

6.9. PREVISIÓN DE LA EVALUACIÓN

La fiscalización de este proyecto estará a cargo de profesionales del Gobierno Autónomo Descentralizado Provincial Pastaza.

Dichos profesionales deberán controlar el funcionamiento del sistema, deberán tomar todas las medidas correspondientes al momento de la construcción para que se respete el diseño, los parámetros y las especificaciones técnicas garantizando así el éxito de este proyecto.

C. MATERIALES DE REFERENCIA

1.- BIBLIOGRAFÍA

- 1.- Apuntes del cuaderno de Alcantarillado de noveno semestre de Ingeniería Civil de la Universidad Técnica de Ambato.
- 2.- "La incidencia de las aguas servidas en la calidad de vida de los habitantes del caserío Lligo. Parroquia la Matriz perteneciente al Cantón Patate, Provincia de Tungurahua." Tesis de grado: MARCELO ABRIL.
- 3.-"Las Aguas Servidas y su influencia en la calidad de vida de los moradores del Centro Cantonal de Tisaleo, Provincia de Tungurahua." Tesis de grado: LEONARDO ACOSTA.
- 4.- IEOS. (1986). "NORMAS DE DISEÑO PARA SISTEMAS DE AGUA POTABLE Y ELIMINACIÓN DE RESIDUOS LIQUIDOS." Quito Ecuador.
- 5.- INEC. Instituto Nacional de Estadísticas y Censos.
- 6.- La Constitución de la República del Ecuador del 2008.
- 7.- Tratamiento de aguas residuales en pequeñas poblaciones, AUTOR: George Tchobanoglous.
- 8. Bioestadística, AUTOR: R. Clifford Blair, Richard A. Taylor.

ANEXOS

ANEXO A MODELO DE LA ENCUESTA

UNIVERSIDAD TECNICA DE AMBATO FACULTAD DE INGENIERIA CIVIL Y MECANICA CARRERA DE INGENIERÍA CIVIL

ENCUESTA REALIDAZA A LOS MORADORES DEL BARRIO 18 DE JULIO DE LA PARROQUIA MADRE TIERRA PROVINCIA DE PASTAZA PARA MEDIR LA CALIDAD DE VIDA.

	Realizada por:
	Encuesta Nº:
1.	¿Cuántas personas habitan en su vivienda?
2.	¿El agua que consume es?
3.	¿De dónde obtiene el agua para su vivienda?
4.	¿Cómo es la evacuación de las aguas servidas de su vivienda?
5.	¿Qué servicios adicionales tiene su vivienda?
6.	¿Tiene resguardo policial su vivienda o sector?
7.	¿Cuenta su vivienda con servicio de recolección de basura?
8.	¿Cree Ud. que es necesario un sistema de alcantarillado sanitario para mejorar el bienestar de los habitantes del Barrio "18 de julio"?
9.	¿Qué tipo de sistema de alcantarillado cree usted que es necesario en su sector?

GRACIAS POR SU COLABORACIÓN

10. ¿En su barrio existe un sub- centro de salud?

ANEXO B

Libreta topográfica de campo

100	10002.5890	8995.4260	900.1630	EJE	CVL_PUNTO
101	10002.3960	8999.1530	899.8100	MV	CVL_PUNTO
102	10002.5130	8991.6010	900.0650	MV	CVL_PUNTO
103	9999.0960	8991.1470	900.0650	EJE	CVL_PUNTO
104	9996.5650	8991.1960	900.0590	MV	CVL_PUNTO
105	9999.7450	8972.4640	900.2910	EJE	CVL_PUNTO
106	10001.7170	8972.4840	900.2370	MV	CVL_PUNTO
107	9997.6300	8972.5650	900.2270	MV	CVL_PUNTO
108	10000.3630	8954.5390	900.6030	EJE	CVL_PUNTO
109	10022.2580	8998.6090	900.3460	EJE	CVL_PUNTO
110	10002.3680	8954.6890	900.5500	MV	CVL_PUNTO
111	10021.9760	9000.9150	900.2630	MV	CVL_PUNTO
112	9998.4510	8954.5510	900.5570	MV	CVL_PUNTO
113	10022.7030	8996.3550	900.2570	MV	CVL_PUNTO
114	10000.6230	8936.9070	900.7460	EJE	CVL_PUNTO
115	10041.7510	9000.8090	900.4200	EJE	CVL_PUNTO
116	10002.5460	8936.8730	900.7250	MV	CVL_PUNTO
117	10041.8510	8998.6920	900.3390	MV	CVL_PUNTO
118	9999.0240	8936.9330	900.6150	MV	CVL_PUNTO
119	10041.4200	9002.9720	900.2310	MV	CVL_PUNTO
120	10000.6850	8917.6630	900.8680	EJE	CVL_PUNTO
121	10061.9190	9002.0100	900.4020	EJE	CVL_PUNTO
122	10002.5540	8917.7590	900.9130	MV	CVL_PUNTO
123	10062.3080	8999.4860	900.3050	MV	CVL_PUNTO
124	9998.6870	8917.6360	900.7730	MV	CVL_PUNTO

125	10061.9370	9003.9750	900.3440	MV	CVL_PUNTO
126	10000.6180	8898.9890	900.8710	EJE	CVL_PUNTO
127	10080.3990	9003.5510	900.5840	EJE	CVL_PUNTO
128	10002.4800	8898.9130	900.8110	MV	CVL_PUNTO
129	10080.6620	9001.0710	900.5360	MV	CVL_PUNTO
130	9998.8260	8898.9680	900.8230	MV	CVL_PUNTO
131	10080.2360	9005.6910	900.5550	MV	CVL_PUNTO
132	10000.6380	8880.9380	900.9290	EJE	CVL_PUNTO
133	10100.1770	9004.7100	900.1600	EJE	CVL_PUNTO
134	10002.3320	8880.9790	900.8540	MV	CVL_PUNTO
135	10100.0880	9007.8410	900.1540	MV	CVL_PUNTO
136	9998.9520	8880.9350	900.8430	MV	CVL_PUNTO
137	10101.2230	9002.2160	900.0720	MV	CVL_PUNTO
138	10000.9290	8862.9230	900.8850	EJE	CVL_PUNTO
139	10121.1660	9005.7820	899.5050	EJE	CVL_PUNTO
140	10002.6430	8862.8390	900.8300	MV	CVL_PUNTO
141	10121.2880	9003.4530	899.3850	MV	CVL_PUNTO
142	9999.1180	8862.9550	900.7890	MV	CVL_PUNTO
143	10120.9250	9007.8650	899.4740	MV	CVL_PUNTO
144	10001.1250	8844.4510	900.9050	EJE	CVL_PUNTO
145	10130.3050	9005.7840	899.3400	EJE	CVL_PUNTO
146	10002.9530	8844.5550	900.9270	MV	CVL_PUNTO
147	10130.6420	9003.6470	899.1800	MV	CVL_PUNTO
148	9999.3910	8844.6200	900.7660	MV	CVL_PUNTO
149	10130.0180	9007.9520	899.1580	MV	CVL_PUNTO
150	10001.3520	8825.5540	900.8490	EJE	CVL_PUNTO

151	10003.0680	8825.5710	900.7740	MV	CVL_PUNTO
152	9999.7260	8825.6650	900.7960	MV	CVL_PUNTO
153	10001.5870	8806.7690	901.3590	EJE	CVL_PUNTO
154	10000.0250	8806.8760	901.3000	MV	CVL_PUNTO
155	10003.7060	8807.0130	901.2780	MV	CVL_PUNTO
156	10001.6190	8786.8980	901.7680	EJE	CVL_PUNTO
157	10003.0610	8786.9500	901.7540	MV	CVL_PUNTO
158	10000.0310	8786.9330	901.7100	MV	CVL_PUNTO
159	10001.5310	8768.0070	902.0950	EJE	CVL_PUNTO
160	10003.0870	8767.9660	902.0580	MV	CVL_PUNTO
161	9999.9760	8767.9590	902.0990	MV	CVL_PUNTO
162	10003.2510	8984.7780	902.6850	POSTE	CVL_PUNTO
163	10003.6880	8939.4920	903.1280	POSTE	CVL_PUNTO
164	10004.0330	8894.2710	902.8490	POSTE	CVL_PUNTO
165	10004.4650	8849.6350	904.5390	POSTE	CVL_PUNTO
166	10049.2080	9004.8380	900.2480	EJE	CVL_PUNTO
167	10046.2130	9004.7970	900.1200	MV	CVL_PUNTO
168	10048.7200	8996.6340	900.1880	EJE	CVL_PUNTO
169	10052.9830	9005.3670	900.1540	MV	CVL_PUNTO
170	10045.9670	8996.3200	900.0480	MV	CVL_PUNTO
171	10050.4670	8996.6450	900.2270	MV	CVL_PUNTO
172	10048.9080	9022.6940	900.1120	EJE	CVL_PUNTO
173	10048.9400	8976.4190	900.4940	EJE	CVL_PUNTO
174	10046.7060	9022.4590	900.1320	MV	CVL_PUNTO
175	10046.8650	8976.5090	900.5250	MV	CVL_PUNTO
176	10051.1390	9022.6830	900.0110	MV	CVL_PUNTO

177	10050.6140	8976.3800	900.4570	MV	CVL_PUNTO
178	10049.0670	9040.0580	899.9820	EJE	CVL_PUNTO
179	10047.8490	8956.9740	900.4380	EJE	CVL_PUNTO
180	10046.4700	9040.1280	900.0400	MV	CVL_PUNTO
181	10045.3330	8956.9620	900.4140	MV	CVL_PUNTO
182	10051.8680	9040.2320	899.9660	MV	CVL_PUNTO
183	10049.3610	8956.9910	900.3920	MV	CVL_PUNTO
184	10049.3800	9053.4730	899.2460	EJE	CVL_PUNTO
185	10048.2970	8937.8470	900.4030	EJE	CVL_PUNTO
186	10046.8420	9053.1070	899.0020	MV	CVL_PUNTO
187	10045.3770	8937.9680	900.3160	MV	CVL_PUNTO
188	10050.9480	9053.2350	899.0550	MV	CVL_PUNTO
189	10050.9840	8938.1090	900.2890	MV	CVL_PUNTO
190	10049.0660	8918.4290	900.3560	EJE	CVL_PUNTO
191	10046.7400	8918.2100	900.4670	MV	CVL_PUNTO
192	10051.2800	8918.5960	900.3290	MV	CVL_PUNTO
193	10050.1920	8898.7890	900.4880	EJE	CVL_PUNTO
194	10053.0470	8899.1170	900.4350	MV	CVL_PUNTO
195	10047.9580	8898.6770	900.5120	MV	CVL_PUNTO
196	10050.7010	8878.4510	900.1900	EJE	CVL_PUNTO
197	10048.5850	8878.3900	900.1590	MV	CVL_PUNTO
198	10052.1490	8878.2180	900.0720	MV	CVL_PUNTO
199	10051.0660	8857.7960	900.0700	EJE	CVL_PUNTO
200	10049.3140	8857.6170	899.9930	MV	CVL_PUNTO
201	10053.1900	8857.5750	899.9470	MV	CVL_PUNTO
202	10051.3210	8837.8720	900.3240	EJE	CVL_PUNTO

203	10049.3570	8837.8490	900.2530	MV	CVL_PUNTO
204	10053.3550	8837.8790	900.2620	MV	CVL_PUNTO
205	10050.6610	8818.1510	900.7310	EJE	CVL_PUNTO
206	10049.5630	8818.1590	900.6490	MV	CVL_PUNTO
207	10052.6540	8818.0790	900.6740	MV	CVL_PUNTO
208	10052.4360	8798.3550	901.5900	EJE	CVL_PUNTO
209	10050.3410	8797.9490	901.4900	MV	CVL_PUNTO
210	10054.3640	8798.2220	901.4730	MV	CVL_PUNTO
211	10053.0850	8778.4340	902.0780	EJE	CVL_PUNTO
212	10055.1660	8778.3940	902.0110	MV	CVL_PUNTO
213	10051.1280	8778.4530	901.9810	MV	CVL_PUNTO
214	10053.3880	8758.7720	902.4250	EJE	CVL_PUNTO
215	10051.8330	8758.6130	902.3170	MV	CVL_PUNTO
216	10055.5480	8758.8050	902.2810	MV	CVL_PUNTO
217	10053.9190	8738.2180	902.6370	EJE	CVL_PUNTO
218	10052.0350	8737.9360	902.6240	MV	CVL_PUNTO
219	10055.9080	8738.2780	902.5370	MV	CVL_PUNTO
220	10056.0330	8717.9130	902.7770	EJE	CVL_PUNTO
221	10053.5560	8718.2200	902.7280	MV	CVL_PUNTO
222	10058.1280	8718.5260	903.0580	MV	CVL_PUNTO
223	10096.3290	9007.9620	900.2280	EJE	CVL_PUNTO
224	10099.2510	9008.4030	900.1510	MV	CVL_PUNTO
225	10092.8880	9008.7200	900.3050	MV	CVL_PUNTO
226	10096.0960	9028.2300	900.2520	EJE	CVL_PUNTO
227	10100.3680	9028.2800	900.1730	MV	CVL_PUNTO
228	10091.5400	9027.3610	900.1460	MV	CVL_PUNTO

229	10095.4020	9047.2480	899.8400	EJE	CVL_PUNTO
230	10100.0280	9047.2080	899.8060	MV	CVL_PUNTO
231	10091.1790	9046.9640	899.7630	MV	CVL_PUNTO
232	10095.9240	9059.3370	898.9330	EJE	CVL_PUNTO
233	10091.0330	9059.6070	898.8760	MV	CVL_PUNTO
234	10100.6860	9058.9350	898.8270	MV	CVL_PUNTO
235	10097.0240	8999.9640	900.0970	EJE	CVL_PUNTO
236	10100.5020	9000.3840	899.9970	MV	CVL_PUNTO
237	10091.0870	8999.2470	900.2910	MV	CVL_PUNTO
238	10097.1950	8981.4870	900.0230	EJE	CVL_PUNTO
239	10101.3290	8981.8940	899.8470	MV	CVL_PUNTO
240	10093.1650	8981.8310	900.0790	MV	CVL_PUNTO
241	10097.8510	8964.8560	900.0190	EJE	CVL_PUNTO
242	10101.8750	8965.3670	899.8090	MV	CVL_PUNTO
243	10093.0670	8964.6890	900.2500	MV	CVL_PUNTO
244	10098.4110	8947.2090	900.0030	EJE	CVL_PUNTO
245	10102.3150	8947.5730	899.9070	MV	CVL_PUNTO
246	10094.8050	8947.1320	899.9010	MV	CVL_PUNTO
247	10098.9360	8929.2070	899.8130	EJE	CVL_PUNTO
248	10101.9170	8929.4830	899.7170	MV	CVL_PUNTO
249	10094.9080	8928.9210	899.8140	MV	CVL_PUNTO
250	10098.5050	8910.3810	899.6180	EJE	CVL_PUNTO
251	10102.2130	8910.2530	899.4330	MV	CVL_PUNTO
252	10094.9750	8910.3650	899.6210	MV	CVL_PUNTO
253	10098.0120	8892.3690	899.7400	EJE	CVL_PUNTO
254	10100.9660	8892.1740	899.6510	MV	CVL_PUNTO

255	10094.4870	8892.4560	899.7630	MV	CVL_PUNTO
256	10099.1280	8876.8290	899.8730	EJE	CVL_PUNTO
257	10103.1680	8876.6780	899.8290	MV	CVL_PUNTO
258	10095.3310	8877.0010	899.7620	MV	CVL_PUNTO
259	10099.9560	8858.7670	900.1420	EJE	CVL_PUNTO
260	10103.7700	8858.7260	900.1270	MV	CVL_PUNTO
261	10096.0090	8857.9210	900.2070	MV	CVL_PUNTO
262	10100.8370	8839.5460	900.3850	EJE	CVL_PUNTO
263	10105.0220	8839.8140	900.4330	MV	CVL_PUNTO
264	10096.2460	8839.4740	900.2640	MV	CVL_PUNTO
265	10101.4710	8820.9520	901.0080	EJE	CVL_PUNTO
266	10105.5110	8820.6720	900.9870	MV	CVL_PUNTO
267	10096.7950	8821.1090	900.9590	MV	CVL_PUNTO
268	10102.2890	8802.3900	901.5470	EJE	CVL_PUNTO
269	10105.5080	8802.4520	901.3680	MV	CVL_PUNTO
270	10099.2460	8802.8330	901.4520	MV	CVL_PUNTO
271	10103.9950	8782.7750	902.2580	EJE	CVL_PUNTO
272	10106.6990	8782.7910	902.2030	MV	CVL_PUNTO
273	10101.0880	8782.9850	902.0900	MV	CVL_PUNTO
274	10105.2460	8763.7280	902.7470	EJE	CVL_PUNTO
275	10108.1940	8763.7400	902.8130	MV	CVL_PUNTO
276	10102.0610	8763.7940	902.5940	MV	CVL_PUNTO
277	10105.8710	8745.6110	903.0090	EJE	CVL_PUNTO
278	10103.4160	8745.8790	902.8790	MV	CVL_PUNTO
279	10109.0580	8746.3550	902.9780	MV	CVL_PUNTO
280	10105.9320	8727.9830	902.9210	EJE	CVL_PUNTO

281	10108.4190	8728.0530	902.8890	MV	CVL_PUNTO
282	10103.4990	8728.0310	902.9010	MV	CVL_PUNTO
283	10105.7020	8712.2890	902.7050	EJE	CVL_PUNTO
284	10103.4280	8712.3260	902.7070	MV	CVL_PUNTO
285	10109.2800	8712.4770	902.8000	MV	CVL_PUNTO
286	10061.6170	8838.4440	900.5690	CASA	CVL_PUNTO
287	10061.6490	8845.3600	900.7440	CASA	CVL_PUNTO
288	10067.5970	8845.4610	900.5190	CASA	CVL_PUNTO
289	10055.8070	8886.7200	901.1470	CASA	CVL_PUNTO
290	10055.9670	8892.6120	901.6470	CASA	CVL_PUNTO
291	10062.8660	8892.6620	901.0170	CASA	CVL_PUNTO
292	10066.9260	8894.1250	900.5170	CASA	CVL_PUNTO
293	10073.8590	8894.3770	900.8830	CASA	CVL_PUNTO
294	9996.1800	8896.0500	902.6550	POSTE	CVL_PUNTO
295	10004.1740	8894.1820	902.6010	POSTE	CVL_PUNTO
296	10040.8580	8896.5550	902.3480	POSTE	CVL_PUNTO
297	10085.3460	8897.1270	901.9910	POSTE	CVL_PUNTO
298	10139.8800	8983.5410	898.5910	EJE	CVL_PUNTO
299	10138.0110	8983.0740	898.8210	MV	CVL_PUNTO
300	10142.5030	8982.7860	898.5450	MV	CVL_PUNTO
301	10190.1580	8903.9130	900.4660	EJE	CVL_PUNTO
302	10142.4090	8963.5580	898.6650	EJE	CVL_PUNTO
303	10190.4980	8906.0140	900.2010	MV	CVL_PUNTO
304	10144.4780	8963.7360	898.6510	MV	CVL_PUNTO
305	10190.3330	8901.7200	900.2980	MV	CVL_PUNTO
306	10140.5390	8963.3720	898.7260	MV	CVL_PUNTO

307	10172.0930	8903.5990	900.2930	EJE	CVL_PUNTO
308	10143.8310	8944.8150	898.9890	EJE	CVL_PUNTO
309	10172.1110	8901.1060	900.3020	MV	CVL_PUNTO
310	10146.0340	8945.2940	898.9310	MV	CVL_PUNTO
311	10171.7660	8905.9340	900.2360	MV	CVL_PUNTO
312	10141.8020	8944.5790	898.9420	MV	CVL_PUNTO
313	10154.1150	8902.4440	899.6470	EJE	CVL_PUNTO
314	10146.1140	8925.7680	899.0880	EJE	CVL_PUNTO
315	10153.6150	8904.9920	899.4030	MV	CVL_PUNTO
316	10148.7300	8926.2110	899.0760	MV	CVL_PUNTO
317	10154.5650	8899.3810	899.5010	MV	CVL_PUNTO
318	10143.9300	8925.8440	898.9910	MV	CVL_PUNTO
319	10137.3410	8901.9410	899.7050	EJE	CVL_PUNTO
320	10147.6500	8907.8000	899.5180	EJE	CVL_PUNTO
321	10137.6790	8899.4830	899.7180	MV	CVL_PUNTO
322	10150.0640	8908.2270	899.4000	MV	CVL_PUNTO
323	10137.0890	8904.3860	899.6660	MV	CVL_PUNTO
324	10145.1340	8908.0080	899.4950	MV	CVL_PUNTO
325	10119.3230	8902.0380	899.4800	EJE	CVL_PUNTO
326	10148.1150	8888.2400	900.1420	EJE	CVL_PUNTO
327	10119.3020	8899.7490	899.5330	MV	CVL_PUNTO
328	10145.8660	8888.0710	900.0360	MV	CVL_PUNTO
329	10119.5760	8904.3480	899.5350	MV	CVL_PUNTO
330	10149.9630	8888.3120	900.0060	MV	CVL_PUNTO
331	10102.6480	8901.3600	899.5080	EJE	CVL_PUNTO
332	10149.0300	8868.8510	900.6340	EJE	CVL_PUNTO

333	10102.7540	8903.8660	899.4950	MV	CVL_PUNTO
334	10146.1770	8868.5850	900.7210	MV	CVL_PUNTO
335	10102.4800	8898.1500	899.4060	MV	CVL_PUNTO
336	10152.1370	8868.9700	900.5000	MV	CVL_PUNTO
337	10084.4690	8901.7130	900.2030	EJE	CVL_PUNTO
338	10149.9380	8848.8890	901.3340	EJE	CVL_PUNTO
339	10084.5770	8903.8530	900.1490	MV	CVL_PUNTO
340	10147.6970	8848.5710	901.2430	MV	CVL_PUNTO
341	10084.4870	8899.5270	899.9970	MV	CVL_PUNTO
342	10152.6170	8849.1670	901.1540	MV	CVL_PUNTO
343	10066.2070	8900.6370	900.3660	EJE	CVL_PUNTO
344	10150.7430	8828.5590	901.6320	EJE	CVL_PUNTO
345	10066.3750	8903.0470	900.3700	MV	CVL_PUNTO
346	10148.3910	8828.3480	901.5460	MV	CVL_PUNTO
347	10066.3210	8898.2850	900.2760	MV	CVL_PUNTO
348	10152.6670	8828.6500	901.5440	MV	CVL_PUNTO
349	10048.8750	8900.3740	900.5280	EJE	CVL_PUNTO
350	10152.1300	8807.7630	901.8240	EJE	CVL_PUNTO
351	10049.1150	8902.9510	900.6520	MV	CVL_PUNTO
352	10154.4210	8807.7480	901.7440	MV	CVL_PUNTO
353	10048.9390	8897.7550	900.4100	MV	CVL_PUNTO
354	10149.7340	8807.4110	901.6970	MV	CVL_PUNTO
355	10030.4860	8900.5780	900.6120	EJE	CVL_PUNTO
356	10152.7820	8787.0360	902.2130	EJE	CVL_PUNTO
357	10030.7580	8902.4250	900.5860	MV	CVL_PUNTO
358	10150.3000	8786.9040	902.2700	MV	CVL_PUNTO

359	10030.5700	8898.8050	900.5550	MV	CVL_PUNTO
360	10155.3290	8787.1250	902.0540	MV	CVL_PUNTO
361	10012.1840	8901.6820	900.6840	EJE	CVL_PUNTO
362	10153.3360	8766.0860	902.4530	EJE	CVL_PUNTO
363	10012.1850	8899.5780	900.6840	MV	CVL_PUNTO
364	10150.9940	8765.9820	902.3830	MV	CVL_PUNTO
365	10012.1940	8903.3890	901.2430	MV	CVL_PUNTO
366	10155.8080	8765.9820	902.4130	MV	CVL_PUNTO
367	9998.9620	8901.9310	900.7880	EJE	CVL_PUNTO
368	10154.6730	8747.5960	902.9830	EJE	CVL_PUNTO
369	9998.8660	8899.5040	900.7760	MV	CVL_PUNTO
370	10152.1670	8747.4770	902.8600	MV	CVL_PUNTO
371	9999.1900	8903.9480	901.8140	MV	CVL_PUNTO
372	10157.1290	8747.6990	902.9190	MV	CVL_PUNTO
373	10155.4070	8727.7220	902.8510	EJE	CVL_PUNTO
374	10152.9680	8727.5000	902.9810	MV	CVL_PUNTO
375	10157.7210	8727.8980	902.8000	MV	CVL_PUNTO
376	10156.7800	8707.6180	902.6430	EJE	CVL_PUNTO
377	10159.0360	8707.5520	902.5730	MV	CVL_PUNTO
378	10154.9660	8706.9890	902.4560	MV	CVL_PUNTO
379	10157.4130	8686.3450	902.6510	EJE	CVL_PUNTO
380	10159.4970	8686.3510	902.5470	MV	CVL_PUNTO
381	10155.3060	8686.2670	902.4510	MV	CVL_PUNTO
382	10157.5500	8665.9740	902.6140	EJE	CVL_PUNTO
383	10155.7960	8665.8860	902.5650	MV	CVL_PUNTO
384	10159.6110	8665.9700	902.5430	MV	CVL_PUNTO

385	10179.1070	8809.4070	901.9380	EJE	CVL_PUNTO
386	10006.4700	8807.6450	900.9580	EJE	CVL_PUNTO
387	10179.2280	8807.7150	901.6360	MV	CVL_PUNTO
388	10007.1610	8810.2060	900.7710	MV	CVL_PUNTO
389	10179.1340	8811.5520	901.7350	MV	CVL_PUNTO
390	10006.9300	8805.2240	900.8710	MV	CVL_PUNTO
391	10161.7700	8808.5320	901.7960	EJE	CVL_PUNTO
392	10161.8080	8806.6380	901.6900	MV	CVL_PUNTO
393	10161.3980	8810.7890	901.7710	MV	CVL_PUNTO
394	10145.9970	8795.1070	904.0030	CASA	CVL_PUNTO
395	10145.6800	8800.8800	903.8370	CASA	CVL_PUNTO
396	10138.9400	8800.8620	904.0400	CASA	CVL_PUNTO
397	10089.3220	8801.6510	903.7870	CASA	CVL_PUNTO
398	10095.6820	8801.6780	903.7490	CASA	CVL_PUNTO
399	10095.8970	8797.4700	904.8210	CASA	CVL_PUNTO
400	10131.4430	8803.6380	903.9210	POSTE	CVL_PUNTO
401	10086.1970	8803.3000	904.8770	POSTE	CVL_PUNTO
402	10041.3220	8803.0810	903.7700	POSTE	CVL_PUNTO
403	10005.0120	8800.9270	905.2810	POSTE	CVL_PUNTO
404	10027.3000	8807.2390	900.9460	EJE	CVL_PUNTO
405	10027.1980	8805.3960	900.8970	MV	CVL_PUNTO
406	10027.3770	8809.1220	900.8980	MV	CVL_PUNTO
407	10046.9880	8807.6430	900.9780	EJE	CVL_PUNTO
408	10047.0520	8805.1170	900.9410	MV	CVL_PUNTO
409	10046.6570	8809.6580	900.9070	MV	CVL_PUNTO
410	10157.4180	8648.9770	902.4810	EJE	CVL_PUNTO

411	10066.2090	8807.8160	901.1780	EJE	CVL_PUNTO
412	10159.8540	8648.9230	902.5110	MV	CVL_PUNTO
413	10066.1630	8805.8400	901.1550	MV	CVL_PUNTO
414	10155.3320	8648.7970	902.4930	MV	CVL_PUNTO
415	10066.4140	8809.5180	901.1720	MV	CVL_PUNTO
416	10085.8480	8807.8570	901.2380	EJE	CVL_PUNTO
417	10085.7810	8809.7870	901.1660	MV	CVL_PUNTO
418	10085.8450	8806.1670	901.1590	MV	CVL_PUNTO
419	10157.3150	8631.3190	902.4080	EJE	CVL_PUNTO
420	10104.9090	8808.3290	901.4380	EJE	CVL_PUNTO
421	10154.9620	8631.4150	902.3980	MV	CVL_PUNTO
422	10105.1260	8806.0360	901.4360	MV	CVL_PUNTO
423	10159.5900	8631.1850	902.3340	MV	CVL_PUNTO
424	10104.4660	8810.5210	901.3660	MV	CVL_PUNTO
425	10156.9400	8613.6880	902.1980	EJE	CVL_PUNTO
426	10124.5720	8808.6600	901.7100	EJE	CVL_PUNTO
427	10159.2130	8613.8820	902.1870	MV	CVL_PUNTO
428	10124.5600	8810.5480	901.6920	MV	CVL_PUNTO
429	10155.4360	8613.6310	902.1150	MV	CVL_PUNTO
430	10124.6030	8806.3550	901.6350	MV	CVL_PUNTO
431	10157.2650	8596.8740	902.2700	EJE	CVL_PUNTO
432	10159.2610	8597.0820	902.1990	MV	CVL_PUNTO
433	10155.5110	8596.9890	902.2720	MV	CVL_PUNTO
434	10144.6460	8808.1700	901.7430	EJE	CVL_PUNTO
435	10144.6490	8805.9730	901.7340	MV	CVL_PUNTO
436	10144.5290	8810.9720	901.7370	MV	CVL_PUNTO

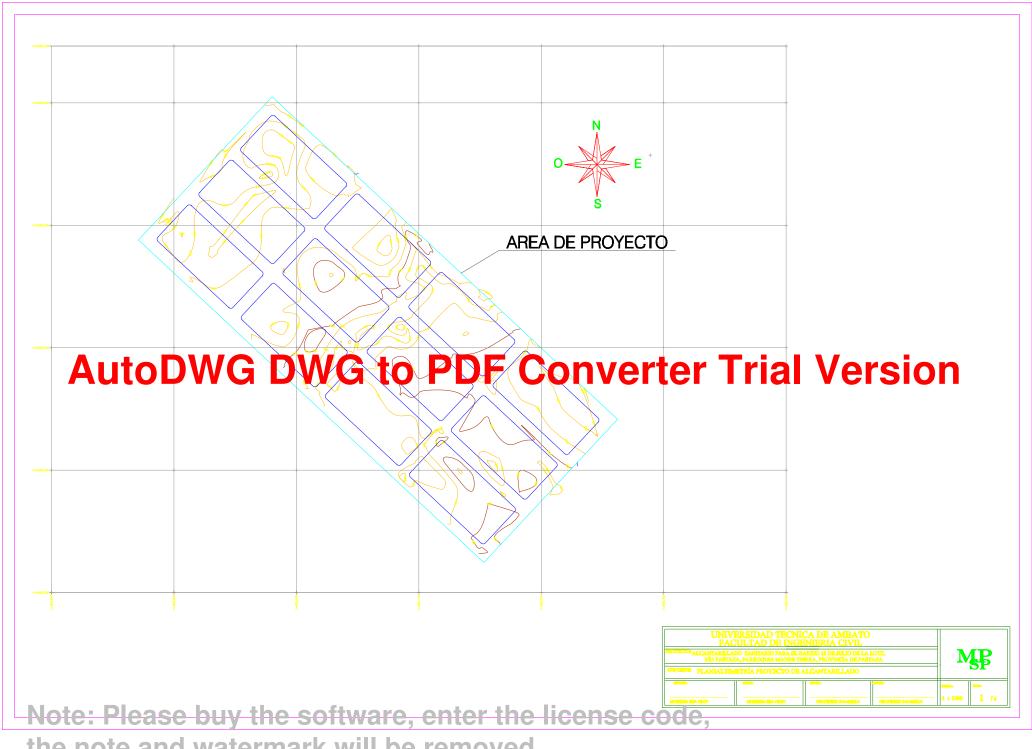
437	10137.0670	8725.1880	905.4070	CASA	CVL_PUNTO
438	10137.1110	8720.8780	904.7480	CASA	CVL_PUNTO
439	10131.1420	8720.7740	904.9000	CASA	CVL_PUNTO
440	10131.2890	8710.0270	905.1320	POSTE	CVL_PUNTO
441	10085.5800	8710.1770	908.9380	POSTE	CVL_PUNTO
442	10190.6720	8714.0700	901.9260	EJE	CVL_PUNTO
443	10190.5380	8715.6130	901.2540	MV	CVL_PUNTO
444	10190.9270	8712.3730	901.9850	MV	CVL_PUNTO
445	10171.1260	8713.5200	902.5710	EJE	CVL_PUNTO
446	10171.0250	8715.4240	902.5550	MV	CVL_PUNTO
447	10171.0580	8711.7370	902.5970	MV	CVL_PUNTO
448	10150.1650	8713.6720	902.5120	EJE	CVL_PUNTO
449	10149.9310	8711.5630	902.4180	MV	CVL_PUNTO
450	10149.0840	8716.6980	902.4030	MV	CVL_PUNTO
451	10128.3460	8713.6500	902.6340	EJE	CVL_PUNTO
452	10128.3650	8712.1050	902.5730	MV	CVL_PUNTO
453	10128.1570	8716.3760	902.5750	MV	CVL_PUNTO
454	10000.0830	8713.9790	902.8870	EJE	CVL_PUNTO
455	10107.7590	8714.0600	902.8250	EJE	CVL_PUNTO
456	9999.9100	8711.8470	902.8400	MV	CVL_PUNTO
457	10107.7870	8716.0370	902.7620	MV	CVL_PUNTO
458	10000.2650	8716.4350	902.8960	MV	CVL_PUNTO
459	10107.6570	8712.0030	902.7130	MV	CVL_PUNTO
460	10087.2150	8713.8030	902.7230	EJE	CVL_PUNTO
461	10019.4050	8714.2110	902.6340	EJE	CVL_PUNTO
462	10087.0880	8711.9660	902.6480	MV	CVL_PUNTO

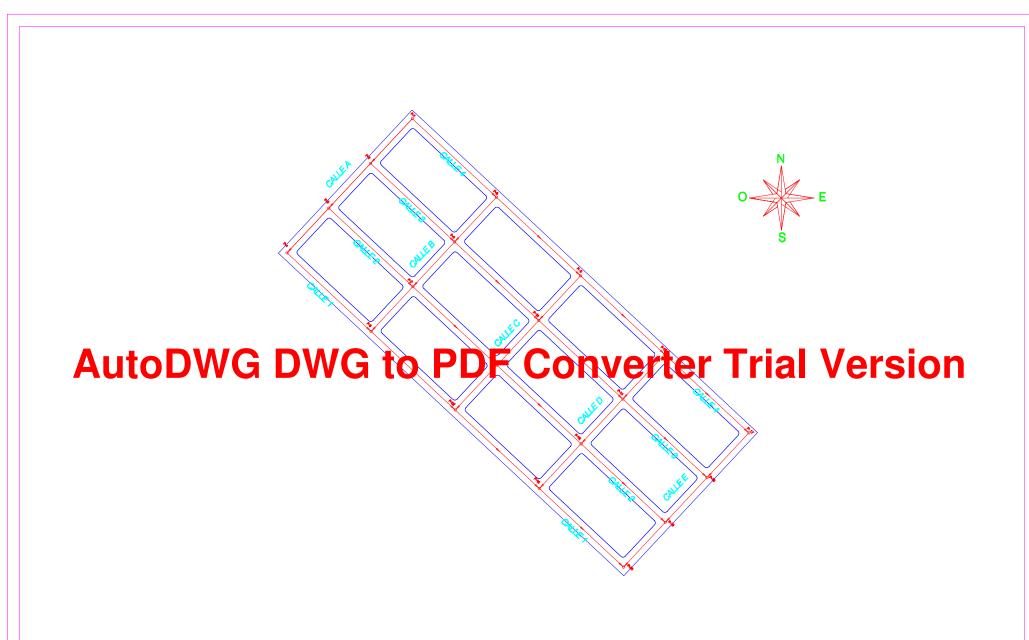
463	10019.7880	8712.4790	902.5760	MV	CVL_PUNTO
464	10086.9150	8715.6330	902.6680	MV	CVL_PUNTO
465	10019.5530	8716.2550	902.6220	MV	CVL_PUNTO
466	10067.0800	8714.0620	902.7570	EJE	CVL_PUNTO
467	10040.3790	8713.9700	902.6980	EJE	CVL_PUNTO
468	10066.9560	8715.8870	902.7090	MV	CVL_PUNTO
469	10040.4790	8715.4650	902.6350	MV	CVL_PUNTO
470	10067.0480	8712.2520	902.7410	MV	CVL_PUNTO
471	10040.7170	8712.2590	902.6380	MV	CVL_PUNTO
472	10062.6830	8725.8240	904.1870	CASA	CVL_PUNTO
473	10062.5910	8720.5330	904.8230	CASA	CVL_PUNTO
474	10077.7350	8720.6470	904.8950	CASA	CVL_PUNTO
475	10040.9590	8710.1630	904.4880	POSTE	CVL_PUNTO
476	10005.5530	8708.7490	904.9830	POSTE	CVL_PUNTO
477	10000.6840	8730.9790	902.6470	EJE	CVL_PUNTO
478	10002.5770	8731.0800	902.5500	MV	CVL_PUNTO
479	9998.8440	8731.1290	902.5940	MV	CVL_PUNTO
480	10000.9910	8712.3800	902.9300	EJE	CVL_PUNTO
481	10004.5660	8711.6480	902.8150	MV	CVL_PUNTO
482	9999.2360	8712.6700	902.8660	MV	CVL_PUNTO
483	10000.6970	8694.3670	902.9400	EJE	CVL_PUNTO
484	10002.1900	8694.3250	902.8650	MV	CVL_PUNTO
485	9999.3870	8694.5090	902.9210	MV	CVL_PUNTO
486	10000.7590	8676.6090	902.9310	EJE	CVL_PUNTO
487	10002.3220	8676.5030	902.9180	MV	CVL_PUNTO
488	9999.3170	8676.5530	902.8560	MV	CVL_PUNTO

489	10000.3680	8658.1040	903.1760	EJE	CVL_PUNTO
490	9999.0900	8658.1840	903.1700	MV	CVL_PUNTO
491	10002.0000	8658.0950	903.0420	MV	CVL_PUNTO
492	10000.1870	8639.8560	903.2370	EJE	CVL_PUNTO
493	9998.4760	8639.8000	903.2350	MV	CVL_PUNTO
494	10001.7080	8639.8430	903.1690	MV	CVL_PUNTO
495	10000.3720	8621.4330	903.2240	EJE	CVL_PUNTO
496	9997.9360	8621.0140	903.1610	MV	CVL_PUNTO
497	10002.4920	8621.6760	903.2360	MV	CVL_PUNTO
498	10000.5560	8713.7620	0.0000	EJE	CVL_PUNTO
499	10005.8570	8620.0610	903.2630	EJE	CVL_PUNTO
500	10006.4000	8617.3860	903.2120	MV	CVL_PUNTO
501	10006.9600	8622.4440	903.0950	MV	CVL_PUNTO
502	10024.3410	8619.8610	902.9660	EJE	CVL_PUNTO
503	10024.2980	8617.5280	902.6790	MV	CVL_PUNTO
504	10024.1920	8622.5590	902.9410	MV	CVL_PUNTO
505	10044.1990	8619.2630	902.7750	EJE	CVL_PUNTO
506	10044.2480	8617.5000	902.6240	MV	CVL_PUNTO
507	10044.3290	8621.4610	902.7480	MV	CVL_PUNTO
508	10061.7120	8619.4350	902.9910	MV	CVL_PUNTO
509	10061.7110	8617.2330	902.8410	MV	CVL_PUNTO
510	10061.9630	8622.0030	902.9060	MV	CVL_PUNTO
511	10081.8960	8619.2460	903.1900	EJE	CVL_PUNTO
512	10082.1000	8617.5320	903.1850	MV	CVL_PUNTO
513	10082.0930	8621.2810	903.1160	MV	CVL_PUNTO
514	10099.5570	8618.9120	903.0180	EJE	CVL_PUNTO

515	10099.6130	8617.0500	902.9520	MV	CVL_PUNTO
516	10099.4480	8621.3400	902.8300	MV	CVL_PUNTO
517	10119.5970	8619.2570	903.0020	EJE	CVL_PUNTO
518	10119.7460	8617.2450	902.9830	MV	CVL_PUNTO
519	10119.9170	8621.4710	902.9350	MV	CVL_PUNTO
520	10136.7960	8620.1700	902.9090	EJE	CVL_PUNTO
521	10136.8910	8618.1940	902.8460	MV	CVL_PUNTO
522	10136.7030	8622.4220	902.9640	MV	CVL_PUNTO
523	10156.7280	8620.2650	902.3680	EJE	CVL_PUNTO
524	10156.8440	8618.0620	902.3660	TOP	CVL_PUNTO
525	10157.1000	8622.2670	902.3330	TOP	CVL_PUNTO
526	10178.8350	8621.5560	902.1980	EJE	CVL_PUNTO
527	10178.9390	8619.7740	902.1980	MV	CVL_PUNTO
528	10178.6830	8622.5490	902.2670	MV	CVL_PUNTO
529	10040.1020	8993.8630	899.7770	TOP	CVL_PUNTO
530	10033.4560	8971.4490	899.9960	TOP	CVL_PUNTO
531	10023.0720	8989.5770	899.8010	TOP	CVL_PUNTO
532	10027.8950	8959.6580	900.0390	TOP	CVL_PUNTO
533	10006.2570	8988.1110	899.6900	TOP	CVL_PUNTO
534	10007.7120	9003.8520	899.6410	TOP	CVL_PUNTO
535	10057.5010	8982.8790	899.9990	TOP	CVL_PUNTO
536	10072.0010	8982.9700	899.8110	TOP	CVL_PUNTO
537	10086.7930	8980.3440	900.5500	TOP	CVL_PUNTO
538	10089.3840	8950.3490	899.8120	TOP	CVL_PUNTO
539	10059.8150	8951.3250	901.3240	TOP	CVL_PUNTO
540	10069.8660	8953.4220	900.1750	TOP	CVL_PUNTO

541	10058.4420	8947.4090	901.0660	TOP	CVL_PUNTO
542	10090.3550	8918.6070	899.9630	TOP	CVL_PUNTO
543	10036.9090	8935.6740	899.4060	TOP	CVL_PUNTO
544	10083.2420	8913.4750	899.7480	TOP	CVL_PUNTO
545	10061.1630	8913.3600	899.9760	TOP	CVL_PUNTO
546	10056.5390	8912.6020	900.1090	TOP	CVL_PUNTO
547	10063.0280	8929.7290	900.2440	TOP	CVL_PUNTO
548	10044.5270	8906.5490	899.8120	TOP	CVL_PUNTO
549	10033.5060	8910.9350	900.1220	TOP	CVL_PUNTO
550	10021.5790	8929.2080	901.1810	TOP	CVL_PUNTO
551	10021.0240	8907.6770	901.2550	TOP	CVL_PUNTO
552	10020.7520	8892.7210	900.3340	TOP	CVL_PUNTO
553	10013.8990	8879.3430	900.8100	TOP	CVL_PUNTO
554	10021.4350	8870.8490	900.8100	TOP	CVL_PUNTO
555	10041.4330	8880.6980	900.6480	TOP	CVL_PUNTO
556	10046.2210	8885.6100	900.1010	TOP	CVL_PUNTO
557	10038.0280	8821.6720	900.4750	TOP	CVL_PUNTO
558	10028.0890	8821.0030	900.5900	TOP	CVL_PUNTO
559	10026.2450	8838.4570	900.8460	TOP	CVL_PUNTO
560	10022.9230	8811.7940	901.2090	TOP	CVL_PUNTO
561	10042.2710	8811.0380	900.4920	TOP	CVL_PUNTO
562	10040.7980	8795.3140	900.8270	TOP	CVL_PUNTO
563	10035.9620	8795.1770	901.0350	TOP	CVL_PUNTO
564	10023.8090	8787.8490	901.6590	TOP	CVL_PUNTO
565	10036.5630	8766.6920	901.9970	TOP	CVL_PUNTO
566	10028.6820	8665.9080	903.5730	TOP	CVL_PUNTO


566	10029.5420	8776.1970	902.4100	TOP	CVL_PUNTO
567	10017.7110	8774.6090	901.8860	TOP	CVL_PUNTO
568	10045.6490	8753.1220	902.3640	TOP	CVL_PUNTO
569	10023.7750	8623.3010	903.7030	TOP	CVL_PUNTO
569	10024.6350	8733.5900	902.5400	TOP	CVL_PUNTO
570	10022.4770	8638.5930	904.4740	TOP	CVL_PUNTO
570	10023.3370	8748.8820	903.3110	TOP	CVL_PUNTO
571	10060.5730	8799.3580	900.9450	TOP	CVL_PUNTO
572	10082.5590	8750.0250	904.4320	TOP	CVL_PUNTO
572	10085.0260	8644.6570	906.6670	TOP	CVL_PUNTO
572	10085.3960	8662.0390	906.7620	TOP	CVL_PUNTO
572	10086.2370	8677.9170	904.8860	TOP	CVL_PUNTO
572	10108.3380	8640.2430	905.2440	TOP	CVL_PUNTO
572	10108.7080	8657.6250	905.3390	TOP	CVL_PUNTO
572	10109.5490	8673.5030	903.4630	TOP	CVL_PUNTO
572	10131.6500	8635.8290	903.8210	TOP	CVL_PUNTO
572	10132.0200	8653.2110	903.9160	TOP	CVL_PUNTO
573	10057.8660	8788.8840	901.1510	TOP	CVL_PUNTO
574	10079.3870	8783.3170	902.0470	TOP	CVL_PUNTO
575	10072.9180	8801.2680	900.9530	TOP	CVL_PUNTO
576	10066.4390	8814.6780	901.0390	TOP	CVL_PUNTO
577	10067.7810	8829.6990	900.0970	TOP	CVL_PUNTO
578	10062.9660	8863.0900	899.9630	TOP	CVL_PUNTO
579	10066.4270	8835.4150	899.8710	TOP	CVL_PUNTO
580	10080.1410	8841.4010	900.0520	TOP	CVL_PUNTO
581	10085.2950	8831.6580	901.2200	TOP	CVL_PUNTO


582	10078.6680	8812.9720	901.0960	TOP	CVL_PUNTO
583	10091.1270	8820.8890	900.1240	TOP	CVL_PUNTO
584	10093.3680	8785.2300	902.4430	TOP	CVL_PUNTO
585	10097.4720	8776.2340	902.1990	TOP	CVL_PUNTO
586	10086.8830	8769.4250	902.4850	TOP	CVL_PUNTO
587	10111.8830	8794.7130	902.1160	TOP	CVL_PUNTO
588	10114.7640	8776.3290	902.9690	TOP	CVL_PUNTO
589	10128.7340	8769.8290	903.7970	TOP	CVL_PUNTO
590	10126.4800	8799.2100	901.0800	TOP	CVL_PUNTO
591	10133.5820	8804.5490	900.5500	TOP	CVL_PUNTO
592	10120.1540	8785.5430	903.7960	CASA	CVL_PUNTO
593	10119.8650	8792.4620	904.1100	CASA	CVL_PUNTO
594	10125.5990	8792.9260	903.4130	CASA	CVL_PUNTO
595	10115.3250	8812.8160	901.5090	CASA	CVL_PUNTO
596	10118.4250	8820.2050	901.1890	CASA	CVL_PUNTO
597	10114.1880	8830.9940	900.1270	CASA	CVL_PUNTO
598	10116.9190	8859.7770	900.1490	CASA	CVL_PUNTO
599	10126.5850	8851.6730	900.2230	CASA	CVL_PUNTO
599	10132.8610	8669.0890	902.0400	CASA	CVL_PUNTO
600	10135.5750	8824.2210	902.3770	CASA	CVL_PUNTO
601	10142.3680	8814.6290	901.9760	CASA	CVL_PUNTO
602	10131.3160	8861.4830	900.1870	TOP	CVL_PUNTO
602	10137.5920	8678.8990	902.0040	TOP	CVL_PUNTO
603	10122.8910	8858.7290	900.0070	TOP	CVL_PUNTO
604	10121.9760	8861.8060	900.5630	TOP	CVL_PUNTO
605	10135.7780	8824.1020	900.8000	TOP	CVL_PUNTO

606	10142.6480	8828.7350	900.7780	TOP	CVL_PUNTO
607	10143.1800	8776.0530	902.5660	TOP	CVL_PUNTO
608	10146.3460	8774.7230	901.5060	TOP	CVL_PUNTO
609	10148.5760	8754.5170	903.3290	TOP	CVL_PUNTO
610	10144.9910	8786.8140	901.4570	TOP	CVL_PUNTO
611	10185.0910	8815.8220	901.6410	TOP	CVL_PUNTO
612	10165.3320	8815.9520	902.9740	TOP	CVL_PUNTO
613	10157.9040	8824.9230	901.5420	TOP	CVL_PUNTO
614	10157.2100	8841.5860	901.4320	TOP	CVL_PUNTO
615	10153.8560	8851.6440	901.7670	TOP	CVL_PUNTO
616	10184.2780	8799.5320	901.6650	TOP	CVL_PUNTO
617	10158.8740	8837.3310	902.1040	TOP	CVL_PUNTO
A1	10000.0000	9000.0000	900.0000	EST	CVL_PUNTO
A10	10053.1630	8807.8350	901.0650	EST	CVL_PUNTO
A11	10157.6900	8716.1530	902.6350	EST	CVL_PUNTO
A12	10003.0050	8620.0560	903.2640	EST	CVL_PUNTO
A2	10044.5620	9002.6310	900.2070	EST	CVL_PUNTO
A3	10000.5560	8713.7540	902.9600	EST	CVL_PUNTO
A4	10096.7950	8997.2160	900.1780	EST	CVL_PUNTO
A5	10050.1410	8903.2870	900.7240	EST	CVL_PUNTO
A6	10098.4260	8900.6300	899.7640	EST	CVL_PUNTO
A7	10149.3140	8902.9250	899.6570	EST	CVL_PUNTO
A8	10153.1350	8808.1680	901.8530	EST	CVL_PUNTO
A9	10102.0620	8808.5150	901.4560	EST	CVL_PUNTO

ANEXO C

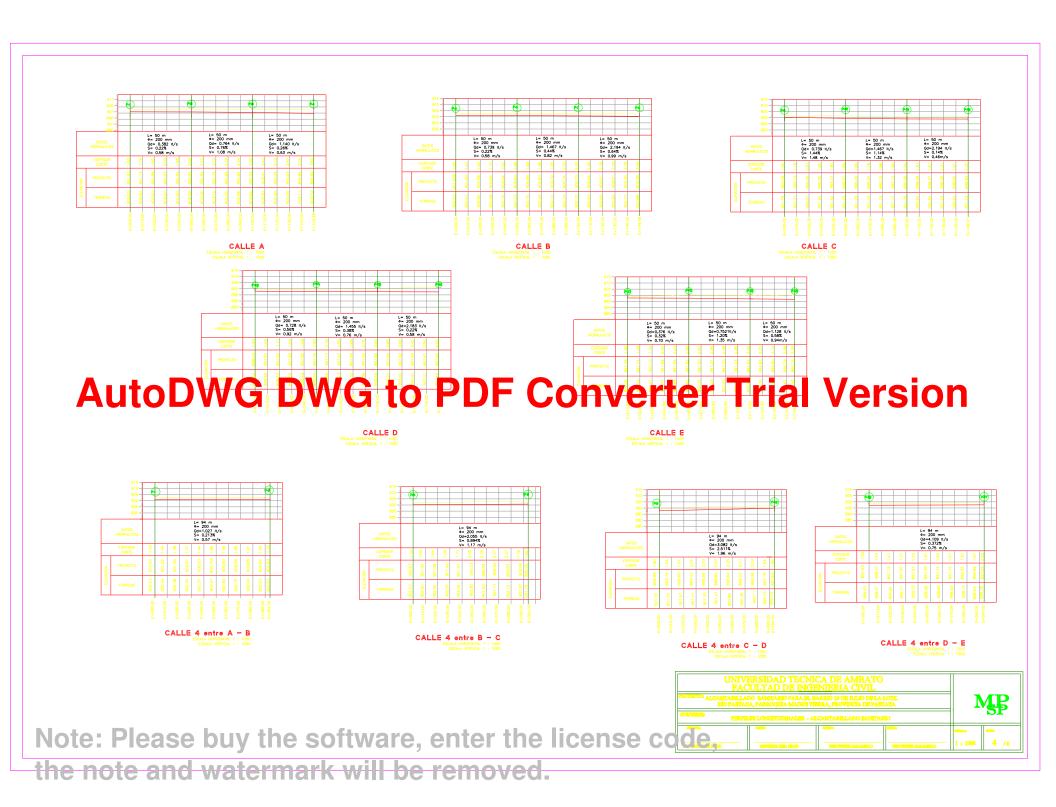
Planos

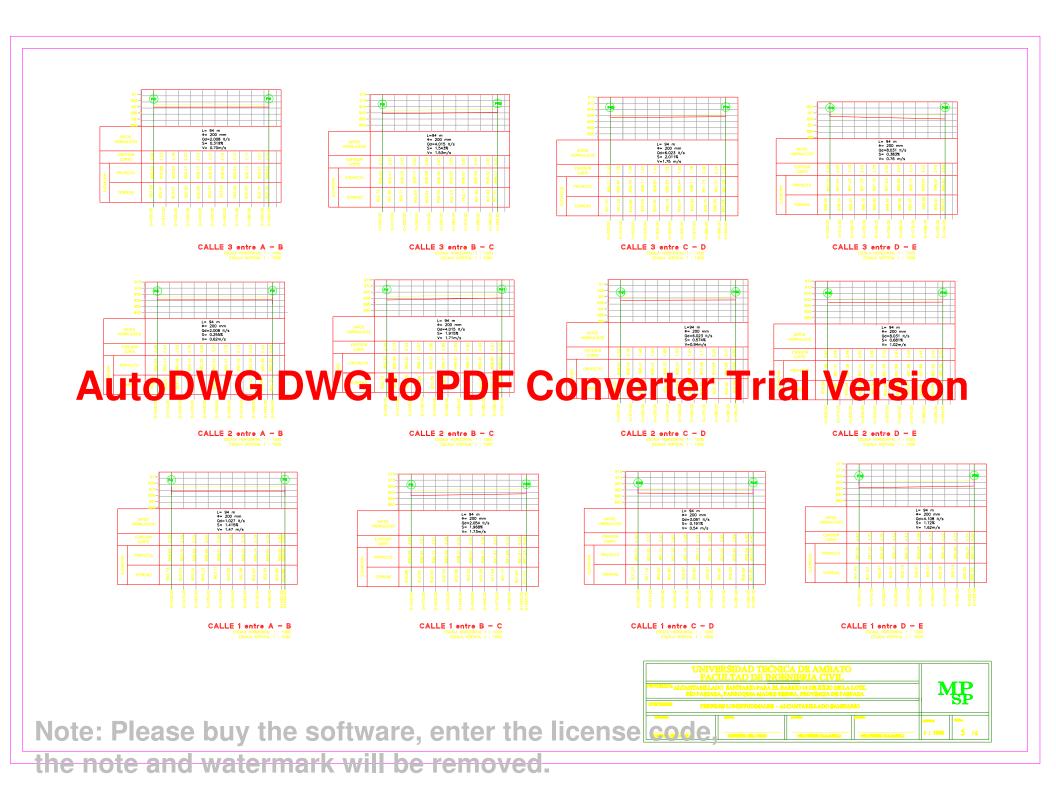
Note: Please buy the software, enter the license

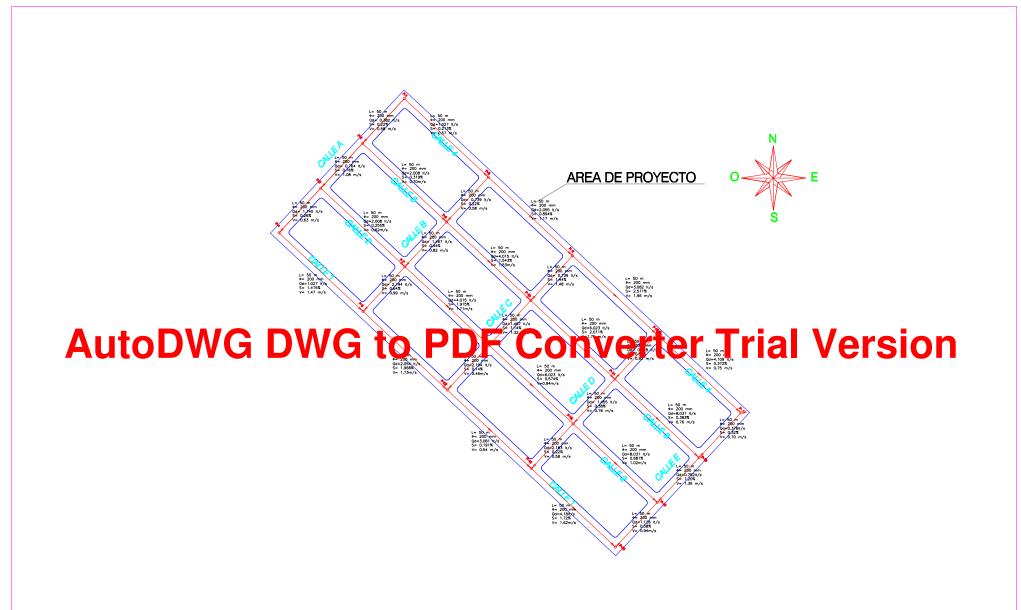
PROTECTO: ALCANTA	UNIVERSIDAD TECNICA DE AMBATO FACULTAD DE INGENIERIA CIVIL PROTECIO ALGANTARILADO SANTARIO PARA EL BARRIO 18 DE JULIO DE LA LOTZ. RÍO PASTAZA, PARROQUIA MADRE TURRA, PROVINCIA DE PASTAZA.				
CONTENE		ION DE POZOS.			SP
code	MONETA MARKED	PEDERICO PRANTEO	PROFILED ADMITTO	1 ± 1000	2 /6

UNIVERSIDAD TECNICA DE AMBATO
FACULTAD DE INGENIERIA CIVIL

FROVENS: ALCANYABILADO SANITARIO PARA ALE BARRO I SI DE RUZIO DE LA LOTZ.
RÍO PARTAZA, PARROQUIA MADRE TERRA, PROVENTA DE PARTAZA

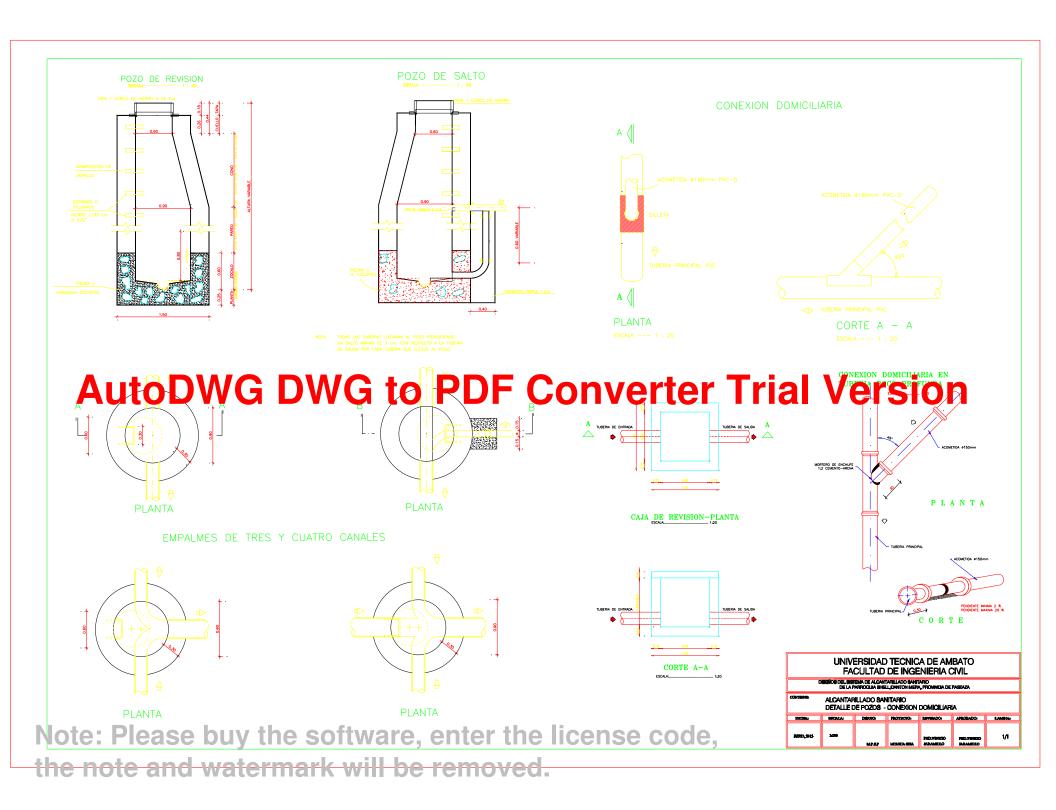

CONTRODE

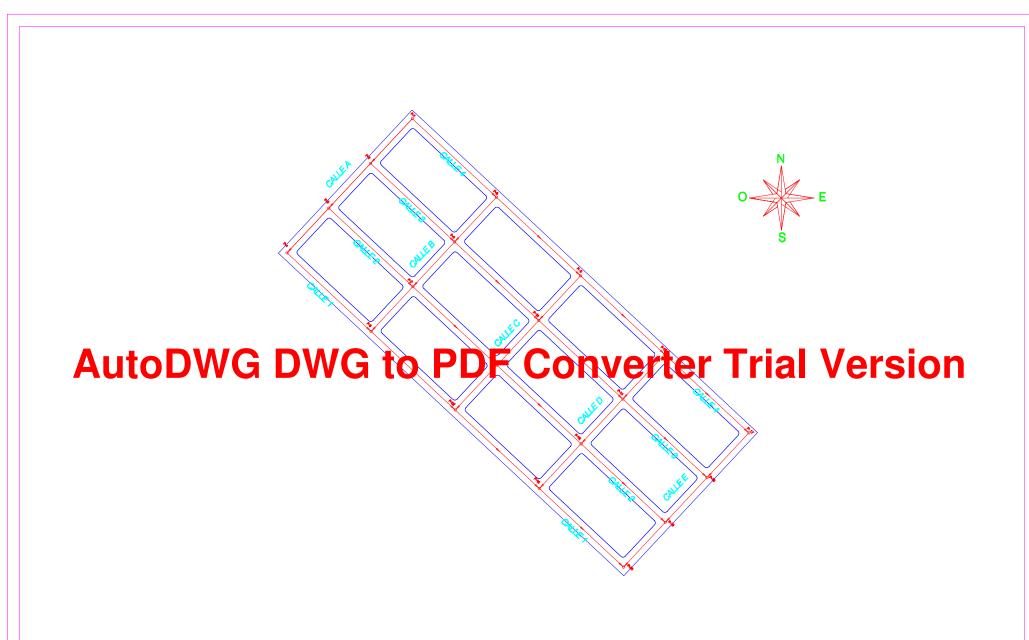

AREAS DE AFORTACION.


TOTAL

MUNICIO SERVICIO SERVICIO

Note: Please buy the software, enter the license code,





Note: Please buy the software, enter the license code.

MP

Note: Please buy the software, enter the license

UNIVERSIDAD TECNICA DE AMBATO FACULTAD DE INGENIERIA CIVIL PROTECIO: ALCATARELADO SANITAREO PARA EL BARRÍO IS DE JUEZO DE LA LOTZ. RÍO PAGINZA, PARROQUA MADES TUBERA, PROVONÇA DE PAGINZA.				MP	
CONTENE: DISTRIBUCIÓN DE PÓZÓS.					
code	MONTEDA STARTED	PEDERICO PRANTEO	PROFILED ADMITTO	1 ± 1000	2 /6

UNIVERSIDAD TECNICA DE AMBATO
FACULTAD DE INGENIERIA CIVIL

FROVENS: ALCANYABILADO SANITARIO PARA ALE BARRO I SI DE RUZIO DE LA LOTZ.
RÍO PARTAZA, PARROQUIA MADRE TERRA, PROVENTA DE PARTAZA

CONTRODE

AREAS DE AFORTACION.

TOTAL

MUNICIO SERVICIO SERVICIO

Note: Please buy the software, enter the license code,