

UNIVERSIDAD TECNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL

CENTRO DE ESTUDIOS DE POSGRADO

MAESTRÍA EN REDES Y TELECOMUNICACIONES (II Edición)

Tema:

"ALGORITMOS DE CALIDAD DE SERVICIO (Q₀S) Y LA CONGESTIÓN EN LOS ENLACES DE COMUNICACIÓN DE LOS USUARIOS DE LA EMPRESA UNIPLEX SYSTEMS DE LA CIUDAD DE QUITO "

TESIS DE GRADO

Previa a la obtención del Título de Magister en Redes y Telecomunicaciones

Nombre del Autor: Ing. Diego Mauricio Llerena Delgado

Nombre del Director: Ing. M.Sc. David Guevara

Ambato - Ecuador

2011

El Comité de defensa de la Tesis de Grado. "ALGORITMOS DE CALIDAD DE SERVICIO (QoS) Y LA CONGESTIÓN EN LOS ENLACES DE COMUNICACIÓN DE LOS USUARIOS DE LA EMPRESA UNIPLEX SYSTEMS DE LA CIUDAD DE QUITO", presentada por: Ing. Diego Mauricio Llerena Delgado y conformada por: Ing. M.Sc. Teresa Freire, Ing. M.Sc. Galo López, Ing. M.Sc. Clay Aldás, Miembros del Tribunal de Defensa, Ing. M.Sc. David Guevara, Director de Tesis de Grado y presidido por: Ing. M.Sc. Oswaldo Paredes Presidente del Tribunal de Defensa; Ing. M.Sc. Luis Anda Torres Director (e) del CEPOS – UTA, una vez escuchada la defensa oral y revisada la Tesis de Grado escrita en la cual se ha constatado el cumplimiento de las observaciones realizadas por el Tribunal de Defensa de la Tesis, remite la presente Tesis para uso y custodia en las Bibliotecas de la UTA.

Ing. M.Sc. Oswaldo Paredes Presidente del Tribunal de Defensa	Ing. M.Sc. Luis Anda Torres DIRECTOR (e) CEPOS
	Ing. M.Sc. David Guevara Director de Tesis
	Ing. M.Sc. Teresa Freire Miembro del Tribunal
	Ing. M.Sc. Galo López Miembro del Tribunal
	Ing. M.Sc. Clay Aldas Miembro del Tribunal

AUTORÍA DE LA INVESTIGACIÓN

La responsabilidad de las opiniones, comentarios y críticas emitidas en el trabajo

de investigación con el tema: "ALGORITMOS DE CALIDAD DE SERVICIO

(QoS) Y LA CONGESTIÓN EN LOS ENLACES DE COMUNICACIÓN DE

LOS USUARIOS DE LA EMPRESA UNIPLEX SYSTEMS DE LA CIUDAD

DE QUITO", nos corresponde exclusivamente a Ing. Diego Mauricio Llerena

Delgado Autor y del Ing. M.Sc. David Guevara, Director de la Tesis de Grado; y

el patrimonio intelectual de la misma a la Universidad Técnica de Ambato.

Ing. Diego M. Llerena D.

Autor

Ing. M.Sc. David Guevara

Director de Tesis

- iii -

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que haga de esta tesis o parte

de ella un documento disponible para su lectura, consulta y procesos de

investigación, según las normas de la Institución.

Cedo los Derechos en línea patrimoniales de mi tesis, con fines de difusión

pública, además apruebo la reproducción de esta tesis, dentro de las regulaciones

de la Universidad, siempre y cuando esta reproducción no suponga una ganancia

económica y se realice respetando mis derechos de autor.

Ing. Diego Mauricio Llerena Delgado

- iv -

DEDICATORIA

El presente trabajo se lo dedico a mis padres y hermanos que siempre me están apoyando y ayudando a alcanzar todos mis metas y a mis abuelitos que desde el cielo me dan sus bendiciones.

Diego Llerena

AGRADECIMIENTO

Un agradecimiento especial a David mi Director de tesis por su constante ayuda y apoyo, a la FISEI y a todas las personas que de una u otra manera me han ayudado a cumplir esta meta.

Diego Llerena

ÍNDICE GENERAL

PORTADA	i
AUTORÍA DE LA INVESTIGACIÓN	iii
DERECHOS DE AUTOR	
DEDICATORIA	v
AGRADECIMIENTO	vi
ÍNDICE GENERAL	vii
ÍNDICE DE FIGURAS	X
ÍNDICE DE TABLAS	
RESUMEN	
INTRODUCCIÓN	2
CAPÍTULO I	
EL PROBLEMA	4
Planteamiento del Problema	4
Contextualización	4
Árbol de Problemas	5
Análisis Crítico	7
Prognosis	7
Formulación del Problema	8
Interrogantes de la Investigación	8
Delimitación de la Investigación	
Justificación	
Objetivos	10
Objetivo General	10
Objetivos Específicos:	10
CĂPÍTULO II	11
MARCO TEÓRICO	11
Antecedentes de Investigación	11
Fundamentaciones	11
Fundamentación Científico técnica	11
Fundamentación Legal	12
Organizador Lógico de Variables	13
Categorías de la Variable Independiente	14
CALIDAD DE SERVICIO	14
QoS, CoS y ToS	
ALGORITMOS DE QoS	16
Categorías de la Variable Dependiente	25
REDES DE DATOS	25
MEDIOS DE TRANSMISIÓN	27
ENLACES DE TRANSMISIÓN DE DATOS	30
Hipótesis o Pregunta Directriz	32
Señalamiento de Variables	

CAPÍTULO III	33
METODOLOGÍA	
Enfoque	
Modalidad de Investigación	33
Niveles o Tipos	33
Población y Muestra	
Operacionalización de Variables	35
Variable Independiente:	35
Variable Dependiente:	37
Técnicas e Instrumentos	
Plan para Recolección de la Información	38
Plan para el Procesamiento de la Información	38
CAPÍTULO IV	
ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	39
Verificación de la Hipótesis	61
CAPÍTULO V	66
CONCLUSIONES Y RECOMENDACIONES	66
Conclusiones	66
Recomendaciones	67
CAPÍTULO VI	68
LA PROPUESTA	68
Datos Informativos	68
Antecedentes de la Propuesta	68
Estado del arte	
Justificación	70
Objetivos	71
Objetivo General	
Objetivos Específicos	71
Análisis de Factibilidad	72
Fundamentación	72
Metodología	91
Modelo Operativo	92
Plan de Acción	129
Conclusiones y Recomendaciones	133
Conclusiones	
Recomendaciones	134
BIBLIOGRAFÍA	135
GLOSARIO DE TÉRMINOS	138
ANEXOS	
Anexo 1	145
Referencias de recomendaciones ITU-T Series E	145
Anexo 2	
Encuesta a Ingenieros administradores de redes y aplicaciones	
Anexo 3	
Formato de cuaderno de notas	
Anexo 4	
Formato de Ficha bibliográfica	
Anexo 5	1.50

Distribución Ji cuadrado x ²	153
Anexo 6	
Data sheet NetEnforcer AC-400 Series	
Anexo 7	159
Data Sheet NetXplorer	159

ÍNDICE DE FIGURAS

Figura N° 1.1. Relación Causa – Efecto	6
Figura N° 2.1. Inclusiones Conceptuales	13
Figura N° 2.2. Campos de los estándares 802.1p/Q	15
Figura N° 2.3. Campo ToS en IPv4	
Figura N° 2.4. Representación gráfica relación QoS y aplicaciones	18
Figura N° 2.5. Ejemplo de visualización de QoS implícita y explícita	19
Figura N° 2.6. Espectro de la Calidad de Servicio	
Figura N° 2.7. Prioridades básicas de servicio	
Figura N° 2.8. Encolado de servicio	
Figura N° 2.9. Diagrama de un enlace de datos	
Figura N° 4.1. Algoritmos de Calidad de servicio	
Figura N° 4.2. Reglas de transmisión de voz	40
Figura N° 4.3. Reglas de transmisión de video	41
Figura N° 4.4. Reglas de transmisión de archivos (Datos)	42
Figura N° 4.5. Discriminación de aplicaciones críticas.	
Figura N° 4.6. Porcentaje de Aprovechamiento	44
Figura N° 4.7. Priorización de tráfico de aplicaciones de voz	45
Figura N° 4.8. Priorización de tráfico de aplicaciones de video	46
Figura N° 4.9. Priorización de tráfico de aplicaciones Real Time	47
Figura N° 4.10. Eficiencia de transmisión de aplicaciones	48
Figura N° 4.11. Seguridad de la transmisión de datos	49
Figura N° 4.12. Buena calidad y continuidad del servicio Chat Corporativo	50
Figura N° 4.13. Buena calidad y continuidad del servicio de VoIp	51
Figura N° 4.14. Buena calidad y continuidad de Videoconferencia	52
Figura N° 4.15. Satisfacción de los usuarios	53
Figura N° 4.16. Garantía de transmisión de aplicaciones con Algoritmo de QoS	54
Figura N° 4.17. Optimización, eficiencia y confiabilidad de la transferencia	de
datos	55
Figura N° 4.18. Problemas de transmisión de aplicaciones de voz	56
Figura N° 4.19. Problemas de transmisión de bases de datos	57
Figura N° 4.20. Problemas de transmisión de videoconferencia	58
Figura N° 4.21. Incremento de Ancho de banda por proveedor	59
Figura N° 4.22. QoS aplicado por el proveedor de servicios	60
Figura N° 4.23. Sistema de administración de Ancho de Banda	61
Figura Nº 4.24. Curva de Ji Cuadrado para comprobación de hipótesis	64
Figura N° 6.1. Estado del Arte, saturación de canal de 4 Mbps	69
Figura N° 6.2. Estado del arte, Saturación de canal de 2 Mbps	69
Figura N° 6.3. Estado del arte, saturación de canal de 128 Kbps	
Figura N° 6.4. Entendimiento y control de la red	73
Figura N° 6.5. DPI examina las capas 4-7 del modelo OSI	
Figura N° 6.6. Mirando profundamente dentro de los paquetes	75

Figura N° 6.7. Desde tuberías tontas a tuberías con contenido inteligente	76
Figura N° 6.8. Optimización inteligente de servicios IP	77
Figura N° 6.9. Problema en enlace WAN	
Figura N° 6.10. Optimización de tráfico para acceso WAN	78
Figura N° 6.11. Congestión en Internet	
Figura N° 6.12. Optimización de tráfico para acceso al Internet	
Figura N° 6.13. Propuesta de Allot para las empresas	
Figura N° 6.14. Lineas, Tubos y Canales virtuales	
Figura N° 6.15. Ejemplo de Estructura de políticas empresariales	
Figura N° 6.16. Políticas, reglas y Catálogos.	
Figura N° 6.17. Ejemplo de reglas.	
Figura N° 6.18. Tabla de políticas en el NetExplorer	
Figura N° 6.19. Arquitectura NetXplorer	
Figura N° 6.20. Diagrama Esquemático del flujo de datos	
Figura N° 6.21. NetEnforcer	
Figura N° 6.22. Ubicación del NetEnforcer	89
Figura N° 6.23. Netenforcer en Relación al Firewall	
Figura N° 6.24. Cliente 1 - Diagrama de red	
Figura N° 6.25. Cliente 1 - Políticas aplicadas	
Figura N° 6.26. Cliente 1 - Tuberías más activas	
Figura N° 6.27. Cliente 1 – Usuarios más activos de agencia 21	
Figura N° 6.28. Cliente 1 – Ancho de banda por líneas	
Figura N° 6.29. Cliente 1 – Conversaciones del line Sucursales Datos	96
Figura N° 6.30. Cliente 1 – Protocolos más usados en la agencia 21	96
Figura N° 6.31. Cliente 1 – Estadística de ancho de banda	97
Figura N° 6.32. Cliente 1 – Protocolos más utilizados durante el día	97
Figura N° 6.33. Cliente 1 – Conversaciones que usan SMB	98
Figura N° 6.34. Cliente 1 – Limitación de SMB en agencia 21	
Figura N° 6.35. Cliente 1 – Distribución de ancho de banda por agencias	
Figura N° 6.36. Cliente 1 – Vista favorita	
Figura N° 6.37. Cliente 1 – Protocolos más utilizados en la línea sucursales da	
1	
Figura N° 6.38. Cliente 1 – Conversaciones de SMB de línea Sucursales - Da	
Figura N° 6.39. Cliente 1 – Conversaciones de Lotus-Notes	
Figura Nº 6.40. Cliente 1 – Protocolos de la agencia 21	
Figura Nº 6.41. Cliente 1 – Vista Favorita	
Figura Nº 6.42. Cliente 1 – Protocolos más utilizados	
Figura N° 6.43. Cliente 1 – Conversaciones más activas que usan Lotus-Notes 1	
Figura N° 6.44. Cliente 1 – Ancho de banda usado para Internet	
Figura N° 6.45. Cliente 1 – Protocolos usados en Internet	
Figura N° 6.46. Cliente 1 – Sucursales con mayor consumo de AB 1	
Figura N° 6.47. Cliente 1 – Protocolos más activos	
Figura N° 6.48. Cliente 1 – Consumo de Ancho de Banda	
Figura N° 6.49. Cliente 1 – Conversaciones de SMB 1	
Figura N° 6.50. Cliente 1 – Estadística de AB de agencia Cuenca 1	.06
Figura N° 6.51. Cliente 1 – Protocolos de Voz	
Figura N° 6.52. Cliente 1 – Agencias con mayor tráfico	

Figura N° 6.53. Cliente 1 – Distribución de protocolos segmentado por uso	
Figura N° 6.54. Cliente 1 – Protocolos más activos	
Figura N° 6.55. Cliente 1 – Conversaciones más activas de SMB	109
Figura N° 6.56. Cliente 1 – Distribución de Usuarios segmentados por prot	
Figura N° 6.57. Cliente 1 –AB de aplicaciones de voz Agencia 21	
Figura N° 6.58. Cliente 1 – AB de las agencias	
Figura N° 6.59. Cliente 1 – Conversaciones HTTP con los servidores WEB	
Figura N° 6.60. Cliente 1 – Conversaciones LOTUS-NOTES con el servido:	
Tigura IV 61601 Cheme I Conversaciones Eciles IV 6125 con el services	
Figura N° 6.61. Cliente 1 – Conversaciones de SSL.	
Figura N° 6.62. Cliente 1 – Conversaciones del servidor serverapp	
Figura N° 6.63. Cliente 1 – Distribución de AB de los proxy servers	
Figura N° 6.64. Cliente 1 – AB usado por aplicaciones de voz	
Figura N° 6.65. Cliente 1 – Aplicaciones más usadas	
Figura N° 6.66. Cliente 1 – Conversaciones HTTP con el servidor spqm-ipsy	
Figura N° 6.67. Cliente 1 – Conversaciones del servidor Lotus	
Figura N° 6.68. Cliente 1 – Comportamiento de Internet	
Figura N° 6.69. Cliente 1 - Tuberías más activas de la línea de datos	
Figura N° 6.70. Cliente 1 – AB de las sucursales 1	
Figura N° 6.71. Cliente 1 – AB de las sucursales 2	
Figura N° 6.72. Cliente 1 – Aplicaciones más activas	
Figura N° 6.73. Cliente 1 – Uso de Internet	
Figura N° 6.74. Cliente 1 – Valores de tuberías más activas	118
Figura N° 6.75. Cliente 1 – Tabla de políticas con QoS	
Figura N° 6.76. Cliente 1 – Canales virtuales de la agencia 21	
Figura N° 6.77. Cliente 1 – Canales virtuales de la agencia Ambato	120
Figura N° 6.78. Cliente 1 – Canales virtuales de la agencia cuenca	121
Figura N° 6.79. Cliente 1 – Canales virtuales de la agencia Esmeraldas	121
Figura N° 6.80. Cliente 1 – Canales virtuales de Cambio Internacional	122
Figura N° 6.81. Cliente 1 – Protocolos más activos aplicado QoS	122
Figura N° 6.82. Cliente 1 – Canales virtuales de la agencia 1	123
Figura N° 6.83. Cliente 1 – Aplicaciones con QoS de Agencia 21	123
Figura N° 6.84. Cliente 1 – Aplicaciones con QoS de agencia Ambato	124
Figura N° 6.85. Cliente 1 – Aplicaciones con QoS de Cambio internacional	124
Figura N° 6.86. Cliente 1 – Aplicaciones con QoS agencia Cuenca	
Figura N° 6.87. Cliente 1 – Limitación de FTP	126
Figura N° 6.88. Cliente 1 – FTP con limitación de througthput	
Figura N° 6.89. Cliente 1 – Limite de tráfico FTP	
Figura N° 6.90. Cliente 1 – Tráfico FTP limitado a 40kbps	
Figura N° 6.91. Cliente 1 – Estadística de Ab de tráfico FTP.	127

ÍNDICE DE TABLAS

Tabla N° 3.1. Población y muestra	34
Tabla N° 3.2. Algoritmos de Calidad de Servicio (QoS)	36
Tabla N° 3.3. Enlaces de transmisión de datos	
Tabla N° 4.1. Algoritmos de Calidad de servicio	39
Tabla N° 4.2. Reglas de transmisión de voz	
Tabla N° 4.3. Reglas de transmisión de video	
Tabla N° 4.4. Reglas de transmisión de archivos (Datos)	
Tabla N° 4.5. Discriminación de aplicaciones críticas	
Tabla N° 4.6. Discriminación de aplicaciones no críticas	
Tabla N° 4.7. Priorización de tráfico de aplicaciones de voz	
Tabla N° 4.8. Priorización de tráfico de aplicaciones de video	45
Tabla N° 4.9. Priorización de tráfico de aplicaciones Real Time	
Tabla N° 4.10. Eficiencia de transmisión de datos	
Tabla N° 4.11. Seguridad de la transmisión de datos	48
Tabla N° 4.12. Buena calidad y continuidad del servicio Chat Corporativo	49
Tabla N° 4.13. Buena calidad y continuidad del servicio de VoIp	50
Tabla N° 4.14. Buena calidad y continuidad de Videoconferencia	51
Tabla N° 4.15. Satisfacción de los usuarios	52
Tabla N° 4.16. Garantía de transmisión de aplicaciones con Algoritmo de QoS.	53
Tabla N° 4.17. Optimización, eficiencia y confiabilidad de la transferencia	
datos	54
Tabla N° 4.18. Problemas de transmisión de aplicaciones de voz	55
Tabla N° 4.19. Problemas de transmisión de bases de datos	56
Tabla N° 4.20. Problemas de transmisión de videoconferencia	57
Tabla N° 4.21. Incremento de Ancho de banda por proveedor	58
Tabla N° 4.22. QoS aplicado por el proveedor de servicios	
Tabla N° 4.23. Sistema de administración de Ancho de Banda	
Tabla N° 4.24. Comprobación de hipótesis: Algoritmos de QoS	63
Tabla N° 4.25. Comprobación de hipótesis: mejoramiento de transmisión de da	
en enlaces de comunicación.	63
Tabla Nº 4.26. Frecuencias Observadas	63
Tabla Nº 4.27. Frecuencias Esperadas	64
Tabla Nº 4.28. Calculo de Ji Cuadrado	64
Tabla N° 6.1. Problemas en enlaces WAN	. 77
Tabla N° 6.2. Optimización de tráfico para acceso WAN	. 78
Tabla N° 6.3. Problema de congestión en Internet	. 79
Tabla N° 6.4. Optimización de tráfico para acceso al Internet	. 80
Tabla N° 6.5. Antes y Después de Allot	81
Tabla N° 6.6. Cliente 2 – Anchos de banda antes y después de QoS	128
Tabla N° 6.7. Cliente 3 – Anchos de banda antes y después de QoS	129
Tabla N° 6.8. Porcentajes mínimos de Ancho de Banda	

Tabla N° 6.9. Porcentajes máximos de Ancho de Banda	130
Tabla N° 6.10. Políticas de Calidad de servicio implementadas	131

UNIVERSIDAD TÉCNICA DE AMBATO CENTRO DE ESTUDIOS DE POSGRADO

MAESTRÍA EN REDES Y TELECOMUNICACIONES (II Versión)

"ALGORITMOS DE CALIDAD DE **SERVICIO** (QoS)LA

CONGESTIÓN EN LOS ENLACES DE COMUNICACIÓN DE LOS

USUARIOS DE LA EMPRESA UNIPLEX SYSTEMS DE LA CIUDAD DE

QUITO"

Autor: Llerena Delgado Diego Mauricio

Tutor: Ing., Guevara David, M.Sc.

RESUMEN

La investigación sobre "Algoritmos De Calidad De Servicio (QoS) Y La

Congestión En Los Enlaces De Comunicación De Los Usuarios De La Empresa

Uniplex Systems De La Ciudad De Quito", tiene como objetivo general

determinar la influencia de los algoritmos de Calidad de Servicio en los problemas

de congestión de enlaces de datos de los usuarios de la Empresa Uniplex Systems

de la ciudad de Quito.

El problema de congestión en los enlaces de internet y de datos hacia

sucursales es muy común en estos días ya que las aplicaciones que se utilizan

sobre estos consumen todo el ancho de banda de estos enlaces por lo tanto es

necesario utilizar los algoritmos de calidad de servicio para que ayuden a

controlar el uso del ancho de banda y permitir que los datos de todas las

aplicaciones importantes sean transmitidos óptimamente.

Con esta investigación se planteará una solución a estos problemas dando

prioridad a las aplicaciones críticas, sean de tiempo real o propias de cada uno de

los usuarios (clientes) de la Empresa Uniplex Systems.

- 1 -

INTRODUCCIÓN

Esta investigación es importante ya que existen varias empresas (clientes de Uniplex) las cuales tienen problemas de congestión en los enlaces, tanto de Internet como enlaces de datos WAN hacia sus sucursales, debido a la limitación de ancho de banda y a la alta demanda del mismo por las aplicaciones sobre todo de voz y video.

El CAPÍTULO I EL PROBLEMA contiene:

El análisis del problema que se presenta muy a menudo en los enlaces de internet y de datos de varias empresas, y de cómo esto afecta a su negocio.

El CAPÍTULO II MARCO TEÓRICO contiene:

La información conceptual, teórica, legal y acotaciones a investigaciones anteriores relacionadas con Calidad de Servicio y Enlaces de Comunicación.

El CAPÍTULO III METODOLOGÍA contiene:

Las formas, métodos, técnicas y medios que han sido utilizados para obtener la información necesaria acerca de los problemas de congestión en los enlaces de comunicaciones.

El CAPÍTULO IV ANÁLISIS E INTERPRETACIÓN DE RESULTADOS contiene:

El análisis e interpretación de los resultados de las encuestas realizadas a los ingenieros administradores de los enlaces de datos así como también a los administradores de las aplicaciones propias de cada empresa. También se presenta la demostración de la hipótesis basándose en cálculos estadísticos.

El CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES contiene:

Las conclusiones y recomendaciones de la investigación acerca del problema planteado.

El CAPÍTULO VI PROPUESTA contiene:

Toda la información relacionada al sistema de administración de ancho de banda Allot el cual está provisto de una tecnología completa que permite hacer una inspección a profundidad de los paquetes que transitan por los enlaces permitiendo aplicar QoS de forma sumamente controlada para cada tipo de aplicación y protocolo. Incluye además información de su funcionamiento y pruebas de operación del sistema.

Finalmente se encuentra el glosario de términos, la Bibliografía y los respectivos Anexos.

CAPÍTULO I

EL PROBLEMA

Planteamiento del Problema

Contextualización

Según las publicaciones del sitio web "Internet Word Stats", durante los últimos años el acceso a internet cada vez se está haciendo más demandado, es decir más empresas, personas y entidades buscan la manera más eficiente de acceder a esta gran herramienta tanto de trabajo, investigación así como entretenimiento también. A nivel mundial y latinoamericano el acceso a la gran red se ha convertido en una gran competencia ya que quien mayor ancho de banda tiene, mayor información puede obtener en menor tiempo. Claro está que en países más desarrollados el acceso a internet es mucho más eficiente y a menor costo; debido a que los enlaces de datos de los proveedores de servicios en otros países son por lo general de fibra óptica.

Del artículo ¿Cómo utiliza el Internet el Latinoamericano? del 10 de diciembre de 2009 se puede notar que a nivel de latino América el acceso a la gran red de la información ha tenido un desarrollo más pausado lo cual ha llevado a un crecimiento pobre, lento y cuyos costos han sido elevados lo cual genera un gran problema para países como el nuestro donde el desarrollo de tecnologías es mínimo por no decir nulo. En nuestro país, el acceso a Internet, hace varios años atrás era muy limitado, costoso y con un nivel muy bajo de eficiencia, pero en los últimos años se ha incrementado las posibilidades de acceder a este recurso que ya por si solo se ha convertido en un recurso invaluable. Adicionalmente las empresas han empezado a utilizar recursos informáticos a nivel empresarial sobre

todo en entidades que poseen varias sucursales, lo que implica no solo acceso a Internet sino también acceder a los servicios de transmisión de datos ofertados por diferentes proveedores de servicios de comunicaciones y redes con enlaces de datos de diversas tecnologías unas no muy eficientes y otras no muy confiables.

Según los artículos "Celulares e Internet, en una carrera sin trabas en Ecuador" publicado por el Conatel, y "Aumenta el acceso a Internet y telefonía móvil en el Ecuador, según estudio" publicado en www.ecuadorinmediato.com el 27 de marzo del 2010; a nivel de las ciudades grandes tales como Quito, la demanda de anchos de banda se están incrementando a medida que las empresas y personas tienen acceso a la gran red de información y a los servicios que estos proveen o que son requeridos, esto hace que cada vez sea necesario contratar más y más ancho de banda ya que ciertos servicios sobre todo los de tiempo real necesitan una transmisión rápida, fiable y totalmente segura. Sin embargo los enlaces de datos no siempre son de calidad por lo que se genera un problema para las empresas de la ciudad de Quito ya que esto genera pérdidas tanto de tiempo, dinero y recursos. Por esta razón se vuelve una necesidad contar con enlaces de datos que aseguren estas características de transmisión y mejorar la calidad de estos servicios ayudando a la privacidad y seguridad de los datos que se transmiten.

Árbol de Problemas

En la figura siguiente se muestra el árbol de problemas de donde se da a conocer las causas y efectos principales que se presentan en los enlaces de comunicaciones.

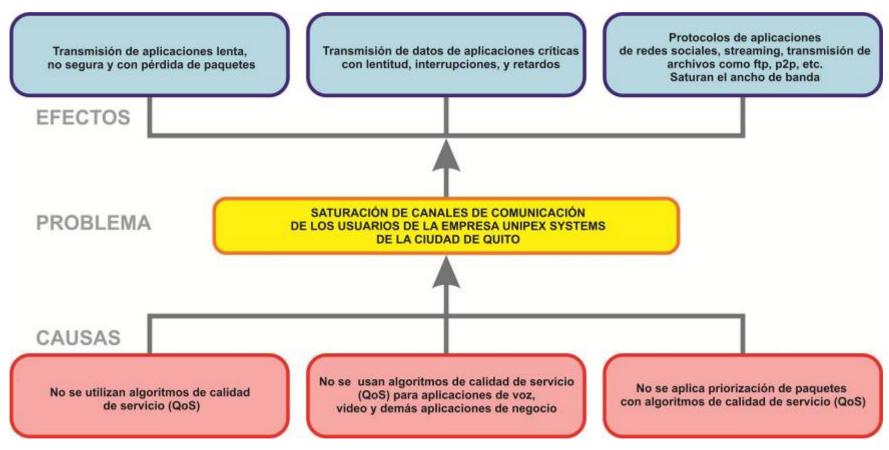


Figura Nº 1.1. Relación Causa – Efecto

Análisis Crítico

La saturación de los canales de comunicación tanto de internet, como de enlace de datos privados en los usuarios (clientes) de la empresa Uniplex Systems se dan porque la transmisión de ciertas aplicaciones son lentas, no seguras y con un alto índice de pérdida de paquetes, esto debido a que no se utiliza ningún algoritmo de calidad de servicio sobre dichos enlaces.

Así mismo al no utilizar algún algoritmo de calidad de servicio que asegure la transmisión de las aplicaciones críticas como voz, telefonía, video y demás aplicaciones propias de las empresas; su transmisión es muy lenta generando interrupciones en la comunicación de voz, congelamiento de imágenes en video conferencias y retardos en transmisión de paquetes de bases de datos, etc.

Protocolos de redes sociales, streaming, transferencia de archivos tal como por FTP y peor aun P2P son aplicaciones que siempre saturan los canales y no permiten que aplicaciones críticas y de tiempo real funcionen con normalidad; ya que no se aplica priorización de aplicaciones con algoritmos de Calidad de servicio

Prognosis

Ya que el costo de Ancho de Banda es muy elevado este genera no una inversión para las empresas sino más bien un gasto y al generarse la saturación de estos lo que hacen los administradores de las redes es contratar mayor capacidad para el enlace, es decir mayor ancho de banda como solución a dicho problema, sin embargo, lo único que hacen es empeorar el problema ya que con un mayor ancho de banda y sin ningún control del mismo se vuelven a saturar los enlaces de transmisión de datos e internet y se genera nuevamente el mismo inconveniente, una y otra vez; saturación del canal, incremento de ancho banda y así sucesivamente convirtiéndose en un círculo vicioso; generando cada vez un incremento en los costos de transmisión de datos y de internet para las empresas,

hasta el punto en que ya no se puede seguir pagando por más ancho de banda sin

solucionar el problema de las saturaciones de sus enlaces de datos; por lo tanto es

necesario usar algoritmos de Calidad de servicio para controlar las saturaciones y

evitar este círculo vicioso.

Formulación del Problema

¿Qué incidencia tendrán los algoritmos de calidad de servicio en la saturación

de los enlaces de comunicación de los usuarios de la empresa Uniplex Systems de

la ciudad de Quito?

Interrogantes de la Investigación

• ¿Cuáles son los algoritmos de Calidad de Servicio que utilizan los usuarios de

la empresa UNIPLEX?

• ¿Cuáles son los problemas más comunes en la saturación de los enlaces de

comunicación que tienen los usuarios de la empresa UNIPLEX?

• ¿Existe solución al problema de saturación de los enlaces de comunicación de

los usuarios de la empresa Uniplex Systems?

Delimitación de la Investigación

Campo: Redes y Telecomunicaciones

Área: Comunicaciones.

Aspecto: Transmisión de datos

-8-

Delimitación Espacial:

La investigación se realizó en la empresa Uniplex Systems de la ciudad de Quito.

Delimitación Temporal:

Esta investigación se desarrolló durante el primer semestre del año 2010.

Unidades de Observación:

- Administradores de red
- Administradores de aplicaciones

Justificación

Es **importante** realizar esta investigación ya que el uso adecuado de los recursos informáticos y tecnológicos permitirá a los administradores de redes conocer los beneficios de aplicar calidad de servicio a sus enlaces y poder mejorar la transmisión de datos; con esto se verán beneficiados los diferentes usuarios de la empresa Uniplex Systems.

Los algoritmos de Calidad de servicio para los enlaces de datos es un tema de gran **importancia** puesto que el estudio de este involucra un análisis tanto de la implementación de tecnologías de punta que actualmente ya se están utilizando en el mundo entero.

Sabemos que el desarrollo de esta investigación es **factible** y posible de realizar ya que se cuenta con la información necesaria referente al problema, conjuntamente con todos los conocimientos obtenidos durante la colegiatura de la maestría; así mismo existe suficiente información tanto en Internet como en libros acerca de los algoritmos de calidad de servicio. De igual manera existen varios profesores que conocen lo suficiente respecto al tema y que pueden ser buenos guías para la realización del proyecto.

Objetivos

Objetivo General

Determinar la influencia de los Algoritmos de Calidad de Servicio en los enlaces de comunicaciones de los usuarios de la empresa Uniplex Systems.

Objetivos Específicos:

- Determinar los algoritmos de Calidad de Servicio de los usuarios de la empresa Uniplex Systems.
- Identificar los problemas más comunes en la saturación de los enlaces de comunicación en los usuarios de la empresa Uniplex Systems.
- Proponer una solución al problema de saturación de los enlaces de comunicación de los usuarios la empresa Uniplex Systems.

CAPÍTULO II

MARCO TEÓRICO

Antecedentes de Investigación

En la biblioteca de la FISEI se ha encontrado el siguiente trabajo relacionado con Calidad de Servicio:

Mayorga Soria Tatiana Paulina; "Propuesta de análisis y diseño para la implementación de VoIp Aplicando QoS para la integración de la red de la ESPE Latacunga con la ESPE Matriz"; 2009

"VoIP es una aplicación IP que tiene requerimientos estrictos de performance. La performance de una red IP tiene un impacto directo sobre la calidad de voz. La calidad de voz entre la ESPE Matriz y la ESPE Latacunga se encuentra garantizada por el enlace dedicado de 1Mbps contratado"

Se ha revisado las bibliotecas de las principales Universidades de Ambato y no se ha encontrado más investigaciones referentes al tema.

Fundamentaciones

Fundamentación Científico técnica

La presente investigación está basada en un enfoque científico técnico debido a que en la actualidad la comunicación inter e intra empresarial se encuentra basada principalmente en la implementación de nuevas tecnologías las cuales permiten la comunicación óptima y segura. Estas nuevas tecnologías permiten ahorrar tiempo y recursos logrando la mejora de los procesos de cada una de las empresas.

De esta forma la aplicación de un sistema de calidad de Servicio en los enlaces de comunicación de datos permite mejorar en gran medida la transmisión de aplicaciones prioritarias como son voz, video y aplicaciones propias de cada una de las empresas.

Fundamentación Legal

Puesto que el estudio se realizó para enlaces de comunicación fue necesario tomar en cuenta la ley especial de telecomunicaciones del Ecuador (http://www.conatel.gob.ec/site_conatel/index.php?option=com_docman&task=d oc_download&gid=1348&Itemid=) en lo referente a los servicios de comunicación, enlaces de transmisión; los documentos de estandarización de la IEEE para QoS: 802.1Q (http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf), 802.1D (http://standards.ieee.org/getieee802/download/802.1D-2004.pdf) que hacen referencia a los protocolos de transmisión de datos, redes de comunicaciones Lan y Wan , y calidad de servicio. Y los estándares de la Unión Internacional de Telecomunicaciones (UIT) sobre todo las normas de la Serie E.360.x y E.361 (Anexo 1) que regulan los sistemas y medios de transmisión, redes digitales, Anchos de banda y Calidad de Servicio.

Categorías fundamentales

En la siguiente figura (Figura N° 2.1.) se describe la relación existente entre la variable dependiente y la independiente y sus categorías conceptuales.

Organizador Lógico de Variables VARIABLE INDEPENDIENTE VARIABLE DEPENDIENTE CALIDAD DE SERVICIO REDES DE DATOS QoS CoS y ToS MEDIOS DE TRANSMISIÓN ENLACES DE TRASMISIÓN ALGORITMOS DE CALIDAD DE SERVICIO DE DATOS PARA MEJORAR

Figura N° 2.1. Inclusiones Conceptuales

Categorías de la Variable Independiente

CALIDAD DE SERVICIO

• Definición de QoS

En el ámbito de las telecomunicaciones, se define como "el efecto colectivo del rendimiento de un servicio que determina el grado de satisfacción del usuario de dicho servicio".

En el ámbito de la telemática, QoS es "la capacidad de un elemento de red (bien una aplicación, un servidor, un router (encaminador), un conmutador, etc.) de asegurar que su tráfico y los requisitos del servicio previamente establecidos puedan ser satisfechos". Habilitarla requiere además la cooperación de todas las capas de la red, así como de cada elemento de la misma. Desde este punto de vista, QoS también suele ser definida como "un conjunto de tecnologías que permiten a los administradores de red manejar los efectos de la congestión del tráfico usando óptimamente los diferentes recursos de la red, en lugar de ir aumentando continuamente su capacidad". En este punto es necesario prestar una atención especial al hecho de que QoS no crea ancho de banda.

• QoS y su relación con la medida de la calidad

QoS es usado como el instrumento idóneo para la medida de calidad. Esto debido a que la calidad de servicio se refiere al nivel de calidad con la que una aplicación responde, cumpliendo de ésta manera con requerimientos mínimos establecidos por QoS.

QoS está siendo usado ampliamente en la telefonía y en los servicios de transmisión de video, aplicaciones en los que se tiene que garantizar niveles de calidad competitivos para poder disfrutar cómodamente de dichas aplicaciones. Sin embargo, la aplicación de QoS en estos campos es un indicador que refleja la experiencia subjetiva de la calidad; es decir cuáles son los niveles mínimos establecidos para que determinado servicio cumpla con los valores de

transferencia de paquetes, de latencia, etc. Por esta razón se dice que QoS es el efecto acumulativo sobre la satisfacción del cliente de todas las imperfecciones que afectan al servicio.

QoS, CoS y ToS

Son varios los acrónimos terminados en "oS" que hacen referencia a la obtención de calidad de servicio en redes, llevando en ocasiones a situaciones equívocas por el mal uso de los mismos, si bien QoS es el único que refiere completamente a la Calidad de Servicio, englobando todas las técnicas que se encuentran en torno a ella, mientras que CoS (clase de servicio) y ToS (tipo de servicio) son, sencillamente, dos de las técnicas utilizadas para su obtención.

• QoS: Calidad De Servicio

Definido anteriormente, este recoge varios parámetros o atributos que describen un servicio, tales como:

- Reserva ancho banda
- Retardo extremo a extremo
- Jitter
- · Tasa de error

• CoS: Clase De Servicio

Este término implica dos procedimientos: en primer lugar la priorización de los distintos tipos de tráfico claramente definidos a través de la red y, en segundo lugar, la definición de un pequeño número de clases de servicio a las que aplicarla. Un ejemplo de tecnología que usa CoS es el estándar IEEE 802.1p, representado en la siguiente figura.

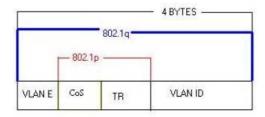


Figura N° 2.2. Campos de los estándares 802.1p/Q

• ToS: Tipo De Servicio.

El tipo de servicio es equivalente a un carril destinado a coches de uso compartido: se reserva ancho de banda con antelación y después se asigna el tráfico que necesite preferencia, como el de voz o un CoS con prioridad, de modo que este tráfico pueda utilizar el ancho de banda reservado. ToS no implica, por lo tanto, ningún tipo de garantías.

ToS está incluido como uno de los campos en la tecnología de QoS denominada Diffserv (servicios diferenciados), dónde también es conocido como DiffServ codepoint (DSCP o punto de código Diffserv). Es un campo de 8 bits, estando los dos últimos reservados. Con los otros 6 bits restantes es posible obtener 64 combinaciones o 'codepoint', de ellas, 48 son utilizadas para direccionar el espacio global y 16 son para uso local.

Parte del protocolo IP Versión 4 reserva un campo en el paquete IP para el tipo de servicio (IP TOS). En este campo se pueden especificar los atributos de fiabilidad, capacidad de procesamiento y retardos del servicio, tal y como se ve en la siguiente figura:

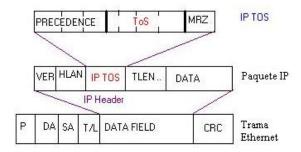


Figura N° 2.3. Campo ToS en IPv4

ALGORITMOS DE QoS

Teniendo en cuenta la clase de servicio que son capaces de ofrecer los algoritmos de transmisión de paquetes podemos hacer tres divisiones principales:

• Algoritmos De Mejor Esfuerzo (Best Effort)

En este tipo de algoritmos se encuentran los algoritmos tradicionales, que no ofrecen ningún tipo de garantías de transmisión, por lo que podría decirse que el nivel de calidad de servicio ofrecido es nulo. Un ejemplo muy representativo es el FIFO (First In First Out).

Algoritmos Deterministas

Son aquellos en los que, para evitar la posible congestión, antes de aceptar la transmisión de un flujo, se asegura que podrá transmitirse sin problemas incluso en las peores condiciones. Esto se hace reservando ancho de banda. El ancho de banda reservado es el equivalente a lo que supondría un pico de una transmisión en ráfaga de ese flujo, con lo que se asegura que el flujo nunca se va a salir de su ancho de banda reservado.

Algoritmos Intermedios

Son aquellos cuyo objetivo es ofrecer calidad de servicio y al mismo tiempo hacer un uso eficiente de los recursos. Entre estos podemos diferenciar entre los que ofrecen servicios estadísticos, servicios de degradación limitada y servicios predictivos. Estos algoritmos no aseguran una QoS tan estricta como los deterministas, pero en la mayoría de los casos consiguen un buen comportamiento y aprovechan mucho más los recursos disponibles.

• Funcionamiento de QoS

QoS trabaja retardando paquetes poco importantes, o en los casos de tráfico extremo de la red, arrojándolos fuera enteramente. Esto le deja lugar a que los paquetes importantes lleguen a su destino tan rápido como sea posible. Básicamente, una vez que su router es consciente de qué cantidad de información se pueda poner en la cola del módem en cualquier tiempo determinado, eso puede forjar tráfico demorando paquetes de bits poco importantes y llenando primero el enlace de paquetes importantes, y después usar cualquier espacio residual para cargarlo con otros paquetes en orden descendente de importancia.

QoS posiblemente no puede acelerar un paquete, básicamente lo que hace es tomar de su total disponible de ancho de banda, calcular cual de los muchos datos prioritarios es el más alto que tiene, mete eso en el buffer, entonces baja a la línea en la prioridad hasta que se quede sin datos para enviar o hasta que el buffer se llena. A cualquier información excedente se le mantiene atrás o rehace la cola y lo coloca al frente, donde será evaluada en el siguiente paso.

Los paquetes QoS pueden ser a los que se dio prioridad por un número de criterios, incluyendo los generados por las mismas aplicaciones, pero las técnicas más comunes son: el grado del consumo del routers, Puerto de Dirección MAC, de Ethernet, y Puerto TPC/IP, así como también DPI.

Clasificación de QoS

Es posible realizar una clasificación de QoS bajo distintas especificaciones, así podríamos diferenciarla según el tipo de tráfico, dónde aplicarla, la reserva de recursos de la red y otros parámetros, tal y como se indica a continuación.

a.- Según la sensibilidad del tráfico

Teniendo en cuenta la variedad de tráfico existente y los requerimientos de retardo, latencia y ancho de banda para cada tipo, nos encontramos con:

QoS y aplicaciones

Usuarios y admnistradores demandan niveles de servicio y tiempos de respuesta adecuados para aplicaciones críticas. Sensible a atencia Vídeoconferencia Voz Control de acceso/seguridad: · uso de cortafuegos Distribución - filtrado - VLANs vídeo Terminales almacenado interactivos Niveles de servicio - Clase de servicio (CoS) Aplicaciones Calidad de servicio (QoS) Grandes - Gestión ancho de banda transferencias - Soporte de multicast de archivos Cortafuegos broadcast Ancho de banda requerido: LAN y WAN Nivel de acceso y seguridad

Figura N° 2.4. Representación gráfica relación QoS y aplicaciones

b.- Según quién solicite el nivel de calidad de servicio

Teniendo en cuenta que la petición de QoS puede ser realizada por el usuario final o por los conmutadores de la red, nos encontramos con:

- 1. QoS implícita.- Se asigna automáticamente los niveles de calidad servicio en función del criterio especificado por el administrador, como el tipo de aplicación, protocolo o dirección de origen.
- 2. QoS explícita.- Este tipo de QoS permite al usuario o aplicación solicitar directamente un determinado nivel de servicio que han de respetar los conmutadores y routers.

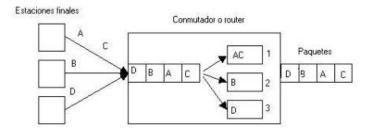


Figura N° 2.5. Ejemplo de visualización de QoS implícita y explícita

c.- Según las garantías

En esta clasificación se va a tener en cuenta la reserva de recursos del sistema para proporcionar los servicios.

- 1. QoS garantizada / Hard QoS.- También conocida como "hard QoS", la calidad de servicio garantizada es aquella en la que se produce una reserva absoluta de los recursos de la red para un tráfico determinado, asegurándose así unos niveles máximos de garantías para este tráfico.
- 2. *QoS no garantizada / Lack of QoS*.- En una calidad de servicio sin garantías. El tráfico es transmitido por la red a expensas de lo que en ella pueda sucederle. Es el tipo de QoS correspondiente a los servicios Best Effort (Mejor esfuerzo).

3. QoS servicios diferenciados / Soft QoS.- También conocida como "soft QoS" es el punto medio entre los dos tipos anteriores. Para este tipo se realiza una diferenciación de tráfico, siendo tratados algunos mejor que el resto.

A continuación se muestra el espectro actual de la calidad de servicio, donde se puede observar la relación entre los niveles de QoS y el tipo de aplicación que esté transmitiéndose por la red.

EL ESPECTRO DE LA CALIDAD DE SERVICIO de QoS QoS absoluta Extremo a extremo Garantizada SVC Conex. etiquetadas Prioridad (MPLS) OoS relativa ToS basándose en prioridades relativas QoS en Best Effor Internet Acceso Básico Acceso **VPNs** Voz en Tiempo /E-Mail Premiam Real /Video Tipo de aplicación

Figura N° 2.6. Espectro de la Calidad de Servicio.

d.- Según el lugar de aplicación

Es posible aplicar calidad de servicio en los extremos y en los bordes de la red, por lo tanto tenemos:

- 1. QoS extremo a extremo / end-to-end.- Es la aplicación de las políticas de calidad de servicio entre los extremos de la red, pero está menos extendida que la QoS entre dos bordes de la red (edge-to-edge). También se la conoce comúnmente como la QoS absoluta.
- 2. QoS borde a borde / edge-to-edge.- Es la aplicación de las políticas de calidad de servicio entre dos puntos cualesquiera de la red. Esto tiene varias ventajas: no requiere que los administradores de red toquen ninguno de los extremos; se

utilizan menos dispositivos para la obtención de la QoS. Además, la accesibilidad por parte de un usuario cualquiera de la red o de un hacker para cambiar las especificaciones de QoS es mucho menor.

• Términos que intervienen en QoS

a.- Tráfico De Red

De forma simple, podríamos decir que tráfico de una red son los datos que la atraviesan. Es pues dependiente del tipo de aplicación que por ella circulan. De esta manera podríamos establecer una diferenciación del tráfico.

1. Según el tipo de aplicación

Tendremos: tráfico habitual, multimedia, multicast, broadcast, tiempo real, etc.

2. Según la sensibilidad al retardo

En este caso tendremos:

- Tráfico algo sensible al retardo.
- Tráfico muy sensible al retardo.
- Tráfico muy sensible a las pérdidas.
- Tráfico nada sensible.

Para cada uno de estos tipos de tráfico podríamos establecer un tipo de QoS según la clasificación realizada asignando un nivel de prioridad según el esquema siguiente:

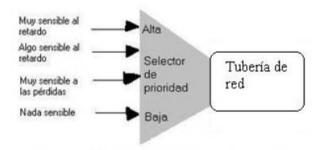


Figura N° 2.7. Prioridades básicas de servicio

b.- Retardo

Indica la variación temporal y/o retraso en la llegada de los flujos de datos a su destino. Es una característica que se hace muy evidente en aplicaciones como video-conferencia, donde existe retardo entre la señal de voz y la señal de vídeo.

c.- Latencia

Es el tiempo entre el envío de un mensaje por parte de un nodo y la recepción del mensaje por otro nodo. Abarca los retardos sufridos durante el propio camino o en los dispositivos por los que pasa.

d.- Jitter (inestabilidad o variabilidad en el retardo)

Es una distorsión de los tiempos de llegada de los paquetes recibidos, comparados con los tiempos de los paquetes transmitidos originalmente. Esta distorsión es particularmente perjudicial para el tráfico multimedia.

d.- Ancho De Banda

Una medida de la capacidad de transmisión de datos, expresada generalmente en Kilobits por segundo (Kbps) o en Megabits por segundo (Mbps). Indica la capacidad máxima teórica de una conexión, pero esta capacidad teórica se ve disminuida por factores negativos tales como el retardo de transmisión, que pueden causar un deterioro en la calidad.

e.- Pérdida De Paquetes

Indica el número de paquetes perdidos durante la transmisión. Normalmente se mide en tanto por ciento.

f.- Disponibilidad

Indica la utilización de los diferentes recursos. Suele especificarse en tanto por ciento.

g.- Rendimiento

Mide el rendimiento de la red en relación a los servicios acordados (SLAs o acuerdos de nivel de servicio). Es decir es la velocidad teórica de transmisión de los paquetes por la red. Esta depende directamente del ancho de banda y su variación de las posibles situaciones de congestión de la red.

h.- Priorización

Priorizar consiste en la asignación de un determinado nivel de QoS al tráfico que circula por una red, asegurando así que las aplicaciones de mayor importancia sean atendidas con anterioridad a las de menor importancia, estando o no ante una situación de congestión.

i.- Encolado

El encolado consiste en dividir y organizar el tráfico ante un determinado dispositivo de red para su posterior retransmisión por la misma según un determinado algoritmo que define a la cola y que permite que determinados paquetes sean reexpedidos antes que otros. Es una de las herramientas más utilizadas por la QoS. La idea es ofrecer un mejor servicio al tráfico de alta prioridad al mismo tiempo que se asegura, en diferentes grados, el servicio para los paquetes de menor prioridad.

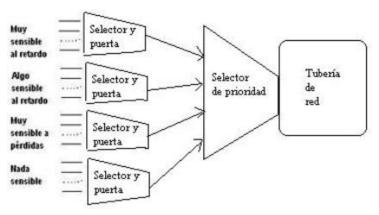


Figura N° 2.8. Encolado de servicio

j.- Planificación

Es el proceso de decidir qué paquetes enviar primero en un sistema de múltiples colas.

k.- Flujo

Es el conjunto de datos pertenecientes a una misma secuencia que, debido a su gran tamaño, han de ser enviados mediante distintos paquetes. Tienen la misma dirección IP fuente y destino, el mismo puerto de destino y el mismo protocolo. El flujo, necesita, por tanto, llegar secuencialmente a su destino con una frecuencia constante. Por lo tanto, el parámetro más importante para caracterizar un flujo será su frecuencia constante de bit (constant bit rate, CBR), que nos dará la frecuencia a la que debería ser transmitido cada bit de datos.

1.- Acuerdos De Niveles De Servicio

Un Service Level Agreement (SLA) o Acuerdo de Nivel de Servicio es un contrato de servicios entre un proveedor de servicios y su cliente, el cual define las responsabilidades del proveedor en términos del nivel de funcionamiento de la red (rendimiento, tasa de pérdidas, retrasos, variaciones) y la disponibilidad temporal, el método de medida, las consecuencias cuando los niveles de servicio no se consiguen o si los niveles de tráfico definidos son superados por el cliente, así como el precio de todos estos servicios.

• Deep Paquet Inspection (DPI)

Inspección profunda de paquetes (DPI) es un método avanzado de filtrado de paquetes que funciona en la capa de aplicación del modelo de referencia OSI (Open Systems Interconnection). El uso de DPI permite encontrar, identificar, clasificar, desviar o bloquear los paquetes con datos específicos o códigos de cargas útiles; a diferencia del filtrado de paquetes convencional, que examina sólo los encabezados de paquetes.

DPI identifica situaciones de falta de cumplimiento de protocolos técnicos, virus, spam, o invasiones, aunque también puede usar criterios predefinidos diferentes para decidir si algún paquete puede o no pasar, o requiere ser enrutado a un destino distinto, darle otra prioridad o asignación de ancho de banda, para tomar información con propósitos estadísticos o simplemente para eliminarlo.

DPI se utiliza en las empresas para analizar datos de Internet, la aplicación de control de tráfico y visibilidad de la red. Que permite a las empresas el control de las aplicaciones no deseadas (P2P, streaming de vídeo, etc.), que consume ancho de banda, además permite a los administradores identificar a los usuarios que utilizan aplicaciones no permitidas (para las empresas). Con esta visibilidad el administrador de red puede identificar más fácilmente los puntos de red (los cuellos de botella), y planificar mejor el crecimiento de la red. Con esto, los proveedores de servicios de comunicaciones pueden asignar los recursos disponibles para simplificar el flujo de tráfico. Por ejemplo, un mensaje marcado como de alta prioridad puede ser enviado a su destino por delante de mensajes de menor importancia o de baja prioridad o paquetes que participan en la navegación por Internet casual. DPI también puede ser utilizado para la reducción de transferencia de datos para evitar el abuso de P2P (peer-to-peer), mejorando el rendimiento de la red para la mayoría de los usuarios. Las implicaciones de seguridad de DPI se han generalizado porque la tecnología hace que sea posible identificar al autor o beneficiario de contenido que incluyen paquetes específicos.

DPI provee protecciones contra varias vulnerabilidades existentes siendo eficaz contra los ataques de desbordamiento de búfer, ataques de denegación de servicio y ciertos tipos de malware.

Categorías de la Variable Dependiente

REDES DE DATOS

• Concepto de redes

Es un conjunto de dispositivos físicos "hardware" y de programas "software", mediante el cual podemos comunicar a distancia equipos autónomos. Para simplificar la comunicación entre programas (aplicaciones) de distintos equipos, se definió el Modelo OSI (Open Systems Interconnection), el cual especifica 7 distintas capas de abstracción. Con ello, cada capa desarrolla una función específica con un alcance definido.

• Tipos de redes:

Una red puede empezar siendo pequeña para crecer junto con la organización o institución. A continuación se presenta los distintos tipos de redes disponibles:

Segmento de red (subred).- Un segmento de red suele ser definido por el "hardware" o una dirección de red específica.

Red de área local (LAN).- Una LAN es un segmento de red que tiene conectadas estaciones de trabajo y servidores o un conjunto de segmentos de red interconectados, generalmente dentro de la misma zona.

Red de campus.- Una red de campus se extiende a otros edificios dentro de un campus o área industrial. Los diversos segmentos o LAN de cada edificio suelen conectarse mediante cables de la red de soporte.

Red de área metropolitanas (MAN).- Una red MAN es una red que se expande por pueblos o ciudades y se interconecta mediante diversas instalaciones públicas o privadas, como el sistema telefónico o los suplidores de sistemas de comunicación por microondas o medios ópticos.

Red de área extensa (WAN y redes globales).- Las WAN y redes globales se extienden sobrepasando las fronteras de las ciudades, pueblos o naciones. Suelen necesitar un hardware especial, así como enlaces de transmisión de datos muchos de ellos proporcionadas por las compañías proveedoras de servicios de comunicación ya que dichos enlaces se realizan con infraestructura de telecomunicaciones públicas y privadas, además por microondas y satélites

Intranet.- Una intranet es una red privada donde la tecnología de Internet se usa como arquitectura elemental. Una red interna se construye usando los protocolos TCP/IP para comunicación de Internet. Una intranet o una red interna se limitan en alcance a una sola organización o entidad. Generalmente ofrecen servicios como HTTP, FTP, SMTP, POP3 y otros de uso general.

Internet.- Una red interna específica, está basada en una interconexión mundial de las redes gubernamentales, académicas, públicas, y privadas.

Red pública.- Una red pública se define como una red que puede usar cualquier persona y no como las redes que están configuradas con clave de acceso personal.

• Características de una red

Las características más importantes que se utilizan para describir una red son:

- Velocidad.- Es una medida de la rapidez con que los datos son transmitidos sobre la red.
- Seguridad.- Indica el grado de seguridad de la red incluyendo los datos que son transmitidos por ella.
- *Disponibilidad*.- Es una medida de la probabilidad de que la red va a estar disponible para su uso.
- *Escalabilidad*.- Indica la capacidad de la red de permitir más usuarios y requerimientos de transmisión de datos.
- Confiabilidad.- Es una medida de la probabilidad de falla.

• Protocolos de comunicación

Un protocolo es un lenguaje común utilizado por todos los actores en la comunicación para intercambiar datos. Sin embargo, su función no se detiene allí. Un protocolo también permite:

- El inicio de las comunicaciones
- El intercambio de datos
- La detección de errores
- Una finalización adecuada de las comunicaciones

MEDIOS DE TRANSMISIÓN

• Tipos de medios de transmisión

a .- El cable par trenzado

Consiste en dos alambres de cobre o a veces de aluminio, aislados con un grosor de 1 mm aproximadamente. Los alambres se trenzan con el propósito de reducir la interferencia eléctrica de pares similares cercanos. Los pares trenzados se agrupan bajo una cubierta común de PVC (Policloruro de Vinilo) en cables multipares de pares trenzados (de 2, 4, 8, hasta 300 pares). Actualmente, se han convertido en un estándar en el ámbito de las redes LAN (Local Area Network) como medio de transmisión en las redes de acceso a usuarios (típicamente cables de 2 ó 4 pares trenzados).

b.- El cable coaxial.

El cable coaxial tenía una gran utilidad en sus inicios por su propiedad idónea de transmisión de voz, audio y video, además de textos e imágenes. Se usa normalmente en la conexión de redes con topología de Bus como Ethernet y ArcNet, se llama así porque su construcción es de forma coaxial.

c.- Fibra Óptica

Son pequeños cables que transportan luz en lugar de una corriente eléctrica. Estos cables son mucho más ligeros, de menor diámetro y repetidores que los tradicionales cables metálicos. Además, la densidad de información que es capaz de transmitir es también mucho mayor.

En la última década la fibra óptica ha pasado a ser una de las tecnologías más avanzadas que se utilizan como medio de transmisión. Los logros con este material fueron más que satisfactorios, desde lograr una mayor velocidad y disminuir casi en su totalidad ruidos e interferencias, hasta multiplicar las formas de envío en comunicaciones y recepción por vía telefónica.

d.- Enlaces Inalámbricos.

Servicio que consiste en ofrecer al cliente acceso ilimitado a Internet mediante un enlace inalámbrico por medio de antenas, que le permiten utilizar un ancho de banda desde 64K hasta 2Mbps. Trabajan por medio de radio frecuencia

• Tipos de Enlaces de datos

a.- Enlaces Punto a Punto

Es aquel que conecta únicamente dos estaciones en un instante dado. Se puede establecer enlaces punto a punto en circuitos dedicados o conmutados, que a su vez pueden ser dúplex o semidúplex.

b.- Enlace Multipunto

Estos conectan más de dos estaciones a la vez.

• Nivel Enlace

El nivel de enlace tiene las siguientes funciones:

Entramado.- La información que le llega al enlace se empaqueta y se le añade una cabecera y una cola formando así la trama.

Head Paquet Tail.- Generalmente la cola es el código detector de errores y opcionalmente puede estar el sincronismo de trama. En la cabecera suele estar el sincronismo de trama y la información de control (una dirección, en redes LAN la dirección MAC).

Capa de enlace de datos.- Define el protocolo que detecta y corrige errores cometidos al transmitir datos por el cable de la red. La capa de enlace de datos es la causante del flujo de datos de la red, el que se divide en paquetes o cuadros de información. Cuando un paquete de información es recibido incorrectamente, la capa de enlace de datos hace que se reenvíe. La capa de enlace de datos está dividida en dos subcapas: El control de acceso al medio (MAC) y el control de enlace lógico (LLC). Los puentes operan en la capa MAC.

ENLACES DE TRANSMISIÓN DE DATOS

• Definición

Un enlace de transmisión, también denominada canal de transmisión, no necesariamente consiste en un medio de transmisión físico único; es por esta razón que la máquina final (en contraposición con las máquinas intermediarias), denominada DTE (Data Terminal Equipment (Equipo Terminal de Datos)) está equipada en función del medio físico al cual está conectada, denominado DCTE (Data Circuit Terminating Equipment (Equipo de Finalización de Circuitos de Datos) o DCE (Data Communication Equipment (Equipo de Comunicación de datos)). El término circuito de datos se refiere al montaje que consiste en el DTCE de cada máquina y la línea de datos.

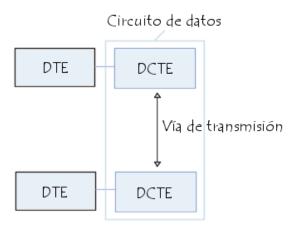


Figura N° 2.9. Diagrama de un enlace de datos

• Transmisión de datos

Para que ocurra la transmisión de datos, debe haber una línea de transmisión entre los dos equipos, también denominada canal de transmisión o canal. Estos canales de transmisión están compuestos por varios segmentos que permiten la circulación de los datos en forma de ondas electromagnéticas, eléctricas, luz y hasta ondas acústicas. Es, de hecho, un fenómeno de vibración que se propaga a través de un medio físico.

• Codificación de señales de transmisión

A fin de que sea posible el intercambio de datos, se debe elegir una codificación para transmitir las señales. Esto depende, básicamente, del medio físico que se utilice para transmitir datos, de la garantía de la integridad de los mismos y de la velocidad de transmisión.

• Métodos de comunicación de datos

a.- Comunicación simplex

Una comunicación es simplex si están perfectamente definidas las funciones del emisor y del receptor y la transmisión de los datos siempre se efectúa en una dirección.

b.- Comunicación semidúplex

En las comunicaciones semidúplex la dirección de transmisión puede ser bidireccional, esto es, emisor y receptor pueden intercambiarse los papeles. Sin embargo, la bidireccionalidad no puede ser simultánea.

c.- Comunicación dúplex o full dúplex

Este tipo de comunicación es bidireccional y simultánea. En ella el emisor y el receptor no están perfectamente definidos. Ambos actúan como emisor y como receptor indistintamente. En una comunicación dúplex se dice que hay un canal físico y dos canales lógicos. El intercambio de datos sobre una línea de transmisión se puede clasificar como "full-dúplex" y "semi-dúplex".

• Términos usados en enlaces de datos

Interferencia.- La transmisión de datos en una línea no ocurre sin pérdidas. Primero, el tiempo de transmisión no es inmediato, por lo que se requiere una cierta "sincronización" en la recepción de datos.

Ancho de banda y capacidad.- El ancho de banda de un canal de transmisión es el intervalo en la frecuencia sobre el cual la señal no experimenta pérdida de línea más allá de un cierto nivel.

Carga y descarga.- Descarga se refiere a la transferencia de datos desde el

servidor al equipo, mientras que carga se refiere a la transferencia de datos del

equipo al servidor. Es interesante saber que la carga y la descarga ocurren en

canales de transmisión separados (sea esto a través de un módem o de una línea

utilizada para un propósito especial). Así, cuando se envía (carga) un documento,

no se está perdiendo ancho de banda en la descarga.

Hipótesis o Pregunta Directriz

Los Algoritmos de Calidad de Servicio (QoS) permitirán solucionar el

problema de congestión en los enlaces de transmisión de datos de los usuarios de

la Empresa Uniplex Systems.

Señalamiento de Variables

Variable Independiente: Algoritmos de Calidad de Servicio (QoS).

Variable Dependiente: Enlaces de transmisión de datos.

- 32 -

CAPÍTULO III

METODOLOGÍA

Enfoque

Esta investigación tiene un enfoque cualitativo, el cual permitió entender completamente el problema, logrando una visión más amplia en los aspectos importantes de mismo y entender la realidad de los enlaces de comunicaciones de los usuarios de la empres Uniplex Systems.

Modalidad de Investigación

Para el desarrollo de la investigación se utilizó las siguientes modalidades de investigación: bibliográfica y de campo. La primera aportó con la recolección de datos científicos que se encuentran en libros y en documentos publicados en Internet; mientras que la segunda permitió realizar el análisis de los algoritmos de QoS y su influencia en los enlaces de transmisión de datos.

Niveles o Tipos

El nivel de investigación al cual se llegó en la presente investigación es el descriptivo, puesto que se nombra los principales algoritmos de QoS así como también las características y ventajas de utilizarlos en los enlaces de transmisión de datos.

Población y Muestra

La población con la cual se trabajó corresponde a los ingenieros y administradores de redes de las empresas y técnicos encargados de administrar los enlaces de datos, y también los administradores de aplicaciones. Mientras que no existe muestra debido a que el universo es muy reducido.

Ingenieros Administradores de redes	5
Administradores de aplicaciones	20

Tabla N° 3.1. Población y muestra

Operacionalización de Variables

Variable Independiente:

CONCEPTUALIZACION	DIMENSIONES	INDICADORES	ITEMS BASICOS	TECNICA E INSTRUMENTO
Conjunto de reglas que	REGLAS	Archivos (Datos)	¿Existen reglas que regulen la	Encuesta / Cuestionario
permiten clasificar y/o		Voz	transmisión de datos en sus enlaces?	a Ingenieros
priorizar la transmisión		Video		
datos para asegurar que su				
tráfico y los requisitos del	CLASIFICAR	A. Criticas	¿Su infraestructura de red utiliza	Encuesta / Cuestionario
servicio previamente		A. No críticas	algún método para clasificar sus	a Ingenieros
establecidos puedan ser			aplicaciones?	
satisfechos.				
	PRIORIZAR	Voz	¿Utiliza algún medio para priorizar	Encuesta / Cuestionario
		Video	el tráfico de las aplicaciones	a Ingenieros
		Aplicaciones Real	críticas?	
		Time		
	TRANSMISION	Seguridad	¿La transmisión de datos de sus	Encuesta / Cuestionario
	DE DATOS	Eficiencia	aplicaciones es eficiente y segura?	a Ingenieros

SERVICIOS	VoIP Chat Corporativo Videoconferencia	¿La calidad de los servicios es clara y sin interrupciones?	Encuesta / Cuestionario a Ingenieros
SATISFECHOS	Usuarios Internos Usuarios Externos Administradores	¿Se sienten satisfechos con la utilización de las aplicaciones de la empresa?	Encuesta / Cuestionario a Ingenieros

Tabla N° 3.2. Algoritmos de Calidad de Servicio (QoS)

Variable Dependiente:

CONCEPTUALIZACION	DIMENSIONES	INDICADORES	ITEMS BASICOS	TECNICA E INSTRUMENTO
Medio por el cual se realiza	TRANSFERENCIA	Eficiencia	¿La transferencia de datos en sus	Encuesta / Cuestionario
la transferencia de datos de	DE DATOS	Optimación	enlaces de comunicación es óptima	a Ingenieros
distintos tipos de		Confiabilidad	y eficiente?	
aplicaciones a largas				
distancias, el cual está	APLICACIONES	Voz	¿Ha tenido problemas en la	Encuesta / Cuestionario
limitado por la capacidad de		Base de datos	transmisión de aplicaciones cuando	a Ingenieros
transmisión física y ancho		Video	se satura el canal de	
de banda proporcionado por			comunicación?	
el proveedor de servicios.				
	CAPACIDAD	Fibra óptica	¿La capacidad de transmisión de	Encuesta / Cuestionario
		Radio enlace	sus aplicaciones está acorde a la	a Ingenieros
		xDSL	transmisión del canal?	
	PROVEEDOR DE	Ancho de Banda	¿El proveedor de servicios le ayuda	Encuesta / Cuestionario
	SERVICIOS	QoS	con los problemas de saturación de	a Ingenieros.
			los enlaces?	

Tabla N° 3.3. Enlaces de transmisión de datos

Técnicas e Instrumentos

Las técnicas e instrumentos que se utilizaron para la recolección de información en esta investigación fueron:

• Encuesta con el Cuestionario (Anexo 2)

Plan para Recolección de la Información

Para la recolección de información se emplearon cuadernos de notas (Anexo 3), fichas bibliográficas (Anexo 4) y se aplicaron encuestas a los Ingenieros y técnicos relacionados con el área de estudio.

Plan para el Procesamiento de la Información

Para el procesamiento de la información obtenida se realizaron las siguientes actividades:

- Definición de las preguntas para la encuesta.
- Se encuestó a los ingenieros administradores de red y a los administradores de aplicaciones.
- Se realizó la tabulación de los datos obtenidos en las encuestas.
- Se estudió los datos críticamente para su correcta interpretación.
- Se realizó un análisis estadístico para la comprobación del problema.

CAPÍTULO IV

ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

Encuesta dirigida a: **Ingenieros administradores de los enlaces y** administradores de aplicaciones (Anexo 2)

Pregunta N. 1: ¿Existen Algoritmos de Calidad de Servicio que regulen el tráfico de información (voz, video, datos)?

Opciones	Frecuencia	Porcentaje
SI	4	16%
NO	21	84 %
Total:	25	100%

Tabla N° 4.1. Algoritmos de Calidad de servicio

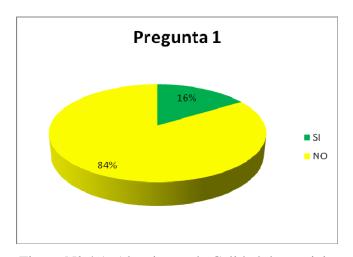


Figura N° 4.1. Algoritmos de Calidad de servicio

ANÁLISIS E INTERPRETACIÓN

Mediante las encuestas realizadas a los ingenieros se obtiene que el 84% no tienen algoritmos de Calidad de servicio, mientras que el 16% si utiliza alguno en sus enlaces.

En este caso podemos apreciar que muy pocos usuarios utilizan algún algoritmo de Calidad de servicio para regular el tráfico de información en sus enlaces.

Pregunta N. 2: ¿Existen reglas que regulen la transmisión de voz en sus enlaces?

Opciones	Frecuencia	Porcentaje
SI	5	20 %
NO	20	80 %
Total:	25	100%

Tabla N° 4.2. Reglas de transmisión de voz

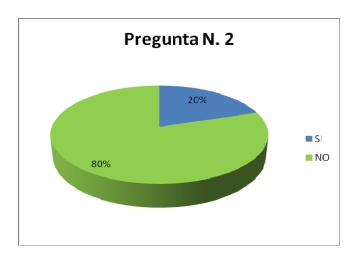


Figura N° 4.2. Reglas de transmisión de voz

ANÁLISIS E INTERPRETACIÓN

Mediante las encuestas realizadas a los ingenieros se obtiene que el 80% posee reglas que regulen la transmisión de voz en sus enlaces mientras que el 20% no posee regla alguna.

De lo expuesto en esta pregunta se deduce que minoritariamente se utiliza alguna regla que regule el tráfico de voz en los enlaces de datos, por lo tanto el tráfico de voz no tiene ninguna priorización.

Pregunta N. 3: ¿Existen reglas que regulen la transmisión de video en sus enlaces?

Opciones	Frecuencia	Porcentaje
SI	3	12 %
NO	22	88 %
Total:	25	100%

Tabla N° 4.3. Reglas de transmisión de video

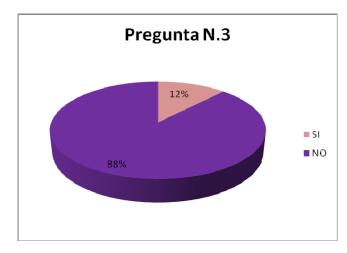


Figura N° 4.3. Reglas de transmisión de video

Mediante las encuestas realizadas a los ingenieros se obtiene que 88% de los usuarios no posee reglas de regulación de transmisión de video en los enlaces mientras que el 12% si posee alguna regla.

De las respuestas obtenidas se nota que mayoritariamente los usuarios no tienen reglas que permitan regular la transmisión de video en los enlaces de comunicaciones.

Pregunta N. 4: ¿Existen reglas que regulen la transmisión de archivos (Datos) en sus enlaces?

Opciones	Frecuencia	Porcentaje
SI	6	24 %
NO	19	76 %
Total:	25	100%

Tabla N° 4.4. Reglas de transmisión de archivos (Datos)

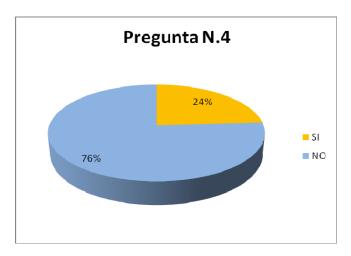


Figura N° 4.4. Reglas de transmisión de archivos (Datos)

Mediante las encuestas realizadas a los ingenieros se obtiene que el 24% utiliza reglas de transmisión de datos mientras que el 76% no regula la transmisión de datos en sus enlaces.

Gracias a las respuestas obtenidas en esta pregunta se constata que aproximadamente la cuarta parte de los encuestados utiliza reglas de transmisión de datos principalmente utilizando un servidor proxy; sin embargo las tres cuartas partes no utiliza ningún sistema de control de transmisión de datos.

Pregunta N. 5: ¿Su infraestructura de red utiliza algún método para clasificar sus aplicaciones críticas?

Opciones	Frecuencia	Porcentaje
SI	10	40 %
NO	15	60 %
Total:	25	100%

Tabla N° 4.5. Discriminación de aplicaciones críticas

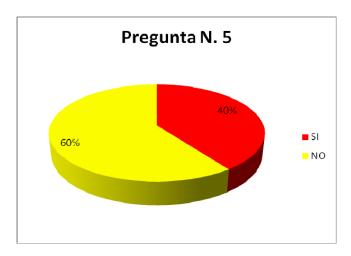


Figura N° 4.5. Discriminación de aplicaciones críticas.

Mediante las encuestas realizadas a los ingenieros se obtiene que el 40% si utiliza algún método que discrimine las aplicaciones críticas mientras que el 60% no tiene ningún método de discriminación de aplicaciones críticas.

Referente a esta pregunta se puede notar que pocos ingenieros utilizan métodos para discriminar las aplicaciones críticas de su empresa, sea voz, video o propias de su negocio. Entre estos métodos se encuentran PBR para enviar esta información por canales independientes, también se aplica QoS a nivel de Switches; es decir solamente a nivel de LAN.

Pregunta N. 6: ¿Su infraestructura de red utiliza algún método para discriminar aplicaciones no críticas?

Opciones	Frecuencia	Porcentaje
SI	6	24 %
NO	19	76 %
Total:	25	100%

Tabla N° 4.6. Discriminación de aplicaciones no críticas

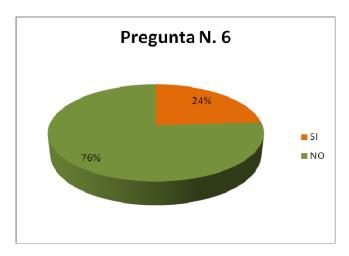


Figura N° 4.6. Porcentaje de Aprovechamiento

Mediante las encuestas realizadas a los ingenieros se obtiene que el 24% está provisto de algún método de discriminación de aplicaciones no críticas, mientras que el 76% no discrimina las aplicaciones no críticas.

La mayor parte de los usuarios no discrimina las aplicaciones no críticas dentro de sus redes, en tanto que aproximadamente una cuarta parte utiliza métodos como ACL en los routers o filtros de contenidos para discriminar ciertas aplicaciones no críticas de la empresa y evitar el abuso de uso de dichas aplicaciones.

Pregunta N. 7: ¿Utiliza algún medio para priorizar el tráfico de las aplicaciones de voz?

Opciones	Frecuencia	Porcentaje
SI	9	36 %
NO	16	64 %
Total:	25	100%

Tabla N° 4.7. Priorización de tráfico de aplicaciones de voz

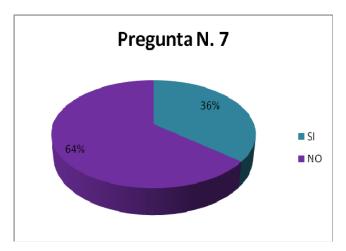


Figura N° 4.7. Priorización de tráfico de aplicaciones de voz

Mediante las encuestas realizadas a los ingenieros se obtiene que el 64% de los encuestados no utiliza medios de priorización de aplicaciones de voz, mientras que el 36% si utiliza algún medio de priorización.

Gracias a los resultados de esta pregunta podemos decir que una pequeña cantidad de administradores de red utiliza medios de priorización de tráfico de voz tales como QoS a nivel de los switches en la LAN así como también QoS en los firewalls o routers de borde; permitiendo dar una comunicación de voz más eficiente.

Pregunta N. 8: ¿Utiliza algún medio para priorizar el tráfico de las aplicaciones de video?

Opciones	Frecuencia	Porcentaje
SI	4	16 %
NO	21	84 %
Total:	25	100%

Tabla N° 4.8. Priorización de tráfico de aplicaciones de video

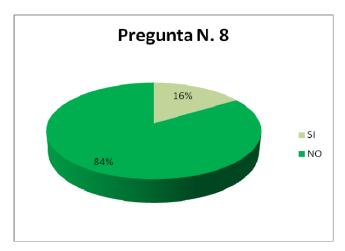


Figura N° 4.8. Priorización de tráfico de aplicaciones de video

Mediante las encuestas realizadas a los ingenieros se obtiene que apenas el 16% utiliza medios de priorización de video mientras que el 84% no prioriza la transmisión de video.

En este caso, la mayoría de administradores no utiliza medios de priorización de video sobre los enlaces de comunicaciones, en tanto que apenas una pequeña cantidad de ingenieros priorizan el tráfico de video utilizando enlaces dedicados para el mismo, esto no es óptimo ya que cuando no existe tráfico de video el enlace esta desperdiciado ya que no se lo está utilizando.

Pregunta N. 9: ¿Utiliza algún medio para priorizar el tráfico de las aplicaciones Real Time?

Opciones	Frecuencia	Porcentaje
SI	2	8 %
NO	23	82 %
Total:	25	100%

Tabla N° 4.9. Priorización de tráfico de aplicaciones Real Time

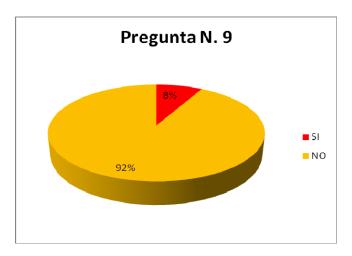


Figura N° 4.9. Priorización de tráfico de aplicaciones Real Time

Mediante las encuestas realizadas a los ingenieros se obtiene que apenas el 8% prioriza las transmisiones de aplicaciones Real Time, mientras que el 92% no lo hace.

De acuerdo a las respuestas a esta pregunta se deduce que casi en su totalidad los ingenieros no priorizan este tipo de aplicaciones, produciendo una lentitud en este tipo de tráfico cuando los enlaces están saturados; y apenas una pequeño grupo si lo prioriza.

Pregunta N. 10: ¿La transmisión de datos de sus aplicaciones es eficiente?

Opciones	Frecuencia	Porcentaje
SI	6	16 %
NO	19	84 %
Total:	25	100%

Tabla N° 4.10. Eficiencia de transmisión de datos

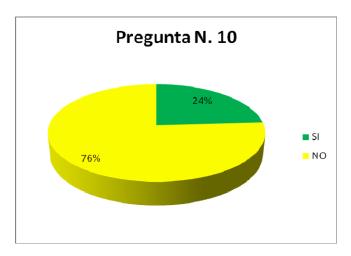


Figura N° 4.10. Eficiencia de transmisión de aplicaciones

Mediante las encuestas realizadas a los ingenieros se obtiene que el 16 % piensa que la transmisión de datos es eficiente mientras que el 84% piensa que sus transmisiones son ineficientes.

Según estos resultados la transmisión de datos es prácticamente ineficiente en la mayoría de los clientes, y en pequeña proporción los ingenieros piensan que su transmisión es eficiente.

Pregunta N. 11: ¿La transmisión de datos de sus aplicaciones es segura?

Opciones	Frecuencia	Porcentaje
SI	17	68 %
NO	8	32 %
Total:	25	100%

Tabla N° 4.11. Seguridad de la transmisión de datos.

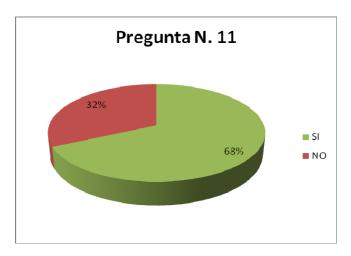


Figura N° 4.11. Seguridad de la transmisión de datos.

Mediante las encuestas realizadas a los ingenieros se obtiene que el 68% de ellos piensa que la transmisión de datos es segura mientras que el 32% no piensa igual.

La mayoría de los ingenieros administradores piensa que la transmisión de datos en sus enlaces es segura, lo que significa que confían en que los proveedores de servicios provean sistemas de contingencia en caso de que sea necesario además de que sus enlaces de datos sean completamente privados.

Pregunta N. 12: ¿La calidad del servicio de Chat corporativo es buena y sin interrupciones?

Opciones	Frecuencia	Porcentaje
SI	6	24 %
NO	19	76 %
Total:	25	100%

Tabla N° 4.12. Buena calidad y continuidad del servicio Chat Corporativo

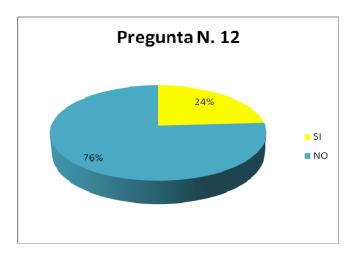


Figura N° 4.12. Buena calidad y continuidad del servicio Chat Corporativo

Mediante las encuestas realizadas a los ingenieros se obtiene que el 76% tiene inconvenientes con el servicio de Chat mientras que el 24% opina que la calidad es buena y no tiene interrupciones.

De acuerdo a las respuesta de esta pregunta aproximadamente las tres cuartas partes de los encuestados opina que el servicio de chat interno es de mala calidad y que presenta interrupciones en las conversaciones con las sucursales, lo que significa que otras aplicaciones consumen todo el enlace de datos y no permiten que los datos de este servicio se transmitan correctamente.

Pregunta N. 13: ¿La calidad del servicio de VoIp es buena y sin interrupciones?

Opciones	Frecuencia	Porcentaje
SI	5	20 %
NO	20	80 %
Total:	25	100%

Tabla N° 4.13. Buena calidad y continuidad del servicio de VoIp

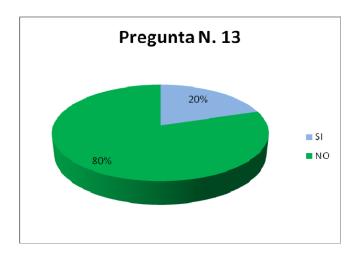


Figura N° 4.13. Buena calidad y continuidad del servicio de VoIp

Mediante las encuestas realizadas a los ingenieros se obtiene que el 20% de los encuestados afirma tener un servicio de VoIp de buena calidad y sin interrupciones mientras que el 80% opina lo contrario.

Claramente podemos apreciar que la mayoría de usuarios tienen una transmisión de voz de mala calidad y con interrupciones esto debido a perdida de paquetes lo cual genera interrupción en las conversaciones y mal estar en los usuarios finales.

Pregunta N. 14: ¿La calidad del servicio de Videoconferencia es buena y sin interrupciones?

Opciones	Frecuencia	Porcentaje
SI	1	4 %
NO	24	96 %
Total:	25	100%

Tabla N° 4.14. Buena calidad y continuidad de Videoconferencia

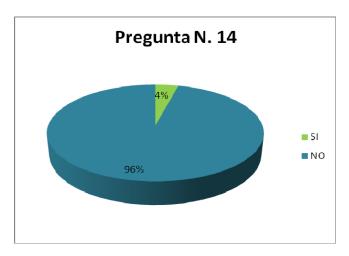


Figura N° 4.14. Buena calidad y continuidad de Videoconferencia

Mediante las encuestas realizadas a los ingenieros se obtiene que el 96% presenta una mala calidad e interrupciones en el servicio de videoconferencia; mientras que apenas el 4% opina que es de buena calidad.

Se puede apreciar claramente que se los usuarios no se encuentran satisfechos con el servicio de videoconferencia, el cual presenta mala calidad y con interrupciones del mismo a pesar que este servicio se considera una aplicación crítica.

Pregunta N. 15: ¿Los usuarios se sienten satisfechos con la utilización de las aplicaciones de la empresa?

Opciones	Frecuencia	Porcentaje
SI	4	16 %
NO	21	84 %
Total:	25	100%

Tabla N° 4.15. Satisfacción de los usuarios

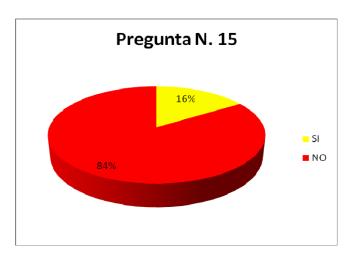


Figura N° 4.15. Satisfacción de los usuarios

A partir de las encuestas realizadas a los ingenieros se obtiene que el 16% está satisfecho con la utilización de las aplicaciones mientras que el 84% no está satisfecho con la utilización de las aplicaciones.

De las respuestas obtenidas en esta pregunta se puede deducir que la mayoría de ingenieros ha recibido quejas de parte de los usuarios finales al utilizar las aplicaciones propias de cada una de las empresas, es decir la transmisión de estas aplicaciones no son óptimas y eficientes lo cual genera el malestar en los usuarios.

Pregunta N. 16: ¿Un Algoritmo de Calidad de Servicio le ayudaría a garantizar la transmisión de sus aplicaciones en los enlaces de datos?

Opciones	Frecuencia	Porcentaje
SI	21	84 %
NO	4	16 %
Total:	25	100%

Tabla N° 4.16. Garantía de transmisión de aplicaciones con Algoritmo de QoS

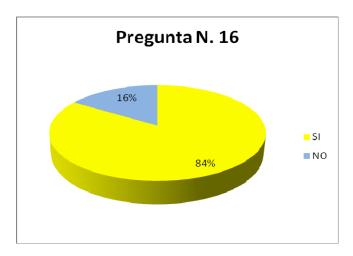


Figura N° 4.16. Garantía de transmisión de aplicaciones con Algoritmo de QoS

Como resultado de las encuestas realizadas se obtiene que al 84% de los ingenieros, un algoritmo de Calidad de servicio garantizaría la transmisión de las aplicaciones en sus enlaces, mientras que al 16% piensa que no le ayudarían a garantizar el tráfico.

En este caso, la mayoría de los administradores está de acuerdo en que al aplicar un algoritmo de calidad de servicio en los enlaces de datos la transmisión de sus aplicaciones se garantiza ya que permitirá dar prioridad a las mismas, evitando los problemas de congestión y mejorará el servicio a los usuarios finales.

Pregunta N. 17: ¿La transferencia de datos en los enlaces de comunicación es óptima, eficiente y confiable?

Opciones	Frecuencia	Porcentaje
SI	7	28 %
NO	18	72 %
Total:	25	100%

Tabla N° 4.17. Optimización, eficiencia y confiabilidad de la transferencia de datos

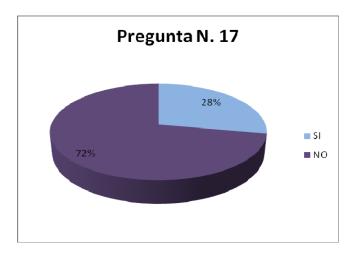


Figura N° 4.17. Optimización, eficiencia y confiabilidad de la transferencia de datos

De las encuestas realizadas a los ingenieros se obtiene que el 72% de las transferencias de datos no es óptima, ni eficiente ni confiable y solamente el 28% si lo son.

Claramente podemos apreciar que la mayoría tiene problemas con la eficiencia y confiabilidad de la transmisión de datos en los enlaces y que los canales de transmisión no optimizan la transmisión de los mismos; se presentan pérdidas de paquetes y lentitud en las aplicaciones, así como también saturación en los enlaces de transmisión.

Pregunta N. 18: ¿Ha tenido problemas en la transmisión de aplicaciones de voz cuando se satura el canal de comunicación?

Opciones	Frecuencia	Porcentaje
SI	24	96 %
NO	1	4 %
Total:	25	100%

Tabla N° 4.18. Problemas de transmisión de aplicaciones de voz

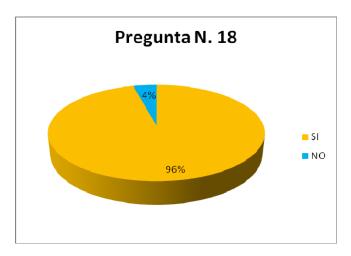


Figura N° 4.18. Problemas de transmisión de aplicaciones de voz

A partir de las encuestas realizadas a los ingenieros se obtiene que el 96% tiene problemas con las aplicaciones de voz cuando el canal de transmisión está saturado, mientras que el 4% no presenta este inconveniente.

Gracias a las respuestas de esta pregunta se puede apreciar que casi en la totalidad de usuarios presentan problemas en la transmisión de Voz por sus enlaces de datos, generando un servicio de mala calidad y con interrupciones o voces robotizadas, e incluso se presenta ruido; lo cual no permite una correcta comunicación.

Pregunta N. 19: ¿Ha tenido problemas en la transmisión de aplicaciones de base de datos cuando se satura el canal de comunicación?

Opciones	Frecuencia	Porcentaje
SI	19	76 %
NO	6	24 %
Total:	25	100%

Tabla N° 4.19. Problemas de transmisión de bases de datos

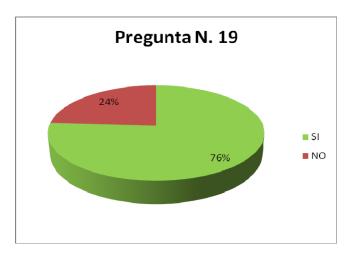


Figura N° 4.19. Problemas de transmisión de bases de datos

Fundamentado en las encuestas realizadas a los ingenieros se verifica que el 76% de los clientes presenta problemas de transmisión de las bases de datos entre los servidores y las aplicaciones que lo ocupan, mientras que el 24% no presenta este problema.

Con las respuestas obtenidas a esta pregunta se determina que la mayoría de usuarios presenta problemas con las aplicaciones de bases de datos entre los cuales se presentan interrupciones de servicio, replicas incompletas o lentitud en la carga y descarga de las bases de datos debido a que los canales de transmisión se encuentran saturados por otras aplicaciones ajenas a las prioritarias de la empresa.

Pregunta N. 20: ¿Ha tenido problemas en la transmisión de aplicaciones de video cuando se satura el canal de comunicación?

Opciones	Frecuencia	Porcentaje
SI	19	76 %
NO	6	24 %
Total:	25	100%

Tabla N° 4.20. Problemas de transmisión de videoconferencia

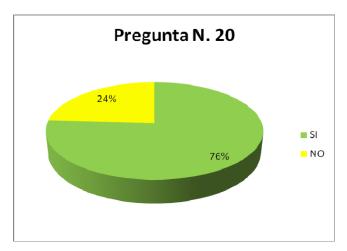


Figura N° 4.20. Problemas de transmisión de videoconferencia

De las encuestas realizadas a los ingenieros se obtiene que el 76% de las transmisiones de video presentan algún problema cuando los canales de transmisión de datos está saturado, mientras que el 24% no presenta problema alguno.

Las tres cuartas partes de los clientes reportan que se generan problemas en la transmisión de videoconferencia, presentando congelamientos de la imagen, retrasos del video respecto al audio, intermitencias de audio, lo cual genera malestares en los usuarios de esta aplicación ya que no permite una comunicación adecuada.

Pregunta N. 21: ¿Su proveedor de servicios le ayuda con los problemas de saturación de los enlaces incrementando el ancho de banda?

Opciones	Frecuencia	Porcentaje
SI	4	16 %
NO	21	84 %
Total:	25	100%

Tabla N° 4.21. Incremento de Ancho de banda por proveedor

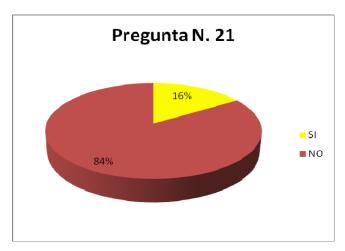


Figura N° 4.21. Incremento de Ancho de banda por proveedor

ANÁLISIS E INTERPRETACIÓN

Mediante las encuestas realizadas a los ingenieros se obtiene que el 16% recibe ayuda de los proveedores de servicios, aumentando el ancho de banda cuando los canales se saturan, mientras que el 84% no recibe este tipo de ayuda cuando sus canales de transmisión están saturados.

De las respuestas obtenidas se constata que los proveedores de servicio generalmente no ayudan a los clientes cuando tienen problemas de saturación de los enlaces de comunicación aumentando el ancho de banda de los mismos, y minoritariamente ayudan realizando incrementos temporales, lo que implica costos adicionales generados ocasionalmente.

Pregunta N. 22: ¿Su proveedor de servicios le ayuda con los problemas de saturación de los enlaces aplicando QoS?

Opciones	Frecuencia	Porcentaje
SI	6	24 %
NO	19	76 %
Total:	25	100%

Tabla N° 4.22. QoS aplicado por el proveedor de servicios



Figura N° 4.22. QoS aplicado por el proveedor de servicios

ANÁLISIS E INTERPRETACIÓN

A partir de las encuestas realizadas a los ingenieros se obtiene que el 24% de los proveedores aplican Calidad de servicio en los enlaces saturados de sus clientes para ayudar a solventar los problemas de transmisión, mientras que el 76% no lo realiza.

De las respuestas de esta pregunta se deduce que los proveedores en su mayoría no aplican Calidad de servicio en los enlaces de datos sobre todo en los instantes que estos se encuentran saturados, lo que genera problemas de transmisión de aplicaciones críticas como voz y video; ya que estos cambios influyen a todos los usuarios de dicho proveedor. Solamente un pequeño porcentaje aplica Calidad de servicio (según la petición de los administradores) que permita al cliente solucionar en parte sus problemas de comunicación.

Pregunta N. 23: ¿Utilizar un sistema de administración de Ancho de banda le ayudaría a solucionar el problema de congestión en sus enlaces?

Opciones	Frecuencia	Porcentaje
SI	22	88 %
NO	3	12 %
Total:	25	100%

Tabla N° 4.23. Sistema de administración de Ancho de Banda

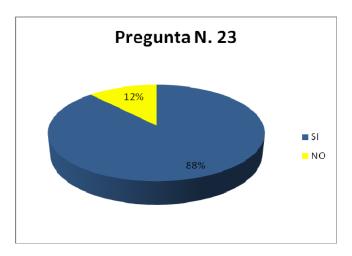


Figura N° 4.23. Sistema de administración de Ancho de Banda

ANÁLISIS E INTERPRETACIÓN

Mediante las encuestas realizadas a los ingenieros se obtiene que al 88% de los encuestados el utilizar un sistema de administración de ancho de banda le permitiría solucionar los problemas de saturación de ancho de banda, mientras que solo el 12 % piensa que esa no sería la solución a las congestiones en los enlaces de datos.

En este caso se puede apreciar que la mayoría de ingenieros desearía utilizar un sistema de administración de ancho de banda en los enlaces de datos para solucionar los problemas de transmisión de sus aplicaciones críticas cuando los enlaces se encuentren saturados, ya que estos sistemas están provistos de Algoritmos de calidad de servicio. Y un pequeño grupo asume que el usar estos sistemas no soluciona el problema.

Verificación de la Hipótesis

Modelo Lógico:

Formulación de la hipótesis

- $H_0 = Hipótesis nula$
- H₁ = Hipótesis alterna

H₀ = La aplicación de Algoritmos de Calidad de servicio **NO** solucionará los problemas de congestión en los enlaces de datos de los usuarios de la empresa

Uniplex Systems.

H₁ = La aplicación de Algoritmos de Calidad de servicio SI solucionará los problemas de congestión en los enlaces de datos de los usuarios de la empresa Uniplex Systems.

Modelo Estadístico:

Las pruebas Ji Cuadrada es una prueba estadística para evaluar hipótesis acerca de la relación entre dos variables categóricas.

Prueba de Hipótesis:

> Elección de la prueba estadística

Para la verificación de la hipótesis se escogió la prueba Ji Cuadrada, cuya fórmula es la siguiente:

$$X^2 = \sum \left(\frac{\left(f_0 - f_e \right)^2}{f_e} \right)$$

Simbologia:

 X^2 = Ji Cuadrada

 f_o = Frecuencia observada.

 f_e = Frecuencia esperada.

Para realizar la matriz de tabulación cruzada se toma en cuenta 2 preguntas de la encuesta realizada a los ingenieros administradores de redes y administradores de aplicaciones (Anexo 2) como se muestra a continuación:

Pregunta N. 1: ¿Existen Algoritmos de Calidad de servicio que regulen el tráfico de información (voz, video, datos)?

Opciones	Frecuencia	Porcentaje
SI	4	16%
NO	21	84 %
Total:	25	100%

Tabla N° 4.24. Comprobación de hipótesis: Algoritmos de QoS.

Pregunta N. 23: ¿Utilizar un sistema de administración de Ancho de banda le ayudaría a solucionar el problema de congestión en sus enlaces?

Opciones	Frecuencia	Porcentaje
SI	22	88 %
NO	3	12 %
Total:	25	100%

Tabla N° 4.25. Comprobación de hipótesis: mejoramiento de transmisión de datos en enlaces de comunicación.

> Definición del nivel de significación

El nivel de significación escogido para la investigación es del 5%.

$$\alpha = 0.05$$

> Grado de libertad

Grado de libertad = (Renglones - 1) (columna -1)

$$Gl = (r-1)(c-1)$$

$$Gl = (2-1)(2-1)$$

$$Gl = 1$$

> Frecuencias Observadas

Parámetros	ALTERN	TOTAL	
Farametros	SI	NO	TOTAL
Existencia de Algoritmos	4	21	25
Mejoramiento de transmisión en enlaces de datos	22	3	25
TOTAL	26	24	50

Tabla Nº 4.26. Frecuencias Observadas

> Frecuencias Esperadas

Para calcular la frecuencia esperada se utiliza la siguiente fórmula:

$$fs = \frac{(Total\ o\ marginal\ ds\ renglon)(total\ o\ marginal\ ds\ columna)}{N}$$

Barámatros	ALTERNA	ΓΙΝΑΤΙVAS
Parámetros	SI	NO
Existencia de Algoritmos	13,0	12,0
Mejoramiento de transmisión en enlaces de datos	13,0	12,0

Tabla Nº 4.27. Frecuencias Esperadas

> Calculo de Ji Cuadrada

$X^2 = \sum \left(\frac{(f_0 - f_e)^2}{f_e} \right)$	f 0	fo	fe fo-fe	(fo - fe) ²	(fo - fe)2
$A - Z \left(\frac{f_e}{f_e} \right)$	fo	/e //			fe
Existencia de Algoritmos / SI	4	13,0	-9,0	81,00	6,23
Existencia de Algoritmos / NO	21	12,0	9,0	81,00	6,75
Mejoramiento de transmisión / SI	22	13,0	9,0	81,00	6,23
Mejoramiento de transmisión/ NO	3	12,0	-9,0	81,00	6,75
				X ² =	25,96

Tabla Nº 4.28. Calculo de Ji Cuadrado

Figura:

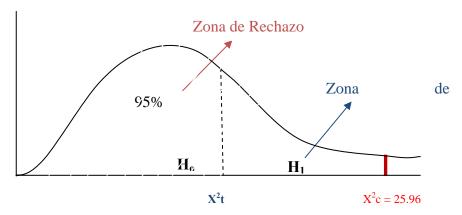


Figura Nº 4.24. Curva de Ji Cuadrado para comprobación de hipótesis

Decisión:

El valor de
$$X_t^2 = 3.84$$
 (Anexo 5) $< X_C^2 = 25.96$ (Tabla N° 4.28.)

Por consiguiente se acepta la hipótesis alterna, es decir, que la aplicación de Algoritmos de Calidad de servicio mejora la transmisión de datos en los enlaces e comunicación. Y se rechaza la hipótesis nula.

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

- Los problemas detectados en los usuarios se deben a que aplicaciones no críticas tales como transmisión de datos por FTP, P2P, streaming, etc. siempre tratan de transmitir lo más rápido posible acaparando la mayor parte del ancho de banda disponible en los canales de transmisión, esto debido a que no se cuenta con sistemas que apliquen algún algoritmo de calidad de servicio en los enlaces de transmisión de datos. Sin embargo algunos usuarios utilizan métodos para evitar estos inconvenientes como tener un enlace de transmisión independiente solo para voz y video o utilizan QoS a nivel de LAN, es decir lo aplican a nivel de Switching el cual permite dar prioridad a la Vlan de voz sobre las demás Vlans.
- Del análisis realizado en esta investigación se concluye que los enlaces de los usuarios de la empresa Uniplex Systems tienen problemas graves en la transmisión de aplicaciones críticas como voz, video y en algunos casos de aplicaciones propias de cada una que son primordiales para los usuarios; sobre todo cuando existe saturación de los canales de comunicación; generando un índice de satisfacción muy bajo por parte de los usuarios finales.
- Gracias al estudio de los diferentes algoritmos de calidad de servicio se puede
 concluir que los más adecuados son los algoritmos intermedios ya que
 permiten una mejor utilización de los recursos conjuntamente con DiffServ el
 cual permite realizar una diferenciación de los paquetes que se requieren
 transmitir, de forma que los paquetes de aplicaciones críticas tengan prioridad.

 Las nuevas tendencias tecnológicas apuntan a la utilización de sistemas complejos para la aplicación de Calidad de servicio en enlaces de transmisión de datos, en donde no solamente se aplican algoritmos de Calidad de servicio sino permiten una administración completa del uso del ancho de banda de los canales de comunicación, los cuales incluyen inspecciones profundas en los paquetes para la clasificación y priorización de aplicaciones.

Recomendaciones

- Es recomendable aplicar reglas que permitan reducir la transmisión de aplicaciones no críticas y mantener controlado el uso de ancho de banda por parte de estas; no necesariamente bloquearlas ya que en varias ocasiones si es necesario utilizar este tipo de aplicaciones.
- Se debe incluir sistemas que provean Algoritmos de calidad de servicio adecuados que permitan el uso apropiado y optimo de los recursos de red y sean flexibles adaptándose fácilmente a las necesidades propias de cada una de las empresas, lo cual llevará a una satisfacción completa del usuario final al momento de utilizar las aplicaciones.
- Se recomienda utilizar sistemas de diferenciación de tráfico para la aplicación de calidad de servicio en los canales de comunicación, es decir utilizando Algoritmos de Diffserv, los cuales permiten clasificar las aplicaciones de forma efectiva y dar prioridad a las aplicaciones críticas como voz, video y de bases de datos se transmitan con eficacia.
- Se recomienda incluir en la infraestructura de red, sistemas administradores de ancho de banda, tales como Allot o Packeteer; que poseen tecnología de diferenciación de servicio como DPI (Deep Paquet Inspection) la cual realiza un análisis a nivel de capa 7 para clasificar las aplicaciones y poder asignar la prioridad de calidad de servicio adecuada para su transmisión.

CAPÍTULO VI

LA PROPUESTA

Datos Informativos

La siguiente propuesta se la realizará en la Empresa Uniplex Systems, cuya dirección es Alpallana E7-212 y Diego de Almagro, en el Distrito Metropolitano de Quito. Uniplex Systems es una empresa que provee soluciones tecnológicas en las áreas de base de datos, sistemas integrados oficina e infraestructura de redes.

Antecedentes de la Propuesta

El principal problema que se ha encontrado en los enlaces de datos de los usuarios de la empresa Uniplex Systems es la saturación por parte de protocolos o aplicaciones que no son de beneficio para las empresas tales como FTP, SMB y otros los cuales consumen todo el ancho disponible de los enlaces, dejando a las aplicaciones críticas como voz y aplicaciones propias de la empresa sin ancho de banda para su transmisión lo cual genera retardos en las comunicaciones.

Esta situación se presenta ya que los clientes no tienen sistemas que provean algún algoritmo de calidad de servicio o los métodos que usan no son lo suficientemente adecuados para minimizar o eliminar el problema.

Estado del arte

Luego de haber realizado la investigación acerca del problema podemos darnos cuenta de la situación actual de los enlaces de datos de los usuarios, ya que estos se encuentran saturados por aplicaciones que no son importantes para el funcionamiento de las actividades de cada una de las empresas.

Claro ejemplo es el que se muestra en la siguiente figura, donde el canal de 4 Mbps se encuentra saturado por tráfico de Internet:

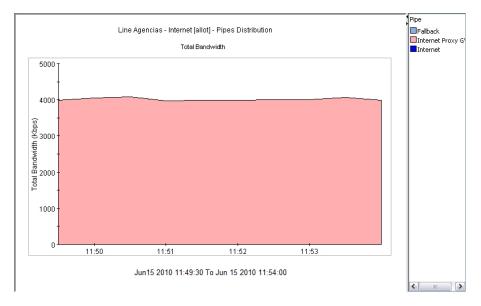


Figura N° 6.1. Estado del Arte, saturación de canal de 4 Mbps.

Otro ejemplo de la situación actual de es la saturación de un canal de 2Mbps que se encuentra completamente saturado por el protocolo HTTP y MSN Spaces, sin dejar ancho de banda para las aplicaciones importantes como son SMTP y la aplicación que usa el puerto 34719 que son aplicaciones de gran importancia para este cliente, como lo muestra la figura siguiente:

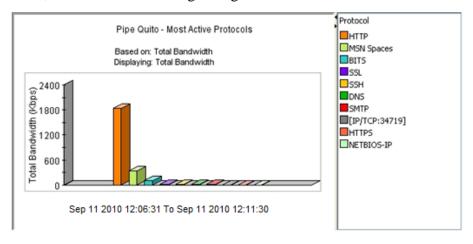


Figura N° 6.2. Estado del arte, Saturación de canal de 2 Mbps.

De igual manera sucede con este enlace de 128 Kbps en donde el protocolo SSMPP se ha adueñado de todo el canal y las aplicaciones importantes como MS Exchange y LOTUS_NOTES a penas pueden comunicarse:

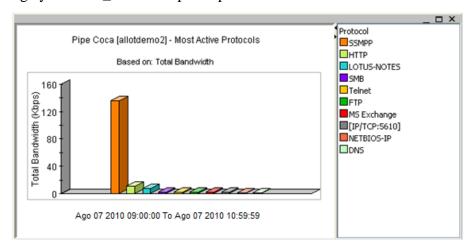


Figura N° 6.3. Estado del arte, saturación de canal de 128 Kbps.

Justificación

Es **importante** realizar esta propuesta ya que el uso adecuado de los recursos informáticos y tecnológicos permitirá a los administradores de redes conocer los beneficios de aplicar calidad de servicio a sus enlaces y poder mejorar las transmisiones de datos; con esto se verán beneficiados los diferentes usuarios de la empresa Uniplex Systems.

El proponer la implementación de algoritmos de Calidad de servicio para los enlaces de datos es de gran **importancia** puesto que este involucra un análisis de la implementación de tecnologías de punta que actualmente ya se están utilizando en el mundo entero.

Es **importante** realizar esta propuesta ya que el uso de un administrador de ancho de banda permitirá aplicar calidad de servicio a los enlaces y poder mejorar las transmisiones de datos de los usuarios; además de conocer y tener una visión clara del tráfico que está pasando por estos enlaces.

Sabemos que el desarrollo de esta propuesta es **factible** y posible de realizar ya que se cuenta con la información necesaria referente al problema, la información

referente a equipos y tecnologías a utilizarse y el conocimiento obtenido durante la colegiatura de la maestría.

Sabemos que es **factible** y posible de realizar las pruebas necesarias para demostrar que esta propuesta cumple con las expectativas para solucionar el problema de congestión en los enlaces además que Uniplex Systems cuenta con el sistema Allot, un NetEnforcer AC-402 (Anexo 6) con el servidor NetXplorer V10.1.0 (Anexo 7) para realizar las pruebas necesarias.

Adicionalmente el sistema Allot cumple con las características necesarias tanto de Calidad de servicio como de traffic shaping, siendo el más apto para administrar los enlaces de datos y solucionar los problemas que se han presentado en los mismos.

Objetivos

Objetivo General

Proveer una solución a los problemas de congestión de los enlaces de comunicación de los usuarios de la empresa Uniplex Systems de la ciudad de Quito.

Objetivos Específicos

- Describir la funcionalidad del sistema Allot el cual permitirá solucionar el problema de congestión de los enlaces de datos de los usuarios de la empresa Uniplex Systems.
- Determinar las aplicaciones críticas y no críticas de los clientes y su consumo promedio de ancho de banda.
- Realizar una configuración del sistema Allot para aplicar Calidad de servicio en los enlaces de comunicación.

Análisis de Factibilidad

Uniplex Systems actualmente cuenta con todos los recursos necesarios para ejecutar la propuesta de solución a los problemas de congestión de los enlaces de datos de sus clientes, detallando a continuación:

- Sistemas Allot (Netenforcer y Netxplorer) para realizar las pruebas necesarias de implementación de la solución.
- Personal Certificado para la implementación del sistema y para soporte en caso de existir algún inconveniente durante la implementación.
- Soporte del fabricante para dudas y problemas de implementación y funcionamiento en caso de ser necesario.
- Capacitación al personal que estará a cargo de administrar el sistema Allot.

Por parte de los clientes se cumple con los siguientes puntos necesarios para que la propuesta sea factible:

- Infraestructura actual: Diagramas de red, servicios o aplicaciones propias de negocio.
- Presupuesto necesario para la adquisición definitiva del sistema Allot, luego de las pruebas con los equipos propiedad de Uniplex Systems.
- Personal que será capacitado para la administración del sistema, una vez que se haya adquirido la solución final.

Fundamentación

Científico Técnico

Esta propuesta está basada en la información técnica de la Inspección Profunda de paquetes DPI (por sus siglas en inglés Deep Paquet Inspection), y la descripción del sistema de administración de Ancho de banda Allot que se detallan a continuación:

DPI

DPI es la asociación del análisis de puertos físicos y dinámicos, el reconocimiento de firmas de aplicación, evitando confundir el puerto falso HTTP, y análisis de comportamiento: comprensión de las aplicaciones, incluso cuando está cifrado, para proporcionar el máximo nivel de detección de aplicaciones en una red IP.

Para implementar la tecnología DPI en un dispositivo de red, son muchos los retos a superar:

- 1. La capacidad de construir una biblioteca completa de firmas y comportamiento.
- 2. La capacidad de ejecutar todas estas inspecciones en tiempo casi real, para introducir la menor latencia posible, y alcanzar una velocidad de varios gigabits.
- **3.** La capacidad de crear y poner a disposición de todos los contadores necesarios para alimentar una base de datos con las estadísticas y los datos de uso, ofreciendo tanto un alto nivel como vistas detalladas de la actividad de la red.

La combinación de la tecnología inspección profunda de paquetes (DPI), visibilidad y control activo permite dar inteligencia a las redes.

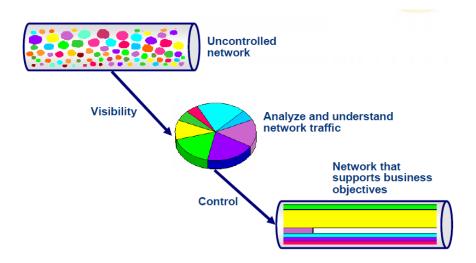


Figura N° 6.4. Entendimiento y control de la red

El funcionamiento de DPI consiste en realizar una inspección en todas las capas del modelo OSI; diferenciando un control en cada una de las capas así:

- La conmutación y enrutamiento son esencialmente posicionados en las capas 2 y 3 mirando la dirección de origen y destino de un paquete, además de otra información de fácil acceso como el campo Tipo de Servicio (ToS).
- En la capa 4 y aún mayor en la capa 7, DPI verifica lo que en realidad se está enviando puesto que, dada la complejidad de las actuales aplicaciones Peer to Peer y otras similares, y todos los mecanismos complicados que utilizan para esconderse, DPI confirma lo que realmente está circulando por la red con la mayor precisión posible.



Figura N° 6.5. DPI examina las capas 4-7 del modelo OSI.

Profundizar en los paquetes significa esencialmente tres puntos:

1. Las aplicaciones conocidas establecen sesiones en puertos fijos TCP o UDP, que son fáciles buscar en un paquete. Algunas aplicaciones, sin embargo, negocian un puerto al azar distinto del fijado que se utiliza para establecer la conversación. La sesión se continúa en este nuevo puerto. Debido a que el nuevo puerto no se puede saber de antemano, el motor DPI debe supervisar la sesión en

una base en tiempo real. Únicamente mediante el monitoreo del diálogo inicial de miles de sesiones simultáneas, se puede autenticar la naturaleza de la aplicación.

- 2. Algunas aplicaciones usan puertos fijos como el puerto HTTP (80), fingiendo su naturaleza real y tratan de cruzar a través de firewalls sin ser reconocidas. Un dispositivo de análisis simple concluye que se trata de web, navegación normal, cuando la realidad puede ser una pesada descargas P2P. Un dispositivo DPI ensambla varios paquetes intercambiados en el comienzo de la conversación y luego busca lo que llamamos una firma, identificados como característica de una aplicación específica.
- **3.** En aplicaciones totalmente encriptadas, la búsqueda de un puerto o una firma no tiene sentido. Algunas aplicaciones de cifrado establecen sesiones con la misma serie de paquetes, o usando paquetes de la misma longitud y orden. Al observar la longitud de los paquetes y el orden en que son ordenados, podemos determinar lo que se conoce como una firma de comportamiento. DPI también puede emplear técnicas complejas de análisis de comportamiento para deducir la verdadera naturaleza de estos flujos cifrados.

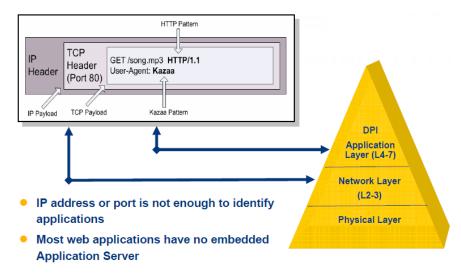


Figura N° 6.6. Mirando profundamente dentro de los paquetes

Asumiendo la analogía de que un enlace de datos es como una tubería, DPI transforma tuberías "tontas" en tuberías "inteligentes", basada en el contenido. En

este ejemplo particular, se ilustra como un proveedor ofrece diferentes grados de servicio. Sin embargo, hay muchas otras aplicaciones críticas para la gestión de la calidad del servicio tanto para los proveedores de servicios como las empresas.

Figura N° 6.7. Desde tuberías tontas a tuberías con contenido inteligente

Optimización inteligente de servicios IP

Con la tecnología DPI en el núcleo, Allot proporciona tres tipos de soluciones:

- 1. Visibilidad de la Red, que permite a los usuarios ver realmente lo que está pasando en sus redes, analizar los datos y comprender las tendencias a largo plazo.
- 2. La aplicación de control, que permite a los usuarios construir políticas de tráfico que se aplican parámetros de calidad de servicio a los diferentes tipos de aplicaciones, garantizando así que la calidad de la experiencia se mantenga y los costos de red estén controlados.
- **3.** Administración de suscriptores, permite a los usuarios crear perfiles de uso para crear servicios que se hacen a medida para satisfacer las necesidades de los diferentes tipos de abonados.

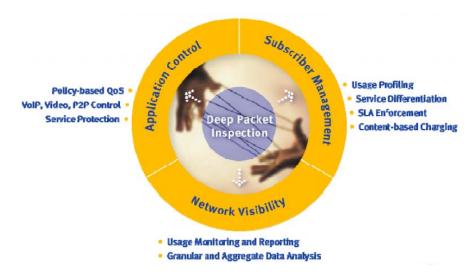


Figura N° 6.8. Optimización inteligente de servicios IP

Necesidades a cubrir

Las necesidades que llega a cubrir un motor DPI son las siguientes:

• Mantener los costos WAN y asegurar las aplicaciones de misión crítica.

El Problema	Necesidad
Diferentes aplicaciones y usuarios compiten por los	
mismos recursos limitados	Mantener los costos
Bajo rendimiento de aplicaciones de misión critica.	de WAN y asegurar
Ancho de Banda malgastado o sobre utilizado	las aplicaciones de
Poca importancia, Aplicaciones hambrientas de	misión crítica
ancho de banda que acaparan las conexiones WAN	

Tabla N° 6.1. Problemas en enlaces WAN

Figura N° 6.9. Problema en enlace WAN.

Generalmente en una empresa, en el enlace limitado de ancho de banda que generalmente conecta entre las redes de área local y de oficinas diferentes, los administradores de red ven una gran cantidad de diferentes aplicaciones y usuarios que compiten por los mismos recursos limitados. En una infraestructura de red que está diseñado de forma predeterminada en una base primero llega primero se sirve, las aplicaciones de misión crítica pueden tener bajo rendimiento, o no tener rendimiento, mientras que las aplicaciones poco importantes pero hambrientas de ancho de banda consumen mayor parte del ancho de banda en la conexión WAN.

	Acceso WAN	
Mantener los costos de	Optimizar la infraestructura WAN	
WAN y asegurar las aplicaciones de misión	Maximizar el rendimiento de aplicaciones críticas de negocio.	
crítica	Lograr inteligencia en la red	
	Asegurar el máximo ancho de banda disponible.	

Tabla Nº 6.2. Optimización de tráfico para acceso WAN

La optimización de los enlaces WAN se hace mediante la ampliación y mejoramiento del rendimiento de la infraestructura existente de red WAN. Se pueden priorizar las aplicaciones críticas de negocio y garantizar el ancho de banda para su envío. Se pueden establecer políticas de uso sencillo para evitar la congestión de la red e implementar políticas globales de red para asegurar que el ancho de banda disponible sea máximo.

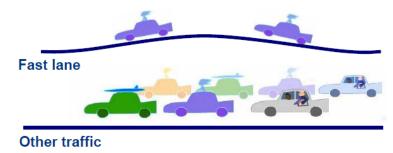


Figura N° 6.10. Optimización de tráfico para acceso WAN.

· Congestión del acceso al Internet.

El Problema	Necesidad
Acceso a Internet lento e inconsistente	
Frustración del usuario final y muchas llamadas a	
Soporte Interno.	Optimizar el acceso
Incremento de Ancho de banda incrementa el tamaño	al Internet
del problema.	ai internet
Uso de Internet recreacional reduce la productividad	
de los empleados	

Tabla N° 6.3. Problema de congestión en Internet

Figura N° 6.11. Congestión en Internet

Además del problema en el enlace WAN entre oficinas, muchas empresas están plagadas de problemas en su enlace de acceso a Internet. Los usuarios se sienten frustrados por el acceso lento e inconsistente a Internet, y el resultado es un flujo constante de quejas al administrador de red. El aumento del ancho de banda de la conexión a Internet, sólo parece aumentar el tamaño del problema, y con poca o ninguna visibilidad sobre cómo el enlace de Internet se está utilizando, no se tiene forma de saber cuál es la demanda de ancho de banda que los empleados están usando en legitimas necesidades relacionadas al negocio, y en qué medida se derivan para uso recreativo.

Por lo tanto, los administradores de redes están constantemente buscando formas de optimizar su enlace de acceso a Internet sin necesidad de adquirir más ancho de banda.

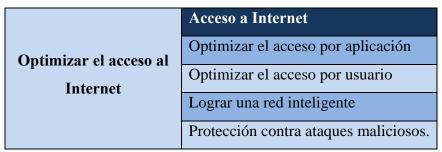


Tabla N° 6.4. Optimización de tráfico para acceso al Internet.

La optimización del acceso a internet se realiza mediante la identificación de los tipos de tráfico de la red y los usuarios, y la asignación de los diferentes niveles de calidad de servicio, en función de su importancia para el negocio.

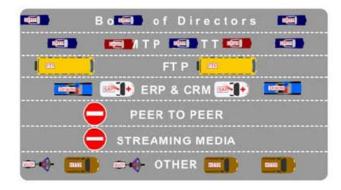


Figura N° 6.12. Optimización de tráfico para acceso al Internet.

Propuesta de DPI de Allot:

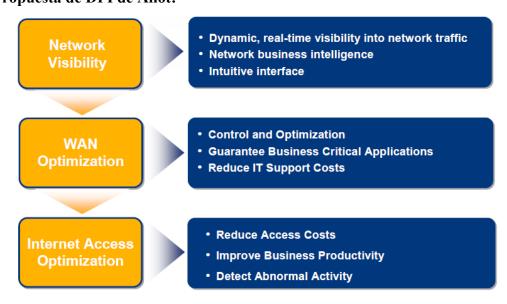


Figura N° 6.13. Propuesta de Allot para las empresas

La propuesta basada en DPI de Allot para las empresas consiste en la visibilidad de la red, optimización de la WAN y la optimización del enlace de acceso a Internet. Sabiendo que antes de introducir las soluciones de Allot, los clientes empresariales tienen una visibilidad mínima en su red. La red está congestionada y los usuarios finales se quejan de la mala calidad de la experiencia (QoE). El administrador de red tiene pocos instrumentos a su disposición para analizar adecuadamente la causa de la congestión y para mitigarlo. Cada vez más ancho de banda se compra, y este es rápidamente agotado. La amenaza constante y creciente de ataques de denegación de servicio sólo se suma al dolor de cabeza del administrador de redes.

Las soluciones para las empresas es dar al administrador de redes la visibilidad necesaria para entender las razones de la congestión de la red y actuar adecuadamente. Por la asignación inteligente de ancho de banda, el administrador puede garantizar que las aplicaciones de misión crítica están protegidas y la productividad de los empleados se mantenga. Por otra parte, la rápida detección de comportamiento anormal de la red permite una reacción más rápida y más informada contra los ataques de red.

Antes de Allot	Después de Allot
Mínima visibilidad de la red	Visibilidad – Red ampliamente monitoreada
Congestión de red y pobre QoE	Inteligente aplicación del Ancho de Banda
Aplicaciones acaparando el Ancho	Protección de aplicaciones de misión crítica.
de banda	
Amenazas de seguridad en la red	Rápida detección de comportamientos
	anormales.
Uso de aplicaciones que no son de	Incremento de la productividad del
negocio	empleado.

Tabla N° 6.5. Antes y Después de Allot

Líneas, Tuberías y Canales virtuales

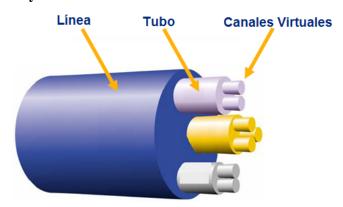


Figura N° 6.14. Lineas, Tubos y Canales virtuales

Con el fin de controlar el tráfico de la red, debemos en primer lugar, clasificarla. La solución de gestión de tráfico de Allot se basa en una jerarquía de clasificación clara.

El primer nivel de clasificación es la línea. El siguiente nivel de clasificación es un tubo. Cada tubo se divide en canales virtuales (VC por sus siglas en ingles). El usuario puede definir cualquier número de líneas, tubos o canales virtuales hasta el máximo permitido por su licencia, y todo el tráfico se clasifica en una línea, un tubo y un VC. Para cada línea, tubo y canal virtual que se crea, se puede definir una regla.

Ejemplo:

Estructura de Políticas empresariales

Objetivo:

- Garantizar calidad de servicio para cada sucursal.
- Garantizar calidad de servicio para aplicaciones críticas de negocio

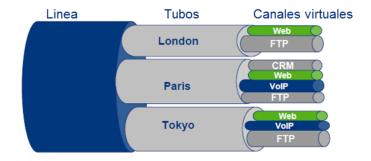


Figura N° 6.15. Ejemplo de Estructura de políticas empresariales

Aquí vemos un ejemplo, de un cliente empresarial. En este caso, la empresa clasifica el tráfico hacia y desde sus diferentes sucursales en las tuberías. Y canales virtuales se utilizan para las distintas aplicaciones.

Políticas, reglas y catálogos

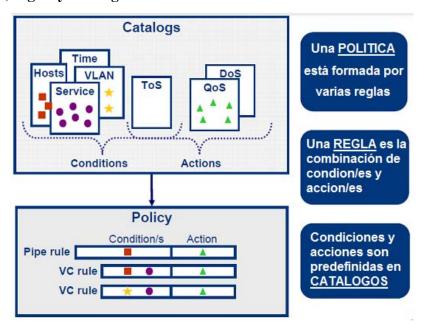


Figura N° 6.16. Políticas, reglas y Catálogos.

Una política de tráfico se compone de una serie de reglas. Para crear las reglas, usamos condiciones y acciones predefinidas que se han almacenado en los catálogos. Por lo tanto los Catálogos pueden ser vistos como los componentes básicos de las reglas. Hay varios tipos de catálogos, catálogos de hosts o servicio, por ejemplo, se utilizan para las condiciones, mientras que el catálogo de calidad de servicio se utiliza como una acción. El catálogo ToS se puede utilizar para definir tanto condiciones como acciones.

Una regla consiste en una o más condiciones además de una o más acciones. Una entrada de catálogo que se define pueden ser global; esto significa que las mismas entradas de catálogo se puede utilizar en la definición de diferentes reglas de tuberías o canales virtuales. Las diferentes reglas se crean en la tabla de política en la interfaz de usuario NetXplorer y están organizados jerárquicamente. En conjunto, estas diferentes reglas forman lo que se conoce como política.

Ejemplo:

A continuación se ilustra cómo crear una regla. El primer paso es definir las entradas catálogos las cuales servirán sea como condiciones o acciones, y son definidas globalmente para que puedan ser reutilizados y para crear cualquier número de reglas diferentes. Después tomamos las condiciones y acciones que se han definido, y la ponemos juntas para crear las reglas.

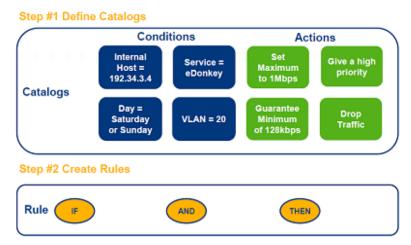


Figura N° 6.17. Ejemplo de reglas.

La tabla de políticas

Aquí se puede ver la tabla de políticas en el NetXplorer con las reglas de línea, tubo y CV por defecto.

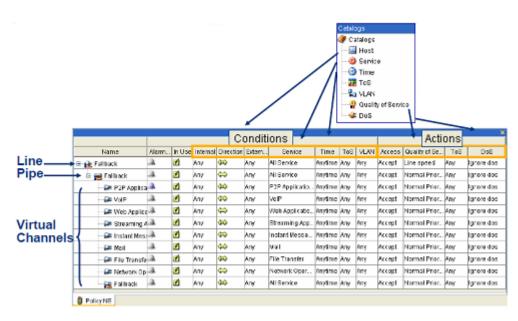


Figura N° 6.18. Tabla de políticas en el NetExplorer

Arquitectura NetXplorer

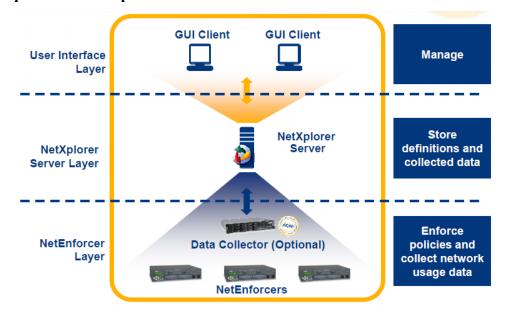


Figura N° 6.19. Arquitectura NetXplorer

La arquitectura NetXplorer consta de tres capas:

- La capa de NetEnforcer. Puede haber varios dispositivos NetEnforcer que implementan las políticas de gestión de red y recopilan datos de uso de la misma.
- La capa del servidor NetXplorer. Este incorpora la aplicación NetXplorer, incluyendo las bases de datos. La gestión y la comunicación con los distintos clientes que acceden al sistema, esto facilita la configuración del NetEnforcer, el aprovisionamiento de políticas, alarmas, monitoreo y reportería. El NetXplorer también incluye un colector de datos integrado, que simplifica la recolección de los datos requeridos de los dispositivos gestionados NetEnforcer.
- Nivel de Interfaz Usuario. La interfaz de usuario se puede instalar en cualquier ordenador de la red que pueda conectarse con el servidor NetXplorer.

Un elemento adicional es el colector a corto plazo distribuido, el cual es un elemento opcional que permite soportar más dispositivos NetEnforcer con un único servidor NetXplorer.

Flujo de Datos

En la Figura 6.20. Se puede apreciar el flujo de datos de todo el sistema, el cual segmentado en cuatro etapas:

- *Presentación*, en donde se gestiona las políticas, alarmas y todo el sistema de reportería, basado en un cliente Java.
- Lógica de políticas, donde se encuentran las políticas configuradas, la aplicación de las mismas sobre el tráfico de red, y recolección de datos del mismo, implementado en el NetEnforcer.
- El Servidor de aplicaciones y visualización, encargada de almacenar en una base de datos Sybase Anyware, toda la información tanto de la etapa de presentación como de la etapa de políticas, además de la generación de los gráficos presentados en la reportería y de los datos enviados a la etapa de integración.
- Etapa de Integración, encargada de gestionar los datos tanto de tiempo real como los de tiempos a largo plazo, tanto para la presentación de gráficos y la exportación de los mismos, así como también para la integración de otros sistemas externos mediante un API.

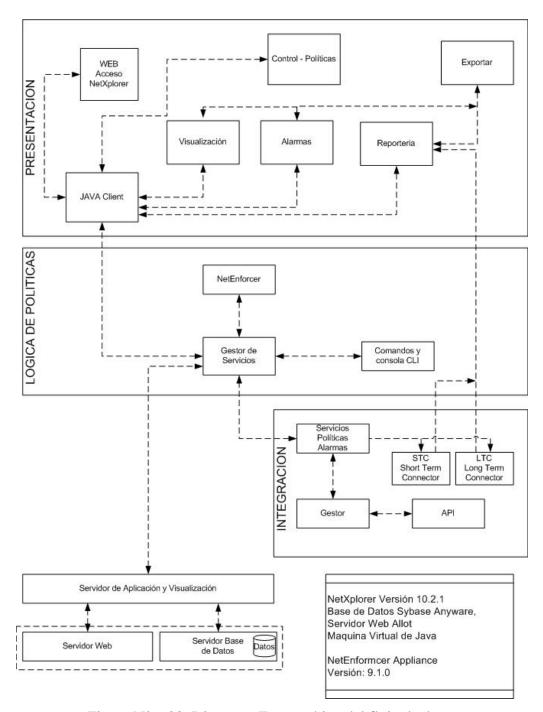


Figura N° 6.20. Diagrama Esquemático del flujo de datos

NetEnforcer

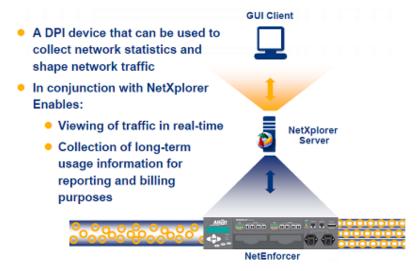


Figura N° 6.21. NetEnforcer

El NetEnforcer es un dispositivo DPI que recoge las estadísticas de tráfico y puede aplicar calidad de servicio en una red por aplicación y por usuario. Las estadísticas de tráfico son recogidos con el fin de proporcionar datos de la red en tiempo real y a largo plazo. La información de monitoreo en tiempo real, permite al administrador saber exactamente lo que está sucediendo en la red en un momento dado. Provee al administrador una herramienta para solucionar problemas de la red en los retrasos inexplicables que se pueden estar experimentando.

NetEnforcer proporciona también datos a largo plazo de la red. Los administradores pueden usar estos datos para generar informes de uso a largo plazo para obtener una información detallada sobre los patrones de uso y tendencias. Estos datos también se pueden exportar a otras bases de datos y aplicaciones de facturación, extendiendo los beneficios de la información proporcionada. Así como la recolección de información detallada sobre el tráfico que pasa por él, el NetEnforcer también pueden dar forma al tráfico, aplicando parámetros de calidad de servicio que han sido previamente definidos por el administrador. Los métodos de aplicación de la calidad del servicio son variados e incluyen la garantía y limitación de throughput, así como priorizar entre los diferentes tipos de tráfico.

En una red empresarial, el NetEnforcer debe ser colocado en (cerca de) la ubicación exacta del cuello de botella. En el enlace de Internet, el NetEnforcer se coloca directamente antes del router de Internet. En el enlace WAN en un entorno de sucursales, el NetEnforcer debe colocarse junto a la salida del router que conecta la red de área local con las sucursales remotas. Los firewalls no suelen ser un problema aquí, ya que los enlaces WAN estén conectados únicamente a las sucursales y por lo tanto son privadas. Esto significa que el NetEnforcer se puede conectar directamente entre el router WAN y la LAN.

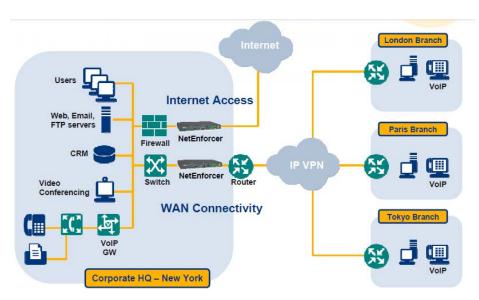


Figura N° 6.22. Ubicación del NetEnforcer

En el enlace de internet la ubicación del NetEnforcer está en relación con el firewall. Cuando el firewall realiza la traslación de direcciones de red (NAT), puede tener sentido colocar el NetEnforcer antes del firewall. Colocar el NetEnforcer después del firewall que realiza NAT significa que el NetEnforcer no será capaz de filtrar el tráfico por host interno.

Colocar el NetEnforcer antes del firewall no siempre puede ser la mejor opción. Particularmente en los casos en que el cliente tiene una DMZ conectado a su Firewall. Una DMZ es la zona semi-protegida donde se coloca el equipo que necesita ser accedido desde dentro y fuera del firewall. En tal caso, los flujos de tráfico son de la LAN a la WAN y la LAN a la DMZ.

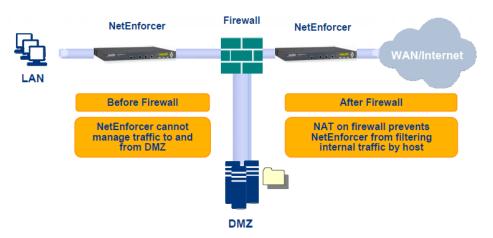


Figura N° 6.23. Netenforcer en Relación al Firewall

La primera posible desventaja es que un NetEnforcer colocado dentro del firewall no será capaz de controlar el tráfico que fluye desde la WAN a la DMZ, sin entrar en la LAN. La segunda desventaja se relaciona con el tráfico que fluye desde la LAN a la DMZ, que normalmente fluye a velocidad LAN, pero puede ser innecesariamente limitado. Si el NetEnforcer se establece en el control de 10 Mbps en el enlace interno y 2 Mbps en el enlace externo, el NetEnforcer asume que el tráfico que fluye a la DMZ va a salir a la WAN, por lo tanto, limita la salida a un total de 2 Mbps. Esto puede tener un gran impacto en la gestión de ancho de banda.

Para superar este problema, es posible definir una política (CV o tubos) para dicho tráfico. El NetEnforcer se puede configurar para ignorarlo, ya que es tráfico de la LAN y no necesitan ser gestionada y controlada. El NetEnforcer viene con una entrada predefinida de calidad de servicio llamada "ignorar calidad de servicio (Ignore QoS)".

NetXplorer

Es un sistema escalable de gestión central para el NetEnforcer que permite:

- La configuración de dispositivos
- Capacidad de aprovisionar Políticas

- Supervisión en tiempo real para solucionar problemas de red y el análisis de problemas.
- Reportería a largo plazo para la planificación de capacidad, el seguimiento de uso y análisis de tendencias.
- Gestión de tráfico y alertas del sistema.
- Recopilación de información contable y de exportación para efectos de facturación y propósitos de cuotas.

El NetXplorer es un sistema escalable de gestión central para el NetEnforcer. Usando el NetXplorer, se puede configurar NetEnforcers y construir políticas de tráfico para ser aplicadas. Se puede realizar el monitoreo en tiempo real de la red para solución de problemas y análisis de problemas y elaboración de informes, la reportería a largo plazo ayuda con la capacidad de planificación y comprensión de las tendencias de uso a largo plazo. NetXplorer permite definir y administrar tráfico y las alertas del sistema para asegurar un enfoque proactivo para la gestión de la red. Por último, también se puede utilizar para recopilar la información contable que luego pueden ser exportados a efectos de facturación y cuota.

Metodología

En base a la experiencia adquirida en el análisis de los problemas se ha planteado la siguiente metodología para la implementación del sistema de administración de ancho de banda; la cual está compuesta por tres fases Fundamentales:

• Fase de Monitoreo.- El monitoreo es un proceso continuo, y comienza desde el momento en que se instale el NetXplorer. Realizar un monitorear inicial de la red, utilizando la política por defecto NetXplorer tráfico muestra exactamente lo que está pasando en tu red, y quién está haciendo qué. Por lo tanto, puede ayudar a entender que la política es necesaria. En esta fase se puede realizar una primera configuración siguiendo la definición de tuberías; esta primera configuración será clasificatoria u organizativa lo

cual nos permitirá tener una visión completa del origen y destino de los tráficos, obteniendo una visibilidad completa de los enlaces de datos.

- Fase de Análisis y Configuración.- Luego de un la fase de monitoreo, se procede a analizar las aplicaciones y sus consumos de ancho de banda que tienen cada una de ellas. Este análisis ayuda a decidir qué canales virtuales son necesarios, configurando las políticas necesarias con calidad de servicio.
- Fase de Reportes.- Una vez que los canales virtuales son definidos, un nuevo monitoreo puede ser utilizado para verificar que la definición coincide con lo que queremos lograr con la clasificación y aplicación de QoS, y si todo el tráfico se clasifica según sea necesario; Es decir es necesario sacar nuevos reportes y realizar un seguimiento constante de su tráfico de red, para ver las nuevas pautas de uso y adaptar sus políticas en consecuencia.

Modelo Operativo

Se ha tomado en cuenta varios clientes en los cuales se ha implementado la metodología planteada y se han obtenido los siguientes resultados:

• Cliente 1:

Diagrama de red

Se ha analizado el diagrama de red para determinar la ubicación del equipo, ya que el administrador de red indicó que sus sucursales han reportado lentitud en las aplicaciones de bases de datos; por lo tanto el equipo fue instalado en el enlace WAN hacia las sucursales como lo indica la figura 6.21.

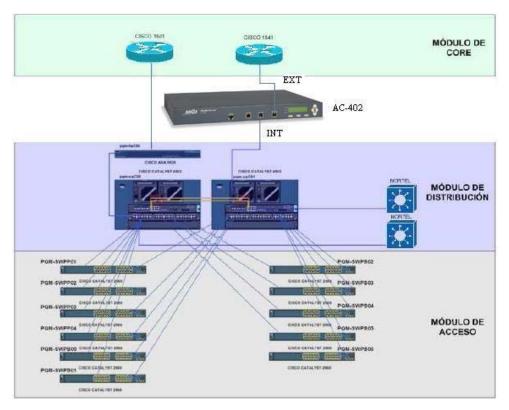


Figura N° 6.24. Cliente 1 - Diagrama de red

• Fase de Monitoreo

Políticas aplicadas

Se realizó una configuración básica para clasificar el tráfico de cada sucursal para que el monitoreo sea más comprensible; se configuraron 3 Lines (Agencias - Internet, Agencias - Voz y Sucursales-datos) clasificando el tráfico de Internet, Voz-IP y Datos respectivamente; en el line de Sucursales - Datos se configuraron varios Pipes que clasificarán el trafico de las diferentes sucursales. El equipo se mantiene durante un periodo de 2 semanas en modo de monitoreo con excepción del tráfico de voz que se le aplicó calidad de servicio para asegurar el ancho de banda sobre las demás aplicaciones; posteriormente se configuró políticas de calidad de servicio en las agencias para realizar pruebas de funcionamiento del algoritmo de Calidad de servicio.

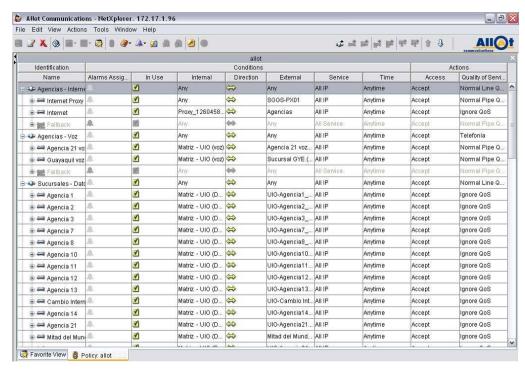


Figura N° 6.25. Cliente 1 - Políticas aplicadas

Reportes Obtenidos

• 10 de junio (desde las 12:30 hasta las 17:00)

La siguiente Figura muestra que la agencia 21 es una de las que más ancho de banda consume (1300 Kbps aproximadamente).

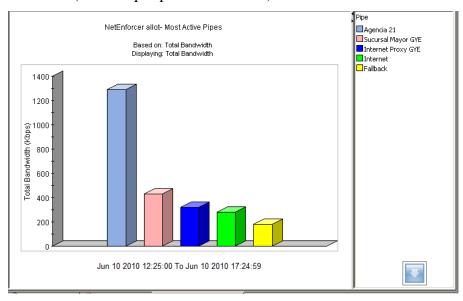


Figura N° 6.26. Cliente 1 - Tuberías más activas

Se realiza un drilldown (herramienta que sirve para indagar a profundidad en un Figura y obtener mayor información acerca del tráfico) en la agencia 21 para verificar los host más activos y se determina que los usuarios pqm-sion23 y pqm-sion21 están generando altos tráficos de aproximadamente 1000 Kbps y 700 Kbps respectivamente.

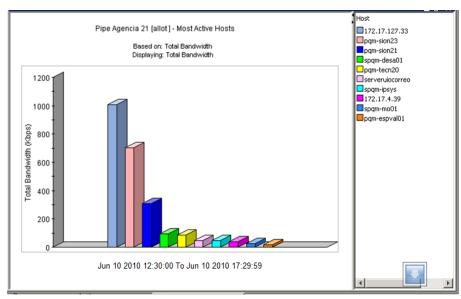


Figura N° 6.27. Cliente 1 – Usuarios más activos de agencia 21

La figura muestra la utilización de ancho de banda por lines:

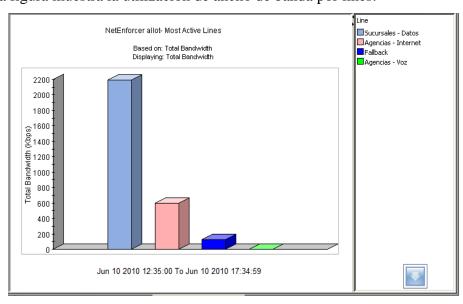


Figura N° 6.28. Cliente 1 – Ancho de banda por líneas

Se realizó un drilldown en el line Sucursales-Datos para verificar las conversaciones que están generando ese alto tráfico.

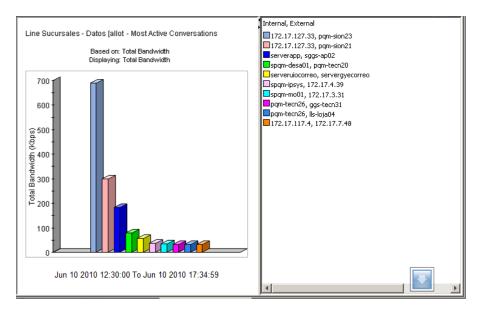


Figura N° 6.29. Cliente 1 – Conversaciones del line Sucursales Datos

Se verifica que protocolo es el que más ancho de banda consume, siendo SMB el que esta saturando el enlace de datos de la agencia 21:

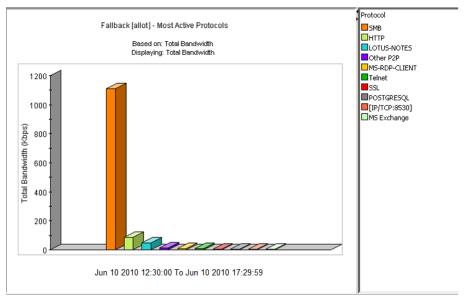


Figura N° 6.30. Cliente 1 – Protocolos más usados en la agencia 21

Como se puede observar en las figuras anteriores, existe un alto consumo de ancho de banda por el protocolo SMB entre un host de la matriz y el host pqm-sion23 de la agencia 21, lo cual está saturando dicho canal; por lo cual se configura una política restrictiva entre estos dos hosts evitando así la saturación del canal.

• 11 de junio (desde las 10:00 hasta las 17:30)

Se muestra a continuación la estadística del consumo total de ancho de banda durante el día

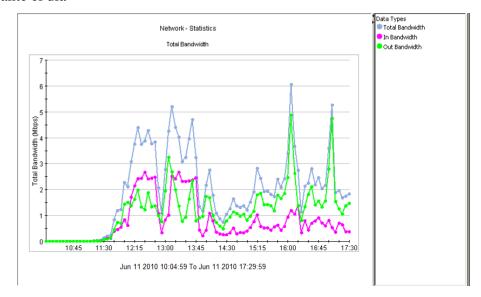


Figura N° 6.31. Cliente 1 – Estadística de ancho de banda

Se muestra los protocolos más activos del día, siendo nuevamente SMB el que mayor ancho de banda ha generado.

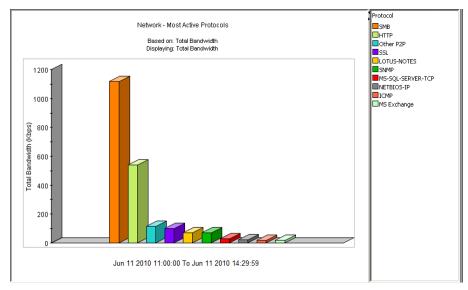


Figura Nº 6.32. Cliente 1 – Protocolos más utilizados durante el día

Se verifica que el mayor consumo de ancho de banda con el protocolo SMB se genera entre el host 172.17.127.33 de la matriz y el host pqm-sion21 perteneciente a la agencia 21. Por lo que se introduce a dicho host en la política de restricción para controlar este tráfico.

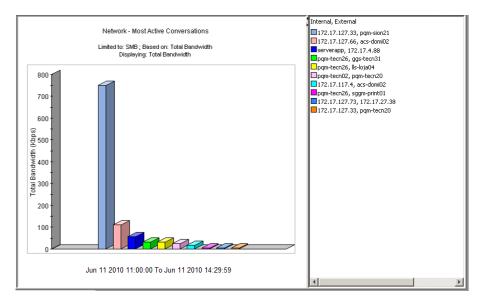


Figura N° 6.33. Cliente 1 – Conversaciones que usan SMB

Luego de aplicar la política se nota que el tráfico de SMB ha sido eliminado:

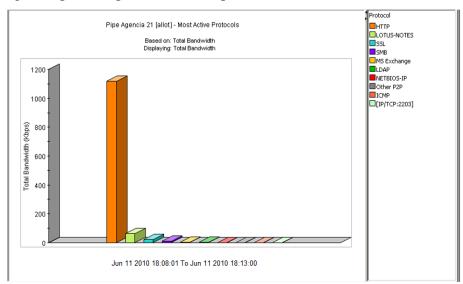


Figura N° 6.34. Cliente 1 – Limitación de SMB en agencia 21

La figura N° 6.35. muestra el uso de ancho de banda de las agencias indicando una estadística de cada una de ellas y al mismo tiempo el total de los enlaces, nótese que cada calor identifica una sucursal.

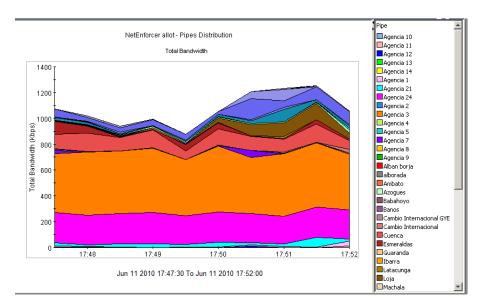


Figura N° 6.35. Cliente 1 – Distribución de ancho de banda por agencias

• 14 de junio

La vista favorita muestra el consumo de internet, los protocolos más activos del line Sucursales-Datos y las estadísticas del uso de Ancho de Banda por las agencias.

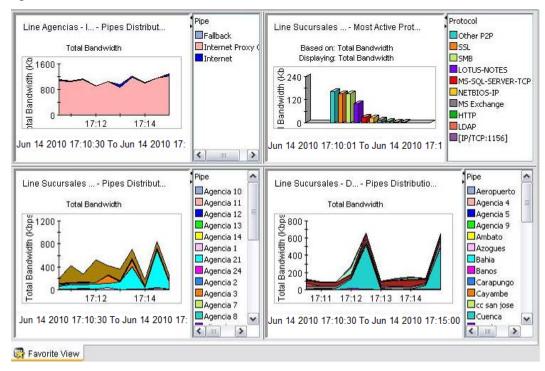


Figura N° 6.36. Cliente 1 – Vista favorita

Se verifica cuales son los protocolos más utilizados por las sucursales, siendo estos SMB, LOTUS-NOTES y OTHER P2P.

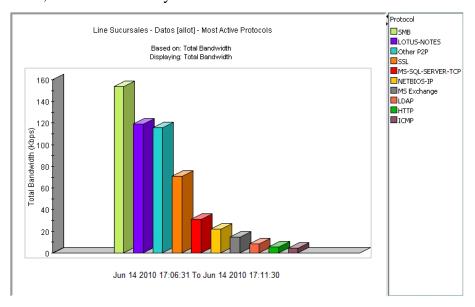


Figura N° 6.37. Cliente 1 – Protocolos más utilizados en la línea sucursales datos

Haciendo drilldown se muestra las conversaciones más activas del protocolo SMB generado en el line Sucursales – Datos.

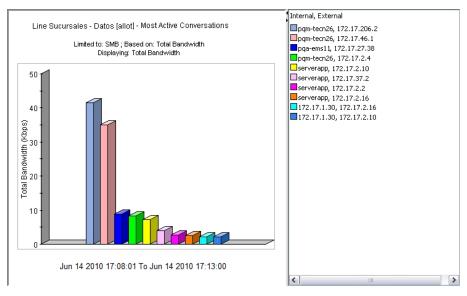


Figura N° 6.38. Cliente 1 – Conversaciones de SMB de línea Sucursales - Datos

La figura muestra las conversaciones más activas que utilizan transferencia de correo electrónico LOTUS-NOTES

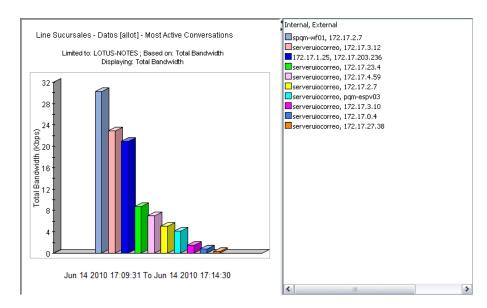


Figura N° 6.39. Cliente 1 – Conversaciones de Lotus-Notes.

En La agencia 21 se muestra que los protocolas más utilizados son SSL y LOTUS-NOTES

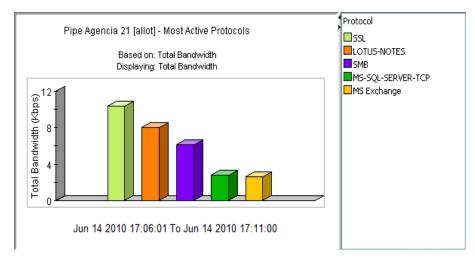


Figura N° 6.40. Cliente 1 – Protocolos de la agencia 21

• 15 de junio

Se muestra el comportamiento de la red en la vista favorita:

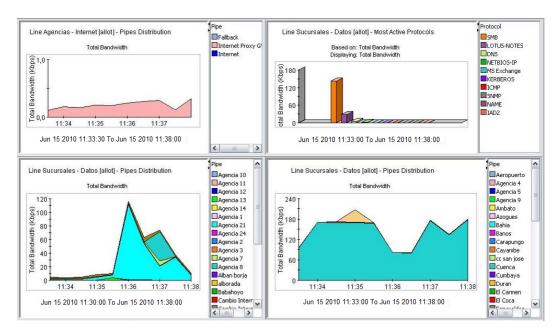


Figura N° 6.41. Cliente 1 – Vista Favorita

Se demuestra que una aplicación interna consume bastante ancho de banda con el protocolo de correo electrónico LOTUS-NOTES.

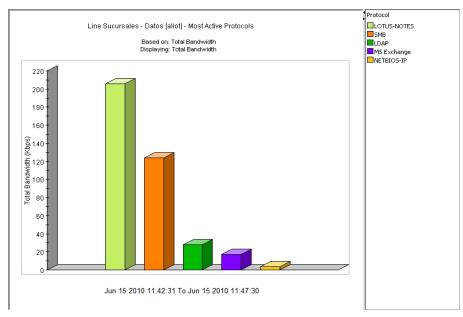


Figura N° 6.42. Cliente 1 – Protocolos más utilizados

Se muestra que el tráfico de LOTUS-NOTES se genera entre varios hosts de las sucursales y el servidor de correo (172.17.1.18)

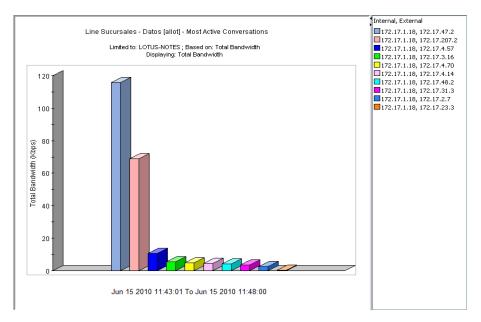


Figura N° 6.43. Cliente 1 – Conversaciones más activas que usan Lotus-Notes

Se verifica que el tráfico de internet está saliendo por el proxy de Guayaquil:

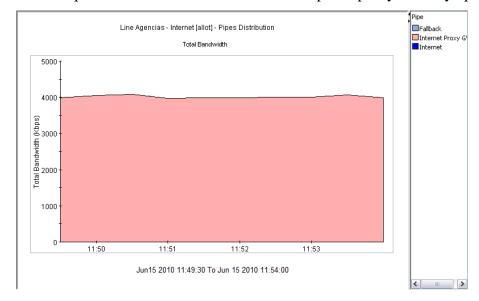


Figura N° 6.44. Cliente 1 – Ancho de banda usado para Internet

Y se verifica que el protocolo de internet sea HTTP dando un drilldown y seleccionando protocolos, lo que se muestra en la figura N° 6.45.

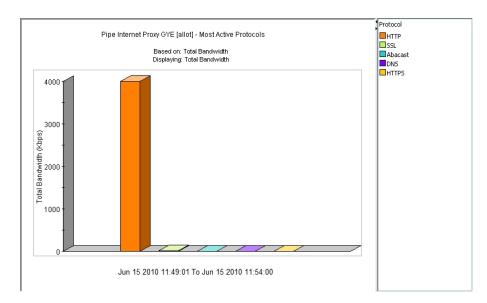


Figura N° 6.45. Cliente 1 – Protocolos usados en Internet

• 16 de junio:

Se determina las sucursales que más ancho de banda han utilizado desde las 12:00 hasta las 17:30, siendo la más activa la agencia 21 y la sucursal mayor de Guayaquil.

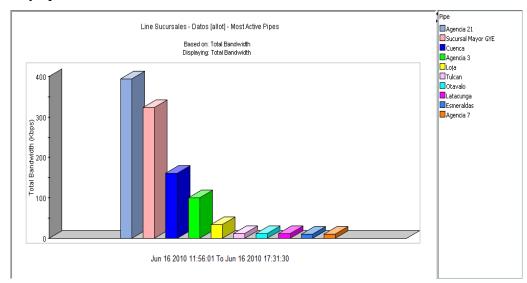


Figura N° 6.46. Cliente 1 – Sucursales con mayor consumo de AB.

Los protocolos más utilizados durante la tarde han sido SMB, OTHER P2P, HTTP y LOTUS-NOTES

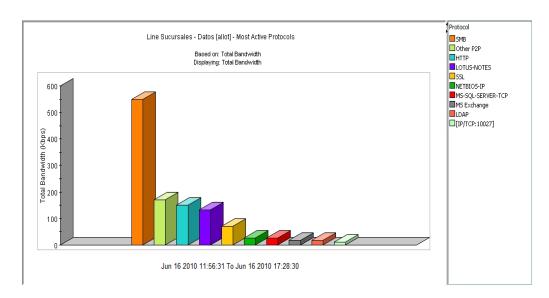


Figura N° 6.47. Cliente 1 – Protocolos más activos

En la siguiente figura se muestra el comportamiento del uso de internet por parte de las agencias durante esta tarde.

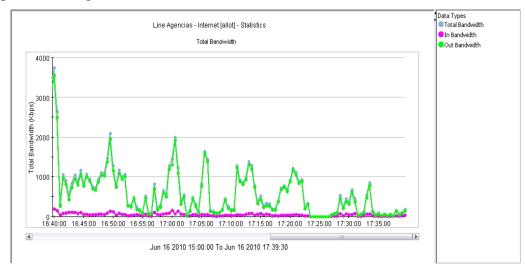


Figura N° 6.48. Cliente 1 – Consumo de Ancho de Banda

Se demuestra que las conversaciones más activas son con los hosts pqm-sion21 y acs-domi02, sin embargo ya no consumen 1000 Kbps como los días anteriores, lo que se muestra en la figura N° 6.49.

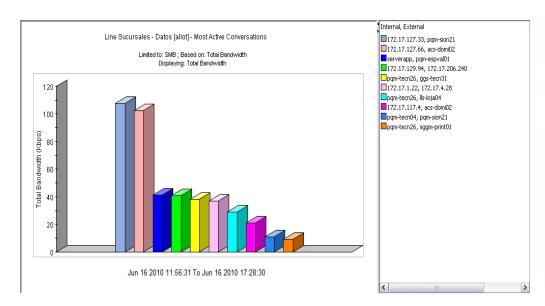


Figura N° 6.49. Cliente 1 – Conversaciones de SMB

Se muestra el consumo de ancho de banda a lo largo del día de la agencia de Cuenca

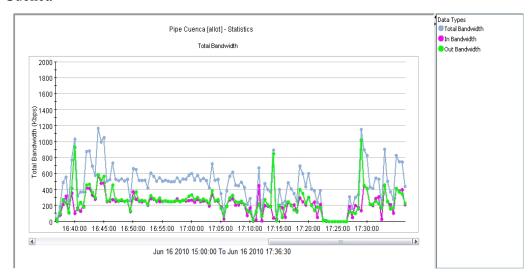


Figura N° 6.50. Cliente 1 – Estadística de AB de agencia Cuenca.

El protocolo usado en la transmisión de voz es RTP y SIP; en la figura N° 6.51. se muestra el consumo de ancho de banda de una llamada telefónica la cual utiliza estos protocolos.

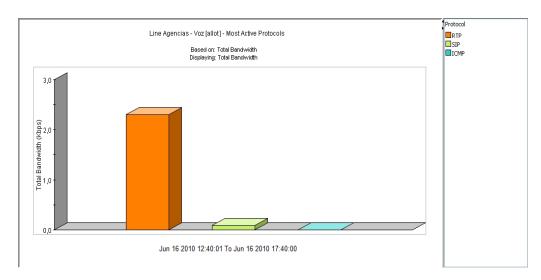


Figura N° 6.51. Cliente 1 – Protocolos de Voz

• 17 de junio

Se han determinado que los pipes que más trafico generan son la agencia 21, Internet Guayaquil, Sucursal mayor Guayaquil y Cuenca.

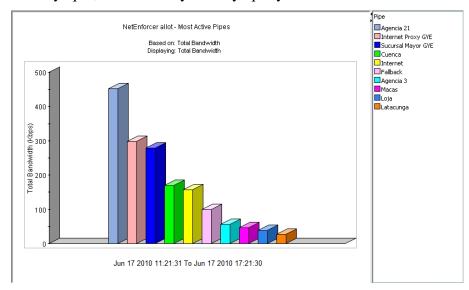


Figura N° 6.52. Cliente 1 – Agencias con mayor tráfico

Se genera un reporte especial para determinar el consumo de ancho de banda de cada protocolo pero diferenciando cuanto ocupa cada host interno; este reporte se muestra en la figura N° 6.53.

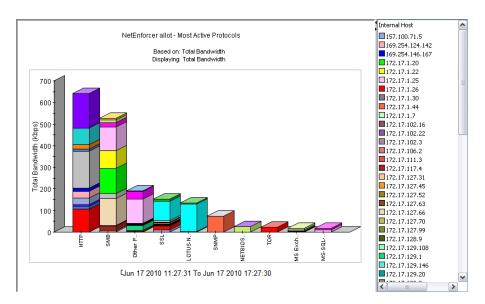


Figura N° 6.53. Cliente 1 – Distribución de protocolos segmentado por usuarios

Se muestran los protocolos más utilizados durante el día siendo nuevamente SMB el mayoritario.

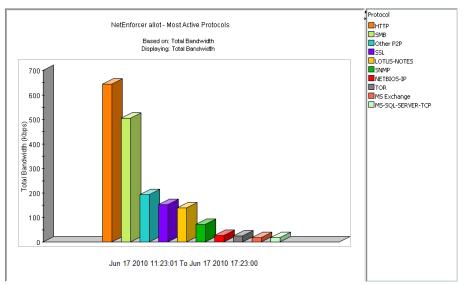


Figura N° 6.54. Cliente 1 – Protocolos más activos

Se realiza un drilldown en SMB para determinar las conversaciones que están generando dicho tráfico. Estos nuevos hosts se incluyen en la política de bloqueo de SMB de la agencia 21 y se muestran en la figura N° 6.55.

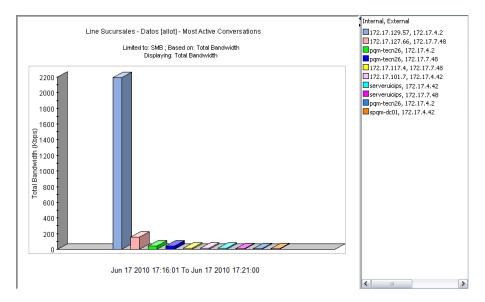


Figura N° 6.55. Cliente 1 – Conversaciones más activas de SMB

Esta Figura muestra el consumo de ancho de banda de cada host interno más activo segmentado por los protocolos que utiliza el mismo.

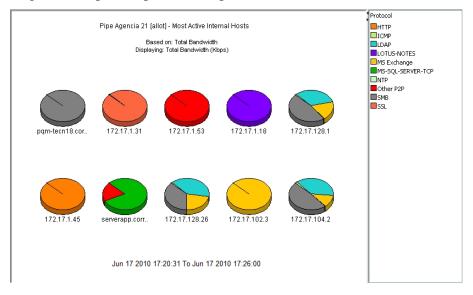


Figura N° 6.56. Cliente 1 – Distribución de Usuarios segmentados por protocolo

• 18 de junio:

Se muestra el consumo de los protocolos de telefonía IP entre la agencia 21 y la matriz en la figura N° 6.57.

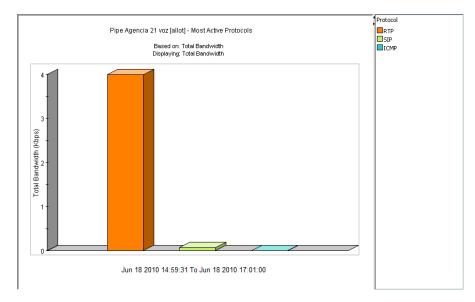


Figura N° 6.57. Cliente 1 –AB de aplicaciones de voz Agencia 21

La siguiente figura es una estadística del ancho de banda generado por las agencias hacia la matriz.

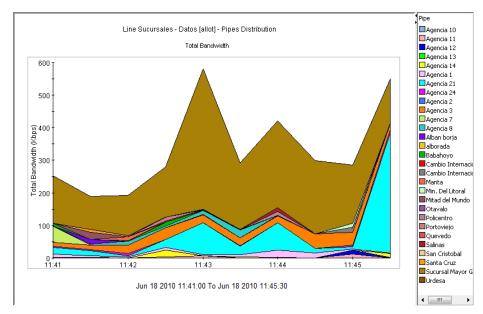


Figura N° 6.58. Cliente 1 – AB de las agencias.

La figura N° 6.59. muestra las conversaciones que utilizan HTTP, como se observa los servidores son 172.17.1.45 y 172.17.1.5

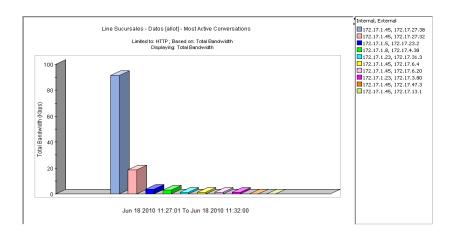


Figura N° 6.59. Cliente 1 – Conversaciones HTTP con los servidores WEB

Se determina las conversaciones de LOTUS_NOTES con el servidor 172.17.1.18

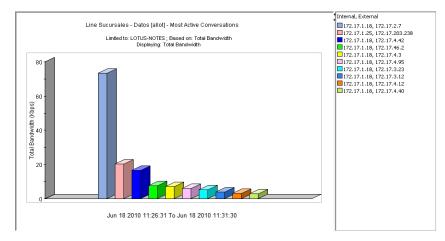


Figura N° 6.60. Cliente 1 – Conversaciones LOTUS-NOTES con el servidor mail

Se muestran las conversaciones del servidor 172.17.1.18 con hosts de las agencias utilizando SSL.

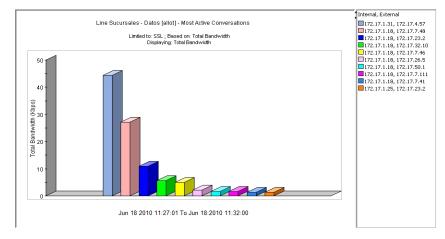


Figura N° 6.61. Cliente 1 – Conversaciones de SSL.

El servidor serverapp genera tráfico a varias agencias utilizando el protocolo OTHER P2P

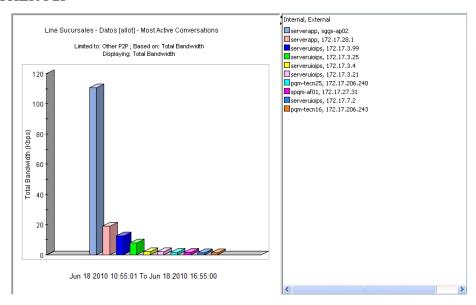


Figura N° 6.62. Cliente 1 – Conversaciones del servidor serverapp

Se demuestra que la mayor cantidad de agencias tiene acceso a Internet por medio del proxy de Guayaquil.

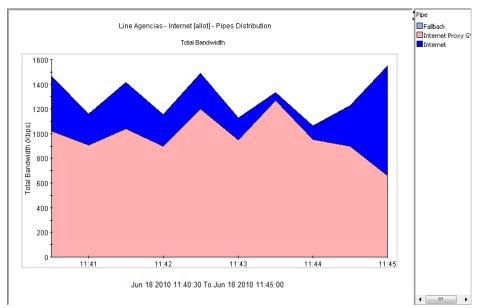


Figura N° 6.63. Cliente 1 – Distribución de AB de los proxy servers

En la figura N° 6.64. se observa el uso de telefonía Ip durante el día desde las agencias hacia matriz.

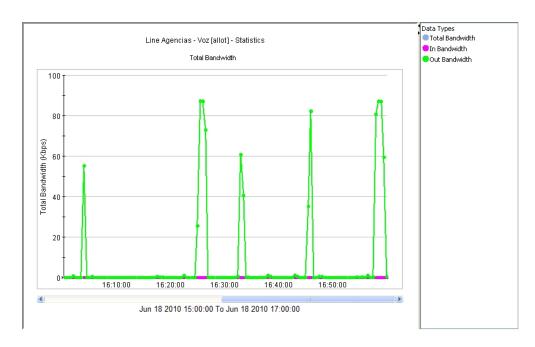


Figura N° 6.64. Cliente 1 – AB usado por aplicaciones de voz

• 19 de junio:

Se presenta los protocolos usados durante el día sábado, siendo Other P2P y HTTP los que encabezan esta estadística.

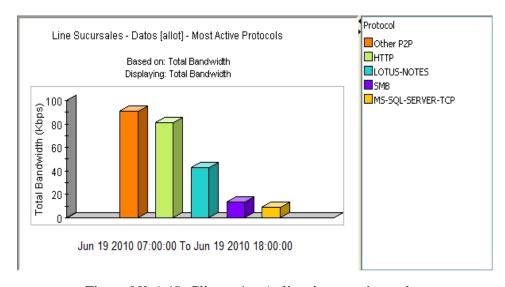


Figura N° 6.65. Cliente 1 – Aplicaciones más usadas.

Las conversaciones más relevantes durante este sábado son con el servidor spqm-ipsys y varios hosts de diferentes agencias, utilizando HTTP, indicado en la figura N° 6.66.

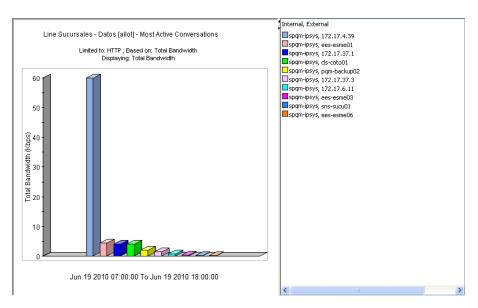


Figura N° 6.66. Cliente 1 – Conversaciones HTTP con el servidor spqm-ipsys

De igual manera se presenta las conversaciones más activas usando LOTUS-NOTES donde se observa al servidor Serveruiocorreo el que genera este tráfico.

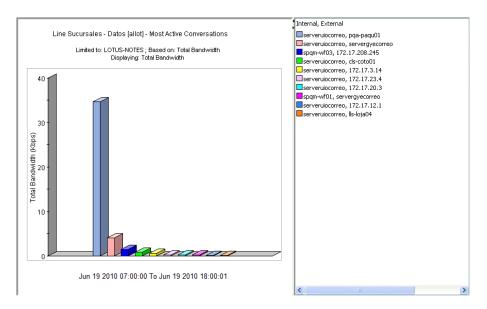


Figura N° 6.67. Cliente 1 – Conversaciones del servidor Lotus

En la figura N° 6.68. Se muestra el comportamiento del internet en una estadística donde se mide el consumo de ancho de banda y sus variaciones durante todo el día, llegando a consumir 1200 Kbps a las 11 de la mañana.

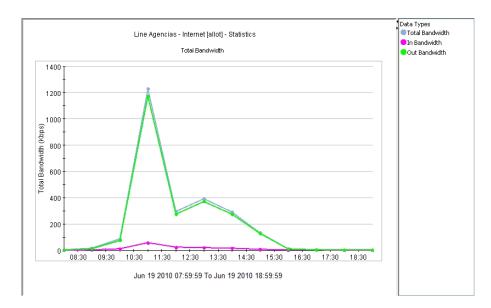


Figura N° 6.68. Cliente 1 – Comportamiento de Internet

Se muestra cuales agencias han sido las que más tráfico han generado durante este día siendo la sucursal Mayor GYE la que más ancho de banda consume seguido por la agencia 21.

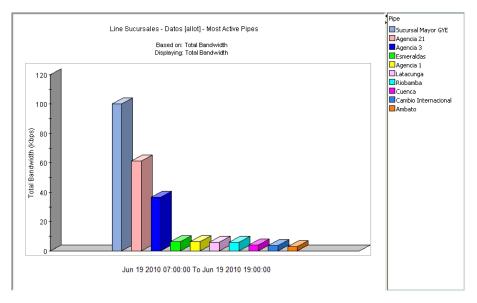


Figura Nº 6.69. Cliente 1 - Tuberías más activas de la línea de datos

• 21 de junio:

Se presenta las estadísticas de uso de ancho de banda durante todo el día de agencias, siendo la agencia 21 la que mayor variación en su consumo de ancho de

banda presenta, llegando a consumir aproximadamente 2 Mbps a las once y media de la mañana.

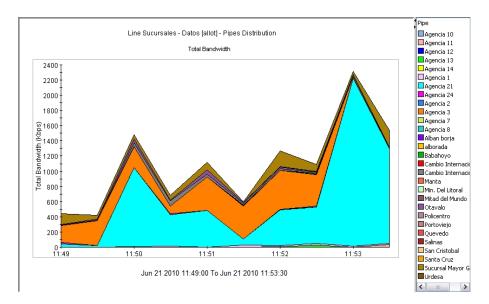


Figura N° 6.70. Cliente 1 – AB de las sucursales 1

De igual manera la sucursal Cuenca consume alrededor de 500 Kbps al medio día, siendo otra sucursal con alto consumo de ancho de banda:

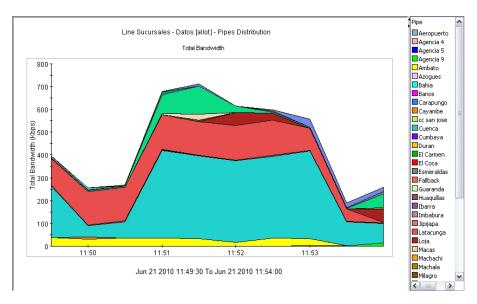


Figura N° 6.71. Cliente 1 – AB de las sucursales 2

Se muestra los protocolos más significativos del día, siendo nuevamente LOTUS-NOTES y SMB los que mayor Ancho de banda consumen alcanzando casi los 200 Kbps.

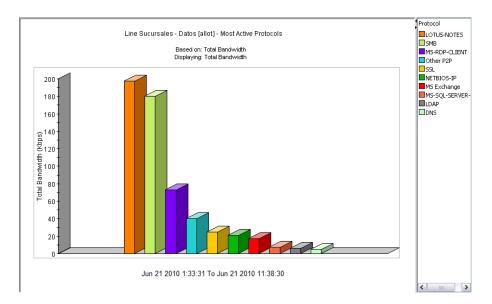


Figura N° 6.72. Cliente 1 – Aplicaciones más activas

Se muestra el tráfico desde las agencias hacia los dos proxys de internet

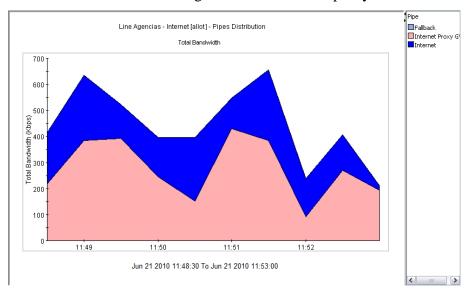


Figura N° 6.73. Cliente 1 – Uso de Internet

Luego de varios días de monitoreo se determina cual es el uso del ancho de banda de cada una de agencias y el porcentaje que ocupa de cada protocolo. La siguiente figura presenta los protocolos que usa cada agencia seleccionada, tanto en Kbps como en porcentajes:



Figura N° 6.74. Cliente 1 – Valores de tuberías más activas

• Fase de análisis y configuración

Como podemos observar en la etapa de monitoreo las principales aplicaciones que utilizan el ancho de banda son las de transmisiones de datos con el protocolo SMB, aplicaciones de internet ya que existe un consumo excesivo de HTTP y LOTUS_NOTES que es la aplicación de correo electrónico.

Aplicación de QoS

A partir de los datos obtenidos durante la etapa de monitoreo se definieron las políticas de Calidad de servicio que se aplicaron en las agencias, las cuales se basan en la limitación de las aplicaciones no críticas como:

- Navegación a Internet.
- Descarga de archivos por FTP.

Y se han asignado prioridades mayores a las aplicaciones críticas o importantes para el cliente como son:

Aplicaciones de VoIp.

- Correo electrónico
- Transferencia de datos SMB.

La tabla de políticas con la configuración descrita se muestran a continuación:

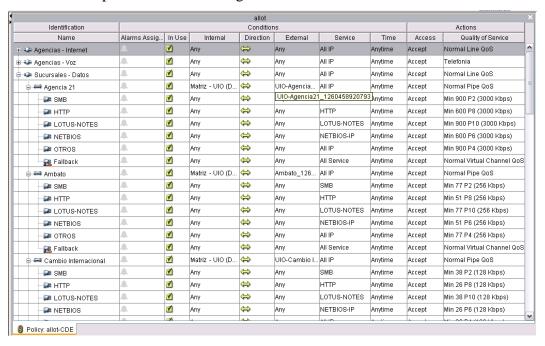


Figura N° 6.75. Cliente 1 – Tabla de políticas con QoS

Como se puede observar se aplicaron 4 políticas de QoS aplicadas de la siguiente forma a cada una de las agencias:

- LOTUS-NOTES con un mínimo del 30% del enlace con prioridad muy alta
 (10)
- HTTP con mínimo 20% del enlace y prioridad alta (8)
- NETBIOS con mínimo 20% del enlace y media prioridad (6)
- OTROS con un mínimo del 30% del enlace y prioridad baja (4)
- SMB con un mínimo del 30% del enlace y con prioridad muy baja (2)
- VoIP con un mínimo de 128 Kbps y un máximo de 512 Kbps con prioridad muy alta (10).
- FTP sin un mínimo y con un máximo de 40 Kbps con prioridad muy baja
 (2).

Para cada política se dejo como máximo AB el máximo permitido, es decir el total del enlace; esto para optimizar el enlace cuando no haya tráfico de todas las aplicaciones configuradas.

• Etapa de Reportes

Resultados Obtenidos

Los resultados de aplicar estas políticas se muestran a continuación:

• 22 de junio:

La siguiente Figura muestra el comportamiento de los protocolos ya clasificados de la agencia 21:

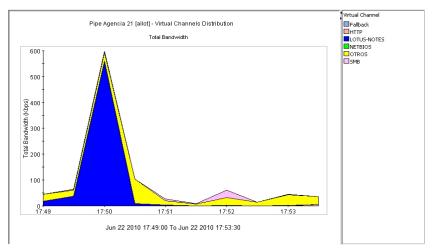


Figura N° 6.76. Cliente 1 – Canales virtuales de la agencia 21

El comportamiento del tráfico de la agencia Ambato muestra que ocupa varios protocolos clasificados en el virtual channel OTROS aparte de SMB.

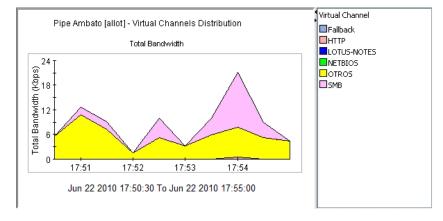


Figura N° 6.77. Cliente 1 – Canales virtuales de la agencia Ambato

De la misma manera Cuenca Utiliza SMB y Otros protocolos llegando a consumir 280 Kbps y 20 Kbps respectivamente.

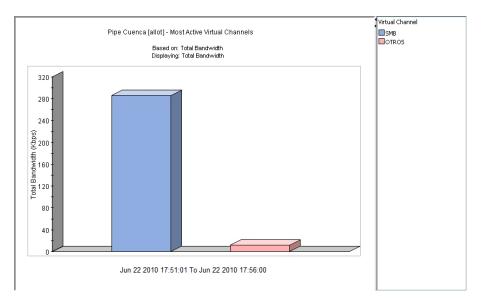


Figura N° 6.78. Cliente 1 – Canales virtuales de la agencia cuenca

Esmeraldas utiliza en mayor cantidad HTTP y como se nota tiene mayor prioridad sobre los otros protocolos. Al igual que la sucursal anterior los tráficos clasificados como otros se mantienen bajos, sin saturar el enlace.

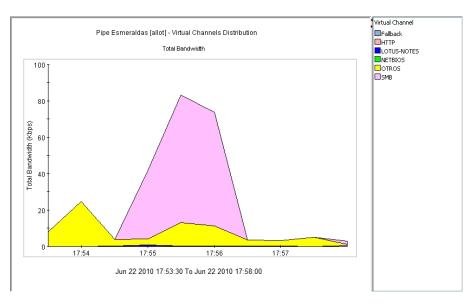


Figura N° 6.79. Cliente 1 – Canales virtuales de la agencia Esmeraldas

A diferencia de las agencias anteriores Cambio Internacional Quito utiliza más NETBIOS y SMB

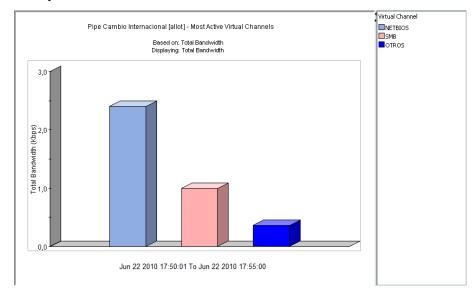


Figura N° 6.80. Cliente 1 – Canales virtuales de Cambio Internacional

• 23 de junio

Como se puede observar en la siguiente Figura el tráfico general de las agencias ha cambiado, SMB se ha reducido dando paso a HTTP a mejorar su tráfico.

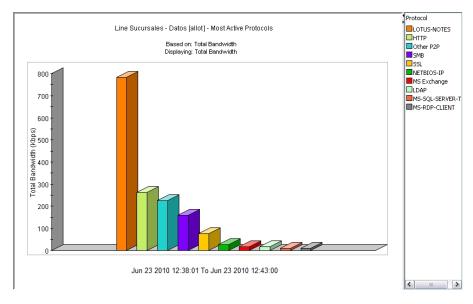


Figura N° 6.81. Cliente 1 – Protocolos más activos aplicado QoS

El tráfico de la agencia 1 se muestra en la siguiente gráfica notándose que es mayor el tráfico de NETBIOS y de OTROS sobre SMB.

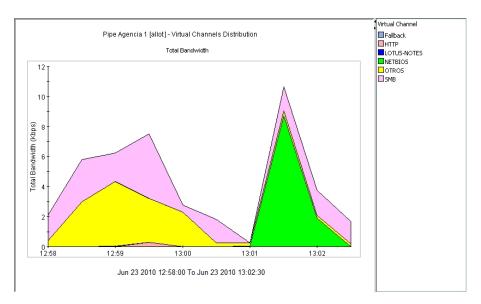


Figura N° 6.82. Cliente 1 – Canales virtuales de la agencia 1

En la agencia 21 el tráfico de mayor prioridad LOTUS-NOTES es el que más genera tráfico alcanzado un máximo de 5 Mbps a la 12:53 AM y manteniéndose casi constante en 3 Mbps durante los siguientes minutos.

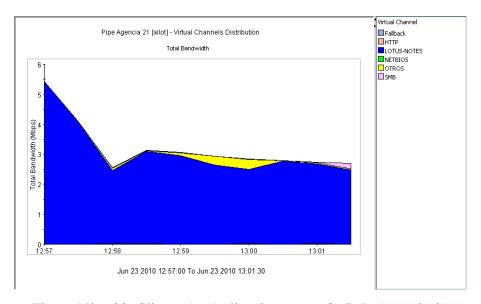


Figura N° 6.83. Cliente 1 – Aplicaciones con QoS de Agencia 21

En la agencia Ambato se nota claramente que el tráfico HTTP tiene prioridad sobre SMB y OTROS en el enlace hacia la matriz; sin embargo este no está saturado ya que las prioridades aplicadas en las políticas permiten que todas las

aplicaciones puedan transmitir con un valor mínimo de ancho de banda tal como se muestra en la siguiente figura:

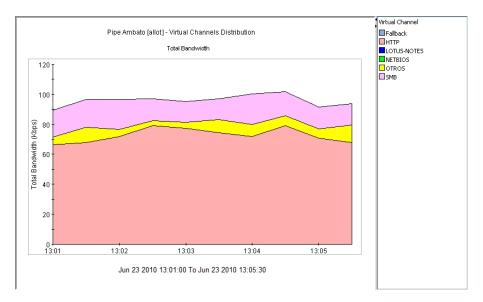


Figura N° 6.84. Cliente 1 – Aplicaciones con QoS de agencia Ambato

La agencia de Cambio Internacional muestra un mayor tráfico de SMB sobre los otros, esto no significa que no se respete las políticas creadas, esto se da por la demanda propia de las aplicaciones.

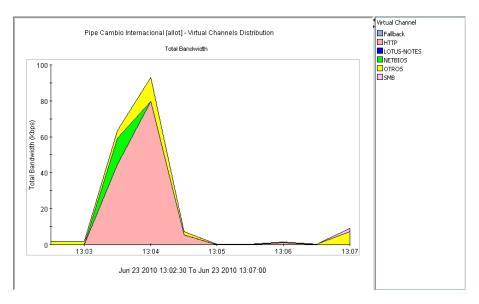


Figura N° 6.85. Cliente 1 – Aplicaciones con QoS de Cambio internacional

En la agencia Cuenca se nota como el protocolo SMB es pequeño mientras OTROS con mayor prioridad ocupan la mayor cantidad del AB, luego que este termina su transmisión SMB aumenta ya que el canal está libre.

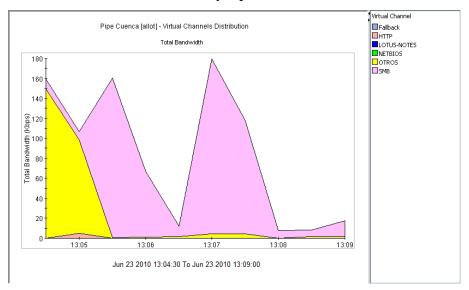


Figura N° 6.86. Cliente 1 – Aplicaciones con QoS agencia Cuenca

Durante los días 28 y 29 de junio se realizaron pruebas específicas de Calidad de servicio, limitando el tráfico FTP hacia las agencias 1 y 8. Los resultados se describen a continuación:

• 28 de junio:

Se realizaron las pruebas con la agencia 1. En la figura N° 6.87 se muestra las conversaciones de los hosts de las agencias y la matriz, y con el servidor FTP (10.1.1.10); la estadística del uso de ancho de banda de la agencia, la cantidad de ancho de banda usado por cada protocolo y en el último se demuestra claramente como el FTP es limitado a 40 Kbps.

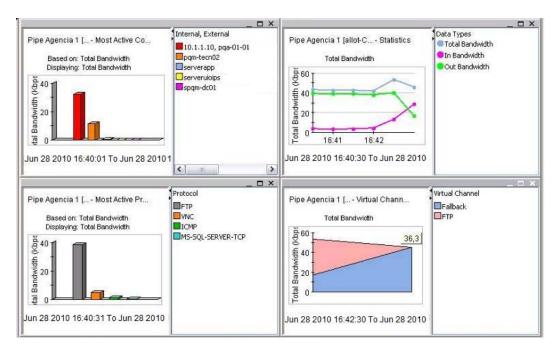


Figura N° 6.87. Cliente 1 – Limitación de FTP

En esta figura se muestra el comportamiento de los virtual channels en donde el VC de FTP está limitado y no supera el valor configurado.

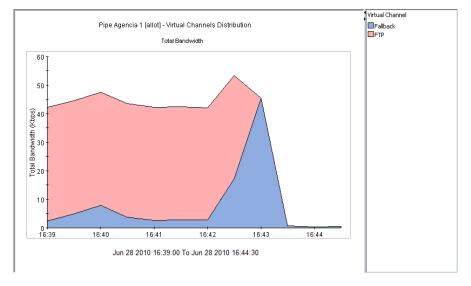


Figura N° 6.88. Cliente 1 – FTP con limitación de througthput

• 29 de junio

Se realiza la misma prueba pero con la agencia 8. Las siguientes figuras muestran el comportamiento de los tráficos en dicho enlace y se nota claramente

como el tráfico FTP se mantiene constante, respetando la política de no superar los 40 Kbps.

Figura N° 6.89. Cliente 1 – Limite de tráfico FTP



Figura N° 6.90. Cliente 1 – Tráfico FTP limitado a 40kbps

La siguiente estadística demuestra que el ancho de banda usado por FTP respeta la política configurada que es de 40 Kbps.

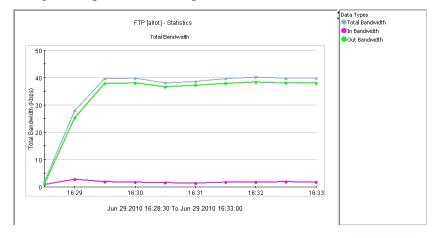


Figura N° 6.91. Cliente 1 – Estadística de Ab de tráfico FTP.

De esta forma podemos ver como los tráficos han cambiado dando las prioridades necesarias a las aplicaciones más importantes para el cliente como son LOTUS_NOTES que es su sistema de correo electrónico, mensajería instantánea interna y a VoIP a las sucursales que lo requieren. Y se ha reducido el tráfico de aplicaciones no críticas como navegación a internet (HTTP), FTP y otras aplicaciones no importantes para el cliente.

• Cliente 2:

Siguiendo la misma metodología se realizó la implementación en el segundo cliente. Se presenta una tabla comparativa de los anchos de banda de tráficos de los protocolos más utilizados (datos promedios diarios), antes y después de aplicar políticas de calidad de servicio con el sistema Allot:

	Antes de QoS	Después de QoS
Protocolo	Ancho de Banda (Kbps)	Ancho de Banda (Kbps)
SMB	105	75
Other P2P	68	38
IMAP2	45	150
IP	42	80
H.323	28	18
NTP	19	19
Telnet	16	15
HTTP	15	20
SSH	15	0
Palace	10	10
SNMP	0	5

Tabla N° 6.6. Cliente 2 – Anchos de banda antes y después de QoS.

Al Aplicar calidad de servicio se puede apreciar que se da prioridad a las aplicaciones más importantes como son: IMAP e IP y se ha disminuido el tráfico de protocolos no importantes como SMB y Other P2P.

• Cliente 3:

Se ha instalado el sistema Allot en el cliente 3 y se realizó el monitoreo de tráfico de las aplicaciones utilizadas, tanto antes, como después de aplicarle calidad de servicio (Datos promedio diarios):

	Antes de QoS	Después de QoS
Protocolo	Ancho de Banda (Kbps)	Ancho de Banda (Kbps)
ННТР	210	120
FTP	110	40
MS Player	20	0
SSL	18	2
SMB	180	115
SSMP	10	180
BITS	5	0
IP/TCP 5190	5	90
MS Exchange	Menor a 2	60
Net-Bios	Menor a 2	50
Lotus - Notes	Menor a 2	40

Tabla N° 6.7. Cliente 3 – Anchos de banda antes y después de QoS.

Se limita las aplicaciones sin importancia para el cliente tal como FTP, MS-Player para dar prioridad a las aplicaciones importantes tal como Correo (MS Exchange y Lotus Notes) y aplicaciones propias del negocio.

Plan de Acción

Se han implementado las siguientes reglas de Calidad de Servicio en el Cliente 1 las cuales sirven como referencia para los demás clientes, adaptándolo a sus propias necesidades. Las políticas se han creado para cada aplicación, asignándoles como prioritarias a las aplicaciones de negocio y limitando el ancho de banda a las aplicaciones recreacionales y no importantes para los clientes:

Se ha asignado un porcentaje mínimo de ancho de banda a las aplicaciones de la siguiente forma:

Aplicación	Mínimo AB (%)
SMB	30
HTTP	20
Lotus Notes	30
NetBios	20
FTP	0
Otros	30

Tabla Nº 6.8. Porcentajes mínimos de Ancho de Banda

Se ha asignado un porcentaje máximo de ancho de banda a las aplicaciones de la siguiente forma:

Aplicación	Máximo AB (%)
SMB	100
HTTP	100
Lotus Notes	100
NetBios	100
FTP	5
Otros	100

Tabla N° 6.9. Porcentajes máximos de Ancho de Banda

Para las aplicaciones de VoIP se ha determinado un mínimo de 128Kbps y un máximo de 512 Kbps ya que es suficiente para tener una comunicación óptima y de buena calidad. Esta política solo aplica para las sucursales tipo A, ya que son las únicas que cuentan con este servicio.

Basado en los porcentajes definidos en este análisis, se han creado las políticas para los tres tipos de sucursales (Basados en el ancho de banda del enlace de datos), representados como Pipes tipo A, B y C respectivamente (en la configuración del sistema) de la siguiente manera:

NT. I		A 1: ./	AB Mínimo	AB Máximo	D :
Nivel	Subnivel	Aplicación	(Asegurado)	(Límite)	Prioridad
Pipe Tipo A		ANY	Standard	Standard	4
(AB =					
3Mbps)					
	VC	VoIP	128	512	10
	VC	SMB	900	3000	2
	VC	HTTP	600	3000	8
	VC	Lotus Notes	900	3000	10
	VC	NetBios	600	3000	6
	VC	FTP	0	150	1
	VC	Otros	900	3000	4
Pipe Tipo B		ANY	Standard	Standard	4
(AB =					
256Kbps)					
	VC	SMB	77	256	2
	VC	HTTP	51	256	8
	VC	Lotus Notes	77	256	10
	VC	NetBios	51	256	6
	VC	FTP	0	12,8	1
	VC	Otros	900	256	4
Pipe Tipo C		ANY	Standard	Standard	4
(AB =					
128Kbps)					
	VC	SMB	38	128	2
	VC	HTTP	26	128	8
	VC	Lotus Notes	38	128	10
	VC	NetBios	26	128	6
	VC	FTP	0	6,4	1
	VC	Otros	38	128	4

Tabla N° 6.10. Políticas de Calidad de servicio implementadas

Estas políticas se las ha aplicado una vez que se determinó que:

- Las aplicaciones prioritarias son las de LOTUS_NOTES, SMB, NetBios
- VoIP es primordial para las sucursales tipo A.
- Las aplicaciones de Internet son importantes pero no prioritarias.
- La transferencia de archivos (FTP) no es indispensable.

Conclusiones y Recomendaciones

Conclusiones

- La solución efectiva a los problemas de saturación de los enlaces es la inclusión del sistema Allot. El cual posee todas las características necesarias para administrar los enlaces tanto de datos entre sucursales, así como también los enlaces de internet aplicando diferenciación de tráficos, calidad de servicio y priorización.
- El sistema Allot con sus tecnologías propietarias aplica un algoritmo de calidad intermedio y un sistema de diferenciación de aplicaciones de inspección a nivel de capa 7 (DPI). Adicionalmente el sistema es completamente configurable y se adapta a las diferentes topologías cubriendo todas las necesidades de los clientes.
- Gracias a los análisis de tráfico realizados se ha obtenido una visibilidad completa del tráfico de red; y se ha demostrado que existe un mal uso del ancho de banda de los enlaces ya que existe un gran consumo por parte aplicaciones no criticas para las empresas, sobre todo a nivel de navegación de internet (HTTP), descargas de archivos (SMB y FTP), etc. Dejando poco o nada de ancho de banda para las aplicaciones criticas como las de correo electrónico (LOTUS-NOTES y MS Exchange), VoIP (SIP, RTP), etc.
- Al identificar las diferentes aplicaciones crítica y no críticas y aplicar una configuración de Calidad de servicio se ha conseguido minimizar el uso de ancho de banda indebido y dar prioridad al tráfico de las aplicaciones críticas de negocio cuyos tráficos son igualmente controlados y monitoreados

obteniendo el mayor rendimiento de los enlaces de datos sin la necesidad de contratar mayor ancho de banda.

Recomendaciones

- Para que la solución sea completamente efectiva es recomendable analizar la topología de red para determinar la ubicación correcta del equipo y realizar una indagación previa para determinar los problemas que tiene el cliente, y cubrir de mejor manera poder implementar la solución de mejor manera.
- La capacidad del sistema Allot de inspeccionar y clasificar aplicaciones en capa 7 es muy eficiente gracias sus firmas de reconocimiento y es recomendable entenderlo para crear políticas de control en las aplicaciones que trabajan bajo un puerto específico de uso general pero que pueden causar congestión en los enlaces.
- Se recomienda inicialmente realizar el monitoreo de tráfico sin ninguna configuración; y poco a poco ir identificando los diferentes tipos de tráfico; posteriormente realizar una configuración básica para segmentar el tráfico según el origen y destino, de esta manera se podrá identificar más fácilmente los tipos de aplicación que utiliza cada segmento de red y determinar los consumos de ancho de banda de las aplicaciones críticas y no críticas.
- Es recomendable realizar configuraciones progresivas a los diversos niveles
 (Line, Pipes y Virtual channels) e ir monitoreando el comportamiento del
 tráfico e ir modificado sus respectivas reglas de calidad de servicio para
 obtener un punto de equilibrio tal, que el uso del ancho de banda sea
 maximizado sin generar saturaciones y los recursos de red sean de alto
 rendimiento.

BIBLIOGRAFÍA

Stallings, William. (2004). Comunicaciones y redes de computadoras. Séptima edición. Editorial Pearson Educación de España.

León García, Alberto; Widjaja, Indra. (2002). Redes de comunicaciones, Conceptos fundamentales y arquitecturas básicas. Editorial Mc Graw Hill.

Tanenbaum, Andrew S. (2003). Redes de computadoras. Cuarta Edición. Editorial Pearson Educación de México.

Molina Robles, Francisco José. (Enero, 2005). Instalación y mantenimiento de servicios de redes locales. Primera Edición. Editorial Alfaomega grupo editor.

Huidrobo, José Manuel. (n.d.). Redes de comunicaciones. Editorial Paraninfo S.A.

Jiménez, Carlos. (2009, Diciembre 10). ¿Cómo usa internet el latinoamericano? Extraído el 15 de mayo del 2010 desde: http://www.maestrosdelweb.com/editorial/como-usa-internet-el-latinoamericano/

Gil Bailén, José Ignacio. (2005, Junio 13). Técnicas QoS para IEEE 802.11. Extraído el 15 de abril del 2010 desde: http://www.uv.es/montanan/redes/trabajos/QoS-WLAN.pdf

Calidad de Servicio (QoS). (n.d.). Extraído el 15 de abril del 2010 desde: www2.ing.puc.cl/~iee3542/amplif_4.ppt

Martín Senén Ma. Victoria. (n.d.) Calidad de Servicio QoS. Extraído el 15 de abril del 2010 desde: http://qos.iespana.es

Balliache Leonardo. (n.d.). SERVICIOS QoS. Extraído el 15 de abril de 2010 desde: http://www.opalsoft.net/qos/Spanish-QOS.htm

QoS. (n.d.). Extraído el 15 de abril de 2010 desde: http://es.tech-faq.com/qos.shtml

Maldonado, Daniel Martín. (2008, mayo17). Implementando QoS en las redes. Extraído el 15 de abril de 2010 desde: http://www.aplicacionesempresariales.com/implementando-qos-en-las-redes.html

Bricklin Dan. (2003, Julio 30). Why We Don't Need QOS: Trains, Cars, and Internet Quality of Service. Extraído el 15 de abril del 2010 desde: http://www.bricklin.com/qos.htm

Transmisión de datos: La conexión física. (2008, Octubre 16). Extraído el 18 de abril del 2010 desde: http://es.kioskea.net/contents/transmission/transliais.php3

Transmisión de datos: Introducción. (2008, Octubre 16). Extraído el 18 de abril del 2010 desde: http://es.kioskea.net/contents/transmission/transintro.php3

Yaris, Margarita. (n.d.). Transmisión de datos: Redes. Extraído el 18 de abril del 2010 desde: http://www.monografias.com/trabajos14/datos-redes/datos-redes.shtml

D'Sousa, Carmen. (n.d.) Redes. Extraído el 18 de abril del 2010 desde: http://www.monografias.com/trabajos11/reco/reco.shtml

Aray, Luis. Gravanovic, Blasmir. Iglesias, Margareth. Porras, Mariana. Rivas, Laura. (1989). Redes y comunicaciones de datos. Extraído el 18 de abril del 2010 desde: http://www.monografias.com/trabajos12/trdecom/trdecom.shtml

Marquez Pérez, José Mariano. (n.d.). Tipos de enlaces y sus modos de operación. Extraído el 18 de abril del 2010 desde: http://www.monografias.com/trabajos7/modo/modo.shtml

Red de computadoras. (n.d.). Extraído el 18 de abril del 2010 desde: http://es.wikipedia.org/wiki/Red_de_computadoras

Canal (comunicación). (n.d.). Extraído el 18 de abril del 2010 desde: http://es.wikipedia.org/wiki/Canal_%28comunicaci%C3%B3n%29

Canal de comunicaciones. (n.d.). Extraído el 18 de abril del 2010 desde: http://es.wikitel.info/wiki/Canal_de_comunicaciones

GLOSARIO DE TÉRMINOS

A

Ancho de Banda: cantidad de información o de datos que se puede enviar a

través de una conexión de red en un período de tiempo dado. El ancho de banda se

indica generalmente en bites por segundo (BPS), kilobites por segundo (kbps), o

megabites por segundo (mps).

Allot: Sistema que provee soluciones de optimización de servicios IP para

proveedores de servicios, carriers y empresas.

В

Backbone: La columna vertebral de la Red.

Byte: Medida básica de capacidad en informática. Comprende 8 bits o

interruptores, cada uno de los cuales puede conmutar en dos posiciones ON

y OFF.

 \mathbf{C}

Caché: Carpeta o memoria intermedia que almacena temporalmente los archivos

del equipo.

Correo electrónico: Mensajes, documentos, archivos que se envían personas a

través de Internet o de una red.

Cortafuegos (firewall): Programa que protege a una red de otra red.

D

DCE (**Data** Communication Equipment): Equipo de comunicación de datos o equipo de terminación de circuito de datos. Los dispositivos y conexiones de una red de comunicaciones que comprenden el extremo de la red de la interfaz de usuario a red. DCE brinda una conexión física a la red, envía el tráfico y proporciona una señal de sincronización utilizada para sincronizar la transmisión de datos entre los dispositivos DCE y DTE.

Dirección IP: Cadena numérica que identifica a una máquina en una red IP.

DMZ (Demilitarized Zone): Es una red local que se ubica entre la red interna de una organización y una red externa, generalmente Internet.

DNS: Sistema de Nombres por Dominio utilizado en Internet y basado en una estructura jerárquica y mediante el cual comunicamos con otro ordenador que puede encontrarse en otra parte del mundo.

DTE (**Data Terminal Equipment**): Equipo Terminal de Datos. Datos recibidos por éste terminal desde un módem al ordenador.

 \mathbf{E}

Enlace de datos: Conexión física y protocolos de conexión entre unidades que intercambian datos a través de una línea de telecomunicaciones

Extranet: Red basada en Internet de una compañía en la que comparte información y comunicación con agentes externos.

F

Firewall: Dispositivos de seguridad a entradas no autorizadas.

FTP (Protocolo de Transferencia de Ficheros): Transferir ficheros entre ordenadores en Internet.

G

Gateway (Puerta de acceso): Dispositivo que permite conectar entre sí dos redes normalmente de distinto protocolo o bien un servidor a una red.

Gigabits (GB): Medida de 1024 Mb (unos 1.000 millones de bits).

H

Host: Anfitrión, es cualquier ordenador que tiene un número IP y que puede tanto enviar como recibir información por una red.

HTTP: Protocolo de Transferencia de Hipertexto o entorno gráfico de las páginas Web.

I

IMAP (**Internet Message Access Protocol**): Es un protocolo de red de acceso a mensajes electrónicos almacenados en un servidor.

Internet: Red de redes mundial. Telaraña o entramado mundial. También llamada World Wide Web (WWW), conjunto de redes que permiten la comunicación de millones de usuarios de todo el mundo.

Intranet: Red privada dentro de una organización que utiliza los protocolos propios de Internet.

M

MAC Address (Media Access Control o control de acceso al medio) es un identificador de 48 bits (6 bloques hexadecimales) que corresponde de forma única a una ethernet de red. Se conoce también como la dirección física en cuanto a identificar dispositivos de red.

Modelo OSI (Open System Interconection): Norma universal para protocolos de comunicación lanzado en 1984. Fue propuesto por ISO y divide las tareas de la red en siete niveles.

N

NAT (Network Address Translations): Mecanismo utilizado por routers IP para intercambiar paquetes entre dos redes que se asignan mutuamente direcciones incompatibles. Consiste en convertir en tiempo real las direcciones utilizadas en los paquetes transportados.

NetEnforcer: Dispositivo que forma parte del sistema Allot; es un administrador de ancho de banda que permite usar de reglas de tráfico con calidad de servicio sobre enlaces de datos.

NetXplorer: Servidor del sistema Allot que permite administrar el NetEnforcer, almacena la información de los enlaces y genera los reportes de tráfico.

P

Packeteer: Dispositivo con aplicaciones de gestión del tráfico y optimización de las redes de área amplia, con diversos métodos de optimización de la red.

Proveedor de Servicios Internet (ISP): Organización que proporciona acceso a Internet mediante una tarifa y que nos ofrece una serie de servicios.

POP3 (**Post Office Protocol 3**): Es un protocolo estándar para recibir mensajes de e-mail. Los mensajes de e-mails enviados a un servidor, son almacenados por el servidor pop3. Cuando el usuario se conecta al mismo, puede descargar los ficheros.

Proxy: Servidor que realiza la conexión a Internet y que sirve de puerta de entrada a los ordenadores cliente.

P2P (**Peer To Peer**): Red descentralizada que no tiene clientes ni servidores fijos, sino que tiene una serie de nodos que se comportan simultáneamente como clientes y servidores de los demás nodos de la red. Cada nodo puede iniciar, detener o completar una transacción compatible.

Q

Quality of Service (QoS): Calidad de Servicio, son las tecnologías que garantizan la transmisión de cierta cantidad de información en un tiempo dado (*throughput*). Es especialmente importante para ciertas aplicaciones tales como la transmisión de vídeo o voz.

R

RTP (Real-time Transport Protocol): Es un protocolo utilizado para la transmisión de información en tiempo real, como por ejemplo audio y video en una video-conferencia.

S

Saturación: Estado del enlace de datos en el que todo el Ancho de banda está ocupado por completo.

Servidor: Equipo que controla el acceso de los usuarios a una red y les da servicio e información.

SIP (Session Initiation Protocol): Protocolo de aplicación para la iniciación, modificación y finalización de sesiones interactivas de usuario, donde hay componentes como video, voz, juegos online, realidad virtual y mensajería instantánea.

SMB (Server Message Block): Bloque de mensajes de servidor. Protocolo de red usado por las redes de Microsoft Windows para acceder a sistemas de archivos de otras máquinas.

SMPP (Short Message Peer to Peer): Protocolo abierto, diseñado para proporcionar un interfaz de comunicación para la transferencia de mensajes cortos (SM) entre External Short Message Entities (ESMES), Routing Entities (RE), y Message Centres (MC).

SMTP (**Simple Mail Transfer Protocol**): Protocolo simple de transferencia de correo electrónico. Protocolo de red basado en texto utilizado para el intercambio de mensajes de correo electrónico entre computadoras o distintos dispositivos.

SSL (Secure Socket Layer): Es un protocolo para dar seguridad a la transmisión de datos en transacciones comerciales en Internet. Utilizando la criptografía de llave pública, SSL provee autentificación del servidor, encriptación de datos, e integridad de los datos en las comunicaciones cliente/servidor.

Streaming de vídeo: video de forma que podemos verlo directamente desde cualquier punto sin necesidad de descargarlo.

 \mathbf{T}

TCP/IP: Protocolo de Internet (Protocolo de Control de

Transmisión/Protocolo

Internet) que específica cómo se transmiten los datos en Internet para que todos

los sistemas hablen el mismo idioma en Internet.

Telnet: Servicio que permite la conexión remota con cualquier ordenador de la

red situado en cualquier parte del mundo como si de una terminal más se tratase.

Traffic Shaping: Técnica para controlar el tráfico de una Red que permite

optimizar y garantizar su funcionamiento, las bajas latencias, etc. Proporcionando

un mecanismo para controlar el volumen de tráfico que es enviado en una red así

como su frecuencia y prioridad.

Throughput (Rendimiento): Efectiva velocidad de transferencia de datos entre

dos computadoras, considerando la compresión de datos, la corrección de errores

y eventualmente el tiempo pasado para la conexión.

U

UDP/IP (User Datagram Protocol): protocolo sin conexión que, como TCP,

funciona en redes IP; que proporciona muy pocos servicios de recuperación de

errores, ofreciendo en su lugar una manera directa de enviar y recibir datagramas

a través una red IP

W

WAN (Wide Area Network): Red pública de área extensa, no tiene límites físicos.

ANEXOS

Anexo 1

Referencias de recomendaciones ITU-T Series E

• Recomendaciones E.360.x

- E.360.1: Framework para el enrutamiento de QoS y métodos relacionados con ingeniería de tráfico para IP, ATM y redes multiservicio basadas en TDM (http://www.itu.int/rec/T-REC-E.360.1-200205-I)
- E.360.2: Enrutamiento de QoS y métodos relacionados con ingeniería de tráfico – Enrutamiento de llamadas y métodos de enrutamiento de la conexión (http://www.itu.int/rec/T-REC-E.360.2-200205-I).
- E.360.3: Enrutamiento de QoS y métodos relacionados con ingeniería de tráfico – QoS métodos de gestión de recursos (http://www.itu.int/rec/T-REC-E.360.3-200205-I).
- E.360.4: Enrutamiento de QoS y métodos relacionados con ingeniería de tráfico – Métodos de administración de la tabla de enrutamiento y requisitos (http://www.itu.int/rec/T-REC-E.360.4-200205-I)
- E.360.5: Enrutamiento de QoS y métodos relacionados con ingeniería de tráfico – Métodos de enrutamiento de transporte (http://www.itu.int/rec/T-REC-E.360.5-200205-I)
- E.360.6: Enrutamiento de QoS y métodos relacionados con ingeniería de tráfico – Métodos de administración de capacidad (http://www.itu.int/rec/T-REC-E.360.6-200205-I)

 E.360.7: Enrutamiento de QoS y métodos relacionados con ingeniería de tráfico – Requerimientos operacionales de la ingeniería de tráfico (http://www.itu.int/rec/T-REC-E.360.7-200205-I).

• Recomendación E.361

• E.361: Enrutamiento de QoS soportado para la interoperabilidad de clases de servicio QoS a través de tecnologías de enrutamiento. (http://www.itu.int/rec/T-REC-E.361-200305-I).

Anexo 2

Encuesta a Ingenieros administradores de redes y aplicaciones

ENCUESTA INGENIEROS ADMINISTRADORES DE REDES Y ADMINISTRADORES DE APLICACIONES UNIVERSIDAD TÈCNICA DE AMBATO FACULTAD DE INGENIERÍA EN SISTEMAS, ELECTRÓNICA E INDUSTRIAL

Lugar a Encuestar:

Objetivo de la Encuesta Analizar la influencia de los algoritmos de calidad de servicio (QoS) en los enlaces de comunicación de los clientes de la empresa Uniplex Systems
Estimado Ingeniero la veracidad en sus respuestas permitirá al investigador desarrollar un trabajo real y efectivo. Agradecemos su colaboración y garantizamos absoluta reserva.
1 ¿Existen Algoritmos de Calidad de servicio que regulen el tráfico de información (voz, video, datos)? Si No
2 ¿Existen reglas que regulen la transmisión de voz en sus enlaces? Si No
3 ¿Existen reglas que regulen la transmisión de video en sus enlaces? Si No

4 ¿Existen reglas que regulen la transmisión de archivos (Datos) en sus enlaces?
Si
No
5 ¿Su infraestructura de red utiliza algún método para clasificar sus aplicaciones
críticas?
Si
No
6 ¿Su infraestructura de red utiliza algún método para discriminar aplicaciones
no críticas?
Si
No
7 ¿Utiliza algún medio para priorizar el tráfico de las aplicaciones de voz?
Si
No
8 ¿Utiliza algún medio para priorizar el tráfico de las aplicaciones de video?
Si
No
9 ¿Utiliza algún medio para priorizar el tráfico de las aplicaciones Real Time?
Si
No
10 ¿La transmisión de datos de sus aplicaciones es eficiente?
Si
No
11 ¿La transmisión de datos de sus aplicaciones es segura?

Si
No
12 ¿La calidad del servicio de Chat corporativo es buena y sin interrupciones? Si No
13 ¿La calidad del servicio de VoIp es buena y sin interrupciones? Si No
14 ¿La calidad del servicio de Videoconferencia es buena y sin interrupciones? Si No
15 ¿Los usuarios se sienten satisfechos con la utilización de las aplicaciones de la empresa? Si
No
16 ¿Un Algoritmo de Calidad de Servicio le ayudaría a garantizar la transmisión de sus aplicaciones en los enlaces de datos? Si
No
17 ¿La transferencia de datos en los enlaces de comunicación es óptima, eficiente y confiable? Si No
18 ¿Ha tenido problemas en la transmisión de aplicaciones de voz cuando se satura el canal de comunicación?

Si
No
19 ¿Ha tenido problemas en la transmisión de aplicaciones de base de datos
cuando se satura el canal de comunicación?
Si
No
20 ¿Ha tenido problemas en la transmisión de aplicaciones de video cuando se
satura el canal de comunicación?
Si
No
21 ¿Su proveedor de servicios le ayuda con los problemas de saturación de los
enlaces incrementando el ancho de banda?
Si
No
22 ¿Su proveedor de servicios le ayuda con los problemas de saturación de los
enlaces aplicando QoS?
Si
No
23 ¿Utilizar un sistema de administración de Ancho de banda le ayudaría a
solucionar el problema de congestión en sus enlaces?
Si
No

Anexo 3 Formato de cuaderno de notas

Fecha:	Título:
Lugar:	·
Notas y apuntes:	
	·

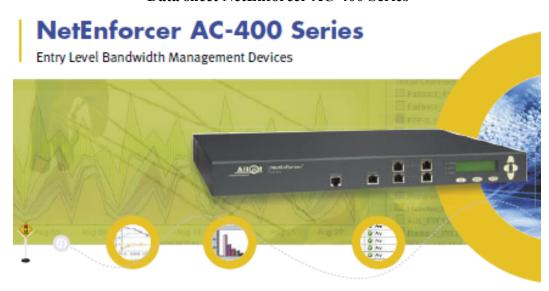
Anexo 4 Formato de Ficha bibliográfica

Ficha Bibliográfica							
Autor/a:	Editorial:						
Título:	Ciudad, País:						
Año:							
Resumen del contenido:							
Número de edición o impresión:							
Traductor:							

Anexo 5 Distribución Ji cuadrado x^2

P= Probabilidad de encontrar un valor mayor o igual que el Ji cuadrado tabulado, ν

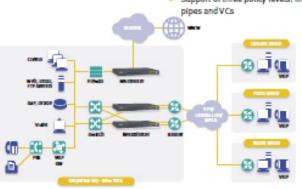
v /p	0,001	0,0025	0,005	0,01	0,025	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
1	10,8274	9,1404	7,8794	6,6349	5,0239	3,8415	2,7055	2,0722	1,6424	1,3233	1,0742	0,8735	0,7083	0,5707	0,4549
2	13,8150	11,9827	10,5965	9,2104	7,3778	5,9915	4,6052	3,7942	3,2189	2,7726	2,4079	2,0996	1,8326	1,5970	1,3863
3	16,2660	14,3202	12,8381	11,3449	9,3484	7,8147	6,2514	5,3170	4,6416	4,1083	3,6649	3,2831	2,9462	2,6430	2,3660
4	18,4662	16,4238	14,8602	13,2767	11,1433	9,4877	7,7794	6,7449	5,9886	5,3853	4,8784	4,4377	4,0446	3,6871	3,3567
5	20,5147	18,3854	16,7496	15,0863	12,8325	11,0705	9,2363	8,1152	7,2893	6,6257	6,0644	5,5731	5,1319	4,7278	4,3515
6	22,4575	20,2491	18,5475	16,8119	14,4494	12,5916	10,6446	9,4461	8,5581	7,8408	7,2311	6,6948	6,2108	5,7652	5,3481
7	24,3213	22,0402	20,2777	18,4753	16,0128	14,0671	12,0170	10,7479	9,8032	9,0371	8,3834	7,8061	7,2832	6,8000	6,3458
8	26,1239	23,7742	21,9549	20,0902	17,5345	15,5073	13,3616	12,0271	11,0301	10,2189	9,5245	8,9094	8,3505	7,8325	7,3441
9	27,8767	25,4625	23,5893	21,6660	19,0228	16,9190	14,6837	13,2880	12,2421	11,3887	10,6564	10,0060	9,4136	8,8632	8,3428
10	29,5879	27,1119	25,1881	23,2093	20,4832	18,3070	15,9872	14,5339	13,4420	12,5489	11,7807	11,0971	10,4732	9,8922	9,3418
11	31,2635	28,7291	26,7569	24,7250	21,9200	19,6752	17,2750	15,7671	14,6314	13,7007	12,8987	12,1836	11,5298	10,9199	10,3410
12	32,9092	30,3182	28,2997	26,2170	23,3367	21,0261	18,5493	16,9893	15,8120	14,8454	14,0111	13,2661	12,5838	11,9463	11,3403
13	34,5274	31,8830	29,8193	27,6882	24,7356	22,3620	19,8119	18,2020	16,9848	15,9839	15,1187	14,3451	13,6356	12,9717	12,3398
14	36,1239	33,4262	31,3194	29,1412	26,1189	23,6848	21,0641	19,4062	18,1508	17,1169	16,2221	15,4209	14,6853	13,9961	13,3393
15	37,6978	34,9494	32,8015	30,5780	27,4884	24,9958	22,3071	20,6030	19,3107	18,2451	17,3217	16,4940	15,7332	15,0197	14,3389
16	39,2518	36,4555	34,2671	31,9999	28,8453	26,2962	23,5418	21,7931	20,4651	19,3689	18,4179	17,5646	16,7795	16,0425	15,3385
17	40,7911	37,9462	35,7184	33,4087	30,1910	27,5871	24,7690	22,9770	21,6146	20,4887	19,5110	18,6330	17,8244	17,0646	16,3382
18	42,3119	39,4220	37,1564	34,8052	31,5264	28,8693	25,9894	24,1555	22,7595	21,6049	20,6014	19,6993	18,8679	18,0860	17,3379
19	43,8194	40,8847	38,5821	36,1908	32,8523	30,1435	27,2036	25,3289	23,9004	22,7178	21,6891	20,7638	19,9102	19,1069	18,3376
20	45,3142	42,3358	39,9969	37,5663	34,1696	31,4104	28,4120	26,4976	25,0375	23,8277	22,7745	21,8265	20,9514	20,1272	19,3374
21	46,7963	43,7749	41,4009	38,9322	35,4789	32,6706	29,6151	27,6620	26,1711	24,9348	23,8578	22,8876	21,9915	21,1470	20,3372
22	48,2676	45,2041	42,7957	40,2894	36,7807	33,9245	30,8133	28,8224	27,3015	26,0393	24,9390	23,9473	23,0307	22,1663	21,3370
23	49,7276	46,6231	44,1814	41,6383	38,0756	35,1725	32,0069	29,9792	28,4288	27,1413	26,0184	25,0055	24,0689	23,1852	22,3369
24	51,1790	48,0336	45,5584	42,9798	39,3641	36,4150	33,1962	31,1325	29,5533	28,2412	27,0960	26,0625	25,1064	24,2037	23,3367
25	52,6187	49,4351	46,9280	44,3140	40,6465	37,6525	34,3816	32,2825	30,6752	29,3388	28,1719	27,1183	26,1430	25,2218	24,3366
26	54,0511	50,8291	48,2898	45,6416	41,9231	38,8851	35,5632	33,4295	31,7946	30,4346	29,2463	28,1730	27,1789	26,2395	25,3365
27	55,4751	52,2152	49,6450	46,9628	43,1945	40,1133	36,7412	34,5736	32,9117	31,5284	30,3193	29,2266	28,2141	27,2569	26,3363
28	56,8918	53,5939	50,9936	48,2782	44,4608	41,3372	37,9159	35,7150	34,0266	32,6205	31,3909	30,2791	29,2486	28,2740	27,3362
29	58,3006	54,9662	52,3355	49,5878	45,7223	42,5569	39,0875	36,8538	35,1394	33,7109	32,4612	31,3308	30,2825	29,2908	28,3361


v/p	0,001	0,0025	0,005	0,01	0,025	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
30	59,7022	56,3325	53,6719	50,8922	46,9792	43,7730	40,2560	37,9902	36,2502	34,7997	33,5302	32,3815	31,3159	30,3073	29,3360
31	61,0980	57,6921	55,0025	52,1914	48,2319	44,9853	41,4217	39,1244	37,3591	35,8871	34,5981	33,4314	32,3486	31,3235	30,3359
32	62,4873	59,0461	56,3280	53,4857	49,4804	46,1942	42,5847	40,2563	38,4663	36,9730	35,6649	34,4804	33,3809	32,3394	31,3359
33	63,8694	60,3953	57,6483	54,7754	50,7251	47,3999	43,7452	41,3861	39,5718	38,0575	36,7307	35,5287	34,4126	33,3551	32,3358
34	65,2471	61,7382	58,9637	56,0609	51,9660	48,6024	44,9032	42,5140	40,6756	39,1408	37,7954	36,5763	35,4438	34,3706	33,3357
35	66,6192	63,0760	60,2746	57,3420	53,2033	49,8018	46,0588	43,6399	41,7780	40,2228	38,8591	37,6231	36,4746	35,3858	34,3356
36	67,9850	64,4097	61,5811	58,6192	54,4373	50,9985	47,2122	44,7641	42,8788	41,3036	39,9220	38,6693	37,5049	36,4008	35,3356
37	69,3476	65,7384	62,8832	59,8926	55,6680	52,1923	48,3634	45,8864	43,9782	42,3833	40,9839	39,7148	38,5348	37,4156	36,3355
38	70,7039	67,0628	64,1812	61,1620	56,8955	53,3835	49,5126	47,0072	45,0763	43,4619	42,0450	40,7597	39,5643	38,4302	37,3354
39	72,0550	68,3830	65,4753	62,4281	58,1201	54,5722	50,6598	48,1263	46,1730	44,5395	43,1053	41,8040	40,5935	39,4446	38,3354
40	73,4029	69,6987	66,7660	63,6908	59,3417	55,7585	51,8050	49,2438	47,2685	45,6160	44,1649	42,8477	41,6222	40,4589	39,3353
45	80,0776	76,2229	73,1660	69,9569	65,4101	61,6562	57,5053	54,8105	52,7288	50,9849	49,4517	48,0584	46,7607	45,5274	44,3351
50	86,6603	82,6637	79,4898	76,1538	71,4202	67,5048	63,1671	60,3460	58,1638	56,3336	54,7228	53,2576	51,8916	50,5923	49,3349
55	93,1671	89,0344	85,7491	82,2920	77,3804	73,3115	68,7962	65,8550	63,5772	61,6650	59,9804	58,4469	57,0160	55,6539	54,3348
60	99,6078	95,3443	91,9518	88,3794	83,2977	79,0820	74,3970	71,3411	68,9721	66,9815	65,2265	63,6277	62,1348	60,7128	59,3347
70	112,3167	107,8079	104,2148	100,4251	95,0231	90,5313	85,5270	82,2553	79,7147	77,5766	75,6893	73,9677	72,3583	70,8236	69,3345
80	124,8389	120,1018	116,3209	112,3288	106,6285	101,8795	96,5782	93,1058	90,4053	88,1303	86,1197	84,2840	82,5663	80,9266	79,3343
90	137,2082	132,2554	128,2987	124,1162	118,1359	113,1452	107,5650	103,9040	101,0537	98,6499	96,5238	94,5809	92,7614	91,0234	89,3342
100	149,4488	144,2925	140,1697	135,8069	129,5613	124,3421	118,4980	114,6588	111,6667	109,1412	106,9058	104,8615	102,9459	101,1149	99,3341
120	173,6184	168,0814	163,6485	158,9500	152,2113	146,5673	140,2326	136,0620	132,8063	130,0546	127,6159	125,3833	123,2890	121,2850	119,3340
140	197,4498	191,5653	186,8465	181,8405	174,6478	168,6130	161,8270	157,3517	153,8537	150,8941	148,2686	145,8629	143,6043	141,4413	139,3339
160	221,0197	214,8081	209,8238	204,5300	196,9152	190,5164	183,3106	178,5517	174,8283	171,6752	168,8759	166,3092	163,8977	161,5868	159,3338
180	244,3723	237,8548	232,6198	227,0563	219,0442	212,3039	204,7036	199,6786	195,7434	192,4086	189,4462	186,7282	184,1732	181,7234	179,3338
200	267,5388	260,7350	255,2638	249,4452	241,0578	233,9942	226,0210	220,7441	216,6088	213,1022	209,9854	207,1244	204,4337	201,8526	199,3337
250	324,8306	317,3609	311,3460	304,9393	295,6885	287,8815	279,0504	273,1944	268,5987	264,6970	261,2253	258,0355	255,0327	252,1497	249,3337
300	381,4239	373,3509	366,8439	359,9064	349,8745	341,3951	331,7885	325,4090	320,3971	316,1383	312,3460	308,8589	305,5741	302,4182	299,3336
500	603,4458	593,3580	585,2060	576,4931	563,8514	553,1269	540,9303	532,8028	526,4014	520,9505	516,0874	511,6081	507,3816	503,3147	499,3335
600	712,7726	701,8322	692,9809	683,5155	669,7690	658,0936	644,8004	635,9329	628,8157	622,9876	617,6713	612,7718	608,1468	603,6942	599,3335

ν/ p	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,9975	0,999
1	0,3573	0,2750	0,2059	0,1485	0,1015	0,0642	0,0358	0,0158	0,0039	0,0010	0,0002	0,0000	0,0000	0,0000
2	1,1957	1,0217	0,8616	0,7133	0,5754	0,4463	0,3250	0,2107	0,1026	0,0506	0,0201	0,0100	0,0050	0,0020
3	2,1095	1,8692	1,6416	1,4237	1,2125	1,0052	0,7978	0,5844	0,3518	0,2158	0,1148	0,0717	0,0449	0,0243
4	3,0469	2,7528	2,4701	2,1947	1,9226	1,6488	1,3665	1,0636	0,7107	0,4844	0,2971	0,2070	0,1449	0,0908
5	3,9959	3,6555	3,3251	2,9999	2,6746	2,3425	1,9938	1,6103	1,1455	0,8312	0,5543	0,4118	0,3075	0,2102
6	4,9519	4,5702	4,1973	3,8276	3,4546	3,0701	2,6613	2,2041	1,6354	1,2373	0,8721	0,6757	0,5266	0,3810
7	5,9125	5,4932	5,0816	4,6713	4,2549	3,8223	3,3583	2,8331	2,1673	1,6899	1,2390	0,9893	0,7945	0,5985
8	6,8766	6,4226	5,9753	5,5274	5,0706	4,5936	4,0782	3,4895	2,7326	2,1797	1,6465	1,3444	1,1042	0,8571
9	7,8434	7,3570	6,8763	6,3933	5,8988	5,3801	4,8165	4,1682	3,3251	2,7004	2,0879	1,7349	1,4501	1,1519
10	8,8124	8,2955	7,7832	7,2672	6,7372	6,1791	5,5701	4,8652	3,9403	3,2470	2,5582	2,1558	1,8274	1,4787
11	9,7831	9,2373	8,6952	8,1479	7,5841	6,9887	6,3364	5,5778	4,5748	3,8157	3,0535	2,6032	2,2321	1,8338
12	10,7553	10,1820	9,6115	9,0343	8,4384	7,8073	7,1138	6,3038	5,2260	4,4038	3,5706	3,0738	2,6612	2,2141
13	11,7288	11,1291	10,5315	9,9257	9,2991	8,6339	7,9008	7,0415	5,8919	5,0087	4,1069	3,5650	3,1118	2,6172
14	12,7034	12,0785	11,4548	10,8215	10,1653	9,4673	8,6963	7,7895	6,5706	5,6287	4,6604	4,0747	3,5820	3,0407
15	13,6790	13,0298	12,3809	11,7212	11,0365	10,3070	9,4993	8,5468	7,2609	6,2621	5,2294	4,6009	4,0697	3,4825
16	14,6555	13,9827	13,3096	12,6243	11,9122	11,1521	10,3090	9,3122	7,9616	6,9077	5,8122	5,1422	4,5734	3,9417
17	15,6328	14,9373	14,2406	13,5307	12,7919	12,0023	11,1249	10,0852	8,6718	7,5642	6,4077	5,6973	5,0916	4,4162
18	16,6108	15,8932	15,1738	14,4399	13,6753	12,8570	11,9462	10,8649	9,3904	8,2307	7,0149	6,2648	5,6234	4,9048
19	17,5894	16,8504	16,1089	15,3517	14,5620	13,7158	12,7727	11,6509	10,1170	8,9065	7,6327	6,8439	6,1673	5,4067
20	18,5687	17,8088	17,0458	16,2659	15,4518	14,5784	13,6039	12,4426	10,8508	9,5908	8,2604	7,4338	6,7228	5,9210
21	19,5485	18,7683	17,9843	17,1823	16,3444	15,4446	14,4393	13,2396	11,5913	10,2829	8,8972	8,0336	7,2889	6,4467
22	20,5288	19,7288	18,9243	18,1007	17,2396	16,3140	15,2787	14,0415	12,3380	10,9823	9,5425	8,6427	7,8648	6,9829
23	21,5095	20,6902	19,8657	19,0211	18,1373	17,1865	16,1219	14,8480	13,0905	11,6885	10,1957	9,2604	8,4503	7,5291
24	22,4908	21,6525	20,8084	19,9432	19,0373	18,0618	16,9686	15,6587	13,8484	12,4011	10,8563	9,8862	9,0441	8,0847
25	23,4724	22,6156	21,7524	20,8670	19,9393	18,9397	17,8184	16,4734	14,6114	13,1197	11,5240	10,5196	9,6462	8,6494
26	24,4544	23,5794	22,6975	21,7924	20,8434	19,8202	18,6714	17,2919	15,3792	13,8439	12,1982	11,1602	10,2561	9,2222
27	25,4367	24,5440	23,6437	22,7192	21,7494	20,7030	19,5272	18,1139	16,1514	14,5734	12,8785	11,8077	10,8733	9,8029
28	26,4195	25,5092	24,5909	23,6475	22,6572	21,5880	20,3857	18,9392	16,9279	15,3079	13,5647	12,4613	11,4973	10,3907
29	27,4025	26,4751	25,5391	24,5770	23,5666	22,4751	21,2468	19,7677	17,7084	16,0471	14,2564	13,1211	12,1278	10,9861

v /p	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,9975	0,999
30	28,3858	27,4416	26,4881	25,5078	24,4776	23,3641	22,1103	20,5992	18,4927	16,7908	14,9535	13,7867	12,7646	11,5876
31	29,3694	28,4087	27,4381	26,4397	25,3901	24,2551	22,9762	21,4336	19,2806	17,5387	15,6555	14,4577	13,4073	12,1961
32	30,3533	29,3763	28,3889	27,3728	26,3041	25,1478	23,8442	22,2706	20,0719	18,2908	16,3622	15,1340	14,0555	12,8104
33	31,3375	30,3444	29,3405	28,3069	27,2194	26,0422	24,7143	23,1102	20,8665	19,0467	17,0735	15,8152	14,7092	13,4312
34	32,3219	31,3130	30,2928	29,2421	28,1361	26,9383	25,5864	23,9522	21,6643	19,8062	17,7891	16,5013	15,3679	14,0568
35	33,3065	32,2821	31,2458	30,1782	29,0540	27,8359	26,4604	24,7966	22,4650	20,5694	18,5089	17,1917	16,0315	14,6881
36	34,2913	33,2517	32,1995	31,1152	29,9730	28,7350	27,3363	25,6433	23,2686	21,3359	19,2326	17,8868	16,7000	15,3243
37	35,2764	34,2216	33,1539	32,0532	30,8933	29,6355	28,2138	26,4921	24,0749	22,1056	19,9603	18,5859	17,3730	15,9652
38	36,2617	35,1920	34,1089	32,9919	31,8146	30,5373	29,0931	27,3430	24,8839	22,8785	20,6914	19,2888	18,0501	16,6109
39	37,2472	36,1628	35,0645	33,9315	32,7369	31,4405	29,9739	28,1958	25,6954	23,6543	21,4261	19,9958	18,7318	17,2612
40	38,2328	37,1340	36,0207	34,8719	33,6603	32,3449	30,8563	29,0505	26,5093	24,4331	22,1642	20,7066	19,4171	17,9166
45	43,1638	41,9950	40,8095	39,5847	38,2910	36,8844	35,2895	33,3504	30,6123	28,3662	25,9012	24,3110	22,8994	21,2509
50	48,0986	46,8638	45,6100	44,3133	42,9421	41,4492	39,7539	37,6886	34,7642	32,3574	29,7067	27,9908	26,4636	24,6736
55	53,0367	51,7391	50,4204	49,0554	47,6105	46,0356	44,2448	42,0596	38,9581	36,3981	33,5705	31,7349	30,0974	28,1731
60	57,9775	56,6200	55,2394	53,8091	52,2938	50,6406	48,7587	46,4589	43,1880	40,4817	37,4848	35,5344	33,7909	31,7381
70	67,8664	66,3961	64,8990	63,3460	61,6983	59,8978	57,8443	55,3289	51,7393	48,7575	45,4417	43,2753	41,3323	39,0358
80	77,7631	76,1879	74,5825	72,9153	71,1445	69,2070	66,9938	64,2778	60,3915	57,1532	53,5400	51,1719	49,0430	46,5197
90	87,6661	85,9925	84,2854	82,5111	80,6247	78,5584	76,1954	73,2911	69,1260	65,6466	61,7540	59,1963	56,8918	54,1559
100	97,5744	95,8078	94,0046	92,1290	90,1332	87,9453	85,4406	82,3581	77,9294	74,2219	70,0650	67,3275	64,8571	61,9182
120	117,4041	115,4646	113,4825	111,4186	109,2197	106,8056	104,0374	100,6236	95,7046	91,5726	86,9233	83,8517	81,0726	77,7555
140	137,2476	135,1491	133,0028	130,7657	128,3800	125,7580	122,7476	119,0293	113,6594	109,1368	104,0343	100,6547	97,5908	93,9253
160	157,1019	154,8555	152,5564	150,1583	147,5988	144,7834	141,5475	137,5457	131,7560	126,8700	121,3457	117,6791	114,3496	110,3592
180	176,9652	174,5799	172,1373	169,5879	166,8653	163,8682	160,4206	156,1526	149,9687	144,7413	138,8205	134,8843	131,3050	127,0114
200	196,8359	194,3193	191,7409	189,0486	186,1717	183,0028	179,3550	174,8353	168,2785	162,7280	156,4321	152,2408	148,4262	143,8420
250	246,5387	243,7202	240,8297	237,8085	234,5768	231,0128	226,9048	221,8059	214,3915	208,0978	200,9387	196,1604	191,8020	186,5537
300	296,2700	293,1786	290,0062	286,6878	283,1353	279,2143	274,6901	269,0679	260,8781	253,9122	245,9727	240,6631	235,8126	229,9620
500	495,3734	491,3709	487,2569	482,9462	478,3231	473,2099	467,2962	459,9261	449,1467	439,9360	429,3874	422,3034	415,8081	407,9458
600	594,9938	590,6057	586,0930	581,3623	576,2859	570,6681	564,1661	556,0560	544,1801	534,0185	522,3654	514,5285	507,3385	498,6219

Anexo 6


Data sheet NetEnforcer AC-400 Series

The NetEnforcer AC-400 series of entry level bandwidth management devices is especially suitable for small to medium enterprise networks and broadband service provider networks. Using deep packet inspection (DPI) technology with QoS enforcement capabilities, they monitor and control network traffic and user behavior, optimize traffic flows and provide an unsurpassed level of visibility.

Main Features

- 2 or 4 ports support various network topologies
- Range of operation speeds 2, 10, 45 and 100 Mbps (full duplex)
- Accurate identification of hundreds of applications and protocols out-of-the-box
- Advanced signatures and behavioral recognition technologies for individual control of different business and entertainment applications
- Supported by NetXplorer centralized application management suite for streamlined global visibility and control, insightful reporting and analysis, and frontline security
- Support of three policy levels: lines,

- WAN optimization for maximizing the performance of mission-critical applications through QoS, shaping/ prioritization capabilities and highlyflexible policy definitions
- Support for lawful interception in compliance with CALEA requirements
- Continuous, easy-to-use traffic monitoring for fast troubleshooting, usage tracking and capacity planning
- Proactive, automatically-triggered early-warning mechanisms providing administrators with alarms concerning network events and the ability to automate corrective actions
- Easy upgrading to higher speeds and increases in number of policies using the same platform
- Detection of traffic anomalies and mitigation of network attacks and security threats by immediate isolation of malicious traffic, without interrupting regular traffic
- Fail-safe performance with external hardware bypass and full redundancy

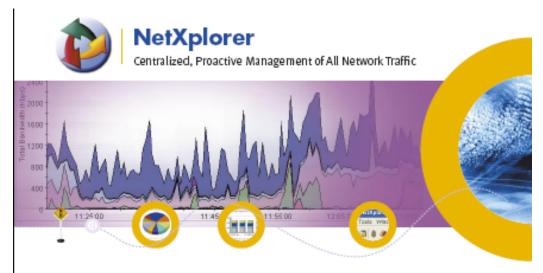
Specifications

The NetEnforcer AC-400 series is available in two models serving a range of network configurations and needs.

	AC-402	AC-404				
сарасну						
Number of Connections/Flows	96,000 / 192,000					
throughput	200 Mbps (100 Mbps, rull pupies)					
Lines/Pipes/Vinual Channels	256 / 1,024 / 4,096					
Interfaces and connections						
Management interface	10 / 100 B258T					
New ork inverfaces (invertial / exvertial)	2x 10/100 Baset	2 x 10/100 B2SET 2 x 10/100/1000 B2SET				
Console Port	Senal, 19-45 Connector					
Deep Packet Inspection (DPI) (Typical Examples)						
P2P P10e0cols	including setorrent, eponkey, Watez,	WINNX, Kazaa, Ares, Grusella				
Vair Protocols	including Stype, H.323, Sig Kirg Net:					
Garning Protocols		SWAT, LIBMA, Quake, Need for Speed				
Instant Mossaging/Chair	including AOL, Yahoo, MSN, QQ, IRC,	ICQ				
Web/Sereaming Application Protocols	including Abacase, munes, KTSR, Wire	imp MMS, Yourube				
Business Application Protocols	including SMTP; Oracle, Lotus-Notes,	SAP				
Product options						
Monitoring Only	YES	Yes				
QoS enforcement Lavels	2, 10, 45 and 100 Mbps (rull pupiles)					
Policy Levels (Lines/Pipes/VCs)	256 / 1,024 / 4,096					
Redundancy	Parallel (1:1)	Parallel and Active (1:1, 1+1)				
Add-Ons: NeiXplorer enabler / reponer	Yes	Yes				
NONACCOURNATE	YES	No				
CALEA	YES	Yes				
Dimensions						
Sue	Standard 10 by 19" rack mount					
Worghe	5.50 kg (12.1 lb)					
Bypass unit	ineermal					
POWE						
Input (AC/DC)	100 to 240 VA.C, 300 W					
safety and certifications						
SaRety	UL 60950-1/CSA CS22.2 60950 (ITE) EN 60950-1 ITE					
Emission	EN 55024:1994; A1:2001; A2:2003 immunity for its EN 61000-3-2:2001 Halmonic Emissions EN 61000-3-3:1995; A1:2000 Voltage riuctizations EN 55022:1998; A1:2000; A2:2003 emissions for its VCCI FCC Path 15, Sub-Path 8					

About Allot Communications

Allor Communications (WASDAC), ALLT) is a leading provider of intelligent IF service optimization solutions. Designed for carriers, service providers and emerprises, Allor solutions apply deep packet inspection (I/P) technology to transform broadband pipes into smart neworks. This creates the visibility and control vital to manage applications, services and subscribers, guarantee quality of service (I/O), contain operating costs and malmine revenue. A flot believes in licensing to customers and provides them access to its global network of visionaties, innovators and support engineers.


www.allot.com info@allot.com

- American, 7 dés Golden Briangle Debes, Eden Pozinie, MM 33364 Elian Bris. (9/3) 964-3300 Toll Bee. (9/7) 233-6x26 Eau. (9/3) 964-3333
 manges, MCI Las Centres d'Affains Village d'Émosphise Gener Sider Exziment 7, dez Avenue Roumanille, BP308, prépode Sophia Amipolia Cedeu, Ramor Tel. 33 (6) 6-99-0001 de Fau. 33 (6) 6-99-0001 de

Anexo 7

Data Sheet NetXplorer

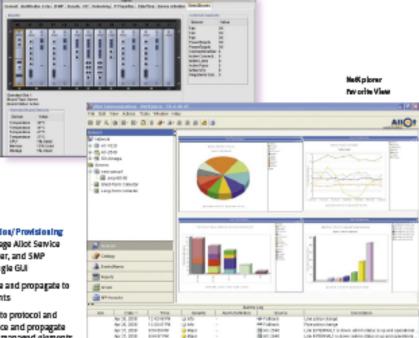
As the scalable management

System for Allot devices, platforms
and value-added services, Allot

NetCplorer provides a central

Vantage point for network-wide
monitoring, reporting, alerting,
accounting and QoS policy
provisioning. Its intuitive GUI
paints a Consolidated picture of
application, user and topology
traffic, while its wide variety of
real-time and historical reports
enable easy drill-down to the most
granular traffic data.

Allot NetXplorer supplies the network business intelligence that is essential for IP service optimization in today's broadband networks, it allows network operators to understand how their bandwidth resources are being consumed by applications and users on the network, and to define traffic management policies that link service and performance parameters to their business goals and to user expectations.


With a full complement of real-time and long-term reporting capabilities, Allot Net'spiorer provides unsurpassed visibility for proactive troubleshooting and traffic trend analysis to assist with capacity and service planning.

Extensive Range of Features

Graphical Device View simplifies resintenesses and operation

Centralized Configuration/Provisioning

- Configure and manage Allot Service Gateway, NetEnforcer, and SMP elements from a single GUI
- Define policies once and propagate to all managed elements
- Download updates to protocol and signature library once and propagate automatically to all managed elements
- Provide a single point of integration between Allot elements in the network and other operator systems such as provisioning, OSS, billing, and portals

Real-time Reports

- Real-time monitoring reports provide precise traffic statistics according to operator-selected resolutions of 30 seconds, 5 minutes, or 1 hour, with automatic refresh and short-term data storage
- Network problems quickly diagnosed using top-down approach with intuitive drill-down to zoom in on a specific period of time, connection, or user session
- Highly granular statistics available for up to 48 hours to assist with postmorters analysis of problems

Long-term Reports

 Historical traffic statistics are reported according to operator-selected resolution of 1 day, 1 week or 1 month, with automatic storage of long-term data for up to 12 months

- Facilitates analysis of traffic trends and internet usage habits to assist with capacity planning
- Popularity, Typical Time, and Percentile reports (including 95th Percentile) support accurate usage analysis and service provider billing requirements

HTTP Reports

- HTTP monitoring reports provide granular statistics and analysis of internet applications based on HTTP, including HTTP browsing, audio streaming, video streaming, file transfer and download manager
- Most Popular URL reports show which web pages are generating the most traffic based on bandwidth consumed or number of subscribers

Rich Set of Reporting Functions

 Predefined graphical reports provide multiple perspectives on Consumption, Utilization, Most Active, Distribution, and Volume statistics

#1 01 00 00 00

- Create customized reports and consolidate multiple charts in one report
- Riter and display traffic data by in, out, or total bendwidth; by live, new or dropped connections; by inbound or outbound flows; by protocol, application, host, and conversation bassion)
- Filter and display subscriber statistics by individual user, user group, sewice plan, and quota plan
- Easy navigation including zoom or scroll to view all report data, graph or tabular format, desired time-frame, and drill-down to view more granular data

Valuable Add-ons

- Schedule reports for automatic generation and email distribution
- Multiple chart styles including colorcoded bar, pie, line, and stack-area charts
- Favorite View arranges up to 10 frequently used reports on-screen for efficient viewing
- Variety of report export formats, including JPEG, PNG, HTML, XML and CSV
- CLI interface for automation of reports, with creation and extraction from NetOplorer by external systems

Powerful Policy Control

NetCplorer's full set of service catalogs and provisioning tools make it easy to build customized Quality of Service (QoS) policies. Policy definitions may include any combination of priority, bandwidth allocation, access, traffic shaping, traffic steering and quota actions to be taken on application and subscriber traffic. Additionally, standard CLI and SOAP interfaces allow external systems to provision policies and distribute them to all managed elements.

User Define & Signatures

Allot NetOpioner allows service providers to create customized signatures to monitor and manage the numerous applications and content based on HTTP. For example, signatures may be created to monitor traffic from individual URLs or to identify applications that use HTTP at the transport layer. Allot's full array of monitoring reports based on user-defined signatures provide valuable traffic statistics and usage analysis.

Intelligent Alarms

SNMP traps are triggered on system and device failures, or on abnormal events per operator-defined thresholds. Oxfor-coded alarms, prominently displayed in the Allot NetXplorer GUI, can be forwarded to the network operation center (NOC) using SNMP.

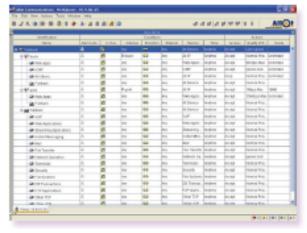
Accounting interface

Netkplorer's Accounting interface enables direct export of raw traffic statistics in CSV format to external systems in 5-minute or 1-hour intervals. Data includes incoming and outgoing packets per subscriber, policy, protocol (application) or host and provides input to operator OSS, billing, analysis and reporting systems.

A number of advanced capabilities are available as licensable add-ons to the standard NetXplorer software.

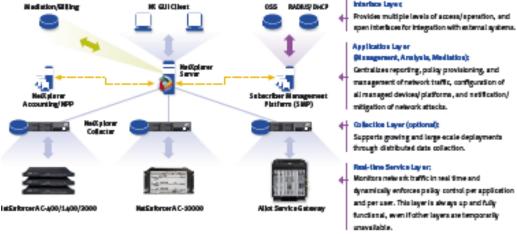
HetAccounting - detailed usage records

NetAccounting processes real-time usage statistics into granular accounting records and delivers this valuable data to OSS and BSS elements to support online charging and usage-based billing for both fixed and mobile broadband subscribers.


Country Classification – managing international links

Country Classification allows operators to classify and manage traffic according to country of origin or destination, and to create different QoS policies for domestic and international traffic.

Not Policy Provisioner (NPP) – value-added self-management


NetPolicy Provisioner adds distinctive value to provider-carrier service offerings by allowing them to offer self-monitoring and self-provisioning capabilities to their VPN, ISP, and managed services customers. The NPP web-based GUI is accessible from any browser window, giving customers direct access to a predefined set of NetXplorer real-time monitoring reports with full display options and drill-down capabilities. If desired, the provision and adjust QoS policies within predefined limits. (See the Allot NetPolicy Provisioner datasheet for details)

HefK plorer Policy Table

Scalable System Architecture

Allot NeXt plorer's fully distributed design allows the system to scale upward by adding functional elements at the appropriate architectural layers, while maintaining overall management from a central server.

Specifications

Allot NetXplorer software may be hosted on operator equipment or purchased as a bundled software-hardware package from Allot. Software-only deployment is supported on the following operating systems: Red Hat Enterprise Linux 5.4 and MicrosoftWindows Server 2008. Below are the specifications for Allot's standard NetXplorer server platform and the high availability platform which comprises redundant hardware and software servers and an external storage appliance.

	2 11	
	He@plarer Server; Heal Endandant Standard Platform (for small enterprises) ISPs that do not require subscriber management)	Betiplorer Sewer; High Availability Platform (Fer ISPs and carriers that require subscriber management)
Ha rebera se	1 x 16M System x3650 M2 Serv or platform (3U) with: 1 x 1 rd eX ear Processor 65520 4C (3.26 GHz, 6MB, 13 Cache, 1066 MHz) 6 x 16B D0R3-1333 1Rx6 LP RDMM 4 x EM 14660 15X 60bps 5A5 2 5* SEF Silm-HS HDO 2 x 16B Dbmmet posts 1 x 67 9W redundant power supply	2x BM System x2650 M2 Server platform (2U)with: - 2x Infel Xxon Processor £5520 AC (2.26 GHz, 8MB, L3 Cache 1066 MHz) - 9x 162 D0R3-1333 1Rx8 LP RDMM - 2x 1631 14662 19X 66bps 3A 5 2,5" SEF Size-HS HDD - 4x 3 GB Ethernat posts - 2x 67 9X redundant power supply 1x D5320000usl Storage Controller (2U) - 9x HDD 146GB, 15K, 3,5" SA 5
Ske	Standard 20 in 19" rack	Standard 6U in 19" rack
Operating System	Red Hat Enterprise Linux 5.4-33/66-bit x86 Microsoft Windows Server 2006	
Maximum Bander of Maxaged Clements	5 x NetSinfancer A.C.4.00, or 5 x NetSinfancer A.C.4.00(3000 + 1 x Collector, or 1 x NetSinfancer A.C.4.00000 + 3 x Callector Nat secummended for A Lot Service Galaxyay	75x NetCofecerAC-L000, or 35x NetCofecerAC-L000/3000 + 5x Collector, or 5x NetCofecerAC-L0000 + 5x Collector, or 5x Allot Service Gather by Omega or Sigma + 5 Collector

About Allot Communications

Allot Communications Ltd. (MASDA), A LD) is a leading provider of intelligent Prawritz optimization solutions for fixed and mobile broadband operature and large enterprises. Allofs rich partfull of solutional average dynamic actionally exceptible to change (MASD) to complete broadband pip on the arrest a swelf to this case applied and efficiently depthy value added internet seek local. Allofs socialists, carrier-grade solutions provide the wishfully, spooling averageness, security, applications control and subscribe management that seek half to managing internet seek localishess, enforcing user separating, carrier grade solutions, and stable larger was seen.

www.allot.com Infogaliot.com

