UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

MAESTRÍA EN INGENIERÍA CIVIL

TEMA: ESTUDIO DEL COMPORTAMIENTO SÍSMICO DE LA INTERACCIÓN SUELO-CIMENTACIÓN EN UNA ESTRUCTURA METÁLICA REPRESENTATIVA

Trabajo de Titulación, previo a la obtención del Grado Académico de Magister en Ingeniería Civil con mención en Estructuras Metálicas

Modalidad de titulación: Proyecto de titulación con componentes de Investigación Aplicada y/o de Desarrollo.

Autor: Ingeniero Humberto Ramiro Morales Zúñiga, Magister

Director: Ingeniero Wladimir José Ramírez Cabrera, Magister

Ambato – Ecuador

APROBACIÓN DEL TRABAJO DE TITULACIÓN

A la Unidad Académica de Titulación de la Facultad de Ingeniería Civil y Mecánica

El Tribunal receptor de la Defensa del Trabajo de Titulación presidido por Ingeniero Wilson Santiago Medina Robalino, Magister, e integrado por los señores: Ingeniera Lourdes Gabriela Peñafiel Valla, Magister e Ingeniero Francisco Agustín Peña Jordán, Master, designados por la Unidad Académica de Titulación de la Universidad Técnica de Ambato, para receptar el Trabajo de Titulación con el tema: "ESTUDIO DEL SÍSMICO COMPORTAMIENTO DE LA **INTERACCIÓN** SUELO-CIMENTACIÓN EN UNA ESTRUCTURA METÁLICA REPRESENTATIVA", elaborado y presentado por el señor Ingeniero Humberto Ramiro Morales Zúñiga, Magister, para optar por Grado Académico de Magister en Ingeniería Civil con Mención en Estructuras Metálicas; una vez escuchada la defensa oral del Trabajo de Titulación el Tribunal aprueba y remite el trabajo para uso y custodia en las bibliotecas de la Universidad Técnica de Ambato.

Ing. Wilson Santiago Medina Robalino, Mg. Presidente y Miembro del Tribunal de Defensa

Ing. Lourdes Gabriela Peñafiel Valla, Mg. Miembro del Tribunal de Defensa

Ing. Francisco Agustín Peña Jordán, MSc. Miembro del Tribunal de Defensa

AUTORÍA DEL TRABAJO DE TITULACIÓN

La responsabilidad de las opiniones, comentarios y críticas emitidas en el Trabajo de Titulación presentado con el tema: **"ESTUDIO DEL COMPORTAMIENTO SÍSMICO DE LA INTERACCIÓN SUELO-CIMENTACIÓN EN UNA ESTRUCTURA METÁLICA REPRESENTATIVA"**, le corresponde exclusivamente al: Ingeniero Humberto Ramiro Morales Zúñiga, Magister, Autor bajo la Dirección de Ingeniero Wladimir José Ramírez Cabrera, Magister, Director del Trabajo de Investigación; y el patrimonio intelectual a la Universidad Técnica de Ambato.

Ing. Humberto Ramiro Morales Zúñiga, Mg.

c.c.: 1802416881

AUTOR

Ing. Wladimir José Ramírez Cabrera, Mg.

c.c.:1715190938

DIRECTOR

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que el Trabajo de Titulación, sirva como un documento disponible para su lectura, consulta y procesos de investigación, según las normas de la Institución.

Cedo los Derechos de mi Trabajo de Titulación, con fines de difusión pública, además apruebo la reproducción de este, dentro de las regulaciones de la Universidad Técnica de Ambato.

Ing. Humberto Ramiro Morales Zúñiga, Mg.

c.c. 180241688-1

ÍNDICE GENERAL DE CONTENIDOS

Contenido
PORTADAi
APROBACIÓN DEL TRABAJO DE TITULACIÓNii
AUTORÍA DEL TRABAJO DE TITULACIÓNiii
DERECHOS DE AUTORiv
ÍNDICE GENERAL DE CONTENIDOSv
ÍNDICE DE TABLASix
ÍNDICE DE FIGURASxiii
AGRADECIMIENTOxviii
DEDICATORIAxix
RESUMEN EJECUTIVO xx
EXECUTIVE SUMMARYxxii
CAPÍTULO I 1
EL PROBLEMA DE LA INVESTIGACIÓN1
1.1. Introducción1
1.2. Justificación
1.3. Objetivos
1.3.1. General
1.3.2. Específicos
CAPÍTULO II
ANTECEDENTES INVESTIGATIVOS
CAPÍTULO III

MARCO METODOLÓGICO11
3.1. Ubicación11
3.2. Equipos y materiales11
3.2.1. Descripción de equipo que se utilizó en la investigación11
3.3. Tipo de investigación12
3.4. Prueba de hipótesis 12
3.5. Población o muestra12
3.6. Recolección de información12
3.7. Procesamiento de la información y análisis estadístico
3.8. Recolección de datos14
3.8.1. Planos de la edificación14
3.8.2. Características de la estructura14
3.8.3. Materiales
3.9. Variables respuesta o resultados esperados
CAPÍTULO IV 24
RESULTADOS Y DISCUSIÓN24
4.1. Análisis lineal de la estructura24
4.1.1. Definición de materiales24
4.1.2. Definición de secciones25
4.1.3. Asignación de cargas gravitacionales25
4.1.4. Asignación de cargas dinámicas26
a. Definición del cortante basal estático26
b. Acción sísmica
c. Corrección de cortante basal Estático y Dinámico

d. I	Inclusión del peso del terreno	. 31
e.	Modificación de la masa participativa para el sismo	. 33
f.	Ajustes al modelo [30]	. 33
4.1.	.5. Modelo de base rígida	. 33
a.	Periodo de vibración	. 34
b.	Derivas base rígida-dinámico	.36
c.	Desplazamientos base rígida	. 38
4.1.	.6. Modelo de interacción suelo – estructura por BARKAN	. 40
a.	Cálculo de las masas de las zapatas aisladas	. 40
b. C	Cálculo de coeficientes de rigidez – Modelo de Barkan [23]-Suelo tipo D	. 43
c. 1	Definición de zapatas	. 50
i.	Definición de secciones de las zapatas	. 50
j.	Definición de coeficientes de rigidez	. 50
4.1.	.7. Modelo de interacción Suelo-Estructura por Artur Pais & Eduardo Kau	usel
•••••		. 52
a. F	Funciones de impedancia	. 53
4.1.	.8. Análisis y discusión de resultados	. 62
a.	Desplazamientos	. 63
b.	Periodo de vibración	. 65
c.	Derivas de piso	. 67
d.	Cortante por piso	.70
e.	Participación de masas	.72
f.	Chequeo del índice de estabilidad (Q)	.75
g.	Aceleraciones por piso	.77

h.	Diseño de los elementos estructurales79
4.1	.9. Rediseño modelo ISE Barkan85
4.1	.9.1. Cálculo de coeficientes de rigidez – Modelo de Barkan [23]-Suelo tipo D
••••	
4.1	.9.2. Análisis de resultados
4.1	.9.3. Diseño de la cimentación modelo ISE Barkan
4.1	.9.4. Resultados obtenidos por el diseño automático con el programa ETABS
[24	l ⁻]101
a.	Cortante en la zapata D2 V13 eje x102
b.	Cortante en la zapata D2 V13 eje Y 103
c.	Momento en la zapata D2 V13 eje x 104
d.	Momento en la zapata D2 M22 eje Y 105
e.	Momento máximo 106
f.	Presiones sobre el suelo107
g.	Deformación de los muros108
4.1	.9.5. Diseño de la Subestructura del modelo ISE Barkan
CA	\PÍTULO V114
CC	ONCLUSIONES, RECOMENDACIONES, BIBLIOGRAFÍA Y ANEXOS 114
5.1	. Conclusiones
5.2	. Recomendaciones 116
5.3	. Referencias 116
5.4	. Anexos

ÍNDICE DE TABLAS

Tabla 3- 1: Coordenadas de ubicación del proyecto [35]
Tabla 3- 2: Descripción del equipo utilizado para el análisis
Tabla 3- 3: Descripción de niveles, alturas, áreas y usos
Tabla 3- 4: Requerimiento de resistencia a la compresión del hormigón
Tabla 3- 5: Coeficiente de amplificación dinámica [22]
Tabla 3- 6: Coeficiente de balasto en función del ancho de zapata y la profundidad.
Tabla 3- 7: Variación de capacidad admisible vs base de la cimentación

Tabla 4-1: Propiedades del Hormigón f'c = 240 kg/cm^2 [24]	24
Tabla 4-2: Propiedades del Acero de refuerzo ASTM – A615 [24].	25
Tabla 4-3: Propiedades del Acero ASTM A992 Gr 50 [24].	25
Tabla 4-4: Pesos de terreno	32
Tabla 4-5: Valores de periodos [24].	35
Tabla 4-6: Valores de derivas en eje x [24].	36
Tabla 4-7: Valores de derivas en eje y [24].	37
Tabla 4-8: Desplazamientos en x [24]	38
Tabla 4-9: Desplazamientos en y [24]	38
Tabla 4-10: Características del suelo de fundación [24]	40
Tabla 4-11: Zapatas aisladas.	42
Tabla 4-12: Masas de las zapatas	43
Tabla 4-13: Presión estática en las zapatas de la planta baja.	45
Tabla 4-14: presión estática en las zapatas del subsuelo 1.	45

Tabla 4-15: Presión estática en las zapatas del subsuelo 2. 45
Tabla 4-16: Cálculo del coeficiente d0. 46
Tabla 4-17: Coeficientes de compresión elástica, planta baja
Tabla 4-18: Coeficientes de compresión elástica, subsuelo 1
Tabla 4-19: Coeficientes de compresión elástica, subsuelo 2
Tabla 4-20: Coeficientes de rigidez equivalentes planta baja
Tabla 4-21: Coeficientes de rigidez equivalentes subsuelo 1
Tabla 4-22: Coeficientes de rigidez equivalentes subsuelo 2. 49
Tabla 4-23: Ingreso de datos. 53
Tabla 4-24: Resultados de valores de rigideces elásticas. 54
Tabla 4-25: Resultados de valores de factores de corrección para las rigideces estáticas. 55
Tabla 4-26: Resultados de valores de modificadores de rigidez dinámica yamortiguamiento por radiación de ondas para cimentaciones
Tabla 4-27: Resultados de valores de modificadores de rigidez dinámica por radiaciónde ondas para cimentaciones embebidas
Tabla 4-28: Resultados de valores de coeficientes de amortiguamiento por radiación de ondas para cimentaciones embebidas
Tabla 4-29: Resultados de valores de modificadores de rigidez dinámica yamortiguamiento por radiación de ondas para cimentaciones embebidas.59
Tabla 4-30: Resultados de valores de coeficientes amortiguamiento corregidos para cimentaciones embebidas
Tabla 4-31: Desplazamientos en el sentido x [24]
Tabla 4-32: Desplazamientos en el sentido y [24]
Tabla 4-33: Periodos de vibración(s) [24]. 66

Tabla 4-34: Derivas inelásticas en el sentido eje x [24].	67
Tabla 4-35: Derivas inelásticas en el sentido eje y [24].	69
Tabla 4-36: Participación de masas modelo tradicional base rígida [24].	73
Tabla 4-37: Participación de masas modelo ISE BARKAN [24].	74
Tabla 4-38: Participación de masas modelo ISE PAIS Y KAUSEL [24].	75
Tabla 4-39: Chequeo de índice de estabilidad Q, modelo de base rígida [22].	76
Tabla 4-40: Chequeo de índice de estabilidad Q, modelo de BARKAN [22]	76
Tabla 4-41: Chequeo del índice de estabilidad Q, modelo de PAIS y KAUSEL [2	2]. 76
Tabla 4-42: Aceleraciones por piso eje sentido x [24]	77
Tabla 4-43: Aceleraciones por piso eje sentido y [24]	77
Tabla 4-44: Presión estática en las zapatas del subsuelo 1.	85
Tabla 4-45: Coeficientes de compresión elástica, subsuelo 2	86
Tabla 4-46: Coeficientes de rigidez equivalentes subsuelo 1	86
Tabla 4-47: Desplazamientos en el sentido x [24].	87
Tabla 4-48: Desplazamientos en el sentido y [24]	87
Tabla 4-49: Periodos de vibración(s) [24].	88
Tabla 4-50: Derivas inelásticas en el sentido eje x [24].	89
Tabla 4-51: Derivas inelásticas en el sentido eje y [24].	89
Tabla 4-52: Participación de masas nuevo modelo ISE Barkan [24].	91
Tabla 4-53: Chequeo de índice de estabilidad Q, modelo de BARKAN [22]	92
Tabla 4-54: Aceleraciones por piso eje sentido X e Y [24]	92
Tabla 4-55: Prediseño de cimentaciones.	95
Tabla 4-56: Datos del edificio [31].	96

Tabla 4-57: Datos del suelo [31]	96
Tabla 4-58: Cálculo de cargas [31].	96
Tabla 4-59: Cálculo de cargas muertas [31].	96
Tabla 4-60: Ancho del cimiento vs Presión de contacto [31]	97
Tabla 4-61: Tabla comparativa Qadm. [31]	98
Tabla 4-62: Asentamiento por método de Meyerhof [31].	98
Tabla 4-63: Q adm [31]	99
Tabla 4-64: Factor de corrección por la profundidad df [31].	99
Tabla 4-65: Asentamiento elástico [31].	99
Tabla 4-66: Diseño de zapatas cuadradas aisladas [31]	100
Tabla 4-67: Resultados diseño de zapatas cuadradas aisladas [31].	100
Tabla 4-68: Resultados diseño de zapatas cuadradas aisladas [31].	103
Tabla 4-69: Resultados distorsión angular [31].	107
Tabla 4-70: Resultados del armado de acero para zapatas cuadradas aislad	las [31]. 113
Tabla 4-71: Resultados del armado de acero para zapatas cuadradas aislad	las [31]. 113

ÍNDICE DE FIGURAS

Figura 2-1: Péndulo invertido [13]	. 7
Figura 2- 2: Modelo de Nikolaenko y Nazarov [13]	. 8
Figura 2- 3: Modelo de Nikolaenko y Nazarov [13]	.9
Figura 2-4: Modelo dinámico de interacción sísmica suelo-cimentación superfici	al-
superestructura [13]	.9

Figura 3-1: Corte A-A`, plano arquitectónico del proyecto	14
Figura 3-2: Ubicación del proyecto [35]	16
Figura 3-3: Capacidad portante en función del ancho de la zapata	19
Figura 3-4: Capacidad portante en función del ancho de la zapata	
Figura 3- 5: Irregularidades de la estructura.	

Figura 4-1: Cargas actuantes
Figura 4-2: Cálculo de la aceleración
Figura 4-3: Cálculo de la aceleración, dirección x [24]
Figura 4-4: Cálculo de la aceleración dirección y [24]28
Figura 4-5: Espectro de respuesta sísmica NEC-15[22]
Figura 4-6: Espectro de respuesta sísmica NEC-15[22]
Figura 4-7: Cortante basal estático y cortante basal dinámico NEC-15[22]
Figura 4-8: Introducción de los coeficientes de cortante basal corregido NEC-15[22].
Figura 4-9: Restricción en la base de la estructura [24]
Figura 4-10: Modo, Modal [24]

Figura 4-11: Derivas en eje x [24]	36
Figura 4-12: Derivas en eje Y [24]	37
Figura 4-13: Planta baja de la estructura.	41
Figura 4-14: Planta de cimentación de la estructura subsuelo 1	41
Figura 4-15: Planta de cimentación de la estructura subsuelo 2	42
Figura 4-16: Valores del coeficiente C0 cuando, $\rho_0 = 0,2 \text{ kg} / \text{ cm} [23]$	46
Figura 4-17: Definición de secciones de la zapata 1 [24]	50
Figura 4-18: Definición masas de las zapatas [24]	50
Figura 4-19: Definición de coeficientes de rigidez de Z1 [24]	51
Figura 4-20: Definición de coeficientes de rigidez de Z1 planta baja [24]	51
Figura 4-21: Definición de coeficientes de rigidez de Z1, subsuelo 2 [24]	52
Figura 4-22: Definición de coeficientes de rigidez de Z1, subsuelo 1[24]	52
Figura 4-23: Ecuaciones para calcular rigideces elásticas [27]	54
Figura 4-24: Factores de corrección para las rigideces estáticas [27]	55
Figura 4-25: Modificadores de rigidez dinámica y amortiguamiento por radiación las ondas para cimentaciones. [27]	de 56
Figura 4-26: Modificadores de rigidez dinámica y amortiguamiento por radiación las ondas para cimentaciones embebidas.	de 57
Figura 4-27: Amortiguamientos corregidos por embebido [27]	58
Figura 4-28: Definición del elemento Link [24]	60
Figura 4-29: Características del elemento Link [24]	60
Figura 4-30: Ingreso de valores de rigidez y amortiguamiento [24]	61
Figura 4-31: Asignación del resorte como elemento Link [24]	61
Figura 4-32: Asignación del resorte como elemento Link [24]	62

Figura 4-33: Asignación de los resortes a las bases de las zapatas
Figura 4-34: Desplazamientos en el sentido del eje x [24]
Figura 4-35: Desplazamientos en el sentido del eje y [24]
Figura 4-36: Periodos de vibración [24]
Figura 4-37: Derivas inelásticas en el sentido eje x [24]
Figura 4-38: Derivas inelásticas en el sentido eje Y [24]
Figura 4-39: Fuerza cortante de piso eje sentido X, modelo base rígida (Tn) 70
Figura 4-40: Fuerza cortante de piso eje sentido X, modelo ISE Barkan (Tn) 70
Figura 4-41: Fuerza cortante de piso eje sentido X, modelo ISE Pais Kausel (Tn). 71
Figura 4-42: Fuerza cortante de piso eje sentido Y, modelo base rígida (Tn)71
Figura 4-43: Fuerza cortante de piso eje sentido Y, modelo ISE Barkan (Tn) 72
Figura 4-44: Fuerza cortante de piso eje sentido Y, modelo ISE Pais Kausel (Tn). 72
Figura 4-45: Aceleración de piso eje sentido x, m/s2 [24]78
Figura 4-46: Aceleración de piso eje sentido x, m/s2 [24]78
Figura 4-47: Vigas metálicas piso 5, modelo base rígida [24]79
Figura 4-48: Vigas metálicas piso 5, modelo IDSE Barkan [24]80
Figura 4-49: Vigas metálicas piso 5, modelo IDSE Barkan [24]80
Figura 4-50: Acero en cadenas estructurales piso 5, modelo base rígida [24] 81
Figura 4-51: Acero en cadenas estructurales piso 5, modelo IDSE Barkan [24] 81
Figura 4-52: Acero en cadenas estructurales piso 5, modelo IDSE Pais y Kausel [24]
Figura 4-53: Acero en Columna H°A° C2, modelo base rígida [24] 82
Figura 4-54: Acero en Columna H°A° C2, modelo IDSE Barkan [24] 83
Figura 4-55: Acero en Columna H°A° C2, modelo IDSE Pais y Kausel [24] 83

Figura 4-56: Ratios Columnas, modelo base rígida [24]
Figura 4-57: Ratios Columnas, modelo IDSE Barkan [24]
Figura 4-58: Ratios Columnas, modelo IDSE Pais y Kausel [24]85
Figura 4-59:Desplazamientos en el sentido del eje x [24]
Figura 4-60:Desplazamientos en el sentido del eje Y [24]
Figura 4-61: Periodos de vibración [24]
Figura 4-62:Derivas inelásticas en el sentido eje X [24]
Figura 4-63:Derivas inelásticas en el sentido eje X [24]90
Figura 4-64: Fuerza cortante de piso eje sentido X, nuevo modelo ISE Barkan (Tn).
Figura 4-65: Fuerza cortante de piso eje sentido Y, nuevo modelo ISE Barkan (Tn).
Figura 4-66: Aceleración de piso eje sentido x, m/s ² [24]93
Figura 4-67: Aceleración de piso eje sentido y, m/s ² [24]93
Figura 4-68: Ancho del Cimiento Vs Presión de Contacto [31]97
Figura 4-69: Preferencias de diseño según el ACI 318-19 [24] 102
Figura 4-70: Cortante en la zapata D2, V13 eje x, Tn/m [24]102
Figura 4-71: Cortante en la zapata D2, V13 eje x, Va <vr, [24]103<="" m="" td="" tn=""></vr,>
Figura 4-72: Cortante en la zapata D2, V23 eje y, Tn/m [24]103
Figura 4-73: Cortante en la zapata D2, V23 eje Y, Va <vr, [24]104<="" m="" th="" tn=""></vr,>
Figura 4-74: Momento en la zapata D2, M11 eje x, Tn.m/m [24]104
Figura 4-75: Momento en la zapata D2, M11 eje x, Ma <mr, [24]105<="" m="" th="" tn.m=""></mr,>
Figura 4-76: Momento en la zapata D2, M22 eje y, Tn.m/m [24] 105
Figura 4-77: Momento en la zapata D2, M22 eje y, Ma <mr, 106<="" [24]="" m="" td="" tn.m=""></mr,>

Figura 4-78: Momento máximo en la zapata D2, Tn.m/m [24] 106
Figura 4-79: Presiones en la zapata D2 sobre el suelo, Tn/m ² [24] 107
Figura 4-80: Valores de distorsión angular, Norma Peruana [33]. [24] 107
Figura 4-81: Deformación de los muros de sótano, mm [24]108
Figura 4-82:Ratios de punzonamiento de zapatas<1 [,] piso 4[24]108
Figura 4-83: Ratios de punzonamiento de zapatas<1 [,] piso 2[24] 109
Figura 4-84:Ratios de punzonamiento de zapatas<1, base [24] 109
Figura 4-85: Acero y espaciamiento en el sentido x de la zapata cara inferior y superior por flexión cm ² /m, piso 4[24]110
Figura 4-86: Acero y espaciamiento en el sentido y de la zapata cara inferior y superior por flexión cm ² /m, piso 4[24]110
Figura 4-87: Acero y espaciamiento sentido x de la zapata cara inferior y superior por flexión cm ² /m, piso 2[24]111
Figura 4-88: Acero y espaciamiento sentido y de la zapata cara inferior y superior por flexión cm ² /m, piso 2[24]111
Figura 4-89: Acero y espaciamiento en el sentido x de la zapata cara inferior y superior por flexión cm ² /m, base [24]
Figura 4-90: Acero y espaciamiento en el sentido y de la zapata cara superior e inferior por flexión cm ² /m, base [24]

AGRADECIMIENTO

A la Universidad Técnica de Ambato a la Facultad de Ingeniería Civil y Mecánica, a la planta Docente de Posgrado, al personal administrativo de posgrados FICM, por el nivel académico y la atención brindada.

Al Ing. Wladimir José Ramírez Cabrera, Mg., por su guía, apoyo y colaboración logrando así, la culminación del presente.

Al Ing. Pablo Caiza, PhD, quien impartió la cátedra de la asignatura de Diseño de Cimentaciones, siendo mi guía para el desarrollo del presente trabajo.

A los Ing. Marcelo Guerra MSc-MDI profesor de la materia estructuras I e Ing. Marcelo Guerra Valladares, por sus aportes con su libro.

A Sísmica Instituto Barcelona-España, al Ing. Edison Guánchez por su gestión y curso sobre la temática del presente tema de investigación.

A CEINT PERÚ, al Ing. Carlos Mercado, por la gestión e impartición del curso de diseño de estructuras en laderas.

Al Ing. Genner Villareal, PhD., por la valiosa colaboración con la impartición de sus conocimientos, especialista en el tema estudiado.

Al Ing. Kevin Quispillo, siendo que, su trabajo de pregrado fué la base de esta investigación.

Al Ing. Pablo Santander, Mg., e Ing. Diego Carranza Mg., por sus aportes técnicos incondicionales en el desarrollo de la investigación.

A la Ing. Marisol Bayas, Mg. Directora Académica Cohorte 2021, quien me acompaño con su atención, energía y valor para la culminación del presente.

A los Ingenieros, Milton Aldas, Dr., Carlos Navarro, Mg., Jorge Cevallos, Mg., Leticia Mayorga Mg., Byron López, Mg. y a todos mis compañeros de la Cohorte 2021, con quienes compartimos en conjunto la noble experiencia del aprendizaje de conocimientos, cultivando una genial amistad, a quienes los represente como su Comandante, ayer, hoy y siempre mis eternos agradecimientos.

Humberto.

DEDICATORIA

El presente trabajo producto del esfuerzo, amor y sabiduría...

A mi Madre Hilda María.

A mi esposa Lilian Janeth.

A mis dos hijos Alexander y Steven.

A mis Padres: Manuel Guerrero (+), José Morales y Bélgica Cruz.

A mis Abuelitos: Isabel (+), María (+), Virginia (+), Javier (+), Abel (+), y Ricardo (+).

A mis hermanos: María, Luciano (+), Elsy, Edison, Geovanny, José, Freddy (+), Raúl, Javier, Patricio, Fernando, Mayra y Mariela.

A mis sobrinos, a mis tíos, amigos y familiares.

Siendo vosotros la razón de mi vivir...

Humberto.

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

MAESTRÍA EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS

METÁLICAS

TEMA:

ESTUDIO DEL COMPORTAMIENTO SÍSMICO DE LA INTERACCIÓN SUELO-CIMENTACIÓN EN UNA ESTRUCTURA METÁLICA REPRESENTATIVA

AUTOR: Ingeniero Humberto Ramiro Morales Zúñiga, Magister.

DIRECTOR: Ingeniero Wladimir José Ramírez Cabrera, Magister.

LÍNEA DE INVESTIGACIÓN: Proyecto de titulación con componentes de Investigación Aplicada y/o de Desarrollo

FECHA: Veinte de enero de 2022

RESUMEN EJECUTIVO

Ecuador está ubicado en una zona de alta peligrosidad sísmica, terrenos montañosos, laderosos de pendientes bajas, medias y altas en la región Sierra principalmente, el alto déficit habitacional y sin considerar la peligrosidad de fundar las estructuras en este tipo de suelos, el ser humano realiza asentamientos desordenados y sin ninguna planificación y control por parte de las entidades gubernamentales, viviendas que son construidas sin un debido orden, diseño estructural, inspección profesional de ejecución de obras, por lo que amerita realizar un análisis técnico integral que permita determinar la respuesta favorable de la edificación ante un evento dinámico y en un terreno laderoso. Se analizaron los factores que intervienen en la interacción dinámica suelo-estructura como aceleraciones, velocidades, desplazamientos, la relación que existe entre ellas y las variaciones en el periodo fundamental de la estructura al considerar la flexibilidad del suelo de fundación; para lo cual mediante el uso de resortes y amortiguadores (funciones de impedancia) que representan la respuesta dinámica del sistema IDSE en base al modelo de Barkan y la NEC-15, se determinó el incremento de la flexibilidad en la base de fundación del modelo de interacción suelo-

estructura, con respecto al modelo de base rígida en un suelo tipo D, por medio de la simulación dinámica y experimental. Como consecuencia del presente trabajo de investigación se obtuvo un cambio notorio en el comportamiento de la cimentación de la estructura la cual fue sometida a las solicitaciones de cargas inicialmente planteadas y se relacionó con el modelo tradicional de base rígida. Los resultados del presente estudio pueden ser empleados para mejorar las técnicas de diseño y construcción, además de proporcionar información relevante a los profesionales del campo ingenieril sobre la interacción suelo-cimentación de las estructuras. Con la finalidad de ampliar el análisis de las condiciones antes mencionadas se pueden incluir en futuras investigaciones un análisis del comportamiento suelo-estructura.

PALABRAS CLAVE: Amortiguadores, Espectro de diseño, Flexibilidad del suelo, Funciones de impedancia, Interacción, Laderosos, Periodo fundamental, Resortes, Respuesta estructural, Vulnerabilidad sísmica.

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

MAESTRÍA EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS METÁLICAS

THEME:

STUDY OF THE SEISMIC BEHAVIOR OF SOIL-FOUNDATION INTERACTION IN A REPRESENTATIVE STEEL STRUCTURE

AUTHOR: Ing. Humberto Ramiro Morales Zuñiga, Mg.

DIRECTED BY: Ing. Wladimir José Ramírez Cabrera, Mg.

LINE OF RESEARCH: Degree project with applied research and/or development components.

DATE: January 20, 2022

EXECUTIVE SUMMARY

Ecuador is located in an area of high seismic hazard, mountainous terrain, slopes of low, medium and high slopes in the Sierra region mainly, the high housing deficit and without considering the danger of founding the structures in this type of soil, the human being makes disorderly settlements and without any planning and control by government entities, This is why it is necessary to carry out a comprehensive technical analysis to determine the favorable response of the building to a dynamic event in a sloping terrain. The factors involved in the dynamic soil-structure interaction were analyzed, such as accelerations, velocities, displacements, the relationship between them and the variations in the fundamental period of the structure when considering the flexibility of the foundation soil; For which through the use of springs and dampers (impedance functions) that represent the dynamic response of the IDSE system based on the Barkan model and the NEC-15, the increase of the flexibility in the foundation base of the soil-structure interaction model, with respect to the rigid base model in a type D soil, was determined by means of dynamic and experimental simulation. As a consequence of the present research work, a notorious change in the behavior of the foundation of the structure was obtained, which was subjected to the load solicitations

initially proposed and related to the traditional rigid base model. The results of the present study can be used to improve design and construction techniques, in addition to providing relevant information to professionals in the engineering field on the soil-foundation interaction of structures. In order to extend the analysis of the aforementioned conditions, an analysis of the soil-structure behavior can be included in future research.

DESCRIPTORS: Dampers, Design Spectrum, Fundamental Period, Impedance Functions, Interaction, Laderosos, Seismic Vulnerability, Soil Flexibility, Springs, Structural Response.

CAPÍTULO I

EL PROBLEMA DE LA INVESTIGACIÓN

1.1. Introducción

Las estructuras se apoyan sobre sus sistemas de fundación, mediante estos elementos se encargan de transmitir las cargas al suelo. Debido a estas cargas, las estructuras sufren deformaciones induciendo esfuerzos sobre los elementos que lo componen; en cambio, los efectos del sismo al suelo de fundación son los encargados de transmitir las ondas vibratorias a la estructura. La respuesta dinámica de las estructuras depende de diversos factores, las propiedades de las estructuras, las tipologías de la excitación, entre otras. Se le llama interacción dinámica suelo- estructura (IDSE) a los cambios que se generan tanto en el movimiento del terreno, así como en la respuesta dinámica de la superestructura debidas a la baja rigidez relativa del sistema suelo-cimentación, respecto a la rigidez de la estructura. Dentro del análisis fue necesario conocer sobre qué tipo de soportes están apoyados y de esta manera considerar la rigidez del terreno de fundación.

Es pertinente considerar parámetro como: velocidad de onda de corte del terreno, período de vibración esperado de la estructura y altura de la edificación, para determinar si es posible o no realizar un análisis de interacción. Los mecanismos de apoyo no fueron de base rígida, sino de base flexible con lo que se obtuvo las componentes verticales, horizontales y rotacionales y cada vez que se llegue a este punto, siempre se presenta la inquietud del coeficiente de balasto que tiene aplicación para cargas estáticas o de naturaleza pseudoestáticas.

En este caso, se trata de una respuesta dinámica, es decir, las amplitudes de deformaciones y rigidez dinámicas que en este caso son muy elevadas respecto a los coeficientes de rigidez estática que en algunos casos pueden ser muy parecidas, pero además se entenderá que el sismo tenga una forma u otra, y resulta que, también cambiará la forma del resorte, es decir, estos coeficientes de rigidez dependerán de la frecuencia de vibración o de las características del movimiento de entrada y se conocerá la respuesta de la base de la edificación. Al estudiar el comportamiento sísmico de estructuras, los efectos cinemáticos y de inercia ligados a la IDSE afectan

a las características dinámicas del sistema e influyen en el movimiento del suelo alrededor de la cimentación.

1.2. Justificación

Los ejemplos prácticos de aplicaciones IDSE son escasos, dando lugar a que rara vez se aplique, y cuando se presentan los protocolos de modelado varían ampliamente y no siempre están bien concebidos.

1.3. Objetivos

1.3.1. General

Estudiar el comportamiento sísmico de la interacción suelo-cimentación en una estructura metálica.

1.3.2. Específicos

- Diseñar la estructura de un edificio para simular su comportamiento estructural ante la presencia de una excitación dinámica.
- Diseñar la cimentación tomando en cuenta el fenómeno de interacción suelocimentación.
- Calcular la cimentación para la estructura de un edificio.
- Analizar los resultados obtenidos de la interacción suelo-cimentación para un edificio.

CAPÍTULO II

ANTECEDENTES INVESTIGATIVOS

La interacción suelo-cimentación-estructura metálica se debe estudiar considerando ciertos factores como las características de los diferentes tipos de suelo, calidad de materiales, normativas de diseño, etc.

A través del tiempo los calculistas han venido adoptando diversos métodos de cálculo como el LRFD (*Load and Resistance Factor Design*), ahora ya es posible aplicar el método de los criterios de Estados Límites de un Sistema Estructural, por cuanto al ser sometidos a cargas superiores originales para las cuales fueron diseñadas las secciones de los elementos se plastifiquen debido a una redistribución de los esfuerzos, sean estos por cortantes, momentos, etc. Estos elementos deben acudir a su energía residual de deformación y de esta manera la estructura no colapsa, es decir, lo ideal es aprovechar las propiedades mecánicas del acero hasta su estado plástico. Se deberá considerar en el diseño de los elementos que comprenden la cimentación, las cargas totales, ya sean permanentes o transitorias, durante la vida útil de la estructura de acero. Al introducir los factores de reducción por cargas sísmicas (R) y los coeficientes de balasto, los cortantes basales son afectados de acuerdo al tipo de suelo. Aquí también se debe considerar que la soldadura, el empernado y remachado son medios de unión muy utilizados en todo tipo de conexiones por sus ventajas [1].

La interacción dinámica suelo-estructura tiene una relevancia significativa; este fenómeno consiste en un conjunto de efectos cinemáticos e inerciales producidos en la estructura y un suelo como resultado de su flexibilidad ante solicitaciones dinámicas [2].

En la práctica cotidiana los ingenieros estructurales diseñan superestructuras (Columnas, vigas, losas de entrepiso, escaleras, paredes cortantes, etc.) fijas en la base y transmiten las reacciones a la infraestructura para diseñar el sistema de cimentación (Pedestales, cadenas de cimentación, plintos, muros de cimentación losas de cimentación, vigas trabes, etc.) y estiman el desplazamiento del suelo sin tener en cuenta el cambio en la respuesta estructural debido a la interacción suelo-estructura [3].

La interacción es la respuesta de una estructura al movimiento que se presentaría en el terreno, pero habrá que considerar la flexibilidad del apoyo. En este caso la diferencia entre la respuesta de la estructura con base flexible y con base rígida proviene principalmente de la inercia y la flexibilidad del sistema completo. Este efecto se le conoce como interacción inercial y está controlado por la relación de rigideces entre la estructura y el suelo [4].

Debido a la importancia de las interacciones inercial y cinemática, los suelos duros presentan desplazamientos pequeños en comparación con suelos medios y blandos. Por lo tanto, las propiedades del suelo tienen un efecto importante en el desempeño de las estructuras enmarcadas bajo carga dinámica sísmica [5].

Es considerable efectuar solo el análisis de interacción inercial, si es que los efectos de sitio son importantes en la excitación dinámica de campo libre, la cual determina el movimiento de entrada de la cimentación [6].

Aguiar y Ortiz realizaron un estudio de un edificio de 12 pisos en la ciudad de Manta, en el cual se consideró la interacción suelo estructura en el que se observa que se afectó ligeramente a los valores de periodo de vibración y desplazamiento [7].

Morales y Espinosa [8] en el año 2020 han considerado la interacción suelo estructura al estudiar un edificio de 8 pisos y un subsuelo en la ciudad de Quito, en el que se observó que se incrementa el periodo de vibración hasta en un 46% respecto a un modelo tradicional de base rígida. Con todo esto, se infiere que la interacción suelo – estructura modifica la respuesta de la edificación.

En los modelos desplantados sobre base flexible (cimentación con un cajón y con pilotes de fricción), la IDSE se representa por medio de un resorte rotacional de rigidez K_r y un resorte traslacional horizontal de rigidez K_h ubicados en un nodo maestro en el centro de la base, donde la base del edificio se modela con un diafragma infinitamente rígido. En los análisis, las propiedades del sistema suelo - cimentación se consideraron a través de funciones de impedancia. Las funciones de impedancia son las rigideces dinámicas de la cimentación rígida sin masa, las cuales se definen como las fuerzas y momentos necesarios para producir desplazamientos y rotaciones armónicos unitarios en la cimentación. Las funciones son dependientes de la

frecuencia de la excitación ω y se modelan como resortes y amortiguadores equivalentes a las propiedades mecánicas del suelo [9].

El presente trabajo investigativo se concentra en estudiar el estado actual del problema y su condición cuando se construyan elementos de refuerzo. No se pretende modelar el proceso, es decir, cómo ocurre el fisuramiento ni su desarrollo futuro, ya que éste es un problema complejo, por cuanto las fisuras son de hecho discontinuidades en el suelo, lo cual, por una parte, genera interacción entre los bloques y, por otra, concentraciones de esfuerzos y deformaciones en los sitios donde comienzan las grietas [10].

La curva de los asentamientos está constituida por dos componentes: un asentamiento inicial de la cimentación en régimen lineal que describe el comportamiento elástico del material de la base de cimentación, y en un segundo instante con comportamiento en régimen no lineal que describe las propiedades plásticas. En los resultados obtenidos se aprecia como varia el asentamiento y la máxima capacidad de carga según las propiedades de los suelos [11].

En la investigación realizada en [9] se indica que el objetivo de realizar este tipo de análisis de interacción suelo - estructura es evaluar su influencia en función de la rigidez lateral de los marcos y la altura de los edificios. En este proyecto, las dos soluciones de cimentación para los edificios: mediante un cajón sub-compensado y con base a pilotes de fricción fueron diseñadas conforme a los criterios de las Normas Técnicas Complementarias para el Diseño y Construcción de Cimentaciones (NTCC-04) del RCDF-04. El estudio considera las curvas de capacidad obtenidas de análisis estáticos ante carga estática monótona creciente para determinar y comparar la ductilidad μ y sobre resistencia Ω que el sistema efectivamente puede desarrollar [8].

Considerar la interacción suelo-estructura fue muy importante para poder estimar razonablemente las aceleraciones máximas en los muros. Este no es un hecho menor, dado que si se supone que se pueden despreciar los efectos de la interacción suelo-estructura en estructuras de este tipo: de baja altura, con cimentación superficial, desplantadas en suelo firme granular y con muros y diafragmas flexibles, entonces como consecuencia se pueden subestimar de manera importante las fuerzas cortantes máximas que se pueden desarrollar en el plano de los muros, lo cual de ninguna manera es "conservador". De un análisis más detallado de los efectos de interacción, se

encontró que, en este caso de estudio, el cabeceo de la cimentación (rotación de la base) fue el principal efecto de la interacción suelo-estructura [8].

Se destaca que este modelo resuelve la dinámica del sistema suelo-estructura como un único modelo mediante el mallado del suelo, la estructura y la generación de una función de transferencia. Como excitación del sistema se introduce un sismo tipo utilizado en centrales nucleares el cual consiste en un espectro de aceleraciones en las tres direcciones coordenadas. El estudio analiza el efecto del cambio de los resultados ante la variación de las diferentes propiedades del suelo [14].

Se modeló una estructura longitudinal enterrada teniendo en cuenta la interacción suelo – estructura, sometida a una onda de corte que viaja paralela al eje longitudinal de la misma. Esta onda se modeló como un desplazamiento lineal, generando un giro constante a lo largo de la ELE y a esta última, como una viga de Timoshenko sobre fundación elástica con rigidez en el sentido de los desplazamientos y rotacional [10].

En el análisis de los marcos desacoplados, determinaron los porcentajes de rigidez del sistema suelo-cimentación que le corresponden a cada uno de ellos. Siguiendo la hipótesis que el cortante basal que transmite a cada uno de los marcos a la cimentación es proporcional a su rigidez y dado que el sistema de cimentación se consideró como un cuerpo rígido, el porcentaje de rigidez del sistema suelo-cimentación se calculó mediante el porcentaje de rigidez que aporta cada marco a la rigidez lateral del edificio [11].

La flexibilidad de la base se introduce mediante el uso de un conjunto de muelles distribuidos a lo largo de los cimientos. Las constantes de los muelles se calculan con el concepto de rigidez dinámica (función de impedancia). Este enfoque considera la influencia de la masa y la rigidez del suelo, por lo que la rigidez dinámica del sistema suelo-cimentación depende de la frecuencia de la excitación [12].

El esfuerzo cortante máximo de la base, Vmáx, y la relación de deriva máxima entre pisos, IDRmax, se eligieron parámetros de demanda de ingeniería, se muestran los resultados de los análisis obtenidos para un suelo tipo D. Los resultados se presentan en términos de relación entre la demanda sísmica obtenida para los modelos de bases conformes y para el modelo de bases fijas. Dado el nivel de PGA Aceleración pico del terreno (*peak ground acceleration*) los puntos de los gráficos se determinaron como la media de los valores obtenidos [13].

Evolución de modelos del IDSE

Muchas normas no han considerado dicho efecto y Rusia lo consideró en 1987 y Estados Unidos recién en el 2012. Barkan [13] estudió este fenómeno hace ya un siglo, por tal razón no es un tema de reciente, pero no es o ha sido considerado. Hoy en día existe el comité de interacción suelo-estructura perteneciente a la Sociedad Internacional de Mecánica de Suelos y también ya hay un comité IDSE a nivel mundial, pero en el caso Ecuador aún no se ha incorporado.

Modelo del péndulo invertido

A pesar de la evolución del tema muchas normas aun consideran el método del péndulo invertido [14], fue idealizado basado en masas concentradas y rigideces equivalentes a nivel de entrepiso y empotramiento en la base, significa que en primer lugar no llega a describir el trabajo espacial de la superestructura, tampoco llega a describir efecto de la interacción de la estructura, como se describe en la Figura 2-1.

Figura 2-1: Péndulo invertido [13]

Modelo de Nikolaenko y Nazarov (Rusia)

Este modelo revolucionó la ingeniería geotécnica sísmica y de la IDSE, plantearon un modelo simple que explica efectivamente la cimentación, llega a tener un total de 6 grados de libertad, 3 rotacionales y tres traslacionales, como se describe en la Figura 2-2.

Figura 2-2: Modelo de Nikolaenko y Nazarov [13]

Las normas y los coeficientes de rigidez

Algunos calculistas trabajan en función de los coeficientes de rigidez equivalente, es decir, traslación elástica uniforme Kx, Ky, compresión elástica uniforme Kz, compresión elástica no uniforme K φ x, K φ y y traslación elástica no uniforme K φ z, como se describe en la Figura 2-3.

Figura 2-3: Modelo de Nikolaenko y Nazarov [13]

Modelo dinámico de interacción sísmica suelo-cimentación superficialsuperestructura.

Los objetivos esenciales en los modelos dinámicos de interacción suelo-cimentaciónestructura es determinar tanto las rigideces como amortiguamientos del suelo, como se describe en la Figura 2-4.

Figura 2- 4: Modelo dinámico de interacción sísmica suelo-cimentación superficial-superestructura
[13]

Los efectos IDSE se clasifican en :

- Interación inercial.
- Efectos de interacción cinemática.
- Efectos de flexibilidad de los cimientos del suelo.

Los términos interacción cinemática e inercial fueron introducidos en 1975 por Robert Whitman [15].

En el contexto de análisis y diseño de ingeniería, estos efectos estan relacionados con:

- Rigidez y amortiguación de los cimientos.
- Variaciones entre los movimientos de entrada(*input motions*) de los cimientos y los movimientos del terreno(*ground motion*) en campo libre.
- Deformaciones de los cimientos.

CAPÍTULO III

MARCO METODOLÓGICO

3.1. Ubicación

El presente estudio se desarrolló en la ciudad de Ambato con las siguientes coordenadas, mostradas en la Tabla 3-1, provincia de Tungurahua, en laboratorios de la Facultad de Ingeniería Civil y Mecánica de la Universidad Técnica de Ambato.

Perforación	(COORDENADAS)		Cota	PROF	NORMA
SPT	E	Ν	m.s.n.m	(m)	REFERENCIA
P1	761.820,40	9.862.094,60	2.710,3	6.00	ASTM
P2	761.800.50	9.862.116,30	2.713,3	6.00	D1586-67
P3	761.826,10	9.862.128,40	2718.0	4.00	

Tabla 3-1: Coordenadas de ubicación del proyecto [35]

3.2.Equipos y materiales

Los ensayos se realizaron con los equipos de los laboratorios FICM-UTA, modelo de estructura de acero, programa de diseño estructural.

Para el diseño estructural se basó en las normas que rigen en Ecuador:

- La NEC-SE-DS (Norma Ecuatoriana de la Construcción)
- Código ACI-318
- ASTM A615-68
- Estructura metálica se utilizó la NEC-2015 y AISC 360-16

3.2.1. Descripción de equipo que se utilizó en la investigación

En el presente trabajo se utilizó un equipo de pertenencia personal, el mismo que se describe en la Tabla 3-2.

Nombre del dispositivo:	DESKTOP-SJTKL41
Procesador:	Intel(R) Core (TM) i3-9100F CPU @ 3,60GHz
RAM instalada:	8,00 GB
Identificador de dispositivo:	465C7BAD-5B43-4C17-91B6- 8D08E6CAF442
Id. del producto:	00331-10000-00001-AA872
Tipo de sistema:	Sistema operativo de 64 bits, procesador basado en x64

Tabla 3-2: Descripción del equipo utilizado para el análisis

3.3. Tipo de investigación

El tipo de investigación fue experimental, correlacional, analítico y un estudio de intervención con un enfoque cuantitativo, por cuanto se determinó la interacción suelocimentación en una estructura metálica representativa bajo un diseño de cimentación adecuada.

3.4. Prueba de hipótesis

Ante una acción dinámica (simulación sísmica), la IDSE de una estructura metálica, se obtiene valores diferentes de desplazamientos, velocidades y aceleraciones que produzca la estructura, de esta forma se comprueba que los períodos de vibración del suelo con relación a los de la estructura son distintos.

3.5. Población o muestra

No aplica.

3.6. Recolección de información

La recolección de información fue fundamental para lograr de esta manera cumplir con los objetivos establecidos en particular para la presente investigación:

• Consulta bibliográfica y artículos científicos relacionados con la temática de

investigación.

- Obtener los planos arquitectónicos de varios proyectos de edificación de estructura de acero.
- Obtener las propiedades del suelo de fundación del lugar en donde se encuentra implantada la edificación.
- Identificar los materiales y el sistema estructural de la edificación.
- Cuantificar las cargas gravitacionales y sísmicas en función de las solicitaciones establecidas tomando como referencia los planos arquitectónicos.
- Obtención de los datos de laboratorio y de campo en base a los resultados de los ensayos y simulación de acción dinámica aplicada a la estructura elegida.
- Elaboración del modelo matemático para el análisis de la respuesta estructural.
- Elaboración de los modelos matemáticos para suelos rígidos y suelos flexibles.

3.7. Procesamiento de la información y análisis estadístico

Para el presente trabajo investigativo se utilizó el software aplicativo realizando el modelo de la estructura en los que se consideró una base rígida y la interacción suelo-estructura.

Modelo de base rígida

- Modelar la estructura en el software aplicativo acorde a los planos arquitectónicos.
- Definir cargas y combinaciones con base en lo cuantificado y a la normativa.
- Obtener la respuesta estructural del análisis lineal en base a la NEC-15 considerando un modelo tradicional de base rígida.
- Analizar los resultados obtenidos del modelo de base rígida.

Modelos de Interacción Suelo-Estructura (IDSE)

 Modelar la estructura en el software aplicativo acorde con los planos arquitectónicos.
- Definir cargas y combinaciones con base en lo cuantificado y a la normativa.
- Obtener la respuesta estructural de cada modelo del análisis lineal en base a la NEC-15 [22] considerando una base flexible (interacción suelo-estructura).
- Analizar los resultados obtenidos con los modelos de IDSE considerados.

3.8. Recolección de datos

3.8.1. Planos de la edificación

Los planos fueron proporcionados por un distinguido profesional los mismos que se guardará absoluta reserva, y se cuenta con su autorización de uso para el desarrollo del presente trabajo académico, y se muestran a continuación.

La edificación está ubicada en la provincia de Tungurahua, cantón Ambato, sector Ficoa Alto, como se describe en la Figura 3-1.

Figura 3-1: Corte A-A`, plano arquitectónico del proyecto.

3.8.2. Características de la estructura

La edificación en estudio tiene un área de construcción total de 1833,93 m², está

conformado de 2 pisos + 2 subsuelos, presenta un sistema estructural de pórticos, se realizó el análisis estructural de la edificación; se controló todos los parámetros importantes para el diseño como son: las derivas, torsiones en planta, deflexiones, asentamientos y otros.

Se diseñó los elementos como vigas y columnas de tal manera que tengan la suficiente ductilidad para que el diseño sismo resistente sea adecuado, estos prediseños se los realizó basados en el capítulo 21 del ACI-318 y AISC 360, AISC 341, como se describe en la Tabla 3-3.

Nivel de referencia	Altura entrepiso(m)	Área (m²)	Uso
Nv+7,20	7,20	607,20	Terraza accesible.
Nv+3,60	3,60	607,20	Dormitorio máster, dormitorios1,2,3 y 4.
Nv+0,00	0,00	607,20	Cocina, comedor, lavandería, sala, garaje, baños.
Nv-3,60	-3,60	205,85	Gimnasio, sala de cine, balcón.
Nv-7,20	-7,20	413,68	Cuarto de máquinas, sauna, hidromasaje, piscina, baños, sala de juegos, parrilla, discoteca.
	Total	1833,93	

Tabla 3- 3: Descripción de niveles, alturas, áreas y usos.

3.8.3. Materiales

Se determinó las propiedades de los materiales del edificio de acuerdo a las solicitaciones y basado en las sugerencias de la norma técnica.

Resistencia a la compresión del hormigón

En el presente trabajo se analizó la estructura tomando en cuenta la influencia de la flexibilidad del suelo y comparó con un modelo tradicional de base rígida, por lo que se estableció la resistencia a la compresión del hormigón descrita en las especificaciones técnicas para la cimentación y los muros de contención del proyecto.

A continuación, se presenta una Tabla y se detalla la resistencia a la compresión del hormigón de los diferentes elementos estructurales de la edificación, como se describe en la Tabla 3-4.

Elemento estructural	f'c (Kg/cm ²)
Cimentación	240
Muros de contención	240

Tabla 3-4: Requerimiento de resistencia a la compresión del hormigón

Acero de refuerzo de elementos estructurales

El acero de refuerzo de los diferentes elementos estructurales tiene un límite de fluencia fy = 4200 kg/cm^2 . El acero para perfiles vigas tipo I y columnas tipo cajón se utilizó el Perfiles de acero ASTM 572 Gr 50.

Características del suelo

Los suelos en la ciudad de Ambato son de diferentes tipos, a continuación, indicamos la ubicación del proyecto, como se describe en la Figura 3-2.

Figura 3-2: Ubicación del proyecto [35].

La presente memoria técnica contempla un estudio geotécnico puntual de los estratos de implantación de la cimentación proyectada; abarca la clasificación SUCS de todos los estratos encontrados, las características hidrogeológicas (nivel freático), los registros de perforación, y la determinación de capacidades portantes y asentamientos para los diferentes tipos de cimentación en función de la profundidad. Así también, el estudio recomienda un diseño de cimentación acorde a las solicitaciones aproximadas,

con las secciones mínimas y consideraciones puntuales de uso de mejoramiento en casos que lo amerite.

Ensayos de laboratorio

Se recopiló la información técnica del proyecto, esto corresponde a los estudios de suelos de la zona de ejecución del diseño. Adicionalmente, con fines didácticos, se trabajó con los datos bibliográficos de los resultados de un tipo de suelo E para poder comprar el comportamiento de la edificación con estos dos perfiles seleccionados. A continuación, se describen los datos requeridos para el diseño.

Perforación Nº 1, 2

Se determina la presencia de SM Arena limosa suelta desde el nivel -0,00 hasta el nivel -2,00 m, luego se detectan SM Arena limosa medio densa a densa desde el nivel -2,00 hasta el nivel -5,00 m, y luego se determinó ML Limos de baja plasticidad densos entre -5,00 m y -6,00 m y no se determinó rechazo, los contenidos de humedad son normales que van de 13,30 y llegan a 22,60 %. No se detecta nivel freático. El número de golpes en el ensayo de S.P.T es variable en función de la altura que va desde 6 hasta 38 en su parte inferior.

Su resistencia al nivel de cimentación h= - 2,00 a partir de la boca el sondeo, tiene un valor máximo de $q_{adm} = 1,35 \text{ kg/cm}^2$ (135,00 KN/m²), por lo que se requiere mejoramiento de suelo.

Perforación Nº 3

Se determina la presencia de SM Arena limosa medio densa desde el nivel -0,00 hasta el nivel -2,00 m, luego se detectan SM Arena limosa densa a muy densa desde el nivel -2,00 hasta el nivel – 4,00 m, y se determinó rechazo, los contenidos de humedad son normales que van de 18,8 y llegan a 19,20 %. No se detecta nivel freático. El número de golpes en el ensayo de S.P.T es variable en función de la altura que va desde 13 hasta 70 en su parte inferior.

Su resistencia al nivel de cimentación h= - 2,00 a partir de la boca el sondeo, tiene un valor máximo de $q_{adm} = 1,56 \text{ kg/cm}^2$ (156,00 KN/m²), por lo que se puede asumir un q_{adm} . 1,50 kg/cm².

Análisis sismo tectónico

Las evaluaciones realizadas por la Norma Ecuatoriana de la Construcción (NEC-SE-DS 2015), zonifican al País en función de la aceleración máxima en roca esperada para el sismo de diseño. Según esa zonificación, el área del proyecto se encuentra en zona sísmica V en la cual se aplica un factor sísmico de 0,4g.

El número de golpes promediado calculado está entre 15 a 50, lo que equivale a un suelo tipo D. El sitio del proyecto se ubica en la zona V por lo que los Factores de amplificación dinámica del sitio, se presentan en la siguiente Tabla 3-5.

TIPO DE SUELO	ZONA SÍSMICA	Z	Fa	Fd	Fs
D	V	0,40	1,20	1,19	1,28

Tabla 3- 5: Coeficiente de amplificación dinámica [22].

Cota de cimentación

La estructura, se desplantarán desde la cota -2,00 m hacia abajo de acuerdo a las necesidades del proyecto tomando como referencia la boca del sondeo de las perforaciones P1, P2 y P3, bajo el nivel de la subrasante de la plataforma existente. Previo al desplante del cimiento se compactará con equipo mecánico (plancha vibro compactadora, sapo, rodillo, etc.) con una energía de compactación equivalente al proctor modificado y cuyo porcentaje de compactación mínimo a alcanzar será al 90 %, y se controlarán mediante pruebas de compactación en sitio. Para evitar asentamientos variables se debe colocar material de mejoramiento tipo subbase clase 2, 20 cm en una capa, al 95 % de AASTHO T -180.

Muros

La construcción del proyecto podría requerir de muros de contención de baja y mediana altura y poco espesor. Se recomienda diseñar y construir muros de hormigón armado convencional. Los muros deben ser calculados para resistir un empuje lateral con un diagrama de presiones de forma triangular con presión en la base, se presenta la siguiente ecuación.

P = Ka*w*h.

Donde qué:

 K_a = coeficiente del empuje activo de la tierra.

 $K_a = 0,42.$

w= peso específico de la tierra.

h= altura del talud.

Análisis

En el caso de las arenas arcillosas el coeficiente de Poisson se encuentra entre 0,3 y 0,4; como se describe en la siguiente Tabla 3-6 y Figura 3-3.

Tabla 3- 6: Coeficiente de balasto en función del ancho de zapata y la profundidad.

Para an	enas u=	0,4										
Df	B1	ES	k	B2	ES	k	B3	ES	k	B4	ES	k
(m)	(m)	(kG/cm2)	(kg/cm3)	(m)	(kG/cm2)	(kg/cm3)	(m)	(kG/cm2)	(kg/cm3)	(m)	(kG/cm2)	(kg/cm3)
1	1,5	127,50	1,01	2	131,25	0,78	2,50	131,3	0,63	3,00	131,3	0,52
2	1,5	110,00	0,87	2	112,50	0,67	2,50	112,5	0,54	3,00	112,5	0,45
3	1,5	138,00	1,10	2	142,50	0,85	2,50	142,5	0,68	3,00	142,5	0,57
4	1,5	176,50	1,40	2	183,75	1,09	2,50	183,8	0,88	3,00	183,8	0,73
5	1,5	183,50	1,46	2	191,25	1,14	2,50	191,3	0,91	3,00	191,3	0,76
6	1,5	173.00	1.37	2	180.00	1.07	2.50	180.0	0.86	3.00	180.0	0.71

Figura 3-3: Capacidad portante en función del ancho de la zapata.

Variación de capacidad admisible vs base de la cimentación

A continuación, se indican los parámetros principales respectivos al análisis de las características mecánicas y físicas de los estratos de estudio, los cuales describen la disposición de cargas, como se describe en la siguiente Tabla 3-7 y Figura 3-4.

Se considera como un ancho mínimo de b = 1,60 m para el cálculo de la cimentación.

Df	B1	adam	B2	adam	B3	adam	B4	adam
(m)	(m)	(KN/m2)	(m)	(KN/m2)	(m)	(KN/m2)	(m)	(KN/m2)
1	1,5	33,30	2	13,93	2,50	15,2	3,00	16,5
2	1,5	43,32	2	16,67	2,50	17,3	3,00	17,9
3	1,5	135,47	2	51,23	2,50	51,8	3,00	52,7
4	1,5	221,88	2	86,79	2,50	88,7	3,00	91,3
5	1,5	240,89	2	94,77	2,50	97,0	3,00	100,0
6	1,5	212,81	2	82,99	2,50	261,5	3,00	268,8

Tabla 3-7: Variación de capacidad admisible vs base de la cimentación

Figura 3-4: Capacidad portante en función del ancho de la zapata.

Características de la cimentación

- 1. Tipo de cimentación: Zapata aislada
- 2. Estrato de apoyo de la cimentación: SM Arena limosa densa.
- Profundidad de la cimentación: -2,00 m hacia abajo medido desde la boca del sondeo P1, P2 y P3.
- 4. Presión admisible del terreno natural: 1,50 Kg/cm² (150,0 KN/m²).
- 5. Mejoramiento suelo 50 cm entre -2,50 2,00 m, con subbase clase 2.
- 6. Factor de seguridad: FS=3,0

- 7. Asentamiento máximo 2,50 cm.
- 8. Coeficiente de balasto 1,40 Kg/cm³.
- 9. Angulo de fricción interna 27 °.

Cargas gravitacionales

Para el cálculo de las cargas que serán ingresadas a la estructura se ha realizado un análisis del peso de las losas, mamposterías, acabados y carga viva, basados en las cargas establecidas por el código vigente, de acuerdo a los planos arquitectónicos.

Carga muerta

La carga muerta será considerada todos los pesos fijos de la estructura tales como peso propio de los elementos estructurales, pesos de las mamposterías, acabados e instalaciones.

El peso propio de los elementos los determina el programa automáticamente por la condición de la carga *DEAD* que tiene el programa de diseño, la cual determina automáticamente esta condición.

La sobrecarga por paredes y demás calculada para este proyecto es de 260,0 kg/m².

Carga viva

La carga viva para el presente proyecto será de 200,0 kg/m² como nos determina la normativa vigente para vivienda según lo establecido en la Norma Ecuatoriana de la Construcción en el capítulo de Cargas Gravitacionales

Irregularidades de la estructura

Las irregularidades de la estructura se determinaron según lo expuesto en la NEC-SEDS literal 5.2.3. En el caso de estructuras irregulares se usarán los coeficientes de configuración estructural que "penalizan" al edificio con la finalidad de tener en cuenta la irregularidad, responsable de un comportamiento estructural deficiente ante la ocurrencia de un sismo.

Figura 3- 5: Irregularidades de la estructura.

Irregularidad en planta

La irregular en planta de Tipo 2. Retrocesos excesivos en las esquinas, menciona que un entrante en una esquina se considera excesivo cuando las proyecciones de la estructura, a ambos lados del entrante, son mayores que el 15% de la dimensión de la planta de la estructura en la dirección del entrante [9]. Es decir, se tiene que cumplir que: A > 0.15B y C > 0.15

Irregularidad en elevación

La edificación presenta irregularidades en elevación geométricas y de masas. Se penaliza y se asigna el valor de $\phi e = 0.9$

3.9. Variables respuesta o resultados esperados

La estructura de acero podrá ser relacionada con un análisis profundo basado en el modelo matemático, considerando los factores de diseño, logrando entender el comportamiento estructural y su relación directa suelo-estructura con base en un diseño de cimentación adecuada, de esta forma se comprobará que los períodos de vibración del suelo con relación a los de la estructura serán distintos y de esta forma no entren en resonancia, caso contrario conllevaría al fallo inmediato de la misma.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. Análisis lineal de la estructura

Para analizar la estructura en su rango lineal se ha utilizado el software de modelación estructural ETABS, se manejó de acuerdo a la reglamentación de la NEC-15, ACSE y AISC, se modelo con base al proyecto arquitectónico habitacional, se realizó el prediseño usando hojas de cálculo en Excel hasta obtener la memoria de cálculo, se determinó las cargas de acuerdo a las solicitaciones de la norma NEC-15 [22], se definió los materiales según las especificaciones, las secciones de los elementos, se determinó el cortante basal estático, se calculó y definió el espectro de respuesta sísmico con base en la norma NEC-15 [22].

4.1.1. Definición de materiales

Para la modelación de la estructura en estudio es preciso definir de los materiales con sus respectivas características en el software.

Estos materiales se resumen a continuación:

Material	Módulo de elasticidad	Relación de Poisson	Esfuerzo a la compresión
Hormigón f'c = 240 kg/cm^2 .	253456	0.2	240 kg/cm ² .

Tabla 4-1: Propiedades del Hormigón f'c = 240 kg/cm² [24].

Material	Módulo de elasticidad	Relación de Poisson	Esfuerzo a la tensión	Esfuerzo a la fluencia mínimo	Alargamiento %
Acero de refuerzo ASTM A615.	2038901 kg/cm ²	0.28	6327 kg/cm ²	4218Kg/c m ²	En 200 mm: 14%.

Tabla 4-2: Propiedades del Acero de refuerzo ASTM – A615 [24].

Tabla 4-3: Propiedades del Acero ASTM A992 Gr 50 [24].

Material	Módulo	Relación	Esfuerzo a	Esfuerzo a	Alargamiento
	de	de	la tensión:	la fluencia	%
	elasticidad	Poisson		mínimo	
Perfiles de	2111000	0.3	4588	3518	En 50 mm
acero ASTM	kg/cm ²		kg/cm ²	kg/cm ²	(2"): 21%
A992 Gr 50					

4.1.2. Definición de secciones

Se definen las secciones de columna de hormigón armado, columnas de acero, secciones de vigas tipo I, muros, placas base.

4.1.3. Asignación de cargas gravitacionales

Se asignan las cargas actuantes correspondientes a sobrecarga y cargas vivas respectivamente, como se describen en la Figura 4-1.

Assign Analyze Display Design ,	Slab Information Object ID Story Label Unique Name Story 255 11	×
V915M40 V915M40 V915M40 V915M40 V915M40 V915M40	GUID: 67x55x73-2724-4e95-e045-e0456-6045 Object Data Cenentry Assignments Loads Common 260 kgf/m ² Load Pattern: Live Uniform 200 kgf/m ²	

Figura4-1: Cargas actuantes.

4.1.4. Asignación de cargas dinámicas

Se asignan las fuerzas externas de magnitud variable, este tipo de cargas son los fenómenos naturales: un sismo, etc.

a. Definición del cortante basal estático

Se calcula el periodo de vibración aproximado de la estructura definido por el método 1 establecido en la NEC-SE-DS [22].

$$T = C_t * h_n^{\propto}$$

Donde:

T = Período fundamental de vibración de la estructura.

 C_t = Coeficiente que depende del tipo de edificio.

 h_n =Altura máxima de la edificación de n pisos, medida desde la base de la estructura.

 \propto = Impedencia del semi espacio.

T = 0,321 s

Para este periodo de vibración de T = 0,321 s, se calcula la aceleración $S_a = 1,1904g$, mediante una hoja de cálculo mostrado en la figura 4-2.

			Fd			Fd
		To = 0.1	$10 * Fs * \frac{r_a}{Fa}$	Tc	= 0.55 * F	$s * \frac{Fa}{Fa}$
						1.4
			NEC 2015	ESTU	DIO DE SU	ELOS
		Fa=	1,20		1,2	
		Fd=	1,19		1,19	
		Fs=	1,28		1,28	
		To=	0,13		0,127	seg
		Tc=	0,70		0,698	seg
		Sa = 1	η * Z * Fa	PARA	$0 \le T \le$	Tc
		Sa = n *	$T * \left(\frac{Tc}{Tc}\right)^r$	PA	RA $T > T$	°c
η=	2,48	54 17	$Z^{(T)}$			
r=	1					
			Sa=	1,1904		Sec. 3.3.1

Figura 4-2: Cálculo de la aceleración.

Basado en las características y uso de la estructura se determinan los coeficientes de importancia I = 1,0 (NEC [22], 4.1 Tabla 6), reducción sísmica R = 6 (NEC [22], 6.34. Tabla 15), coeficiente de irregularidad en planta $ø_p = 0.9$ (NEC [22], 5.2.3. Tabla 13), y Coeficiente de irregularidad en elevación $ø_e = 0.9$ (NEC [22], 5.2.3. Tabla 14).

Una vez definidos todos los parámetros se procede a calcular el valor del coeficiente para el método estático *C*:

$$C = \frac{I * S_a}{R * \emptyset_p * \emptyset_e}$$

Donde:

C = Coeficiente para el método estático.

I= Coeficiente de importancia.

 S_a = Espectro de respuesta elástico de aceleraciones

 ϕ_p = Coeficiente de regularidad en planta.

 ϕ_e = Coeficiente de irregularidad en elevación.

R = Factor de reducción de resistencia sísmica.

C = 0.2449

Este coeficiente se ingresa en el software [24], en las direcciones X ^ Y para definir el cortante basal, como se describe en la Figura 4-3 y 4-4.

Direction and Eccentricity		Factors		
X Dir	Y Dir	Base Shear Coefficient, C	0,244	
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1	
X Dir - Eccentricity	Y Dir - Eccentricity	Story Range		
Ecc. Ratio (All Diaph.)	0.05	Top Story	Story4	~
Overwrite Eccentricities	Overwrite	Bottom Story	Base	`
	OK	Cancel		

Figura 4-3: Cálculo de la aceleración, dirección x [24]

Direction and Eccentricity		Factors	
X Dir	Y Dir	Base Shear Coefficient, C	0,244
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	Y Dir - Eccentricity	Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	Story4
Overwrite Eccentricities	Overwrite	Bottom Story	Base N
	OK	Canad	

Figura 4-4: Cálculo de la aceleración dirección y [24].

b. Acción sísmica

Espectro de respuesta sísmico

La acción sísmica en dirección "X" y en la dirección "Y" será modelada con base en la Norma NEC [22] y se determina el espectro de respuesta sísmico con los coeficientes ya definidos, se realiza obtiene los resultados por medio de una hoja de cálculo, como se presenta en la Figura 4-5.

Figura 4-5: Espectro de respuesta sísmica NEC-15[22].

El espectro es cargado al software Etabs, cómo se describe en la Figura 4-6.

Figura 4-6: Espectro de respuesta sísmica NEC-15[22].

c. Corrección de cortante basal Estático y Dinámico

A continuación, se realiza la corrección del cortante basal estático y cortante basal dinámico. Se calcula el valor del cortante en base al peso reactivo de la estructura y el coeficiente basal con un valor de 0.244, para las direcciones X, Y. Los valores pueden cambiar según el sistema estructural, como se presenta en la Figura 4-7 y 4-8.

Output Case	Case Type	Step Type	Step Number	FX tonf	FY tonf	The base reaction	on force in the g	lobal Z-direction	MZ tonf-cm
Dead	LinStatic			0	0	952,3209	1548457,872	-985133,723	-0,1
Live	LinStatic			0	0	362,3666	650845,953	-355438,418	-0,0
S-X	LinStatic	Step By Step	1	-238,8024	0	0	4,613	-295778,5	431682,4
S-X	LinStatic	Step By Step	2	-238,8024	0	0	4,613	-295778,5	431682,4
S-X	LinStatic	Step By Step	3	-238,8024	0	0	4,613	-295778,5	431682,4
S-Y	LinStatic	Step By Step	1	0	-238,8024	0	295574,551	2,673	-223383,4
S-Y	LinStatic	Step By Step	2	0	-238,8024	0	295574,551	2,673	-223383,4
S-Y	LinStatic	Step By Step	3	0	-238,8024	0	295574,551	2,673	-223383,4
GRAV	NonStatic	Max		2,654E-05	1,061E-05	1042,9125	1711170,574	-1073981,496	-0,
GRAV	NonStatic	Min		2,654E-05	1,061E-05	1042,9125	1711170,574	-1073981,496	-0,
SPT-X	LinRespSpec	Max		185,3236	62,9144	19,6609	86619,079	266649,312	306239,4
SPT-Y	LinRespSpec	Max		67,4397	171,4758	22,9875	234336,701	99908,21	258784,4
CM ad1	LinStatic			0	0	89,501	247673,538	-67735,946	
CM ad2	LinStatic			0	0	136,1367	138632,54	-104371,47	
CM ad3	LinStatic			0	0	549,1836	638625,236	-901236,861	

Figura 4-7: Cortante basal estático y cortante basal dinámico NEC-15[22].

	cuit ronnut	Filter-Sort Se	ect Options								
nits:	As Noted H	idden Columns: 1	lo Sort: N	lone		Base Reaction	ons				V
ilter:	None										
	Output Case	Case Type	Step Type	Step Number	FX tonf	FY tonf	FZ tonf	MX tonf-m	MY tonf-m	MZ tonf-m	^
	Dead	LinStatic			0	0	952,3209	15484,5787	-9851,3372	-0,0018	
	Live	LinStatic			0	0	362,3666	6508,4595	-3554,3842	-0,0008	
	S-X	LinStatic	Step By Step	1	-238,8024	0	0	0,0461	-2957,785	4316,8242	
	S-X	LinStatic	Step By Step	2	-238,8024	0	0	0,0461	-2957,785	4316,8242	
	S-X	LinStatic	Step By Step	3	-238,8024	0	0	0,0461	-2957,785	4316,8242	
	S-Y	LinStatic	Step By Step	1	0	-238,8024	0	2955,7455	0,0267	-2233,8347	
	S-Y	LinStatic	Step By Step	2	0	-238,8024	0	2955,7455	0,0267	-2233,8347	
	S-Y	LinStatic	Step By Step	3	0	-238,8024	0	2955,7455	0,0267	-2233,8347	
	GRAV	NonStatic	Max		2,654E-05	1,061E-05	1042,9125	17111,7057	-10739,815	-0,0017	
	GRAV	NonStatic	Min		2,654E-05	1,061E-05	1042,9125	17111,7057	-10739,815	-0,0017	
	SPT-X	LinRespSpec	Max		203,1695	68,9728	21,5541	949,6018	2923,2665	3357,2915	
	SPT-Y	LinRespSpec	Max		79,7462	202,7669	27,1823	2770,9887	1181,3964	3060,0789	
	CM ad1	LinStatic			0	0	89,501	2476,7354	-677,3595	0	
	CM ad2	LinStatic			0	0	136,1367	1386,3254	-1043,7147	0	
	CM ad3	LinStatic			0	0	549,1836	6386,2524	-9012.3686	0	ι.

Figura 4-8: Introducción de los coeficientes de cortante basal corregido NEC-15[22].

d. Inclusión del peso del terreno

Creamos tres casos de carga para los tres niveles de cimentación, como se muestran en la Tabla 4-1 [30].

Ingresamos al programa ETABS [24], y procedemos a ingresar los valores descritos en la Tabla 4-1, menú select, propiedades, slabs sections y seleccionamos las zapatas de los subsuelos respectivos y procedemos a asignar, Shell, insert point (bottom), asignamos los valores de cargas calculadas de acuerdo a los tres niveles es decir creamos tres tipos de cargas adicionales.

Tabla 4-4: Pesos de terreno

PESO TER	RENO N-1,40 m	Γ
Peso específico terreno	1,5	Kg/cm2
Peso específico terreno	1500	Kg/m2
Hf=	1,4	m
2=	0,4	m
H=	1	m
peso terreno	1500	Kg/m2
PESO DEL PISO		
;=	0,15	m
Peso específico	2300	Kg/m2
Peso piso	345	Kg/m2
peso sobrecargas		
Salas	300	Kg/m2
Corredores	400	Kg/m2
PESO TER	RENO N-3,20 m	
Peso específico terreno	1,5	Kg/cm2
Peso específico terreno	1500	Kg/m2
Hf=	3,6	m
=	0,4	m
<u> </u>	3,2	m
	4800	K g/m?

PESO TERRENO -7,2 m						
Peso específico terreno	1,5	Kg/cm2				
Peso específico terreno	1500	Kg/m2				
Hf=	7,2	m				
e=	0,4	m				
H=	6,8	m				
Peso terreno	10200	Kg/m2				

e. Modificación de la masa participativa para el sismo

La masa participativa que esta debajo del suelo se mueve junto con el suelo, mientras que la masa participativa que está por encima del suelo vibra producto del sismo como el péndulo invertido, la masa sísmica no se considera el peso se está calculando de todos los elementos porque es real, Asignamos la masa participativa con un valor de 0.0 tanto a los elementos frame y a los elementos tipo Shell que están insertados en el suelo [30].

f. Ajustes al modelo [30]

Seleccionamos todos los elementos y hacemos un auto mesh (malla), un automesh a los elementos frame, un automesh a los elementos frame con otros elementos tipo área, un automesh a los elementos frames para que se junten con otros elementos tipo área.

Seleccionamos todo y hacemos un floor auto mesh rectangular, hacemos un mesh rectangular con un valor de 50cm de discretización, hacemos un Wall auto mesh rectangular y hacemos un Wall auto mesh rectangular con un valor de 50cm de discretización

La discretización nos ayuda a obtener resultados más cercanos a la realidad, pero mientras más discretizados los elementos el programa se tarda más tiempo en el análisis [30].

Por seguridad a fin de que todos los elementos se encuentren vinculados entre sí, Seleccionamos todo y aplicamos la opción auto Edge Constraint y aplicamos la opción Auto Edge Constraint y de esta forman habría conectividad de los mismos.

4.1.5. Modelo de base rígida

Se presenta el modelo común de diseño de base rígida con empotramientos en las bases de las columnas de la estructura, se restringen las traslaciones y rotaciones en estos puntos base de la estructura, como se describe en la figura 4-9.

Story	Label	Unique Name	5 3/SM 40
Story2	830	1113	VIGA SISM 40
GUID: a5491f07-2d	52-4617-b395-e1b	o25c576776	3 SI SM 40
at Data			VIGA 0 VS2 Vi2 5
eci Dala			VIGAS VIII VIGAS
Geometry Assig	nments Loa	ds	UIGA SISM "
 Assignments 			1 SISH 40
> Restraints	UX: U	Y; UZ; RX; RY; RZ	VIGA SISM 40 VIGA SISM 40
Diaphragm	None	Shall Object	J1 8
Panel Zone	None	onei objevi	V52 5 12
> Mass	None		Vor 152
Include in Analy	sis Mesh No		8 8 154
/ aroups	1 Liro	up	VIGA SIRIA AND VIGA SIN A
			22 VT1
			VIGA STAT
			2 a Vica Vica Vica 2 3
			15 A 15
			VID VID
			E stere 30
			-1 Catlena gol to the state of
Restraints			
Restrainted degrees	of freedom of the	e joint object.	adama and a solution
			Cadena 30vort
			M
ſ	K	Cancel	

Figura 4-9: Restricción en la base de la estructura [24].

a. Periodo de vibración

Se realizó un análisis modal [24], para obtener el valor del periodo de vibración de la estructura, el cual se muestran a continuación en la Figura 4-10 y Tabla 4-2.

O Case	 Combo 		Mod	e
Modal	∨ Mode	Number	~ 1	-
Scaling				
 Automatic 				
O User Defined	Scale F	actor		
Contour Options				
Draw Contours on 0	bjects			
Contour Component				
Show Contours fo	Displa	icement U	Z	\sim
Contour Range				
Minimum Value for 0	ontour Range			m
Maximum Value for	Contour Range			m
Options	– Hinge State (Colored Da	ots are Fo	
Wire Shadow	● B,C,I) and E P	oints	
Cubic Curve	🔿 10, LS	and CP A	cceptanc	e Points
Animation Controls				
Start Time	0		sec	
End Time	0		sec	
Time Increment	0,1		sec	

Figura 4-10: Modo, Modal [24].

	RESULTADOS DE VALORES DE PERIODOS							
G		Period	Frequency	CircFreq	Eigenvalue			
Case	Mode	sec	cyc/sec	rad/sec	rad ² /sec ²			
Modal	1	0,402	2,485	15,617	243,883			
Modal	2	0,38	2,631	16,529	273,213			
Modal	3	0,296	3,379	21,232	450,801			
Modal	4	0,284	3,516	22,092	488,049			
Modal	5	0,283	3,538	22,229	494,121			
Modal	6	0,279	3,578	22,480	505,355			
Modal	7	0,258	3,872	24,328	591,835			
Modal	8	0,254	3,931	24,700	610,070			
Modal	9	0,253	3,959	24,877	618,871			
Modal	10	0,231	4,334	27,231	741,501			
Modal	11	0,231	4,337	27,248	742,452			
Modal	12	0,212	4,715	29,626	877,724			
Modal	13	0,205	4,877	30,646	939,171			
Modal	14	0,201	4,976	31,264	977,434			
Modal	15	0,197	5,074	31,881	1016,390			
Modal	16	0,186	5,366	33,716	1136,762			
Modal	17	0,175	5,709	35,869	1286,593			
Modal	18	0,175	5,722	35,954	1292,703			
Modal	19	0,141	7,077	44,465	1977,120			
Modal	20	0,133	7,511	47,191	2227,010			
Modal	21	0,131	7,635	47,971	2301,204			
Modal	22	0,114	8,753	54,995	3024,427			
Modal	23	0,107	9,326	58,595	3433,417			
Modal	24	0,094	10,635	66,823	4465,304			
Modal	25	0,074	13,563	85,222	7262,734			
Modal	26	0,069	14,420	90,603	8208,896			
Modal	27	0,067	15,009	94,307	8893,771			
Modal	28	0,031	32,302	202,958	41191,733			
Modal	29	0,028	35,768	224,734	50505,566			
Modal	30	0,028	36,319	228,197	52073,896			

Tabla 4-5: Valores de periodos [24].

b. Derivas base rígida-dinámico.

Una vez ejecutado el programa [24] nos presenta los resultados de derivas dinámicas tanto en x como en y, el cual se muestran a continuación en las Figuras 4-11, 4-12 y Tablas 4-3 y 4-4.

	Derivas eje sentido x									
Story	Elevation	Location	X-Dir	Porcentaje	Y-Dir	Porcentaje				
Story7	7,2	Тор	0,003131	1,409%	0,0014	0,652%				
Story6	3,6	Тор	0,002782	1,252%	0,0010	0,446%				
Story5	0	Тор	0,001721	0,775%	0,0004	0,196%				
Story4	-1,4	Тор	0,000791	0,356%	0,0003	0,121%				
Story3	-3,6	Тор	4,34E-05	0,020%	0,0000	0,004%				
Story2	-5	Тор	7,03E-06	0,003%	0,0000	0,002%				
Story1	-7,2	Тор	1,45E-05	0,007%	0,0000	0,004%				
Base	-8,6	Тор	0	0,000%	0,0000	0,000%				
		Máxima		1,409%	Máxima	0,652%				
Pern	Permisible 2,00% Conclusión CUMPLE									

Tabla 4-6: Valores de derivas en eje x [24].

Figura 4-11: Derivas en eje x [24].

	Derivas eje sentido y								
Story	Elevation	Location	X-Dir	Porcentaje	Y-Dir	Porcentaje			
Story7	7,2	Тор	0,0017272	0,777%	0,00354394	1,595%			
Story6	3,6	Тор	0,0011342	0,510%	0,00291129	1,310%			
Story5	0	Тор	0,0008646	0,389%	0,00098942	0,445%			
Story4	-1,4	Тор	0,000412	0,185%	0,00032007	0,144%			
Story3	-3,6	Тор	1,65E-05	0,007%	2,64E-05	0,012%			
Story2	-5	Тор	3,74E-06	0,002%	7,86E-06	0,004%			
Story1	-7,2	Тор	7,49E-06	0,003%	2,41E-05	0,011%			
Base	-8.6	Тор	0	0.000%	0	0.000%			
		Máxima		0.777%	Máxima	1.595%			
Peri	misible	2,00%	Conc	lusión	CUN	1PLE			

Tabla 4-7: Valores de derivas en eje y [24].

Figura 4-12: Derivas en eje Y [24].

c. Desplazamientos base rígida.

Una vez ejecutado el programa [24] nos presenta los resultados de desplazamientos dinámicas tanto en x como en y, el cual se muestran a continuación en las Tablas 4-5 y 4-6.

Story	Elevation	Location	X-DIR	Y-DIR
Piso 7	7,2	Тор	0,0229	0,0083
Piso 6	3,6	Тор	0,0128	0,0042
Piso 5	0	Тор	0,0040	0,0014
Piso 4	-1,4	Тор	0,0017	0,0006
Piso 3	-3,6	Тор	0,0027	0,0000
Piso 2	-5	Тор	0,0000	0,0000
Piso 1	-7,2	Тор	0,0028	0,0003
Base	-8,6	Тор	0,0000	0,0000
	Máxima	• •	0,0229	0,0083

Tabla 4-8: Desplazamientos en x [24]

Tabla 4-9: Desplazamientos en y [24]

Story	Elevation	Location	X-Dir	Y-Dir
Piso 7	7,2	Тор	0,0107	0,0208
Piso 6	3,6	Тор	0,0061	0,0109
Piso 5	0	Тор	0.0021	0,0024
Piso 4	-1.4	Тор	0.0009	0.0007
Piso 3	-3.6	Top	0.0009	0.0001
Piso 2	-5	Top	0,0000	0,0000
Piso 1	-7.2	Ton	0.0010	0.0004
Base	-8.6	Top	0,0000	0,0004
Dase	 Máxima	100	0,0107	0,0208

Ver en anexos las Figuras desde la 5-4-7 a la 5-4-12 se muestran las secciones de muros, columnas de hormigón armado de los subsuelos, y elementos que conforman la cimentación, con su respectivo acero de refuerzo obtenidos del presente diseño estructural de la edificación en estudio.

d. Elementos estructurales columnas

La superestructura será metálica conformada de columnas tipo cajón, de secciones 25x25x0,8mm y 30x30x1,0cm, se chequeó columna fuerte viga-débil con la columna de mayor Luz 9,40 metros, como se describe ver en anexos la Figura 5-4-13.

e. Elementos estructurales vigas

De acuerdo a las especificaciones parte de la estructura metálica están conformadas de vigas tipo I de sección compacta o sísmica, elaboradas en taller y que cumplen con las condiciones mínimas de la AISC 360 para la fabricación de los mismos. Serán unidas con el proceso SMAW, electrodo E70-18, cordón continuo, deberá respetar las especificaciones de la norma AWS D 1.1 y el uso de WPS, WPQ y PQR para soldadura durante el armado y montaje de estructura, esto será responsabilidad del constructor elaborar y respetarlos, como se describe ver en anexos la Figura 5-4-14.

f. Elementos estructurales losas

Se utilizó placas de acero galvanizado con relieves en su superficie que es utilizada como losa de acero de entrepiso y para losa cubierta. Se utilizó conectores de cortante para lograr resultados de viga compuesta y aumentar la capacidad propia de la losa colaborante, como se describe ver en anexos la Figura 5-4-15.

g. Elementos estructurales Placa base

En el diseño de la placa base se utilizó la Norma AISC 2005 (*American Institute of Steel Construction*); que es un código de práctica estándar para los edificios y puentes de acero. Placa base para columna más crítica de 30x30 será de 500x500x25,4, mientras que para el resto de las columnas será de 500x500x19,0 como se describe ver en anexos la Figura 5-4-16.

h. Detalle de elementos estructurales, conexiones precalificadas

Tanto para el armado de elementos estructurales ya sean columnas, vigas, placas base, gradas, conexiones ya sean diseñadas o conexiones precalificadas, procesos de montaje, etc.; se deberán tomar en consideración las normas establecidas particulares para cada caso, y lograr obtener estructuras seguras, y sobre todo versátilizar el tiempo, disminuir costos de operación y mano de obra, como se describe ver en anexos las Figuras desde la 5-4-17 a la 5-4-21.

4.1.6. Modelo de interacción suelo – estructura por BARKAN

La interacción modifica las propiedades dinámicas relevantes que tendría la estructura supuesta con base indeformable, como por ejemplo el periodo fundamental, así como las características del movimiento del suelo en la vecindad de la cimentación. Se modela la edificación teniendo en cuenta la interacción suelo – estructura, para lo cual se implementaron el modelo dinámico desarrollado por Barkan [23] y [34] y se consideró lo recomendado por la norma ASCE 41-17. En el presente trabajo, se calcularon los coeficientes de rigidez del suelo en las direcciones X, Y, Z, y además alrededor de los ejes X, Y, restringiendo el giro alrededor del eje Z. Se tienen las características del suelo de fundación, como se describe en la Tabla 4-7.

Tipo de suelo	Arena lir	nosa (ML)	
Perfil del suelo		D	
Capacidad admisible	q _a	15	Tn/m ²
Densidad del suelo	ρ	1.733	Tn/m ³
Coeficiente de Poisson del suelo	μ	0,4	
Módulo de elasticidad del suelo	Е	40	MPa
Ángulo de fricción del suelo	ø	27	grados

Tabla 4-10: Características del suelo de fundación [24].

a. Cálculo de las masas de las zapatas aisladas

En la interacción suelo-estructura la cimentación debe ser descrita como una masa puntual en el centro de gravedad de la zapata aislada.

Se presenta los tres niveles de la estructura, tal como se describe en las Figuras 4-13, 4-14 y 4-15.

Figura 4-13: Planta baja de la estructura.

Figura 4-14: Planta de cimentación de la estructura subsuelo 1.

Figura 4-15: Planta de cimentación de la estructura subsuelo 2.

Se describen las dimensiones de las zapatas aisladas, como se muestra en la Tabla 4-8.

Tabla 4-11: Zapatas aisladas.

Zapata	A (m)	<i>B</i> (m)	<i>H</i> (m)
Central	2,10	2,10	0,40

Para el cálculo de masas de rotación y traslación se utilizan las siguientes expresiones:

Masa de traslación (M_T):

$$M_T = M_x = M_y = M_z = \frac{P_{zapata}}{g}$$

Donde:

- $M_T = Masa$ de traslación.
- M_x = Masa de traslación en dirección x.
- M_y = Masa de traslación en dirección y.
- M_z = Masa de traslación en dirección z.
- P_{zapata} = Peso total de la zapata.

g = gravedad

Masa de rotación:

$$M_{Rx} = M_T \left(\frac{H}{2}\right)^2 + \frac{M_T (B^2 + H^2)}{12}$$
$$M_{Ry} = M_T \left(\frac{H}{2}\right)^2 + \frac{M_T (A^2 + H^2)}{12}$$
$$M_{Rz} = \frac{M_T (A^2 + B^2)}{12}$$

Donde:

 $M_{Rx=}$ Masa de rotación en dirección x.

 $M_{Ry=}$ Masa de rotación en dirección x.

M_{Rz=} Masa de rotación en dirección x.

H= Altura de la zapata.

A= Lado mayor de la zapata.

B= Lado menor de zapata.

Se calculan las masas, como se describe en la Tabla 4-9.

Tabla 4-12: Masas de las zapatas.

	Traslación	Rotación		
Zapata	M _T (T*s ² /m)	M_{Rx} (T*s ² /m)	M_{Ry} (T*s ² /m)	M_{Rz} (T^*s^2/m)
Central	0,43156	0,18161	0,18161	0,31720

Para el modelo de interacción suelo-estructura se incluyen las masas de las zapatas aisladas de la estructura y se definen los coeficientes de rigidez equivalentes.

b. Cálculo de coeficientes de rigidez - Modelo de Barkan [23]-Suelo tipo D

Se determina la presión estática (ρ), para cada una de las zapatas de la estructura mediante la expresión:

$$\rho = \frac{P_{u+} P_{zapata}}{A_{zapata}}$$

Donde:

 ρ = Presión estática.

 P_u = Peso de la zapata (combinación de servicio 1D+1L, obtenido del ETABS).

 P_{zapata} = Peso total de la zapata.

 $A_{zapata} =$ Área de la zapata.

El nivel de cimentación es -1,40 m, y se considera el peso de la columneta para el cálculo de la presión estática(ρ), para columnas de acero.

El nivel de cimentación es -1,35 m, y se considera el peso de la columneta para el cálculo de la presión estática, para columnas de hormigón armado en los subsuelos 1 y 2.

 $P_{col} = \gamma_{hormigón} * Vol$

Donde:

 P_{col} = Peso columneta

 $\gamma_{hormig\acute{o}n}$ = Peso específico del hormigón armado.

Vol = Volumen de hormigón de la columneta.

El peso de la zapata se calcula con la siguiente expresión:

 $P_{zapata} = \gamma_{hormigón} * Vol$

Donde:

 P_{zapata} = Peso pie de zapata

 $\gamma_{hormig\acute{o}n}$ = Peso específico del hormigón armado.

Vol = Volumen de hormigón del pie de la zapata.

La presión estática para cada una de las zapatas del modelo estructural, se presenta en las Tablas 4-10, 4-11 y 4-12.

PLANTA BAJA CIMENTACIÓN									
LABEL ETABS	Zapata	Pu (Ton)	P col (Ton)	P zapata (Ton)	P total (Ton)	Área (m²)	ρ (kg/cm²)		
C33	C2	15,63	0,84	4,23	20,70	4,41	0,45		
C35	D2	35,8	0,84	4,23	40,87	4,41	0,91		
C45	F2	52,68	0,84	4,23	57,75	4,41	1,29		
C51	G2	39,52	0,84	4,23	44,59	4,41	0,99		
C52	H2	4,71	0,84	4,23	9,78	4,41	0,20		
C46	F4	14,05	0,84	4,23	19,12	4,41	0,41		
C50	G4	50,92	0,84	4,23	55,99	4,41	1,25		
C53	H4	26,37	0,84	4,23	31,44	4,41	0,69		
C47	F6	22,2	0,84	4,23	27,27	4,41	0,60		
C49	G6	45,92	0,84	4,23	50,99	4,41	1,14		
C54	H6	11,22	0,84	4,23	16,29	4,41	0,35		

Tabla 4-13: Presión estática en las zapatas de la planta baja.

Tabla 4-14: presión estática en las zapatas del subsuelo 1.

	SUBSUELO 1 CIMENTACIÓN									
LABEL ETABS	Zapata	Pu (Ton)	P col (Ton)	P zapata (Ton)	P total (Ton)	Área (m²)	ρ (kg/cm²)			
C19	A3	0,42	0,84	4,23	5,49	4,41	0,11			
C25	В3	0,42	0,84	4,23	5,49	4,41	0,11			
C34	D4	77,42	0,84	4,23	82,49	4,41	1,85			
C40	E4	8,02	0,84	4,23	13,09	4,41	0,28			

Tabla 4-15: Presión estática en las zapatas del subsuelo 2.

	SUBSUELO 2 CIMENTACIÓN									
LABEL ETABS	Zapata	Pu (Ton)	P col (Ton)	P zapata (Ton)	P total (Ton)	Área (m²)	ρ (kg/cm²)			
C1	A8	9,1	0,81	2,46	12,37	2,56	0,45			
C3	B8	8,02	0,81	2,46	11,29	2,56	0,41			
C10	C8	5,35	0,81	2,46	8,62	2,56	0,30			
C37	E8	5,35	0,84	4,23	10,42	4,41	0,22			
C6	C7	32,03	0,84	4,23	37,10	4,41	0,82			

El coeficiente de balasto vertical sin amplificar C_0 , Barkan [23] lo obtuvo experimentalmente luego varios ensayos, para arenas de grano fino, mediano y grueso e independientes de su densidad y humedad con un valor de $C_0 = 1,8$ kg/cm³, de acuerdo con la Figura 4-16.

Tipo de	Característica de la	Suelo	$C_0(kg/cm^3)$
perfil	base de fundación		
		Arcilla y arena arcillosa dura $(I_{\scriptscriptstyle L}\!<\!0)$	3,0
S1	Roca o suelos muy	Arena compacta $(I_L < 0)$	2,2
	rígidos	Cascajo, grava, canto rodado, arena densa	2,6
		Arcilla y arena arcillosa plástica $(0,25 < I_{\scriptscriptstyle L} \le 0,5)$	2,0
	Suelos intermedios	Arena plástica $(0 < I_L \le 0.5)$	1,6
S2		Arena polvorosa medio densa y densa $(e \leq 0{,}80)$	1,4
		Arenas de grano fino, mediano y grueso, independientes de su densidad y humedad	1,8
		Arcilla y arena arcillosa de baja plasticidad $(0.5 < I_L \le 0.75)$	0,8
S3	Suelos flexibles o con	Arena plástica $(0,5 \le I_L \le 1)$	1,0
	estratos de gran espesor	Arenas polvorosa, saturada, porosa $(e > 0.80)$	1,2
S4	Condiciones	Arcilla y arena arcillosa muy blanda $(I_L > 0,75)$	0,6
	excepcionales	Arena movediza $(I_L > 1)$	0,6

Figura 4-16: Valores del coeficiente C_0 cuando, $\rho_0 = 0.2 \text{ kg} / \text{ cm} [23]$.

Se determina el coeficiente D_{0} , mediante la hoja de cálculo, y se presenta en la Tabla 4-13, con un valor de $\mu = 0.4$ coeficiente de Poisson.

$$D_0 = \frac{1-\mu}{1-0.5\mu} * C_0$$

Donde:

 C_0 , D_0 = Coeficientes determinados a través de experimentos realizados para $\rho = \rho_0$.

μ=	0,4	
<i>C</i> ₀ =	1,8	Kg/cm ³
D ₀ =	1,35	Kg/cm ³
∆=	0,01	cm
ρ ₀ =	0,2	Kg/cm ²

Tabla 4-16: Cálculo del coeficiente D_0 .

Posteriormente, se calculan los coeficientes de compresión por medio de las ecuaciones del modelo de Barkan [23], y se presentan en las Tablas 4-14, 4-15 y 4-16.

$$C_{x} = D_{0} \left[1 + \frac{2(A+B)}{\Delta * A_{zapata}} \right] \cdot \sqrt{\frac{\rho}{\rho_{0}}}$$

$$C_{z} = C_{0} \left[1 + \frac{2(A+B)}{\Delta * A_{zapata}} \right] \cdot \sqrt{\frac{\rho}{\rho_{0}}}$$
$$C_{\varphi} = C_{0} \left[1 + \frac{2(A+3B)}{\Delta * A_{zapata}} \right] \cdot \sqrt{\frac{\rho}{\rho_{0}}}$$

Donde:

 $C_z = C_{\varphi}$ = Coeficientes de compresión elástica uniforme y no uniforme (Tn/m³).

 C_x = Coeficiente de desplazamiento elástico uniforme (Tn/m³)

 Δ = Coeficiente empírico, asumido para cálculos prácticos igual a Δ = 0.01cm= 1m⁻¹.

 $A_{zapata} =$ Área de la zapata.

A = Lado mayor de la zapata.

B = Lado menor de zapata.

 ρ = Presión estática en las zapatas (Kg/cm²).

 $\rho_{0=}$ Presión estática en las zapatas determinada a través de experimentos (Kg/cm²).

PLANTA BAJA CIMENTACIÓN							
		Cx=Cy	Cz	Cφx	С _{фу}		
LABEL ETABS	Zapata	(Tn/m ³)	(Tn/m ³)	(Tn/m ³)	(Tn/m ³)		
C33	C2	5884,90	7846,53	12991,80	12991,80		
C35	D2	8354,54	11139,38	18443,89	18443,89		
C45	F2	9961,35	13281,80	21991,17	21991,17		
C51	G2	8734,07	11645,43	19281,78	19281,78		
C52	H2	3948,81	5265,08	8717,59	8717,59		
C46	F4	5646,00	7528,00	12464,39	12464,39		
C50	G4	9806,11	13074,82	21648,47	21648,47		
C53	H4	7304,60	9739,46	16126,00	16126,00		
C47	F6	6788,72	9051,63	14987,13	14987,13		
C49	G6	9351,06	12468,09	20643,88	20643,88		
C54	H6	5190,69	6920,92	11459,22	11459,22		

Tabla 4-17: Coeficientes de compresión elástica, planta baja.

SUBSUELO 1 CIMENTACIÓN								
		Cx=Cy	Cz	Cφx	Сфу			
LABEL ETABS	Zapata	(Tn/m ³)	(Tn/m ³)	(Tn/m ³)	(Tn/m ³)			
C19	A3	2848,42	3797,90	6288,32	6288,32			
C25	В3	2848,42	3797,90	6288,32	6288,32			
C34	D4	11931,57	15908,76	26340,74	26340,74			
C40	E4	4622,13	6162,84	10204,04	10204,04			

Tabla 4-18: Coeficientes de compresión elástica, subsuelo 1.

Tabla 4-19: Coeficientes de compresión elástica, subsuelo 2.

SUBSUELO 2 CIMENTACIÓN							
		Cx=Cy	Cz	C _{φx}	Сфу		
LABEL ETABS	Zapata	(Tn/m ³)	(Tn/m ³)	(Tn/m ³)	(Tn/m ³)		
C1	A8	7099,06	9465,41	16226,42	16226,42		
C3	B8	6759,24	9012,32	15449,69	15449,69		
C10	C8	5834,80	7779,73	13336,67	13336,67		
C37	E8	4087,66	5450,21	9024,12	9024,12		
C6	C7	7951,43	10601,91	17553,99	17553,99		

Luego, los coeficientes de rigidez equivalentes se calculan por medio de las siguientes expresiones del modelo de Barkan [23], y se presentan en las Tablas 4-17, 4-18, 4-19.

 $K_{\rm x} = C_x. A_{\rm zapata}$

 $K_z = C_z$. A_{zapata}

 $K_{\varphi} = C_{\varphi}$. I_{nercia}

Donde:

 K_x , K_z , K_{φ} = Coefficientes de rigidez equivalentes (Tn/m³)

 C_z , C_{φ} = Coeficientes de compresión elástica uniforme y no uniforme (Tn/m³).

 C_x = Coeficiente de desplazamiento elástico uniforme (Tn/m³)

 $A_{\text{zapata}} =$ área de la base de la cimentación (m²)

I = Momento de inercia (m⁴) del área de la base de la cimentación respecto al eje horizontal, que pasa por el centro de gravedad perpendicular al plano de vibración.

PLANTA BAJA CIMENTACIÓN							
		Kx=Ky	Kz	K _{φx}	$\mathbf{K}_{\mathbf{\phi}\mathbf{y}}$		
LABEL ETABS	Zapata	(Tn/m)	(Tn/m)	(Tn/m)	(Tn/m)		
C33	C2	25952,40	34603,20	21055,48	21055,48		
C35	D2	36843,50	49124,67	29891,56	29891,56		
C45	F2	43929,54	58572,72	35640,54	35640,54		
C51	G2	38517,27	51356,36	31249,50	31249,50		
C52	H2	17414,25	23219,00	14128,38	14128,38		
C46	F4	24898,86	33198,48	20200,73	20200,73		
C50	G4	43244,96	57659,95	35085,14	35085,14		
C53	H4	32213,27	42951,03	26135,00	26135,00		
C47	F6	29938,27	39917,70	24289,27	24289,27		
C49	G6	41238,20	54984,26	33457,02	33457,02		
C54	H6	22890,93	30521,24	18571,67	18571,67		

Tabla 4-20: Coeficientes de rigidez equivalentes planta baja.

 Tabla 4-21: Coeficientes de rigidez equivalentes subsuelo 1.

SUBSUELO 1 CIMENTACIÓN								
		Kx=Ky Kz $K_{\phi x}$ $K_{\phi y}$						
LABEL ETABS	Zapata	(Tn/m)	(Tn/m)	(Tn/m)	(Tn/m)			
C19	A3	12561,55	16748,73	27731,50	27731,50			
C25	B3	12561,55	16748,73	27731,50	27731,50			
C34	D4	52618,23	70157,65	116162,66	116162,66			
C40	E4	20383,58	27178,11	44999,82	44999,82			

 Tabla 4-22: Coeficientes de rigidez equivalentes subsuelo 2.

SUBSUELO 2 CIMENTACIÓN					
		Kx=Ky	Kz	K _{φx}	$\mathbf{K}_{\mathbf{\phi}\mathbf{y}}$
LABEL ETABS	Zapata	(Tn/m)	(Tn/m)	(Tn/m)	(Tn/m)
C1	A8	18173,59	24231,45	8861,79	8861,79
C3	B8	17303,65	23071,53	8437,59	8437,59
C10	C8	14937,08	19916,10	7283,60	7283,60
C37	E8	18026,56	24035,42	14625,16	14625,16
C6	C7	35065,83	46754,43	28449.31	28449.31

Con respecto al coeficiente de rigidez equivalente para el eje Z, el modelo de Barkan [23] restringe la rotación en Z, por esta razón no se determina y se restringe el giro en Z en la modelación de la edificación.
c. Definición de zapatas

El modelo de interacción suelo-estructura Barkan [23]considera la cimentación como infinitamente rígida Genner Villareal [23] recomienda usar un módulo de elasticidad del material igual a $9x10^8$ Tn/m² y un coeficiente de Poisson igual a 0.05.

i. Definición de secciones de las zapatas

Teniendo definido el material de las zapatas, se procede a asignar las secciones determinadas por el diseño estructural de la edificación en estudio, como se muestran en las Figuras 4-17.

General Data		
Property Name	Zapata	
Display Color	Change	e
Property Notes	Modify/Show Notes.	
Isolated Column Footing Dimen	sions	
Length (along column major	axis) 2.1	m
Width (along column minor a	axis) 2,1	m
Thickness	0,4	m
Footing Embedment Depth		
Program Determined		
O User Defined		m

Figura 4-17: Definición de secciones de la zapata 1 [24].

j. Definición de coeficientes de rigidez

Primeramente, se procede a la asignación de las masas de las zapatas calculadas previamente, como se muestra en la Figura 4-18.

Masses in Global Direc	ctions	
Direction X, Y	0,4315	tonf-s²/m
Direction Z	0,4315	tonf-s²/m
Mass Moment of Inerti	a in Global Direct	ions
Rotation about X	0,18	tonf-m-s ²
Rotation about Y	0,18	tonf-m-s ²
Rotation about Z	0,317	tonf-m-s ²
Options		
 Add to Existing 	Masses	
Replace Existin	g Masses	
 Delete Existing 	Masses	

Figura 4-18: Definición masas de las zapatas [24].

Luego, se ingresan los coeficientes de rigidez calculados anteriormente, de acuerdo al modelo de Barkan [23], como se muestran en las Figuras 4-19, 4-20, 4-21, 4-22.

Figura 4-19: Definición de coeficientes de rigidez de Z1 [24].

Figura 4-20: Definición de coeficientes de rigidez de Z1 planta baja [24].

Figura 4-21: Definición de coeficientes de rigidez de Z1, subsuelo 2 [24].

Figura 4-22: Definición de coeficientes de rigidez de Z1, subsuelo 1[24].

4.1.7. Modelo de interacción Suelo-Estructura por Artur Pais & Eduardo Kausel

Las formulaciones de Artur País & Kausel, se determinan por la incorporación en los modelos de valores de rigidez equivalente en el cálculo intervienen factores propios de la cimentación y del suelo que se encuentra empleada en la obra. La rigidez y el amortiguamiento de la interacción suelo – cimentación son representadas usando las funciones de impedancia comparativamente simples o a través de una serie de resortes y amortiguadores. Las presentes rigideces consideran características como las

dimensiones de la cimentación, el módulo de cortante del suelo, el coeficiente de Poisson y los factores de corrección por profundidad de cimentación y por rigidez dinámica, ofreciendo una apropiada aproximación al problema. [28].

a. Funciones de impedancia

Las funciones de impedancia se definen como la relación en estado estacionario entre la fuerza para una orientación rígida sin masa y excitada armónicamente [26]. Las ecuaciones consideran la frecuencia de interacción suelo-cimentación -estructura. A la presencia de un terremoto las fuerzas inerciales de la superestructura y cimentación se activan generándose desplazamientos y giros en la cimentación, la misma que termina convirtiéndose en una fuente de amortiguación de la estructura [26].

Se muestra a continuación los factores de rigidez y amortiguamiento corregidos por embebido presentados por Artur Pais & Eduardo Kausel (1988).

1. Se calculan las rigideces elásticas y los factores de corrección para las rigideces estáticas, como se muestran en las Tablas 4-20, 4-21, 4-22, 4-23 y Figuras 4-23, 4-24.

INGRESO DE DATOS				
Ancho cimentación	В	2,1	m	
Largo cimentación	L	2,1	m	
Módulo de Poissón	v	0,4		
Velocidad de corte	Vs	180	m/s	
Peso específico	X	17	KN/m3	
Módulo de elasticidad	Es	4800	t/m2	
Valor de la gravedad	g	9,807	m/s2	
Profundidad de desplante	D	1,4	m	
Espesor de la zapata	dw	0,4	m	
Profundidad desde el centroide de la zapata hasta el nivel del suelo	zw	1,2	m	
Frecuencia de vibración natural no amortiguada	w	32,04432	rad/seg	
(w.B)/Vs	ao	0,3738504		
mayor 2.5	ψ	2,449489743		
Área de zapata	Aw	6,72	m ²	
Cortante de suelo máx.	Gmáx	56163,96452	Мра	
Modulo dinámico de corte efectivo obtenido como % de Gmáx.	G	28081,98226	Мра	

Tabla 4-23: Ingreso de datos.

Grado de Libertad	Pais y Kausel (1988)
Traslación a lo largo del eje z	$K_{zsur} \coloneqq \left(\frac{G \cdot B}{1 - \nu}\right) \cdot \left(3.1 \left(\frac{L}{B}\right)^{0.75} + 1.6\right)$
Traslación a lo largo del eje y	$K_{ysur} \coloneqq \left(\frac{G \cdot B}{2 - \nu}\right) \cdot \left(6.8 \left(\frac{L}{B}\right)^{0.65} + 0.8 \left(\frac{L}{B}\right) + 1.6\right)$
Traslación a lo largo del eje x	$K_{xsur} \coloneqq \left(\frac{G \cdot B}{2 - \nu}\right) \cdot \left(6.8 \left(\frac{L}{B}\right)^{0.65} + 2.4\right)$
Torsión en torno al eje z	$K_{\textit{zzeur}} \coloneqq G \cdot B^3 \cdot \left(4.25 \left(\frac{L}{B} \right)^{2.45} + 4.06 \right)$
Rotación en torno al eje y	$K_{yysur} \coloneqq \frac{G \cdot B^3}{1 - \nu} \cdot \left(3.73 \left(\frac{L}{B}\right)^{2.4} + 0.27\right)$
Rotación en torno al eje x	$K_{xxsur} \coloneqq \frac{G \cdot B^3}{1 - \nu} \cdot \left(3.2 \left(\frac{L}{B} \right) + 0.8 \right)$

Figura 4-23: Ecuaciones para calcular rigideces elásticas [27].

Rigideces elásticas			
Traslación eje z	Kz	461948,61	KN/m
Traslación eje y	Ky	339089,94	KN/m
Traslación eje x	Kx	339089,94	KN/m
Torsión eje z	Kzz	2161158,75	KN.m/rad
Rotación eje y	Куу	1733781,58	KN.m/rad
Rotación eje x	Kxx	1733781,58	KN.m/rad

Tabla 4-24: Resultados de valores de rigideces elásticas.

Figura 4-24: Factores de corrección para las rigideces estáticas [27].

Tabla 4-25: Resultados de valores de factores de corrección para las rigideces estáticas.

Factores de corrección para las rigideces estáticas		
Traslación eje z	nz	1,271
Traslación eje y	ny	2,207
Traslación eje x	nx	2,207
Torsión eje z	nzz	2,819
Rotación eje y	nyy	2,193
Rotación eje x	nxx	2,193

 Se determinan los modificadores de rigidez dinámica y amortiguamiento por radiación de las ondas para cimentaciones, como se muestran en la Tabla 4-23 y Figura 4-25.

Figura 4-25: Modificadores de rigidez dinámica y amortiguamiento por radiación de las ondas para cimentaciones. [27].

Tabla 4-26: Resultados de valores de modificadores de rigidez dinámica y amortiguamiento po
radiación de ondas para cimentaciones

Г

Modificadores de rigidez dinámica			
Traslación eje z	a z	0,993	
Traslación eje y	a y	1,000	
Traslación eje x	a x	1,000	
Torsión eje z	a zz	0,951	
Rotación eje y	a yy	0,964	
Rotación eje x	a xx	0,964	
Amortiguación por radiación			
Traslación eje z	βz	0,235	
Traslación eje y	βy	0,130	
Traslación eje x	βx	0,130	
Torsión eje z	βzz	0,006	
Rotación eje y	<i>β уу</i>	0,006	
Rotación eje x	βxx	0,006	

 Se calcula los modificadores de rigidez dinámica amortiguamiento por radiación de las ondas para cimentaciones embebidas, como se muestran en la Figura 4-26 y Tablas 4-24, 4-25.

Figura 4-26: Modificadores de rigidez dinámica y amortiguamiento por radiación de las ondas para cimentaciones embebidas.

 Tabla 4-27: Resultados de valores de modificadores de rigidez dinámica por radiación de ondas para cimentaciones embebidas.

MODIFICADORES DE RIGIDEZ DINÁMICA POR RADIACIÓN DE ONDAS PARA CIMENTACIONES EMBEBIDAS		
Traslación eje z	β z emb	0,288
Traslación eje y	β y emb	0,194
Traslación eje x	β x emb	0,194
Torsión eje z	β zz emb	0,010
Rotación eje y	β yy emb	0,027
Rotación eje x	β xx emb	0,031

 Tabla 4-28: Resultados de valores de coeficientes de amortiguamiento por radiación de ondas para cimentaciones embebidas.

Coeficientes de amortiguamiento		
Cz	8230,84	seg*KN/m
Су	3810,22	seg*KN/m
Cx	3810,22	seg*KN/m
Czz	7516,60	m²seg*KN/m
Суу	6098,92	m²seg*KN/m
Cxx	6098,92	m²seg*KN/m

4. Calculo de los factores de rigidez y amortiguamiento corregidos por embebido, como se muestran en las Tablas 4-26, 4-27 y Figura 4-27.

$$\begin{split} C_{z_emb} &\coloneqq \frac{2 \cdot K_{z_emb} \cdot \left(0.05 + \beta_{z_emb}\right)}{\omega} \\ C_{y_emb} &\coloneqq \frac{2 \cdot K_{y_emb} \cdot \left(0.05 + \beta_{y_emb}\right)}{\omega} \\ C_{z_emb} &\coloneqq \frac{2 \cdot K_{x_emb} \cdot \left(0.05 + \beta_{x_emb}\right)}{\omega} \\ C_{zz_emb} &\coloneqq \frac{2 \cdot K_{zz_emb} \cdot \left(0.05 + \beta_{zz_emb}\right)}{\omega} \\ C_{yy_emb} &\coloneqq \frac{2 \cdot K_{yy_emb} \cdot \left(0.05 + \beta_{yy_emb}\right)}{\omega} \\ C_{xx_emb} &\coloneqq \frac{2 \cdot K_{xz_emb} \cdot \left(0.05 + \beta_{yy_emb}\right)}{\omega} \\ \end{split}$$

Figura 4-27: Amortiguamientos corregidos por embebido [27].

Rigideces equivalentes por efectos de embebido (Según factores de amortiguamiento de Pais y Kausel)			
Kz emb	58513,01	Tn/m	
Ky emb	75120,19	Tn/m	
Kx emb	75120,19	Tn/m	
Kzz emb	581410,24	m.Tn/rad	
Kyy emb	367952,10	m.Tn/rad	
Kxx emb	367952,10	m.Tn/rad	

 Tabla 4-29: Resultados de valores de modificadores de rigidez dinámica y amortiguamiento por radiación de ondas para cimentaciones embebidas.

 Tabla 4-30: Resultados de valores de coeficientes amortiguamiento corregidos para cimentaciones embebidas.

Coeficientes de	e amortiguamiento cor	regidos por efectos de
embebido (Segun	lactores de amortigua	miento de Pals y Kausel)
Czemb	1234,87	s. Tn/m
Cyemb	1145,78	s. Tn/m
Cxemb	1145,78	s. Tn/m
Czzemb	2173,50	m.s. Tn/rad
Cyyemb	1764,95	m.s. Tn/rad
Cxxemb	1869,50	m.s. Tn/rad

5. Una vez que se han obtenido los valores de rigidez y amortiguamiento se define un elemento tipo link, en la presente se puede incluir los valores de amortiguamiento a diferencia de los elementos tipo resorte. A continuación, se determina el siguiente orden, como se muestran en las Figuras 4-28 y 4-29.

Figura 4-28: Definición del elemento Link [24].

Link Proper	ly Name	ZAPATA	P-Delta P	arameters	Modify/Sho	w
Link Type		Linear	 Acceptan 	ce Criteria	Modify/Sho	w
Link Proper	ty Notes	Modify/Show Notes			None specified	
Total Mass an	dWeight					
Mass		0 tonf-s²/m	Rota	tional Inertia 1	0	tonf
Weight		0 tonf	Rota	tional Inertia 2	0	tonf
			Rota	tional Inertia 3	0	tonf
Factors for Line	e and Area S	prings				
Link/Suppo	nt Property is	Defined for This Length When Us	ed in a Line Spring Prop	erty	1	m
Link/Suppo	nt Property is	Defined for This Area When Used	in an Area Spring Prop	erty	1	m²
Directional Pro	perties					
Direction	Fixed	Properties	Direction	Fixed		
🗹 U1		Modify/Show for AlL.	🗹 B1			
🗹 U2			🗹 R2			
🗹 U3			🗹 R3			
		Fix All	Clear All			
Stiffness Optio	ns					
Stiffness Us	ed for Linea	r and Modal Load Cases				
Stiffness Us	ed for Stiffne	ess-proportional Viscous Damping				
Stiffness-pri	oportional Vis	scous Damping Coefficient Modifica	ation Factor		1	
		OK	Cancel			

Figura 4-29: Características del elemento Link [24].

6. En la ventana se elige el tipo y las direcciones para el elemento link para traslación y rotación. Se elige el tipo linear y todas las direcciones de traslación y rotación, se modifican los valores de rigidez equivalente y valores de amortiguamiento en la ventana Modify/Show for All..., como se muestran en las Figuras 4-30.

Cirik/Support P	roperty Name	Summess values used					
ZAPATA		 Stiffness I 	s Uncoupled		 Stiffness 	Is Coupled	
Directional Co	atrol	75120	75120	58513	367952	367952	581410
Direction	Fixed						
🗹 И	Yes						
✓ U2	Ves						
🗹 U3	Yes						
🗹 R1	Yes						
🗹 R2	Ves	Damping Values Used I Damping Is	For All Load Cas	es		Is Coupled	
🗸 R3	Ves	UI	U2	U3	R1	R2	R3
		1145	1145	1234	1869	1764	2173
Shear Distanc	e						
U2 0	m						
U3 0	m						
Note: Distar with respec link object	ice is measured t to J-End of the						
			OK	Cancel			

Figura 4-30: Ingreso de valores de rigidez y amortiguamiento [24].

Los elementos link se asignan como características de resortes puntuales y se los define de la siguiente manera, como se muestran en las Figuras 4-31 y 4-32.

Figura 4-31: Asignación del resorte como elemento Link [24].

Property Name Display Color Property Notes pring Stiffness Options © User Specified/Link Proper	EAP Mox	Change	
Display Color Picperty Notes pring Stiffness Options User Specified/Link Proper	Mox	Change	
Property Notes pring Stiffness Options User Specified/Link Proper	Mox	ify/Show Notes	
pring Stiffness Options User Specified/Link Proper			
User Specified/Link Proper			
	ies O Base	ed on Soil Profile and	Footing Dimensions
inple Spring Stillness in Global D	irections		
Translation X		0	tonf/m
Translation Y		0	toni/m
Translation Z		0	tonl/m
Rotation about X-Axis		0	toni-m/rad
Rotation about Y-Axis		0	tonf-m/rad
Rotation about Z-Axis		0	toni-m/rad
ingle Joint Links at Point			
Link Property	Axial Direction	Axis 2 Angle	
ZAPATA	✓ +Z	0	Add
			Delete

Figura 4-32: Asignación del resorte como elemento Link [24].

Ya definido los resortes se asignan a los nudos correspondientes de la base de las zapatas, como se muestran en la Figura 4-33.

Figura 4-33: Asignación de los resortes a las bases de las zapatas.

4.1.8. Análisis y discusión de resultados

Una vez realizados los modelos estructurales con el software ETABS [24], de la edificación en estudio se procede a examinar los resultados obtenidos.

Es importante destacar el modelo estructural analizado en la presente investigación, por cuanto su implantación está sustentada en tres niveles de cimentación lo que ha permitido tomar ciertos análisis particulares.

Los pórticos en el sentido x, presentan luces con respecto a las luces de los pórticos del eje en el sentido y, que son de menores dimensiones, también debiendo considerar la implantación de la cimentación en los dos sentidos x e y, en este modelo fueron

modelados por medio de zapatas aisladas y en una forma escalonada. Lo que nos permite indicar que a la presencia del sismo en los dos sentidos se contrarresta los efectos de daño estructural, los mismos que disminuyen afectando de esta manera en daño en menor proporción de la presente estructura, se dice que, la acción sísmica a nivel de sótanos es casi nula, de acuerdo a las conclusiones de varios investigadores y de la presente se diría que no es tanto cierto, el suelo por sí solo se mueve por ende los desplazamientos que presentan las estructuras se incrementan.

a. Desplazamientos

Una vez realizado la modelación estructural y de acuerdo a los resultados presentados por el programa ETABS [24]se muestran los desplazamientos en base al análisis modal espectral, como se muestra en las Tablas 4-28, 4-29 y Figuras 4-34, 4-35.

Figura 4-34: Desplazamientos en el sentido del eje x [24].

Tabla 4-31: Desplazamientos en el sentido x [2	24]
--	-----

	DESPLAZAMIENTOS EN X										
PISO	BASE RÍGIDA	ISE MODELO BARKAN	ISE MODELO PAIS Y KAUSEL								
7	0,0229	0,0255	0,0255								
6	0,0128	0,0151	0,0150								
5	0,0040	0,0055	0,0054								
4	0,0017	0,0028	0,0028								
3	0,0027	0,0045	0,0046								
2	0,0000	0,0001	0,0001								
1	0,0028	0,0001	0,0014								
0	0	6,8E-06	2,0E-06								

En la Tabla anterior se presenta los resultados de valores de desplazamientos a lo largo del sentido del eje x, de tal manera que los desplazamientos del modelo de base rígida son menores con respecto a los desplazamientos generados al aplicar los modelos con interacción suelo -estructura, con resultados en un 11.63 % el modelo ISE Barkan y de un 11.57 % el modelo ISE Pais y Kausel mayores al modelo tradicional de base rígida.

Figura 4-35: Desplazamientos en el sentido del eje y [24].

	DESPLAZAMIENTOS EN Y									
PISO	BASE RÍGIDA	ISE MODELO BARKAN	ISE MODELO PAIS Y KAUSEL							
7	0,0208	0,0235	0,0216							
6	0,0109	0,0124	0,0111							
5	0,0024	0,0032	0,0028							
4	0.0007	0.0011	0.0009							
3	0,0001	0,0003	0,0003							
2	0.0000	0.0001	0.0000							
1	0.0004	0.0004	0.0000							
0	0,0000	0,0000	0,0000							

Tabla 4-32: Desplazamientos en el sentido y [24].

En la Tabla anterior se presenta los resultados de valores de desplazamientos a lo largo del sentido del eje y, de tal manera que los desplazamientos del modelo de base rígida son menores con respecto a los desplazamientos generados al aplicar los modelos con interacción suelo -estructura, con resultados en un 12.68 % el modelo ISE Barkan y de un 3.71 % el modelo ISE Pais y Kausel mayores al modelo tradicional de base rígida.

Al considerar los resultados de los modelos ISE, a nivel de las bases flexible se presentan valores de desplazamientos, cabe indicar que por la configuración escalonada y diferentes niveles de cimentación son mínimos caso particular en este modelo, pero ya en un modelo tradicional de cimentación modelada en un solo nivel de fundación los resultados serían mayores de acuerdo a lo estudios presentados por diversos actores. Manteniendo la idea tradicional de considerar un empotramiento perfecto no se producen desplazamientos al nivel base, mientras que al considerar el efecto ISE se muestra que utilizando el modelo ISE Barkan se desplaza 0,00001m, y considerando el modelo ISE Pais y Kausel se desplaza 0,00003m para el sentido X de la estructura en estudio y de igual forma se presentan valores de desplazamiento a nivel de la base para el eje en el sentido y.

b. Periodo de vibración

Se realizó un análisis modal [24], para obtener los valores de periodos de vibración de la estructura considerando los tres modelos de base rígida y de los modelos ISE Barkan e ISE Pais y Kausel objeto del presente estudio, el cual se muestran a continuación en las Figuras 4-36 y Tabla 4-30.

Figura 4-36: Periodos de vibración [24].

Periodo de vibración, método 2												
			PERIODO									
Case	Mode	BASE RÍGIDA	ISE MODELO BARKAN	ISE MODELO PAIS Y KAUSEL								
Modal	1	0,402	0,442	0,426								
Modal	2	0,38	0,404	0,392								
Modal	3	0,296	0,337	0,323								
Modal	4	0,284	0,285	0,285								
Modal	5	0,283	0,283	0,283								
Modal	6	0,279	0,281	0,281								
Modal	7	0,258	0,259	0,259								
Modal	8	0,254	0,253	0,253								
Modal	9	0,253	0,245	0,246								
Modal	10	0,231	0,236	0,233								
Modal	11	0,231	0,231	0,231								
Modal	12	0,212	0,227	0,227								
Modal	13	0,205	0,207	0,207								
Modal	14	0,201	0,202	0,202								
Modal	15	0,197	0,195	0,195								
Modal	16	0,186	0,188	0,186								
Modal	17	0,175	0,182	0,182								
Modal	18	0,175	0,172	0,164								
Modal	19	0,141	0,145	0,149								
Modal	20	0,133	0,134	0,14								
Modal	21	0,131	0,128	0,13								
Modal	22	0,114	0,116	0,112								
Modal	23	0,107	0,108	0,107								
Modal	24	0,094	0,095	0,095								
Modal	25	0,074	0,077	0,076								
Modal	26	0,069	0,068	0,068								
Modal	27	0,067	0,067	0,066								
Modal	28	0,031	0,034	0,033								
Modal	29	0,028	0,033	0,031								
Modal	30	0,028	0,029	0,029								

Tabla 4-33: Periodos de vibración(s) [24].

Para el modelo ISE Barkan se tiene que $Ta_2=0.442 \ s$, este valor excede al periodo de vibración del modelo de base rígida $Ta_2=0.402 \ s$ existiendo una variación de 9.95%.

Para el modelo de ISE Pais y Kausel se tiene que $Ta_2=0.426 \ s$, este valor excede al periodo de vibración del modelo de base rígida $Ta_2=0.402 \ s$ existiendo una variación de 5.97 %.

De acuerdo a la investigación realizada por Morales L. y Espinoza A. [29], el periodo de vibración de la estructura aumenta cuando se considera la flexibilidad del suelo a nivel de la base de fundación. Se presenta que entre los dos modelos de interacción suelo – estructura (ISE) existe una variación del periodo de vibración igual a 3.62 %. Revisando la NEC-SE-DS [22] indica que el periodo de vibración calculado con el método 2 no debe ser mayor en un 30% al periodo calculado con el método 1 que en nuestro caso se obtuvo Ta₁=0.321 s, en este caso $Ta_2 máx=0.402 s$. Por lo tanto, el modelo de base rígida cumple con esta condición de la norma, mientras que los modelos ISE Barkan e ISE Pais y Kausel no la cumplen.

c. Derivas de piso

Para el análisis de las derivas de piso se utiliza el máximo valor de la respuesta inelástica en desplazamientos de la estructura generados por el sismo de diseño. Se analizan las derivas generadas por el análisis modal espectral, se muestran en las Figuras 4-37, 4-38 y Tablas 4-31, 4-32.

			Derivas inel	lásticas en el	sentido ejo	e X				
			Base r	ígida	ISE I	Barkan	ISE Pai	ISE Pais y Kausel		
Story	Elevation	Location	X-Dir %		X-Dir	%	X-Dir	%		
Story7	7,2	Тор	0,0031307	1,409%	0,00369	1,660%	0,0033	1,485%		
Story6	3,6	Тор	0,0027822	1,252%	0,00327	1,470%	0,003	1,348%		
Story5	0	Тор	0,0017213	0,775%	0,00208	0,938%	0,0021	0,944%		
Story4	-1,4	Тор	0,0007906	0,356%	0,00124	0,556%	0,00132	0,594%		
Story3	-3,6	Тор	4,339E-05	0,020%	0,00015	0,066%	0,00014	0,061%		
Story2	-5	Тор	7,031E-06	0,003%	4,3E-05	0,019%	6,6E-05	0,030%		
Story1	-7,2	Тор	1,453E-05	0,007%	5,6E-05	0,025%	2,1E-05	0,009%		
Base	-8,6	Тор	0	0,000%	0	0,000%	0	0,000%		
			Máxima	1,409%	Máxima	1,660%	Máxima	1,485%		
Per	misible	2,00%	Conclusión	CUMPLE		CUMPLE		CUMPLE		

Tabla 4-34: Derivas inelásticas en el sentido eje x [24].

En el análisis para el sentido del eje x se obtiene:

En el modelo de base rígida se obtiene una deriva inelástica máxima igual a 0,0031307, mientras que para el modelo ISE Barkan se obtiene una deriva inelástica máxima de 0,00369 existiendo una variación de 17.8 % con respecto al modelo tradicional de base rígida, y para el modelo de ISE Pais y Kausel se obtiene una deriva inelástica máxima igual a 0,0033 lo que representa una variación de 5.4 % en comparación con el modelo tradicional de base rígida.

Figura 4-37: Derivas inelásticas en el sentido eje x [24].

Figura 4-38: Derivas inelásticas en el sentido eje Y [24].

	Derivas inelásticas en el sentido eje Y												
			Base 1	rígida	ISE	Barkan	ISE Pai	s y Kausel					
Story	Elevation	Location	Y-Dir %		Y-Dir	%	Y-Dir	%					
Story7	7,2	Тор	0,00354394	1,595%	0,00376	1,692%	0,00356	1,600%					
Story6	3,6	Тор	0,00291129	1,310%	0,0032	1,440%	0,00302	1,361%					
Story5	0	Тор	0,00098942	0,445%	0,00126	0,567%	0,00111	0,499%					
Story4	-1,4	Тор	0,00032007	0,144%	0,0005	0,224%	0,00041	0,185%					
Story3	-3,6	Тор	2,6365E-05	0,012%	0,00015	0,069%	0,00013	0,057%					
Story2	-5	Тор	7,8592E-06	0,004%	2,2E-05	0,010%	1,4E-05	0,006%					
Story1	-7,2	Тор	2,4105E-05	0,011%	3,4E-05	0,015%	1,9E-05	0,009%					
Base	-8,6	Тор	0	0,000%	0	0,000%	0	0,000%					
			Máxima	1,595%	Máxima	1,692%	Máxima	1,600%					
Per	misible	2,00%	Conclusión	CUMPLE		CUMPLE		CUMPLE					

Tabla 4-35: Derivas inelásticas en el sentido eje y [24].

En el análisis para el sentido del eje y se obtiene:

En el modelo de base rígida se obtiene una deriva inelástica máxima igual a 0,00354394, mientras que para el modelo ISE Barkan se obtiene una deriva inelástica máxima de 0,00376 existiendo una variación de 6.1% con respecto al modelo tradicional de base rígida, y para el modelo de ISE Pais y Kausel se obtiene una deriva inelástica máxima igual a 0,00356 lo que representa una variación de 0.33 % en comparación con el modelo tradicional de base rígida.

Las derivas inelásticas han aumentado al considerar la interacción suelo – estructura (ISE) los modelo ISE Barkan y modelo ISE Pais y Kausel en comparación con el modelo de base rígida, de tal manera que guarda relación con el aumento de desplazamientos presentados por dichos modelos ISE.

De acuerdo a los valores límites de derivas máximas permitidas por la Norma Ecuatoriana de la Construcción NEC-SE-DS [22], en el modelo tradicional de base rígida cumple lo establecido en la norma, mientras que en los modelos analizados ISE en el sentido del eje X no cumplen con el límite permitido por la Norma por cuánto las derivas son mayores al 2%, por el contario en el caso en el sentido del eje Y en los modelos analizados ISE cumplen lo establecido en la Norma con valores de deriva menores al 2%.

d. Cortante por piso

Se obtiene el cortante en el piso 6 en las direcciones X del análisis modal espectral, como se describen en las Figuras 4-39,4-40, 4-41 [24].

• Fuerza cortante de piso Modelo base rígida, eje sentido X.

Figura 4-39: Fuerza cortante de piso eje sentido X, modelo base rígida (Tn).

• Fuerza cortante de piso Modelo Barkan, eje sentido X.

Figura 4-40: Fuerza cortante de piso eje sentido X, modelo ISE Barkan (Tn).

• Fuerza cortante de piso Modelo ISE Pais y Kausel, eje sentido X.

Figura 4-41: Fuerza cortante de piso eje sentido X, modelo ISE Pais Kausel (Tn).

De acuerdo a los resultados presentados por el programa de cálculo [24], la fuerza cortante de piso 6 en el sentido X el modelo tradicional de base rígida es igual a V=183.56 Tn, en los casos de los modelos ISE, con el modelo ISE Barkan se tiene un valor de V=193.61 Tn con un incremento del 5.48 %, con el modelo ISE Pais y Kausel se presentó un valor de V=180.7, con un decremento del 1.57 %, en comparación con el modelo tradicional de base rígida.

Se obtiene el cortante por piso en las direcciones Y del análisis modal espectral, como se describen en las Figuras 4-42, 4-43, 4-44 [24].

• Fuerza cortante de piso Modelo base rígida, eje sentido Y.

Figura 4-42: Fuerza cortante de piso eje sentido Y, modelo base rígida (Tn).

• Fuerza cortante de piso Modelo Barkan, eje sentido Y.

Figura 4-43: Fuerza cortante de piso eje sentido Y, modelo ISE Barkan (Tn).

• Fuerza cortante de piso Modelo ISE Pais y Kausel, eje sentido Y.

Figura 4-44: Fuerza cortante de piso eje sentido Y, modelo ISE Pais Kausel (Tn).

En base a los resultados presentados por el programa de cálculo [24], la fuerza cortante de piso 6 en el sentido Y para el modelo tradicional de base rígida es igual a V=186.3 Tn, en los casos de los modelos ISE, con el modelo ISE Barkan se tiene un valor de V=182.1 Tn con un decremento del 2.23 %, con el modelo ISE Pais y Kausel se presentó un valor de V=180.4 Tn. con un decremento del 3.12 %, en comparación con el modelo tradicional de base rígida.

e. Participación de masas

De acuerdo a la Norma Ecuatoriana NEC-15 capitulo Peligro Sísmico, indica que la sumatoria de todos los modos que considera la masa modal acumulada sea al menos

el 90% de la masa total de la estructura en las direcciones horizontales [22]. La participación de masas con los modelos estudiados se indica en las siguientes Tablas 4-33,4-34 y 4-35.

	TABLE: Modal Participating Mass Ratios													
		Period												
Case	Mode	sec	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
Modal	1	0,402	0,566	0,018	0,000	0,566	0,018	0,000	0,002	0,321	0,000	0,002	0,321	0,000
Modal	2	0,380	0,028	0,505	0,000	0,594	0,523	0,000	0,078	0,016	0,014	0,080	0,338	0,014
Modal	3	0,296	0,007	0,024	0,002	0,601	0,546	0,002	0,012	0,012	0,560	0,092	0,350	0,574
Modal	4	0,284	0,000	0,002	0,022	0,601	0,548	0,024	0,000	0,004	0,001	0,092	0,353	0,575
Modal	5	0,283	0,000	0,000	0,000	0,601	0,548	0,025	0,000	0,000	0,000	0,092	0,354	0,575
Modal	6	0,279	0,001	0,002	0,009	0,602	0,550	0,034	0,006	0,011	0,069	0,098	0,364	0,644
Modal	7	0,258	0,000	0,000	0,020	0,602	0,550	0,054	0,000	0,004	0,000	0,098	0,369	0,644
Modal	8	0,254	0,000	0,000	0,000	0,602	0,550	0,055	0,000	0,000	0,000	0,098	0,369	0,644
Modal	9	0,253	0,000	0,000	0,002	0,603	0,550	0,057	0,001	0,003	0,001	0,099	0,372	0,646
Modal	10	0,231	0,003	0,000	0,006	0,606	0,550	0,063	0,015	0,024	0,004	0,114	0,396	0,650
Modal	11	0,231	0,000	0,000	0,024	0,606	0,550	0,087	0,005	0,002	0,000	0,119	0,398	0,650
Modal	12	0,212	0,000	0,001	0,011	0,606	0,551	0,098	0,003	0,000	0,000	0,122	0,398	0,650
Modal	13	0,205	0,000	0,001	0,039	0,606	0,552	0,137	0,017	0,000	0,000	0,139	0,398	0,651
Modal	14	0,201	0,000	0,001	0,064	0,606	0,553	0,201	0,004	0,006	0,001	0,143	0,404	0,651
Modal	15	0,197	0,001	0,000	0,026	0,607	0,553	0,227	0,012	0,000	0,002	0,155	0,404	0,653
Modal	16	0,186	0,000	0,001	0,040	0,607	0,553	0,266	0,040	0,000	0,000	0,195	0,404	0,653
Modal	17	0,175	0,002	0,000	0,014	0,609	0,553	0,280	0,009	0,005	0,003	0,204	0,409	0,656
Modal	18	0,175	0,000	0,001	0,021	0,609	0,554	0,300	0,015	0,006	0,000	0,219	0,415	0,656
Modal	19	0,141	0,000	0,000	0,039	0,609	0,554	0,339	0,006	0,022	0,000	0,225	0,437	0,656
Modal	20	0,133	0,003	0,001	0,000	0,612	0,555	0,340	0,007	0,000	0,000	0,232	0,437	0,656
Modal	21	0,131	0,017	0,007	0,001	0,630	0,562	0,340	0,003	0,000	0,002	0,235	0,438	0,658
Modal	22	0,114	0,121	0,008	0,001	0,750	0,570	0,342	0,000	0,011	0,003	0,235	0,449	0,661
Modal	23	0,107	0,003	0,000	0,072	0,753	0,571	0,414	0,004	0,001	0,001	0,238	0,449	0,661
Modal	24	0,094	0,003	0,023	0,002	0,756	0,594	0,415	0,000	0,004	0,021	0,238	0,453	0,682
Modal	25	0,074	0,052	0,076	0,001	0,808	0,670	0,416	0,000	0,001	0,001	0,238	0,454	0,684
Modal	26	0,069	0,012	0,003	0,083	0,820	0,673	0,500	0,037	0,011	0,006	0,276	0,465	0,690
Modal	27	0,067	0,021	0,021	0,029	0,840	0,694	0,528	0,018	0,001	0,011	0,293	0,466	0,700
Modal	28	0,031	0,000	0,005	0,214	0,840	0,699	0,743	0,009	0,000	0,000	0,302	0,466	0,700
Modal	29	0,028	0,070	0,070	0,001	0,910	0,769	0,743	0,006	0,032	0,011	0,309	0,498	0,711
Modal	30	0,028	0,038	0,121	0,005	0,948	0,890	0,748	0,011	0,020	0,017	0,320	0,517	0,728

Tabla 4-36: Participación de masas modelo tradicional base rígida [24].

	TABLE: Modal Participating Mass Ratios													
Case	Mode	Period sec	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
Modal	1	0,442	0,478	0,010	0,000	0,478	0,010	0,000	0,001	0,225	0,004	0,001	0,225	0,004
Modal	2	0,404	0,012	0,387	0,000	0,490	0,397	0,000	0,055	0,007	0,038	0,056	0,232	0,042
Modal	3	0,337	0,000	0,047	0,000	0,490	0,444	0,000	0,012	0,002	0,480	0,068	0,234	0,522
Modal	4	0,285	0,000	0,001	0,019	0,490	0,445	0,019	0,000	0,003	0,000	0,068	0,237	0,522
Modal	5	0,283	0,000	0,000	0,000	0,490	0,445	0,020	0,000	0,000	0,000	0,068	0,237	0,522
Modal	6	0,281	0,002	0,000	0,008	0,491	0,445	0,028	0,007	0,004	0,006	0,075	0,241	0,529
Modal	7	0,259	0,000	0,000	0,016	0,492	0,445	0,044	0,000	0,003	0,000	0,075	0,244	0,529
Modal	8	0,253	0,000	0,000	0,002	0,492	0,445	0,046	0,001	0,003	0,000	0,075	0,247	0,529
Modal	9	0,245	0,000	0,000	0,000	0,492	0,445	0,046	0,000	0,000	0,000	0,075	0,247	0,529
Modal	10	0,236	0,000	0,000	0,002	0,492	0,445	0,048	0,000	0,000	0,000	0,075	0,247	0,529
Modal	11	0,231	0,002	0,000	0,014	0,494	0,445	0,063	0,006	0,019	0,002	0,081	0,266	0,531
Modal	12	0,227	0,000	0,000	0,011	0,494	0,445	0,074	0,018	0,000	0,000	0,099	0,266	0,531
Modal	13	0,207	0,000	0,001	0,011	0,494	0,446	0,085	0,009	0,001	0,000	0,108	0,268	0,531
Modal	14	0,202	0,000	0,000	0,093	0,494	0,446	0,178	0,000	0,001	0,000	0,108	0,268	0,531
Modal	15	0,195	0,001	0,000	0,008	0,494	0,446	0,186	0,007	0,001	0,001	0,115	0,270	0,532
Modal	16	0,188	0,000	0,001	0,003	0,494	0,447	0,190	0,001	0,004	0,000	0,116	0,274	0,532
Modal	17	0,182	0,000	0,000	0,050	0,494	0,448	0,239	0,050	0,001	0,000	0,166	0,275	0,532
Modal	18	0,172	0,002	0,000	0,004	0,496	0,448	0,243	0,001	0,004	0,002	0,166	0,279	0,534
Modal	19	0,145	0,000	0,001	0,026	0,496	0,449	0,269	0,000	0,010	0,000	0,167	0,289	0,534
Modal	20	0,134	0,005	0,007	0,011	0,501	0,455	0,280	0,011	0,003	0,000	0,177	0,291	0,534
Modal	21	0,128	0,039	0,002	0,000	0,540	0,457	0,280	0,003	0,003	0,004	0,180	0,294	0,537
Modal	22	0,116	0,070	0,003	0,000	0,610	0,461	0,280	0,000	0,008	0,000	0,180	0,302	0,538
Modal	23	0,108	0,000	0,000	0,059	0,610	0,461	0,339	0,001	0,001	0,000	0,181	0,303	0,538
Modal	24	0,095	0,007	0,043	0,002	0,617	0,503	0,341	0,000	0,000	0,012	0,181	0,303	0,550
Modal	25	0,077	0,029	0,047	0,006	0,647	0,550	0,348	0,002	0,007	0,003	0,183	0,310	0,554
Modal	26	0,068	0,010	0,001	0,074	0,656	0,551	0,422	0,030	0,004	0,003	0,213	0,314	0,556
Modal	27	0,067	0,014	0,025	0,018	0,671	0,576	0,440	0,007	0,003	0,004	0,220	0,317	0,560
Modal	28	0,034	0,001	0,215	0,001	0,672	0,791	0,441	0,020	0,001	0,001	0,240	0,318	0,561
Modal	29	0,033	0,125	0,002	0,002	0,797	0,793	0,443	0,001	0,076	0,038	0,241	0,394	0,599
Modal	30	0,029	0,001	0,001	0,297	0,797	0,794	0,740	0,033	0,001	0,001	0,274	0,395	0,599

Tabla 4-37: Participación de masas modelo ISE BARKAN [24].

	TABLE: Modal Participating Mass Ratios													
Case	Mode	Period sec	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
Modal	1	0,426	0,456	0,012	0,000	0,456	0,012	0,000	0,001	0,215	0,000	0,001	0,215	0,000
Modal	2	0,392	0,019	0,393	0,000	0,475	0,405	0,000	0,058	0,011	0,020	0,059	0,226	0,021
Modal	3	0,323	0,004	0,032	0,000	0,479	0,437	0,000	0,009	0,010	0,489	0,068	0,237	0,510
Modal	4	0,285	0,000	0,001	0,019	0,479	0,438	0,019	0,000	0,003	0,000	0,068	0,239	0,510
Modal	5	0,283	0,000	0,000	0,000	0,479	0,438	0,020	0,000	0,000	0,000	0,068	0,239	0,510
Modal	6	0,281	0,001	0,000	0,008	0,480	0,439	0,028	0,007	0,005	0,009	0,075	0,244	0,520
Modal	7	0,259	0,000	0,000	0,016	0,480	0,439	0,044	0,000	0,003	0,000	0,075	0,247	0,520
Modal	8	0,253	0,000	0,000	0,002	0,481	0,439	0,046	0,001	0,003	0,001	0,075	0,249	0,520
Modal	9	0,246	0,000	0,000	0,000	0,481	0,439	0,046	0,000	0,000	0,000	0,076	0,250	0,520
Modal	10	0,233	0,000	0,000	0,005	0,481	0,439	0,051	0,000	0,000	0,000	0,076	0,250	0,520
Modal	11	0,231	0,002	0,000	0,012	0,483	0,439	0,064	0,006	0,018	0,002	0,081	0,268	0,522
Modal	12	0,227	0,000	0,000	0,010	0,483	0,439	0,073	0,019	0,000	0,000	0,100	0,268	0,522
Modal	13	0,207	0,000	0,001	0,016	0,483	0,440	0,089	0,007	0,002	0,000	0,106	0,269	0,523
Modal	14	0,202	0,000	0,000	0,085	0,483	0,440	0,174	0,000	0,001	0,000	0,107	0,270	0,523
Modal	15	0,195	0,001	0,000	0,013	0,483	0,440	0,187	0,008	0,000	0,001	0,114	0,270	0,524
Modal	16	0,186	0,000	0,001	0,003	0,484	0,441	0,190	0,000	0,007	0,000	0,115	0,277	0,524
Modal	17	0,182	0,000	0,000	0,051	0,484	0,441	0,241	0,049	0,000	0,000	0,164	0,278	0,524
Modal	18	0,164	0,009	0,000	0,002	0,493	0,441	0,243	0,000	0,007	0,001	0,164	0,285	0,526
Modal	19	0,149	0,004	0,000	0,013	0,497	0,442	0,255	0,000	0,002	0,000	0,164	0,287	0,526
Modal	20	0,140	0,003	0,000	0,021	0,500	0,442	0,276	0,003	0,008	0,001	0,167	0,294	0,527
Modal	21	0,130	0,001	0,006	0,004	0,501	0,447	0,280	0,012	0,003	0,001	0,179	0,297	0,528
Modal	22	0,112	0,091	0,004	0,003	0,591	0,452	0,283	0,000	0,008	0,007	0,179	0,305	0,534
Modal	23	0,107	0,006	0,001	0,057	0,597	0,452	0,339	0,001	0,000	0,000	0,180	0,305	0,535
Modal	24	0,095	0,003	0,029	0,002	0,600	0,482	0,341	0,000	0,000	0,012	0,181	0,305	0,547
Modal	25	0,076	0,046	0,053	0,005	0,646	0,534	0,346	0,001	0,010	0,005	0,182	0,315	0,552
Modal	26	0,068	0,011	0,019	0,065	0,657	0,553	0,411	0,024	0,012	0,003	0,206	0,328	0,555
Modal	27	0,066	0,033	0,028	0,043	0,690	0,581	0,454	0,011	0,000	0,010	0,217	0,328	0,565
Modal	28	0,033	0,030	0,154	0,000	0,720	0,735	0,454	0,018	0,011	0,007	0,235	0,339	0,572
Modal	29	0,031	0,048	0,047	0,061	0,768	0,782	0,515	0,000	0,032	0,035	0,235	0,370	0,607
Modal	30	0.029	0.015	0.005	0.213	0,783	0,787	0,728	0.042	0.014	0.012	0.277	0,384	0.619

Tabla 4-38: Participación de masas modelo ISE PAIS y KAUSEL [24].

f. Chequeo del índice de estabilidad (Q)

De acuerdo a la norma NEC-SE-DS el índice de estabilidad debe cumplir Qi≤0.30, de los modelos IDSE Barkan y modelo IDSE de Pais y Kausel y modelo tradicional de base rígida sí cumplen con lo establecido en la Norma ecuatoriana de la construcción, como se presenta en las Tablas 4-36, 4-37 y 4-38.

CHEQUEO ÍNDICE DE ESTABILIDAD Q									
Story	Р	Def	V	Н	Q				
	tonf	cm							
Story7	264,70	2,29	-136,38	360	0,012				
Story6	485,82	1,28	-186,26	360	0,009				
				Máx. Q	0,012				
LA NEC DICE QUE Q<=		0,30							
INDICE DE ESTABILIDAD		CUMPLE							

Tabla 4-39: Chequeo de índice de estabilidad Q, modelo de base rígida [22].

Tabla 4-40:	Chequeo	de índice d	e estabilidad Q	, modelo	de BARKAN	[22]	ĺ
--------------------	---------	-------------	-----------------	----------	-----------	------	---

CHEQUEO ÍNDICE DE ESTABILIDAD Q								
Story	Р	Def	v	Н	Q			
	tonf	cm						
Story7	264,70	2,55	-135,46	360	0,014			
Story6	485,82	1,51	-193,61	360	0,010			
				Máx. Q	0,014			
LA NEC DICE QUE Q<=		0,30						
INDICE DE ESTABILIDAD		CUMPLE						

Tabla 4-41: Chequeo del índice de estabilidad Q, modelo de PAIS y KAUSEL [22].

CHEQUEO ÍNDICE DE ESTABILIDAD Q								
Story	Р	Def	V	Н	Q			
	tonf	cm						
Story7	264,70	2,550	-127,29	360	0,015			
Story6	485,82	1,499	-180,67	360	0,011			
				Máx. Q	0,015			
LA NEC DICE QUE Q<=		0,30						
INDICE DE ESTABILIDAD		CUMPLE						

De acuerdo a los resultados obtenidos los valores de índice de estabilidad (Q) de los modelos IDSE de Barkan y de Pais & Kausel con respecto al modelo tradicional de base rígida, son mayores lo que indica que tiene poca probabilidad de volcarse el edificio, y no tiene problemas por efectos P-Delta.

Según la NEC, los efectos P-delta no necesitan ser considerados cuando el índice de estabilidad Q<0.1

g. Aceleraciones por piso

Las aceleraciones de piso pueden utilizarse para controlar el daño de los contenidos de los modelos estructurales, se presentan los resultados a continuación en las Tablas 4-39, 4-40 y Figuras 4-45y 4-46.

	ACELERACIONES POR PISO EJE SENTIDO X									
				BASE RÍGIDA	BARKAN	PAIS Y KAUSEL				
Story	Output Case	Case Type	Step Type	cm/sec²	cm/sec ²	cm/sec²				
7	SPT-X	LinRespSpec	Max	5,67	5,25	5,57				
6	SPT-X	LinRespSpec	Max	4,93	7,46	4,31				
5	SPT-X	LinRespSpec	Max	3,15	2,76	2,75				
4	SPT-X	LinRespSpec	Max	1,63	1,81	2,54				
3	SPT-X	LinRespSpec	Max	6,16	11,35	7,21				
2	SPT-X	LinRespSpec	Max	0,66	2,42	1,33				
1	SPT-X	LinRespSpec	Max	6,53	1,94	4,43				
0	SPT-X	LinRespSpec	Max	0,00	0,11	0,03				

Tabla 4-42: Aceleraciones por piso eje sentido x [24].

Tabla 4-43: Aceleraciones por piso eje sentido y [24].

ACELERACIONES POR PISO EJE SENTIDO Y									
			BASE RÍGIDA	BARKAN	PAIS Y KAUSEL				
Story	Output Case	Case Type	Step Type	cm/sec ²	cm/sec ²	cm/sec²			
Story7	SPT-X	LinRespSpec	Max	2,99	2,69	2,56			
Story6	SPT-X	LinRespSpec	Max	2,23	2,07	1,98			
Story5	SPT-X	LinRespSpec	Max	2,05	1,51	1,46			
Story4	SPT-X	LinRespSpec	Max	0,80	0,89	0,65			
Story3	SPT-X	LinRespSpec	Max	1,16	0,99	1,38			
Story2	SPT-X	LinRespSpec	Max	0,36	0,57	0,23			
Story1	SPT-X	LinRespSpec	Max	1,97	1,98	0,22			
Base	SPT-X	LinRespSpec	Max	0,00	0,04	0,01			

Figura 4-45: Aceleración de piso eje sentido x, m/s2 [24].

Figura 4-46: Aceleración de piso eje sentido x, m/s2 [24].

Una vez obtenido los resultados de aceleraciones por piso en los dos sentidos al considerar la interacción suelo – estructura IDSE la aceleración de piso en el eje sentido x aumenta en los pisos 3 y 6 en el modelo IDSE Barkan con respecto al modelo de base rígida; mientras que el comportamiento es semejante entre los modelos de Pais y Kausel con respecto al modelo de base rígida.

Al considerar la interacción suelo – estructura IDSE la aceleración de piso en el eje sentido Y, las aceleraciones aumentan en los pisos 1 y 7 entre el modelo IDSE Barkan con respecto al modelo de base rígida, mientras que en el piso 1 la aceleración del modelo de Pais y Kausel es menor con respecto al modelo de base rígida, pero semejantes en el piso 7.

h. Diseño de los elementos estructurales

Se procede a realizar el diseño de los elementos estructurales [24] considerando el modelo de tradicional base rígida, modelo IDSE de Barkan y del modelo Pais & Kausel obteniéndolos siguientes resultados.

Figura 4-48: Vigas metálicas piso 5, modelo IDSE Barkan [24].

Figura 4-49: Vigas metálicas piso 5, modelo IDSE Barkan [24].

En base a los resultados desplegados en las Figuras anteriores 4-47, 4-48 y 4-49, se conclúye que de acuerdo a los ratios de la vigas metálicas de los modelos IDSE Barkan y modelo IDSE de Pais y Kausel con respecto al modelo tradicional de base rígida cumplen con el diseño establecido en los tres modelos, por cuánto los valores son semejantes.

Figura 4-50: Acero en cadenas estructurales piso 5, modelo base rígida [24].

Figura 4-51: Acero en cadenas estructurales piso 5, modelo IDSE Barkan [24].

Figura 4-52: Acero en cadenas estructurales piso 5, modelo IDSE Pais y Kausel [24].

En lo referente a las secciones y cuantías de acero longitudinal en cadenas se evidencia el aumento en de los modelos IDSE Barkan y modelo IDSE de Pais y Kausel con respecto al modelo tradicional de base rígida, debiéndose rediseñarse en los modelos IDSE, presentados en las Figuras anteriores 4-50, 4-51 y 4-52.

Figura 4-53: Acero en Columna H°A° C2, modelo base rígida [24].

Figura 4-54: Acero en Columna H°A° C2, modelo IDSE Barkan [24].

Figura 4-55: Acero en Columna H°A° C2, modelo IDSE Pais y Kausel [24].

Las secciones y cuantías de acero longitudinal en pedestals es necesario el aumento en de los modelos IDSE Barkan y modelo IDSE de Pais y Kausel con respecto al modelo tradicional de base rígida, debiéndose rediseñarse en los modelos IDSE, presentados en las Figuras 4-53, 4-54 y 4-55.

Figura 4-56: Ratios Columnas, modelo base rígida [24].

Figura 4-57: Ratios Columnas, modelo IDSE Barkan [24].

Figura 4-58: Ratios Columnas, modelo IDSE Pais y Kausel [24].

Con respecto a las secciones y cuantías de acero columnas compuestas se presenta aumento en la demanda en los modelos IDSE Barkan y modelo IDSE de Pais y Kausel con respecto al modelo tradicional de base rígida, debiéndose rediseñarse en los modelos IDSE, presentados en las Figuras 4-56, 4-57 y 4-58.

4.1.9. Rediseño modelo ISE Barkan

De acuerdo al proceso de análisis empleados en la modelación, prediseño y diseño de los tres modelos estudiados anteriormente, se toma el modelo IDSE Barkan y se procede a rediseñar la superestructura, y de esta manera proceder a rediseñar la subestructura del presente modelo.

4.1.9.1. Cálculo de coeficientes de rigidez – Modelo de Barkan [23]-Suelo tipo D

Se procede a corregir los valores y obtener los nuevos coeficientes de rigidez que se muestran en las Tablas 4-41, 4-42, 4-43, los mismos que se ingresaran al ETABS [24].

SUBSUELO 1 CIMENTACIÓN								
LABEL Pu P col P zapata P total Área p					ρ			
ETABS	Zapata	(Ton)	(Ton)	(Ton)	(Ton)	(m^2)	(kg/cm^2)	
C34	D4	77.42	0.84	5.71	83,97	5.29	1.57	

Tabla 4-44: Presión estática en las zapatas del subsuelo 1.
SUBSUELO 1 CIMENTACIÓN										
LABEL ETABS	Zapata	(Tn/m^3)	(Tn/m^3)	(Tn/m^3)	(Tn/m^3)					
C34 D4 10992,30 14656,41 24267,16 24267,16										

Tabla 4-45: Coeficientes de compresión elástica, subsuelo 2.

Tabla 4-46: Coeficientes de rigidez equivalentes subsuelo 1.

SUBSUELO 1 CIMENTACIÓN									
$Kx = Ky Kz K_{\varphi x} K_{\varphi y}$									
LABEL ETABS	Zapata	(Tn/m)	(Tn/m)	(Tn/m)	(Tn/m)				
C34 D4 58149,29 77532,38 128373,29 128373,29									

4.1.9.2. Análisis de resultados

En función de las normativas NEC, AISC, ACSE, se procede a realizar los análisis de los resultados una vez que equilibrada la estructura.

Se realiza una comparación de resultados a fin de determinar la importancia de considerar la interacción suelo estructura en la modelación, análisis, prediseño y diseño de todo tipo de estructura.

a. Determinación de los desplazamientos

Figura 4-59:Desplazamientos en el sentido del eje x [24].

Figura 4-60:Desplazamientos en el sentido del eje Y [24].

	DESPLAZAMIENTOS EN X							
PISO	NUEVO ISE MODELO BARKAN	ISE MODELO BARKAN						
7	0,0167	0,0255						
6	0,0096	0,0151						
5	0,0033	0,0055						
4	0,0016	0,0028						
3	0,0007	0,0045						
2	0,0001	0,0001						
1	0,0000	0,0001						
0	0,000003	6,8E-06						

Tabla 4-47: Desplazamientos en el sentido x [24].

Se determina que los desplazamientos son menores con un 53% en eje del sentido x una vez rediseñado el modelo, como se muestran en la Tabla 4-44 y Figura 4-59.

Tabla 4-48: Desplazamientos en el sentido y [24].

	DESPLAZAMIENTOS EN Y							
PISO	NUEVO ISE	ISE MODELO						
	BARKAN	BARKAN						
7	0,0158	0,0235						
6	0,0080	0,0124						
5	0,0019	0,0032						
4	0,0006	0,0011						
3	0,0002	0,0003						
2	0,0001	0,0001						
1	0,0001	0,0004						
0	0,00000	0,00001						

Se determina que los desplazamientos son menores con un 48% en eje del sentido Y una vez rediseñado el modelo, como se muestran en la Tabla 4-45 y Figura 4-60.

b. Periodos de vibración

Se puede apreciar que la estructura es más estable por cuanto sus modos de vibrar son menores en 4.99%, como se muestran en la Figura 4-61y Tabla 4-46.

	PERIODO							
Mala	NUEVO	ISE						
Mode	ISE	MODELO						
	BARKAN	BARKAN						
1	0,421	0,442						
2	0,389	0,404						
3	0,338	0,337						
4	0,317	0,285						
5	0,283	0,283						
6	0,28	0,281						
7	0,271	0,259						
8	0,259	0,253						
9	0,253	0,245						
10	0,231	0,236						
11	0,23	0,231						
12	0,214	0,227						
13	0,205	0,207						
14	0,203	0,202						
15	0,196	0,195						
16	0,186	0,188						
17	0,176	0,182						
18	0,175	0,172						
19	0,143	0,145						
20	0,132	0,134						
21	0,12	0,128						
22	0,109	0,116						
23	0,101	0,108						
24	0,086	0,095						
25	0,07	0,077						
26	0,066	0,068						
27	0,063	0,067						
28	0,034	0,034						
29	0,033	0,033						
30	0,028	0,029						

Tabla 4-49: Periodos de vibración(s) [24].

c. Derivas de piso

Derivas inelásticas en el sentido eje X										
			NUEV BARI	O ISE KAN	ISE B	arkan				
Story	Elevation	Location	X-Dir	%	X-Dir	%				
Story7	7,2	Тор	0,002275	1,024%	0,00369	1,660%				
Story6	3,6	Тор	0,002047	0,921%	0,00327	1,470%				
Story5	0	Тор	0,001281	0,576%	0,00208	0,938%				
Story4	-1,4	Тор	0,000713	0,321%	0,00124	0,556%				
Story3	-3,6	Тор	0,000073	0,033%	0,00015	0,066%				
Story2	-5	Тор	0,000023	0,010%	4,3E-05	0,019%				
Story1	-7,2	Тор	0,000022	0,010%	5,6E-05	0,025%				
Base	-8,6	Тор	0	0,000%	0	0,000%				
			Máxima	1,024%	Máxima	1,660%				
Permisible		2,00%	Conclusión	CUMPLE		CUMPLE				

Tabla 4-50: Derivas inelásticas en el sentido eje x [24].

Tabla 4-51: Derivas inelásticas en el sentido eje y [24].

	Derivas inelásticas en el sentido eje Y										
			NUEV BAR	O ISE KAN	ISE I	Barkan					
Story	Elevation	Location	Y-Dir	%	Y-Dir	%					
Story7	7,2	Тор	0,003075	1,384%	0,00376	1,692%					
Story6	3,6	Тор	0,002144	0,965%	0,0032	1,440%					
Story5	0	Тор	0,000788	0,355%	0,00126	0,567%					
Story4	-1,4	Тор	0,000294	0,132%	0,0005	0,224%					
Story3	-3,6	Тор	0,000087	0,039%	0,00015	0,069%					
Story2	-5	Тор	0,000012	0,005%	2,2E-05	0,010%					
Story1	-7,2	Тор	0,000023	0,010%	3,4E-05	0,015%					
Base	-8,6	Тор	0	0,000%	0	0,000%					
			Máxima	1,384%	Máxima	1,692%					
Permisible		2,00%	Conclusión	CUMPLE		CUMPLE					

Se ha controlado que las derivas máximas de piso se vean reducidas lo que garantiza mayor estabilidad y seguridad, se redujeron en el eje en el sentido x en un 62% y en el eje en sentido y en un 22%, como se muestran en las Figuras 4-62, 4-63 y Tablas 4-47, 4-48.

Figura 4-63: Derivas inelásticas en el sentido eje X [24].

d. Cortantes por piso

Los cortantes por piso disminuyeron notablemente con el rediseño, como se muestran en las Figuras 4-64 y 4-65.

Figura 4-64: Fuerza cortante de piso eje sentido X, nuevo modelo ISE Barkan (Tn).

Figura 4-65: Fuerza cortante de piso eje sentido Y, nuevo modelo ISE Barkan (Tn).

e. Participación de masas

	TABLE: Modal Participating Mass Ratios													
		Period												
Case	Mode	sec	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
Modal	1	0,435	0,44	0,003	0,003	0,44	0,003	0,003	0,002	0,234	0,004	0,002	0,234	0,004
Modal	2	0,397	2E-04	0,347	0,004	0,44	0,35	0,006	0,029	0,001	0,025	0,032	0,236	0,029
Modal	3	0,353	0,038	0,076	0,016	0,478	0,427	0,022	0,049	0,001	0,032	0,08	0,237	0,061
Modal	4	0,323	0,006	0,013	0,005	0,484	0,439	0,027	6E-04	0,006	0,456	0,081	0,243	0,517
Modal	5	0,283	1E-04	6E-07	2E-05	0,484	0,439	0,027	3E-05	4E-05	1E-04	0,081	0,243	0,517
Modal	6	0,281	0,002	1E-04	0,008	0,486	0,439	0,035	0,007	0,005	0,009	0,088	0,247	0,526
Modal	7	0,259	1E-04	2E-04	0,019	0,486	0,44	0,054	2E-05	0,003	3E-05	0,088	0,251	0,526
Modal	8	0,252	3E-04	1E-06	0,001	0,486	0,44	0,055	5E-04	0,003	4E-04	0,089	0,254	0,527
Modal	9	0,245	7E-04	8E-04	0,011	0,487	0,44	0,067	2E-04	0,003	2E-04	0,089	0,257	0,527
Modal	10	0,231	0,002	3E-06	0,018	0,489	0,44	0,084	0,004	0,018	0,002	0,093	0,275	0,529
Modal	11	0,23	1E-04	1E-04	0,006	0,489	0,44	0,09	0,017	0,002	1E-04	0,11	0,277	0,529
Modal	12	0,219	4E-04	7E-04	4E-04	0,49	0,441	0,09	0,003	7E-04	6E-06	0,112	0,278	0,529
Modal	13	0,205	9E-06	3E-04	0,074	0,49	0,441	0,164	9E-04	0,001	1E-04	0,113	0,279	0,529
Modal	14	0,203	7E-06	8E-04	0,019	0,49	0,442	0,183	0,013	2E-04	1E-04	0,126	0,279	0,529
Modal	15	0,195	2E-04	6E-04	0,009	0,49	0,443	0,191	4E-04	4E-04	1E-04	0,126	0,28	0,529
Modal	16	0,186	4E-05	1E-05	0,042	0,49	0,443	0,233	0,039	0,008	4E-05	0,165	0,288	0,529
Modal	17	0,174	0,001	1E-05	0,011	0,491	0,443	0,244	0,014	0,001	0,003	0,179	0,289	0,533
Modal	18	0,166	1E-04	0,001	0,004	0,491	0,444	0,247	0,001	6E-07	4E-05	0,18	0,289	0,533
Modal	19	0,145	2E-05	2E-06	0,031	0,491	0,444	0,278	0,002	0,012	1E-04	0,182	0,301	0,533
Modal	20	0,134	0,015	0,009	1E-05	0,506	0,453	0,278	5E-04	0,001	3E-04	0,182	0,302	0,533
Modal	21	0,122	0,06	2E-04	3E-04	0,566	0,453	0,279	0,006	0,009	0,004	0,189	0,311	0,537
Modal	22	0,115	0,031	0,004	0,018	0,597	0,458	0,296	0,006	5E-04	1E-04	0,195	0,311	0,537
Modal	23	0,109	0,01	3E-04	0,044	0,607	0,458	0,341	8E-04	5E-04	3E-05	0,195	0,312	0,537
Modal	24	0,09	0,01	0,062	2E-04	0,617	0,52	0,341	1E-04	0,001	0,011	0,196	0,313	0,548
Modal	25	0,073	0,03	0,01	0,035	0,647	0,529	0,376	0,012	0,015	0,007	0,207	0,328	0,555
Modal	26	0,069	0,01	0,012	0,055	0,658	0,541	0,43	0,019	0,004	0,003	0,226	0,332	0,558
Modal	27	0,063	0,012	0,04	0,005	0,669	0,581	0,435	9E-04	2E-04	7E-04	0,227	0,333	0,558
Modal	28	0,033	0,094	0,051	0,011	0,763	0,632	0,446	0,002	0,048	0,019	0,229	0,38	0,577
Modal	29	0,032	0,031	0,166	4E-04	0,794	0,798	0,446	0,016	0,017	0,008	0,245	0,397	0,585
Modal	30	0,029	0,004	6E-04	0,284	0,798	0,798	0,729	0,028	0,003	0,002	0,273	0,401	0,587

Tabla 4-52: Participación de masas nuevo modelo ISE Barkan [24].

La participación de masas en el modelo sufre un notable cambio, se realiza varias interacciones no logrando cumplir con lo que establece la norma NEC, debe ser por el modelo particular de tres niveles de cimentación, por razones arquitectónicas es imposible disponer de elementos estructurales como diagonales, cruces de San Andrés, los presentes resultados se muestran en la Tabla 4-49[24].

f. Chequeo de índice de estabilidad(Q)

CHEQUEO INDICE DE ESTABILIDAD Q											
Story	Р	Def	V	н	Q						
	tonf	cm									
Story7	264,4361	1,6651	87,7938	360	0,0139						
Story6	486,3357	0,9562	123,405	360	0,0105						
				Máx. Q	0,0139						
LA NEC DICE QUE Q<=		0,30									
INDICE DE ESTABILIDAD		CUMPLE									

Tabla 4-53: Chequeo de índice de estabilidad Q, modelo de BARKAN [22].

De acuerdo a los resultados obtenidos en la Tabla 4-50, los valores de índice de estabilidad (Q) de los modelos IDSE de Barkan tiene poca probabilidad de volcarse el edificio, y no tiene problemas por efectos P-Delta.

Según la NEC, los efectos P-delta no necesitan ser considerados cuando el índice de estabilidad Q<0.1

g. Aceleraciones por piso

	ACELERACIONES POR PISO EJE SENTIDO X									
Story	Output Case	Case Type	Step Type	NUEVO BARKAN	BARKAN					
				cm/sec ²	cm/sec ²					
7	SPT-X	LinRespSpec	Max	3,77	5,25					
6	SPT-X	LinRespSpec	Max	4,66	7,46					
5	SPT-X	LinRespSpec	Max	1,90	2,76					
4	SPT-X	LinRespSpec	Max	1,24	1,81					
3	SPT-X	LinRespSpec	Max	2,84	11,35					
2	SPT-X	LinRespSpec	Max	1,56	2,42					
1	SPT-X	LinRespSpec	Max	0,52	1,94					
0	SPT-X	LinRespSpec	Max	0,07	0,11					
	ACELERA	CIONES POR	PISO EJE S	SENTIDO Y						
Story	Output Case	Case Type	Step Type	NUEVO BARKAN	BARKAN					
-				cm/sec ²	cm/sec ²					
7	SPT-X	LinRespSpec	Max	1,86	2,69					
6	SPT-X	LinRespSpec	Max	1,97	2,07					
5	SPT-X	LinRespSpec	Max	1,03	1,51					
4	SPT-X	LinRespSpec	Max	0,56	0,89					
3	SPT-X	LinRespSpec	Max	0,67	0,99					
2	SPT-X	LinRespSpec	Max	0,39	0,57					
1	SPT-X	LinRespSpec	Max	0,55	1,98					
0	SPT-X	LinRespSpec	Max	0,03	0,04					

Tabla 4-54: Aceleraciones por piso eje sentido X e Y [24].

Figura 4-66: Aceleración de piso eje sentido x, m/s² [24].

Figura 4-67: Aceleración de piso eje sentido y, m/s² [24].

Las aceleraciones por piso de obtienen del modelo ejecutado, y se muestran en las Figuras 4-66,4-67 y Tabla 4-51.

4.1.9.3. Diseño de la cimentación modelo ISE Barkan

Una vez realizado el análisis de la estructura de Modelo de base rígida se sustenta en la misma para realizar el complemento tanto del modelado, prediseño y diseño del modelo ISE Barkan, se toma como base y se van verificando las condiciones de servicio propias del prediseño (desplazamientos, periodos de vibración, derivas, participaciones de masas, índices de estabilidad Q, se realizan verificaciones y se pasan a los ajustes de acuerdo a lo que establecen las normas de la construcción NEC 15, ACI-318, AISC, ACSE.

Dentro de la modelación estructural y del análisis, una vez equilibrada la estructura, pasamos al prediseño de la subestructura, en el presente proyecto la implantación será algo particular, por cuanto se trata de un terreno laderoso con una pendiente significativa, por el relieve y las solicitaciones arquitectónicas se fundará en un suelo tipo D, para el cual se dispone del estudio de suelos geotécnicos para el lugar específico, todo el estudio se sustentará en el mismo.

Para la temática principal como fue el estudio y la aplicación de la Interacción Suelo-Estructura se recibió información muy importante de parte de Sísmica Institute, impartida por el Ing. Edison Guánchez profesor de la Universidad Politécnica de Cataluña (UPC). Curso en Ingeniería sísmica Geotécnica e Interacción Sueloestructura.2022[27]

Para el presente estudio se buscó información relacionada a la temática no logrando encontrar satisfactoriamente, se obtuvo gran parte de la misma del curso Diseño de Edificaciones en Laderas por CEINTPERU impartido por el Ing. Carlos Mercado [30], logrando avanzar en el presente estudio.

Fue muy provechosa la impartición de conocimientos del curso de cimentaciones y diseño de estructuras impartidas por el ing. Edison Chávez.

Se destaca la impartición de conocimientos por parte del Dr. Pablo Caiza instructor de la asignatura Diseño de Cimentaciones, Maestría en Ingeniería Civil, mención Estructuras Metálicas, FICM-UTA.

De acuerdo a las solicitaciones propias del terreno el diseño arquitectónico se sustentó en tres desniveles, lo que implicó diseñar tres niveles de cimentaciones tal como se indica en los planos arquitectónicos, de acuerdo al prediseño y diseño en el modelo inicial de base rígida se determinó un sistema de zapatas aisladas, ya para la modelación del modelo ISE Barkan se mantuvo la misma, los resultados obtenidos tanto de prediseño como de diseño se ira presentando más adelante. Una vez haber cumplido con las condiciones anteriores de servicio pasamos al diseño de tal manera que pasamos a cumplir las condiciones últimas o por resistencia.

Basado en criterios de diseño de cimentaciones realizado por algunos investigadores como Terzaghi, Hansen, Meyerhof entre otros sumado la AASHTO, nos ayudan a determinar los posibles esfuerzos admisibles del terreno y los posibles asentamientos. Se procede a realizar un prediseño para la cual nos sustentamos en la Tabla 4-55.

Referen	cias:	NEC-15, A	.CI 318-1	19													
Aut	ores:	Ing. Edison	ı Chávez	z													
							PRI	EDISEÑO	DE CIMENT	FACIONI	ES						
	Datos Ar	q.		Ċ	Cálculos	-		Tipo	SUPERF	ICIAL		Diseño estructural					
L1	2,80	m	1	At	18,70	m2		A cim	5,35	m2		Pu	71,59	t	Pu	nzonamiento)
L2	6,00	m	P	Pm	42,27	t		x	0,91	m		Mua	3,58	t-m	bo	2,26	m
L3	2,50	m	P	Pm	0,00	t		A sug	2,31	m		Mub	3,58	t-m	Apunz	3,80	m2
L4	6,00	m	ŀ	Pm	42,27	t		A def	2,10	m		q1a	18,55	t/m2	Esf p	71,88	t/m2
Cm1	0,48	t/m2	1	Pv	13,04	t		B def	2,10	m		q2a	13,91	t/m2	Esf r1	123,16	t/m2
Cv1	0,26	t/m2	1	Ps	55,31	t		qla	14,33	OK		q1b	18,55	t/m2	Esf r2	181,26	t/m2
Pisos	3	u	М	ſma	2,11	t-m		qlb	14,33	OK		q2b	13,91	t/m2	Esf r3	212,80	t/m2
Cm2		t/m2	М	ſma	0,00	t-m		d	0,38	m		(ortante		Esf r	123,16	t/m2
Cv2		t/m2	М	í ma	2,11	t-m		Tipo	ME	D		vol	0,80	m	Aj	Aplastamiento	
Pisos		u	М	/Iva	0,65	t-m		а	30			q3a	17,62	t/m2	Esf ap	286,36	t/m2
Cm3		t/m2	M	Asa	2,77	t-m		A	2,10	m		q3b	17,62	t/m2	Esf r	1224,00	t/m2
Cv3		t/m2	М	ſmb	2,11	t-m		В	2,10	m		Esfv a	19,99	t/m2	Flexión		
Pisos		u	М	/lvb	0,65	t-m		Н	0,45	m		Esfv b	19,99	t/m2	q4a	16,79	t/m2
He	3,60	m	M	Asb	2,77	t-m		Hf	1,40	m		Esf v	19,99	t/m2	q4b	16,79	t/m2
qa	15,00	t/m2		(Chek list							Esf r	61,58	t/m2	qu	16,79	t/m2
a col	0,50	m	Put	nzonan	niento	ОК						A	rmadura		Ми	5,75	t-m
b col	0,50	m	Cor	rtante		ОК						Mu	5,75	t-m	d min	0,13	m
rec	0,07	m	Apl	lastam	iento	ОК						As	4,04	cm2			
FM	1,20		Fle	exión		ОК						As min	8,10	cm2			
			Esf	fuerzo		ОК						As def	8,10	cm2			
fc	240	kg/cm2										fi	16	mm			
fy	4200	kg/cm2										sep	25	cm			
												Ld	97	cm			
												С	on patas				

Tabla 4-55: Prediseño de cimentaciones.

Determinación de un Q promedio, utilizando diferentes métodos realizados por varios investigadores, se muestran a continuación en las Tablas 4-53 hasta la Tabla 4-58 y Figura 4-68.

	Braia, M. D.	(2013).								
	Fundamentos de	ingeniería								
Referencia:	geotécnica. [32]									
Autores: Hugo Bonifaz et al.										
	•									
DATOS DE EDIFICIO										
Ubicación:	AMBATO									
Tipo de suelo:	arena -limosa									
Tipo de suelo:	SM									
f'c=	Kg/cm2									
Ec=12000√(f'c)	185903,201 Kg/cm2									

Tabla 4-56: Datos del edificio [31].

Tabla 4-57: I	Datos del	suelo	[31].
---------------	-----------	-------	-------

DATOS DEL SUELO						
Cohesión del suelo	c=	0	T/m2			
Peso específico del suelo	γ=	1,7	T/m3			
Profundidad de la cimentación	Df =	1,4	m			
Ángulo de fricción del suelo	φ=	27	0			
Dimensión de cada lado/ diámetro	B=	2,1	m			
Factor de seguridad	FS=	3				

Tabla 4-58: Cálculo de cargas [31].

CÁLCULO DE LA CARGAS					
N° pisos	2				
Altura piso:	3,6	m			
Losa	13	cm			
DEP	0,2	t/m2			
Inaccesible:	0,1	t/m2			
CD (sobrecarga):	0,3	t/m2			
CV:	0,26	t/m2			

Tabla 4-59: Cálculo de cargas muertas [31].

CARGAS				
Elemento	tonf			
Losa	11,62			
Viga	0,00			
Columnas	1,16			
PAREDES	5,81			
ACABADOS	4,65			
CARGA MUERTA	45,39			
CARGA ULTIMA:	70,58			

Df	В	Р	A zapata	Presión de Contacto <qadm< th=""></qadm<>	
[m]	[m]	[t]	m2	Т	
1,4	1,2	70,58	1,44	49,01	
1,4	1,3	70,58	1,69	41,76	
1,4	1,4	70,58	1,96	36,01	
1,4	1,5	70,58	2,25	31,37	
1,4	1,6	70,58	2,56	27,57	
1,4	1,7	70,58	2,89	24,42	
1,4	1,8	70,58	3,24	21,78	
1,4	1,9	70,58	3,61	19,55	
1,4	2	70,58	4	17,64	
1,4	2,1	70,58	4,41	16,00	
1,4	2,2	70,58	4,84	14,58	
1,4	2,3	70,58	5,29	13,34	
1,4	2,4	70,58	5,76	12,25	
1,4	2,5	70,58	6,25	11,29	
1,4	2,6	70,58	6,76	10,44	
1,4	2,7	70,58	7,29	9,68	
1,4	2,8	70,58	7,84	9,00	
1,4	2,9	70,58	8,41	8,39	
1,4	3	70,58	9	7,84	

Tabla 4-60: Ancho del cimiento vs Presión de contacto [31].

	TAB	LA COMPARAT	IVA		
	TERZAGHI	MEYERHOF	HANSEN	VESIC	AASHTO
Nq	15,90	23,94	23,94	23,94	23,94
Nc	29,24	13,20	13,20	13,20	13,20
Ny	13,15	9,46	9,32	12,43	12,43
Sc		1,53	1,55	1,55	1,55
Sq		1,27	1,51	1,51	1,51
Sy		1,27	0,60	0,60	0,60
Df/B			0,67	0,67	0,667
К			0,7	0,7	
Dc		1,22	1,27	1,27	
Dq		1,11	1,20	1,20	
Dy		1,11	1,00	1,00	
Qu	56,62	67,82	67,01	70,34	60,73
FS	3	3	3	3	3
Qadm	18,87	22,61	22,34	23,45	20,24
Qadm promedio	21,50				

Tabla 4-61: Tabla comparativa Qadm. [31].

Determinación de los asentamientos posibles por varios métodos de investigadores, se muestra el procedimiento en las Tablas 4-59 hasta la Tabla 4-62.

Referencias:	Braja M. Das (2012). Fundamentos de ingeniería de cimentaciones. Séptima edición				
	Abalco Estefar	ny, Guamán Evel	lyn, Narváez		
Autores:	Bryan, López	Andrés			
ASENTAMIENTO	POR MÉTODO	DE MEYERHO	OF		
Cohesión del suelo	c=	0,00	[Ton/m2]		
Peso específico del suelo	γ=	1,70	[Ton/m3]		
Profundidad de la cimentación	Df=	1,40	[m]		
Ángulo de fricción del suelo	φ=	27,00	0		
Dimensión de cada lado/					
diámetro	B=	2,10	[m]		
Dimensión de cada lado/					
diámetro	L=	2,10	[m]		
Ángulo de inclinación	$\theta =$	0	0		
N60 en la profundidad de la influencia de esfuerzo	N60=	24			
Nivel freático	Dw=	0			

Tabla 4-62: Asentamiento por método de Meyerhof [31].

MÉTODOS	Q adm	Q neta
METODOS	tonf/m2	KN/m2
TERZAGHI	18,87	180,79
MEYERHOF	22,61	218,14
HANSEN	22,34	215,43
VESIC	23,45	226,53
AASHTO	20,24	194,51

Tabla 4-63: Q adm [31].

Tabla 4-64: Factor de corrección por la profundidad df [31].

Factor de corrección por la profundidad df					
MÉTODOS	Fd				
TERZAGHI	1,220				
MEYERHOF	1,220				
HANSEN	1,220				
VESIC	1,220				
AASHTO	1,220				

Tabla 4-65: Asentamiento elástico [31].

ASENTAMIENTO ELÁSTICO				
MÉTODOS	Se			
METODOS	mm			
TERZAGHI	9,45			
MEYERHOF	11,41			
HANSEN	11,27			
VESIC	11,85			
AASHTO	10,17			

Una vez determinado un valor de Q promedio se procede a diseñar, cabe indicar que de acuerdo al estudio de suelos realizado en el lugar de implantación de la estructura se obtuvo un q adm de 150 KN/m², y comparado con el Q promedio obtenido anteriormente nos indica que necesariamente de deberá realizar un mejoramiento del suelo natural a fin de proceder a implantar la estructura, se muestra en la Tabla 4-63 y 4-64 respectivamente.

Diseño de zapatas cuadradas aisladas								
$P_D =$	829	KN		Cortante bidireccional				
$P_L =$	195	KN			$V_{u2} =$	1145,6	KN	
$P_{S}=$	60	KN			$b_o =$	314,76	cm	
$P_u =$	1332,7	KN			$a_s =$	40		
<i>a</i> =	50	cm			$b_c =$	1		
<i>b</i> =	50	cm			$d_{2, shear} =$	30,02	cm	
cover =	7,5	cm			$d_{2, shear} =$	19,42	cm	
f_c ' =	24	Mpa			$d_{2, shear} =$	21,14	cm	
$g_c =$	15	KN/m^3			$d_2 =$	30,02	cm	
$g_s =$	15	KN/m^3			$h_2 =$	38,52	cm	
$f_y =$	420	Mpa			$h_{prueba} - h_{2, shear} =$	1,48		
<i>l</i> =	1							
$q_{a carg vert} =$	215	KN/m^2			Cortante unidire	ccional		
$q_{adiseño} =$	279,5	KN/m^2			$V_{u1} =$	325,62	KN	
$d_{grade} =$	1,2	т			$d_{1, shear} =$	25,27	ст	
h prueba =	40	ст			$h_{1, shear} =$	33,77	ст	
<i>d</i> =	28,69	cm			$h_{prueba} - h_{1, shear} =$	6,23	cm	
$q_e =$	261,5	KN/m^2						
$l_{min} =$	2,04	m	d [n	nm]	no. Teórico	no. De barras		
<i>l</i> =	2,1	т	1	0	25,75	26		
$q_u =$	302,2	KN/m^2	1	2	17,77	18		
select $h =$	40	cm	1	4	13,04	14		
<i>d</i> =	28,69	cm	1	6	9,99	10		
			1	8	7,91	8		
$M_u =$	203,0781	m-KN	2	0	6,4	7		
$R_n =$	1,30539	Mpa	2	5	4,09	5		
r =	0,00321							
$A_{s, flexure} =$	19,37	<i>cm</i> ²						
$A_{s, t\&s} =$	15,12	<i>cm</i> ²						
$A_{s, min} =$	20,08	<i>cm</i> ²						
$A_s =$	20,08	cm^2						

Tabla 4-66: Diseño de zapatas cuadradas aisladas [31].

Tabla 4-67: Resultados diseño de zapatas cuadradas aisladas [31].

Select h =	40	ст		d [mm]	no. Teórico	no. De barras	s, cm
<i>d</i> =	28,69	ст		10	25,75	26	8
			-	12	17,77	18	11,5
			_	14	13,04	14	15,5
$M_u =$	203,0781	m-KN		16	9,99	10	20
$R_n =$	1,30539	Мра		18	7,91	8	25
r=	0,00321			20	6,4	7	30,5
$A_{s, flexure} =$	19,37	cm^2		25	4,09	5	45,8
$A_{s, t\&s} =$	15,12	cm ²		Selecccio espaciam	one un diámet iento de la Ta	ro de varil bla más ar	la y riba
$A_{s, min} =$	20,08	<i>cm</i> ²					
$A_s =$	20,08	<i>cm</i> ²					

4.1.9.4. Resultados obtenidos por el diseño automático con el programa ETABS [24].

El diseño de concreto se fundamenta en el ACI 318-19, revisamos las preferencias y empieza el chequeo y diseño de las zapatas, se muestra en la Figura 4-69.

Adicionalmente en las opciones de visualización de resultados se puede desplegar los valores de esfuerzos por cortantes y momentos en las dos direcciones eje 1 y eje 2, los mismos que deberán cumplir con la condición de diseño que los cortantes actuantes Va, sean menores que los cortantes resistentes Vr, al igual que los momentos Ma sean menores que los Mr, respectivamente, como se muestran en las Figuras 4-70 hasta la 4-78.

Se podrá obtener las presiones que ejerce la subestructura y estructura sobre el suelo a través de las zapatas, como se muestran en la Tabla 4-66 y Figura 4-79, 4-80.

Se presentarán a través del interfaz las ratios de punzonamiento que no deberán exceder de 1.0, lo que indicará que se está cumpliendo con lo requerido para solventar los esfuerzos, siendo que por la acción de carga que ejerce la columna sobre la zapata tiende a traspasar por la pequeña área de contacto de la misma, como se muestra en las Figuras 4-82 hasta la Figura 4-84 y Tabla 4-65.

Al finalizar el programa desplegará la información referente al área de refuerzo que necesitará en cada sección para absorber los esfuerzos correspondientes.

El programa nos brindará el diseño por flexión, mediane la cual obtendremos las cuantías de acero y los espaciamientos de colocación de los refuerzos en los dos sentidos cara inferior de la zapata, esto se los realiza realizando interacciones a cumplir con los parámetros pertinentes, como se muestran en las Figuras 4-85 hasta la Figura 4-90 y Tablas 4-67, 4-68.

La estructura conforma un modelo dual, se incluyeron dos muros de sótano en los niveles base y piso 2, a continuación, se muestran en la Figura 4-81.

Factors Minimum Cover for Slabs P/T Stress	Check
Item	Value
Resistance Factors:	
Phi Tension Controlled	0,9
Phi Compression Controlled	0,65
Phi Shear	0,75
Increase Flexural Rebar For Enhanced Concr	Yes
Overwrite Shear Lambdas to One for Mats an	Yes
Ignore Beneficial Pu in Slab Design?	Yes

Figura 4-69: Preferencias de diseño según el ACI 318-19 [24].

a. Cortante en la zapata D2 V13 eje x

Figura 4-70: Cortante en la zapata D2, V13 eje x, Tn/m [24].

Shell Force/Stresses Image: Stresses Image: Str	Plan View - Story2 - Z = -5 (m) Resultant V13 Diag	gram (DSlb51) [tonf/m]
Used Case/Load Combination/Model Case © Case © Contoo Disbis1 Image: Contoo Component Type Image: Contoo Resultant Forces Image: Contoo Component Type Image: Contoo Pit P Pit P Component Type Image: Contoo Component Type Image: Contoo Component Type Image: Contoo Component Type Image: Contoo Contoor Appearance Image: Contoo Option Contoor Appearance Image: Contoor Option Solver Flag Solver Flag Solver Flag Solver Flag Solver Flag Solver Flag Solver Flag Solver Flag Solver Transporter Image: Contoo Solver Flag Solver Flag Solver Flag Solver Flag Outer Solver Flag Image: Contoo Marchiner Image: Contoo Solver Image: Contoo Solver Image: Con	SI	nell Forces/Stresses
Besultan Flores Component F11 FMax F22 FMin F12 FMin Show Lines Show Lines Show Values Show Values Show Values Show Lines Mr./Max Range Start Start Mr./Max Range Start Start Mr./Max Range Start Yet Mr./Max Range Start Yet Mr./Max Range Start Yet Adomatic Uber Scale Factor Total Yet Yet Yet Yet Yet Yet Yet <td< th=""><th>) -></th><th>Load Case/Load Combination/Modal Case ○ Case ⓒ Combo DSIBS51</th></td<>) ->	Load Case/Load Combination/Modal Case ○ Case ⓒ Combo DSIBS51
Cortour Option Display on Undeformed Shape Show Lines Line Widh Show Values Show Values Show Arows Show Arows Cortour Values Show Arows Cortour Values Show Arows Cortour Values Show Arows Cortour Values Stow Arows Cortour Values Soaling Automatic User Scale Factor -32,0 -27 -27,22	2.5 (m)	Resultant Forces Image: Component O F11 O FMax @ V13 O M11 O MMax O F22 O FMn O V23 O M22 O MMn O F12 O FVM O VMax O M12 Image: Component of the temperature of the temperature of
Contour Values Mn/Max Range <u>32</u> <u>32</u> torr/m Contour Averaging at Nodes <u>By Selected Groups</u> <u>Groups</u> Scaling Automatic User Scale Factor 7,4 12,3 17,2 22,2 27,1)	Contour Appearance Contour Option Display on Undeformed Shape Contour Option Display on Undeformed Shape Display o
Scaling Automatic User Scale Factor 7/4 12,3 17,2 22,2 27,1		Contour Values Min/Max Range -32 32 tort/m Contour Averaging at Nodes By Selected Groups V Groups
	-32.0 -27.1 -22.2	Scaling Outomatic User Scale Factor 7,4 12,3 17,2 22,2 27,1

Figura 4-71: Cortante en la zapata D2, V13 eje x, Va<Vr, Tn/m [24].

b. Cortante en la zapata D2 V13 eje Y

n View - Story2 - Z = -5 (m) Resultant V23 Diagr	○ Case				
	DSIbS1 ~				
	Component Type		HA <mark>DAIN DAIN</mark>		
	Resultant Forces 🗸				
	Component				
	○ F11 ○ FMax ○ V13 ○ M11	O MMax			
	○ F22 ○ FMin	O MMn			
	○ F12 ○ FVM ○ VMax ○ M12				
	Contour Appearance				
	Contour Option Display on Undeformed Shape	~			
	Show Lines Line Width				
	Show Fill Transparency 0.0	~			
	Show Values				
	Show Arrows				
	Contour Values		H/1 <mark>Pall/1</mark> Pall/1	NHA <mark>NHA</mark> PH	
	Min/Max Range 0 0	tonf/m			
	Contour Averaging at Nodes By Selected Groups	✓ Groups	HA EAHA EAHA I	NIV ENIV ENI	
	Scaling		ב ב ב	- 1 1	
	Automatic User Scale Factor				
	OK Close Appl	y			
					00.0

Figura 4-72: Cortante en la zapata D2, V23 eje y, Tn/m [24].

Tabla 4-68: Resultados diseño de zapatas cuadradas aisladas [31].

R/	ANGO VALOR CO	RTANTE]
d=	38	cm	
f'c=	240	kg/cm2	
b=	100	cm	
			$V_C = 0.53 \sqrt{f'c} * b * d$
Vc=	31200,8	kg	•
Vc=	31,2	Tn	

Concornert Type Besiden forces Print F11 FMax Contour Mippe Print VIII Mill MMax F12 FMM Contour Appearance Contour Appearance Contour Appearance Contour Appearance Show Hill Show Values Show Values Show Areas Stow Areas Contour Appearance Contour Appearance Contour Appearance Contour Appearance Show Values Show Values Show Areas Stow Areas OK Core Root Area OK Core OK Core OK Core OK Core OK Core OK C	n View - Story2 - Z = -5 (m) Resultant V23 Diagr		
Component Type Besultan Forces Orgonent F11 FMax F22 MMn F12 MMn F12 MMn Show Lines Ine Widh Show Arrows Grappenney OK Oce Man/Max Range 32 Scaling OK OK Oxe Kotes Koph Scaling OK OK Oxe Adomatic Use Scale Factor OK Oxe Adomatic Use Scale Factor OK Oxe Atomatic OK Oxe Oxe OK Oxe Oxe Not Oxe			
Besultan Forces Besultan Forces Image: Component Image: F12 FMn Image: F12 FMn Image: Show Lines Image: Show Lines Image: Show Values Image: Show Values Image: Show Arrows Image: Stow Arrows Image: Stow Arrows Image: Stow Arrows <t< td=""><td></td><td>Component Type</td><td>ŀ∕₽<mark>₽₩₽₽₩₽₽₩₽</mark>₽₩</td></t<>		Component Type	ŀ∕₽ <mark>₽₩₽₽₩₽₽₩₽</mark> ₽₩
Component O F11 O FMax O V13 O M11 O MMax O F22 O FMn O V23 O M22 O MMn O F12 O FVM O VMax O M12 Controur Appearance Controur Option Display on Undeformed Shape O Show Lines Une Width O O O O Show Values Show Values Show FMax Controur Averaging at Nodes Systemed Groups Controur Averaging at Nodes Systemed Groups Controur Averaging at Nodes Systemed Groups Controur Values Mar/Max Range 32 22 tord/m Controur Averaging at Nodes Systemed Groups Controur Values Mar/Max Range 32 22 tord/m Controur Values Mar/Max Range 32 20 20 20 20 20 20 20 20 20 20 20 20 20		Resultant Forces V	
Image: Scalage Fit1 PMax V13 M11 MMax Image: Fit2 PMm V23 M22 MMn Image: Fit2 PMM V13 M12 Mmn Image: Fit2 PMM Image: Fit2 Mit1 Image: Fit2 Fit3 Image: Store Fit3 Transparency 0.0 Image: Fit2 Fit3 Fit3 Image: Store Fit3 Store Fit3 Image: Fit3 Image: Fit3 Image: Fit3 Image: Fit3 Image: Fit3 Image: Store Fit3 Image: Fit3 Image: Fit3 Image: Fit3 Image: Fit3 Image: Fit3 Image: Store Fit3 Image: Fit3 Image: Fit3 Image: Fit3 Image: Fit3 Image: Fit3 <td< td=""><td></td><td>Component</td><td></td></td<>		Component	
F22 FMn V23 MMn F12 FVM VMax M12 Contour Vpbearance Contour Vpbearance Show Fill Transparency 0.0 Show Values Show Values Show Values Show Values Show Values Show Values Show Values Show Values Contour Values Scaling OK OK OK OK OK OK OK OK OK </td <td></td> <td>○ F11 ○ FMax ○ V13 ○ M11 ○ MMax</td> <td></td>		○ F11 ○ FMax ○ V13 ○ M11 ○ MMax	
Image: State Field Field </td <td></td> <td>○ F22 ○ FMin</td> <td></td>		○ F22 ○ FMin	
Cortour Appearance Cortour Option Display on Undeformed Shape Show Hile Ince Width Show Hil Transparency Bhow Arrows Down Cortour Values Store Arrows Cortour Values Down Mrv/Max Range 32 Scaling Cortour Values OK Core OK Core OK Core OK Ose Automatic No OK Ose		○ F12 ○ FVM ○ VMax ○ M12	
Contour Option Display on Underformed Shape Show Lines Line Width Show Fil Transparency 0.0 v Show Values Show Arous Contour Values Min/Max Range 32 2 10rd/m Contour Values Min/Max Range 32 2 10rd/m Contour Values Min/Max Range 32 2 00 v Groups Min/Max Range 32		Contour Appearance	
Show Yakes Show Yakes Show Yakes Show Yakes Show Yakes Show Yakes Show Yakes Mr/Max Range Contour Vakes Mr/Max Range Scalag Contour Vakes Contour Vakes Mr/Max Range Scalag Contour Vakes Contour Vakes Conto		Contour Option Display on Undeformed Shape V	
Show File Tanaparency 0.0 Show Values Show Access Contour Values Mrv/Max Range 32 12 100//m Contour Averaging at Nodes By Selected Groups Scaling Automatic User Scale Factor OK Cose Acopy		Show Lines Line Width	
Show Values Show Values Show Artons Contour Values Contour		Show Fill Transparency 0.0 V	FV- <mark>Calle Calle Calle Calle</mark> VI
Store Arrows Store Arrows Cortour Values Mar/Max Range 32 Store Arrows Groups Automatic User Scale Factor OK		Show Values	表示表示表示表示表示
Cortour Values Mix/Max Range 32 12 torf/m Cortour Averaging at Nodes By Selected Groups Groups Cortour Averaging at Nodes Post of Coups OK Cose Apply 0 K Cose Apply	`	Show Arraye	
Contour Values Mnv/Nax Range 32 32 10rf/m Contour Averaging at Nodes By Selected Groups Groups Automatic User Scale Factor OK Cose Apply 24 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5			表,表《表《表,表
Mr/Max Range 32 32 30 Mr/m Contour Averaging at Nodes By Selected Groups Groups Scaling Automatic User Scale Factor OK Close Apply 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Contour Values	
Contour Averaging at Nodes By Selected Groups V Groups		Min/Max Range -32 32 tonf/m	
Scaling Image: Scale Factor OK Occe Automatic User Scale Factor		Contour Averaging at Nodes By Selected Groups V Groups	
Automatic User Scale Factor		Scaling	
		O Automatic O User Scale Factor	
		OK Class Apple	
		Uruse Appy	
	22.0 27.4 22.2	47.0 40.0 7.4 0.5 0.5 7.4	

Figura 4-73: Cortante en la zapata D2, V23 eje Y, Va<Vr, Tn/m [24].

c. Momento en la zapata D2 V13 eje x

Shell Forces/Stresses	
🔿 Case 💿 Combo 🔿 Mode	
Component Type	
Resultant Forces	(
Component	1
O F11 O FMax O V13	
O F12 O FVM O VMax O M12	1
Contour Appearance	J
Contour Option Display on Undeformed Shape	-
Show Lines Line Width	
Show Fill Transparency 0.0 V	
Show Values	
Contour Values	
Min/Max Range 0 0 tonfim/m	
Contour Averaging at Nodes By Selected Groups V Groups	
Scaling	
Artematic Ulser Scale Factor	

Figura 4-74: Momento en la zapata D2, M11 eje x, Tn.m/m [24].

Figura 4-75: Momento en la zapata D2, M11 eje x, Ma<Mr, Tn.m/m [24].

	Shell Forces/Stresses	
	Load Case/Load Combination/Modal Case	
	O Case Combo O Mode	
`		
	Composed Tipe	
	Resultant Forces	All All Sall Sol
	Contour Appearance	
<u>`</u>	Contour Option Display on Undeformed Shape	<mark>She</mark> shegal -
	Show Lines Line Width	
	Show Fill Transparency 0.0 Y	NHA NHA PAI
	Show Values	
	Show Arrows	
	Contour Values	_ 1 1
	Min/Max Range 0 0 tonf-m/m	
	Contour Averaging at Nodes By Selected Groups 🗸 Groups	
	Scaling	
	Automatic User Scale Factor	
		40.7 40.0

d. Momento en la zapata D2 M22 eje Y

Figura 4-76: Momento en la zapata D2, M22 eje y, Tn.m/m [24].

Figura 4-77: Momento en la zapata D2, M22 eje y, Ma<Mr, Tn.m/m [24].

e. Momento máximo

O Case	(Combo	O Mode	9	0	0								
DSIbS1		~					Å.	4.1	<u> </u>					
Component Ty	pe					≰`' ''	´_``	`````						
Resultant F	orces	~			0									
Component							1			5.				
O F11	O FMax	O V13	O M11	MMax						FH				
O F22	O FMin	○ V23	O M22	O MMin			_							
O F12	○ FVM	○ VMax	O M12			Z	5.	- F		5.				
Contour Appea	arance					<u> Y</u>	- Even	L.F.		EN1				
Contour Op	tion	Display on Un	deformed Shape	~			1,2237							
Show Li	ines	Line Width			0,5016			1,2	237	_				
Show Fi	al de la companya de	Transparen	cy 0.0	~			6.1183	4011483	1	- PV-				
Show V	/alues						4,8946	1,	2237	1				
Show M	1max/Mmin as Ar	rows				4,8946	8,5656							
Contour Value	9				1 4 2227 1	6 1183	9,7893			5.				
Min/Max R	lange [0	0	tonf-m/m	1,2231			6,1183		EVI -				
Contour Av	eraging at Node	By Sele	ected Groups	✓ Groups		3.674		1,8946	2231	-				
Scaling					0	12237	¥ /			-				
O Automat	tic 🔿 Use	er Scale Factor			1	5 ⁴ 9866		1	1	Pd				
							4	1		<u> </u>				
	ОК	Close	Ap	ply	0									
					0.00	1.22	2	45	3 67	4 89	6 12	7 34	8 57	

Figura 4-78: Momento máximo en la zapata D2, Tn.m/m [24].

f. Presiones sobre el suelo

Figura 4-79: Presiones en la zapata D2 sobre el suelo, Tn/m² [24].

	TABLA № 8 DISTORSIÓN ANGULAR = α
$\alpha = d/L$	DESCRIPCIÓN
1/150	Límite en el que se debe esperar daño estructural en edi- ficios convencionales.
1/250	¢ímite en que la pérdida de verticalidad de edificios altos rígidos puede ser visible.
1/300	Límite en que se debe esperar dificultades con puentes grúas.
1/300	Límite en que se debe esperar las primeras grietas en pa- redes.
1/500	Límite seguro para edificios en los que no se permiten grie- tas.
1/500	Límite para cimentaciones rígidas circulares o para anillos de cimentación de estructuras rígidas, altas y esbeltas.
1/650	Límite para edificios rígidos de concreto cimentados so- bre un solado con espesor aproximado de 1,20 m.
1/750	Límite donde se esperan dificultades en maquinaria sen- sible a asentamientos.

Figura 4-80: Valores de distorsión angular, Norma Peruana [33]. [24].

DI	STORSIÓN	N ANGU	JLAR α		
0,2	Es imperce	Es imperceptible			
	Se espera g	grietas, f	isuras, etc. pero		
0,67	no se prese	enta daño	o estructural		
	Entre los d	los anter	iores valores se		
0,2 y 0,67	considera a	asentami	ento diferencial		
Col	A3	A5	Diferencia		
Uz	0,44	0,67	0,23		
Luz	470				
α	0,05% CUMPLE				
Conclusión	No se presentan asentamientos				
Conclusion:	diferenciales				
Conclusión:	No se pres	enta Ala	beo		
Referencia:	Norma Per	ruana [3.	3]		

Tabla 4-69:	Resultados	distorsión	angular	[31]].
--------------------	------------	------------	---------	------	----

g. Deformación de los muros

Figura 4-81: Deformación de los muros de sótano, mm [24].

4.1.9.5. Diseño de la Subestructura del modelo ISE Barkan

iew - Story4 - Z = -140 (cm) Punching Shear D/C Ratios/Shear Reinforcement	
0,168 0,5 0,263 0,493 0,169	0,168 0,494 0,256 0,497 0,168
	uten uten uten uten
0,493 0,353 0,385 0,351 0,497	0,494 0,351 0,386 0,352 0,493
t t t t t	LEU VEU VEU VEU
0,261 0,382 0,448 0,386 0,255	0,268 0,385 0,446 0,383 0,27
nadu nadu nadu nadu	nan nan nan nan
0,495 0,353 0,384 0,352 0,499	0,502 0,353 0,383 0,352 0,5
VAN VAN VAN VAN	T T T T T T
0,368 0,499 0,261 0,491 0,369 ନାହିନା ନାହିନ ନାହିନା ନାହିନା	0,168 0,492 0,262 0,496 0,169 ନାହିମ ନାହିମ ନାହିମ ନାହିମ ନାହିମ
	* * * * *
0.204 0.652 0.366 0.663 0.202	0 192 0 665 0 392 0 643 0 205
hier hier hier hier hier	1/24 1/24 1/24 1/24 1/24 1/24
1 1 1 1 1 0.660 0.424 0.492 0.44 0.646	1 1 1 1 1 0.665 0.421 0.462 0.422 0.624
5,905 0,404 0,405 0,44 0,940 h/@d h/@d h/@d h/@d h/@d	5,905 0,421 0,405 0,422 0,934 5/@d 5/@d 5/@d 5/@d
1 1 1 1 1 0.357 0.404 0.567 0.482 0.358	
୦,ସ୍ବର ୦,୫୦୮ ୦,୫୦୦ ୦,୫୫୮ ୦,ସ୍ବର ମୁକ୍ତିମ ମୁକ୍ତିମ ମୁକ୍ତିମ ମୁକ୍ତିମ ଅନୁକର	0,947 0,914 0,971 0,915 0,925 HARE HARE HARE HARE HARE
0,204 0,547 0,36 0,568 0,209 사회님 사회님 사회님 사회님 사회님	0,206 0,526 0,344 0,512 0,196 57677 57677 5767 5767
	1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L

Figura 4-82:Ratios de punzonamiento de zapatas<1, piso 4[24].

w - storyz - z = - 500 (cm) Punching	
	মক্তুন নক্তুন নক্তুন নক্তুন নক্তুন
	0,084 0,125 0,154 0,127 0,083
	·····································
	0,101 0,141 0,127 0,14 0,101
	North
	0,0/8 0,104 0,084 0,1 0,0/6
	0,262 0,931 0,51 0,929 0,262
	মকুঁণ মকুঁণ মকুঁণ মকুঁণ মকুঁণ
	0,922 0,564 0,651 0,567 0,888
	মন্ট্রন মন্ট্রন মন্ট্রন মন্ট্রন মন্ট্রন
	0,52 0,649 0,747 0,645 0,493
	0,931 0,569 0,642 0,569 0,905
	· · · · · · · · · · · · · · · · · · ·
	0,262 0,89 0,491 0,896 0,262
	uten uten uten uten uten
	0.47 0.425 0.24 0.422 0.467
	0,17 0,433 0,21 0,432 0,107
	0.389 0.307 0.353 0.305 0.355
	ਮਾਵੇਜ ਮਾਵੇਂਜ ਮਾਵੇਂਜ ਮਾਵੇਂਜ
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figura 4-83:Ratios de punzonamiento de zapatas<1[,] piso 2[24].

Plan View -	Base - Z =	-860 (cm)	Punchin	g Shear D/C R	Ratios/Shear Reinforceme	nt													
0,283	0,445	0,395	0,442	0,289		0,295	0,372	0,435	0,549	0,467	0,412 T	0,346	0,293	0,31	0,254	0,514	0,428 T	0,52	0,26
± ₩€H	H∕€∕H	h∕€∕d	h∕€d	H CH		₩€H	HA T	P\€d	h∕€d S	P\€d	H∕€H	H∕€H	H∕€∕H	H∕€∕H	h∕€∕d	H∕€H	H∕€H	H∕€H	h∕€∕d ⊥
0,613 T	0,251 T	0,273 ₹	0,251 T	0,615 T		0,563 T	0,258 T	0,312	0,252 T	0,407	0,409 T	0,358 T	0,399 T	0,298 T	0,511 T	0,204 <i>z</i>	0,195 T	0,204 ₹	0,508 T
± ₩®H	P\€A	h∕€d	h∕€d	N.		±. ₩€H	h∕€vi ⊥	b∕€∕d ≟	h∕€d	h∕€d	H∕€∕H	H∕€H	h∕€∕i	h∕€∕d	h∕∳∖d ⊥	h∕€d	H∕€H ≚	h∕€H ≦	h/@vi
0,639 T	0,286 ₹	0,244 ₹	0,288 Z	0,637		0,615 T	0,309	0,277 ₹	0,274 ₹	0,261	0,259 T	0,342	0,348 ₹	0,3	0,431	0,196 T	0,065 T	0,196 ~	0,434
HAN T	P\€/4	h∕€d	h∕€d	H CH		-HA®H	H∕€/H	P\€/4	h∕€∖d	h∕€d	h∕€vi ⊥	H∕€/H	h∕€∖d ⊥	H∕€∕H	H/®/d	h∕€d ≞	H∕€H ⊥	h∕€H ≦	h/@vi
0,526 T	0,395 ₹	0,535 ₹	0,396 ~	0,526 T		0,51 T	0,347 T	0,643 ₹	0,394 ₹	0,445	0,43 T	0,371 T	0,405 ₹	0,293	0,521	0,203 ₹	0,194 T	0,201 ₹	0,517 T
H∕€/i	h∕€d ≟	1/€√ 1.139	h∕€d ≦	N. CH		HV64	h∕€vi ⊥	1.28	h∕€vi ≦	h∕€d	h∕n€vi ⊥	h∕€vi ⊥	h∕€vi ≟	h∕€∕d	h∕€vi ⊥	h∕@vi ≟	l√€vi ⊥	Hren Z	h∕€∕d ⊈
0,423	0,461 T	0,725	0,46	0,42		0,425	0,488 T	0.85	0,442 T	0,332	0,315 T	0,305	0,302	0,315	0,26	0,509 T	0,433 T	0,515 T	0,255
H∕€H	h∕€d	h∕€d	H∕€H	H C		Hv€H	H∕€/H	P\\$H	h∕¶d ⊥	h∕€d	h∕€H	H∕€H	h∕€vi	H∕€d	h∕∳∕d	h∕€d	H∕€H	H€H	H⁄€∕H ⊥
0,316	0,306	0,293	0,308	0,328		0,327	0,311	0,295	0,308	0,319					0,266	0,441	0,388	0,441	0,266
н∳н	h∕€d	h∕€ d	нyễн	H A		H	НÀ	РÀ	h 🖗	h∕∳d					н⁄фн	h∕€ H	H	h∕∰H	нŵн
0,301	0,412	0,355	0,415	0,3		0,301	0,421	0,359	0,417	0,302					0,445	0,244	0,224	0,244	0,445
H.	h∕∰d	h/ the	h∕€d	H.		₩¥	H A	h∕∰vi	h∕€vi	₩Žel					h/ A	h∕€∕i	h∕€vi	h	h
0,299	0,366	0,367	0,369	0,301		0,304	0,374	0,372	0,373	0,303					0,39	0,226	0,126	0,226	0,39
HAN HAN	h≹d	h∕∳d	h∕∳d	H.		H	нý	h∛∰A	h/	h∕∳d					H∕∰d-	h∕∰ri	H A	h∯d	h∕€∕d
0,312	0,42	0,363	0,42	0,312		0,315	0,427	0,365	0,427	0,316					0,44	0,245	0,225	0,245	0,44
h	h∕€∕d	h∕€d	h∕€d	N.		₩ § H	h∕€vi	h∕€∕d	h/erd	h∕€d					h∕∰∖d	h∕€∖d	H∕€H	h/ H	hier
0,327	0,304	0,297	0,307	0,313		0,318	0,309	0,298	0,306	0,326					0,266	0,444	0,385	0,444	0,266
нŵн	h	h/ind	h	HAR H		N.	H/	Pre-	hV	h∕∳ri					РĀЧ	h/ the	H	hiện	HAN T

Figura 4-84: Ratios de punzonamiento de zapatas<1, base [24].

Los presentes resultados de ratios en los tres desniveles fueron ya rediseñados y fue necesario aumentar el espesor de la zapata a 0.45m, lo cual fue corregido y adoptando como nueva dimensión.

hoose Display Type	Choose Strip Direction	1 there 3 there 5 there
Design Basis Strip Based	V Layer A	
Display Type E-union Flammal Painfarrana	Laver B	
Impose Minimum Reinforcing	Layer Other	Married Married Married
Rebar Location Shown	Display Options	
Show Top Rebar	Fill Diagram	
Show Bottom Rebar	Show Values at Controlling Stations on Diagram	
Reinforcing Display Type	Show Rebar Above Specified Value	
 Show Rebar Intensity (Area/Unit Width) 	O None	(E)
 Show Total Rebar Area for Strip 	Typical Uniform Reinforcing Specified Below	
O Show Number of Bars of Size:	O Reinforcing Specified in Slab Rebar Objects	
Bar Size	Typical Uniform Reinforcing	
Тор	Define by Bar Size and Bar Spacing	
Bottom	O Define by Bar Area and Bar Spacing	
Beinforring Diagram	Bar Size Spacing (mm)	в
Show Reinforcing Envelope Diagram	Top 14 V 150	
Scale Factor 1	Bottom 14 ~ 150	
Show Reinforcing Extent		*
		⊗└└→x └── ▙ ⋺ └── ▃▋
ОК	Close Apply	

Figura 4-85:Acero y espaciamiento en el sentido x de la zapata cara inferior y superior por flexión cm²/m, piso 4[24].

hoose Display Type Design Basis Strip Based Display Type Enveloping Flexural Reinforcement Impose Minimum Reinforcing	Choose Stip Direction Usyer A Usyer B Layer Other	
lebar Location Shown ☑ Show Top Rebar ☑ Show Bottom Rebar	Display Options If Hi Diagram Show Values at Controlling Stations on Diagram	
einforcing Display Type Show Rebar Intensity (Area/Unit Width) Show Total Rebar Area for Strip Show Number of Bran of Strip	Show Rebar Above Specified Value O None Typical Uniform Reinforcing Specified Below O Specified Dish. Boho Chicate	
Top Bottom	Typical Uniform Reinforcing	······································
leriforcing Diagram ☑ Show Reinforcing Envelope Diagram Scale Factor 1 ☑ Show Reinforcing Extent	Bar Size Spacing (mm) Top 14 150 Bottom 14 150	
ОК	Close Apply	
May Tap - 0 at (0, 0); May Pat - 0 at (0, 0) (May Dainf Ja	B	V 2000 X 17000 7 1400 (mm)

Figura 4-86:Acero y espaciamiento en el sentido y de la zapata cara inferior y superior por flexión cm²/m, piso 4[24].

blagkay Type Choose Step Direction Design Basis Step Based Diplay Type Enveloping Flexual Reinforcement Impose Minimum Reinforcing Layer A Impose Nitrown Diplay Options Show Top Rebar Show Kotom Rebar Show Kotom Rebar Show Values at Controlling Stations on Diagram	0 (mil) 2500 (mil) 35	
eber Location Shown Daplay Options Show Top Rebar Show Top Rebar Show Bottom Rebar Show Kature at Controlling Stations on Diagram	(m) 0	1,2,2,2,2,2,1
	60	
enforcing Display Type Show Rebar Above Specified Value Show Rebar Intensity (Area/Unit Width) Show Total Rebar Area for Shop Show Total Rebar Area for Shop Show Number of Bar of Size: Reforcing Specified In Side Rebar Objects	2000 (mm)	
Top Ber Stee Typical Linform Reinforcing Top Bottom O Define by Bar Stee and Bar Spacing O Define by Bar Area and Bar Spacing	3	
Bar Size Spacing (mm) Show Reinforcing Envelope Diagram Top 16 150 Scale Factor 1 Bottom 16 150 Show Reinforcing Exerct 16 150 150 150	9400 (mm)	
OK Close Apply		

Figura 4-87: Acero y espaciamiento sentido x de la zapata cara inferior y superior por flexión cm²/m, piso 2[24].

Figura 4-88: Acero y espaciamiento sentido y de la zapata cara inferior y superior por flexión cm²/m, piso 2[24].

Figura 4-89: Acero y espaciamiento en el sentido x de la zapata cara inferior y superior por flexión cm^2/m , base [24].

ose Display Type	Choose Strip Directi	ion		(1) (2) 200 pm - 3	(3) (4) (5) (6) (40 yrr) (200 yrr) (400 yrr) (
lesign Basis Strip Based V	Layer A			H	
isplay Type Enveloping Flexural Reinforcement	Layer B			1	
Impose Minimum Reinforcing	Layer Other			-coo	
ar Location Shown	Display Options			6	
Show Top Rebar	Fill Diagram			1 Cont	
Show Bottom Rebar	Show Values	at Controlling Static	ons on Diagram		
forcing Display Type	Show Rebar Above	Specified Value		E	
) Show Rebar Intensity (Area/Unit Width)	O None			and the second s	8
) Show Total Rebar Area for Strip	Typical Unifo	Typical Uniform Reinforcing Specified Below			<u> </u>
) Show Number of Bars of Size:	O Reinforcing S	O Reinforcing Specified in Slab Rebar Objects			
Bar Size	Typical Uniform Rei	nforcing		(en-b 1000	
Тор	Define by	y Bar Size and Bar	Spacing		3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Bottom	O Define b	y Bar Area and Bar	Spacing	34	
		Bar Siz	e Spacing (mm)	B	
forcing Diagram	Тор	14	× 150		Harris Harris Harris
Show Heinforcing Envelope Diagram	Bottom		450	F	
Scale Factor 1	bottom	14	✓ 150	4114	
Show Reinforcing Extent					
				A LA	
OK	Close Ar	vlac			

Figura 4-90: Acero y espaciamiento en el sentido y de la zapata cara superior e inferior por flexión cm²/m, base [24].

	LAYER A					
	fibra inferior			fibra superior		
	ф	espaciamiento	ф	espaciamiento		
NIVEL	cm	cm	cm	cm		
-1,4	14	15	14	15		
-5	16	15	16	15		
-8,6	14	15	14	15		

Tabla 4-70: Resultados del armado de acero para zapatas cuadradas aisladas [31].

Tabla 4-71: Resultados del armado de acero para zapatas cuadradas aisladas [31].

	LAYER B						
		fibra inferior	fibra superior				
	ф	espaciamiento	ф	espaciamiento			
NIVEL	cm	cm	cm	cm			
-1,4	14	15	14	15			
-5	16	15	16	15			
-8,6	14	15	14	15			

CAPÍTULO V

CONCLUSIONES, RECOMENDACIONES, BIBLIOGRAFÍA Y ANEXOS

5.1. Conclusiones

La modelación estructural tradicional no está considerando ciertos factores eminentes, por cuanto el suelo natural no es completamente rígido, la respuesta estructural al considerar la interacción suelo-estructura IDSE se modifica con la aplicación de los modelos de Barkan y Pais & Kausel con relación al modelo tradicional de base rígida: El tipo de estructura analizada fue un edificio de pórticos a momento intermedios IMF emplazado en ladera de pendiente intermedia, el edifico de tres niveles se compone de columnas de acero rellenas de hormigón tipo cajón, perfiles de ala ancha como vigas principales y secundarias, muros de sótano de hormigón armado, muros a corte, vigas compuestas simplemente apoyadas, zapatas aisladas, cadena de cimentación, losa tipo con placa deck.

Se realizó un análisis estático lineal con el método LRFD, se calcularon desplazamientos, deformaciones, reacciones, periodos de vibración, cortantes basales con los diferentes modelos de interacción suelo-estructura y el modelo de base rígida. En esta investigación se consideró dos modelos de interacción suelo-estructura como son los modelos de los investigadores Barkan y Pais & Kausel, en los que se incluyó las funciones de Impedancia.

- Considerando la interacción suelo-estructura IDSE se obtuvieron resultados que se compararon con el modelo de base rígida entre estos, el periodo del primer modo de vibración se incrementa en un 9.95%, la fuerza cortante en el piso 6 de la estructura presenta un aumento de 5.48%, los desplazamientos al nivel superior de la estructura muestran un aumento de 12.68% y la deriva inelástica máxima de piso se incrementa en un 17.8%, , cabe indicar que a mayor número de niveles o número de plantas los resultados serán relativos.
- Una vez determinados los resultados de aceleraciones por piso en los dos sentidos al considerar la interacción suelo-estructura IDSE, la aceleración de piso en el eje sentido x aumenta en los pisos 3 con un 84.35 % y en el piso 6 con un 51.18 % en el modelo IDSE Barkan con respecto al modelo de base rígida.

- Al considerar la interacción suelo-estructura IDSE, la aceleración de piso en el eje Y, del piso 7 fue 10.11% menor el modelo IDSE Barkan con respecto al modelo de base rígida, mientras que en el piso 1 la aceleración del modelo de Pais & Kausel es menor con un 89% respecto al modelo de base rígida, mientras que el modelo de Pais y Kausel es menor con un 14.38% en el piso 7 respecto al modelo de base rígida.
- Los diferentes elementos estructurales como columnas compuestas acero-H°S°, vigas de acero, pedestales de H°A°, cadenas de H°A°, se vieron modificados debiéndose rediseñar los modelos IDSE de Barkan y modelo Pais &Kausel al considerar la interacción suelo-estructura IDSE para alcanzar secciones y cuantías de acero necesarias para un ideal comportamiento estructural.
- Las cuantías de acero y secciones de varios elementos estructurales que componen la estructura del modelo ISE Barkan aumentaron respectivamente tal como se indican en los planos estructurales, revisar en los anexos.
- Los elementos componentes de la subestructura del modelo IDSE Barkan presento cambios tanto en secciones como en cuantías de acero se ven reflejados en los planos estructurales.
- Los modelos IDSE de Barkan y modelo Pais & Kausel presentan valores muy similares entre sí, en algunos casos incluso son iguales o menores en los resultados obtenidos con el desarrollo del presente trabajo de investigación.
- Los resultados al aplicar la interacción suelo-estructura IDSE para el tipo de suelo D y de acuerdo a la aplicación del modelo estructural en un relieve de ladera se ha determinado que se presenta un incrementos en los valores de desplazamientos, periodo de vibración, y derivas máximas, cortantes de piso, los índices de estabilidad Q, determinan un incremento de valores lo que implican una mayor inestabilidad estructural; los mismos que no cumplen algunos niveles de desempeño estructural, lo que podría ocasionar daños en los elementos estructurales y no estructurales ante los eventos sísmicos que se presentaren a lo largo de la vida útil de las estructuras.

5.2. Recomendaciones

- Se debe considerar la interacción suelo-estructura IDSE dentro del modelado y análisis estructural, ya sean diferencias por geometría estructural en planta y elevación, aumento de niveles(plantas), tipos de suelos de fundación, tipo de materiales de construcción, solicitaciones de uso, tipos de suelos de fundación, relieve del terreno, especificaciones técnicas, normativas locales e internacionales encuadrado en el análisis dinámico y sísmico
- Se recomienda realizar los respectivos estudios de suelos conocer sus propiedades y sean aplicados para el análisis y diseño sísmico, los mismos que serán utilizados para calcular los coeficientes de rigidez necesarios en la modelación de las estructuras en general, considerando el efecto de la interacción suelo-estructura IDSE.
- Se recomienda considerar en la modelación estructural y análisis sísmico la interacción suelo-estructura IDSE para determinar la separación entre estructuras adyacentes, por cuanto los desplazamientos máximos se incrementan, más aún que en nuestro País poco o nada se cumple con la normativa NEC-SE-DS Peligro sísmico.

5.3. Referencias

[1] S. Fuentes-Sánchez, L. González-Díaz, F. Calderín-Mestre, e Y. Sánchez- Zamora, «Consideraciones acerca del diseño sismorresistente de edificios de acero encuba», *Cienc. En Su PC*, vol. 1, n.º 4, pp. 11-26, 2018.

[2] https://es.scribd.com/document/100251265/Interaccion-Suelo-estructura CFE - Avilés

[3] P. Quinde Martínez, E. Reinoso Angulo, P. Quinde Martínez, y E. Reinoso Angulo, «Estudio de peligro sísmico de Ecuador y propuesta de espectros de diseñopara la Ciudad de Cuenca», *Ing. Sísmica*, n.º 94, pp. 1-26, jun. 2016.

[4] L. R. Fernández Sola y J. Avilés López, «Efectos de interacción suelo- estructura en edificios con planta baja blanda», *Ing. Sísmica*, n.º 79, pp. 71-90, dic.2008.

[5] J. Avilés, «Interacción suelo-estructura: concepto de diseño*», *Rev. Ing.Sísmica*, n.º 61, Art. n.º 61, jul. 1999, doi: 10.18867/ris.61.243.

[6] D. Guerdouh, S. Khalfallah, D. Guerdouh, y S. Khalfallah, «Efecto de la

interacción suelo-estructura en el rendimiento sísmico de estructuras de marco», *Rev. Constr.*, vol. 18, n.º 2, pp. 349-363, jul. 2019, doi: 10.7764/rdlc.18.2.349.

[7] R. Aguiar, D. Mora, y M. Rodríguez, «Análisis of structure withdissipator spectra under design and control», *Rev. Int. Métod. Numér. Para Cálculo Diseño EnIng.*, vol. 33, n.º 4, dic. 2017, doi: 10.1016/j.rimni.2016.04.008.

[8] https://revistadigital.uce.edu.ec/index.php/INGENIO/article/view/2391.

[9]Http://www.scielo.org.mx/scielo.php?Script=sci arttext&pid=S0185-

092X2015000100001

[10]File:///C:/Users/PC/Downloads/gmartinezacosta,+906_04_iyu_09_2_Rodriguez %20(2).pdf.

[11] Https://revistas.unica.cu/index.php/uciencia/article/view/1001/2334.

[12]Https://www.researchgate.net/profile/Luciano-Fernandez

Sola/publication/260592195_INFLUENCIA_DE_LA_INTERACCION_DINAMIC

A_SUELO_ESTRUCTURA_EN_EL_COMPORTAMIENTO_INELASTICO_DE_

MARCOS_DE_ACERO/links/00b7d531a40d45948b000000/INFLUENCIA-DE-

LA-INTERACCION-DINAMICA-SUELO ESTRUCTURA-EN-EL-

COMPORTAMIENTO-INELASTICO-DE-MARCOS-DE-ACERO.pdf

[13] https://journal.espe.edu.ec/ojs/index.php/riie/article/view/1282

[14] file:///C:/Users/PC/Downloads/5535-22774-1-PB.pdf

[15] https://cimec.org.ar/~mstorti/MECOM2018/paper-5679.pdf

[16]http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-092X2017000100001

[17] http://www.wcee.nicee.org/wcee/article/16WCEE/WCEE2017-2314.pdf

[18] http://www.scielo.org.mx/pdf/ris/n96/0185-092X-ris-96-00018.pdf

[19] https://eprints.whiterose.ac.uk/102933/1/Optimum%20 lateral%20 load%20 distribution of the state of th

ution%20for%20seismic%20design%20of%20nonlinear%20shear-

buildings%20considering%20soil-structure%20interaction.pdf

[20]https://reader.elsevier.com/reader/sd/pii/S1877705817333969?token=BF861217

B616106FD22015B364D9E7FD30BDD0D3AD6825A54A3333BFECE15F3894C4

7E32719F3174D258206B38BCFCA5&originRegion=us-east

1&originCreation=20220228031828

[21] https://es.slideshare.net/Consultora_KECSAC/ingeniera-sismoresistente-sesin-1-anlisis-ssmico-de-edificaciones-28097069

[22]https://www.habitatyvivienda.gob.ec/documentos-normativos-nec norma ecuatoriana-de-la-construcción/

[23] G. Villarreal, "Interacción Suelo Estructura En Edificaciones Con Zapatas Aisladas," Rev. Int. Ing. Estructuras, 2009, [Online]. Available: http://dx.doi.org/10.24133/riie.v25i3.1689.

[24] Software de modelación estructural ETABS.

[25] El proyecto arquitectónico que se utilizó para la realización del presente trabajo, fue una colaboración de un profesional que se lo mantendrá como Anónimo.

[26] M. Guerra, M. Guerra, "Diseño sismorresistente de edificios de hormigón armado utilizando ETABS", 2020.ISBN:978-9942-38-538-3.

[27] Sísmica Institute, E, Guánchez. Universidad Politécnica de Cataluña (UPC).Curso en Ingeniería sísmica Geotécnica e Interacción Suelo-estructura.2022.

[28] http://revista.ismm.edu.cu/index.php/revista_estudiantil/article/view/1900/1498.

[29] L. Morales and A. Espinosa, "Influencia de la Interacción Suelo Estructura (ISE) de Cimentaciones Superficiales en Suelos no Cohesivos en el Comportamiento Estructural de una Edificación de 8 Pisos y un Subsuelo," Ingenio, vol. 3, no. 1, pp. 5–26, 2020, doi: 10.29166/ingenio. v3i1.2391.

[30] C. Mercado, CEINTPERU, CURSO DISEÑO DE CIMENTACIONES EN LADERAS M2. segunda versión. 2023.

[31] P. Caiza, Asignatura Diseño de Cimentaciones "Maestría en Ingeniería civil, Mención estructuras metálicas, Cohorte 2021. 2021.FICM-UTA, Ambato.

[32]Braja M. Das (2012). Fundamentos de ingeniería de cimentaciones. Séptima edición.

[33]https://ww3.vivienda.gob.pe/ejes/viviendaurbanismo/documentos/Reglamento20 Nacional%20de%20Edificaciones.pdf

[34]https://repositorio.uta.edu.ec/bitstream/123456789/34107/1/Tesis%20I.C.%2015 57%20-%20Quispillo%20Morocho%20Kevin%20Adri%c3%a1n.pdf

[35] Google maps

5.4. Anexos

MORALES ZUÑIGA HUMBERTO RAMIRO									
MAESTRÍA EN INGENIERÍA CIVIL-MENCIÓN ESTRUCTURAS METÁLICAS									
PROYECTO DE TESIS DE GRADO									
CONTIENE: PROYECTO BASE RÍGIDA									
UTA-FICM									
ING. HUMBERTO MORALES DIBUJÓ Y CALCULÓ ING. WLADIMIR RAMIREZ REVISÓ Y APROBÓ									

