

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

CARRERA DE INGENIERÍA MECÁNICA

PROYECTO TÉCNICO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

TEMA:

"BANCO DE PRUEBAS PARA DETERMINAR LA ACELERACIÓN Y COEFICIENTE DE FRICCIÓN EL CUAL SERÁ DESIGNADO AL LABORATORIO DE FÍSICA DE LA FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA"

AUTOR: Carlos Danilo Fernández Mollocana

TUTOR: Ing. Mg. Carlos Mauricio Carrillo Rosero

AMBATO - ECUADOR

Septiembre - 2022

CERTIFICACIÓN

En mi calidad de Tutor del Proyecto Técnico, previo a la obtención del Título de Ingeniero Mecánico, con el tema: **"BANCO DE PRUEBAS PARA DETERMINAR LA ACELERACIÓN Y COEFICIENTE DE FRICCIÓN EL CUAL SERÁ DESIGNADO AL LABORATORIO DE FÍSICA DE LA FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA**", elaborado por el Sr. Carlos Danilo Fernández Mollocana, portador de la cédula de ciudadanía: C.I. 0503561961, estudiante de la Carrera de Ingeniería Mecánica de la Facultad de Ingeniería Civil y Mecánica.

Certifico:

- Que el presente proyecto técnico es original de su autor.
- Ha sido revisado cada uno de sus capítulos componentes.
- Esta concluido en su totalidad.

Ambato, septiembre 2022

Malant

Ing. Mg. Carlos Mauricio Carrillo Rosero

TUTOR

AUTORÍA DE LA INVESTIGACIÓN

Yo, Carlos Danilo Fernández Mollocana, con C.I. 0503561961 declaro que todas las actividades y contenidos expuestos en el presente proyecto técnico con el tema "BANCO DE PRUEBAS PARA DETERMINAR LA ACELERACIÓN Y COEFICIENTE DE FRICCIÓN EL CUAL SERÁ DESIGNADO AL LABORATORIO DE FÍSICA DE LA FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA", así como también los análisis estadísticos, gráficos, conclusiones y recomendaciones son de mi exclusiva responsabilidad como autor del proyecto, a excepción de las referencias bibliográficas citadas en el mismo.

Ambato, septiembre 2022

Carlos Danilo Fernández Mollocana

C.I. 0503561961

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que haga de este Proyecto Técnico o parte de él, un documento disponible para su lectura, consulta y procesos de investigación, según las normas de la Institución.

Cedo los derechos en línea patrimoniales de mi proyecto técnico, con fines de difusión pública, además apruebo la reproducción de este documento dentro de las regulaciones de la Universidad, siempre y cuando esta reproducción no suponga una ganancia económica y se realice respetando mis derechos como autor.

Ambato, septiembre 2022

. . . .

Carlos Danilo Fernández Mollocana

C.I. 0503561961

AUTOR

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del Tribunal de Grado aprueban el informe del Proyecto Técnico, realizado por el estudiante Carlos Danilo Fernández Mollocana de la Carrera de Ingeniería Mecánica bajo el tema: "BANCO DE PRUEBAS PARA DETERMINAR LA ACELERACIÓN Y COEFICIENTE DE FRICCIÓN EL CUAL SERÁ DESIGNADO AL LABORATORIO DE FÍSICA DE LA FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA".

Ambato, septiembre 2022

Para constancia firman:

Ing. Mg. Alex Santiago Mayorga Pardo

MIEMBRO CALIFICADOR

Ing. Mg. Oscar Iván Analuiza Maiza

MIEMBRO CALIFICADOR

DEDICATORIA

Todo el trabajo, esfuerzo y dedicación para conseguir este título se lo dedico a mi madre Rosa Elvira Mollocana Páez que desde el cielo estará muy orgullosa de mí y a mi padre Carlos Oswaldo Fernández Fernández por ser una persona responsable, dedicado a sus hijos y hogar, pilar fundamental para este logro en mi vida, a mi hermano Kevin Alexander Fernández Mollocana que me apoyado a seguir adelante en mi etapa universitaria, este título se los dedico a estas personas que son lo más importante en mi vida

AGRADECIMIENTO

Un agradecimiento especial a la Universidad Técnica de Ambato por permitirme estudiar en tan prestigiosa Institución, formando buenos profesionales, a la Facultad de Ingeniería Civil y Mecánica por brindar educación de calidad, a mis docentes de la Facultad de Ingeniería Civil y Mecánica que a lo largo de este camino me han implementado de conocimientos, valores y empatía humana, a mis compañeros de aula que en este tiempo compartido nos hemos llenado de experiencias conociendo el significado de la amistad y compañerismo.

ÍNDICE GENERAL DE CONTENIDOS

CERTIFICACIÓNii
AUTORÍA DE LA INVESTIGACIÓNiii
DERECHOS DE AUTORiv
APROBACIÓN DEL TRIBUNAL DE GRADOv
DEDICATORIA vi
AGRADECIMIENTOvii
ÍNDICE GENERAL DE CONTENIDOSviii
ÍNDICE DE TABLASx
ÍNDICE DE FIGURAS xi
RESUMENxii
ABSTRACTxiii
CAPÍTULO I
1.1. Antecedentes Investigativos
1.2. Objetivos
1.2.1. Objetivo General
1.2.2. Objetivos Específicos
CAPÍTULO II
2.1. Materiales
2.2. Metodología 10
Bibliográfica10
Proceso experimental
Investigación de campo11
2.3. Diagrama de construcción11

2.4. Parámetros	12
2.5. Diseño del banco de pruebas	14
2.6. Resumen de construcción del banco de pruebas.	17
2.7. Procedimiento para usar el banco de pruebas.	19
CAPÍTULO III	
3.1. Análisis de Resultados	25
CAPITULO IV	
4.1. Conclusiones	46
4.2. Recomendaciones	47
Bibliografía	48
Anexos	50
Anexo A: Tablas coeficientes de fricción	50
Anexo B: Tabla para toma de datos	51
Anexo C: Diagrama Eléctrico	52
Anexo D: Planos del Diseño	52

ÍNDICE DE TABLAS

Tabla 2.1Listado de materiales	6
Tabla 3.1 Primera combinación de materiales	25
Tabla 3.2 Segunda combinación de materiales	
Tabla 3.3 Tercera combinación de materiales	31
Tabla 3.4 Cuarta combinación de materiales	34
Tabla 3.5 Quinta combinación de materiales	37
Tabla 3.6 Sexta combinación de materiales	40
Tabla 3.7 Séptima combinación de materiales	43

ÍNDICE DE FIGURAS

Figura 1 Diagrama de construcción 1	1
Figura 2 Ángulo de inclinación "α"1	12
Figura 3 Superficies, graduador magnético y perilla1	14
Figura 4 Sistema para determinar la distancia y tiempo1	15
Figura 5 Diagrama lazo abierto1	16
Figura 6 Banco de pruebas1	16
Figura 7 Entradas y salidas de control 1	17
Figura 8 Diagrama de flujo1	18
Fuente: Autor 1	18
Figura 9 Banco de pruebas en superficie plana 1	19
Figura 10 Máquina encendida 1	19
Figura 11 Material base en la superficie móvil2	20
Figura 12 Probeta en la placa superior2	20
Figura 13 Perilla del banco de pruebas2	21
Figura 14 Ingreso del ángulo en la pantalla HMI 2	21
Figura 15 Botón iniciar	22
Figura 16 Probeta y material base en su posición2	22
Figura 17 Resultados pantalla HMI para estudiante2	23
Figura 18 Resultados pantalla HMI para docente2	23
Figura 19 Lista de resultados pantalla HMI para docente	24
Figura 20 Resultados pantalla HMI para docente2	24

RESUMEN

El presente trabajo de investigación tiene su origen en una de las problemáticas actuales de enseñanza, pues es absolutamente necesario desarrollar nuevos modelos para que los estudiantes comprendan e interpreten las lecciones otorgadas por los docentes; para que de esa manera el aprendizaje sea totalmente comprensible. Es por este motivo que se desarrolló un banco de pruebas que se permite calcular el coeficiente de fricción estático y dinámico de ciertos materiales (vidrio, acero, metal, madera y plástico).

El desarrollo del banco de pruebas se orientó sobre una metodología experimental de investigación pues su diseño está totalmente automatizado en base a sensores (LM393, KY-008) y un PLC FX2N-16MR/T; elementos principales que permitieron el desarrollo de un sistema de lazo abierto que responda a las necesidades del banco de pruebas (determinación de la aceleración y de los coeficientes de fricción). La toma de datos se estableció por medio de cinco repeticiones, las cuales permitieron establecer el valor mayormente ajustado a los datos recabados en bibliografía especifica. Es necesario destacar que el porcentaje de error relativo y absoluto de los valores tanto del banco como del acervo bibliográfico oscilan de 5 al 10 por ciento de error.

Palabras claves: Coeficiente de fricción, Estático, Dinámico, Modelo experimental, PLC FX2N7774

ABSTRACT

This research work has its origin in one of the current teaching problems, since it is absolutely necessary to develop new models for students to understand and interpret the lessons given by teachers, so that learning is fully understandable. For this reason, a test bench was developed to calculate the static and dynamic friction coefficient of certain materials (glass, steel, metal, wood and plastic).

The development of the test bench was oriented on an experimental research methodology since its design is fully automated based on sensors (LM393, KY-008) and a PLC FX2N-16MR/T; main elements that allowed the development of an open loop system that responds to the needs of the test bench (determination of acceleration and friction coefficients). The data collection was established by means of five repetitions, which allowed to establish the most adjusted value to the data collected in specific bibliography. It is necessary to emphasize that the relative and absolute percentage of error of the values of both the bench and the bibliographic collection range from 5 to 10 percent of error.

Key words: Coefficient of friction, Static, Dynamic, Experimental model, PLC FX2N7774.

CAPÍTULO I

MARCO TEÓRICO

"BANCO DE PRUEBAS PARA DETERMINAR LA ACELERACIÓN Y COEFICIENTE DE FRICCIÓN EL CUAL SERÁ DESIGNADO AL LABORATORIO DE FÍSICA DE LA FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA"

1.1. Antecedentes Investigativos

A lo largo de la trayectoria del hombre, la sed de conocimiento ha permitido que el humano desarrolle varias y variadas herramientas que respondan a sus necesidades, en el presente proyecto es hallar el coeficiente dinámico y estático de distintos materiales (madera, vidrio, metal y plástico) para lo cual se ha investigado en su parte pertinente los siguientes documentos:

Un artículo desarrollado por los autores Pérez, Arroyave y Acebedo [1], en el cual se proponen desarrollar un instrumento y/o herramienta que permite medir y calcular el factor de fricción de varios materiales, se convierte en una alternativa para determinar el coeficiente estático y dinámico entre dos superficies sólidas. Es importante destacar que el proceso de medición es netamente digital, debido a los sensores colocados en cada extremo de la placa por los cuales el material seleccionado se desliza. Al finalizar su trabajo los autores no dudan en señalar que el cálculo del coeficiente de fricción dinámico depende de una serie de factores; peso, velocidad relativa, naturaleza del material entre otros. Aseverando que, a medida que se emplean nuevos materiales el proceso puede variar y por consiguiente los resultados. Dicho esto, se plantea la idea de estandarizar su prototipo a uno de permita desarrollar el cálculo a un tipo de material en específico; en este caso "plástico" y en casos excepcionales cerámicos.

Un segundo trabajo puede ser mencionado como aporte a la realización del presente proyecto. En este [2] se desea establecer variaciones conceptuales entro dos modelos de deslizamiento en bloques, cuya finalidad es determinar las propiedades cinemáticas (alcance, velocidad y aceleración) para un bloque de un material específico. Para ello desarrollan situaciones que permitan una solución analítica como numérica, las ecuaciones de las variables que gobiernan el movimiento de cada uno de los modelos de deslizamiento son consideradas con base en la premisa de que el movimiento se desarrolla en una sola dimensión, en un material isotrópico y en función de las variables independientes. Los parámetros para el cálculo consisten en analizar el ángulo de fricción, parámetro de turbulencia y coeficiente de presión de poros. Los autores finalizan su trabajo afirmando que las velocidades y alcances determinados para un estudio puntual mediante el modelo uniparamétrico, probablemente van a ser mayores que las estimadas mediante el modelo biparamétrico. Aseveración que resulta extremadamente lógica. Naturalmente, el hecho de implementar el modelo de fricción turbulenta, requiere conocer más parámetros característicos del material que se va a modelar (siendo especialmente cuidadosos en cuanto al espesor del deslizamiento, el cual es el parámetro más sensible del modelo), lo que haría más costoso el estudio en casos prácticos, pero posiblemente arrojaría resultados más exactos, según se evidencia en la comparación realizada con un deslizamiento real.

Vukelic et al., [3] presenta el fundamento teórico de un nuevo método para determinar el coeficiente de fricción cinética. El método se basa en la ecuación de movimiento de un cuerpo rígido a lo largo de un plano inclinado y no se ha discutido antes en la literatura. De acuerdo con los resultados teóricos presentados en este trabajo, el coeficiente de fricción cinética promedio se puede determinar a partir del tiempo que tarda un cuerpo rígido en recorrer una distancia a lo largo de un plano inclinado. Los resultados experimentales muestran que el coeficiente medio de fricción cinética aumenta al aumentar la velocidad de deslizamiento promedio, es decir, al disminuir el tiempo. A medida que aumenta la velocidad de deslizamiento, aumenta la desviación de los coeficientes de fricción. Este método también permite determinar la energía consumida debido a la fricción en una distancia recorrida. Un aumento en el coeficiente promedio de fricción cinética y la velocidad de deslizamiento promedio conduce a un aumento en la energía consumida debido a la fricción. Los cálculos prácticos requieren la aplicación de la ley de la distancia, que requiere una medición un fenómeno complejo que ocurre en los contactos superficiales. Así, la fricción ha sido objeto de interés durante más de 400 años. Existe como fricción estática o cinética, que es el resultado del movimiento relativo entre dos cuerpos. La fuerza de rozamiento estático aumenta con el desplazamiento tangencial, hasta alcanzar un valor que permite un movimiento relativo entre dos cuerpos en contacto. Aunque, en el sentido macroscópico, dos cuerpos están estacionarios, hay un micro desplazamiento entre ellos. Este desplazamiento, llamado desplazamiento inicial, ocurre en la región de contacto y precede al movimiento relativo. El desplazamiento microscópico puede alcanzar valores relativamente altos cuando una de las superficies de contacto tiene una rigidez tangencial baja con respecto a la otra superficie de contacto. Un ejemplo típico es el contacto entre el caucho y el metal. En el presente trabajo de titulación el investigador acota finalmente que el método propuesto en su estudio permite determinar el coeficiente de fricción cinética y la energía consumida debido a la fricción, se basa en varios supuestos. El modelo discutido se basa en una ecuación que describe el deslizamiento de un cuerpo en un plano inclinado. Basta medir el tiempo para determinar el coeficiente de fricción cinética y la energía consumida debido a la fricción. En comparación con otros métodos, el modelo propuesto tiene varias ventajas considerando el método teórico básico, la simplicidad y confiabilidad del modelo, así como el potencial de aplicación industrial. La fricción se define como la resistencia al desplazamiento relativo entre dos superficies de contacto y depende de las propiedades de las superficies que interactúan entre sí. Este fenómeno está determinado por la fuerza de rozamiento que provoca o impide el desplazamiento de un cuerpo con respecto a otro o sobre una superficie en contacto con él. La fricción ocurre incluso cuando no hay movimiento relativo entre dos cuerpos, lo que se llama fricción estática; Si, por el contrario, hay movimiento relativo, entonces se habla de fricción cinética.

Según Santos et al., [4] el objetivo de su trabajo es determinar el coeficiente de fricción dinámica entre recubrimientos micrométricos de alúmina y materiales metálicos (acero y aluminio). La metodología utilizada para lograr el objetivo propuesto constó de cuatro fases, en la primera fase se desarrolló un proceso mediante el cual pins basado en las especificaciones de la norma ASTM G99-05 (Standard Test Procedure for Standard Testing) se hizo posible utilizar un on-disk máquina. prueba de desgaste utilizando una máquina pin-on-disc) para determinar el coeficiente de fricción

dinámica entre dos materiales en contacto; luego se verificó el método mediante ensayos entre acero-acero y acero-aluminio, ya que estos valores son ampliamente utilizados en la literatura; En el tercer paso, las partículas de alúmina de tamaño micrométrico se pulverizaron térmicamente sobre un sustrato de acero; finalmente, se realizaron ensayos entre el pasador de aluminio-acero y el recubrimiento de óxido de aluminio para determinar los coeficientes de rozamiento por deslizamiento entre estas dos superficies. Los resultados del proyecto mostraron que el método desarrollado es válido para la determinación del coeficiente de fricción dinámica entre superficies de contacto, ya que los porcentajes de error fueron del 3,5 % para acero-acero y del 2,1 % para aluminio-acero; Además, se encontró que el coeficiente de fricción entre los revestimientos de acero-alúmina era de 0,36 y el de aluminio-alúmina de 0,25.

Según Stembalski et al., [5], en este trabajo se presenta un método para determinar el coeficiente de fricción en función de la velocidad de deslizamiento y de la presión normal para diferentes pares de materiales de fricción utilizados en los amortiguadores de fricción. Se muestra un esquema del montaje experimental y se describe el desarrollo del experimento. Se obtuvo una relación analítica que describe la influencia de la velocidad de deslizamiento y la presión normal en el coeficiente de fricción para el acero C45 y 40HM. A continuación, sobre la base de la relación analítica se crearon modelos numéricos en 3D. Se realizaron cálculos con el paquete de software Abaqus/Standard. Para modelar sistemas como los amortiguadores de fricción o los frenos mediante elementos finitos es necesario conocer el coeficiente de fricción en función de los parámetros seleccionados (por ejemplo, la velocidad de deslizamiento, la presión normal, etc.). Es necesario determinar la función µ para representar adecuadamente el contacto entre las partes que interactúan. En muchos casos, el modelo habitualmente empleado con la atenuación exponencial del coeficiente de fricción es insuficiente

El último documento de discusión aborda el problema de la fricción estática y dinámica (o cinética), es decir, los coeficientes de fricción para los dos estados. Según Youqin [6], el coeficiente de fricción estático es bien conocido y su teoría y práctica son bien aceptadas en la ciencia y la industria. Sin embargo, el coeficiente de fricción cinética no se conoce por completo. La teoría actual de la fricción cinética establece que el coeficiente de fricción cinética es menor que el coeficiente de fricción estático

cuando se comparan las fuerzas que actúan en los dos estados. Después de examinar las propiedades del coeficiente de fricción, se encuentra que la comparación es insuficiente ya que no se tiene en cuenta la fuerza de inercia. El nuevo descubrimiento del trabajo es que los coeficientes de fricción estática y fricción cinética son los mismos. En el frenado de ruedas, la rueda de bloqueo se utiliza para mostrar la conclusión. La principal razón para confundir los dos coeficientes de fricción es la fuerza de inercia. Al medir el coeficiente de fricción estática, la fuerza de inercia se activa tan pronto como el objeto de prueba comienza a moverse. Entonces, hay dos fuerzas que se oponen al movimiento del objeto: la fuerza de fricción y la fuerza de inercia. Sin embargo, cuando se mide el coeficiente cinético de fricción, no hay fuerza de inercia involucrada porque la velocidad debe permanecer constante.

1.2. Objetivos

1.2.1. Objetivo General

Diseñar y construir un banco de pruebas para determinar la aceleración a la par del coeficiente de fricción estático y dinámico para el laboratorio de física de la Facultad de Ingeniería Civil y Mecánica

1.2.2. Objetivos Específicos

- Determinar los elementos que componen el sistema del banco de pruebas, para identificar el componente más crítico del prototipo de diseño.
- Seleccionar elementos constitutivos para el banco de pruebas.
- Realizar pruebas de funcionamiento del banco de pruebas.

CAPÍTULO II

2.1. Materiales

A continuación, se enlistan los materiales empleados para la realizar el banco de pruebas los cuales son selecciones por su economía, la facilidad de adquisición y su funcionamiento.

#	Elemento	Imagen	Detalle	Cantidad
1	Adaptador de Voltaje para sensores		*Adaptador 5V - 3A. *Entrada: 100 ~ 240VAC 50/60Hz.	1
2	Adaptador de Voltaje para PLC y HMI		*Eficiente de la energía estable y 24 V DC fuente de alimentación. Certificado por la CE, térmico automático y protección contra sobrecarga de corte, cortocircuito. Apto para uso con dispositivos electrónicos que requieran 24 V DC y consumen menos de 240 W de potencia.	1

Tabla 2.1.-Listado de materiales

#	Elemento	Imagen	Detalle	Cantidad
3	Módulo LDR fotorresistencia sensor luz LM393		 *Voltaje de funcionamiento de 3.3V – 5v. *La sensibilidad es ajustable según el potenciómetro. *Reconocimiento de acuerdo al brillo o luz del entorno. *Dimensiones de 32mm x 14 mm x 7 mm. 	2
4	Sensor Laser Módulo KY-008		 *Sensor laser. *Luz emitida de color rojo. *Temperatura de funcionamiento de -30 a 60 grados centígrados. *Voltaje de funcionamiento 5V. 	2

#	Elemento	Imagen	Detalle	Cantidad
			*2AD2DA (2canales	
			de entrada analógica 2	
			canales de salida	
			analógica);422 de	
			comunicación, 485 de	
			paso para	
			comunicación que	
			tiene el PLC con la	
		S S	pc,puerto de	
		LK2N-16MR	comunicación dual,	
		COM: 10 Y1 Y2 Y3 Y4 Y5 Y6 Y7 G59 A50+ A51- S S S S S S S S S S S S S S S	cable de interfaz	
			universal original	
	PLC FX2N-	Mitteleticate(A, (0-109)	RS485 para	1
5	16MR/T,		comunicación con el	
5	, , , , , , , , , , , , , , , , , , ,	and the second of the second o	HMI.	
		THE STREET	*Acepta operaciones	
		And the factor of the factor of the factor	trigonometricas.	
			* Funciona con 24V16	
			puntos (8 en 8 de	
			salida; Con 1 entrada	
			aislada de pulso de alta	
			velocidad y dos salidas	
			aisladas originales de	
			alta velocidad	

#	Elemento	Imagen	Detalle	Cantidad
			* compatible con el	
			cable de comunicación	
	Samkoon- pantalla táctil	Samkoon	RS422.	
				1
	universal HMI	MI	* Es táctil, tiene una	1
6	de 4,3 pulgadas	Сом	pantalla led. Cuenta	
			con software gratuitos	
			para programación.	
			*D:famatas tamañas	
			Diferentes tamanos.	
			*Cuerpo moldeado de	
		CHARLES CONTRACT	alto impacto	
		Graduador		
_	Graduador		* Incrementos de 0° a	1
/	magnético	Pitch & Slope Locator 750	90° de fácil lectura	1
	inagrietieo		impresos en lente	
			acrílico de alta	
			resistencia	
			* Largo de 6 m y	
			media pulgada.	
			* Depubrimiento pogra	
8	Acero comercial			1
	ASTM A36		que ayuda a su	
			protección, resistencia	
			a alta presion de masa	

#	Elemento	Imagen	Detalle	Cantidad
			*3mmX1.22m X	
			2.44m	
9	Alucobond		*Es un material ligero.	1
			*Amortigua	
		\sim	vibraciones	
			*Bajo costo.	

Fuente: Autor

2.2. Metodología

Bibliográfica

Este método es muy importante para el desarrollo del proyecto debido a que se requiere una base informativa que brinde los lineamientos matemáticos y físicos para el desarrollo del banco de pruebas. Existen diversos artículos y experimentos de bancos de pruebas para el coeficiente de fricción estático y dinámico de los cuales se obtiene parámetros e información sobre aspectos a considerar para el cálculo de los mismos y automatización del banco de pruebas.

Proceso experimental

Este método sirvió para realizar la selección de los diferentes materiales y elementos al banco de pruebas, considerando los elementos que mejor se acoplen y ayuden al desarrollo del mismo, al probar su funcionamiento ayudo a seleccionar el tipo de control adecuado, conociendo los datos de entrada y de salida para que finalmente se pueda mostrar los cálculos arrojados (coeficiente de fricción estático, coeficiente de fricción dinámico y aceleración en una pantalla la cual sea de fácil observación e interactúe con el usuario.

Investigación de campo

En el presente proyecto se realiza ensayos de la máquina con diferentes materiales base y probetas (madera, metal, vidrio y plástico) a distintos ángulos de los de los cuales se obtiene la aceleración y los coeficientes de fricción estáticos y dinámicos. Estos resultados se compararán con los resultados manuales.

2.3. Diagrama de construcción.

En la Figura 1 se muestra el diagrama de construcción considerando aspectos importantes como son: diseño del banco de pruebas, materiales de construcción, materiales para el control, presupuesto, disponibilidad de adquisición, entre otros [11].

Figura 1.- Diagrama de construcción

Fuente: Autor

2.4. Parámetros

Para desarrollar el banco de pruebas se necesita tomar en cuenta los datos de entrada y de salida, para determinar los parámetros críticos los cuales son:

Coeficiente estático

El coeficiente de fricción estático es la relación entre la fuerza de deslizamiento y la fuerza de sujeción ejercida por dos superficies en contacto. Este coeficiente es en realidad una evaluación de la dificultad con la que la superficie de un material se deslizará sobre otro material y es en instante en el cual se inicia el movimiento. Es decir, está relacionado con la fuerza requerida para iniciar el movimiento deslizante [7, 8].

Cuando un cuerpo está inmóvil sobre un plano inclinado, este plano forma un ángulo con la horizontal que puede variar de cero a un valor α . " α " representa el ángulo máximo de inclinación de una superficie para un objeto estacionario.

En este caso según el artículo desarrollado por los autores [1],la ecuación aplicar es:

$$\mu_e = \frac{Sen \,\alpha}{Cos \,\alpha}$$

$$\mu_e = tang \,\alpha \tag{1}$$

Donde:

 μ_e = Coeficiente estático.

 $\alpha =$ Ángulo de inclinación

Figura 2.- Ángulo de inclinación "α" Fuente: Autor

Coeficiente dinámico

El coeficiente dinámico [cinético] de fricción se da cuando el objeto se mueve sobre una superficie. Determina la fuerza requerida para mover un cuerpo a medida que este comienza a deslizarse, puede experimentar algo de velocidad y aceleración [9].

Para determinación del coeficiente dinámico según el artículo desarrollado por los autores [1], la ecuación a usar es:

$$\mu_D = tang \ \alpha - \frac{a}{g * \cos \alpha} \tag{2}$$

Donde:

- μ_D = Coeficiente dinámico.
- g =Gravedad.
- a = Aceleración.

Aceleración

Se puede denominar aceleración a la magnitud que indica como cambia la velocidad de un cuerpo. Cómo la velocidad es una magnitud vectorial la aceleración de igual manera. Un objeto conserva su movimiento rectilíneo uniforme hasta que sobre el actúen fuerzas que conduzcan a una aceleración, estas fuerzas pueden producir un aumento o disminución de velocidad. Si un objeto cambia su aceleración en un determinado periodo de tiempo se puede calcular la "aceleración media" que es el promedio de las aceleraciones en un rango temporal [13,15].

Para el cálculo de la aceleración según [1] se usa la ecuación:

$$a = \frac{2d}{t^2} \tag{3}$$

Donde:

a = Aceleración.

t = Tiempo

d = Distancia

2.5. Diseño del banco de pruebas

Como se puede observar en las ecuaciones (1) y (2) el ángulo es un dato muy importante dentro del cálculo del coeficiente de fricción estático y dinámico por lo cual este valor tan particular puede ser determinado como se muestra en la Figura 3, mediante un sistema manual que incluye un graduador magnético (G) que marca el ángulo entre la superficie móvil (SM) y la superficie base (SB). Una barra lateral (L) de acero ASTM A36 colocada al extremo de estas dos superficies, una perilla plástica de ajuste (P) en la barra lateral para fijar el ángulo al que se mueve la probeta, este ángulo podrá ser regulado desde 1 grado hasta los 45 grados.

Figura 3.- Superficies, graduador magnético y perilla. Fuente: Autor

Distancia y tiempo.

Para el cálculo de la aceleración que influye directamente en la ecuación (2), como se observa en la ecuación (3) se necesita conocer el tiempo y la distancia con las cuales funciona el banco de pruebas. Como se observa en la Figura 4, la distancia viene dada por dos regletas (**R1 y R2**) colocadas a los bordes de la superficie móvil, estas regletas tienen una distancia fija de 50 cm por la cual se desliza la probeta, dicha distancia viene dada para que el observador pueda visualizar el recorrido de la probeta sobre la placa y el diseño portable de la máquina. El tiempo en que la probeta recorre el sistema

se lo puede obtener mediante cuatro sensores, 2 sensores de luz (M1 y M2) colocados al inicio y fin de los 50 cm de la regleta (R1) y 2 sensores de laser (L1, L2) ubicados al inicio y fin de los 50 cm en la regleta (R2),los sensores de luz son de la serie LM393 por su voltaje de funcionamiento (3.3V-5V) [10],cuenta con una capacidad de medición de 1 Mohm en total oscuridad a 50-100 ohm bajo luz brillante, histéresis de 0,1 segundos cuando varia la luz, comunicación con el PLC por señal digital, y los sensores laser **KY-008** por su intensidad de luz, longitud de onda de 650 nm que precisa la medición, alcance hasta 2m, funciona con un voltaje de 5v.

Figura 4.- Sistema para determinar la distancia y tiempo.

Fuente: Autor

Para la programación y automatización de este banco de pruebas se usa un lazo abierto como se muestra en la Figura 5, ya que los valores de salida no se comparan con los datos de entrada, por lo cual el diagrama de lazo abierto será el siguiente:

Figura 5.- Diagrama lazo abierto

Fuente: Autor

El banco de pruebas consta también de un cajetín colocado al extremo del mismo como se muestra en la Figura 6, el cual contiene el PLC (PLC FX2N-16MR) fue seleccionado por su capacidad de operar funciones trigonométricas, permite a futuro mejorar el banco de pruebas haciendo automático todo el sistema, es más robusto que otros controladores, es resistente al ruido y polvo, contiene 16 puntos (8 entradas y 8 salidas) de los cuales se toma 2 entradas (X0,X1) para los sensores como se muestra en la Figura 7 y los puertos de conexión RS485 para la comunicación con el HMI, cable de interfaz universal RS422 para comunicación con la PC a través de USB por el software MELSOFT GX Designer (software libre). Cuenta con una pantalla Samkoon-pantalla táctil universal HMI de 4,3 pulgadas la cual ayuda a visualizar datos de una manera clara, permite al usuario interactuar con el programa, la misma se puede usar para ingresar datos dentro del sistema, se comunicación con el pc MLC, maneja el software Sktool 5.0 (software libre) para comunicación con el pc mediante el cable RS485 [14]

Figura 6.- Banco de pruebas Fuente: Autor

Figura 7.- Entradas y salidas de control

Fuente: Autor

2.6. Resumen de construcción del banco de pruebas.

1.Se realiza la estructura principal para la parte fija y la parte móvil las cuales consta de Acero comercial A36 de media pulgada.

2. sobre estas estructuras se monta placas de alucobond de 3 mm de espesor.

3. Estas placas son unidas a través de una barra lateral de acero A36 y en la parte frontal por medio de bisagras.

4.Sobre la parte móvil se monta dos regletas metálicas a los costados para definir una distancia fija la cual la probeta recorrerá el sistema, al costado de la superficie móvil se coloca un graduador magnético precisamente encerado para proporcionar el ángulo al cual la probeta inicia el recorrido por la placa base.

5.En la parte inferior móvil se coloca un tope para colocar la placa base a la cual la probeta recorrerá la distancia fija establecida.

6.A los costados de las regletas en una distancia de 50 cm a 0 cm se coloca los sensores de luz los cuales enviaran la información de entrada (tiempo) al PLC para programación de la misma.

7.En la parte inferior de la superficie fija se coloca un cajetín el cual contendrá al PLC y pantalla HMI.

8.Se realiza la programación del sistema en el PLC.

Proceso de funcionamiento del banco de pruebas.

A continuación, se muestra el diagrama de flujo en la Figura 8.

Figura 8.- Diagrama de flujo

Fuente: Autor

2.7. Procedimiento para usar el banco de pruebas.

Estudiantes.

 Colocar el banco de pruebas en una superficie plana (SP), verificar que nivel de burbuja (NB) colocado en la superficie móvil (SM) este regulado y el graduador magnético (G) se encuentre en los 0 grados, si la superficie tiene un desnivel girar los tornillos de plástico (TR) colocados en las 4 esquinas de la base como se muestra en la Figura 9.

Figura 9.- Banco de pruebas en superficie plana. Fuente: Autor

 Enchufar el cable de corriente y presionar el botón (E) para encender la máquina, verificar que las luces de pantalla y sensores que se enciendan como se muestra en la Figura 10.

Figura 10.- Máquina encendida. Fuente: Autor

 Alinear cuidadosamente el material base (madera, metal, vidrio y plástico) en la superficie móvil (SM) dentro del acople (A) sin topar los sensores como se muestra en la Figura 11.

Figura 11.- Material base en la superficie móvil. Fuente: Autor

 Colocar la probeta a usar en la parte superior de la placa dentro de la medida de 51 cm y 60 cm dados por las regletas colocadas de igual manera en la parte superior como se muestra en la Figura 12.

Figura 12.- Probeta en la placa superior. Fuente: Autor

5. Girar la perilla hasta que la probeta se deslice por la placa atravesando los 4 sensores (M1, L1, M2, L2), una vez que se conoce el ángulo al cual la probeta recorre el sistema fijar la perilla para las pruebas experimentales como se muestra en la Figura 13.

Figura 13.- Perilla del banco de pruebas. Fuente: Autor

6. Mediante el graduador magnético se observa el ángulo que se utiliza para realizar la prueba, el mismo que se ingresa en la pantalla táctil al presionar el ángulo (AN), se desplegara una nueva pantalla donde se debe ingresar dicho ángulo y presionar (ENTER) para almacenar el mismo como se muestra en la Figura 13.

Figura 14.- Ingreso del ángulo en la pantalla HMI.

Fuente: Autor

7. En la parte derecha de la pantalla se selecciona el material de la probeta y el material base con el cual se realiza el ensayo, se presiona el botón (INICIAR)

el mismo que se encuentra un led de color verde para indicar que la prueba va a realizarse como se muestra en la Figura 15.

Figura 15.- Botón iniciar. Fuente: Autor

 Una vez ingresado el ángulo en la pantalla HMI se coloca la probeta en su posición inicial para que se deslice por la placa base como se muestra en la Figura 16.

Figura 16.- Probeta y material base en su posición.

Fuente: Autor

9. Cuando la probeta termina de recorrer el sistema presionar en la botonera la opción (GUARDAR) en pantalla HMI como se muestra en la Figura 17 y tomar los datos necesarios para realizar los cálculos manuales y comparar con los cálculos arrojados en el banco de pruebas.

Figura 17.- Resultados pantalla HMI para estudiante.

Fuente: Autor

> Docente.

• Repetir los pasos (1-9) del manual de procedimiento para estudiantes.

10. En la pantalla HMI presionar la opción (**RESULTADOS**) para que se despliegue una pantalla nueva con los como se muestra en la Figura 18.

Figura 18.- Resultados pantalla HMI para docente.

Fuente: Autor

11. Presionar el botón (INICIO) si se desea hacer otra prueba y que se enliste el número de pruebas realizadas o presionar el botón borrar datos si se desea borrar las pruebas realizadas como se muestra en la Figura 19.
| Je | Ud | MATERIAL
BASE | MATERIAL
PROBETA | BORRAR | + |
|------|--------|------------------|---------------------|--------|----|
| 220 | 0.5418 | M | M | | |
| 000 | 0.0000 | No. | | | N. |
| 000 | 0.0000 | | | | |
| 000 | 0.0000 | | - 10 10 10 | | |
| 000 | 0.0000 | | | | |
| 000 | 0.0000 | | Contractor | | |
| 000 | 0.0000 | | a set | | |
| 0000 | 0.0000 | | | | |
| 0000 | 0.0000 | | | | |
| 0000 | 0.0000 | I state | | NICIO | - |

Figura 19.- Lista de resultados pantalla HMI para docente.

Fuente: Autor

12. En la pantalla principal presionar (LIMPIAR) para poder realizar un nuevo ensayo o terminar ya los ensayos y apagar el banco de pruebas como se muestra en la Figura 20.

	INGRESE EL ANGULO	SELECCIONE MATERIALES MATERIAL MATERIAL PROBETA BASE	
	INICIAR DEMPO(m) LIMPIAR DISTANCIA SO CM GUARDAR	MADERA MADERA VIDRIO VIDRIO ACERO ACERO PLASTICO PLASTICO	PWR RUN COM
L	Sa	amkoon	

Figura 20.- Resultados pantalla HMI para docente.

Fuente: Autor

CAPÍTULO III

3.1. Análisis de Resultados

A continuación, se muestran los resultados de la parte experimental del presente trabajo de titulación, para la comprobación de resultados se contrastará con las tablas del **ANEXO A**.

Los errores de las comparaciones se las obtendrá mediante las fórmulas de error absoluto y error relativo [12]

Error absoluto:
$$E_a = [V_e - V_o]$$
 (4)

Error relativo:
$$E_r = \frac{E_a}{V_e}$$
 (5)

En las siguientes tablas se muestra los resultados de la aceleración, el coeficiente de fricción estático y dinámico de diferentes materiales.

AD TECNICA O	UNIVERSIDAD 1	TÉCNICA DE AMBATO				
PUNIVERSION OF THE STATE	FACULTAD DE INGEN					
	CARRERA DE IN	GENIERÍA MECÁNICA				
	Ficha de toma de datos experimentales					
	Datos g	enerales				
Nombre:	Carlos Danilo Ferna	ndez Mollocana				
Fecha de ensayo	23 de julio de 2022					
Primera combinación						
Valor asnira	$\mu_e = 0.6$					
		μ _d =0,5				

Tabla 3.1.- Primera combinación de materiales

Características de la superficie		Características del cuerpo			
Material base	Made	era	Material de	la probeta	Madera
	Estima	ción Coe	ficiente Estát	tico	
Mediciones	Ángulo	o al que se	e rompe la in	ercia [°]	Coeficiente Estático
1			33		0,649
2			33		0,649
3		33			0,649
4	32			0,625	
5		33			0,649
Promedio			32,8		0,644
Error abso	oluto:0,044		Error relativo:0,073		
0,660	•				
0,640					
0,620				\checkmark	
0,600					
0,580					
0,560	1	2	3	4	5
Mediciones	0,649	0,649	0,649	0,625	0,649
Promedio	0,644	0,644	0,644	0,644	0,644
		Mediciones	Promedic)	
	Estimac	ción Coef	iciente Dinár	nico	
					Coeficiente
Mediciones	Tiemp	0 [8]	Aceleraci	on [m/s ²]	dinámico

En la Tabla 3.1 como prueba se dispuso de una superficie base de madera y un bloque de madera los cuales interactuaron obteniéndose 5 mediciones a las cuales la probeta recorre el sistema, se tiene que el valor del coeficiente de fricción estático es de 0,644 el cual al ser comparado con las tablas del Anexo A se tiene un error absoluto de: 0,044 y el relativo de: 0,073; de la misma forma, el coeficiente de fricción dinámico es de 0,464 con un error absoluto de: 0,036 y relativo de: 0,072 por lo que estos errores en comparación a las tablas son mínimos.

Tabla 3.2.- Segunda combinación de materiales

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA Ficha de toma de datos experimentales Datos generales Nombre: Carlos Danilo Fernandez Mollocana						
Fecha de ensayo	23 de julio de 2022					
	Segunda co	ombinación				
Valor aspira	6 5					
Características	de la superficie	Características	as del cuerpo			
Material base	Madera	Material de la probeta	Acero			
	Estimación Coe	ficiente Estático				
Mediciones	Ángulo al que se rompe la inercia [°]		Coeficiente Estático			
1		30	0,5751			
2		28	0,5322			
3		0,5751				

4		3	32		0,6220	
5	31				0,5986	
Promedio		30		0,5806		
Error abso	Error absoluto:0,0194			Error relativo:0,0323		
0,64						
0,62						
0,6						
0,58						
0,56						
0,54						
0,52		×				
0,5						
0.48						
	1	2	3	4	5	
	0,5751	0,5322	0,5751	0,622	0,5986	
	0,3800	0,5800	0,3800	0,5800	0,3800	
	Estimaci	ón Coefic	ciente Dinár	nico		
	T •	11	Aceleración [m/s ²]		Coeficiente)
Mediciones	Tiempo	o [s]			dinámico	
1	2,067	7	0,234	40	0,5476	
2	1,221		0,67	07	0,4547	
3	0.024	5	1.16	87	0.4376	
3	0,92.	,	1,10		0,4370	
4	0,771		1,682	22	0,4198	
5	0,919)	1,184	40	0,4578	
Promedio	1,180	6	0,98	79	0,4635	
Error absol	Error absoluto:0,0365		Error relativo:0,073			

En la Tabla 3.2 como prueba se dispuso de una superficie base de madera y un bloque de acero A36 los cuales interactuaron obteniéndose 5 mediciones a las cuales la probeta recorre el sistema, se tiene que el valor del coeficiente de fricción estático es de 0,5806 el cual al ser comparado con las tablas del Anexo A se tiene un error absoluto de: 0,0194 y el relativo de: 0,032, de la misma forma, el coeficiente de fricción dinámico es de 0,4635 con un error absoluto de: 0,036 y relativo de: 0,073 por lo que estos errores en comparación a las tablas son mínimos.

Tabla 3.3.- Tercera combinación de materiales

Nombre:	FICM			
Fecha de ensayo	23 de julio de 2022			
	Tercera co	mbinación		
Valor aspirado ANEXO A		$\mu_e = 0,94$ $\mu_d = 0,4$		
Características de la superficie		Características del cuerpo		
Material base	Vidrio	Material de la probeta	Vidrio	
	Estimación Coe	ficiente Estático		
Mediciones	Ángulo al que se	rompe la inercia [°]	Coeficiente Estático	

1		2	41		0,86	8
2		2	42		0,89	9
3	42				0,89	9
4	41				0,86	8
5	41				0,86	8
Promedio		4	1,4		0,88	0
Error abs	soluto:0,06		Error relativo:0,063			
0,90)5			1	1	
0	,9	-	•			
0,89	95					
0,8	39					
0,88	35					
0,8				Ň		
0,87	/5					
0,8	57					
0,86	>5					
0,8	36					
0,85	>>					
0,8	1	2	3	4	5	
	NES 0,868	0,899	0,899	0,868	0,868	
PROMEDI	0 0,8804	0,8804	0,8804	0,8804	0,8804	
	Estimaci	ón Coefi	ciente Diná	mico		
Mallalana	T:	[-]	A]	((<u>?</u>]	Coefici	ente
Wiediciones	Tiempo	• [s]	Aceleració	on [m/s ⁻]	dinám	nico
1	0,635	5	2,4	-8	0,53	3
2	0,483	3	4,23	86	0,31	1
3	0,477	7	4,3	95	0,29	6
4	4 0,479		4,35	84	0,27	9
5	0,641		2,43	37	0,53	9
Promedio	0,543	3	3,59	90	0,39	1
Error abso	Error absoluto:0,009		Eı	ror relativ	ro:0,022	

En la Tabla 3.3 como prueba se dispuso de una superficie base de vidrio y un bloque de vidrio, los cuales interactuaron obteniéndose 5 mediciones a las cuales la probeta recorre el sistema, se tiene que el valor del coeficiente de fricción estático es de 0,880; el cual al ser comparado con las tablas del Anexo A se tiene un error absoluto de: 0,06 y el relativo de:0,063, de la misma forma, el coeficiente de fricción dinámico es de 0,391 con un error absoluto de: 0,009 y relativo de: 0,022 por lo que estos errores en comparación a las tablas son mínimos.

Tabla 3.4.- Cuarta combinación de materiales

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA Ficha de toma de datos experimentales Datos generales						
Nombre:	Carlos Danilo Ferna	andez Mollocana				
Fecha de ensayo	23 de julio de 2022					
	Cuarta co	mbinación				
Características	Características de la superficie Características de					
Material baseAcero A36Material de la probeta			Acero A36			
	Estimación Coe	ficiente Estático				
Mediciones	Ángulo al que se	Coeficiente Estático				
1		0,465				
2		0,508				
3		0,486				
4		26	0,486			
5		25	0,477			
Promedio		0,484				

• En la Tabla 3.4 como prueba se dispuso de una superficie base de acero A36 y un bloque de acero A36 los cuales interactuaron obteniéndose 5 mediciones a las cuales la probeta recorre el sistema, se tiene que el valor del coeficiente de fricción estático es de 0,484; de igual forma, el coeficiente de fricción dinámico es de: 0,254.Estos resultados no se comparan con tablas del ANEXO A ya que la comparativa entre las dos tablas es de una gran variación por lo que se asume esta variación es por el tipo de acero utilizado en las pruebas ya que no presenta detalles del mismo.

Para las siguientes pruebas no se tiene tablas comparativas, pero de acuerdo a los resultados mostrados anteriormente se da fe que los resultados de estas mediciones son válidos.

OLO TECNICA D	UNIVERSIDAD T						
S AMBA	FACULTAD DE I						
12 01	CARRERA DE INC	GENIERÍA MECÁNICA	FICM				
	Ficha de toma de d	atos experimentales					
	Datos generales						
Nombre:	Carlos Danilo Ferna	ndez Mollocana					
Fecha de ensayo	23 de julio de 2022						
	Quinta combinación						
Características de la superficie Característi			cas del cuerpo				
Matorial basa	Dlástico	Material de la	Madera				
Water far base	Tastico	probeta	Wadera				
	Estimación Coe	ficiente Estático					
Mediciones	Ángulo al que se	rompe la inercia [°]	Coeficiente				
			Estático				
1		24	0,445				
2		0,466					

Tabla 3.5.- Quinta combinación de materiales

	Estimación Coeficiente Dinámico					
Mediciones	Tiempo [s]	Aceleración [m/s ²]	Coeficiente dinámico			
1	1,149	0,76	0,36			
2	0,993	1,01	0,33			
3	1,248	0,64	0,37			
4	1,012	0,98	0,33			
5	1,026	0,95	0,34			
Promedio	1,0856	0,868	0,346			

• En la Tabla 3.5 como prueba se dispuso de una superficie base de plástico y un bloque de madera los cuales interactuaron obteniéndose 5 mediciones a las cuales la probeta recorre el sistema, se tiene que el valor del coeficiente de fricción estático es de 0,445; de igual forma, el coeficiente de fricción dinámico es de: 0,346.

Tabla 3.6.- Sexta combinación de materiales

Nombre:	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA Ficha de toma de datos experimentales Datos generales nbre: Carlos Danilo Fernandez Mollocana				
Fecha de ensayo	23 de julio de 2022				
	Savta aar	nhinación			
Características de la superficie Características del cuerno					
Material	Vidrio Material		Acero A36		
Estimación Coeficiente Estático					
Mediciones	Ángulo al que se r	ompe la inercia [°]	Coeficiente Estático		
1	1	3	0,231		
2	1	4	0,249		
3	1	4	0,249		
4	1	5	0,268		
5	1	0,249			

Promedio	14		4		0,249	
0,280						
0,270						
0,260						
0,250						
0,240						
0,230						
0,220						
0,210						
0,200						
0,190						
0,180	1	2	3	4	5	1
Medicione	s 0,231	0,249	0,249	0,268	0,249	
Promedio	0,249	0,249	0,249	0,249	0,249	
	Estimac	ión Coef	iciente Diná	mico		
Mallalana	T :	- [-]	Acelera	ción	Coeficien	te
Mediciones	Tiempo	o [s]	[m/s	²]	dinámic	0
1	1,30	4	0,59)	0,19	
2	1,67	3	0,36	5	0,21	
3	1,42	1	0,5		0,2	
4	1,59	1	0,4		0,21	
5 1,218		0,67		0,18		
Promedio	1,441	4	0,50	4	0,198	

• En la Tabla 3.6 como prueba se dispuso de una superficie base de vidrio y un bloque de acero A36 los cuales interactuaron obteniéndose 5 mediciones a las cuales la probeta recorre el sistema, se tiene que el valor del coeficiente de fricción estático es de 0,249; de igual forma, el coeficiente de fricción dinámico es de: 0,198.

Tabla 3.7.- Séptima combinación de materiales

DIECNICA	UNIVERSIDAD TI	FICM		
M NO OF	FACULTAD DE I			
AN 200	CARRERA DE ING			
	Fishe de teme de d	atas avnorimentales		
	richa de toma de da	atos experimentales		
	Datos a	anaralas		
Nombre	Carlos Danilo Ferna	ndez Mollocana		
Facha da ansava	23 de julio de 2022			
Feena de ensayo	25 de juno de 2022			
	Séntima co	mhinación		
Caractarísticas	de la superficie	Características	del cuerno	
Caracteristicas		Material de la		
Material base	Plástico	probeta	Vidrio	
Estimación Coeficiente Estático				
Mediciones	Ángulo al que se	romne la inercia [º]	Coeficiente	
	ringulo ul que se		Estático	
1	23		0,424	
2	22		0,402	
3	24		0,443	
4 22		0,402		
5	21,5		0,393	

Promedio		2	2,5		0,412
0,45					
0,44					
0,43			-/		
0,42					
0,41					
0,4					
0,39					
0,38					
0,37					
0,36	1	2	3	4	5
	S 0,424	0,402	0,443	0,402	0,393
MEDICIONE	S 0,4128	0,4128	0,4128	0,4128	0,4128
	Estimaci	ión Coefi	iciente Dinán	nico	
Mediciones	Tiemno	[s]	Aceleració	n [m/s²]	Coeficiente
wiediciones	rempt	, [2]		n [m/s]	dinámico
1	2,19	1	0,20	8	0,401
2	4,24	1	0,05	5	0,396
3	5,62	7	0,03	1	0,440
4	4,45	1	0,054		0,397
5	3,15	1	0,100		0,382
Promedio	3,932	2	0,08	9	0,403

• En la Tabla 3.7 como prueba se dispuso de una superficie base de plástico y un bloque de vidrio los cuales interactuaron obteniéndose 5 mediciones a las cuales la probeta recorre el sistema, se tiene que el valor del coeficiente de fricción estático es de 0,412; de igual forma, el coeficiente de fricción dinámico es de: 0,403.

CAPITULO IV

4.1. Conclusiones

Una vez culminado el presente trabajo de investigación se pueden efectuar las siguientes aseveraciones.

- El ángulo, distancia y tiempo son los elementos más críticos, al ser datos de entrada del sistema son muy importantes ya que influyen directamente en los datos de salida como son: aceleración, coeficiente de fricción estático y dinámico de cada material en el banco de pruebas. Mediante métodos y experimentos se pudo obtener el ángulo por medio de un graduador magnético ubicado en la superficie móvil que trabaja desde 1 grado hasta 45 grados, la distancia mediante dos regletas metálicas a los extremos donde van ubicadas las placas dando una distancia fija de 50cm, el tiempo por sensores de luz ubicados al inicio y fin de la trayectoria.
- Entre los elementos constitutivos principales del banco de pruebas se tiene a los sensores de luz que captan el tiempo en el que se mueve la probeta los cuales al ser programados en el PLC refleja en la pantalla HMI la aceleración y los coeficientes de fricción estático y dinámico, el PLC al ser la base de la programación y control del sistema es el elemento principal en el banco de pruebas por su durabilidad y funcionalidad ya que el mismo al contar con 8 entradas y 8 salidas se puede adaptar al banco de pruebas elementos extras para una mejor interpretación de resultados y errores de menor rango proporcionados actualmente en el banco de pruebas.
- Para pruebas de funcionamiento se realizaron 7 ensayos con diferentes placas base y probetas los mismos que al obtener los resultados del coeficiente de fricción estático y coeficiente de fricción dinámico se compararon con los valores de las tablas de ANEXO A, obteniendo como resultado un error absoluto máximo del 6% y un valor relativo máximo del 7,3% estos errores al

ser mínimos dan veracidad de los valores obtenidos como también de los valores que no se pudieron comparar con tablas.

4.2.Recomendaciones

Se enlistan las siguientes recomendaciones

- La construcción del banco de pruebas implica la selección de varios elementos, mismos que deber ser adquiridos con base en la aplicación que se les planea dar puesto que no se desea crear un banco de pruebas sumamente costoso que no responde a las necesidades requeridas.
- Se recomienda que, en la toma de mediciones mantener especial cuidado en la orientación de fibras que mantiene ciertos materiales, tal es el caso de la madera. También es preciso para las mediciones, considerar la preparación superficial de los materiales.
- Se recomienda generar tablas de valores de coeficientes de rozamiento entre distintos materiales, con énfasis en materiales de interés en el ámbito de la ingeniería. Además, sería adecuado distinguir entre los distintos tipos de cierto material, por ejemplo, distinguir distintos tipos de madera, distinta tipos de acero, entre otros.
- Se recomienda bajar el error absoluto y relativo por medio de materiales que sean de mayor precisión para la toma de datos.

Bibliografía

- [1] W. Castro, J. Arroyave y S. Acevedo, «DETERMINACIÓN EXPERIMENTAL DEL COEFICIENTE DE FRICCIÓN EMPLEANDO SENSORES MOVIMIENTO,» Universidad Tecnológica de Pereira, España, 2010.
- [2] D. Román y G. Chio, «Análisis de modelos de deslizamiento en bloque para predecir el comportamiento dinámico del fenómeno de remoción en masa: Modelo Uniparamétrico y Modelo Biparamétrico,» Redalyc, Colombia, 2018.
- [3] D. Vukelic, P. Todorovic, K. Simunovic, J. Miljokovic, G. Simunovic y I. Budak, «A Novel Method for Determination of Kinetic Friction Coefficient using Inclined Plane,» 2021.
- [4] A. Santos, E. Córdoba, C. Sierra y Y. Ortega, «Determination of the coefficient of dynamic friction between,» Universidad Pontificia Bolivariana,, Colombia, 2017.
- [5] M. Stembalski, P. Pres y W. Skoczynski, «Determination of the friction coefficient as a function of sliding speed and normal pressure for steel C45 and steel 40HM,» Wrocław University of Technology, 2013.
- [6] J. Youqin, «Coefficients of Friction---Static versus Dynamic,» Illinois, 2020.
- [7] E. Ramos, A. García y P. Torres, «Determinación experimental del coeficiente de fricción dinámico suelo-metal en un suelo Ferralítico rojo,» Universidad Agraria de La Habana Fructuoso, La habana, Cuba, 2012.
- [8] L. Espitia , «DETERMINACIÓN DEL COEFICIENTE DE FRICCIÓN DE DESLIZAMIENTO PARA ALGUNOS MATERIALES DE USO COMÚN EN

INGENIERÍA MEDIANTE EL MÉTODO DE LAS OSCILACIONES ARMÓNICAS,» Universidad Tecnológica de Pereira, 2013.

- [9] D. Ordoñez , «VALIDACIÓN DEL COEFICIENTE DE FRICCIÓN DINÁMICA MEDIANTE TRES PROCEDIMIENTOS PARA MATERIALES DE USO COMÚN EN INGENIERÍA,» UNiversidad Tecnológica de Pereira, Colombia, 2015.
- [10] S. Hawking, «The universe in a nutshell,» 2001.
- [11] P. Tippens, «Física conceptos y aplicaciones,» Universidad Nacional Autónoma de México, México, 2017.
- [12] A. N. y. F. Dominguez., Metodos numericos aplicados a la ingenieria, Mexico, 2014.
- [13] A. Pendrill, «Understanding acceleration: An interplay between different mathematics and physics representations,» Journal of Physics, 2019.
- [14] E. Balestrieri, P. Daponte, L. De Vito y F. Picareiello, «Research trends and challenges on DAC testing,» Università degli Studi del Sannio, 2020.
- [15] R. Serway y C. Vuille, «Fundamentos de física,» México, 2016.

Anexos

Anexo A: Tablas coeficientes de fricción

	μ_s	$oldsymbol{\mu}_k$
Acero sobre acero	0.74	0.57
Aluminio sobre acero	0.61	0.47
Cobre sobre acero	0.53	0.36
Caucho sobre concreto	1.0	0.8
Madera sobre madera	0.25 - 0.5	0.2
Vidrio sobre vidrio	0.94	0.4
Madera encerada sobre nieve húmeda	0.14	0.1
Madera encerada sobre nieve seca		0.04
Metal sobre metal (lubricada)	0.15	0.01
Hielo sobre hielo	0.1	0.00
Teflón sobre teflón	0.04	0.03
Uniones sinoviales en humanos	0.01	0.004

Coeficientes de fricción^a

odos los valores son aproximados.

Coeficientes aproximados de fricción

Material	μ_{s}	$oldsymbol{\mu}_k$
Madera sobre madera	0.7	0.4
Acero sobre acero	0.15	0.09
Metal sobre cuero	0.6	0.5
Madera sobre cuero	0.5	0.4
Caucho sobre concreto seco	0.9	0.7
Caucho sobre concreto mojado	0.7	0.57

Anexo B: Tabla para toma de datos

AD TECNICA	UNIVERSIDAD	0		
AMB 40 TO	FACULTAD DE INGE			
3.8 0	CARRERA DE IN	NGENIERÍA MECÁNICA		
	Ficha de toma de c	latos experimentales		
	Datos g	generales		
Nombre:				
Fecha de ensayo				
	Tercera c	ombinación		
Valor aspira	do ANEXO A	$\mu_e =$		
v alul aspil aud ANEAU A		$\mu_d =$		
Características	de la superficie	Características del cuerpo		
Material base		Material de la probeta		
	Estimación Co	eficiente Estático		
		1	Coeficiente	
Mediciones	Angulo al que se rompe la inercia [°]		Estático	
1				
2				
3				
4				

5				
Promedio				
Error	absoluto:	Error relat	ivo:	
	Poner	grafico		
	Estimación Coe	ficiente Dinámico		
Mediciones	Tiempo [s]	Aceleración [m/s ²]	Coeficiente	
			dinámico	
Promedio				
Error absoluto: Error relativo:				
Poner grafico				
	Interpretación	de los resultados		

Anexo C: Diagrama Eléctrico

Anexo D: Planos del Diseño

310,4	В
	С
	D
2LÁSTICO 9 22.6 g	
CAUCHO 8 17.1 g	
ASIM A36 / 3909.8 g	
PLÁSTICO 5 12.4 g	
ASTM A36 4 243.7 g	
UCOBOND 3 780 g	
ASTM A36 2 2787.2 g	
UCOBOND 1 756 g Material Nº.del e ord. Nº.del modelo Peso Observacio	ones
ASTM A36	
TÍTULO: IFSCAL	A:
BANCO DE PRUEBA	1:5
No. Lámina: REGIS	IRO:
(Sustitución)	\oplus
	I

8

А

7	8
	A
	В
	С
	D
-	E
ASTM A36	
ESTRUCTURA SUPE	RIOR 1:5
No. Lámina: 1 DE 6 (Sustitución)	REGISTRO:

	7 8	
	N7	A
	380	В
		с
		D
		E
Ν	ASTM A36	
	ITULO: BASE	ESCALA: 1:5
N (lo. Lámina: 2 DE 6 Sustitución)	REGISTRO:

