UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

MAESTRIA EN INGENIERÍA CIVIL

Tema: "DESEMPEÑO DE ESTRUCTURA METÁLICA MEDIANTE ANÁLISIS DINÁMICO CON ACELEROGRAMAS AJUSTADOS CON ESPECTRO MEDIO CONDICIONAL (CMS)"

Trabajo de titulación Previo a la obtención del grado académico de Magister en Ingeniería Civil con Mención en Estructuras Metálicas

Modalidad de titulación: Proyecto de Titulación con Componentes de Investigación Aplicada y/o de Desarrollo

Autor: Ing. Christian Danilo Pérez Galarza

Director: Ing. Diego Sebastián Chérrez Gavilanes, Mg.

Ambato - Ecuador

2022

APROBACIÓN DEL TRABAJO DE TITULACIÓN

A la Unidad Académica de Titulación de la Facultad de Ingeniería Civil y Mecánica.

El Tribunal receptor de la Defensa del Trabajo de Titulación presidido por Ing. Wilson Santiago Medina Robalino, Mg., e integrado por los señores: Ing. Wladimir José Ramírez Cabrera, Mg. e Ing. Maritza Elizabeth Ureña Aguirre, MsC., designados por la Unidad Académica de Titulación de la Facultad de Ingeniería Civil y Mecánica de la Universidad Técnica de Ambato, para receptar el Trabajo de Titulación con el tema: "DESEMPEÑO DE **METÁLICA** ANÁLISIS DINÁMICO **ESTRUCTURA** MEDIANTE CON ACELEROGRAMAS AJUSTADOS CON ESPECTRO MEDIO CONDICIONAL (CMS)". elaborado y presentado por el Ing. Christian Danilo Pérez Galarza, para optar por el Grado Académico de Magister en Ingeniería Civil con Mención en Estructuras Metálica; una vez escuchada la defensa oral del Trabajo de Titulación el Tribunal aprueba y remite el trabajo para uso y custodia en las bibliotecas de la Universidad Técnica de Ambato.

Ing. Wilson Santiago Medina Robalino, Mg. Presidente y Miembro del Tribunal de Defensa

Ing. Wladimir José Ramírez Cabrera, Mg. Miembro del Tribunal de Defensa

Ing. Maritza Elizabeth Ureña Aguirre, MsC. Miembro del Tribunal de Defensa

AUTORÍA DEL TRABAJO DE TITULACIÓN

La responsabilidad de las opiniones, comentarios y críticas emitidas en el Trabajo de Titulación presentado con el tema: "DESEMPEÑO DE ESTRUCTURA METÁLICA MEDIANTE ANÁLISIS DINÁMICO CON ACELEROGRAMAS AJUSTADOS CON ESPECTRO MEDIO CONDICIONAL (CMS)", le corresponde exclusivamente a: Ing. Christian Danilo Pérez Galarza, autor bajo la Dirección del Ing. Diego Sebastián Chérrez Gavilanes, Mg., Director del Trabajo de Investigación; y el patrimonio intelectual a la Universidad Técnica de Ambato.

Ing. Christian Danilo Pérez Galarza **AUTOR**

Ing. Diego Sebastián Chérrez Gavilanes, Mg. DIRECTOR

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que el Trabajo de Titulación, sirva como un documento disponible para su lectura, consulta y procesos de investigación, según las normas de la Institución.

Cedo los Derechos de mi Trabajo de Titulación, con fines de difusión pública, además apruebo la reproducción de este, dentro de las regulaciones de la Universidad Técnica de Ambato.

Ing. Christian Danilo Pérez Galarza C.C. 180448621-3

INDICE GENERAL

CONTENIDO

APROBACIÓN DEL TRABAJO DE TITULACIÓN	ii
AUTORÍA DEL TRABAJO DE TITULACIÓN	iii
DERECHOS DE AUTOR	iv
ÍNDICE DE TABLAS	viii
ÍNDICE DE FIGURAS	ix
AGRADECIMIENTO	xi
DEDICATORIA	xii
RESUMEN EJECUTIVO	xiii
EXECUTIVE SUMMARY	XV
CAPÍTULO I	1
EL PROBLEMA DE INVESTIGACIÓN	1
1.1. Introducción	1
1.2. Justificación	2
1.3. Objetivos	
1.3.1. General	
1.3.2. Específicos	
ANTECEDENTES INVESTIGATIVOS	
2.1. Fundamentación Teórica	5
2.1.1. FALLAS GEOLÓGICAS	5
2.1.1.1. TIPOS DE FALLAS GEOLÓGICAS	5
2.1.2. PELIGRO SÍSMICO	5
2.1.2.1. PELIGRO SÍSMICO DETERMINISTA	б
2.1.2.2. PELIGRO SÍSMICO PROBABILISTA	б
2.1.3. ESPECTRO DE DISEÑO	6
2.1.4. ESPECTRO DE RESPUESTA	7
2.1.5. MAGNITUD DE MOMENTO (Mw)	
2.1.6. DETERMINACIÓN DE LA DISTANCIA FUENTE – SIT	IO 8
2.1.7. EFECTOS DE SITIO	9
2.1.8. MODELOS DE ATENUACIÓN	
2.1.8.1. GMPE DE MONTALVA	
2.1.9. ESPECTRO MEDIO CONDICIONAL (CMS)	

2.1.9.1 PROCEDIMIENTO PARA CALCULAR CMS	
2.1.10. ESCALAMIENTO DE REGISTROS SÍSMICOS	15
2.1.10.1. PROCEDIMIENTO PARA ESCALAR REGISTROS SÍSMICOS	
2.1.11. NIVELES DE DESEMPEÑO	16
2.1.11.1 NIVELES DE DESEMPEÑO NEC	
2.1.11.2 NIVELES DE DESEMPEÑO VISION 2000	
2.1.11.3 NIVELES DE DESEMPEÑO FEMA 356	
2.1.11.4 NIVELES DE AMENAZA SÍSMICA	17
2.1.12. MODELO HISTERÉTICO	17
CAPITULO III	19
MARCO METODOLÓGICO	19
3.1. Ubicación	19
3.2. Equipos y materiales	19
3.3. Tipo de investigación	19
3.4. Prueba de Hipótesis - pregunta científica – idea a defender	19
3.4.1. Variable independiente	20
3.4.2. Variable dependiente	20
3.5. Población o muestra:	20
3.6. Recolección de información:	20
3.8. Variables respuesta o resultados alcanzados	
CAPITULO IV	22
RESULTADOS Y DISCUSIÓN	22
4.1. Estudio de Peligro Sísmico	22
4.1.1. SELECCIÓN DE FALLAS GEOLÓGICAS	22
4.1.2. CÁLCULO DE LA MAGNITUD DE MOMENTO	25
4.1.3. CÁLCULO DE LA VELOCIDAD DE ONDA DE CORTE	
4.1.4. DETERMINACIÓN DEL TIPO DE PERFIL DEL SUELO	27
4.2. DETERMINACIÓN DEL GMPE	29
4.2.1. Cálculo de la distancia hipocentral (Rhyp)	29
4.2.2. Determinación de la magnitud de momento (M)	30
4.2.3. Determinación del factor I	30
4.2.4. Determinación de la profundidad hipocentral (Zh)	30
4.2.5. Determinación del factor F_FABA	30
4.2.6. Determinación de la velocidad de onda de corte (Vs30)	30

4.2.7. Gráfica del GMPE	. 30
4.3. DETERMINACIÓN DEL ESPECTRO MEDIO CONDICIONAL (CMS)	. 31
4.3.1. Cálculo de épsilon	. 31
4.3.2. Cálculo de los factores de correlación	. 32
4.3.3. Cálculo de épsilon en los demás períodos	. 32
4.3.3. Obtener la gráfica del CMS	. 33
4.4. ESCALAMIENTO DE REGISTROS SÍSMICOS	. 34
4.5. PÓRTICO EN ESTUDIO	. 37
4.5.1. Cargas a soportar de la estructura	. 38
4.5.2. Diseño de la Viga	39
4.5.3. Diseño de la Viga	42
4.5.4. Espectro de la NEC 2015	. 44
4.5.5. Cálculo de la aceleración espectral	49
4.6. MODELADO EN SOFTWARE	. 50
4.7. ANÁLISIS DINÁMICO NO LINEAL	. 57
4.7.1. Comparación sismo Pedernales (estación AMNT) NEC vs CMS	. 57
4.7.1.1. Nivel de desempeño	. 60
4.7.2. Comparación sismo Christchurch (NEC) vs sismo Cumandá (ABAB) (CM	4S).
	. 60
4.7.1.2. Nivel de desempeño	. 63
4.7.3. Comparación sismo Parkfield (NEC) vs sismo Perú (ALJ1) (CMS)	64
4.7.3.1. Nivel de desempeño	67
CAPÍTULO V	68
CONCLUSIONES, RECOMENDACIONES, BIBLIOGRAFÍA Y ANEXOS	68
5.1. Conclusiones	68
5.2. Recomendaciones	70
5.3. Bibliografía	70

ÍNDICE DE TABLAS

Tabla 1. Regresiones de longitud de ruptura, ancho de ruptura, área de ruptura y ma	ıgnitud
de momento	
Tabla 2. Coeficientes del modelo de Montalva	12
Tabla 3. Niveles de amenaza sísmica	17
Tabla 4. Puntos en estudio georreferenciados	22
Tabla 5. Resumen de datos de los puntos en estudio	
Tabla 6. Velocidad de onda de corte en el punto 1	
Tabla 7. Velocidad de onda de corte en el punto 2	
Tabla 8. Velocidad de onda de corte en el punto 3	27
Tabla 9. Velocidad de onda de corte en el punto 4	27
Tabla 10. Velocidad de onda de corte en el punto 5	27
Tabla 11. Clasificación de los perfiles de suelo	27
Tabla 12. Vector de períodos y factor de peso	35
Tabla 13. Factor de escala de cada sismo con respecto a la NEC	35
Tabla 14. Resumen de los factores de escalamiento con respecto a la NEC	36
Tabla 15. Factor de escala de cada sismo con respecto al CMS	36
Tabla 16. Resumen de los factores de escalamiento con respecto al CMS	37
Tabla 17. Sobrecargas mínimas uniformemente distribuidas	38
Tabla 18. Peso de los detallado	39
Tabla 19. Elementos a compresión con miembros sometidos a flexión	41
Tabla 20. Elementos sometidos a compresión axial	43
Tabla 21. Valores del factor Z en función de la zona sísmica adoptada	44
Tabla 22. Coeficientes para el tipo de edificio	44
Tabla 23. Tipo de uso, destino e importancia de la estructura	45
Tabla 24. Coeficiente R para sistemas estructurales dúctiles	46
Tabla 25. Factor usado en el espectro de diseño elástico	46
Tabla 26. Coeficiente R, relación de amplificación espectral	46
Tabla 27. Tipo de suelo y factores de sitio	47
Tabla 28. Tipo de suelo y factores de sitio	47
Tabla 29. Tipo de suelo y factores del comportamiento inelástico del subsuelo	48
Tabla 30. Coeficientes de configuración en planta	48
Tabla 31. Cálculo del espectro sísmico elástico según la NEC - 2015	49

Tabla 32. Modos de participación de la masa	51	1
--	----	---

ÍNDICE DE FIGURAS

Figura 1. Tipos de fallas geológicas	5
Figura 2. Espectro sísmico elástico de aceleraciones que representa el sismo de diseño	7
Figura 3. Espectro elástico de diseño y espectros de respuesta	7
Figura 4. Distancia Fuente – Sitio	9
Figura 5. Niveles de desempeño estructural	. 17
Figura 6. Ciclo de histéresis: Comportamiento lineal y no lineal	. 18
Figura 7. Principales fallas geológicas del Ecuador	. 22
Figura 8. Puntos en estudio de la parroquia huachi loreto	. 23
Figura 9. Falla tectónica de subducción	. 23
Figura 10. Falla tectónica Huachi	. 24
Figura 11. Falla tectónica Ambato	. 24
Figura 12. Falla tectónica Totoras	. 24
Figura 13. Falla tectónica Samanga	. 25
Figura 14. Distancia hipocentral	. 29
Figura 15. Predicción de movimiento del suelo en la parroquia Huachi Loreto	. 31
Figura 16. Valores de Sa del UHS y GMPE en el período de interés	. 31
Figura 17. Espectro medio condicional en escala logarítmica	. 34
Figura 18. Espectro medio condicional para Huachi Loreto	. 34
Figura 19. Espectro escalado para el análisis tiempo-historia con respecto a la NEC	. 36
Figura 20. Espectro escalado para el análisis tiempo-historia con respecto a la NEC	. 37
Figura 21. Pórtico en estudio	. 38
Figura 22. Viga a ser analizada	. 39
Figura 23. Fuerzas aplicadas, diagrama de momentos y carga axial	. 40
Figura 24. Viga a ser analizada	. 42
Figura 25. Zonas sísmicas de Ecuador	. 45
Figura 26. Espectro sísmico elástico según la NEC – 2015	. 50
Figura 27. Grados de libertad a analizarse	. 50
Figura 28. Secciones y cargas asignadas	. 51
Figura 29. Creación de rótulas plásticas con fibras	. 52
Figura 30. Asignación de rótulas plásticas al 5% de su longitud desde el extremo	. 52
Figura 31. Asignación de rótulas plásticas con fibras en vigas y columnas	. 53

Figura 32. Sismo para el análisis tiempo – historia	53
Figura 33. Rampa gravitacional	54
Figura 34. Caso de carga "gravitacional" asignando la rampa creada	54
Figura 35. Coeficientes de amortiguamiento en el caso de carga "gravitacional"	55
Figura 36. Caso de carga "TH2" asignando la aceleración del sismo	56
Figura 37. Coeficientes de amortiguamiento en el caso de carga "TH2"	56
Figura 38. Puntos de desempeño en el pórtico con respecto a la NEC y CMS	57
Figura 39. Parámetros combinados de respuesta de la estructura (NEC vs CMS)	58
Figura 40. Comportamiento de la rótula C1H5 con respecto a la NEC y CMS	58
Figura 41. Comportamiento de la rótula B1H5 con respecto a la NEC y CMS	59
Figura 42. Desplazamiento del punto A en el piso 3 con respecto a la NEC y CMS	59
Figura 43. Nivel de desempeño con respecto a la NEC y CMS	60
Figura 44. Puntos de desempeño en el pórtico con respecto a la NEC y CMS	61
Figura 45. Parámetros combinados de respuesta de la estructura (NEC vs CMS)	61
Figura 46. Comportamiento de la rótula C1H5 con respecto a la NEC y CMS	62
Figura 47. Comportamiento de la rótula B1H4 con respecto a la NEC y CMS	63
Figura 48. Desplazamiento del punto A en el piso 3 con respecto a la NEC y CMS	63
Figura 49. Nivel de desempeño con respecto a la NEC y CMS	64
Figura 50. Puntos de desempeño en el pórtico con respecto a la NEC y CMS	64
Figura 51. Parámetros combinados de respuesta de la estructura (NEC vs CMS)	65
Figura 52. Comportamiento de la rótula C1H5 con respecto a la NEC y CMS	66
Figura 53. Comportamiento de la rótula B1H5 con respecto a la NEC y CMS	66
Figura 54. Desplazamiento del punto A en el piso 3 con respecto a la NEC y CMS	67
Figura 55. Nivel de desempeño con respecto a la NEC y CMS	67

AGRADECIMIENTO

A Agradezco primeramente a Dios por darme la sabiduría de escoger esta hermosa carrera y culminar mi maestría.

Agradezco a mi familia, pero sobre todo a mis padres. Esto es por y para ustedes, los amo

De forma especial a mi hermana, Stefanny Pérez, que gracias a su conocimiento y predisposición fue un aporte fundamental para completar este proyecto. Te amo ñañita.

A la Ing. Betzabeth Suquillo, quien en primera instancia como tutora supo guiarme y a la distancia apoyarme.

Al Ing. Christian Medina, quien a través de su amplio conocimiento y sabiduría contribuyó a la culminación de este estudio.

Al Ing. Andrés Abril, amigo y compañero de aulas de pregrado, supo aportar con su buena voluntad y conocimientos.

Finalmente, a mi tutor, Ing. Diego Chérrez, quien siempre estuvo pendiente para la culminación de este objetivo y gracias a su predisposición se pudo alcanzar la meta esperada.

Christian Pérez

DEDICATORIA

A mis padres, César Pérez y Maura Galarza, pilares fundamentales de mi vida, quienes desde pequeño supieron educarme y darme su amor, inculcarme valores y sobre todo apoyarme incondicionalmente en este camino largo de preparación académica.

A mi hermana, Stefanny Pérez, aunque no se encuentra presente en este momento desde lejos siempre me ha brindado su apoyo y nunca me ha dejado solo.

Christian Pérez

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS METÁLICAS

TEMA:

"DESEMPEÑO DE ESTRUCTURA METÁLICA MEDIANTE ANÁLISIS DINÁMICO CON ACELEROGRAMAS AJUSTADOS CON ESPECTRO MEDIO CONDICIONAL (CMS)"

AUTOR: Ing. Christian Danilo Pérez Galarza
DIRECTOR: Ing. Diego Sebastián Chérrez Gavilanes, Mg.
LÍNEA DE INVESTIGACIÓN: Ingeniería, Industria y Construcción
FECHA: 24 de agosto del 2022

RESUMEN EJECUTIVO

La presente investigación se lo realiza en la parroquia de Huachi Loreto de la cuidad de Ambato, partiendo como primer punto, el identificar las fallas geológicas cercanas a este sitio de estudio que puedan contribuir a generar un evento sísmico que afecte a las estructuras de la zona. Mediante fórmulas empíricas se obtuvo el valor de la velocidad de onda de corte en base a valores calculados, propios del sitio, como la longitud de la falla, distancia fuente – estudio, profundidad focal, magnitud de momento esperado, y valores del número de golpes del ensayo SPT realizado in situ. Esta velocidad de onda de corte permite determinar el tipo de suelo que existe en la zona de acuerdo a los rangos establecidos por la Norma ecuatoriana de la construcción (NEC 2015).

Posteriormente se eligió un modelo de atenuación (Montalva) que permite determinar, aplicando ciertas ecuaciones denominadas GMPEs (ecuaciones de predicción de movimiento del suelo), un posible comportamiento del suelo en base a datos complementarios a los ya mencionados propios del sitio como la distancia y profundidad hipocentral. A partir de la gráfica del GMPE y el espectro de amenaza uniforme (UHS) y aplicando ciertas ecuaciones determinadas en el modelo de Bakker, se logró obtener el espectro medio condicional (CMS).

La utilización de este espectro permitió hacer una comparación del comportamiento de una estructura metálica propuesta en este estudio, con respecto al espectro elástico que impone la NEC. Esta comparación se lo realizó en base a los resultados que brinda el análisis dinámico no lineal (tiempo – historia), a través del cual se determinó el desempeño de la misma estructura sometida a eventos sísmicos escalados con respecto al CMS y al espectro de la NEC.

Se obtuvo como resultado que la demanda sísmica que produce el espectro de la NEC es mayor a la que produce el CMS, puesto que las aceleraciones pseudoespectrales tienen una gran diferencia entre dichos espectros, es por ello que, los desplazamientos y derivas máximas se reducen en un 65 por ciento aproximadamente aplicando el CMS en la presente investigación.

Descriptores: Aceleración pseudoespectral, Acelerograma, Análisis no lineal, CMS, Demanda sísmica, Espectro de diseño, Espectro de Respuesta, GMPE, NEC, UHS.

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS METÁLICAS

THEME:

" PERFORMANCE OF METALLIC STRUCTURE THROUGH DYNAMIC ANALYSIS WITH ACCELEROGRAMS ADJUSTED WITH CONDITIONAL MEAN SPECTRUM (CMS)"

AUTHOR: Ing. Christian Danilo Pérez Galarza
DIRECTED BY: Ing. Diego Sebastián Chérrez Gavilanes, Mg.
LINE OF RESEARCH: Engineering, Industry and Construction
DATE: August 24, 2022

EXECUTIVE SUMMARY

The present investigation is carried out in Huachi Loreto in Ambato city, starting as a first point, to identify the geological faults near this study site that can contribute to generate a seismic event that affects the structures in the area. Using empirical formulas, the value of the shear wave velocity was obtained based on calculated values, specific to the site, such as the length of the fault, source - study distance, focal depth, expected moment magnitude, and values of the number of blows of the SPT test performed in situ. This shear wave velocity allows determining the type of soil existing in the area according to the ranges established by the Ecuadorian Construction Standard (NEC 2015).

Subsequently, an attenuation model was chosen (Montalva) that allows to determine, by applying certain equations called GMPEs (ground motion prediction equations), a possible behavior of the soil based on complementary data to those already mentioned specific to the site such as distance and hypocentral depth. From the GMPE graph and the uniform hazard spectrum (UHS) and applying certain equations determined in the Bakker model, the conditional mean spectrum (CMS) was obtained.

The use of this spectrum allowed a comparison of the behavior of a metallic structure proposed in this study, with respect to the elastic spectrum imposed by the NEC. This

comparison was made on the basis of the results provided by the nonlinear dynamic analysis (time-history), through which the performance of the same structure subjected to scaled seismic events was determined with respect to the CMS and the NEC spectrum.

It was obtained as a result that the seismic demand produced by the NEC spectrum is greater than that produced by the CMS, since the pseudospectral accelerations have a great difference between these spectra, which is why the maximum displacements and drifts are reduced by approximately 65 percent by applying the CMS in the present investigation.

Keywords: Pseudospectral acceleration, Accelerogram, Nonlinear analysis, CMS, Seismic demand, Design spectrum, Response spectrum, GMPE, NEC, UHS.

CAPÍTULO I EL PROBLEMA DE INVESTIGACIÓN

1.1. Introducción

El Cinturón de Fuego del Pacífico, situado en las costas del océano Pacífico, se caracteriza por concentrar algunas de las zonas de subducción más importantes del mundo, lo que ocasiona una intensa actividad sísmica. Ecuador se encuentra dentro de los países que pertenecen a este grupo. Dentro del país existen varias fallas geológicas, siendo una de las más importantes la ubicada en el cantón Pelileo de la provincia de Tungurahua.

Ecuador es considerado un país de alta sismicidad debido a su ubicación geográfica, prueba de ello son los eventos sísmicos que se han dado a lo largo de historia, siendo uno de los más recientes y representativos el sismo ocurrido en el 2016 con epicentro en Pedernales, el cual alcanzó una magnitud de 7.8 en la escala de Richter.

Las construcciones actuales en el país se diseñan en base a la Norma Ecuatoriana de la Construcción, sin embargo, la NEC es elaborada a partir de normativas extranjeras debido a que los estudios acerca del tema en el país son escasos.

El espectro de riesgo uniforme (UHS) utilizado en Ecuador, dado por la NEC 2015 se muestra como un objetivo inadecuado, ya que implica conservadoramente que los valores espectrales de gran amplitud ocurrirán en todos los períodos dentro de un solo movimiento del suelo [1].

Teniendo como referencia el mismo nivel de aceleración espectral (Sa), las respuestas estructurales de los movimientos del suelo que coinciden con el Espectro de Riesgo Uniforme (UHS), son significativamente más grandes que las respuestas de los movimientos del suelo que coinciden con el Espectro Medio Condicional (CMS).

El Espectro Medio Condicional (CMS) logra una coherencia entre el análisis probabilístico de peligro sísmico (PSHA) y la selección del movimiento del suelo. Esto permite hacer declaraciones cuantitativas sobre la probabilidad de observar los niveles de respuesta estructural obtenidos de análisis dinámicos que utilizan este espectro; por el contrario, el Espectro de Riesgo Uniforme (UHS) no permite tales declaraciones [1].

1.2. Justificación

El Ecuador se encuentra dentro del denominado Cinturón de Fuego del Pacífico, zona calificada de alto riesgo sísmico, por lo cual ha experimentado varios terremotos importantes a lo largo de la historia.

La Norma Ecuatoriana de la Construcción exige la utilización de un espectro elástico, el cual muestra la aceleración máxima absoluta de la vibración a la que estaría sometida una estructura en un evento sísmico que tiene una probabilidad del 10% de excedencia en 50 años. Este espectro entrega las aceleraciones espectrales para distintos valores de periodo las cuales presentan la misma probabilidad de excedencia, dado un periodo de retorno [2].

El Espectro Medio Condicional (CMS) propuesto en esta investigación, estará ajustado a una aceleración espectral para un período en particular, determinando las aceleraciones espectrales en los otros períodos a través de factores de correlación [3].

El análisis probabilístico de peligro sísmico (PSHA) y la selección del movimiento del suelo se reflejan coherentemente relacionados en el Espectro Medio Condicional (CMS). Esto permite estimar valores cercanos a la realidad sobre la probabilidad de observar los niveles de respuesta estructural obtenidos de análisis dinámicos a partir del uso de este espectro; a diferencia del Espectro de Riesgo Uniforme (UHS) que no permite tales estimaciones.

Las respuestas estructurales de los movimientos del suelo que coinciden con el Espectro Medio Condicional (CMS) más probabilísticamente consistente son significativamente más pequeñas que las respuestas de los movimientos del suelo que coinciden con el Espectro de Riesgo Uniforme (UHS), teniendo como referencia el mismo nivel de aceleración espectral (Sa) [1].

La presente investigación busca presentar varios argumentos sobre por qué el Espectro Medio Condicional (CMS) es un procedimiento útil para la selección del movimiento del suelo, mostrándose como alternativa del Espectro de Riesgo Uniforme (UHS) en el análisis dinámico de estructuras con resultados más cercanos a la realidad.

1.3. Objetivos

1.3.1. General

Analizar el desempeño de una estructura metálica mediante análisis dinámico con Acelerogramas ajustados con un Espectro Medio Condicional (CMS)

1.3.2. Específicos

- Determinar factores de correlación necesarios para la generación del Espectro Medio Condicional (CMS) para la ciudad de Ambato.
- Establecer la metodología más adecuada que permita obtener el Espectro Medio Condicional (CMS) para la ciudad de Ambato.
- Analizar el comportamiento de la estructura dentro del rango no lineal empleando los acelerogramas generados con un Espectro Medio Condicional (CMS).
- Comparar los resultados obtenidos en base a la utilización Espectro Sísmico Elástico que nos brinda la NEC y el Espectro Medio Condicional (CMS).

CAPITULO II

ANTECEDENTES INVESTIGATIVOS

Según Jack W. Baker analiza: "La utilización del espectro medio condicional (CMS) como una alternativa a la utilización del espectro de riesgo uniforme (UHS) comúnmente utilizado para el análisis estructural dinámico de una estructura. El cálculo de CMS requiere solo modelos de movimiento del suelo existentes y resultados de PSHA (análisis probabilístico de riesgo sísmico). Primero se procede a determinar el Sa (aceleración espectral) objetivo en un período dado, a continuación, se calcula la desviación media y estándar de los valores logarítmicos de la aceleración espectral en todos los períodos, para finalmente obtener el espectro medio condicional (CMS) aplicando una serie de ecuaciones complementarias. Los estudios sugieren que el impacto de utilizar el CMS (en lugar del UHS u otro espectro similar) varía según las características de la estructura que se analiza, la sismicidad de la región considerada y el nivel de probabilidad. El resultado es que CMS se puede utilizar como un espectro objetivo para la selección del movimiento del suelo cuando se realiza un análisis dinámico de estructuras [1].

Según Kun Ji, Najib Bouaanani, Ruizhi Wen y Yefei Ren analizan: "La implementación del espectro medio condicional (CMS) y el espectro condicional (CS) como los principales parámetros de entrada en la práctica de la evaluación de la seguridad sísmica (SSE) en China, en lugar del espectro uniforme de peligrosidad utilizado actualmente (UHS). Se utilizó dos tipos de coeficientes de correlación para generar CMS y los resultados se compararon en un rango de período de vibración de interés. Los registros de movimiento del suelo se seleccionaron de las bases de datos NSMONS (Sistema Nacional de Red de Observación de Movimientos Fuertes) (2007–2015) y PEER NGA-West2 para que se correspondan con el CMS y CS objetivo. Finalmente se verifica la consistencia de riesgo de las aceleraciones espectrales de los movimientos del suelo seleccionados condicionados en varios períodos. Como resultado se validó la consistencia del peligro de las aceleraciones espectrales de los registros seleccionados para los sitios estudiados [4].

Según Radu Vacareanu, Mihail Iancovici y Florin Pavel analizan: "La determinación del método para la ciudad de Bucarest para obtener el espectro medio condicional (CMS) y seleccionar un conjunto de bases sólidas, para realizar análisis dinámicos elásticos e inelásticos de edificios y estructuras con períodos fundamentales de vibración en las

proximidades de 1.0 s. La ecuación de predicción del movimiento del suelo desarrollada para terremotos de tipo subducción y condiciones del suelo se utiliza para el cálculo del Espectro de Peligro Uniforme (UHS) y el Espectro Medio Condicional (CMS). El resultado obtenido es que el CMS desarrollado, así como los fuertes movimientos del suelo seleccionados, proporcionarán una herramienta muy útil para los análisis dinámicos elásticos e inelásticos [5].

2.1. Fundamentación Teórica

2.1.1. FALLAS GEOLÓGICAS

Una falla geológica se define como una deformación discontinua usualmente plana, formada producto de la fractura de grandes bloques de roca, y observada en un segmento de la corteza terrestre que tiene cierto desplazamiento.

2.1.1.1. TIPOS DE FALLAS GEOLÓGICAS

Existen diferentes tipos de fallas, dependiendo del movimiento relativo que tengan una con respecto a la otra, de las cuales se clasifican en: fallas verticales, fallas horizontales y fallas oblicuas. Las fallas verticales se dividen en fallas inversas y normales, las cuales son las más comunes junto con las fallas transformantes [6].

Figura 1. Tipos de fallas geológicas **Fuente:** Geotecnia fácil (Definición y tipos fallas geológicas)

2.1.2. PELIGRO SÍSMICO

El objetivo de analizar el peligro sísmico de una zona es predecir la probabilidad de excedencia de un fenómeno físico, dentro de período de tiempo y región específica, como

consecuencia del movimiento del suelo, cuyos parámetros de aceleración, velocidad, desplazamiento, magnitud e intensidad son cuantificados [2].

2.1.2.1. PELIGRO SÍSMICO DETERMINISTA

Es representativo de la mayor intensidad sísmica que es razonable esperar que ocurra en un sitio específico, basándose en terremotos históricos que lo han afectado, definido en términos de intensidad, valores espectrales y espectros de respuesta [7].

2.1.2.2. PELIGRO SÍSMICO PROBABILISTA

Corresponde al terremoto con una probabilidad de ocurrencia del 10% en 50 años, o en términos de intervalos de recurrencia, lo que equivale a un sismo con un período de retorno de 475 años, definido en términos de intensidad, valores espectrales y espectros de respuesta. Este terremoto característico es frecuentemente utilizado en diseño sísmico y en análisis de riesgo [7].

2.1.3. ESPECTRO DE DISEÑO

Los espectros de diseño propuestos para el análisis dinámico estructural, se construyen a partir de una serie de espectros de respuesta calculados para un sitio específico, representativos de la respuesta de estructuras sometidas al ambiente sísmico que afecta a la región y tomando en cuenta el efecto de amplificación local [8].

Por lo general los espectros de diseño se obtienen del estudio estadístico de registros sísmicos, que por su naturaleza propia no pueden ser iguales, esto conduce a que se tengan que normalizar de alguna manera; para lo cual existen diferentes procedimientos, dentro de los que se destacan la normalización respecto de una intensidad espectral y la normalización en relación con algunos de los "parámetros máximos del terreno", ya sea aceleración, velocidad o desplazamiento [9].

En este proceso se incluye el efecto de sobre resistencia en función del tipo de estructura proyectada. Los espectros de diseño se construyen para valores de amortiguamiento estructural distintos al 5%, bajo comportamiento no lineal estructural, con sobre resistencia y considerando explícitamente el efecto de la interacción dinámica suelo-

cimentación-estructura, dando como resultado un gráfico suavizado del nivel de fuerza o deformación como una función del periodo natural de vibración y el amortiguamiento [8].

Para el cálculo del espectro de diseño en sitios en particular que no cuenten con registros sísmicos históricos medidos, se utiliza métodos probabilísticos de estudios de amenaza sísmica.

Figura 2. Espectro sísmico elástico de aceleraciones que representa el sismo de diseño.Fuente: Norma Ecuatoriana de la Construcción (NEC) 2015.

2.1.4. ESPECTRO DE RESPUESTA

Es un gráfico irregular en el cual se representan las respuestas (aceleraciones, desplazamientos, velocidades, etc.) máximas de un oscilador de un grado de libertad, sometido a una excitación (movimiento del suelo), definiéndose también como una descripción del movimiento particular ante la acción de un sismo dado [9].

Figura 3. Espectro elástico de diseño y espectros de respuestaFuente: Alex H. Barbat (Un enfoque para evaluar la vulnerabilidad sísmica de edificio de concreto armado de baja altura)

2.1.5. MAGNITUD DE MOMENTO (Mw)

Cantidad de energía liberada producto de la ruptura en la fuente sísmica. Por lo general, la magnitud está relacionada con la longitud de ruptura de la superficie en función del tipo de deslizamiento, por lo que en este estudio, la magnitud de momento se calcula aplicando la ecuación logarítmica de Wells y Coppersmith [10].

$$Mw = a + b * \log(SRL)$$

Tabla 1. Regresiones de longitud de ruptura, ancho de ruptura, área de ruptura ymagnitud de momento.

Slip Nu		Number of	Coefficients and Standard Errors		Standard	Correlation	clation ficient Magnitude	Length/Width
Equation*	Type†	Events	<i>a</i> (sa)	b(sb)	s	,	Range	Range (km)
$\mathbf{M} = a + b * \log (SRL)$	SS	43	5.16(0.13)	1.12(0.08)	0.28	0.91	5.6 to 8.1	1.3 to 432
	R	19	5.00(0.22)	1.22(0.16)	0.28	0.88	5.4 to 7.4	3.3 to 85
	N	15	4.86(0.34)	1.32(0.26)	0.34	0.81	5.2 to 7.3	2.5 to 41
	All	77	5.08(0.10)	1.16(0.07)	0.28	0.89	5.2 to 8.1	1.3 to 432
$\log (SRL) = a + b * M$	SS	43	-3.55(0.37)	0.74(0.05)	0.23	0.91	5.6 to 8.1	1.3 to 432
_	R	19	-2.86(0.55)	0.63(0.08)	0.20	0.88	5.4 to 7.4	3.3 to 85
	N	15	-2.01(0.65)	0.50(0.10)	0.21	0.81	5.2 to 7.3	2.5 to 41
	All	77	-3.22(0.27)	0.69(0.04)	0.22	0.89	5.2 to 8.1	1.3 to 432
$\mathbf{M} = a + b * \log (\text{RLD})$	SS	93	4.33(0.06)	1.49(0.05)	0.24	0.96	4.8 to 8.1	1.5 to 350
_	R	50	4.49(0.11)	1.49(0.09)	0.26	0.93	4.8 to 7.6	1.1 to 80
	N	24	4.34(0.23)	1.54(0.18)	0.31	0.88	5.2 to 7.3	3.8 to 63
	All	167	4.38(0.06)	1.49(0.04)	0.26	0.94	4.8 to 8.1	1.1 to 350
$\log (RLD) = a + b * M$	SS	93	-2.57(0.12)	0.62(0.02)	0.15	0.96	4.8 to 8.1	1.5 to 350
	R	50	-2.42(0.21)	0.58(0.03)	0.16	0.93	4.8 to 7.6	1.1 to 80
	N	24	-1.88(0.37)	0.50(0.06)	0.17	0.88	5.2 to 7.3	3.8 to 63
	All	167	-2.44(0.11)	0.59(0.02)	0.16	0.94	4.8 to 8.1	1.1 to 350
$\mathbf{M} = a + b * \log (\mathbf{RW})$	SS	87	3.80(0.17)	2.59(0.18)	0.45	0.84	4.8 to 8.1	1.5 to 350
	R	43	4.37(0.16)	1.95(0.15)	0.32	0.90	4.8 to 7.6	1.1 to 80
	N	23	4.04(0.29)	2.11(0.28)	0.31	0.86	5.2 to 7.3	3.8 to 63
	A11	153	4.06(0.11)	2.25(0.12)	0.41	0.84	4.8 to 8.1	1.1 to 350
$\log (RW) = a + b * M$	SS	87	-0.76(0.12)	0.27(0.02)	0.14	0.84	4.8 to 8.1	1.5 to 350
	R	43	-1.61(0.20)	0.41(0.03)	0.15	0.90	4.8 to 7.6	1.1 to 80
	N	23	-1.14(0.28)	0.35(0.05)	0.12	0.86	5.2 to 7.3	3.8 to 63
	All	153	-1.01(0.10)	0.32(0.02)	0.15	0.84	4.8 to 8.1	1.1 to 350
$\mathbf{M} = a + b * \log (\mathbf{RA})$	SS	83	3.98(0.07)	1.02(0.03)	0.23	0.96	4.8 to 7.9	3 to 5,184
	R	43	4.33(0.12)	0.90(0.05)	0.25	0.94	4.8 to 7.6	2.2 to 2,400
	N	22	3.93(0.23)	1.02(0.10)	0.25	0.92	5.2 to 7.3	19 to 900
	All	148	4.07(0.06)	0.98(0.03)	0.24	0.95	4.8 to 7.9	2.2 to 5,184
$\log (RA) = a + b * M$	SS	83	~3.42(0.18)	0.90(0.03)	0.22	0.96	4.8 to 7.9	3 to 5,184
	R	43	~3.99(0.36)	0.98(0.06)	0.26	0.94	4.8 to 7.6	2.2 to 2,400
	N	22	-2.87(0.50)	0.82(0.08)	0.22	0.92	5.2 to 7.3	19 to 900
	All	148	~3.49(0.16)	0.91(0.03)	0.24	0.95	4.8 to 7.9	2.2 to 5,184

Fuente: Wells y Coppersmith (New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement)

2.1.6. DETERMINACIÓN DE LA DISTANCIA FUENTE – SITIO

Distancia existente entre el sitio de análisis y la fuente sismogénica. Los valores de aceleración son directamente proporcionales a esta distancia, ya que mientras más cerca se encuentren, dicha aceleración aumentará con tendencia logarítmica. Se denomina "campo cercano" cuando una estructura se encuentra a 10 km o menos de una falla, en ese caso el estudio de peligro sísmico es imperativo, ya que la componente vertical del sismo es considerable [11].

Las distancias que se utilizan generalmente en el estudio de peligro sísmico son las siguientes:

- R_{hyp}: Distancia al hipocentro
- R_{epi}: Distancia al epicentro
- R_{rup}: Distancia al punto más cercano de ruptura de la falla

Figura 4. Distancia Fuente – Sitio **Fuente:** Sera VA3 (Hypocentral Distance)

2.1.7. EFECTOS DE SITIO

Se puede definir como las modificaciones que sufre el movimiento sísmico debido a las irregularidades del subsuelo o a la geografía heterogénea de la superficie terrestre. El camino ascendente de las ondas elásticas en los suelos está gobernado por la velocidad de propagación de la onda de corte (Vs). El grado de amplificación de la aceleración del sismo se evalúa dentro de los primeros 30 metros.

La Vs30 está relacionada con el número de golpes obtenido en el ensayo de penetración estándar (SPT). Dicha correlación se la determinó aplicando la técnica ReMi a partir de un análisis estadístico entre 500 valores de N_{SPT}, cuyo resultado fueron ciertas ecuaciones empíricas para diferentes tipos de suelos [12]:

- Todos los tipos de suelo: $V_S = 62.6 * N_{SPT}^{0.52}$
- Arenas: $V_S = 98.69 * N_{SPT}^{0.321}$
- Arcillas: $V_S = 159.43 * N_{SPT}^{0.344}$

2.1.8. MODELOS DE ATENUACIÓN

Es un modelo estadístico que busca predecir la intensidad en la superficie a través de ciertas ecuaciones de predicción de movimiento del suelo (GMPE) que estiman parámetros de aceleración, velocidad y desplazamiento máximo esperado del suelo en un sitio especifico de estudio, frente a un sismo de magnitud y distancia conocida, y son desarrollados para diferentes regiones tectónicas (regiones corticales, zonas de subducción, entre otras). Estas ecuaciones son uno de los componentes esenciales del análisis probabilístico de riesgo sísmico (PSHA), cuya atenuación muestra el grado que se reducen las ondas sísmicas en su recorrido en la corteza terrestre [13].

2.1.8.1. GMPE DE MONTALVA

Se desarrolla una ecuación de predicción del movimiento del suelo para la componente horizontal de los valores de respuesta espectral de la zona de subducción. El conjunto de datos contiene 3774 registros de 473 terremotos suscitados en Chile entre 1985 y 2015, medidos en 178 estaciones diferentes. Esta gran base de datos permite una caracterización adecuada de los parámetros de atenuación, escalamiento de magnitud y respuesta. Los efectos de sitio se estiman en base a Vs30 y Mw. Los parámetros de movimiento del suelo predichos por este modelo son la aceleración máxima del suelo (PGA, en g) y el espectro de respuesta de pseudoaceleración amortiguada al 5% (en g) hasta un período de 10s [14].

El modelo se describe en las siguientes ecuaciones:

$$\mu(Z|\theta) = \ln SA(T)$$

= $\theta_1 + f_{source} + f_{path} + f_{event/depth} + f_{site} + f_{FABA}$ (1)

$$f_{source} = \theta_4 \Delta C_1 + f_{mag}(M_w) \tag{2}$$

$$f_{mag}(M_w) = \begin{cases} \theta_4 (M_w - (C_1 + \Delta C_1)) & para \ M_w \le C_1 + \Delta C_1 \\ \theta_5 (M_w - (C_1 + \Delta C_1)) & para \ M_w > C_1 + \Delta C_1 \\ f_{path} = [\theta_2 + \theta_{14} f_{event} + \theta_3 (M_w - 7.8)] * ln(R + C_4 \exp(\theta_9 (M_w - 6))) + \theta_6 R \quad (4) \end{cases}$$

$$f_{event/depth} = [\theta_{10} + \theta_{11}(\min(Z_h, 120) - 60)]f_{event}$$
(5)

$$f_{site}(PGA_{1000}, V_{s30}) = \begin{cases} \theta_{12}ln\left(\frac{V_s^*}{V_{lin}}\right) - b(PGA_{1000} + c) + b \cdot \ln\left(PGA_{1000} + c\left(\frac{V_s^*}{V_{lin}}\right)^n\right) & si V_{s30} < V_{lin} \\ \theta_{12}ln\left(\frac{V_s^*}{V_{lin}}\right) + b \ln\left(\frac{V_s^*}{V_{lin}}\right) & si V_{s30} \ge V_{lin} \end{cases}$$
(6)

$$V_s^* = \begin{cases} 1000, & si \, V_{s30} > 1000 \\ V_{s30}, & si \, V_{s30} \le 1000 \end{cases}$$
(7)

$$f_{FABA}(R) = \begin{cases} \left(\theta_7 + \theta_8 ln\left(\frac{\max(R, 85)}{40}\right)\right) F_{FABA} & para \ F_{event} = 1 \\ \left(\theta_{15} + \theta_{16} ln\left(\frac{\max(R, 100)}{40}\right)\right) F_{FABA} & para \ F_{event} = 0 \end{cases}$$

en donde $\mu(Z|\theta)$ es el modelo mediano, siendo Z la matriz que contiene todas las variables explicativas y θ los coeficientes de la regresión; SA es la aceleración espectral amortiguada al 5% o PGA en unidades de g; M_w es la magnitud del momento del terremoto; Zh es la profundidad hipocentral en kilómetros; R es la distancia fuente-sitio, que se define como la distancia más cercana al plano de ruptura (Rrup) para sismos de interfaz y la distancia hipocentral para sismos en placa (Rhyp); PGA1000 es el valor medio de PGA para un sitio con Vs30 igual a 1000m/s; f_{event} es una variable ficticia que toma el valor 1 cuando el registro es de un sismo en placa y 0 para los sismos de interfaz. El término f_{FABA} representa la escala del modelo de arco anterior a arco posterior, en el que f_{FABA} es una variable binaria igual a 1 para sitios de arco posterior y 0 para sitios de arco anterior o desconocidos. Los valores de los coeficientes ΔC_1 , θ_9 , C_4 , V_{lin} , b, c y n se adoptan directamente del modelo BC Hydro [15]. Estos se mantuvieron porque no hay datos suficientes para los efectos de sitio no lineales.

Para ajustar los datos empíricos, utilizamos una regresión de efectos mixtos no lineal, ya que, si no se incluyen todos los efectos aleatorios directamente en la regresión, se puede producir una variación en la mediana del modelo. La diferencia total (residual) entre el logaritmo natural de la aceleración espectral observada $\ln(SA_{obs})$, y la mediana de la predicción del modelo ($\mu(Z|\theta)$) se divide en tres componentes. El residual promedio para cada terremoto (δB_e), el residual promedio corregido por evento en cada estación ($\delta S2S_s$), y el residual restante, o de una sola estación (δW_0). Esto se expresa como:

$$\ln(SA_{obs}) = \mu(Z|\theta) + \delta B_e + \delta S2S_s + \delta W_0$$
(8)

en el que el residual total se descompone en un término residual de sitio a sitio normalmente distribuido con desviación estándar ($\delta S2S_S \sim N$ (0; φ_{S2S}^2)), un término residual entre terremotos ($\delta B_e \sim N$ (0; τ^2)), y componente residual de estación única ($\delta W_0 \sim N$ (0; $\varphi 2SS$)). La desviación estándar total del modelo viene dada por la raíz cuadrada de la suma de sus cuadrados $\sigma_T = \sqrt{\tau^2 + \varphi_{S2S}^2 + \varphi_{SS}^2}$ [14].

Tabla 2. Coeficientes del modelo de Montalva

Period (s)	Number of Data Points	θ_1	θ_4	θ_5	θ_2	θ_3	θ_6	θ_{14}	θ_{10}	θ_{11}	θ_{12}	τ	ϕ_{s2s}	ϕ_{ss}
0.00	3657	5.87504	0.80277	-0.33487	-1.75360	0.13125	-0.00039	-0.73080	4.53143	0.00567	1.01495	0.47462	0.56436	0.39903
0.02	3657	5.97631	0.84132	-0.28055	-1.77011	0.12246	-0.00039	-0.73869	4.57416	0.00565	1.03738	0.47632	0.57188	0.40261
0.05	3658	7.45297	1.03131	-0.03954	-2.03336	0.08332	0.00000	-0.69849	4.56071	0.00848	1.31034	0.53776	0.57850	0.39720
0.075	3656	8.04760	1.03437	-0.01295	-2.10610	0.08013	-0.00010	-0.65336	4.36639	0.00922	1.48158	0.56188	0.59937	0.38824
0.1	3652	7.76085	1.07565	0.00758	-1.99371	0.07303	-0.00079	-0.55051	3.90923	0.00630	1.65619	0.52707	0.63410	0.38365
0.15	3654	6.17192	1.17061	0.10491	-1.58654	0.05482	-0.00268	-0.42997	3.06236	0.00559	1.93944	0.50642	0.63022	0.39930
0.2	3657	4.83403	1.20531	0.17968	-1.29711	0.05250	-0.00338	-0.53088	3.50113	0.00320	2.08901	0.44619	0.61699	0.41782
0.25	3682	4.42688	1.37607	0.22912	-1.18774	0.02995	-0.00355	-0.58086	3.62816	0.00182	2.25003	0.45040	0.58609	0.43277
0.3	3673	4.57009	1.34991	0.15593	-1.24896	0.03866	-0.00245	-0.66281	3.87634	0.00213	2.28339	0.42549	0.57014	0.44123
0.4	3643	3.98311	1.37954	0.11671	-1.13377	0.04683	-0.00208	-0.72244	4.03388	0.00069	2.31409	0.42945	0.54796	0.45157
0.5	3591	4.86034	1.51950	0.18348	-1.38020	0.03822	-0.00002	-0.79644	4.31418	0.00065	2.33333	0.43334	0.49113	0.45476
0.6	3634	4.67510	1.66663	0.21968	-1.35362	0.02524	0.00000	-0.90120	4.75197	0.00087	2.23422	0.44599	0.49078	0.45219
0.75	3614	4.30862	1.85625	0.29783	-1.30800	0.00995	0.00000	-0.89829	4.70452	-0.00031	2.05217	0.46723	0.48213	0.45553
1	3685	3.57339	1.81217	0.24372	-1.23082	0.03605	0.00000	-0.87331	4.56020	-0.00101	1.63506	0.50143	0.45955	0.43828
1.5	3717	2.92216	2.03469	0.22521	-1.18750	0.02769	-0.00010	-0.94686	4.83343	0.00010	0.69338	0.51633	0.42573	0.42297
2	3648	2.39780	2.04340	0.27383	-1.16319	0.04011	-0.00033	-0.90845	4.59029	0.00109	-0.09762	0.50688	0.40179	0.40377
2.5	3583	1.64148	1.88987	0.18740	-1.06544	0.08310	-0.00121	-0.80518	4.13415	0.00035	-0.34932	0.51465	0.39825	0.38489
3	3525	1.66483	1.90504	0.13268	-1.12678	0.09404	-0.00088	-0.81689	4.18978	0.00073	-0.33270	0.50365	0.38493	0.37384
4	3283	0.90565	1.71178	0.01380	-1.07620	0.13838	-0.00062	-0.87331	4.50907	0.00084	-0.41321	0.45311	0.35579	0.37020
5	3102	0.61234	1.59359	0.06465	-1.13080	0.15259	0.00000	-0.87800	4.56386	0.00068	-0.42395	0.43900	0.34991	0.37674
6	2921	0.32672	1.69184	0.32368	-1.15/34	0.12421	0.00000	-0.88436	4.55837	0.00137	-0.38/60	0.42084	0.32048	0.37173
7.5	2780	-0.24140	1.71126	0.60252	-1.14070	0.10951	0.00000	-0.98803	5.08282	0.00167	-0.32638	0.41701	0.29895	0.36349
10	2473	-0.96314	1.6/160	0.77621	-1.09295	0.11344	0.00000	-1.05008	5.49692	-0.00070	-0.25811	0.38872	0.28454	0.361/3
													6	continued
													(communea)
														commuted)
Period (s)	σ	θ_7	$ heta_8$	θ_{15}	θ_{16}	θ_9	$\Delta C_{1, \text{interface}}$	$\Delta C_{1, \text{in-slab}}$	V_{lin}	b	n	С	C ₄	C ₁
Period (s) 0.00	σ 0.83845	θ_7 1.0988	$\theta_8 - 1.420$	θ_{15} 0.9969	$\theta_{16} - 1.000$	θ_9 0.4	$\Delta C_{1,\text{interface}}$ 0.200	$\Delta C_{1,\text{in-slab}}$ -0.300	V _{lin} 865.1	b -1.186	n 1.18	c 1.88	C ₄	C ₁ 7.2
Period (s) 0.00 0.02	σ 0.83845 0.84618	<i>θ</i> ₇ 1.0988 1.0988	θ_8 -1.420 -1.420	θ_{15} 0.9969 0.9969	θ_{16} -1.000 -1.000	$ heta_9 ext{ 0.4} ext{ 0.4} ext{ 0.4}$	$\Delta C_{1,\text{interface}}$ 0.200 0.200	$\frac{\Delta C_{1,\text{in-slab}}}{-0.300}$ -0.300	V _{lin} 865.1 865.1	<i>b</i> -1.186 -1.186	n 1.18 1.18	c 1.88 1.88		C ₁ 7.2 7.2
Period (s) 0.00 0.02 0.05	σ 0.83845 0.84618 0.88409	<i>θ</i> ₇ 1.0988 1.0988 1.2536	θ_8 -1.420 -1.420 -1.650	θ_{15} 0.9969 0.9969 1.1030	$ heta_{16}$ -1.000 -1.000 -1.180		$\Delta C_{1,\text{interface}}$ 0.200 0.200 0.200	$\Delta C_{1,in-slab}$ -0.300 -0.300 -0.300	V _{lin} 865.1 865.1 1053.5	<i>b</i> -1.186 -1.186 -1.346	n 1.18 1.18 1.18	c 1.88 1.88 1.88	C ₄ 10 10 10	C ₁ 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.075	σ 0.83845 0.84618 0.88409 0.90867	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175	θ_8 -1.420 -1.420 -1.650 -1.800	θ_{15} 0.9969 0.9969 1.1030 1.2732	θ_{16} -1.000 -1.000 -1.180 -1.360		ΔC _{1,interface} 0.200 0.200 0.200 0.200 0.200	$\Delta C_{1,in-slab}$ -0.300 -0.300 -0.300 -0.300	V _{lin} 865.1 865.1 1053.5 1085.7	<i>b</i> -1.186 -1.186 -1.346 -1.471	n 1.18 1.18 1.18 1.18 1.18	c 1.88 1.88 1.88 1.88		C ₁ 7.2 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.075 0.1	σ 0.83845 0.84618 0.88409 0.90867 0.90944	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360	$ heta_9 \\ 0.4 \\ $	ΔC _{1,interface} 0.200 0.200 0.200 0.200 0.200 0.200	$\Delta C_{1,in-slab}$ -0.300 -0.300 -0.300 -0.300 -0.300	V _{lin} 865.1 865.1 1053.5 1085.7 1032.5	<i>b</i> -1.186 -1.346 -1.471 -1.624	n 1.18 1.18 1.18 1.18 1.18 1.18	c 1.88 1.88 1.88 1.88 1.88 1.88		C ₁ 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171	θ_7 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582	θ_8 -1.420 -1.650 -1.800 -1.800 -1.690	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300	θ_9 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1,interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200	$\begin{array}{r} \Delta C_{1, \text{in-slab}} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6	<i>b</i> -1.186 -1.346 -1.471 -1.624 -1.931	n 1.18 1.18 1.18 1.18 1.18 1.18	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88		C ₁ 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853	θ_7 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250	θ_9 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1,interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	$\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{in} 865.1 1053.5 1085.7 1032.5 877.6 748.2	<i>b</i> -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.8	C_4 10 10 10 10 10 10 10 10 10 10 10 10 10	C1 7.2
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654	θ_7 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490 -1.300	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250 -1.170	θ_9 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1,interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	$\begin{array}{c} \Delta C_{1, \rm in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3	<i>b</i> -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.8	C_4 10 10 10 10 10 10 10 10 10 10 10 10 10	C ₁ 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713	θ_7 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490 -1.300 -1.180	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250 -1.170 -1.060	θ_9 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1,interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	$\begin{array}{c} \Delta C_{1, \rm in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1	<i>b</i> -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88		C ₁ 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.175 0.1 0.15 0.2 0.25 0.3 0.4	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982	θ_7 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490 -1.300 -1.180 -0.980	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250 -1.170 -1.060 -0.780	$ heta_9 \\ 0.4 \\ $	ΔC 1,interface 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	$\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503	<i>b</i> -1.186 -1.346 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88		C ₁ 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.175 0.1 0.15 0.2 0.25 0.3 0.4 0.5	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799	$ heta_8$ -1.420 -1.420 -1.650 -1.800 -1.690 -1.490 -1.300 -1.180 -0.980 -0.820	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620	$\begin{array}{r} \theta_{16} \\ -1.000 \\ -1.000 \\ -1.180 \\ -1.360 \\ -1.360 \\ -1.300 \\ -1.250 \\ -1.170 \\ -1.060 \\ -0.780 \\ -0.620 \end{array}$	$ heta_9 \\ 0.4 \\ $	$\begin{tabular}{ c c c c c } \hline \Delta C_{1,interface} \\ \hline 0.200 \\ 0.200 \\ 0.200 \\ 0.200 \\ 0.200 \\ 0.200 \\ 0.200 \\ 0.200 \\ 0.200 \\ 0.144 \\ 0.100 \end{tabular}$	$\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6	<i>b</i> -1.186 -1.346 -1.346 -1.471 -1.624 -2.188 -2.381 -2.518 -2.657 -2.669	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.8	$\begin{array}{c} \hline C_4 \\ \hline 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.10 0.2 0.25 0.3 0.4 0.5 0.6	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021	$ heta_8$ -1.420 -1.420 -1.650 -1.800 -1.690 -1.490 -1.300 -1.180 -0.980 -0.820 -0.700	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800	$\begin{array}{r} \theta_{16} \\ -1.000 \\ -1.000 \\ -1.180 \\ -1.360 \\ -1.360 \\ -1.300 \\ -1.250 \\ -1.250 \\ -1.170 \\ -1.060 \\ -0.780 \\ -0.620 \\ -0.500 \end{array}$	$ heta_9 \\ 0.4 \\ $	$\begin{tabular}{ c c c c c } \hline \Delta C_{1,interface} \\ \hline 0.200 \\ \hline 0.144 \\ \hline 0.100 \\ \hline 0.074 \end{tabular}$	$\begin{array}{c} \Delta C_{1,\text{in-slab}} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3	<i>b</i> -1.186 -1.346 -1.346 -1.471 -1.624 -2.188 -2.381 -2.518 -2.657 -2.669 -2.599	n 1.18 1.1	c 1.88 1.8	$\begin{array}{c} \hline C_4 \\ \hline 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.10 0.25 0.2 0.25 0.3 0.4 0.5 0.6 0.75	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.490 -1.300 -1.180 -0.980 -0.820 -0.700 -0.540	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.360 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340	$ heta_9 \\ 0.4 \\ $	$\begin{tabular}{ c c c c c } \hline \Delta C_{1,interface} \\ \hline 0.200 \\ \hline 0.144 \\ \hline 0.100 \\ \hline 0.074 \\ \hline 0.042 \\ \hline 0$	$\begin{array}{c} \Delta C_{1,\text{in-slab}} \\ -0.300 \\ -0$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5	<i>b</i> -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657 -2.669 -2.599 -2.401	n 1.18 1.1	c 1.88 1.8	$\begin{array}{c} C_4 \\ \hline \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.10 0.25 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90944 0.90944 0.90944 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.490 -1.300 -1.300 -1.180 -0.980 -0.820 -0.700 -0.540 -0.340	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800 0.3300	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140	$ heta_9 \\ 0.4 \\ $	ΔC 1,interface 0.200 0.0074 0.042 0.00200 0.00200 0.002000 0.00200 0.0020000000000	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400	<i>b</i> -1.186 -1.346 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657 -2.669 -2.599 -2.401 -1.955	n 1.18 1.1	c 1.88 1.8	$\begin{array}{c} \hline C_4 \\ \hline 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.175 0.1 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.0820	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.800 -1.490 -1.300 -1.180 -0.980 -0.820 -0.700 -0.540 -0.340 -0.050	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800 0.3300 0.3100 0.3100	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.360 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140 0.000	$ heta_9 \\ 0.4 \\ $	ΔC 1.interface 0.200 0.0074 0.042 0.00588 0.00588 0.	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400	<i>b</i> -1.186 -1.346 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.557 -2.669 -2.599 -2.401 -1.955 -1.025	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.8	C_4 10 10 10 10 10 10 10 10 10 10 10 10 10	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5 2 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249 0.76249	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.0820 -0.2821 0.2821	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.800 -1.490 -1.300 -1.180 -0.980 -0.980 -0.820 -0.700 -0.540 -0.340 -0.050 0.120	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800 0.3300 0.3100 0.3000 0.2000	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.360 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140 0.000 0.000	$ heta_9 \\ 0.4 \\ $	ΔC 1.interface 0.200 0.0074 0.042 0.0058 -0.1058 -0.1055	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400 400	<i>b</i> -1.186 -1.346 -1.346 -1.471 -1.624 -2.188 -2.381 -2.518 -2.518 -2.657 -2.669 -2.599 -2.401 -1.955 -1.025 -0.299	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.8	C_4 10 10 10 10 10 10 10 10 10 10 10 10 10	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5 2 2.5 2	σ 0.83845 0.84618 0.8409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249 0.75605	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.0820 -0.2821 -0.4108	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.800 -1.490 -1.300 -1.180 -0.980 -0.980 -0.700 -0.540 -0.540 -0.050 0.120 0.250	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800 0.3300 0.3100 0.3000 0.2000	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.360 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140 0.000 0.000 0.0000 0.0000 0.0000	θ_9 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC 1.interface 0.200 0.0058 -0.100 -0.155 -0.155	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400 400 400	<i>b</i> -1.186 -1.346 -1.346 -1.471 -1.624 -2.188 -2.381 -2.518 -2.518 -2.657 -2.669 -2.599 -2.401 -1.955 -1.025 -0.299 0	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.8	$\begin{array}{c} \hline C_4 \\ \hline 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5 2 2.5 3	σ 0.83845 0.84618 0.8409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249 0.75605 0.73593 0.64405	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.0820 -0.2821 -0.4108 -0.4466 0.5241	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.800 -1.490 -1.300 -1.180 -0.980 -0.980 -0.700 -0.540 -0.540 -0.340 -0.050 0.120 0.250 0.300 -0.300	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800 0.3300 0.3100 0.3000 0.3000 0.2000	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.360 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140 0.000 0.000 0.0000 0	$ heta_9 \\ 0.4 \\ $	ΔC 1.interface 0.200 0.0074 0.042 0.0058 -0.100 -0.155 -0.200 0.200 0.200 0.205 0.002 0	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400 400 400 400	<i>b</i> -1.186 -1.346 -1.346 -1.471 -1.624 -2.188 -2.381 -2.518 -2.518 -2.557 -2.669 -2.599 -2.401 -1.955 -1.025 -0.299 0 0	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.8	$\begin{array}{c} \hline C_4 \\ \hline 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5 2 2.5 3 4 5	σ 0.83845 0.84618 0.8409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249 0.75605 0.73593 0.68480 0.675605	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.0820 -0.2821 -0.4108 -0.4344 0.4364	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490 -1.300 -1.180 -0.980 -0.980 -0.700 -0.540 -0.540 -0.540 -0.550 0.120 0.250 0.300 0.300 0.300	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800 0.3300 0.3300 0.3000 0.3000 0.3000 0.2000	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.360 -1.300 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140 0.000	$ heta_9 \\ 0.4 \\ $	ΔC 1.interface 0.200 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.0058 -0.100 -0.155 -0.200 0.200 0.200 0.002 0.	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400 400 400 400 400 400	b -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657 -2.669 -2.599 -2.401 -1.955 -1.025 -0.299 0 0 0	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.8	$\begin{array}{c} \hline C_4 \\ \hline 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5 2 2.5 3 4 5 6	σ 0.83845 0.84618 0.8409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249 0.75605 0.73593 0.68480 0.67609 0.64552	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.0820 -0.2821 -0.4108 -0.4466 -0.4364 -0.4368 0.5592	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490 -1.490 -1.300 -0.980 -0.980 -0.980 -0.540 -0.540 -0.550 0.120 0.250 0.300 0.300 0.300 0.300	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800 0.3300 0.3000 0.3000 0.3000 0.3000 0.3000 0.2000	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.360 -1.300 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140 0.000	$ heta_9 \\ 0.4 \\ $	ΔC 1.interface 0.200 0.0200 0.0200 0.0258 -0.100 -0.155 -0.200 -0.200 0.200 0.0058 -0.200 0.200 0.200 0.200 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400 400 400 400 400 400 40	b -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657 -2.669 -2.599 -2.401 -1.955 -1.025 -0.299 0 0 0 0	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.8	$\begin{array}{c} \hline C_4 \\ \hline 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5 2 2.5 3 4 5 6 75	σ 0.83845 0.84618 0.8409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249 0.75605 0.73593 0.68480 0.67609 0.64653	θ_7 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.0820 -0.2821 -0.4108 -0.4466 -0.4368 -0.44586 0.4422	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490 -1.490 -1.300 -0.980 -0.980 -0.980 -0.540 -0.540 -0.540 -0.550 0.120 0.250 0.300 0.300 0.300 0.300 0.300	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800 0.3300 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.2000	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.360 -1.300 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140 0.000	$ heta_9 \\ 0.4 \\ $	ΔC 1.interface 0.200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0058 -0.100 -0.200 -0.200 -0.200 0.002 -0.205 -0.200 0.002 -0.200 0.000 -0.155 -0.200 -0.200 0.200 0.000 -0.200 0.000 -0.200 0.000 -0.200 0.000 -0.200 0.000 -0.200 0.200 0.000 -0.200 0.000 -0.200 0.000 -0.200 0.000 -0.200 0.000 -0.200 -0	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400 400 400 400 400 400 40	b -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657 -2.669 -2.599 -2.401 -1.955 -1.025 -0.299 0 0 0 0 0 0	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.8	$\begin{array}{c} \hline C_4 \\ \hline 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5 2 2.5 3 4 5 6 7.5 10	σ 0.83845 0.84618 0.8409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249 0.75605 0.73593 0.68480 0.67609 0.64653 0.62881 0.62881 0.62881	θ_7 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.0820 -0.2821 -0.4108 -0.4284 -0.4368 -0.4368 -0.4433 0.4822	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.800 -1.490 -1.490 -1.300 -0.980 -0.980 -0.980 -0.540 -0.540 -0.540 -0.550 0.120 0.250 0.300 0.300 0.300 0.300 0.300 0.300 0.300	θ_{15} 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.2000	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140 0.000	$ heta_9 \\ 0.4 \\ $	ΔC 1.interface 0.200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0058 -0.100 -0.200 -0.200 -0.200 0.0058 -0.200 -0.200 -0.200 0.200 0.001 -0.200 0.002 -0.200 0.002 -0.200 0.000 -0.058 -0.200 -0.200 -0.200 -0.200 0.200 0.000 -0.200 0.200 0.000 -0.200 0.200 0.000 -0.200 0.000 -0.200 0.0200 -0.200 0.0200 -0.200 0.0200 -0.200	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400 400 400 400 400 400 40	b -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657 -2.669 -2.599 -2.401 -1.955 -1.025 -0.299 0 0 0 0 0 0 0 0 0 0	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.8	$\begin{array}{c} C_4 \\ \hline \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	C1 7.2 <

Fuente: Gonzalo A. Montalva (Ground-Motion Prediction Equation for the Chilean

Subduction Zone)

2.1.9. ESPECTRO MEDIO CONDICIONAL (CMS)

El CMS proporciona el espectro de respuesta esperado (es decir, medio), condicionado a la ocurrencia de un valor de aceleración espectral objetivo en el período de interés [1].

2.1.9.1 PROCEDIMIENTO PARA CALCULAR CMS

Comenzar calculando la media condicional (ε), este parámetro se define como el número de desviaciones estándar en las que un valor de *InSa* dado (UHS) difiere del valor medio predicho de *InSa* para una magnitud y distancia determinadas.

$$\varepsilon(T) = \frac{\ln Sa(T) - \mu_{\ln Sa}(M, R, T)}{\sigma_{\ln Sa}(T)}$$
(1)

donde $\mu_{ln Sa}(M, R, T)$ y $\sigma_{ln Sa}(T)$ son la media y desviación estándar pronosticadas, respectivamente de *lnSa* en un período dado, e *lnSa*(*T*) es el logaritmo de la aceleración espectral de interés. Los dos primeros parámetros se calculan utilizando modelos de movimiento del suelo.

1. Determinar el Sa objetivo en un período dado y los M, R y ε asociados

Seleccionar el período de interés. También es necesario determinar la magnitud, la distancia y los valores de ε (T*) asociados con el objetivo Sa (T*). Si el objetivo Sa (T*) se obtiene de PSHA, entonces los valores M, R y ε (T*) pueden tomarse como la media M, R y ε (T*) de la desagregación (esta información proporcionada por el Departamento de Servicios Geológicos de EE). En el caso en el que uno quisiera realizar este cálculo para un escenario M, R y Sa, el ε asociado sería simplemente el número de desviaciones estándar por las cuales el objetivo Sa es mayor que la predicción mediana dados M y R (a menudo $\varepsilon = 1$ en evaluaciones deterministas de este tipo, correspondiente a la "mediana + 1 σ Sa").

2. Calcular la desviación media y estándar del espectro de respuesta, dados M y R

A continuación, calculamos la desviación media y estándar de los valores logarítmicos de aceleración espectral en todos los períodos, para el objetivo M, R, etc.

$$\mu_{ln\,Sa}(M,R,T) \qquad (2)$$

$$\sigma_{ln\,Sa}(T) \qquad (3)$$

donde $\mu_{ln Sa}(M, R, T)$ y $\sigma_{ln Sa}(T) =$ a la media predicha y la desviación estándar respectivamente, de *lnSa* en el período T, como se definió previamente en la Ec. (1). Estos términos se pueden calcular utilizando modelos de movimiento del suelo existentes, y existen varias herramientas de cálculo en línea para ayudar a obtener estos valores (por ejemplo, http://www.opensha.org y http://peer.berkeley.edu/products/rep_nga_models. html).

3. Calcule ε en otros períodos, dado ε (T*)

En este paso calculamos la "media condicional" ε , pero para muchos períodos. Se puede demostrar que la media condicional ε en otros períodos es igual a ε (T*), multiplicado por el coeficiente de correlación entre los valores de ε en los dos períodos.

$$\mu_{\varepsilon(T_i)|\varepsilon(T^*)} = \rho(T_i, T^*) * \varepsilon(T^*)$$
(4)

donde $\mu_{\varepsilon(T_i)|\varepsilon(T^*)}$ es el valor medio de $\varepsilon(T_i)$, dando en $\varepsilon(T^*)$. Las predicciones del coeficiente de correlación requerido, ρ (Ti, T*) se puede obtener utilizando una ecuación predictiva simple. Una predicción, válida para períodos entre 0.05 y 5s, es:

$$\rho(T_{min}, T_{max}) = 1 - \cos\left\{\frac{\pi}{2} - \left[0.359 + 0.163I_{(T_{min} < 0.189)}ln\frac{T_{min}}{0.189}\right]ln\frac{T_{max}}{T_{min}}\right\}$$
(5)

donde $I_{(T_{min}<0.189)}$ es una función indicadora igual a 1 si $T_{min} < 0.189s$ e igual a 0 en caso contrario, y donde T_{min} y T_{max} es el menor y el mayor de los dos períodos de interés, respectivamente. Esta ecuación es válida si solo interesan períodos entre 0.05 y 5 segundos.

4. Calcular el CMS

El CMS ahora se puede calcular usando la desviación estándar y media del Paso 2 y los valores ε de la media condicional del Paso 3. Sustituyendo el valor medio de $\varepsilon(T_i)$ de la ecuación (4) en la ecuación (1) y resolver para ln Sa(T), lo que produce el valor medio condicional correspondiente de ln $Sa(T_i)$, dando ln $Sa(T^*)$.

$$\mu_{InSa(T_i)|InSa(T^*)} = \mu_{ln Sa}(M, R, T_i) + \rho(T_i, T^*) * \varepsilon(T^*)\sigma_{ln Sa}(T_i)$$
(6)

donde $\mu_{ln Sa}(M, R, T_i)$ y $\sigma_{ln Sa}(T_i)$ se obtuvieron usando las ecuaciones (2) y (3), $\rho(T_i, T^*)$ se obtuvo usando la ecuación (5) y M, R y $\varepsilon(T^*)$ se identificó en el paso 1 [1].

2.1.10. ESCALAMIENTO DE REGISTROS SÍSMICOS

El escalamiento de los registros de movimiento del suelo (acelerogramas) es un procedimiento necesario para realizar el análisis dinámico no lineal de una estructura. Los registros de movimiento del suelo se normalizan mediante algún procedimiento racional para eliminar la variabilidad de un registro a otro debido a las diferencias en la magnitud del evento, en la distancia a la fuente y en las condiciones del suelo. Sin embargo, la variabilidad inherente (denominada aleatoria o dependiente del azar) se mantiene.

2.1.10.1. PROCEDIMIENTO PARA ESCALAR REGISTROS SÍSMICOS

1. Determinar el factor de escala. Es igual a la sumatoria del producto del factor de peso, por la aceleración espectral en el período de interés y por raíz cuadrada de la suma ponderada del cuadrado de la aceleración espectral en sus componentes X y Y en el período de interés; divido para la sumatoria del producto entre el factor de peso multiplicado por la suma de los cuadrados de la aceleración espectral en sus componentes X y Y:

$$F_{J} = \frac{\sum_{i=1}^{4} w_{i} S_{MCE_{R}}(T_{i}) \sqrt{S_{X}^{2}(T_{i}) + S_{Y}^{2}(T_{i})}}{\sum_{i=1}^{4} w_{i} \{S_{X}^{2}(T_{i}) + S_{Y}^{2}(T_{i})\}}$$

Los períodos son susceptibles a variación dependiendo del período de estudio. Los periodos (ejemplo) y factores de ponderación son:

Periodo T_i (sec)	1.0	2.0	3.0	4.0
Weight factor <i>w</i> _i	0.1	0.3	0.3	0.3

2. Para cumplir con los criterios de la NEC SE DS 2015, hay que construir los espectros SRSS de los componentes X y Y de los registros de acelerogramas en el paso 1, apropiadamente seleccionados y escalados a partir de los registros de no menos de 3 eventos sísmicos; y luego construya el promedio SRSS. Dichos valores promedio no deben encontrarse por debajo del espectro de aceleraciones amortiguado al 5% del sismo de diseño para períodos entre 0.2 T y1.5 T.

2.1.11. NIVELES DE DESEMPEÑO

2.1.11.1 NIVELES DE DESEMPEÑO NEC

El desempeño estructural es un estado de la estructura posterior a estar sometido a un evento sísmico. Dependiendo del nivel de desempeño estructural y no estructural, se comprobarán los 4 siguientes niveles:

- 1-A: nivel operacional
- 1-B: nivel de ocupación inmediata
- 3-C: nivel de seguridad de vida
- 5-E: nivel de prevención al colapso [16]

2.1.11.2 NIVELES DE DESEMPEÑO VISION 2000

El comité SEAOC Visión 2000 definen cuatro objetivos de desempeño sísmico, con relación a los distintos niveles de daño de una construcción. Estos objetivos se definen en: operativo, operativo, seguridad de vidas y prevención de colapso.

Totalmente operativo (TO): La estructura se mantiene en servicio. El daño despreciable en elementos estructurales y no-estructurales. La respuesta es prácticamente elástica.

Operativo (O): La estructura presenta daño ligero. La mayoría de las actividades y servicios pueden reanudarse luego del terremoto. Existe fisuración o fluencia menor en algunos elementos estructurales.

Seguridad de vida (SV): La estructura presenta daño moderado. Permanece estable, pero con reducción de resistencia y rigidez. El edificio puede quedar fuera de servicio y ser evacuado. Se puede reparar, pero a costos elevados. Deformaciones remanentes.

Prevención de colapso (PC): Daño severo, pero sin colapso de la estructura. Los elementos no-estructurales pueden fallar. Deformaciones remanentes apreciables [17].

2.1.11.3 NIVELES DE DESEMPEÑO FEMA 356

El código FEMA-356 define niveles de comportamiento estructural o niveles de desempeño, Immediate (I), Occupancy (IO), Life Safety (LS) y Collapse Prevention (CP),

correspondientes a los criterios de aceptación para deformación o índices de deformación para miembros primarios (P) y miembros secundarios (S) [18].

Figura 5. Niveles de desempeño estructural

Fuente: FEMA 356

2.1.11.4 NIVELES DE AMENAZA SÍSMICA

La verificación del desempeño de una estructura se lo realiza para diferentes niveles de amenaza sísmica. Para ello los sismos se clasifican según los niveles de peligro y período de retorno, como se muestra en la siguiente tabla [2]:

Nivel de sismo	Sismo	Probabilidad de excedencia en 50 años	Período de retorno T _r (años)	Tasa anual de excedencia (1/T _r)
1	Frecuente (menor)	50%	72	0.01389
2	Ocasional (moderado)	20%	225	0.00444
3	Raro (severo)	10%	475	0.00211
4	Muy raro* (extremo)	2%	2 500	0.00040

Tabla 3. Niveles de amenaza sísmica

Fuente: NEC_SE_CG 2015

2.1.12. MODELO HISTERÉTICO

El análisis dinámico no lineal de estructuras requiere modelos histéreticos reales, los cuales representan la relación resistencia – deformación de los elementos que incursionan en el rango no lineal sometidos a cargas cíclicas (cargas sísmicas). El modelo de histéresis

de elemento estructural cualquiera expresa la relación resistencia – deformación bajo cualquier carga. Esta relación se representa en una curva denominada primaria o esqueleto. La curva primaria proporciona la envolvente de la relación histéretica tal y como se aprecia a continuación en la figura a continuación [19].

Figura 6. Ciclo de histéresis: Comportamiento lineal y no lineal. **Fuente:** Introducción al uso de aisladores y disipadores en estructuras

CAPITULO III

MARCO METODOLÓGICO

3.1. Ubicación

La zona de estudio se encuentra en el barrio "El Recreo", ubicado en la parroquia urbana de Huachi Loreto, ciudad Ambato, provincia de Tungurahua.

3.2. Equipos y materiales

- Computadora.
- Impresora.
- Materiales de oficina.

3.3. Tipo de investigación

Experimental

Se considera de tipo experimental ya que se realizan pruebas analíticas empleando el Espectro Medio Condicional (CMS) ajustado a diferentes escenarios.

Explicativo

Se considera de tipo explicativo debido a que el procedimiento para la determinación del Espectro Medio Condicional (CMS) para la ciudad de Ambato se lo realiza a través de una serie de pasos.

Descriptiva

Se considera de tipo descriptiva ya que se presentan los resultados obtenidos en base a simulaciones sísmicas ajustadas a la realidad de Ambato, para determinar el nivel de desempeño de una estructura.

3.4. Prueba de Hipótesis - pregunta científica – idea a defender

"La implementación del espectro medio condicional (CMS) para el escalamiento de acelerogramas utilizados en el análisis dinámico de una estructura metálica en la ciudad de Ambato, en lugar del uso del espectro de diseño de la NEC utilizado actualmente,

brindará un comportamiento de la estructura más real y no tan generalizado, permitiendo diseñar estructuras más económicas".

3.4.1. Variable independiente

"Comportamiento de una estructura metálica"

3.4.2. Variable dependiente

"Espectro Medio Condicional (CMS)"

3.5. Población o muestra:

Población o universo

La población con la que se trabaja en el proyecto son todos los edificios construidos con estructura metálica en la ciudad de Ambato.

Muestra

En esta investigación se trabajará con un pórtico de 3 pisos, ya que la mayor parte de construcciones en la ciudad en el sitio de estudio son sistemas aporticados con alturas no mayores a 3 pisos.

3.6. Recolección de información:

El presente trabajo de titulación recabará información a partir de planos estructurales, ensayo de materiales de elementos constructivos y normas ecuatorianas e internacionales utilizadas para análisis de estructuras en el país:

- NEC-SE-DS [2] : Norma ecuatoriana de la construcción. Peligro Sísmico.
- AISC 360-16 [20]: Specification for Structural Steel Buildings.
- NEC-SE-CG [21]: Norma ecuatoriana de la construcción. Cargas no sísmicas.

Acelerogramas solicitados al Instituto Geofísico de la Politécnica Nacional.

Código de programación en Matlab obtenido en Baker Research Group.
3.8. Variables respuesta o resultados alcanzados

Se analizará el comportamiento de una estructura metálica sometida a un evento sísmico, aplicando, en un primer caso el espectro de diseño de la Norma Ecuatoriana de la Construcción (NEC), y en un segundo caso el Espectro Medio Condicional (CMS) propuesto para este proyecto. Ambos casos serán simulados mediante la utilización de un software. El resultado esperado es que el segundo caso muestre un comportamiento sísmico más apegado a la realidad, con un nivel de desempeño más bajo que con el primer caso.

CAPITULO IV

RESULTADOS Y DISCUSIÓN

4.1. Estudio de Peligro Sísmico

4.1.1. SELECCIÓN DE FALLAS GEOLÓGICAS

La ciudad de Ambato se encuentra directamente afectada por fallas geológicas a lo largo de su territorio, así que para la presente investigación las fallas seleccionadas corresponden a las más cercanas a la fuente de estudio, siendo así 4 fallas de las cuales 3 corresponden al régimen cortical y la falla restante corresponde a la principal fuente generadora de sismos en Ecuador, en la zona de subducción.

Figura 7. Principales fallas geológicas del Ecuador

Fuente: IGPN

Los puntos exactos en los cuales se realiza el análisis correspondiente en la ciudad de Ambato, con su respectiva georreferenciación, ubicados en la parroquia de huachi loreto, serán los siguientes:

No Dunto	Coordenadas					
No. Punto	Latitud	GPS	Longitud	GPS	Altura	
1	9861914.91	S	765049.94	Е	2601	
2	9861859.88	S	765085.17	Е	2603	
3	9862221.09	S	764745.21	Е	2613	
4	9862271.86	S	764678.41	Е	2616	
5	9862577.46	S	764781.79	Е	2607	

Tabla 4. Puntos en estudio georreferenciados

Fuente: Christian Danilo Pérez Galarza

Figura 8. Puntos en estudio de la parroquia huachi loreto Fuente: Google Earth

Inicialmente se analiza el régimen subducción que ocurre entre la placa de Nazca y la Sudamericana.

SUBDUCCIÓNRÉGIMEN:SubducciónTIPO:InversaLONGITUD APROX.:1536.5 kmCÓDIGO:EC-223DIST. FUENTE - ESTUDIO293.5 kmPROF. FOCAL:50 km

Figura 9. Falla tectónica de subducción Fuente: IGPN

Falla Tectónic	a: EC-344a	
NOMBRE	Huachi	
tipo	inversa ciega	
Longitud [km] 12,0	

HUACHI				
RÉGIMEN:	Cortical			
TIPO:	Inversa ciega			
LONGITUD APROX .:	12 km			
CÓDIGO:	EC-344a			
DIST. FUENTE - ESTUDIO	3.03 km			
PROF. FOCAL:	20 km			

Figura 10. Falla tectónica Huachi

Fuente: IGPN

AMBATO				
RÉGIMEN	Cortical			
TIPO	Inversa ciega			
LONGITUD APROX.	16.3 km			
CÓDIGO	EC-344b			
DIST. FUENTE - ESTUDIO	1.96 km			
PROF. FOCAL	20 km			

Figura 11. Falla tectónica Ambato

Fuente: IGPN

TOTORAS				
RÉGIMEN:	Cortical			
TIDO	Transcurrente			
TIFO.	inversa ciega			
LONGITUD APROX.:	17.7 km			
CÓDIGO:	EC-345			
DIST. FUENTE - ESTUDIO	3.17 km			
PROF. FOCAL:	20 km			

Figura 12. Falla tectónica Totoras

Fuente: IGPN

SAMANGA				
RÉGIMEN:	Cortical			
TIPO:	Inversa ciega			
LONGITUD APROX .:	33 km			
CÓDIGO:	EC-54			
DIST. FUENTE -	6.91 km			
ESTUDIO				
PROF. FOCAL:	20 km			

Figura 13. Falla tectónica Samanga

Fuente: IGPN

4.1.2. CÁLCULO DE LA MAGNITUD DE MOMENTO

La magnitud de momento (Mw) para cada falla tectónica seleccionada se la calcula utilizando la ecuación de Wells y Coppersmith.

 $Mw = a + b * \log(SRL)$ Subducción (Ec-223) $Mw = 5.00 + 1.22 * \log(1536.5)$ Mw = 8.9

Huachi (Ec-334a)

$$Mw = 5.00 + 1.22 * \log (12.0)$$

 $Mw = 6.3$

Ambato (Ec-334b)

$$Mw = 5.00 + 1.22 * \log (16.3)$$

 $Mw = 6.5$

Totoras (Ec-345)

$$Mw = 5.00 + 1.22 * \log (17.7)$$

 $Mw = 6.5$

Samanga (Ec-54)

$$Mw = 5.00 + 1.22 * \log (33.0)$$

 $Mw = 6.9$

CÓDICO	NOMDE	TIDO	LONGITUD	DISTANCIA	MAGNITUD
CODIGO	NUMBRE	IIIO	(km)	(km)	(Mw)
Ec-223	Subducción	Inversa	1536.5	293.5	8.9
Ec-334a	Huachi	Inversa ciega	12.0	3.03	6.3
Ec-334b	Ambato	Inversa ciega	16.3	1.96	6.5
Ec. 345	Totores	Transcurrente	17.7	3.17	6.5
EC-343	Totoras	inversa ciega			
Ec-54	Samanga	Inversa ciega	33.0	6.91	6.9

|--|

Fuente: Christian Danilo Pérez Galarza

4.1.3. CÁLCULO DE LA VELOCIDAD DE ONDA DE CORTE

La velocidad de onda de corte se determina de cada uno de los puntos en los cuales se realizaron los ensayos de penetración estándar. Los datos de los valores de N_{SPT} son tomados de estudios anteriores [22].

PERFORACIÓN 1						
Profundidad (m)	Promedio N (SPT)	Altura (m)	$Vs = 98.69N^{0.321}$	Vs promedio (m/s)		
0-1	-	1	-			
1 - 2	16.67	1	243.49	255 40		
2-3	16.50	1	242.71	255.49		
3-4	25.83	1	280.27			

Tabla 6. Velocidad de onda de corte en el punto 1

Fuente: Christian Danilo Pérez Galarza

Tabla 7. Velocidad de onda de corte en el punto	2)
---	---	---

PERFORACIÓN 2					
Profundidad (m)	Promedio N (SPT)	Altura (m)	$Vs = 98.69N^{0.321}$	Vs promedio (m/s)	
0-1	-	1	-		
1 - 2	16.17	1	241.12	265.09	
2-3	22.50	1	268.12	203.98	
3-4	25.83	1	288.71		

Fuente: Christian Danilo Pérez Galarza

PERFORACIÓN 3						
Profundidad (m)	Promedio N (SPT)	Altura (m)	$Vs = 98.69N^{0.321}$	Vs promedio (m/s)		
0-1	-	1	-			
1 - 2	19.33	1	255.37	266.95		
2 - 3	25.33	1	278.52			

 Tabla 8. Velocidad de onda de corte en el punto 3

Fuente: Christian Danilo Pérez Galarza

Tabla 9. Velocidad de onda de c	corte en el punto 4
---------------------------------	---------------------

PERFORACIÓN 4				
Profundidad (m)Promedio N (SPT)Altura (m) $Vs = 98.69N^{0.321}$				Vs promedio (m/s)
0 - 1	-	1	-	
1 - 2	10.00	1	206.67	249.30
2-3	29.33	1	291.94	

Fuente: Christian Danilo Pérez Galarza

Tabla 10). Velocidad	de onda de	corte en el	punto 5
Labla L		ue onuu ue		punto 5

PERFORACIÓN 5				
Profundidad (m)	Promedio N (SPT)	Altura (m)	$Vs = 98.69N^{0.321}$	Vs promedio (m/s)
0 - 1	-	1	-	
1-2	32.33	1	301.21	309.22
2-3	38.00	1	371.24	

Fuente: Christian Danilo Pérez Galarza

4.1.4. DETERMINACIÓN DEL TIPO DE PERFIL DEL SUELO

Los parámetros que se utilizan en esta clasificación corresponden a las propiedades determinadas en los 30 metros superiores del perfil.

Tipo de perfil	Descripción	Definición
A	Perfil de roca competente	V _s ≥ 1500 m/s
В	Perfil de roca de rigidez media	1500 m/s >V₅ ≥ 760 m/s
с	Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de cortante, o	760 m/s > V₅≥ 360 m/s

Tabla 11. Clasificación de los perfiles de suelo

Tipo de perfil	Descripción	Definición			
	Perfiles de suelos muy densos o roca blanda, que cumplan con	N ≥ 50.0			
	cualquiera de los dos criterios	S _u ≥ 100 KPa			
D	Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o	360 m/s > V₅ ≥ 180 m/s			
	Perfiles de suelos rígidos que cumplan cualquiera de las dos	50 > N ≥ 15.0			
	condiciones	100 kPa > S _u ≥ 50 kPa			
	Perfil que cumpla el criterio de velocidad de la onda de cortante, o	Vs < 180 m/s			
E		IP > 20			
	Perfil que contiene un espesor total H mayor de 3 m de arcillas blandas	w ≥ 40%			
		S _u < 50 kPa			
	Los perfiles de suelo tipo F requieren una evaluación realizada exp ingeniero geotecnista. Se contemplan las siguientes subclases:	lícitamente en el sitio por un			
	F1—Suelos susceptibles a la falla o colapso causado por la excitación sísmica, tales como; suelos licuables, arcillas sensitivas, suelos dispersivos o débilmente cementados, etc.				
	F2—Turba y arcillas orgánicas y muy orgánicas (H > 3m para turba o arcillas orgánicas y muy orgánicas).				
F	F3—Arcillas de muy alta plasticidad (H > 7.5 m con índice de Plasticidad IP > 75)				
	F4—Perfiles de gran espesor de arcillas de rigidez mediana a blanda (H > 30m)				
	F5—Suelos con contrastes de impedancia α ocurriendo dentro de la del perfil de subsuelo, incluyendo contactos entre suelos blandos y r de velocidades de ondas de corte.	os primeros 30 m superiores oca, con variaciones bruscas			
	F6—Rellenos colocados sin control ingenieril.				

Fuente: NEC - SE – DS 2015

El promedio de las velocidades de onda de corte de los cinco puntos en estudio es igual a 269.39 m/s

De acuerdo a la Tabla 11. Clasificación de los perfiles de suelos de la NEC_SE_DS 2015, en concordancia con la condición: $360 \text{ m/s} > \text{Vs} \ge 180 \text{ m/s}$, se determina que, la velocidad de onda de corte calculada en la parroquia Huachi Loreto corresponde a un suelo tipo D.

4.2. DETERMINACIÓN DEL GMPE

Se trabaja con un código de programación realizado en Matlab, el cual, aplicando las ecuaciones expuestas en el capítulo 2, nos permite obtener la gráfica de comportamiento del suelo para un momento sísmico dado y a una velocidad de onda de corte determinada.

Los datos ingresados para determinar la gráfica son los siguientes:

4.2.1. Cálculo de la distancia hipocentral (Rhyp)

Es igual a la raíz cuadrada de la suma de los cuadrados de la distancia de la fuente de sismos al punto de estudio (régimen de subducción) y la profundidad focal, es decir calculamos la hipotenusa.

La distancia fuente – estudio es igual al promedio de las distancias de las fallas corticales cercanas al lugar de análisis. Este valor obtenido será nuevamente promediado con la distancia a la principal fuente generadora de sismos (subducción).

$$R = \frac{3.03 + 1.96 + 3.17 + 6.91}{4} = 3.014 km$$

$$\bar{R} = \frac{3.014 + 293.5}{2} = 148.26 km$$

Figura 14. Distancia hipocentral

Fuente: Luis E. Suárez (Localización del epicentro de un sismo)

$$R_{hyp} = \sqrt{(148.26km)^2 + (50km)^2}$$
$$R_{hyp} = 156.46 \ km$$

4.2.2. Determinación de la magnitud de momento (M)

La magnitud de momento que se usa en la presente investigación es igual al promedio de las magnitudes de momento calculadas en el literal 4.1.2.

$$M = \frac{M(Subducción) + M(Huachi) + M(Ambato) + M(Totoras) + M(Samanga)}{5}$$
$$M = \frac{8.9 + 6.3 + 6.5 + 6.5 + 6.9}{5}$$
$$M = 7.02$$

4.2.3. Determinación del factor I

I es igual a 1 para eventos de interfase e igual a cero para eventos intraplaca. Al encontrarse nuestro sitio de estudio sobre la placa continental, se determina que el valor de I = 0.

4.2.4. Determinación de la profundidad hipocentral (Zh)

La distancia hipocentral desde la superficie hasta la fuente que más sismos genera al país (régimen de subducción) es de 50km.

4.2.5. Determinación del factor F_FABA

F_FABA es igual a cero para sitios de ante arco (región entre una fosa oceánica y el arco volcánico) o sitios desconocidos, e igual a 1 para sitios de arco posterior. En este caso se utiliza un valor de F_FABA = 0.

4.2.6. Determinación de la velocidad de onda de corte (Vs30)

La velocidad de onda de corte se calculó en el literal 4.1.4. y es igual al promedio de las velocidades obtenidas en cada punto de perforación, es decir 269.39m/s.

4.2.7. Gráfica del GMPE

Al reemplazar los datos calculados en las ecuaciones antes mencionadas del modelo, se obtiene la siguiente gráfica.

Figura 15. Predicción de movimiento del suelo en la parroquia Huachi Loreto Fuente: Christian Danilo Pérez Galarza

4.3. DETERMINACIÓN DEL ESPECTRO MEDIO CONDICIONAL (CMS)

4.3.1. Cálculo de épsilon (ε)

Se determina el valor de épsilon, en la cual el autor expresa que, para evaluaciones de este tipo, la desviación estándar es igual a 1.

Figura 16. Valores de Sa del UHS y GMPE en el período de interés Fuente: Christian Danilo Pérez Galarza

Se aplica la siguiente ecuación:

$$\varepsilon(T) = \frac{\ln Sa(T) - \mu_{\ln Sa}(M, R, T)}{\sigma_{\ln Sa}(T)}$$
$$\varepsilon(T) = \ln(0.6395) - \ln(0.1185)$$
$$\varepsilon(T) = 1.686$$

Se trabaja con un código de programación realizado en Matlab, disponible en la página "Baker Research Group" el cual permite obtener el CMS a partir de los datos calculados anteriormente y aplicando las ecuaciones expuestas en el capítulo 2.

4.3.2. Cálculo de los factores de correlación

Las predicciones del coeficiente de correlación requerido, ρ (Ti, T*) se puede obtener utilizando una ecuación predictiva simple. Una predicción, válida para períodos entre 0.05 y 5s es la siguiente:

$$\rho(T_{min}, T_{max}) = 1 - \cos\left\{\frac{\pi}{2} - \left[0.359 + 0.163I_{(T_{min} < 0.189)}ln\frac{T_{min}}{0.189}\right]ln\frac{T_{max}}{T_{min}}\right\}$$

$$\rho(0.3; 0.4712) = 1 - \cos\left\{\frac{\pi}{2} - \left[0.359 + 0.163(0) * ln\frac{0.3}{0.189}\right]ln\frac{0.4712}{0.3}\right\}$$

$$\rho(0.3; 0.4712) = 0.839$$

$$\rho(0.4; 0.4712) = 1 - \cos\left\{\frac{\pi}{2} - \left[0.359 + 0.163(0) * \ln\frac{0.4}{0.189}\right] \ln\frac{0.4712}{0.4}\right\}$$
$$\rho(0.3; 0.4712) = 0.941$$

$$\rho(0.4712; 0.5) = 1 - \cos\left\{\frac{\pi}{2} - \left[0.359 + 0.163(0) * \ln\frac{0.5}{0.189}\right] \ln\frac{0.5}{0.4712}\right\}$$
$$\rho(0.3; 0.4712) = 0.979$$

$$\rho(0.4712; 0.6) = 1 - \cos\left\{\frac{\pi}{2} - \left[0.359 + 0.163(0) * \ln\frac{0.6}{0.189}\right] \ln\frac{0.6}{0.4712}\right\}$$
$$\rho(0.3; 0.4712) = 0.913$$

4.3.3. Cálculo de épsilon en los demás períodos

Se calcula la media condicional (ϵ), para los períodos más representativos. La media condicional ϵ en otros períodos es igual a ϵ (T*), multiplicado por el coeficiente de correlación entre los valores de ϵ en los dos períodos.

$$\varepsilon(T) = \rho(T_i, T^*) * \varepsilon(T^*)$$

$$\varepsilon(0.3) = 0.839 * 1.686 = 1.412$$

$$\varepsilon(0.4) = 0.941 * 1.686 = 1.587$$

$$\varepsilon(0.5) = 0.979 * 1.686 = 1.651$$

$$\varepsilon(0.6) = 0.913 * 1.686 = 1.539$$

El código se encarga se determinar el total de valores de media condicional (ϵ) para el resto de períodos hasta obtener la gráfica deseada.

4.3.3. Obtener la gráfica del CMS

Los datos ingresados en el código para determinar la gráfica son los siguientes:

- Magnitud de momento (M): 7.02
- Distancia media (\overline{R}): 148.26 km
- épsilon $\varepsilon(T)$: 1.686
- Vs30: 269.39 m/s

El código selecciona los movimientos del suelo que coincidan con el CMS dentro de un rango de períodos de 0.2T a 2T, siendo T el período objetivo. Estos movimientos son multiplicados por un factor de escala para que su Sa (T^*) coincida con el Sa (T^*) objetivo del CMS. En este caso dicho factor es la relación entre el Sa (T^*) objetivo y el Sa (T^*) del movimiento del suelo sin escala.

$$factor \ de \ escala = \frac{Sa_{CMS}(T^*)}{Sa(T^*)}$$

La gráfica del CMS se lo realiza estableciendo un rango de \pm una desviación estándar con respecto al espectro objetivo. Este gráfico se asemeja a una mariposa, siendo el punto de inflexión el valor de la aceleración pseudoespectral en el período objetivo, por donde todos los movimientos del suelo seleccionados van a coincidir después de haber sido escalados con el factor calculado en el párrafo anterior. El espectro medio condicional (CMS) se lo obtiene calculando la media geométrica entre todos los registros que se encuentran dentro de este rango.

Figura 17. Espectro medio condicional en escala logarítmica Fuente: Christian Danilo Pérez Galarza

Figura 18. Espectro medio condicional para Huachi Loreto Fuente: Christian Danilo Pérez Galarza

4.4. ESCALAMIENTO DE REGISTROS SÍSMICOS

La NEC determina que para un análisis tiempo historia se deben seleccionar no menos de 3 pares de sismos escalados y amortiguados a un 5%, que tengan relación en magnitud y distancia al espectro objetivo.

Los sismos seleccionados para el proceso de escalamiento con respecto a la NEC son los siguientes:

- Sismo de Pedernales
- Sismo de Christchurch
- Sismo de Parkfield

Los sismos seleccionados para el proceso de escalamiento con respecto al CMS son los siguientes:

- Sismo de Pedernales
- Sismo de Cumandá
- Sismo de Perú

Se aplica la metodología expuesta en el numeral 2.1.10. usando la ecuación mostrada en el mismo. La estructura a analizarse en el presente estudio, es de 3 pisos, con un período de vibración de T = 0.4712 segundos. A continuación, se detallan el vector de períodos en base al período de interés (T).

Tabla 12. Vector de períodos y factor de peso

Periodo T_i (sec)	0.3	0.4	0.5	0.6
Weight factor w _i	0.1	0.3	0.3	0.3

Fuente: Christian Danilo Pérez Galarza

$$F_J = \frac{\sum_{i=1}^4 w_i S_{MCE_R}(T_i) \sqrt{S_X^2(T_i) + S_Y^2(T_i)}}{\sum_{i=1}^4 w_i \{S_X^2(T_i) + S_Y^2(T_i)\}}$$

Tabla 13. Factor de escala de cada sismo con respecto a la NEC

FACTOR DE ESCALA					
AMNT CHRISTCH PARKFIEI					
S _{MCE} t=0.3	1.190	1.190	1.190		
SFNormal t=0.3	1.197	0.422	1.656		
SFParalel t=0.3	0.724	0.195	1.585		
S _{MCE} t=0.4	1.190	1.190	1.190		
SFNormal t=0.4	0.623	0.697	1.690		
SFParalel t=0.4	1.053	0.297	1.416		
S _{MCE} t=0.5	1.190	1.190	1.190		
SFNormal t=0.5	0.644	1.207	2.736		
SFParalel t=0.5	0.897	0.565	2.613		

S _{MCE} t=0.6	1.190	1.190	1.190
S _{FNormal} t=0.6	0.629	0.537	2.777
SFParalel t=0.6	1.085	0.240	1.402
FJ	0.975	1.218	0.384
\mathbf{F}_1	1.500	1.500	1.500
$\mathbf{F_1} \mathbf{F_J} =$	1.463	1.827	0.576

Fuente: Christian Danilo Pérez Galarza

Tabla 14. Resumen de los factores de escalamiento con respecto a la NEC

Motion	Scale factor
AMNT	1.463
CHRISTCH	1.827
PARKFIELD	0.576

Fuente: Christian Danilo Pérez Galarza

Figura 19. Espectro escalado para el análisis tiempo-historia con respecto a la NEC Fuente: Christian Danilo Pérez Galarza

Tabla 15. Factor de escala de cada sismo con respecto al CMS

FACTOR DE ESCALA				
CUMANDÁ PEDERNALES PERÚ				
S _{MCE} t=0.3	0.216	0.216	0.216	
SFNormal t=0.3	0.053	0.639	0.031	
SFParalel t=0.3	0.042	0.636	0.038	
S _{MCE} t=0.4	0.163	0.163	0.163	

SFNormal t=0.4	0.093	0.987	0.042
SFParalel t=0.4	0.086	0.861	0.058
S _{MCE} t=0.5	0.104	0.104	0.104
SFNormal t=0.5	0.115	0.932	0.067
SFParalel t=0.5	0.078	0.247	0.083
S _{MCE} t=0.6	0.074	0.074	0.074
S _{FNormal} t=0.6	0.074	0.861	0.058
SFParalel t=0.6	0.086	1.256	0.087
FJ	0.967	0.094	1.199
\mathbf{F}_1	3.250	3.250	3.250
$\mathbf{F_1} \mathbf{F_J} =$	3.143	0.304	3.898

Fuente: Christian Danilo Pérez Galarza

Tabla 16. Resumen de los factores de escalamiento con respecto al CMS

Motion	Scale factor
CUMANDÁ	3.143
PEDERNALES	0.304
PERÚ	3.898

Fuente: Christian Danilo Pérez Galarza

Figura 20. Espectro escalado para el análisis tiempo-historia con respecto a la NEC Fuente: Christian Danilo Pérez Galarza

4.5. PÓRTICO EN ESTUDIO

El pórtico a analizarse en el análisis dinámico

4.5.1. Cargas a soportar de la estructura

- CARGA VIVA (CV)

CARGA VIVA 1er PISO: 200 kg/m² CARGA VIVA 2do PISO: 200 kg/m² CARGA VIVA 3er PISO: 70 kg/m²

Tabla 17. Sobrecargas mínimas uniformemente distribuidas

Ocupación o Uso	Carga uniforme (kN/m²)	Carga concentrada (kN)
Residencias		
Viviendas (unifamiliares y bifamiliares)	2.00	
Hoteles y residencias multifamiliares Habitaciones Salones de uso público y sus corredores	2.00 4.80	
Cubiertas		
Cubiertas planas, inclinadas y curvas Cubiertas destinadas para áreas de paseo Cubiertas destinadas en jardinería o patios de reunión. Cubiertas destinadas para propósitos especiales	0.70 3.00 4.80	

Fuente: NEC_SE_CG 2015

- CARGA MUERTA (CM)

PESO DE LA LOSA (PL)

	VOLUMEN	PESO ESPECÍFICO	PESO TOTAL
ELEMENIO	(m3/m2)	(Kg/m3)	(Kg c/m2)
HORMIGÓN FRESCO	0.0754	2400	180.96
PESO DE PLACA		7.08	
MACILLADO	0.02	1900	38
ACABADOS	0.02 1600		32
			258.04

Tabla 18. Peso de los detallado

Fuente: Christian Danilo Pérez Galarza

PESO DE PARED (PP) = $200 kg/m^2$

CM = PL + PP

 $CM = 200 \ kg/m^2 + 258.04 \ kg/m^2 = 458.04 \ kg/m^2$

4.5.2. Diseño de la Viga

Figura 22. Viga a ser analizada **Fuente:** Christian Danilo Pérez Galarza

CARGA ÚLTIMA (CM)

$$\begin{split} q_u &= 1.2 \, D + 1.6 \, L * \text{área/long} \\ q_u 3^{er} &= [1.2(258.04 \, kg/m^2) + 1.6 \, (300 \, kg/m^2)] * 12.5m^2/5m = 1974.12 \, kg/m \end{split}$$

 $q_u 2^{do} = [1.2(458.04 \ kg/m^2) + 1.6 \ (200 \ kg/m^2)] * 12.5m^2/5m = 2174.12 \ kg/m$

Figura 23. Fuerzas aplicadas, diagrama de momentos y carga axial Fuente: Christian Danilo Pérez Galarza

PERFIL USADO: IPN 140 ASTM A572 Gr50

$Ag = 18.4cm^2$	$t_f = 0.86cm$	$S_x = 82.7 cm^3$
d = 14cm	$r_{x} = 5.62 cm$	$Z_x = 96.1 cm^3$
$t_w = 0.57 cm$	$r_y = 1.50 cm$	$C_w = 1778.7 cm^6$
$b_f = 6.6cm$	$I_y = 41.4 cm^4$	$J = 3.6 cm^4$

FLEXIÓN

RELACIÓN DE ESBELTEZ

$$\begin{split} \lambda &= \frac{b}{t_f} = \frac{3.3cm}{0.86cm} = 3.84 \quad ; \quad \lambda_p = 0.38 \sqrt{\frac{E}{f_y}} = 0.38 \sqrt{\frac{2.043 * 10^6 \ kg/cm^2}{3515 \ kg/cm^2}} = 9.16 \\ \lambda &< \lambda_p \ \therefore \ ALAS \ COMPACTAS \\ \lambda &= \frac{h}{t_w} = \frac{12.28cm}{0.57cm} = 21.54 \quad ; \quad \lambda_p = 3.76 \sqrt{\frac{E}{f_y}} = 3.76 \sqrt{\frac{2.043 * 10^6 \ kg/cm^2}{3515 \ kg/cm^2}} = 90.65 \\ \lambda &< \lambda_p \ \therefore \ ALMA \ COMPACTA \end{split}$$

TABLE B4.1b Width-to-Thickness Ratios: Compression Elements Members Subject to Flexure				V	Vi	dth-to-Th	TABL icknes Memb	E B4.1b s Ratios ers Subje	(contin : Complect to Fl	ued) ression E exure	lements				
	Case	Description of Element	Width-to- Thickness Ratio	Lim Width-to-Thi λ_p (compact/ noncompact)	iting ickness Ratio λ, (noncompact/ slender)	Examples			Case	Description of	Width-to- Thick- ness	Limiti Width-to-Thick Ap (compact/	ng mess Ratio λ. (noncompact/	_	
	10	Flanges of rolled I-shaped sections, channels, and tees	ЬŤ	$0.38\sqrt{\frac{E}{F_y}}$	$1.0\sqrt{\frac{E}{F_y}}$			1	15	Element Webs of doubly symmetric I- shaped sections and channels	h/tw	$3.76\sqrt{\frac{E}{F_y}}$	5.70 $\sqrt{\frac{E}{F_y}}$		-1

Tabla 19. Elementos a compresión con miembros sometidos a flexión

Fuente: AISC_360_16

PANDEO LATERAL TORSIONAL

$$L_p = 1.76 * r_y \sqrt{\frac{E}{f_y}} = 1.76 * 1.50 cm * \sqrt{\frac{2.043 * 10^6 kg/cm^2}{3515 kg/cm^2}} = 66.64$$

 $L_p > L_b$ \div el estado límite de pandeo lateral — torsional no aplica

MOMENTO NOMINAL

 $Mn = f_y * Z_x = 3515 kg/cm^2 * 96.1 cm^3 = 3.38 T.m$

RESISTENCIA

$$\emptyset Mn = 0.9 * Mn = 0.9 * 4.82 T.m = 3.04 T.m$$

EFICIENCIA

$$eff = \frac{Mu}{\phi Mn} = \frac{2.89 \text{ Ton. } m}{3.04 \text{ Ton. } m} = 95.07\%$$
$$eff = \frac{Mu}{\phi Mn} = \frac{2.54 \text{ Ton. } m}{3.04 \text{ Ton. } m} = 83.55\%$$
$$eff = \frac{Mu}{\phi Mn} = \frac{2.75 \text{ Ton. } m}{3.04 \text{ Ton. } m} = 90.46\%$$

4.5.3. Diseño de la Viga

Figura 24. Viga a ser analizada **Fuente:** Christian Danilo Pérez Galarza

PERFIL USADO: IPN 180 ASTM A572 Gr50

$Ag = 27.9 cm^2$	$t_{f} = 1.04 cm$	$S_x = 162.2 cm^3$
d = 18cm	$r_{x} = 7.22cm$	$Z_x = 188.4 cm^3$
$t_w = 0.69 cm$	$r_y = 1.85 cm$	$C_w = 6872.5 cm^6$
$b_{f} = 8.2 cm$	$I_y = 96cm^4$	$J = 8 cm^{4}$

COMPRESIÓN

RELACIÓN DE ESBELTEZ

$$\lambda = \frac{b}{t} = \frac{4.1 \ cm}{1.04 \ cm} = 3.94 \quad ; \quad \lambda_r = 0.56 \sqrt{\frac{E}{f_y}} = 0.56 \sqrt{\frac{2.043 * 10^6 \ kg/cm^2}{3515 \ kg/cm^2}} = 13.50$$
$$\lambda > \lambda_r \therefore ALA \ NO \ ESBELTA$$

$$\lambda = \frac{h}{t_w} = \frac{15.92 \ cm}{0.69 \ cm} = 23.07 \quad ; \quad \lambda_r = 1.49 \sqrt{\frac{E}{f_y}} = 1.49 \sqrt{\frac{2.043 * 10^6 \ kg/cm^2}{3515 \ kg/cm^2}} = 35.90$$
$$\lambda > \lambda_r \ \therefore \ ALMA \ NO \ ESBELTA$$

Tabla 20. Elementos sometidos a compresión axial

Fuente: AISC 360-16

ESFUERZO ELÁSTICO DE PANDEO

PANDEO POR FLEXIÓN

$$F_e = \frac{\pi^2 * E}{\left(\frac{k * l}{r}\right)^2} = \frac{\pi^2 * 2.043 * 10^6 \ kg/cm^2}{\left(\frac{0.65 * 306 cm}{1.85 cm}\right)^2} = 1744.38 \ kg/cm^2$$

PANDEO LATERAL TORSIONAL

$$F_e = \left[\frac{\pi^2 * EC_w}{(K_z L)^2} + GJ\right] \frac{1}{I_x + I_y}$$

$$F_e = \left[\frac{\pi^2 * 2.043 * 10^6 \ kg/cm^2 * 6872.5cm^6}{(0.65 * 306cm)^2} + 790000 * 8cm^4\right] \frac{1}{1460cm^4 + 96cm^4}$$

$$F_e = 6312.84 \ kg/cm^2$$

ESFUERZO CRÍTICO

$$\frac{k * l}{r} \le 4.71 \sqrt{\frac{E}{f_y}} = \frac{0.65 * 306}{1.85 cm} \le 4.71 \sqrt{\frac{2.043 * 10^6 kg/cm^2}{3515 kg/cm^2}} = 107.51 < 113.5 \therefore$$
$$F_{cr} = \left(0.658 \frac{f_y}{F_e}\right) * f_y = \left(0.658 \frac{3515 kg/cm^2}{1744.38 kg/cm^2}\right) * 3515 kg/cm^2 = 1512.32 kg/cm^2$$

RESISTENCIA NOMINAL A COMPRESIÓN

EFICIENCIA

$$eff = \frac{Pu}{\phi Pn} = \frac{15.81 Ton}{37.64 Ton} = 41.64\%$$

4.5.4. Espectro de la NEC 2015

Perfil de suelo: D

Factor de Zona: Z = 0.4 (Zona Sísmica V. Amenaza Alta)

Tabla 21. Valores del factor Z en función de la zona sísmica adoptad
--

Zona sísmica	I	Ш	III	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Fuente: NEC-SE-DS 2015

Tabla 22. Coeficientes para el tipo de edificio

Tipo de estructura	Ct	α
Estructuras de acero		
Sin arriostramientos	0.072	0.8
Con arriostramientos	0.073	0.75

Fuente: NEC-SE-DS 2015

Figura 25. Zonas sísmicas de Ecuador Fuente: NEC_SE_DS 2015

Factor de Importancia: I = 1.0

Tabla 23. Tipo de uso	o, destino e importancia de la estructu	ura
-----------------------	---	-----

Categoría	Tipo de uso, destino e importancia	Coeficiente I
Edificaciones esenciales	Hospitales, clínicas, Centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1.0

Fuente: NEC_SE_DS 2015

Factor de Reducción de Respuesta Sísmica: 8

Sistemas Estructurales Dúctiles	R
Pórticos especiales sismo resistentes, de hormigón armado con vigas banda, con muros estructurales de hormigón armado o con diagonales rigidizadoras.	7
Pórticos resistentes a momentos	
Pórticos especiales sismo resistentes, de hormigón armado con vigas descolgadas.	8
Pórticos especiales sismo resistentes, de acero laminado en caliente o con elementos armados de placas.	8
Pórticos con columnas de hormigón armado y vigas de acero laminado en caliente.	8
Otros sistemas estructurales para edificaciones	
Sistemas de muros estructurales dúctiles de hormigón armado.	5
Pórticos especiales sismo resistentes de hormigón armado con vigas banda.	5

Fuente: NEC_SE_DS 2015

r = 1, para tipo de suelo A, B, C o D

Tabla 25. Factor usado en el espectro de diseño elástico

r = 1	para todos los suelos, con excepción del suelo tipo E
r = 1.5	para tipo de suelo E.

Fuente: NEC_SE_DS 2015

Relación de amplificación espectral: η = 2.48 (Provincias de la Sierra).

Tabla 26. Coeficiente R, relación de amplificación espectral

 η= 1.80 : Provincias de la Costa (excepto Esmeraldas),
 η= 2.48 : Provincias de la Sierra, Esmeraldas y Galápagos
 η= 2.60 : Provincias del Oriente

Fuente: NEC_SE_DS 2015

Coeficientes de amplificación dinámica de suelo en función del suelo tipo D y el factor de zona Z=0.4: Fa=1.2; Fd=1.19; Fs=1.28.

Fa: Coeficiente de amplificación de suelo en la zona de período corto.

		Z	ona sísmio	ca y factor	Z	
Tipo de perfil del subsuelo	1	II	III	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.4	1.3	1.25	1.23	1.2	1.18
D	1.6	1.4	1.3	1.25	1.2	1.12
E	1.8	1.4	1.25	1.1	1.0	0.85
F	Véase <u>Ta</u>	bla 2 : Clas	ificación de <u>10.</u>	los perfiles 5.4	de suelo y	la sección

Tabla 27. Tipo de suelo y factores de sitio

Fuente: NEC_SE_DS 2015

Fd: Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca.

		Z	ona sísmio	ca y factor	Z	
Tipo de perfil del subsuelo	I	II	Ш	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.36	1.28	1.19	1.15	1.11	1.06
D	1.62	1.45	1.36	1.28	1.19	1.11
E	2.1	1.75	1.7	1.65	1.6	1.5
F	Véase <u>T</u>	abla 2 : Cla	asificación o	le los perfile	es de suelo	y 10.6.4

Tabla 28. Tipo de suelo y factores de sitio

Fuente: NEC_SE_DS 2015

Fs: Comportamiento no lineal de los suelos.

		Z	ona sísmio	ca y factor	Z	
Tipo de perfil del subsuelo	I	II	III	IV	V	VI
	0.15	0.25	0.30	0.35	0.40	≥0.5
A	0.75	0.75	0.75	0.75	0.75	0.75
В	0.75	0.75	0.75	0.75	0.75	0.75
С	0.85	0.94	1.02	1.06	1.11	1.23
D	1.02	1.06	1.11	1.19	1.28	1.40
E	1.5	1.6	1.7	1.8	1.9	2
F	Véase <u>T</u>	abla 2 : Cla	asificación o	le los perfil	es de suelo	y 10.6.4

Tabla 29. Tipo de suelo y factores del comportamiento inelástico del subsuelo

Fuente: NEC_SE_DS 2015

Coeficientes de configuración estructural

 Tabla 30. Coeficientes de configuración en planta

Fuente: NEC_SE_DS 2015

Factores asumidos:

En planta: Øp = 1.0 En Elevación: Øe = 1.0

El cortante basal total de diseño V, a nivel de cargas últimas, que será aplicado a una estructura en una dirección específica, se determinará mediante la expresión:

$$\mathbf{V} = \frac{\mathbf{I} * \mathbf{Sa}}{R * \mathbf{\emptyset} p * \mathbf{\emptyset} e} * W$$

4.5.5. Cálculo de la aceleración espectral

El período de vibración de la estructura se puede calcular por la fórmula:

$$T = Ct * hn^{\alpha}$$
 $T = 0.072 * 9.18^{0.8}$ $T = 0.4242 seg$

hn = Altura del edificio.

Ct=0.072 y α =0.8 para edificios con pórticos espaciales de hormigón armado sin muros estructurales.

Tabla 31.	Cálculo d	el espectro	sísmico	elástico	según l	a NEC -	2015

DATOS	PARA V		
Z (g)	0.4		
L. L.	1		
R	8		
Фр	1		
Фе	1		
Ct	0.072		
α	0.8		
hn (m)	9.18		
η	2.48		
Fa	1.2		
Fd	1.19		
Fs	1.28		
r	1		
Тс	0.6981		
То	0.1269		
т	0.4242	Tmax (1.3T)	0.564
Sa (T)	1.1904	Sa (Tmax)	1.1904
V - C	0.1488	V (Tmax)	0.1488
k	1.000	k(max)	1.032

Fuente: Christian Danilo Pérez Galarza

Figura 26. Espectro sísmico elástico según la NEC – 2015Fuente: Christian Danilo Pérez Galarza

4.6. MODELADO EN SOFTWARE

A continuación, se detallan los pasos a seguir para modelar el pórtico en estudio y asignar los parámetros correspondientes para realizar el análisis dinámico no lineal.

Definir el plano en el que se va a trabajar, en este caso al realizar el análisis en un pórtico se selecciona XZ Plane, ya que los únicamente los grados de libertad a considerar son el desplazamiento en X, desplazamiento en Z y rotación alrededor del eje Y.

E Active Degrees of Freedom	×
Building Active Degrees of Freedom	
Full 3D XZ Plane YZ Plane No Z	Rotation
	RZ
OK Cancel	

Figura 27. Grados de libertad a analizarse Fuente: Christian Danilo Pérez Galarza Definir los materiales y secciones calculadas, graficar el pórtico y asignar las cargas determinadas anteriormente, tener en cuenta que las cargas del piso 1 y 2 son las mismas.

Figura 28. Secciones y cargas asignadas **Fuente:** Christian Danilo Pérez Galarza

Correr el software y verificar el análisis modal. Tener en cuenta el período del primer modo de vibración y el período de vibración del modo en el cual se acumula el 90% de la participación de la masa, en este caso el segundo modo de vibración.

E	Modal Par	ticipating	g Mass Ratio	s											
Fi	e Edit	Format	-Filter-Sort	Select	Op	otions									
Uni Filt	ts: As Noted	t t	Hidden Colum	ins: No		Sort: N	one				Modal Parti	cipating Mass	Ratios		
	Case	Mode	Period sec	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
	Modal	1	1.324	0.8121	0	0	0.8121	0	0	0	0.1945	0.798	0	0.1945	0.798
	Modal	2	0.377	0.1427	0	0	0.9548	0	0	0	0.679	0.1585	0	0.8735	0.9566
	Modal	3	0.196	0.0452	0	0	1	0	0	0	0.1265	0.043	0	1	0.9995
	Modal	4	0.028	0	0	0	1	0	0	0	0	0.0005	0	1	1
	Modal	5	0.028	0	0	0	1	0	0	0	0	1.245E-05	0	1	1
	Modal	6	0.021	0	0	0	1	0	0	0	0	0	0	1	1
	Modal	7	0.0001988	0	0	0	1	0	0	0	0	0	0	1	1
	Modal	8	0.0001794	0	0	0	1	0	0	0	0	0	0	1	1
	Modal	9	0.0001502	0	0	0	1	0	0	0	0	0	0	1	1
	Modal	10	0.0001429	0	0	0	1	0	0	0	0	0	0	1	1
	Modal	11	0.0001244	0	0	0	1	0	0	0	0	0	0	1	1
	Modal	12	0.0001209	0	0	0	1	0	0	0	0	0	0	1	1
	Modal	13	3.741E-05	0	0	0	1	0	0	0	0	0	0	1	1
	Modal	14	3.19E-05	1.636	0	0	1	0	0	0	8.898E-06	1.784E-06	0	1	1
	Modal	15	3.129E-05	0	0	0	1	0	0	0	1.025E-06	0	0	1	1
	Modal	16	2.251E-05	0	0	0	1	0	0	0	0	0	0	1	1

Tabla 32. Modos de participación de la masa

Fuente: Christian Danilo Pérez Galarza

Se crean las rótulas plásticas por el método de fibras tanto para vigas como para columnas.

	fined Hinge Props
	Name Add New Property
	Concrete OK Cancel
Hinge Property Data	OK Cancel
Hinge Property Data Hinge Property Name FH1C01	OK Cancel
Hinge Property Data Hinge Property Name [FH1Col	OK Cancel
Hinge Property Data Hinge Property Name [FH1Col Hinge Type	OK Cancel
Hinge Property Data Hinge Property Name [FH1Col Hinge Type Force Controlled (Britle) @ Deformation Controlled (fluctile)	OK Cancel
Hinge Property Data Hinge Property Name [FH1Col Hinge Type O Force Controlled (Brittle) @ Deformation Controlled (Ductile) Fiber P-M2-M3	OK Cancel
Hinge Property Data Hinge Property Name [H1Col Hinge Type O Force Controlled (Brittle) @ Deformation Controlled (Ductile) Fiber P-M2-M3	OK OK Cancel ×

Figura 29. Creación de rótulas plásticas con fibras Fuente: Christian Danilo Pérez Galarza

Asignar las rótulas plásticas tanto en vigas y columnas, éstas se forman entre el 5% y 10% de la longitud, medidos desde el extremo de cada viga y columna.

Frame Hinge Assignment	Data				
Hinge Prope	rty	Location Type	Relative Dist	ance Distance from End cm	
FH1Vig	~ F	Relative to clear length	✓ 0.95		0.44
FH1Vig	F	Relative to clear length	0.05		Add
FH1Vig	F	Relative to clear length	0.95		Madifi
					modily
					Delete
					Delete
II					
rame Assignment - Hi	nges				
rame Assignment - Hi	nges				
rame Assignment - Hi	nges				
rame Assignment - Hi Frame Hinge Assignment	nges Data	Location Type	Relative Dist	ance Distance from End	
rame Assignment - Hi Frame Hinge Assignment Hinge Proper	nges Data tty	Location Type	Relative Dist	ance Distance from End	
rame Assignment - Hi Frame Hinge Assignment Hinge Proper	nges Data ty	Location Type	Relative Dist	ance Distance from End	
rame Assignment - Hi Frame Hinge Assignment Hinge Proper FH1Col	nges Data rty V F	Location Type Relative to clear length	Relative Dist	ance Distance from End	Add
rame Assignment - Hi Frame Hinge Assignment Hinge Proper FH1Col FH1Col	nges Data rty F	Location Type Relative to clear length Relative to clear length	Relative Dist	ance Distance from End	Add
rame Assignment - Hi Frame Hinge Assignment Hinge Proper FH1Col FH1Col FH1Col	nges Data ty F	Location Type Relative to clear length Relative to clear length Relative to clear length	Relative Dist. 0.95 0.95 0.95 	ance Distance from End	Add
rame Assignment - Hi Frame Hinge Assignment Hinge Proper FH1Col FH1Col FH1Col	nges Data ty F	Location Type Relative to clear length Relative to clear length Relative to clear length	Relative Dist.	ance Distance from End	Add Modify

Figura 30. Asignación de rótulas plásticas al 5% de su longitud desde el extremo Fuente: Christian Danilo Pérez Galarza

Figura 31. Asignación de rótulas plásticas con fibras en vigas y columnas Fuente: Christian Danilo Pérez Galarza

Cargar el acelerograma del sismo al cual va a estar sometida la estructura, definir el intervalo de tiempo en el que ocurre cada uno de los datos de aceleración del sismo y seleccionar la opción "convert to user defined" para guardar los datos.

	Time History F	Function Na	me	E_20160	5181600_A	MNT_5	DR3E2_1	00	
Function File				Value	s are:				
File Name		Brov	vse	0	Time and	Function	n Values		
C:\Users\DELL\Des Pedemales\E_2016(ktop\Matlab\)5181600_AM	Réplica INT_5DR38	E2_100.tx	۲	Values at	Equal In	tervals of	0.01	
Header Lines to Skip		10		Forma	t Type				
Prefix Chars, Per Line	to Skip	0		۲	Free Form	nat			
		6							
Number of Points per	Line	<u> </u>		0	Fixed For	mat			
Convert to User De	fined	View	v File		C	haracters	s per Item		
Function Graph									
40.0 -									
30.0 -									
20.0 _	- 1111	lla				_			
	a da din bu s	uulit	din Laws	Acres	41				
10.0 -	1717		KARLEN KARLEN I.			The second			
10.0 -			() () Walter	VYVVII	VWW MM	with sure			

Figura 32. Sismo para el análisis tiempo – historia Fuente: Christian Danilo Pérez Galarza

Definir la rampa gravitacional, la cual determina el tiempo en el que la estructura alcanza su deformación máxima al aplicarse las cargas gravitacionales, en este caso 10 segundos.

	Time History Function Name	Rampa gravitacional		
Parameters		Define Function		
Ramp Time	10	Time	Value	
Amplitudo	1	0	0	
Amplitude	-	0	0	
Maximum Time	20	20	i	
Co	nivert to User Defined			
Co Function Graph	onvert to User Defined			
Cc Function Graph	nvert to User Defined			
Cc Function Graph	nvert to User Defined			
Cc Function Graph	mvert to User Defined			
L.05	nivert to User Defined			

Figura 33. Rampa gravitacional

Fuente: Christian Danilo Pérez Galarza

Load Case Data				
General				
Load Case Name		Gravitacional		Design
Load Case Type/Subty	ype Time History	√ Nonlin	ear Direct Integration 🗸	Notes
Mass Source		MsSrc1	~	
Analysis Model		Default		
Initial Conditions				
Zero Initial Conditio	ns - Start from Unstressed	d State		
Continue from State	e at End of Nonlinear Cas	e (Loads at End of Case	ARE Included)	
Nonlinear Cas	e			
Loads Applied				-
Load Type	Load Name	Function	Scale Factor	0
Load Pattern	Dead	Rampa gravitacional	1	Add
Load Pattern	ACM	Rampa gravitacional	1	Delete
Load Pattern	Live	Rampa gravitacional	0.25	
				Advanced
Other Parameters				
Geometric Nonlinearity	Option	None	~	
Number of Output Time	e Steps		18	
Output Time Step Size			1	sec
Damping	Mass: 7.2868; Stiff: (0.0928; Modal: No	Modify/Show	
Time Integration	Hilber-Hughes-Taylo	r	Modify/Show	
			_	

Figura 34. Caso de carga "gravitacional" asignando la rampa creada Fuente: Christian Danilo Pérez Galarza

Se crea un nuevo caso de carga denominado "gravitacional" para establecer las condiciones iniciales estáticas de la estructura. La rampa gravitacional se la aplica al 100% de todas las cargas muertas, tanto al peso propio como al adicional de carga muerta y en un 25% del valor de la carga viva. El número de pasos que debe realizar el software para arrojar las respuestas se determina multiplicando el número de nodos por los grados de libertad de cada uno de ellos (3 grados de libertad), en este caso son 2 nodos por piso, por 3 pisos no da como resultado 18 pasos.

Se define el amortiguamiento de la estructura en reposo al estar sometido a cargas gravitacionales que es del 99%, ingresamos el valor del período del primer modo de vibración y el período del modo en el cual se acumula el 90% de la participación de la mas, como ya lo revisamos en un paso anterior y se recalculan los coeficientes de amortiguamiento por períodos.

Modal Load Case					
Viscous Proportional Damping					
	Mas: C	s Proportional Coefficient		Stiffness P Coeff	Proportional ficient
O Direct Specification]		
Specify Damping by Period	7.28	68	1/sec	0.0928	se
O Specify Damping by Frequency					
Specify as Period Ratio, T/T_	mode, for This M	lode			

Figura 35. Coeficientes de amortiguamiento en el caso de carga "gravitacional" Fuente: Christian Danilo Pérez Galarza

Se crea un nuevo caso de carga denominado "TH2" que actúa posterior a las condiciones iniciales estáticas de la estructura determinadas anteriormente. Se asigna la aceleración del sismo seleccionado y el factor de escala determinado anteriormente, en la dirección de estudio; en este caso la dirección actuante del sismo es en el eje X. El número de pasos que debe realizar el software para arrojar las respuestas es igual al número de datos de aceleración que tiene el sismo y el intervalo de tiempo es un dato que viene dado en el acelerograma.

eneral								
Load Case Name		TH2					Design	
Load Case Type/Subtype Time History Mass Source		~	Nonline	ar Direc	t Integration	\sim	Notes	
		MsSrc1 ~				\sim		
Analysis Model			Default					
ial Conditions								
 Zero Initial Condition 	ons - Start	from Unstressed	State					
Continue from State	e at End o	of Nonlinear Case	e (Loads at End	of Case	ARE Inc	luded)		
Nonlinear Cas	se		Gravitaciona	al			\sim	
ade Applied								
ads Applied		oad Name	Function		5	cale Factor		0
ads Applied Load Type Acceleration	L U1	oad Name	Function	ו 1623	Si 1,463	cale Factor		Add
ads Applied Load Type Acceleration	U1	oad Name	Function AMNT_201604	ו 1623	Si 1.463	cale Factor		() Add Delete
ads Applied Load Type Acceleration	U1	oad Name	Function AMNT_201604	1 1623	Si 1.463	cale Factor		Add Delete
ads Applied Load Type Acceleration	U1	oad Name	Function	1 1623	S 1.463	cale Factor		Add Delete Advanced
ads Applied Load Type Acceleration	U1	oad Name	Function	ו 1623	Si 1.463	cale Factor		Add Delete
ads Applied Load Type Acceleration her Parameters Geometric Nonlinearity	U1	oad Name	Function AMNT_201604	n 1623	Si 1.463	cale Factor	~	Add Delete Advanced
ads Applied Load Type Acceleration her Parameters Geometric Nonlinearity Number of Output Time	U1 U1	oad Name	Function AMNT_201604 None	ı 1623	Si 1.463	cale Factor	~	Add Delete
ads Applied Load Type Acceleration her Parameters Geometric Nonlinearity Number of Output Time Output Time Step Size	v Option e Steps	oad Name	Function AMNT_201604 None	n 1623	55(0.0	cale Factor	~ 	Add Delete Advanced
ads Applied Load Type Acceleration her Parameters Geometric Nonlinearity Number of Output Time Output Time Step Size Damping	U1 U1 r Option e Steps e	oad Name s: 0.184; Stiff: 0.	Function AMNT_201604 None	1 1623	550 550	cale Factor	×	Add Delete Advanced

Figura 36. Caso de carga "TH2" asignando la aceleración del sismo

Fuente: Christian Danilo Pérez Galarza

Al igual que en el caso de carga "gravitacional", se define el amortiguamiento de la estructura, en este caso al estar sometido al sismo, que es del 2.5%, y se repite el proceso con los mismos valores de períodos de vibración.

Direct Inte	gration Damping							
Modal L	.oad Case							
Viscous Pr	roportional Damping							
			Mass Co	Proportional pefficient		Stiffness F Coef	Proportiona ficient	d
O Dire	ect Specification]			
● Spe	cify Damping by Perio	d	0.184		1/sec	2.343E-0	3	sec
O Spe	cify Damping by Freq	uency]			
	Specify as Period Ra	tio, T/T_mode,	, for This Mo	de				
	Period	Fre	quency		Dam	iping		
First	1.329	sec		cyc/sec	0.025		Recalcu	ilate
Second	0.3783	sec		cyc/sec	0.025		Coeffici	ents

Figura 37. Coeficientes de amortiguamiento en el caso de carga "TH2" Fuente: Christian Danilo Pérez Galarza
4.7. ANÁLISIS DINÁMICO NO LINEAL

4.7.1. Comparación sismo Pedernales (estación AMNT) NEC vs CMS

Luego de someter a la estructura al sismo de Pedernales (AMNT), escalado con respecto al espectro de la NEC, se muestran puntos de desempeño en las rótulas de la parte inferior de las columnas del primer piso y en todas las rótulas plásticas definidas en vigas; mientras que con respecto al CMS no se muestran puntos de desempeño.

Figura 38. Puntos de desempeño en el pórtico con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

A continuación, se muestra un cuadro de resumen en cual se evidencia una diferencia notable cuando comparamos la utilización del sismo escalado con respecto al espectro de la NEC y con respecto al espectro medio condicional (CMS), tanto en desplazamiento, derivas de piso y cortante basal.

El desplazamiento máximo que tiene el pórtico con respecto a la NEC es de 32cm aproximadamente, la deriva máxima producida es de 45cm/cm y el cortante basal llega a un valor de 6 toneladas.

El desplazamiento máximo que tiene el pórtico con respecto al CMS es de 10cm aproximadamente, la deriva máxima producida es de 13.5cm/cm y el cortante basal llega a un valor de 2 toneladas.

Figura 39. Parámetros combinados de respuesta de la estructura (NEC vs CMS). Fuente: Christian Danilo Pérez Galarza

La respuesta de la rótula plástica ante el sismo, mostrado en el diagrama Momento – Rotación en el punto C1H5 (columna), con respecto al espectro de la NEC, determina que se forman 2.5 ciclos de carga, incursionando en la no linealidad, y con respecto al CMS, no se forma ningún ciclo de carga, ya que la rótula permanece dentro del rango lineal.

Figura 40. Comportamiento de la rótula C1H5 con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

La respuesta de la rótula plástica ante el sismo, mostrado en el diagrama Momento – Rotación en el punto B1H5 (viga), con respecto al espectro de la NEC, determina que se forman 2.5 ciclos de carga, incursionando en la no linealidad, y con respecto al CMS, no se forma ningún ciclo de carga, ya que la rótula permanece dentro del rango lineal.

Figura 41. Comportamiento de la rótula B1H5 con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

El desplazamiento máximo producido en la estructura ante el sismo, con respecto a la NEC, en punto A en el piso 3, es de 34.19 cm reflejado a los 8.82 segundos, mientras que, con respecto al CMS, en el mismo punto el desplazamiento máximo es de 9.66 cm reflejado a los 8.74 segundos.

Figura 42. Desplazamiento del punto A en el piso 3 con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

4.7.1.1. Nivel de desempeño

Figura 43. Nivel de desempeño con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

El nivel de desempeño que muestra la estructura al estar sometida al sismo de Pedernales (estación AMNT) escalado con respecto al espectro de la NEC es "seguridad de vida" en todas las rótulas mostradas en la figura anterior, excepto en la rótula inferior de la columna B, ésta presenta un nivel de desempeño "ocupacional". La estructura al estar sometida al sismo de Pedernales (estación AMNT) escalado con respecto al espectro medio condicional (CMS) no incursiona en el rango inelástico, es decir, presenta un nivel de desempeño "totalmente operativo".

4.7.2. Comparación sismo Christchurch (NEC) vs sismo Cumandá (ABAB) (CMS).

Luego de someter a la estructura al sismo de Christchurch (Nueva Zelanda), escalado con respecto al espectro de la NEC, y al sismo de Cumandá (estación ABAB), escalado con respecto al CMS, muestra en el primer caso 1 punto de desempeño, mientras que, en el segundo caso no existen puntos de desempeño, es decir, las rótulas plásticas no sufren afectación alguna, por lo tanto, se determina que en ninguno de los dos casos la estructura está incursionando en el rango no lineal.

Por lo expuesto en el párrafo anterior, no se pueden determinar niveles de desempeño, ya que la estructura y sus elementos, continúan dentro del rango lineal.

Figura 44. Puntos de desempeño en el pórtico con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

Figura 45. Parámetros combinados de respuesta de la estructura (NEC vs CMS). Fuente: Christian Danilo Pérez Galarza

El cuadro de resumen mostrado en la imagen anterior, refleja una leve diferencia cuando comparamos la utilización del sismo escalado con respecto al espectro de la NEC y con

respecto al espectro medio condicional (CMS), tanto en desplazamiento, derivas de piso y cortante basal.

El desplazamiento máximo que tiene el pórtico con respecto a la NEC es de 11cm aproximadamente, la deriva máxima producida es de 19.5cm/cm y el cortante basal llega a un valor de 3.5 toneladas.

El desplazamiento máximo que tiene el pórtico con respecto al CMS es de 9.5cm aproximadamente, la deriva máxima producida es de 13.5cm/cm y el cortante basal llega a un valor de 2 toneladas.

Otro parámetro analizado es la respuesta de la rótula plástica ante el sismo, mostrado en el diagrama Momento – Rotación en el punto C1H5 (columna), con respecto al espectro de la NEC y CMS, se determina en ambos casos que no se forma ningún ciclo de carga y la rótula permanece dentro del rango lineal, sin embargo, se evidencia que el esfuerzo realizado por la rótula aplicando el sismo con respecto a la NEC es mayor que la rótula con respecto al CMS.

Figura 46. Comportamiento de la rótula C1H5 con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

La respuesta de la rótula plástica ante el sismo, mostrado en el diagrama Momento – Rotación en el punto B1H4 (viga), con respecto al espectro de la NEC, determina que se forman 1.5 ciclos de carga, incursionando en la no linealidad, y con respecto al CMS, no se forma ningún ciclo de carga, ya que la rótula permanece dentro del rango lineal.

Figura 47. Comportamiento de la rótula B1H4 con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

Figura 48. Desplazamiento del punto A en el piso 3 con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

El desplazamiento máximo producido en la estructura ante el sismo, con respecto a la NEC, en punto A en el piso 3, es de 10.66 cm reflejado a los 18.97 segundos, mientras que, con respecto al CMS, en el mismo punto el desplazamiento máximo es de 9.66 cm reflejado a los 23.74 segundos.

4.7.1.2. Nivel de desempeño

El nivel de desempeño que muestra la estructura al estar sometida al sismo de Christchurch (Nueva Zelanda), escalado con respecto al espectro de la NEC, y al sismo de Cumandá (estación ABAB), escalado con respecto al CMS, en ninguno de los dos casos la estructura incursiona en el rango inelástico, es decir, presenta un nivel de desempeño "totalmente operativo".

Figura 49. Nivel de desempeño con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

4.7.3. Comparación sismo Parkfield (NEC) vs sismo Perú (ALJ1) (CMS).

Luego de someter a la estructura al sismo de Parkfield (California), escalado con respecto al espectro de la NEC, se muestran puntos de desempeño en las rótulas de la parte inferior de las columnas del primer piso y en todas las rótulas plásticas definidas en vigas, excepto en la viga del piso 3, que solo presenta un punto en el eje A; mientras que, con el sismo de Perú, escalado con respecto al CMS no se muestran puntos de desempeño.

Figura 50. Puntos de desempeño en el pórtico con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

A continuación, se muestra un cuadro de resumen en cual se evidencia una diferencia notable cuando comparamos la utilización del sismo escalado con respecto al espectro de la NEC y con respecto al espectro medio condicional (CMS), tanto en desplazamiento, derivas de piso y cortante.

El desplazamiento máximo que tiene el pórtico con respecto a la NEC es de 24cm aproximadamente, la deriva máxima producida es de 39.5 cm/cm y el cortante basal llega a un valor de 5.3 toneladas.

El desplazamiento máximo que tiene el pórtico con respecto al CMS es de 11cm aproximadamente, la deriva máxima producida es de 14.5cm/cm y el cortante basal llega a un valor de 2.1 toneladas.

Figura 51. Parámetros combinados de respuesta de la estructura (NEC vs CMS). Fuente: Christian Danilo Pérez Galarza

La respuesta de la rótula plástica ante el sismo, mostrado en el diagrama Momento – Rotación en el punto C1H5 (columna), con respecto al espectro de la NEC, determina que se forman 2.5 ciclos de carga, incursionando en la no linealidad, y con respecto al CMS, no se forma ningún ciclo de carga, ya que la rótula permanece dentro del rango lineal.

Figura 52. Comportamiento de la rótula C1H5 con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

La respuesta de la rótula plástica ante el sismo, mostrado en el diagrama Momento – Rotación en el punto B1H5 (viga), con respecto al espectro de la NEC, determina que se forman varios ciclos de carga, incursionando en la no linealidad, y con respecto al CMS, no se forma ningún ciclo de carga, ya que la rótula permanece dentro del rango lineal.

Figura 53. Comportamiento de la rótula B1H5 con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

El desplazamiento máximo producido en la estructura ante el sismo, con respecto a la NEC, en punto A en el piso 3, es de 28.43 cm reflejado a los 31.39 segundos, mientras que, con respecto al CMS, en el mismo punto el desplazamiento máximo es de 10.87 cm reflejado a los 87.78 segundos.

Figura 54. Desplazamiento del punto A en el piso 3 con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

4.7.3.1. Nivel de desempeño

Figura 55. Nivel de desempeño con respecto a la NEC y CMS Fuente: Christian Danilo Pérez Galarza

El nivel de desempeño que muestra la estructura al estar sometida al sismo de Parkfield (California) escalado con respecto al espectro de la NEC es "seguridad de vida" en las rótulas en vigas del primer y segundo piso mostradas en la figura. La estructura al estar sometida al sismo de Perú (estación ALJ1) escalado con respecto al espectro medio condicional (CMS) no incursiona en el rango inelástico, es decir, presenta un nivel de desempeño "totalmente operativo".

CAPÍTULO V

CONCLUSIONES, RECOMENDACIONES, BIBLIOGRAFÍA Y ANEXOS

5.1. Conclusiones

- El desempeño del pórtico metálico analizado en la presente investigación, mediante el análisis dinámico con acelerogramas ajustados con el Espectro Medio Condicional (CMS) de los sismos de Pedernales (estación AMNT), Cumandá (estación ABAB) y Perú (estación ALJ1) es "totalmente operativo".
- Los factores de correlación necesarios para la generación del Espectro Medio Condicional (CMS) para la ciudad de Ambato, determinados para los períodos de interés del presente estudio, al aplicar una ecuación predictiva simple son: para un período T=0.3 segundos ρ=0.839; para un período T=0.4 segundos ρ=0.941; para un período T=0.5 segundos ρ=0.979; para un período T=0.6 segundos ρ=0.913.
- La metodología que permite obtener el Espectro Medio Condicional (CMS) para la ciudad de Ambato es la siguiente: comenzar calculando la media condicional (ε) para el período de interés; posteriormente determinar el valor de la aceleración pseudoespectral (Sa) objetivo en un período dado, con los valores de magnitud de momento (M), distancia fuente – estudio (R) y media condicional (ε). Calcular la media condicional (ε) en otros períodos, dado ε objetivo y multiplicado por los factores de correlación para los períodos de interés. Finalmente se calcula el valor de Sa en otros períodos, lo que produce el valor medio condicional correspondiente.
- El comportamiento del pórtico dentro del rango no lineal empleando los acelerogramas generados con un Espectro Medio Condicional (CMS) es el esperado. El desempeño sísmico resulta ser apegado a la realidad de Ambato, ya que, al ser determinado aplicando las condiciones propias del sitio de estudio como la magnitud de momento, la distancia fuente estudio, la velocidad de onda de corte, la profundidad focal, distancia hipocentral, entre otras, el nivel de desempeño de la estructura ante un sismo raro (período de retorno 475 años), resultante de este análisis en los tres casos es totalmente operativa.
- Luego de someter a la estructura a los tres sismos escalados con respecto a la NEC (Pedernales, Christchurch y Parkfield) y escalados con respecto al CMS (Pedernales, Cumandá y Perú), se concluye que, con respecto a la NEC se

muestran puntos de desempeño en casi todas las rótulas plásticas asignadas en vigas y en las rótulas plásticas de la base de las columnas inferiores, a diferencia del segundo análisis que se mostró un solo punto en una de las vigas, sin embargo, con respecto al CMS no se muestra ningún punto de desempeño en los tres análisis.

- Con respecto a la NEC, se determina que en el primer caso el desplazamiento máximo es de 34.19 cm reflejado a los 8.82 segundos de estar sometido al sismo y la deriva máxima es de 45cm/cm; en el segundo caso el desplazamiento máximo es de 10.66 cm reflejado a los 18.97 segundos y la deriva máxima es de 19.5cm/cm; y en el tercer caso el desplazamiento máximo es de 28.43 cm reflejado a los 31.39 segundos y la deriva máxima es de 39.5 cm/cm. Con respecto al CMS desplazamiento máximo es de 9.66 cm reflejado a los 8.74 segundos y la deriva máxima es de 9.66 cm reflejado a los 23.74 segundos y la deriva máxima es de 13.5cm/cm; y en el tercer caso el desplazamiento máximo es de 9.66 cm reflejado a los 87.78 segundos y la deriva máxima es de 14.5cm/cm.
- La respuesta de las rótulas plásticas ante el sismo en el primer y tercer caso, mostrado en el diagrama Momento – Rotación en el punto C1H5 (columna), determina que se forman ciclos de carga, incursionando en la no linealidad, sin embargo, en el segundo caso no se forman casos de carga, aplicando los sismos escalados con respecto al espectro de la NEC; y con respecto al CMS, no se forma ningún ciclo de carga en los tres casos, ya que la rótula permanece dentro del rango lineal.
- La respuesta de las rótulas plásticas en vigas ante los tres sismos, mostrado en el diagrama Momento – Rotación con respecto al espectro de la NEC, determina que se forman ciclos de carga en los tres casos analizados, incursionando en la no linealidad, y con respecto al CMS, no se forma ningún ciclo de carga, ya que las rótulas permanecen dentro del rango lineal.
- El nivel de desempeño general que muestra la estructura en el primer caso, al estar sometida al sismo de Pedernales (estación AMNT) escalado con respecto al espectro de la NEC es "seguridad de vida", y con respecto al CMS es "totalmente operativo". En el segundo caso al estar sometida al sismo de Christchurch (Nueva Zelanda), escalado con respecto al espectro de la NEC, y al sismo de Cumandá (estación ABAB), escalado con respecto al CMS, el nivel de desempeño es

"totalmente operativo". En el tercer caso al estar sometida al sismo de Parkfield (California) escalado con respecto al espectro de la NEC es "seguridad de vida", y con respecto al CMS es "totalmente operativo".

 Se concluye que la demanda sísmica del pórtico aplicando acelerogramas ajustados con respecto a la NEC es mayor que con acelerogramas ajustados con respecto al CMS, puesto que las aceleraciones pseudoespectrales tienen una gran diferencia entre dichos espectros, es por ello que, los desplazamientos y derivas máximas se reducen en un 65% aproximadamente aplicando el CMS.

5.2. Recomendaciones

Se recomienda trabajar con una base de datos extensa de sismos suscitados en el Ecuador o cercanos, ya que la base de datos utilizada en la presente investigación corresponde al NGA Data Base y al Peer Ground Motion. Lastimosamente los datos completos que incluyen acelerogramas, profundidad focal y magnitud del sismo son confidenciales en el Ecuador de la mayor parte de sismos. Los pocos datos que son públicos fueron usados en la presente investigación.

5.3. Bibliografía

- J. W. Baker, "Conditional Mean Spectrum: Tool for Ground-Motion Selection," J. Struct. Eng., vol. 137, no. 3, pp. 322–331, 2011, doi: 10.1061/(asce)st.1943-541x.0000215.
- [2] E. Diego, A. Valencia, E. Luis, and F. Guevara, *Peligro sísmico*. Ecuador, 2015, p. 135.
- [3] I. A. López Jara, "ESTUDIO DE LA GENERACIÓN DE ESPECTROS MEDIOS CONDICIONALES UTILIZANDO LA BASE DE DATOS DE SISMOS CON MAGNITUD DE MOMENTO IGUAL O SUPERIOR A 6," Universidad de Chile, 2016. Accessed: Jun. 12, 2021. [Online]. Available: http://repositorio.uchile.cl/handle/2250/142077
- K. Ji, N. Bouaanani, R. Wen, and Y. Ren, "Introduction of conditional mean spectrum and conditional spectrum in the practice of seismic safety evaluation in China," *J. Seismol.*, vol. 22, no. 4, pp. 1005–1024, 2018, doi: 10.1007/s10950-018-9747-8.

- [5] R. Vacareanu, M. Iancovici, and F. Pavel, "Conditional mean spectrum for Bucharest," *Earthq. Struct.*, vol. 7, no. 2, pp. 147–157, 2014, doi: 10.12989/eas.2014.7.2.141.
- [6] "Geotecnia Fácil," Definición y tipos de fallas geológicas, 2020. https://geotecniafacil.com/tipos-fallas-geologicas/
- [7] N. Lantada Zarzosa, "Evaluación del riesgo sísmico mediante métodos avanzados y técnicas GIS. Aplicación a la ciudad de Barcelona.," no. Volumen I, pp. 1–339, 2009, [Online]. Available: http://www.tdx.cat/handle/10803/6259
- [8] "Sismica de suelos," Espectros de diseño sísmico de sitio.
 https://sismica.com.mx/servicios/espectros-diseno-sismico-sitio.php
- [9] E. Paz, "Procedimiento de cálculo para la elaboración de espectros sísmicos para el diseñn sismorresistente de estructuras," p. 282, 2012, [Online]. Available: http://biblioteca.usac.edu.gt/tesis/08/08_3486_C.pdf
- [10] D. L. Wells and J. Coppersmith, Kevin, "New empical relationship between magnitude, rupture length, rupture width, rupture area, and surface displacement," *Bull. Seismol. Soc. Am.*, vol. 84, no. 4, pp. 974–1002, 1994.
- [11] C. M. R, P. C. T, and S. M. R, "DETERMINISTIC SEISMIC HAZARD SPECTRUM FOR TECHNICAL UNIVERSITY OF AMBATO AT HUACHI," vol. 20, pp. 85–104, 2018, [Online]. Available: https://ia600107.us.archive.org/15/items/Artculo7_201802/Artículo 7.pdf
- [12] I. Pérez Santisteban, A. Muñoz-Martín, A. Carbó, and J. M. Fonticiella Ruiz, "Correlaciones empíricas entre la velocidad de propagación de las ondas S (Vs) y otros parámetros geotécnicos para los suelos de Madrid," 7^a Asam. Hisp. Port. Geod. y Geofísica, no. June, pp. 641–648, 2012.
- [13] N. Bastias, "Modelo Predictivo Para Intensidades Sísmicas Superficiales en Chile," 2016.
- [14] G. A. Montalva, N. Bastías, and A. Rodriguez-Marek, "Ground-motion prediction equation for the Chilean subduction zone," *Bull. Seismol. Soc. Am.*, vol. 107, no.

2, pp. 901–911, 2017, doi: 10.1785/0120160221.

- [15] N. Abrahamson, N. Gregor, and K. Addoc, "This preprint is a PDF of a manuscript that has been accepted for BC Hydro Ground Motion Prediction," *Prof. J. Earthq. Eng. Res. Inst.*, doi: https://doi.org/10.1193/051712EQS188MR.
- [16] NEC-SE-RE, "Rehabilitación Sísmica de Estructuras," Norma Ecuatoriana la Construcción, p. 41, 2015, [Online]. Available: https://www.habitatyvivienda.gob.ec/wp-content/uploads/downloads/2014/08/NEC-SE-RE.pdf
- [17] F. J. Crisafulli, "Diseño sismorresistente de construcciones de acero," *Marzo*, p. 214, 2018, [Online]. Available: http://www.alacero.org/es/page/publicaciones/diseno-sismorresistente-de-construcciones-de-acero
- [18] ASCE, "American Society of Civil Engineers, Fema 356 Prestandard and Commentary for the Seismic Rehabilitation of Building," *Rehabilitation*, no. November, 2000.
- [19] C. Genatios and M. Lafuente, Introducción al uso de aisladores y disipadores en estructuras, no. April. 2016. [Online]. Available: file:///C:/Users/Lenovo/Downloads/Uso de aisladores y disipadores en estructuras.pdf%0Ascioteca.caf.com
- [20] S. Sklar, D. Fish, and C. Simpson Stern, "ANSI/AISC 360-16," Specif. Struct. Steel Build., vol. 37, no. 2, pp. 169–170, 2017, doi: 10.1080/10462937.2017.1349256.
- [21] M. de D. U. y V. (MIDUVI) and (CAMICON) Cámara de la Industria de la Construcción, NEC-SE-CG: Cargas (No Sísmicas). 2014. [Online]. Available: https://www.habitatyvivienda.gob.ec/wpcontent/uploads/downloads/2015/02/NEC-SE-CG-Cargas-Sísmicas.pdf
- [22] D. S. Rosero and E. F. López, "Universidad Técnica De Ambato Facultad De Ingeniería Civil Y Mecánica Carrera De Ingeniería Mecánica," p. 100, 2018,
 [Online]. Available: https://repositorio.uta.edu.ec/jspui/handle/123456789/26832%0Ahttp://repositori

o.uta.edu.ec/jspui/handle/123456789/29865