

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

TRABAJO EXPERIMENTAL PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

TEMA:

"DISEÑO POR ELEMENTOS FINITOS DE UNA ROTO BOMBA ACCIONADA CON UNA TURBINA PELTON PARA RIEGO DE CULTIVOS EN LOS SECTORES VULNERABLES".

AUTOR: Cristian Javier Valencia Chávez

TUTOR: Ing. Carlos Mauricio Carrillo Rosero, Mg.

AMBATO – ECUADOR

2017

CERTIFICACIÓN

En mi calidad de tutor del proyecto experimental, previo a la obtención del título de Ingeniero Mecánico, con el tema **"DISEÑO POR ELEMENTOS FINITOS DE UNA ROTO BOMBA ACCIONADA CON UNA TURBINA PELTON PARA RIEGO DE CULTIVOS EN LOS SECTORES VULNERABLES"**, elaborado por el Sr. Cristian Javier Valencia Chávez, portador de la cédula de ciudadanía: 1600789323, y una vez que se ha culminado con la malla curricular vigente de la Carrera de Ingeniería Mecánica de la Facultad de Ingeniería Civil y Mecánica.

Certifico:

- El presente proyecto de investigación es original de su autor.
- Ha sido revisado cada uno de sus capítulos componentes.
- Está concluido en su totalidad.

.....

Ing. Carlos Mauricio Carrillo Rosero, Mg.

TUTOR

AUTORÍA DE TRABAJO

Yo, Cristian Javier Valencia Chávez con C.C. 1600789323 declaro que los criterios emitidos en este trabajo experimental con el tema **"DISEÑO POR ELEMENTOS FINITOS DE UNA ROTO BOMBA ACCIONADA CON UNA TURBINA PELTON PARA RIEGO DE CULTIVOS EN LOS SECTORES** VULNERABLES", así como también las ideas, análisis y conclusiones son de exclusiva responsabilidad de mi persona, como autor.

Cristian Javier Valencia Chávez C.C.: 1600789323 Autor

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que haga de este trabajo de investigación o parte de un documento disponible para su lectura, consulta y procesos de investigación, según las normas de la Institución.

Cedo los derechos de trabajo de investigación, con fines de difusión pública, además apruebo la reproducción de esta, dentro de las regulaciones de la Universidad.

.....

Cristian Javier Valencia Chávez

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del Tribunal de Grado aprueban el informe del trabajo experimental realizado por el estudiante Cristian Javier Valencia Chávez de la carrera de Ingeniería Mecánica, bajo el tema: "DISEÑO POR ELEMENTOS FINITOS DE UNA ROTO BOMBA ACCIONADA CON UNA TURBINA PELTON PARA RIEGO DE CULTIVOS EN LOS SECTORES VULNERABLES".

Ambato, Octubre del 2017

Para constancia firman:

.....

Ing. César Arroba, Mg.

.....

Ing. Diego Núñez, Mg.

DEDICATORIA

A mi familia, mi padre Carlos, mi madre Yolanda, por el apoyo que siempre me brindaron y los valores que me supieron inculcar para lograr las metas que me proponga y poder cosechar éxitos a lo largo de mi vida.

A mis hermanos, Jessica Miranda por brindarme apoyo y ayuda en los buenos y malos momentos.

AGRADECIMIENTO

A Dios por brindarme la sabiduría, las fuerzas para seguir con mis estudios.

A mis padres, Carlos y Yolanda quienes me motivaron a estudiar, mis hermanos y Jessica por apoyarme siempre.

A la Facultad de Ingeniería Civil y Mecánica por permitirme se parte de los alumnos de esta prestigiosa institución.

Al Ing. Mg. Mauricio Carrillo por brindarme los conocimientos y apoyo durante todo este trabajo de graduación.

A todos mis amigos que me han acompañado y apoyado a lo largo de la carrera.

ÍNDICE GENERAL DE CONTENIDOS

CERTIFICACIÓN II
AUTORÍA DE TRABAJO III
DERECHOS DE AUTORIV
APROBACIÓN DEL TRIBUNAL DE GRADO V
DEDICATORIAVI
AGRADECIMIENTOVII
ÍNDICE GENERAL DE CONTENIDOS VIII
ÍNDICE DE FIGURASXI
ÍNDICE DE TABLASXIII
RESUMENXIV
ABSTRACTXV
CAPÍTULO I. ANTECEDENTES1
1.1. Tema del trabajo experimental1
1.2. Antecedentes
1.3. Justificación
1.4. Objetivos
1.4.1. Objetivo General
1.4.2. Objetivos Específicos
CAPÍTULO II. FUNDAMENTACIÓN4
2.1 Fundamentación Teórica
2.1.1 Turbinas hidráulicas
2.1.2 Clasificación de las turbinas hidráulicas
2.1.2.1 Turbina Pelton
2.1.3 Geometría de la turbina Pelton
2.1.4 ANSYS

2.1.5	CFD	4
2.1.6	Bombas centrífugas 1	7
2.2 H	ipótesis1	8
CAPÍ	ГULO III. METODOLOGÍA 1	9
3.1 N	ivel o Tipo de Investigación1	9
3.1.1	Descriptiva 1	9
3.1.2	Bibliográfica1	9
3.2 Po	oblación y Muestra 1	9
3.2.1	Población1	9
3.2.2	Muestra2	0
3.3 O	peracionalización de Variables 2	1
3.3.1	Variable independiente	1
3.3.2	Variable dependiente	2
3.4 P	an de Recolección de Información2	3
3.5 Pl	an Procesamiento y Análisis2	3
3.5.1	Cálculo de n _s y n _q	3
3.5.2	Diámetro del rodete	5
3.5.3	Dimensionamiento de los inyectores	6
3.5.4	Geometría de las cucharas2	6
3.5.5	Diseño mecánico del eje2	8
3.5.5.1	l Cálculo de fuerzas y momento en el eje2	8
3.5.5.2	2 Dimensiones del eje	9
3.5.5.3	3 Cálculo del factor de seguridad por fatiga	1
3.5.6	Selección de chumaceras	3
3.5.7	Esfuerzo cortante en los pernos	3
3.5.8	Malla	4
3.5.9	Condiciones de borde	7

3.5.	10 Procedimiento para realizar el análisis	. 38
CA	PÍTULO IV. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	. 47
4.1	Recolección de datos	. 47
4.2	Análisis de Resultados	. 49
4.3	Verificación de Hipótesis	. 54
CA	PÍTULO V. CONCLUSIONES Y RECOMENDACIONES	. 58
5.1	Conclusiones	. 58
5.2	Recomendaciones	. 58
6	Bibliografía	. 59
7	Anexos	. 61

ÍNDICE DE FIGURAS

Figura 2.1. Clasificación de las turbinas
Figura 2.2. (a) Turbina Pelton de eje horizontal (b) Turbina Pelton de eje vertical 5
Figura 2.3. Geometría de la aguja del inyector7
Figura 2.4. Ángulo de salida del fluido7
Figura 2.5. Distribución del rodete
Figura 2.6. (a) Triángulo de velocidad a la entrada. (b) Triángulo de velocidad a la
salida9
Figura 2.7. Dimensiones de la cuchara de la turbina Pelton9
Figura 2.8. Inyector de la turbina Pelton10
Figura 2.9. Tipos de elementos de malla14
Figura 2.10 Índice de calidad ortogonal15
Figura 2.11. Bomba centrífuga
Figura 2.12. Partes de la bomba centrífuga
Figura 3.1. Cotas de la geometría de la cuchara
Figura 3.2. Fuerzas y momento en el eje
Figura 3.3. Carga presente para el dimensionamiento del eje
Figura 3.4. Diagrama de esfuerzos cortantes en el eje
Figura 3.5. Diagrama de momento flector del eje
Figura 3.6. Modelo de la turbina Pelton
Figura 3.7. Presión en función del número de celdas
Figura 3.8. Calidad ortogonal en función del número de celdas
Figura 3.9. Selección de nombres del modelo
Figura 3.10. Tamaño de las celdas de malla
Figura 3.11. Designación de la entrada 1
Figura 3.12. Designación de nombre a los sólidos del modelo
Figura 3.13. Designación del tipo de análisis
Figura 3.14. Modelo multifásico
Figura 3.15. Modelo de turbulencia
Figura 3.16. Selección de materiales
Figura 3.17. Designación de las fases de los fluidos41
Figura 3.18. Condiciones de zona para los inyectores y carcasa
Figura 3.19. Condiciones de zona para el rodete

Figura 3.20. Condiciones de borde a la entrada de los inyectores	43
Figura 3.21. Condición de borde a la salida de la turbina	43
Figura 3.22. Fracción de volumen de agua en los inyectores	44
Figura 3.23. Fracción de volumen de agua a la salida de la turbina	44
Figura 3.24. Inicialización de la simulación.	45
Figura 3.25. Designación de las condiciones iniciales	45
Figura 3.26. Actividades de cálculo	46
Figura 3.27. Ejecutar el cálculo	46
Figura 4.1. Influencia de la turbulencia.	49
Figura 4.2. Fracción del volumen de agua.	50
Figura 4.3. Velocidad del agua.	51
Figura 4.4. Presión absoluta del fluido	52
Figura 4.5. Turbulencia en la turbina	53
Figura 4.6. Rangos de operación de las bombas centrífugas	54
Figura 4.7. Índice social comparativo por parroquias del Ecuador	54
Figura 4.8. Eficiencia en función de la relación del caudal.	55
Figura 4.9. Triángulo de velocidades a la salida de la cuchara	56

ÍNDICE DE TABLAS

Tabla 2.1. Número específico de revoluciones y número más favorable	de
revoluciones	6
Tabla 2.2. Ecuaciones de la geometría del inyector.	. 10
Tabla 3.1. Determinación de la muestra	. 20
Tabla 3.2. Variable independiente.	. 21
Tabla 3.3. Variable dependiente	22
Tabla 3.4. Número de inyectores en función de la altura.	24
Tabla 3.5. Valores de momentos de flexión	. 31
Tabla 3.6. Convergencia de la malla	. 35
Tabla 3.7. Condiciones de borde	. 37
Tabla 4.1. Presión en función del modelo de turbulencia.	. 47
Tabla 4.2. Eficiencia en función del caudal	. 48
Tabla 4.3. Caudal y altura que producirá la bomba.	. 49

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

CARRERA DE INGENIERÍA MECÁNICA

DISEÑO POR ELEMENTOS FINITOS DE UNA ROTO BOMBA ACCIONADA CON UNA TURBINA PELTON PARA RIEGO DE CULTIVOS EN LOS SECTORES VULNERABLES.

Autor: Cristian Javier Valencia Chávez

Tutor: Ing. Carlos Mauricio Carrillo Rosero, Mg.

RESUMEN

El presente trabajo de investigación trata sobre el diseño de una turbina Pelton que trabaja con condiciones de salto neto de 45 m y caudal de 0.05 m³/s, se realizó análisis con el módulo CFD para determinar las condiciones de funcionamiento como presión, velocidad, turbulencia. En el diseño de la turbina consta de la geometría de las cucharas, las dimensiones del rodete, inyector, aguja del inyector y el dimensionamiento mecánico del eje de la turbina. El análisis por CFD se realizó tomando en cuenta las consideraciones de que la turbina trabaja con flujo bifásico, es decir que se tiene presencia de agua y aire, se utilizó malla rotatoria para hacer girar al rodete, malla estacionaria para los inyectores y parte de la carcasa. Se realizó un estudio sobre la convergencia de la malla y su influencia en los resultados, así como también los diferentes modelos de turbulencia que se dispone. Estos resultados fueron validados por medio del cálculo de la eficiencia de la turbina y el triángulo de velocidades a la salida de las cucharas de la turbina obteniéndose errores de 12.19% y 8.43%, respectivamente.

UNIVERSITY TECHNICAL OF AMBATO FACULTY OF CIVIL ENGINEERING AND MECHANICS

MECHANICAL ENGINEERING CAREER

DESIGN BY FINITE ELEMENTS OF A BROKEN PUMP OPERATED WITH A PELTON TURBINE FOR CROP IRRIGATION IN THE VULNERABLE SECTORS.

Author: Cristian Javier Valencia Chávez

Tutor: Ing. Carlos Mauricio Carrillo Rosero, Mg.

ABSTRACT

The present work of investigation is about the design of a Pelton turbine that works with conditions of net jump of 45 m and flow of 0.05 m3 / s, was realized with the module CFD to determine the conditions of operation like pressure, speed, turbulence. In the design of the turbine consists of the geometry of the spoons, the dimensions of the impeller, injector, injector needle and mechanical dimensioning of the turbine shaft. The CFD analysis was performed taking into account the considerations that the turbine works with biphasic flow, ie there is presence of water and air, was used rotating mesh to rotate the impeller, stationary mesh for injectors and part of the Case. A study was carried out on the convergence of the mesh and its influence on the results, as well as the different models of turbulence available. These results were validated by calculating the efficiency of the turbine and the triangle of velocities at the exit of the turbine spoons, obtaining errors of 12.19% and 8.43%, respectively.

CAPÍTULO I. ANTECEDENTES

1.1. Tema del trabajo experimental

DISEÑO POR ELEMENTOS FINITOS DE UNA ROTO BOMBA ACCIONADA CON UNA TURBINA PELTON PARA RIEGO DE CULTIVOS EN LOS SECTORES VULNERABLES.

1.2. Antecedentes

El estudio realizado por el Ing. Mg. Lorentz Fjellanger, en la Norwegian University of Science and Technology con el tema "CFD ANALYSIS OF A PELTON TURBINE", en el cual se compara los resultados de torque en las cucharas de una turbina Pelton obtenidos por medio del módulo CFX de Ansys con los datos experimentales obtenidos con la ayuda de la compañía Dyna Vec. La turbina está diseñada para una altura de 75 m, para este análisis se simularon tres cucharas de la turbina para el régimen rotatorio y la mitad del inyector para el régimen estacionario. En este trabajo se logró concluir que el modelo sobre predice el par en aproximadamente 1.5 %, se realizó el estudio para determinar la independencia de la malla para la obtención de resultados y contiene información sobre los modelos de turbulencia aplicados a este análisis. [1]

El trabajo realizado por Juan Palacios de la Escuela Superior Politécnica del Litoral con el tema "DISEÑO DE UNA TURBINA PELTON Y SU SISTEMA DE CONTROL", contiene las fórmulas correspondientes al diseño, en base al valor de la altura y caudal impuestos se determinó la geometría del rodete, cucharas y de los inyectores de la turbina Pelton, así como también el sistema de control para regular el ingreso del caudal al rodete por medio de la aguja del inyector para determinar el número de revoluciones al cual girará el eje de la turbina. En este trabajo se incluye un breve análisis por elementos finitos del inyector de esta turbina, y la selección del material para la construcción de la misma. [2]

El trabajo realizado por Edwin Bustamante de la Universidad Politécnica Salesiana con el tema "DISEÑO Y CONSTRUCCIÓN DE UNA TURBINA PELTON PARA GENERACIÓN ELÉCTRICA, CAPACIDAD 2 KW", el cual contiene teoría sobre la

medición de la altura del agua, componentes principales de la turbina Pelton y su funcionamiento, el diseño hidráulico y mecánico como la geometría del rodete, inyector y carcasa, también posee un estudio estadístico de la condición hidrométrica, el análisis del comportamiento hidráulico de esta máquina y un estudio técnico financiero para la evaluación del proyecto. [3]

El artículo realizado por Patel K, Patel B, Yadav M, y Foggia T. con el tema "DEVELOPMENT OF PELTON TURBINE USING NUMERICAL SIMULATION", el cual describe las actividades recientes sobre el desarrollo de investigaciones del diseño de las turbinas Pelton y muestra la complejidad del análisis debido a la presencia de flujo bifásico de aire y agua dentro de la carcasa, los resultados numéricos obtenidos en esta investigación sirven para visualizar el flujo del paso del agua y predecir el rendimiento de la máquina hidráulica que posee cinco inyectores a plena carga o carga parcial. [4]

1.3. Justificación

Mediante este proyecto de investigación se busca determinar la altura y el caudal mínimo de trabajo de una roto bomba sin la utilización de energía eléctrica, para los cálculos se utilizará energía hidráulica para accionar una turbina, cuyo eje transmitirá el movimiento a la bomba centrífuga.

Al no utilizar energía eléctrica este proyecto se puede aplicar a sectores donde no hay cobertura de la misma, debido a los resultados obtenidos en la encuesta de condiciones de vida realizada en el año 2014 por el INEC aún existe el 1.6 % de territorio nacional en el área de residencia, el 4.4 % del territorio rural sin energía eléctrica. [5]

Es importante destacar que este proyecto también se puede aplicar a sectores donde exista energía eléctrica reduciendo el costo de operación ya que no se utilizará dicho servicio, en lugar de la energía eléctrica se ocupará el recurso natural hídrico.

La turbina Pelton es la turbina de acción más utilizada, está compuesta por un rodete, que posee en su periferia unas cucharas. El chorro de agua es dirigido y regulado por uno o varios inyectores, dicho chorro golpea a las cucharas en dirección tangencial al rodete y perpendicular al eje, que puede ser vertical u horizontal. Esta turbina es de admisión parcial debido a que el chorro de agua a una zona limitada del rodete. La potencia se regula controlando la cantidad de agua que sale del inyector. [6] En las turbinas Pelton la carcasa evita que el agua salpique y evita los riesgos de accidentes. Estas turbinas suelen emplear caudales entre 0.05 y 50 m³/s y alturas comprendidas entre 30 y 1800 m. El rendimiento de estas turbinas es muy alto, ya que el 90% de la energía hidráulica se transforma en energía cinética en el eje. [6]

Esta investigación es factible ya que la Facultad de Ingeniería Civil y Mecánica de la Universidad Técnica de Ambato posee la licencia del Software Solidworks 2014 y ANSYS.

De acuerdo con el informe elaborado por el Ministerio de Agricultura, Ganadería, Acuacultura y Pesca (MAGAP) de las 24874396 hectáreas que corresponden al total de la superficie territorial del Ecuador, el 79 % tienen vocación agropecuaria aprovechable del suelo.

Según el último Mapa de Cobertura y Uso de la Tierra del Ecuador Continental, actualmente el 53 % de esa área está siendo utilizada. Utilizar todo este potencial agropecuario, combinado con sus beneficios competitivos frente a los mercados, es una base sólida para reducir de la pobreza en el campo y el desarrollo rural sostenible, con equidad económica y social. [7]

1.4. Objetivos

1.4.1. Objetivo General

Diseñar por elementos finitos una roto bomba accionada con una turbina Pelton para riego de cultivos en los sectores vulnerables.

1.4.2. Objetivos Específicos

- Seleccionar una bomba centrífuga de acuerdo con la velocidad de giro de la turbina.
- > Analizar por CFD el comportamiento de la turbina Pelton.
- Determinar la convergencia del mallado con la mínima influencia del mismo para el análisis por CFD.
- Calcular la altura y caudal mínimo de trabajo de la roto bomba.

CAPÍTULO II. FUNDAMENTACIÓN

2.1 Fundamentación Teórica

2.1.1 Turbinas hidráulicas

Para transformar la energía de un fluido en energía mecánica se emplean algunos tipos de máquinas que se clasifican en:

- Máquinas gravimétricas, que son las que ocupan la energía geodésica de un fluido.
- Máquinas hidrostáticas, son las que utilizan las variaciones de presión en el fluido.
- Máquinas rotodinámicas, en las que se aprovecha la variación del movimiento del agua en su paso por el rodete. [8]

2.1.2 Clasificación de las turbinas hidráulicas

De acuerdo con la variación de presión estática en el rodete, figura 2.1:

- Turbinas de acción, en las que la presión estática permanece constante en la entrada y salida del rodete.
- Turbinas de reacción, en las que la presión estática se reduce entre la entrada y salida del rodete. [8]

Figura 2.1. Clasificación de las turbinas.

Fuente: Autor

2.1.2.1 Turbina Pelton

La turbina Pelton fue creada por Lester Allan Pelton en 1880, es la turbina de acción más utilizada, trabaja con caudales bajos y grandes alturas. Esta turbina aprovecha solo la energía cinética del fluido debido a que no existe un cambio de presión entre la entrada y la salida de esta máquina hidráulica, su eje puede estar orientado de forma horizontal o vertical como se observa en la figura 2.2. Cuando el eje se ubica en forma horizontal generalmente la turbina posee máximo dos inyectores debido a la dificultad de la instalación de tuberías para la alimentación, con la ventaja de que se pueden instalar dos turbinas idénticas para un mismo generador. Con la disposición vertical del eje se facilita la instalación de tuberías para la alimentación de fluido por que el número de inyectores puede aumentar, la longitud del eje es menor que en la disposición horizontal pero la inspección y mantenimiento es más complicado. [9]

Figura 2.2. (a) Turbina Pelton de eje horizontal (b) Turbina Pelton de eje vertical. [9]

Para el diseño de la turbina de rueda tangencial de una boquilla se debe tener en cuenta el número específico de revoluciones y número más favorable de revoluciones que se muestra en la tabla 2.1

El distribuidor de la turbina Pelton está constituido por uno o más inyectores, los cuales tienen una sección circular y en su interior se encuentra una aguja, con la geometría que se indica en la figura 2.3 que se desplaza axialmente para regular el caudal del flujo que ingresará al rodete. La aguja puede ser controlada de forma manual o automática.

TIPO DE TURBINA	ns	nq
Rueda tangencial de una	10 a 13	3 a 4
hoguillo	12 a 20	4 a 6
boquina	20 a 30	6 a 9
Francis lenta	60 a 125	18 a 38
Francis normal	125 a 175	38 a 53
Francis normai	175 a 225	53 a 68
Francia rápida	225 a 350	68 a 105
Trancis rapida	350 a 450	105 a 135
	350 a 600	105 a 180
Hélice y Kaplan	600 a 800	180 a 240
	800 a 100	240 a 300

Tabla 2.1. Número específico de revoluciones y número más favorable de revoluciones. [10]

El número más favorable de revoluciones y el número específico de revoluciones se calcula con las siguientes expresiones: [11]

$$n_q = \frac{n\sqrt{Q}}{H^{\frac{3}{4}}}$$
Ec. 2.1

Donde:

 $n_q = N$ úmero más favorable de revoluciones.

n = número de revoluciones.

Q = Caudal.

H = Salto de altura neta.

$$n_s = 3.65 n_q \sqrt{\eta}$$
 Ec. 2.2

Donde:

 $n_s = N$ úmero específico de revoluciones.

 η = Eficiencia de 92 a 93 %

Figura 2.3. Geometría de la aguja del inyector. [11]

Es sumamente complicado determinar la trayectoria de cada una de las partículas del flujo debido a que no se puede expresar matemáticamente, para poder alcanzar una mayor proyección de las partículas del fluido, el agua no debe salir del inyector con movimiento circular. La cuchara de la turbina Pelton no puede ser recta ya que al abandonar el fluido a la cuchara con un ángulo de 180° chocaría con las otras paletas causando una disminución de la velocidad de giro, como se muestra en la figura 2.4. [11]

Figura 2.4. Ángulo de salida del fluido. [11]

El rodete es de admisión parcial, está formado por un disco y una serie de cucharas en su periferia las cuales pueden ser soldadas, empernadas o fundidas en un solo elemento, como se muestra en la figura 2.5, aquí se transforma la energía hidráulica en energía mecánica. La carcasa tiene como función principal cubrir y soportar las partes de la turbina, además de proteger de accidentes durante el funcionamiento de la máquina. [9]

Figura 2.5. Distribución del rodete. [3]

La velocidad lineal del chorro se calcula con la expresión: [11]

$$C_o = \phi \sqrt{2gH}$$
 Ec. 2.3

Donde:

C_o = Velocidad del chorro.

 φ = Eficiencia de la boquilla de 95 a 98 %

g = Aceleración de la gravedad.

El diámetro del chorro se calcula con la expresión: [11]

$$d_{o} = \sqrt{\frac{4}{\pi} \frac{Q}{\varphi \sqrt{2gH}}}$$
 Ec. 2.4

Donde:

d_o = Diámetro del chorro.

La velocidad permisible se determina con la expresión: [11]

$$U_1 = \frac{\eta_h C_o}{2 \varphi^2}$$
 Ec. 2.5

Donde:

 $U_1 = Velocidad permisible.$

 $\eta h = Eficiencia hidráulica de 88\%$

El diámetro del rodete de la turbina Pelton se calcula con la expresión: [11]

$$D = \frac{60 U_1}{\pi n}$$
 Ec. 2.6

El triángulo de velocidades a la entrada y salida de las cucharas de la turbina Pelton se forma de acuerdo como se muestra en la figura 2.6, la velocidad del agua a la salida de la cuchara de la turbina Pelton teóricamente debe ser igual a cero, lo que significa que la turbina aprovechó toda la energía del fluido y este abandonaría las cucharas por acción de la gravedad. Realmente esto no sucede, pero se trata de disminuir la velocidad de salida al máximo, la velocidad de salida del agua se puede calcular por medio del triángulo de velocidad. [3]

Figura 2.6. (a) Triángulo de velocidad a la entrada. (b) Triángulo de velocidad a la salida. [3]

2.1.3 Geometría de la turbina Pelton

La geometría de las cucharas se determina con la figura 2.7. Ya que existen varias geometrías para la cuchara de la turbina Pelton, se tomaron las dimensiones más pequeñas para obtener una mayor eficiencia debido a que se trabaja con caudal y altura baja.

El número de cucharas en el rodete de la turbina se determina con la expresión: [11]

Figura 2.7. Dimensiones de la cuchara de la turbina Pelton. [11]

La geometría del inyector se determina con la figura 2.8, en la cual se encuentran las dimensiones necesarias para realizar el diseño del inyector.

Figura 2.8. Inyector de la turbina Pelton. [2]

En la tabla 2.2 se encuentran las fórmulas necesarias para determinar las dimensiones de la aguja y el inyector de la turbina Pelton.

Dimensión	Ecuación
a	1.42 d _o
αο	40 a 60°
α_1	60° a 90°
dt	1.1 d _o
d _v	0.58 d _o
b	3.25 d _o
1	6 d _o
r	15 d _o
d1	2.5 d _o

Tabla 2.2. Ecuaciones de la geometría del inyector. [2]

Para el dimensionamiento del eje se utiliza la norma ASME ANSI B106 para calcular el diámetro con la siguiente expresión:

$$d^{3} = \frac{16}{\pi S_{y}} \sqrt{(Km M)^{2} + (Kt T)^{2}}$$
Ec. 2.8

Donde:

d = Diámetro del eje de la turbina.

M = Momento flector.

T = torque producido por la fuerza del chorro.

La fuerza del chorro se calcula con la expresión: [2]

$$F_{ch} = c_0 \rho Q \qquad Ec. 2.9$$

Donde:

 F_{ch} = Fuerza producida por el chorro.

 ρ = Densidad del agua.

El torque producido por la fuerza del chorro se determina con la expresión: [2]

$$T = 2 F_{ch} \left(\frac{D}{2}\right)$$
 Ec. 2.10

La fuerza vertical que actúa en el eje de la turbina se calcula con la expresión: [2]

$$F_v = F_{ch} + W_{rodete}$$
 Ec. 2.11

Donde:

 F_v = Fuerza vertical en el eje de la turbina.

W_{rodete} = Peso del rodete de la turbina.

El cálculo del factor de Seguridad por fatiga en el eje se lo realiza por medio del teorema de Goodman Modificado con la expresión: [12]

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} = \frac{1}{n}$$
 Ec. 2.12

Donde:

 σ_a = Esfuerzo alternante.

 σ_m = Esfuerzo medio.

S_e = Límite de resistencia a la fatiga en la ubicación crítica de una parte de máquina.

 S_{ut} = Resistencia mecánica del AISI 304.

El esfuerzo alternante se calcula con la expresión:

$$\sigma_{a} = \sqrt{16 \left(\frac{K_{f} M_{alternante}}{\pi d^{3}}\right)^{2}}$$
Ec. 2.13

El esfuerzo medio se determina con la expresión:

Reemplazando las ecuaciones 2.13 y 2.14 en la ecuación 2.14 se obtiene la siguiente expresión para determinar el factor de seguridad:

$$\frac{1}{n} = \frac{4\sqrt{\left(\frac{K_{f} M_{alternante}}{\pi d^{3}}\right)^{2}}}{S_{e}} + \frac{4\sqrt{3\left(\frac{K_{fs} T_{medio}}{\pi d^{3}}\right)^{2}}}{S_{ut}}$$
Ec. 2.15

El límite de resistencia a la fatiga en la ubicación crítica de una parte de máquina se determina con la expresión: [12]

$$S_e = k_a k_b k_c k_d k_e k_f S'_e$$
 Ec. 2.16

Donde:

k_a = Factor de modificación de la condición superficial.

 $k_b =$ Factor de modificación del tamaño.

 k_c = Factor de modificación de la carga.

 k_d = Factor de modificación de la temperatura.

 $k_e = Factor de confiabilidad.$

 $k_{\rm f}$ = Factor de modificación de efectos varios.

 $S_e' = L$ ímite de resistencia a la fatiga en viga rotatoria.

El factor de superficie se calcula con la expresión: [12]

$$k_a = a S_{ut}^b$$
 Ec. 2.17

El factor de tamaño se determina con la expresión: [12]

$$k_{\rm b} = 1.24 \, {\rm d}^{-0.107}$$
 Ec. 2.18

El límite de resistencia a la fatiga en viga rotatoria se calcula con la expresión: [12]

$$S'_{e} = 0.5 S_{ut}$$
 Ec. 2.19

El esfuerzo cortante en los pernos de las cucharas de la turbina se calculan con la expresión: [12]

$$\tau = \frac{F_{ch}}{A}$$
 Ec. 2.20

Donde:

 τ = Esfuerzo cortante en los pernos.

A =Área de la sección del perno.

Debido a que en las cucharas de la turbina se encuentran dos pernos y cada perno tiene dos superficies en las que se aplica el esfuerzo cortante la ecuación 2.20 se reemplaza por la expresión:

$$\tau = \frac{F_{\rm ch}}{4x\frac{\pi}{4}d_p^2}$$
 Ec. 2.21

Donde:

d_p = Diámetro del perno.

2.1.4 ANSYS

Es un conjunto de programas CAE para el análisis por el método de elementos finitos sometido a un medio real, contiene tres herramientas que son el preprocesador, donde se realiza el mallado y se determina las condiciones para la operación del modelo a simular, el procesador, en el cual se aplican las iteraciones necesarias para obtener la solución y el post procesador, que permite mostrar los resultados obtenidos en la simulación. Desarrolla análisis de elementos sometidos a problemas de ingeniería como esfuerzos térmicos, vibración, fluidos. [13]

Permite la integración de varios softwares CAD para el diseño de los modelos sobre los que se desea realizar análisis, es utilizado en varias ramas de la ingeniería como civil, química y eléctrica. [13]

Desventajas

- La solución que ofrece es una mezcla de cálculos discretos, es decir son aproximaciones que están en dependencia del número de elementos de malla.
- La complejidad de la geometría que se desea analizar puede producir errores debido a que el mallado debe cumplir ciertos parámetros en rangos establecidos con lo que se puede afectar a la convergencia del régimen.
- Varias propiedades de los elementos utilizados en las simulaciones deben ser ingresados por el usuario y el software no presenta un aviso los rangos apropiados.
- La cantidad de elementos se ingresa manualmente y debe ser aumentado gradualmente hasta alcanzar la convergencia necesaria lo que significa un alto gasto computacional e inversión de tiempo por parte del usuario. [13]

2.1.5 CFD

La dinámica computacional de fluidos es una rama en la que se utilizan los algoritmos matemáticos y métodos numéricos para solucionar problemas de fluidos que son complejos para resolverlos analíticamente, un beneficio muy importante del CFD es que puede ahorrar una elevada cantidad de tiempo e inversión en experimentos. Sin embargo, los resultados obtenidos por CFD deben validarse con datos experimentales ya que esta solución es solo una aproximación. El módulo Fluent utiliza volúmenes finitos para integrar las ecuaciones de flujo. [1]

La obtención de resultados correctos está en dependencia de la malla, en la figura 2.9 se muestra los diferentes tipos de elementos de malla.

Figura 2.9. Tipos de elementos de malla. [1]

Fluent posee varios índices para medir la calidad del mallado que se está realizando. El índice de calidad ortogonal está comprendido en el rango de 0 y 1, donde 0 es inaceptable y obtener el valor de 1 en este índice es excelente, como se indica en la figura 2.10. [14]

Unacceptable	Bad	Acceptable	Good	Very good	Excellent
0-0.001	0.001-0.14	0.15-0.20	0.20-0.69	0.70-0.95	0.95-1.00

Figura 2.10 Índice de calidad ortogonal. [13]

Mientras se malla el modelo el módulo Fluent permite seleccionar caras o componentes del mismo para asignarles un nombre y posteriormente configurar las condiciones de borde. En las zonas de elementos se puede dar movimiento a los sólidos del modelo en estudio, se debe asignar el eje de referencia para el giro del elemento, la velocidad de rotación y el punto inicial. [14]

Las condiciones de borde permiten que el flujo entre y salga del dominio de la solución. Entre las principales condiciones de borde para la entrada de flujo que tiene el módulo Fluent se encuentra: flujo másico, presión, velocidad, condiciones de pared; para la salida están: flujo másico, presión. [14]

Este módulo permite controlar el modelo de turbulencia que es el movimiento alterado de las partículas de un fluido, con la presencia de remolinos, se aplican a fluidos con baja viscosidad, aplicando promedios a las ecuaciones de Navier Stokes. El modelo RANS de turbulencia es el más utilizado ya que es menos exigente y es el adecuado para la simulación de la turbina Pelton. Las ecuaciones de RANS son conocidos como modelos de turbulencia estadística debido al procedimiento de promedio que se aplica. [1]

Modelo de turbulencia K – ε estándar

Resuelven dos ecuaciones de transporte en derivadas parciales que interrelacionan la energía cinética del fluido k y su velocidad de disipación ε , modelan las tensiones de Reynolds utilizando el enfoque de la viscosidad de Eddy. Este modelo posee una razonable precisión para una amplia gama de fluidos turbulentos, es muy utilizado en

simulaciones de flujo industrial y transferencia de calor. Tiene insensibilidad a los gradientes de presión negativa y la separación de la capa límite, lo que puede resultar en evaluaciones de diseño demasiado optimistas para flujos que se separan es superficies lisas. [1]

Modelo de turbulencia k – w estándar

Este modelo también emplea dos ecuaciones, el de la energía cinética del fluido turbulento k y la disipación específica ω , esta última variable determina la escala de turbulencia, mientras que k determina la energía de la turbulencia. A diferencia de la ecuación ε , esta puede ser integrada sin términos adicionales a través de la subcapa viscosa, por lo que predicen de mejor manera las gradientes de presión negativa y la separación de la capa límite. [1]

Modelo de turbulencia k – ε realizable

A diferencia del modelo k – ε estándar, posee una ecuación de transporte modificada para la velocidad de disipación, ε , que se ha derivado de una ecuación exacta para el transporte de la fluctuación de la vorticidad media cuadrada. Este modelo satisface ciertas limitaciones matemáticas sobre los esfuerzos de Reynolds, consistentes con la física de los flujos turbulentos. Una limitación de este modelo es que produce viscosidades turbulentas no físicas en situaciones en las que el dominio computacional contiene zonas giratorias y estacionarias. [1]

Modelo de turbulencia k – ω SST

Este modelo k – ω está basado en el transporte de esfuerzo cortante para proporcionar predicciones altamente precisas del inicio y la cantidad de separación de flujo bajo gradientes de presión negativa, este modelo de turbulencia se recomienda para simulaciones de capa límite de alta precisión. Para flujos de corte libre el modelo k – ω SST es idéntico al modelo k – ϵ . [1]

Modelo de turbulencia de transición SST

Es un modelo de 4 ecuaciones que calcula y resuelve la capa límite desde la región laminar hasta la turbulenta, a diferencia de los otros modelos que asumen un flujo puramente turbulento inclusive en la capa límite, no debe aplicarse a superficies que se mueven en relación con el sistema de coordenadas. [1] El flujo multifásico se caracteriza por estar presente más de un fluido en el análisis, se utiliza el método de volumen de fluido (VOF). En Fluent se puede analizar un modelo con varios fluidos inmiscibles resolviendo un solo conjunto de ecuaciones y determinando la fracción de volumen de cada fluido en cualquier parte del dominio. Las condiciones iniciales son de mucha importancia para este análisis, aquí se indica que partes del modelo contienen cada uno de los fluidos presentes. [1]

2.1.6 Bombas centrífugas

Las bombas centrífugas transforman la energía cinética del impulsor, está formada por múltiples paletas encerradas en una carcasa, como se muestra en la figura 2.11, estas paletas aumentan la velocidad del flujo utilizando la fuerza centrífuga y la transforman en energía potencial. [15]

La característica principal de las bombas centrífugas es transformar la energía cinética proporcionada por una fuente primeramente en energía de presión. Se utilizan para el transporte de fluidos que generalmente tienen baja viscosidad, su caudal es constante y no requieren de un elevado mantenimiento. [15]

Figura 2.11. Bomba centrífuga. [15]

Las bombas centrífugas están compuestas por el impulsor que es un elemento que posee movimiento y varias paletas, el difusor que está formado por álabes fijos que junto con el impulsor se encentran dentro de la carcasa, el eje es de sección circular no uniforme y es el encargado de transmitir la fuerza producida por la fuente, como se indica en la figura 2.12. [15]

Figura 2.12. Partes de la bomba centrífuga. [15]

2.2 Hipótesis

El diseño por elementos finitos de una roto bomba accionada con una turbina Pelton permitirá el riego de cultivos en los sectores vulnerables donde exista recurso hídrico con un salto de 45 m y caudal de $0.05m^3/s$.

2.3 Señalamiento de Variables de la Hipótesis

Variable Independiente

Diseño por elementos finitos de una roto bomba accionada con una turbina Pelton.

Variable dependiente

Riego de cultivos en los sectores vulnerables.

CAPÍTULO III. METODOLOGÍA

3.1 Nivel o Tipo de Investigación.

3.1.1 Descriptiva

Se utilizará la investigación descriptiva debido a que se realizará el estudio de la turbina para obtener una serie de datos y se los comparará con datos obtenidos en base a experimentos para validar el modelo realizado.

3.1.2 Bibliográfica

Este tipo de investigación es el más importante para este estudio ya que la mayoría de datos se obtendrán en base a libros, investigaciones realizadas, artículos técnicos, para determinar los sectores donde existe el recurso hídrico necesario y la realización del diseño de la turbina Pelton.

3.1.3 Experimental

Con la ayuda del software ANSYS se realizará una serie de simulaciones para determinar las principales características de funcionamiento de la turbina Pelton y la influencia del mallado en la obtención de los resultados.

3.2 Población y Muestra.

3.2.1 Población

Las simulaciones se realizarán con la ayuda del software ANSYS, módulo Fluent en el cual se aplicará el método de mallado tetraédrico.

3.2.2 Muestra

Diseño	Tamaño mínimo de la celda	Tamaño máximo de la celda	Tipo de celda	Simulaciones	
Diseño 1	7	130	Tetraédrica	1	
Diseño 2	7	150	Tetraédrica	1	
Diseño 3	7	70	Tetraédrica	1	
Diseño 4	6	150	Tetraédrica	1	
Diseño 5	6	70	Tetraédrica	1	
Diseño 6	5	150	Tetraédrica	1	
Diseño 7	5	70	Tetraédrica	1	
Diseño 8	5	40	Tetraédrica	1	
Diseño 9	5	40	Tetraédrica	1	
Diseño 10	5	70	Tetraédrica	1	
Diseño 11	4	150	Tetraédrica	1	
Diseño 12	3	150	Tetraédrica	1	
Diseño 13	2	150	Tetraédrica	1	
Total				13	

Tabla 3.1. Determinación de la muestra.

Fuente: Autor

3.3 Operacionalización de Variables.

3.3.1 Variable independiente

Diseño por elementos finitos de una roto bomba accionada por una turbina Pelton.

Concepto	Categoría	Indicadores	Ítems	Herramientas
El método por elementos finitos se utiliza para solucionar problemas complejos. La precisión	Malla	¿Cuál es el mejor método de mallado?	Tetraédrico	
de los resultados depende de la cantidad,		¿Cuál es el índice adecuado de	0.001 – 0.14 Malo	Software ANSYS
tamaño y número de elementos de malla.		la calidad ortogonal de la	0.15 – 0.20 Aceptable	
		malla?	0.20 – 0.69 Bueno	
La bomba centrífuga transforma la energía cinética del impulsor aumentando la velocidad del flujo, está formada por varias paletas que se encuentran dentro de la carcasa.	Velocidad del flujo	¿Cuál es el caudal que producirá la bomba?	$0.01 - 0.1 \text{ m}^3/\text{s}$ $0.1 - 0.3 \text{ m}^3/\text{s}$	Bibliográfica
La turbina Pelton es la turbina de acción más utilizada, aprovecha la velocidad del fluido, el	Inyector	¿Cuántos inyectores posee la turbina?	2	Cálculos
distribuidor está formado por uno o más inyectores, el rodete posee una serie de cucharas en su periferia.	Cucharas	¿Cuál es el ancho apropiado para las cucharas de la turbina Pelton?	0.01 – 0.1 m	Bibliográfica

 Tabla 3.2.
 Variable independiente.

Fuente: Autor.
3.3.2 Variable dependiente

Riego de cultivos en los sectores vulnerables.

Concepto	Categoría	Indicadores	Ítems	Herramientas
El riego de cultivos es el	Riego	¿Existe riego en la zona central	Si	Bibliográfica
suministro de agua al suelo que		en los sectores vulnerables?	No	
por lo general no se realiza de				
forma continua, el riego				
dispone de varios sistemas para				
su aplicación como riego por				
gravedad, a presión y por				
escurrimiento				
Los sectores vulnerables son los	Zonas vulnerables	¿En qué zonas se puede aplicar	Urbana	Bibliográfica
grupos de personas que por		el proyecto?	Urbana marginal	
ciertas características de			Rural	
desventaja requieren mayor				
atención para lograr su				
desarrollo				

Tabla 3.3. Variable dependiente.

3.4 Plan de Recolección de Información.

La recolección de datos se realizará por medio de las simulaciones realizadas por el software ANSYS, las cuales serán representadas por medio de gráficos obtenidos por el módulo Fluent.

3.5 Plan Procesamiento y Análisis.

3.5.1 Cálculo de ns y nq

El número de revoluciones a la que trabajará la turbina se determinó por medio del catálogo de bombas Hidrostal, n = 3600, 1800, 1200, 900 rpm.

Para:

H = 30 m

$$Q = 0.05 \ \frac{m^3}{s}$$

n = 3600 rpm

 $\eta = 0.92$

El número más favorable de revoluciones y el número específico de revoluciones se calcula con las ecuaciones 2.1 y 2.2 respectivamente.

$$n_{q} = \frac{3600 \text{ rpm } \sqrt{0.05 \frac{\text{m}^{3}}{\text{s}}}}{(30 \text{ m})^{\frac{3}{4}}}$$

 $n_q = 62.8 \text{ rpm}$

 $n_s = 3.65 (62.8 \text{ rpm})(\sqrt{0.92})$

$$n_{s} = 219.86 \text{ rpm}$$

Siguiendo el mismo procedimiento se realizó la tabla 3.4 para determinar el número de inyectores para diferentes alturas con un caudal de $0.05 \text{ m}^3/\text{s}$.

						H= 30 m	ı					
1410 100		1 Ing	yector	2 Inyectores			3 Inyectores			4 Inyectores		
грш	nq	ns	Observaciones	nq	ns	Observaciones	nq	ns	Observaciones	nq	ns	Observaciones
3600	62.8	219.86	Muy alto	44.4	155.44	Muy alto	36.29	127.05	Muy alto	31.4	109.9	Muy alto
1800	31.4	109.93	Muy alto	22.2	77.72	Muy alto	18.15	63.54	Muy alto	15.7	54.96	Muy alto
1200	20.93	73.28	Muy alto	14.8	51.81	Muy alto	12.1	42.36	Muy alto	10.47	36.66	Muy alto
900	15.7	4.97	Muy alto	11.1	38.86	Muy alto	9.07	31.75	Muy alto	7.85	27.48	Óptimo
	H= 45 m											
		1 Ing	yector		2 Iny	ectores						
грт	nq	ns	Observaciones	nq	ns	Observaciones						
3600	46.33	162.2	Muy alto	32.76	114.69	Muy alto						
1800	23.17	81.12	Muy alto	16.38	57.35	Muy alto						
1200	15.44	54.05	Muy alto	10.92	38.23	Muy alto						
900	11.58	40.54	Muy alto	8.19	28.67	Óptimo						
			H= 60 n	n								
1410 100		1 Ing	yector		2 Inyectores							
грш	nq	ns	Observaciones	nq	ns	Observaciones						
3600	37.33	130.69	Muy alto	26.4	92.43	Muy alto						
1800	18.67	65.36	Muy alto	13.2	46.21	Muy alto						
1200	12.4	43.59	Muy alto	8.8	30.81	Muy alto						
900	9.33	32.66	Muy alto	6.6	23.1	Óptimo						

Tabla 3.4. Número de inyectores en función de la altura.

3.5.2 Diámetro del rodete

$$H = 45 \text{ m}$$
$$Q = 0.05 \frac{\text{m}^3}{\text{s}}$$

2 inyectores

 $\phi = 0.95 a 0.98 = 0.965$

La velocidad lineal del chorro se calcula con la ecuación 2.3.

$$C_o = 0.965 \sqrt{2 (9.81 \frac{m}{s^2}) (45 m)}$$

 $C_o = 28.67 \frac{m}{s}$

El diámetro del chorro se determina con la ecuación 2.4.

$$d_{o} = \sqrt{\frac{4}{\pi} \frac{0.025 \frac{m^{3}}{s}}{0.965 \sqrt{2 (9.81 \frac{m}{s^{2}}) (45 m)}}}$$

$$d_o = 0.0333 \text{ m}$$

La velocidad permisible de calcula con la ecuación 2.5.

$$\eta_{h} = 0.88$$
$$U_{1} = \frac{0.88 \left(28.67 \frac{\text{m}}{\text{s}}\right)}{2 \left(0.965\right)^{2}}$$
m

 $U_1 = 13.546 \frac{m}{s}$

El diámetro del rodete se determina con la ecuación 2.6.

$$D = \frac{60\left(13.546\ \frac{m}{s}\right)}{\pi\ (900\ rpm)}$$

 $D = 0.2875 \text{ m} \approx 0.3 \text{ m}$

3.5.3 Dimensionamiento de los inyectores

La geometría de los inyectores se determina con la figura 2.8 en la que se encuentra las cotas necesarias para el diseño y con la tabla 2.2 en la que se indica las ecuaciones.

a = 1.42 (0.0333 m) a = 0.0473 m $\alpha_0 = 50^{\circ}$ $\alpha_1 = 75^{\circ}$ $d_t = 1.1 (0.0333 m)$ $d_t = 0.0366 m$ $d_v = 0.58 (0.0333 m)$ $d_v = 0.0193 m$ b = 3.25 (0.0333 m) b = 0.1082 m l = 6 (0.0333 m) l = 0.1998 m $d_1 = 2.5 (0.0333 m)$ $d_1 = 0.0833 m$

3.5.4 Geometría de las cucharas

El número de cucharas se determina con la ecuación 2.7.

$$Z = \frac{1}{2} \left(\frac{0.3m}{0.0333 \text{ m}} \right) + 15$$

Z = 19.5 = 20 cucharas

La geometría de la cuchara se la realizó en base a la figura 2.7 en la cual se muestra las fórmulas para determinar las dimensiones necesarias y la figura 3.1 donde se muestra la nomenclatura utilizada.

J = 0.72 (0.0333 m)J = 0.024 mK = 1.28 (0.0333 m)K = 0.0426 mL = 0.72 (0.0333 m)L = 0.024 mM = 0.56 (0.0333 m)M = 0.0186 mN = 0.44 (0.0333 m)N = 0.0147 m0 = 0.76 (0.0333 m)0 = 0.0253 mP = 0.35 (0.0333 m)P = 0.0117 mR = 1.75 (0.0333 m)R = 0.0583 mS = 2.28 (0.0333 m)S = 0.0759 m

Figura 3.1. Cotas de la geometría de la cuchara.

Fuente: Autor.

3.5.5 Diseño mecánico del eje

3.5.5.1 Cálculo de fuerzas y momento en el eje

Las fuerzas que actúan en el eje de la turbina se muestran en la figura 3.2.

Figura 3.2. Fuerzas y momento en el eje.

Fuente: Autor.

Donde:

X = Fuerza del chorro (Fch)

T = Torque

Fv = Fuerza vertical en el eje

La fuerza del chorro se calcula con la ecuación 2.9.

$$F_{ch} = 28.67 \ \frac{m}{s} \left(1000 \ \frac{Kg}{m^3} \right) \left(0.025 \ \frac{m^3}{s} \right)$$

 $F_{ch} = 716.75 \text{ N}$

El torque producido por la fuerza ejercida por el chorro se calcula con la ecuación 2.10.

T = 716.75 N (0.3 m)

T = 215.025 N m

La masa del rodete se obtuvo por medio del software SolidWorks 2014.

 $m_{rodete} = 14.73 \text{ Kg}$

La fuerza vertical que actúa en el eje de la turbina se determina con la ecuación 2.11.

$$F_{\rm v} = 716.75 \,\mathrm{N} + \left(9.81 \,\frac{\mathrm{m}}{\mathrm{s}^2} \,\left(14.73 \,\mathrm{Kg}\right)\right)$$

 $F_v = 861.25 \text{ N}$

3.5.5.2 Dimensiones del eje

La longitud del eje depende del tamaño de la carcasa la cual es generalmente 15 veces mayor que el diámetro del chorro. [2]

Figura 3.3. Carga presente para el dimensionamiento del eje.

Fuente: Autor.

Cálculo de las reacciones en los apoyos del eje

$$\sum Fy = 0$$

$$R_{A} - F_{v} + R_{B} = 0$$

$$R_{B} = F_{v} - R_{B}$$

$$\sum M_{B} = 0$$

-R_A(0.5 m) + F_v(0.25 m) = 0
R_A = $\frac{861.251 \text{ N} (0.25 \text{ m})}{0.5 \text{ m}}$
R_A = 430.626 N
R_B = 861.25 N - 430.626 N
R_B = 430.626 N

Diagrama de fuerza cortante

Figura 3.4. Diagrama de esfuerzos cortantes en el eje.

Fuente: Autor.

$$A_1 = 430.626 \text{ N} (0.25 \text{ m})$$

$$A_1 = 107.657 \text{ N m}$$

 $A_2 = -430.626 \text{ N} (0.25 \text{ m})$

$$A_2 = -107.657 \text{ N m}$$

Diagrama de momento flector

Figura 3.5. Diagrama de momento flector del eje.

El eje será fabricado con acero AISI 304 debido al ambiente corrosivo presente, las propiedades físicas de este material se obtuvieron del catálogo de DIPAC, anexo A.

 $S_{ut} = 520 \text{ MPa}$

 $S_v = 220 \text{ MPa}$

Tipo de carga	Km	Kt
Eje estacionario		
Carga aplicada gradualmente	1	1
Carga aplicada de repente	1.5 – 2.0	1.5 – 2.0
Eje rotatorio		
Carga aplicada gradualmente	1.5	1
Carga estable	1.5	1
Choques menores	1.5 – 2.0	1.0 – 1.5
Choques mayores	2.0 - 3.0	1.5 – 3.0

De la tabla 3.5 se escogió los valores de momentos de flexión para eje rotatorio, carga estable.

El diámetro del eje de la turbina se determina por medio de la ecuación 2.8.

$$d^{3} = \frac{16}{\pi (220 \times 10^{6} \text{ Pa})} \sqrt{(1.5 (107.657 \text{ N m}))^{2} + (1(215.025 \text{ N m}))^{2}}$$

d = 0.0184 m

Seleccionando un diámetro comercial del catálogo de DIPAC se escogió el eje de 0.0254 m

3.5.5.3 Cálculo del factor de seguridad por fatiga

Del anexo B se seleccionó los valores para acabado superficial por maquinado.

a = 4.51

b = 0.265

El factor de superficie se calcula con la ecuación 2.17.

$$k_a = 4.51 (520)^{-0.265}$$

 $k_a = 0.860$

El factor de tamaño se determina con la ecuación 2.18.

$$k_b = 1.24 \ (20)^{-0.107}$$

 $k_{b} = 0.900$

Debido a que el eje está sometido a flexión y torsión el factor k_c es igual a 0.59, ya que no trabaja a temperaturas elevadas el factor k_d es igual a 1.

Para una confiabilidad del 99%, el valor del factor ke es igual a 0.814.

Del anexo C se determina el valor de la sensibilidad a la muesca de q = 0.8

$$\frac{r}{d} = \frac{3}{20} = 0.15$$
$$\frac{D}{d} = \frac{25.4}{20} = 1.27$$

El valor del factor $K_t = 1.62$ para una barra redonda ranurada en flexión se determinó del anexo D.

$$K_f = 1 + q (k_t - 1)$$

 $K_f = 1 + 0.8 (1.62 - 1)$
 $K_f = 1.496$

El valor de la sensibilidad a la muesca de materiales sometidos a torsión se obtuvo del anexo E.

 $q_{cortante} = 1$

El valor del factor $K_{ts} = 1.35$ para una barra redonda ranura en torsión se determinó con el anexo F.

$$K_{fs} = 1 + q_{cortante} (K_{ts} - 1)$$

 $K_{fs} = 1 + 1 (1.35 - 1)$

 $K_{fs} = 1.35$

El límite de resistencia a la fatiga en una viga rotatoria se calcula con la ecuación 2.19.

 $S'_{e} = 0.5 (520 \text{ MPa})$

 $S_e^\prime = 260 \text{ MPa}$

El límite de resistencia a la fatiga en la ubicación crítica del eje se calcula con la ecuación 2.16.

 $S_e = 0.86 (0.9) (0.59) (0.814) (260MPa)$

 $S_{e} = 96.648 \text{ MPa}$

Para el análisis por fatiga se tendrán en cuenta las siguientes hipótesis:

 $M_{alternante} = 107.657 \text{ N m}$

 $M_{\text{medio}} = 0$

 $T_{alternante} = 0$

 $T_{medio} = 215.025 \text{ N m}$

El factor de seguridad se calcula con la ecuación 2.15.

$$\frac{1}{n} = \frac{4\sqrt{\left(\frac{1.496(107.657 \text{ N m})}{\pi(0.020 \text{ m})^3}\right)^2}}{96.648 \times 10^6 \text{ Pa}} + \frac{4\sqrt{3\left(\frac{1.35(215.025 \text{ N m})}{\pi(0.020 \text{ m})^3}\right)^2}}{520 \times 10^6 \text{ Pa}}$$

n = 2.386

3.5.6 Selección de chumaceras

Las chumaceras se seleccionaron del catálogo NTN en función del diámetro de eje.

Del Anexo G se seleccionó la chumacera NTN-UCP204D1, para un diámetro del eje de 20 mm.

3.5.7 Esfuerzo cortante en los pernos

Los pernos utilizados son de acero galvanizado M8. Anexo H. Del anexo I las propiedades mecánicas de los pernos son:

 $S_p = 600 \text{ MPa}$

 $S_{ut} = 830 \text{ MPa}$

El esfuerzo cortante en los pernos se calcula por medio de la ecuación 2.21.

$$\tau = \frac{716.75 \text{ N}}{\pi \ (0.008 \text{ m})^2}$$

 $\tau = 3.565 \text{ MPa}$

Debido a que el esfuerzo cortante ejercido en los pernos no supera a la resistencia de prueba mínima, los pernos M8 resisten la carga aplicada.

3.5.8 Malla

En la tabla 3.6 se muestra los diferentes tamaños de malla para determinar la convergencia de la misma, se presenta el índice de calidad ortogonal para cada malla, el valor obtenido en las simulaciones de la presión en los inyectores y el tiempo ocupado en cada una. En la figura 3.7, en la que se muestra dicha presión en función del número de celdas en cada malla, se puede observar que la malla adecuada es la número 4 de 458400 celdas y con un índice de calidad ortogonal de 0.20531 que se encuentra dentro del rango de bueno, con esta malla se reduce de forma notable el gasto computacional y los resultados obtenidos son los adecuados. En la figura 3.8 se muestra que no necesariamente a mayor número de elementos se obtiene una mejor calidad ortogonal y se reitera que la malla 4 es la mejor opción. El método de mallado es el tetraédrico, no se pudo alcanzar mayores valores de calidad ortogonal en la malla por la complejidad del modelo a simular como se muestra en la figura 3.6.

Figura 3.6. Modelo de la turbina Pelton. Fuente: Autor

Número	Tamaño mínimo de	Tamaño mínimo	Tamaño máximo	Número de	Calidad	Presión	Tiempo
de malla	la celda (mm)	de la cara (mm)	de la celda (mm)	celdas	ortogonal	(KPa)	simulación (h)
1	7	80	130	368918	0.086079	430.6	13.25
2	7	100	150	369604	0.042817	431.2	13.49
3	7	50	70	371350	0.072047	429.4	15.14
4	6	100	150	458400	0.20531	391.1	17.165
5	6	50	70	460398	0.20471	392.6	19.205
6	5	100	150	565720	0.21669	417.7	20.14
7	5	50	70	568166	0.19259	418.6	21.98
8	5	39	40	571651	0.2238	417.2	22.445
9	5	35	40	574811	0.21505	420.2	24.145
10	5	30	70	581702	0.20497	413	30.96
11	4	100	150	785026	0.21062	401	36
12	3	100	150	1126711	0.19842	328.2	51.97
13	2	100	150	1677775	0.21851	400	90.02

Tabla 3.6. Convergencia de la malla.

Fuente: Autor.

Figura 3.8. Calidad ortogonal en función del número de celdas.

3.5.9 Condiciones de borde

Figura 3.9. Selección de nombres del modelo.

Fuente: Autor

En la figura 3.9 se observa los nombres a las caras y sólidos que se les asigno durante el mallado para ubicar las condiciones de borde en el post procesador, las que se detallan en la tabla 3.7.

$$Q = v A$$
$$v = \frac{0.025 \frac{m^3}{s}}{0.0055}$$
$$v = 4.587 \frac{m}{s}$$

Tabla 3.7. Condiciones de borde.

Selección del nombre	Condición
Carcasa	Rotación = 0
Inyector 1	Rotación = 0
Inyector 2	Rotación = 0
Rodete	Rotación en el eje X 900 rpm
Entrada 1	Velocidad de entrada = 4.587 m/s
Entrada 2	Velocidad de entrada = 4.587 m/s
Salida	Presión de salida = 101325 Pa
Hardware	Procesador Intel Core i5, memoria 6 GB
	Fuente: Autor.

3.5.10 Procedimiento para realizar el análisis

Siguiendo la metodología de la tesis magistral del Ing. L. Fjellanger, con el tema CFD Analysis of a Pelton Turbine, se determinó los siguientes pasos:

Para realizar el mallado se debe determinar los valores del tamaño de las celdas como se indica en la figura 3.10.

				ANCVC
Fiber Hans • Project • All Hodel (03) • All Geneticy • Job Contention Set • Job Contention • Job Meth • Of Handel Intention		10	Nen 17/4/2017 72:13 Edge/Face Convectivity Free Decade Trais Multipe	
Details of "Mash"			A A A A A A A A A A A A A A A A A A A	
Details of "Mech"		*	A REAL PROVIDE	
Details of "Mexis" = Spring	De Carden	*	A A A A A A A A A A A A A A A A A A A	
Details of "Mexis" = Salag Use Advensed Sale Fundian Research Center	Drs Curveture	*	A A A A A A A A A A A A A A A A A A A	
Details of "Mexis" - Saleg Use Advanced Scel Function Referenced Scel	Dry Cutveture Coarse	*		
Details of "Mech" = String Use Advanced Sci Fundian Rainvance Center Initial Sci Seed Seecthons	Drs: Curretture Coarse Addret Accentity Medium			
Cetails of "Mech" = String Use Arranset Sce Function Reinance Center Instal Sce Seed Smechnig Senathing	Drs: Curretture Coarse Addree Accentity Medium Store	*		
Details of "Mesh" State Use Advanced Sce Function Reinous Center Initial Sce Seed Seedthing Tamition Scan Angle Center	Drs Cynothes Coans Adfret Assembly Modium Store			
Detais of "Merh" State Use Advanced Sce Function Renounce Center Instal Sce Seed Seechnop Pernitien Span Angle Center Curvature Named Angle	On: Curveture Coarine Addret Activet Scienceby Medium Sine Fime Default (05.97)	•		
Details of "Mech" Statog Use Accesses Scel Function Rencence Center Initial Size Seed Seechning Parnition Span Angle Center Constant Namial Angle Min Size	Drc Convetues Coarse Active Accentity Medium Stose Firse Default (03,0 °) 6,0 mm	•	Geometry (First Preview) Report Preview/	
Details of "Mesh" State Use Advances Sce Function Reinvance Center Initial Sce Seed Seecotmap Partition Span Angle Center Construe Nermal Angle Mar Face Sce	Drs: Curvetture Coatur Active Accently Modulus Some Franc Default (10,0 °) 5,0 mit 100,0 em	•	A Geometry (First Preview) Report Preview/	
Details of "Mesh" String Ore Advanced Scel Function Rennance Center Instal Sce Seed Seecthing Tansilion Spain Angle Center Currettine Nemai Angle Man Size Man Size Man Size Man Size	Drs: Curveture Coarins Autore Assembly Moduum Stone Fine Default (10,0-1) 4,0 min 100,0 eme 155,8 emm		(Geometry (First Preview) Report Preview/ Messages (Test	

Figura 3.10. Tamaño de las celdas de malla.

Fuente: Autor.

Se debe asignar la selección de nombres a las caras para la entrada de los inyectores como entrada 1 y 2, también a la salida de la turbina para ubicar las condiciones de borde, como se indica en las figuras 3.11.

Figura 3.11. Designación de la entrada 1.

Se asigna nombres a los sólidos como inyector 1 y 2, carcasa y rodete, para determinar las celdas que giran y las que permanecen estáticos durante la simulación, como se muestra en las figuras 3.12.

Outline	P 20- 725124		ANSVS
Filteri fiame ·	Named Select 1/10/2017 11/2		818.0
Project P		Lafestion Name	
	٩	Carcasa Apply selected permetry Apply selected permetry Site Site Type Lasation X Lasation Y	
Details of "Nerned Selections"	φ.	Lecation Z	
- Display			
Show Annotations No		Apply To Corresponding Mesh hisdes	
Worksheet Based Named Selections	00		
Generate on Betresh Tes			
Genetale on Remesh Ins		UK Canot	

Figura 3.12. Designación de nombre a los sólidos del modelo.

Fuente: Autor.

En el módulo Fluent primero se debe especificar que se realizará un análisis transitorio, se debe asignar el valor de la gravedad de acuerdo con el sentido de los ejes como se muestra en la figura 3.13.

General				piten y
Neth				ANSY5
Scale	e	Repu	rt Quality	
Displa	Bur C			
Solver				
Type Press Obensi Tiree OStead Tiree Tiree Gravity Gravitator	Veloci ure-Based III Ab ty-Based III w ern af Acceleratori	ty Pormulatio solute istili-in	pr Untbarr	
X (m/82)	0	×		
× (m/s2)	9.81			The second second second
Z (m/k2)	0			
Help				

Figura 3.13. Designación del tipo de análisis.

Como se indica en la figura 3.14, en el modelo se selecciona multifásico, en la venta que se desprende se elige la opción de volumen de fluido, en los parámetros de fracción de volumen se asigna que se realizará un análisis implícito.

ludeis	6.05	04084
odela National Colores of Plan Energy - Off National Michael	_	ANSY
Note Off Volume of Plast Modure Debries Wet House Condect Level Set a VOP	Tunter of Euleran Prases	
Level Set	Open Ownel Flow Open Channel Wave BC	
Volume Praction Parameters	Optone	11.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Portulation	Interface Modeling	
Obgict	Type	
Volume Praction Cutoff	Prop OpenpOperant Openpot Depend Depend Depend	and the second
(access)		
Body Force Formulation		
Classics Body Parce		

Figura 3.14. Modelo multifásico

Fuente: Autor.

Se debe seleccionar el modelo de turbulencia con el que se va a realizar las simulaciones y los parámetros que cada modelo posee, como se muestra en la figura 3.15.

Models	Li Pear	
Models Nodel Philipper Ph		
CLarge Stille Simulation (185) 1980 - Clarge Stille Stille Simulation (185) 1980 - Clarge Stille Simulation (185) 1980 - Clarge Stille Simulation (185) 1980 - Clarge Stille Sti	Lanc Confront Processor Lanc Confront Processor Transient Processor Here W	
Cataland Wall Purchare Cataland Wall Purchare Cooking Wall Purchare Cooking Wall Purchare Cooking Wall Purchare Cooking Wall Purchare Catalog Wall Purchar		
Options Converture Convertion Preduction Code Production Links		
. OK	[(Secol) [Hele]]	

Figura 3.15. Modelo de turbulencia.

Se debe seleccionar los fluidos con los que se trabajará de la base de datos del módulo, en este caso aire y agua, como se indica en la figura 3.16.

Materials	Caste/Cal Ma	inter lado							<	
Noterials water-tique si Solid siluminum	Name Inster Routl Chemical Portule 1120-0>			Material Type Ruer Fluer Materials water Aust (FDe (1))			Order Materials by			
							Contential Parmale			
			2	luevi Distabale Maheriati						×
	Properties		Fluent Fluid Materials St B = Material Type							
	Density (lig/n2) Ionstant		Innyl-skyldene (h2xzhak) A Sue Innyl-skyldene (u23zh2d) Innyldene chloride (d52xzd2) E Nar			Order Hat	Materiale by			
	Vacouty (kg/m-s)	Ionclant	in at	el-vapor (h3o) el-volatiles (kood_vol)	ų	Other	sical Formula			
		0.001003	Prop	e Marinala Van Gana		1				
Duste fait				Density (kg/H/D	constant 1999.2			Ψ.	jan.	
				Co (Specific Heart) (JAg H)	constant				in .	17
nep		Otange/Che			4382					
		an an inter		Thermal Conductivity (w/m-k)	constant			79	Dec.	1
				month donin di	10.0					4
					constant 0.001003	i.		4	THE	
			-							
				Sec. Sec.	Sew.	Copy	Cose	HNIP))		

Figura 3.16. Selección de materiales.

Fuente: Autor

Como se muestra en la figura 3.17, designar al aire como fase primaria y al agua como secundaria.

Materials	11 Mesh V
Materiale	ANSYS
vate-lqud ar Sold atumum	
T Places	
Phases Agus - Secondary Phase	
Edt Diteraction D	
Cose Help	

Figura 3.17. Designación de las fases de los fluidos.

Para la carcasa y los inyectores se asigna como condición de zona que no posean rotación, como se muestra en la figura 3.18.

II Zone	Conditi	ons	12.14	esh	×		
e :							
1208							
Fluid							
ne Name				Pha	150		
avcasa				-	ixture		
Frame M Mesh Mi Porous I Reference	Aotion otion Zone e Frame	3D Fan Zone Sour Laminar Zone Fixed LES Zone Mesh Motion Porque 2	ce Terms d Values tone 30 Fan Zon	e Embed	ded IES Reaction S	ource Terms	Fixed Values Multiphas
Frame N Mesh M Porous I Reference Rotatio	Aotion otion Zone e Frame	3D Fan Zone Sour Laminar Zone Fixer LES Zone Mesh Motion Porous 2	ce Terms d Values Ione 3D Fan Zon Rot	e Embred	ded LES Reaction So	ource Terms	Fixed Values Hultphase
Frame M Mesh Mi Porous 7 Reference Rotatio X (m)	Iotion otion Zone e Frame n-Axis Orig	3D Fan Zone Sour Laminar Zone Fixer LES Zone Mesh Motion Porous Z M I constant	ce Terms d Values tone 3D Fan Zon Rot	e Embred ation-Axis 0	ded LES Reaction So Direction	surce Terms	Pixed Values Hultphase
Frame M Mesh M Porous 7 Reference Rotatio X (m) Y (m)	lotion otion Zone e Frame n-Axis Orig 0	3D Fan Zone Sour Laminar Zone Fixer LES Zone Mesh Motion Porcus Z Min Constant Constant	ce Terms d Values tone 3D Fan Zon Rot V X Y	e Embed ation-Axis 0	ded LES Reaction So Direction	ource Terms	Pixed Values Hultphas

Figura 3.18. Condiciones de zona para los inyectores y carcasa.

Fuente: Autor.

Para el rodete se selecciona la opción de movimiento de malla, se le determina como eje de rotación al eje X y se asigna la velocidad de rotación de 900 rpm, como se muestra en la figura 3.19.

	litions		LI PRESS	-		¥3		
e case ector_1 ector_2								
Faid								
re Name				Phase	_			
odete				190.54	re			
Relative Speci Relative To C Rotation Asis	lication Jell Zone _{absolute} Drigen	jung lange	F one Motion Rota	n Function tion-Axis	n none Direction	÷]	-
Relative Speci Relative To 0 Rotation-Asia X (m) 0	Icabon Sell Zone absolute Origin Constant	2 2 2	F one Motion Rota X	function dan-Aois 1	n Indhe Direction	∼ tant	*	
Relative Speci Relative To (Rotation Asis X (m) 0 Y (m) 0	Ication Del Zone absolute Drign constant constant	2 2 2 2	e one Motor Rota X	Function tion-Axis 1	n Inanie Direction Cons	∼ tant	c (-
Relative Speci Relative To 0 Rotation Axis X (m) 0 Z (m) 0 0	Ication Icel Zone absolute Origin constant constant constant	2 2 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F one Motor Rota X Y Z Z	1 Function from-Axis 1 0	n none Direction cons cons cons	uant tant	¢ ¢	_
Relative Speci Relative To 0 Rotation Axis K (m) 0 Y (m) 0 Z (m) 0 Rotational Velocities 0	Ication Jol Zone absolute Origin Constant Constant Constant Iconstant	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F Cone Motion Rota X V Z Z	n Function tion-Axis 1 0 0 ansiation	n none Direction cons cons cons cons	iant ant	¢ ¢	
Relative Speci Relative To (Rotation-Axis X (m) 0 Y (m) 0 Z (m) 0 Rotational Vel Specid (pm)	Ination Jel Zone absolute Origin constant constant constant constant softy	لل ال ا	e Rote Rote X Z Z I I	n Function tion-Auts 1 0 9 ansiston K (m/s)	n none Direction cons cons cons cons cons cons cons co	tant tant tant constant	2 2 2	
Relative Speci Relative To (Rotation-Axis X (m) 0 7 (m) 0 Z (m) 0 Rotational Vel Speci (10m) Copy To Frier	Icabon Del Zone absolute Origin constant constant dity 900 constant se Motoo	atart.	e one Motor Rots X V Z	n Function tion-Axis 1 0 9 anslation K (m/s)	n nane Direction cons cons cons al Velocity 0	ant tant cant constant constant	2 2	

Figura 3.19. Condiciones de zona para el rodete.

En la entrada de los dos inyectores se selecciona como condición de borde la velocidad del fluido y se asigna el valor de 4.587 m/s, como se indica en la figura 3.20.

Boundary Conditions	I: Mes	h	~
Ione			
Velocity Inlet			
Ione Name		Phase	
entrada_1		mixture	
Momentum Thermal Radiation Specie	s DPM Multiphase	Uos	
Velocity Specification Method	Magnitude, Normal to	Boundary	~
Reference Frame	Absolute		
Velocity Magnitude (m/s)	4.587324	constant	~
Supersonic/Initial Gauge Pressure (pascal)	0	constant	~
Turbulence			
Specification Method	Intensity and Viscosity	Ratio	~
-	Turbulent Intensi	ty (%6) 5	p
	Turbulent Viscosit	Ratio 10	P

Figura 3.20. Condiciones de borde a la entrada de los inyectores.

Fuente: Autor.

A la salida de la turbina se selecciona como condición de borde la presión y se le asigna un valor de 0 debido a que en las condiciones de operación el modelo trabaja con una presión igual a 101325 Pa, como se indica en la figura 3.21.

Boundary Conditions	1: Mesh	~	
lone			
Pressure Outlet)
Zone Name		Phase	
salida		mixture	
Momentum Thermal Radiation Spe	ecies DPM Multiphase	uds	
Gauge Pressure (pascal)	0	constant	~
Backflow Direction Specification Method	Normal to Boundary		5
Radial Equilibrium Pressure Distribut	ion		
Turbulence			
Specification Method	Intensity and Viscosity Ratio		~
Ва	ckflow Turbulent Intensity (%	5	P
Bac	kflow Turbulent Viscosity Ratio	10	P

Figura 3.21. Condición de borde a la salida de la turbina.

Se debe indicar en las condiciones de borde que en los inyectores la fracción del volumen de agua es igual a 1 como se muestra en la figura 3.22.

Boundary Conditions	1: Mesh
Ione	
contact_region-src contact_region_trg contact_region_2-src contact_region_2-trg contact_region_3-src contact_region_3-trg entrada_1 entrada_2	
Velocity Inlet	×
Zone Name	Phase
entrada_1	agua
Momentum Thermal Radiation Species DPM	lultiphase UDS
Volume Fraction 1 constant	~
OK Cancel Help	

Figura 3.22. Fracción de volumen de agua en los inyectores.

Fuente: Autor.

En la salida el retorno de la fracción de volumen de agua es igual a 0 como se indica en la figura 3.23.

1: Mesh	~
	×
Phase	
agua	
M Multiphase UDS	
	M Multiphase UDS

Figura 3.23. Fracción de volumen de agua a la salida de la turbina.

Se procede a utilizar la inicialización hibrida para el modelo, como se muestra en la figura 3.24.

Figura 3.24. Inicialización de la simulación.

Se debe asignar las condiciones iniciales de la turbina es decir que al principio la fracción de volumen de agua en toda la turbina es 0, como se indica en la figura 3.25.

Solution Initialization	1: 1	lesh	~
Initialization Methods Hybrid Initialization Standard Initialization			
More Settings Initialize	i -		
Patch			
🔁 Patch			×
Reference Frame	Value	Zones to Patch	
Relative to Cell Zone Absolute	0	carcasa inyector_1 inyector_2 rodete	
agua ~ Variable Volume Fraction		Registers to Patch	()
Volume Fraction Patch Options	8	1	

Figura 3.25. Designación de las condiciones iniciales.

En las actividades de cálculo se procede a seleccionar las variables que el módulo dará como resultados y se selecciona la ubicación para guardar los archivos de resultados, como se indica en la figura 3.26.

alculation Activities	LI PICAL	×	
ortosave Every (Time Steps)	1		
utomatic Export			
report () - OTO Host Competitie			
Automatis: Esport			
autor 1			
File Type Cell Zones	図業医 Surfaces	Quantities	N # 2
CPD-Post Compatible ~	contact_region arc	· Dil Oktin	~
Cormat	ionitati, region, 3-a contract, region, 3-a contract, region, 3-a contract, region, 3-a antra da, 2 interior - 26 interior - 26 interior - 26 interior - 27 interior - 28 interior - 28 interior - 29 interior - 29 interior - 20 interior - 20	C Sense Sense Communications (C Sense Sense Sense (C Sense Sense))	
Treasercy (Time Steps)	11.4		

Figura 3.26. Actividades de cálculo.

Fuente: Autor.

Para ejecutar el cálculo se debe asignar el tamaño de cada time step igual a 0.001, el número de time steps para la simulación igual a 360 y el número de iteraciones por cada time step igual a 20, como se muestra en la figura 3.27.

Figura 3.27. Ejecutar el cálculo.

CAPÍTULO IV. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.1 Recolección de datos

Modelo de	K épsilon	K épsilon	K omega	K omega	Transición
turbulencia	Realizable	Estándar	Estándar	SST	SST
Time stor	Presión	Presión	Presión	Presión	Presión
1 ime step	(KPa)	(KPa)	(KPa)	(KPa)	(KPa)
1	101,678	101,680	101,682	101,682	101,682
10	101,701	101,705	101,705	101,704	101,704
20	105,090	105,304	105,201	105,131	105,193
30	109,798	110,206	109,977	109,876	110,038
40	111,848	112,229	112,055	111,936	112,083
50	111,575	111,941	111,802	111,677	111,809
60	110,641	111,008	110,877	110,767	110,881
70	110,216	110,585	110,455	110,344	110,472
80	110,325	110,738	110,601	110,497	110,627
90	111,698	112,215	112,068	111,897	112,046
100	115,166	115,781	115,711	115,696	115,902
110	129,954	130,355	128,795	130,200	130,252
120	179,813	180,487	181,840	178,754	178,219
130	349,874	349,573	350,702	347,353	347,559
140	386,715	387,669	388,690	385,768	405,622
150	397,590	398,334	399,099	397,097	393,661
160	400,745	402,504	402,066	401,963	399,572
170	402,428	404,211	403,409	402,325	402,540
180	402,206	403,568	404,237	401,289	401,558
190	403,341	404,819	404,916	401,380	401,624
200	401,885	404,669	404,301	400,996	400,391
210	401,615	403,214	403,619	401,035	400,567
220	401,154	403,457	402,875	400,076	401,223

Tabla 4.1. Presión en función del modelo de turbulencia.

230	400,983	402,961	401,952	400,696	402,423
240	401,400	404,512	403,411	400,915	400,199
250	401,493	404,598	403,193	399,601	399,894
260	400,755	404,031	404,132	401,653	399,513
270	399,664	403,843	404,431	399,925	400,977
280	401,851	403,842	405,001	400,841	401,392
290	401,571	403,137	403,701	400,783	400,604
300	401,210	402,192	405,351	402,272	402,162
310	401,761	403,583	404,820	400,980	400,229
320	401,296	403,106	404,852	400,318	400,295
330	400,616	404,420	404,987	399,952	399,834
340	401,467	404,726	405,039	401,216	401,996
350	400,495	404,656	405,704	403,183	401,859
360	400,870	404,591	405,545	401,648	402,666

Fuente: Autor.

Tabla 4.2. Eficiencia en función del caudal.

% Caudal	Velocidad (m/s)	Torque (Nm)	Eficiencia η
0,1	20,341	15,256	0,6514
0,2	22,068	33,101	0,7067
0,3	23,676	53,270	0,7582
0,4	23,866	71,598	0,7643
0,5	24,275	91,032	0,7774
0,6	24,594	110,672	0,7876
0,7	23,966	125,822	0,7675
0,8	24,291	145,745	0,7779
0,9	24,609	166,113	0,7881
1	24,27	182,025	0,7772

Caudal (m ³ /s)	Altura (m)
0.15	20
0.1	25
0.09	25
0.08	26
Fuente: Autor.	

Tabla 4.3. Caudal y altura que producirá la bomba.

4.2 Análisis de Resultados

Figura 4.1. Influencia de la turbulencia.

En la figura 4.1 se presenta la presión en los inyectores para diferentes modelos de turbulencia, se observa que estos valores no tienen una variación significativa, con cada uno de los modelos de turbulencia la curva de la presión tiene la misma tendencia y valores similares en cada time step. En los primeros 100 ms la presión es baja debido a que los inyectores se encuentran con aire, según va ocupando el volumen de los inyectores el agua, la presión aumenta, por lo que a partir de los 150 ms los inyectores se encuentran totalmente cubiertos de agua.

En la figura 4.2 se muestra la condición inicial de la turbina, está cubierta de aire, según transcurre cada time step se indica el volumen de agua que va ocupando en la turbina, al final de la simulación los inyectores se encuentran cubiertos en su totalidad de agua, la carcasa continúa con el mayor volumen ocupado por aire.

Figura 4.2. Fracción del volumen de agua.

En la figura 4.3 se observa la velocidad del agua que a la salida del inyector derecho es de 24.27 m/s y en el inyector izquierdo la velocidad a la salida es menor con lo que hay una diferencia de presiones en los dos inyectores.

Figura 4.3. Velocidad del agua.

Fuente: Autor.

En la figura 4.4 se observa que la presión en el interior de la turbina es igual a la presión atmosférica, al inicio de la simulación sucede lo mismo con los inyectores, mientras el agua va ocupando el volumen de los inyectores la presión sigue aumentando hasta que se encuentren totalmente cubiertos de agua la presión toma un valor de 400.870 KPa. Se puede observar también que existe una diferencia de presión en los dos inyectores, esto se debe a la disminución de la velocidad del fluido a la salida de uno de los inyectores.

Figura 4.4. Presión absoluta del fluido.

Fuente: Autor.

En la figura 4.5 se observa la turbulencia dentro de la turbina que se produce debido al movimiento del rodete, por lo que la mayor intensidad de turbulencia se encuentra en la periferia de las cucharas de la turbina.

La velocidad a la salida de la cuchara de la turbina obtenida por medio de simulaciones es de 8.656 m/s, mientras que la velocidad obtenida por medio del triángulo de velocidades es de 9.453 m/s, como consecuencia se tiene un error de 8.43%.

Figura 4.5. Turbulencia en la turbina.

Fuente: Autor.

Con la bomba Hidrostal 200 – 400 seleccionada que gira a una velocidad angular de 900 rpm se puede bombear caudales de 0.15 m^3 /s y altura de 20 m, $0.1 \text{ y} 0.09 \text{ m}^3$ /s con una altura de 25 m, 0.08 m^3 /s con una altura de 26 m, como se indica en la figura 4.6.

Figura 4.6. Rangos de operación de las bombas centrífugas. [18]

4.3 Verificación de Hipótesis

Sectores vulnerables

Figura 4.7. Índice social comparativo por parroquias del Ecuador. [16]

La Secretaria Nacional de Planificación y Desarrollo creó el índice social comparativo por parroquias para determinar los sectores vulnerables, como se muestra en la figura 4.7, en este índice se comparan las dimensiones de educación, salud y nutrición, empleo, vivienda, pobreza e inequidad social, para la aplicación de este proyecto se debe ubicar las parroquias vulnerables que posean el recurso hídrico necesario para el funcionamiento de la turbina diseñada.

Cálculo de la eficiencia

Para validar los datos obtenidos por medio del software se utilizó la curva de la eficiencia en función del caudal, en la tabla 4.2 se indica las velocidades del agua con la que chocará a las cucharas de la turbina, con estas velocidades se determinó el torque y la eficiencia de la turbina con las siguientes ecuaciones: [8]

$$T = c_o \rho Q D$$
$$\eta = \frac{T \omega}{\rho g O H}$$

En la figura 4.8 se ubicó la curva de la eficiencia en función del caudal con los datos obtenidos por el software y la curva obtenida a base de datos experimentales tomados de [8], se observa que la eficiencia máxima obtenida por medio de cálculos es de 78.81%, mientras que la obtenida experimentalmente es del 91% aproximadamente, con lo que se produce un error del 12.19% con respecto al valor de dichas eficiencias. Se observa en las dos curvas que con el 45% del caudal a la salida del inyector para el que fue diseñada la turbina se alcanza la mayor eficiencia y desde ahí tiende a ser constante hasta que el inyector se encuentre totalmente abierto.

Figura 4.8. Eficiencia en función de la relación del caudal. [8]

Triángulo de velocidades

$$\beta_2 = 142^{\circ}$$

$$C_{\circ} = 28.67 \frac{m}{s}$$

$$U_1 = 13.546 \frac{m}{s} = U_2$$

$$W_1 = 28.67 \frac{m}{s} - 13.546 \frac{m}{s}$$

$$W_1 = 15.124 \frac{m}{s} = W_2$$

Figura 4.9. Triángulo de velocidades a la salida de la cuchara.

Fuente: Autor.

$$C_{2}^{2} = U_{2}^{2} + W_{2}^{2} - 2U_{2}W_{2}\cos(38)$$

$$C_{2}^{2} = \left(13.546 \ \frac{\text{m}}{\text{s}}\right)^{2} + \left(15.124 \ \frac{\text{m}}{\text{s}}\right)^{2} - 2\left(13.546 \ \frac{\text{m}}{\text{s}}\right)\left(15.124 \ \frac{\text{m}}{\text{s}}\right)\cos(38)$$

$$C_{2} = 9.45 \ \frac{\text{m}}{\text{s}}$$

Se seleccionó una bomba que gire a una velocidad angular de 900 rpm y produzca caudales de 0.05 a 0.15 m^3 /s y alturas de 10 a 26 m, el proyecto se puede aplicar en lugares de la provincia de Tungurahua como el sector Machay, en donde existe el recurso hídrico necesario y gran parte de su población se dedica a la agricultura. Con el cálculo del triángulo de velocidades siguiendo los pasos del libro Hydraulic Turbines their Desing and Equipment se obtuvo una velocidad de 9.45 m/s, como se

muestra en la figura 4.9, mediante simulaciones se obtuvo el valor de la velocidad a la salida de la cuchara de la turbina de 8.656 m/s produciendo un error de 8.43 %, siendo estos valores de error producidos por las simulaciones en el módulo CFD razonables al trabajar con fluidos, se acepta la hipótesis planteada.
CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

- La roto bomba con caudal de 0.05 m³/s y el salto neto de 45m, proporciona una velocidad de giro a la bomba centrífuga de 900 rpm.
- Con los resultados obtenidos por las simulaciones en CFD, se puede determinar la eficiencia de la turbina con un error del 13.5 % con respecto a la eficiencia teórica.
- Se realizó el análisis con el método de mallado tetraédrico variando el número de celdas, se demostró que se puede disminuir el gasto computacional controlando el tamaño mínimo de la celda y el tamaño mínimo de la cara obteniendo los resultados adecuados.
- Para determinar la altura y el caudal mínimo a la que bombea la roto bomba se seleccionó una bomba centrífuga que gire a una velocidad de 900 rpm, obteniendo una altura mínima de 10 m y un caudal mínimo de 0.05 m³/s, cumpliendo con las condiciones necesarias para el riego de cultivos en los sectores vulnerables.

5.2 Recomendaciones

- Verificar que el modelo simulado no tenga aristas vivas debido a que con la presencia de las mismas el módulo CFD produce errores en el mallado.
- Al extraer el volumen del fluido de la turbina se debe evitar volúmenes demasiado pequeños para poder controlar el tamaño de las celdas de la malla y de esta forma disminuir el gasto computacional y obtener una calidad de malla adecuada.
- Suprimir los redondeados en la geometría de las cucharas de la turbina para disminuir la complejidad del modelo y no producir errores en el módulo CFD.
- Revisar que las condiciones de operación del módulo CFD sean las adecuadas para evitar resultados erróneos en las simulaciones.
- Seleccionar el tamaño adecuado de las cucharas de la turbina para obtener la mayor eficiencia en función del caudal con el que se está trabajando.

6 Bibliografía

[1] L. Fjellanger. "CFD Analysis of a Pelton Turbine". Mg. Tesis, Norwegian University of Science and Technology, Noruega, 2012.

[2] J. Palcacios. "Diseño de una Turbina Pelton y su Sistema de Control". Ing. Tesis, Escuela Superior Politécnica del Litoral, Ecuador, 2016.

[3] E. Bustamante. "Diseno y Construcción de una Turbina Pelton para Generación Eléctrica, Capacidad 2 KW". Ing. Tesis, Universidad Politécnica Salesiana, Ecuador, 2008.

[4] K. Patel, B. Patel, M. Yadav, T. Foggia. "Development of Pelton Turbine Using Numerical Simulation", en Earth and Environmental Science, 2010.

[5] INEC, "Encuesta de Condiciones de Vida (ECV)", Instituto Nacional de Estadística y Censos, 2016. [Online]. Disponible: http://www.ecuadorencifras. gob.ec/encuesta-de-condiciones-de-vida-ecv/. [Nov. 2, 2016]

[6] M. Zubicaray, P. Palacios, "Energía Hidroeléctrica", México, Limusa, 1977.

[7] Ministerio de Agricultura, Ganadería, Acuacultura y Pesca, (2016). La Política Agropecuaria Ecuatoriana Hacia el Desarrollo Territorial Rural Sostenible 2015 – 2025. [Online]. Disponible: http://www.agricultura.gob.ec/la-politica-agropecuaria - ecuatoriana-hacia-el-desarrollo-territorial-sostenible-2015-2025/ [Nov. 10, 2016]

[8] F. Coz, T. Sánchez, B. Viani, J. Segura. "Manual de Mini y Microcentrales Hidráulicas". Perú, Intermediate Technology Development Group, 1995.

[9] A. Marchegiani. "Turbinas Pelton". Argentina, Universidad Nacinal del Comahue, 2004.

[10] L. Quantz. "Motores Hidráulicos". España, Gustavo Gili, 1976.

[11] M. Nechleba "Hydraulic Turbines their Desing and Equipment". República Checa, ARTIA Prague, 1957.

[12] Shigley. "Diseño en Ingeniería Mecánica". México, Graw Hill, 2008.

[13] 3DCAD. "ANSYS Plataforma de Solución CAE". Internet: http://www.3dcadportal.com/ansys.html. 2017 [Abril. 25, 2017]

[14] ANSYS. "Introduction to ANSYS Meshing". 2012

[15] M. Ingaruca. "Bomba Centrífuga". Internet: http://es.slideshare.net/maycon ingarucagomez /bomba-centrifuga. Agosto, 18, 2014. [Abril. 25, 2017]

[16] SENPLADES. "Atlas de las Desigualdades Socio-Económicas del Ecuador",
Secretaría Nacional de planificación y Desarrollo, 2013. [Online]. Disponible: https://issuu.com/publisenplades/docs/atlasfinal1web [Abril. 25, 2017]

[17] DIPAC, 2016. "Ejes, Acero Inoxidable". Ecuador.

[18] NTN, 2009. "Chumaceras". Ecuador.

[19] HIDROSTAL, 2012. "Bomba Centrífuga ISO 2858". Ecuador.

7 Anexos

Anexo A: Propiedades mecánicas del acero AISI 304.

Propiedades Mecánicas							
Resistencia Mecánica (N/mm2)	Punto de Fluencia (N/mm2)	Elongación %Min.	Dureza ROKWELL B				
520	220	20	249 - 278				

Anexo B: Parámetros en el factor de la condición superficial de Marin.

Acabado	Fact	Exponente	
superficial	S _{ut} , kpsi	S _{ut} , MPa	ь
Esmerilado	1.34	1.58	-0.085
Maquinado o laminado en fric	2.70	4.51	-0.265
Laminado en caliente	14.4	57.7	-0.718
Como sale de la forja	39.9	272.	-0.995

Anexo C: Sensibilidad a la muesca para aceros y aluminios.

Anexo D: Barra redonda ranurada en flexión.

Anexo E: Sensibilidad a la muesca de materiales sometidos a torsión.

Anexo F: Barra redonda ranurada en torsión.

Anexo G: Chumaceras NTN

Diámetro del eje	Número ¹⁾ de la chumacera				Ì	Dimen	siones	s nomi	inales				Tamaño del perno	Número del rodamiento
mm						mi	n	pul	g.				mm	
puig.		H	L	J	Α	N	N_1	H_1	Hz	L_1	В	S	puig.	
12	UCP201D1	30.2	127	95	38	13	16	14	62	42	31	12.7	M10	UC201D1
1/2	UCP201-008D1	13/16	5	31/4	11/2	1/2	5/8	9/16	27/16	121/32	1.2205	0.500	3/8	UC201-008D1
15	UCP202D1	30.2	127	95	38	13	16	14	62	42	31	12.7	M10	UC202D1
9/16 5/8	UCP202-009D1 UCP202-010D1	13/16	5	31/4	11/2	1/2	5/8	%16	27/16	1 ²¹ / ₃₂	1.2205	0.500	3/8	UC202-009D1 UC202-010D1
17	UCP203D1	30.2	127	95	38	13	16	14	62	42	31	12.7	M10	UC203D1
1/16	UCP203-011D1	13/16	5	3¾	11/2	1/2	5/8	%16	27/16	121/32	1.2205	0.500	3/8	UC203-011D1
20	UCP204D1	33.3	127	95	38	13	16	14	65	42	31	12.7	M10	UC204D1
3/4	UCP204-012D1	1%16	5	3¾	1/2	1/2	%	16	2%16	12/32	1.2205	0.500	³ ∕8	UC204-012D1
25 ¹³ / ₁₆ 7/8 ¹⁵ / ₁₆ 1	UCP205-013D1 UCP205-013D1 UCP205-014D1 UCP205-015D1 UCP205-100D1	36.5 17/ ₁₆	140 5½	105 4 ¹ / ₈	38 1½	13 1⁄2	16 5%	15 ¹⁹ ⁄ ₃₂	71 2 ²⁵ / ₃₂	42 1 ²¹ / ₃₂	34.1 1.3425	14.3 0.563	M10 3/8	UC205D1 UC205-013D1 UC205-014D1 UC205-015D1 UC205-100D1
30 11/2	UCP206D1	42.9	165	121	48	17	20	17	83	54	38.1	15.9	M14	UC206D1
$1\frac{1}{8}$ $1\frac{3}{16}$ $1\frac{1}{4}$	UCP206-102D1 UCP206-103D1 UCP206-104D1	1 ¹ / ₁₆	6½	43/4	17/8	²¹ / ₃₂	²⁵ / ₃₂	²¹ / ₃₂	3%2	2½	1.5000	0.626	1/2	UC206-102D1 UC206-103D1 UC206-104D1
35	UCP207D1	47.6	167	127	48	17	20	18	93	54	42.9	17.5	M14	UC207D1
1/4	UCP207-104D1	20	20			422702		100	12270				27.9	UC207-104D1
1%	UCP207-105D1	11/8	6%16	5	11/8	21/32	25/32	23/32	3 ²¹ / ₃₂	21/8	1.6890	0.689	1/2	UC207-105D1
17/16	UCP207-107D1													UC207-107D1
40	UCP208D1	49.2	184	137	54	17	20	18	98	52	49.2	19	M14	UC208D1
1½ 1%16	UCP208-108D1 UCP208-109D1	115/16	71⁄4	5 ¹³ / ₃₂	21/8	²¹ / ₃₂	25/32	²³ / ₃₂	3 ²⁷ / ₃₂	2 ¹ ⁄ ₁₆	1.9370	0.748	1/2	UC208-108D1 UC208-109D1
45	UCP209D1	54	190	146	54	17	20	20	106	60	49.2	19	M14	UC209D1
1% 1 ¹¹ / ₁₆ 1 ³ / ₄	UCP209-110D1 UCP209-111D1 UCP209-112D1	21/8	715/32	53⁄4	21/8	²¹ / ₃₂	²⁵ /32	²⁵ / ₃₂	43/16	23/8	1.9370	0.748	1/2	UC209-110D1 UC209-111D1 UC209-112D1

Anexo H: Catálogo de pernos de acero galvanizado

PERNOS DE ACERO

MATERIAL:

Está fabricado en acero de medio carbono aleado tratado térmicamente. La dureza del perno en pulgadas es SAE GRADO 8 y en el perno milimétrico la dureza es DIN CLASE 8.8.

También disponemos de pernos en pulgadas SAE GRADO 5.

PRESENTACION:

Se encuentra disponible en cabeza hexagonal. Tanto el perno en pulgadas como el milimétrico viene en rosca gruesa y rosca fina. El perno está fabricado en acero negro, sin embargo cuando el cliente lo requiere para aplicaciones especiales, contamos adicionalmente con el servicio de galvanizado electrolítico y galvanizado al caliente.

APLICACIONES:

Recomendamos su utilización en general para aplicaciones industriales, automotrices, construcción de puentes, torres y estructuras, etc. donde la carga no exceda de 100.000 lbs./pulg2.

La rosca fina se recomienda utilizar en aplicaciones donde exista movimiento y vibración.

DUALACTRO	HILOS	X PULG	DEALE
DIAMETRO	RG	RF	LLAVE
1/4	20	28	7/16
5/16	18	24	1/2
3/8	16	24	9/16
7/16	14	20	5/8
1/2	13	20	3/4
9/16	12	18	13/16
5/8	11	18	15/16
3/4	10	16	11/8
7/8	9	14	1 5/16
1	8	14	11/2
11/8	7	12	1 11/16
11/4	7	12	17/8
11/2	6	12	2 1/16

DIAMETRO	PASOS					PASOS		PASOS				HAVE
DIAMETRO	0,7	0,8	1,00	1,25	1,5	1,75	2,00	2,5	3,00	LLAVE		
M4	x									7		
M5		x								8		
M6			x							10		
M7			x							11		
M8			x	х						13		
M10				x	х					17		
M12				x	x	x				19		
M14					x		x			22		
M16					x		x			24		
M18					×			x		27		
M20					х			x		30		
M22					x			x		32		
M24							x		х	36		

Anexo I: Propiedades mecánicas de los pernos

Clase de propiedad	Intervalo de tamaños, inclusive	Resistencia de prueba mínima,† MPa	Resistencia mínima a la tensión,† MPa	Resistencia minima a la fluencia,† MPa	Material	Marca en la cabeza
4.6	M5-M36	225	400	240	Acero de bajo o medio carbono	4.6
4.8	M1.6-M16	310	420	340	Acero de bajo o medio carbono	4.8
5.8	M5-M24	380	520	420	Acero de bajo o medio carbono	5.8
8.8	M16-M36	600	830	660	Acero de medio carbono, T y R	8.8
9.8	M1.6M16	650	900	720	Acero de medio carbono, T y R	(9.8)
10.9	M5-M36	830	1 040	940	Acero martensitico de bajo carbono, T y R	10.9
12.9	M1.6-M36	970	1 220	1 100	Acero aleado, T y R	12.9

Anexo J: Planos

ESC	CALA	. 1 : 1				
ISI 304	2		8.3			
ISI 304	1		140.31			
unaicion Gris	2	NTN-UCP204D1	0.28			
ISI 304	1		1.52			
ISI 304	1	10 x 6 x 6	0.003			
ISI 30	1		12.52			
Material N.º de orden		N.º del Modelo/semiproducto	Peso kg/Pieza	Observacior		nes
Material:		VARIOS				
Título:					Escala:	
a 0 0		TURBINA			1:10)
N.º de lán Sustitució	nina n:	HOJA 1 DE 19			Registro	:
						-

В

C

D

2

HOJA 2 DE 19

Registro:

RODETE ENSAMBLE

1:2.5

Escala:

VARIOS

			-	
cero alvaniza o	40	M8 x 35 x 22	0.019	
ISI 304	20		347.86	
ISI 304	1		5424.65	
cero alvaniza o	40	M8 x 1.25	0.006	
Material	N.º de orden	N.º del Modelo/semiproducto	PESO Kg/Pieza	Observaciones
Material:				

7

	<u>⊻</u> _ <s< th=""><th>MAW E308L-16</th><th></th><th></th><th></th><th>С</th></s<>	MAW E308L-16				С
						D
ISI 304	2		4.33			
ISI 304	1		15.43			
ISI 304			20.53			
151 304	2		1.35			
151 304			15 /3			
Material	N.º de orden	N.º del Modelo/semiproducto	PESO gr/Pieza	Obs	ervacion	nes
Material:		AISI 304	,			
Título:		CARCASA			Escala: 1:10)
N.º de lár Sustitució	nina n:	HOJA 7 DE 19			Registro:	$ \rightarrow $
<u> </u>						•

A	. /
C	0.001
	10 10 10 1
3031110	

HOJA 14 DE 19

N.º de lámina

Registro:

Título: **INYECTOR - TOMA DE AGUA**

Escala:

1:5

VARIOS

ISI 304	1		2.20	
cero alvaniza o	6	M8 x 1.25	0.006	
ISI 304	1		0.96	
ISI 304	1		2.38	
ISI 304	2		0.95	
OLIURET NO 1671)	1		0.01	
cero' alvaniza o	6	M8 x 35 x 22	0.019	
Material	N.º de orden	N.º del Modelo/semiproducto	PESO kg/Pieza	Observaciones
Material:				

D

С

В

4

7

8

