

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

PROYECTO TÉCNICO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERA CIVIL

TEMA:

"DISEÑO DE LA RED DE ALCANTARILLADO SANITARIO Y PLUVIAL DE LOS SECTORES LA FLORIDA, REINA DEL TRÁNSITO Y JESÚS DEL GRAN PODER, CANTÓN CEVALLOS, PROVINCIA DE TUNGURAHUA"

AUTORA: Daysi Belén Pérez Villacís

TUTOR: Ing. Mg. Fidel Alberto Castro Solórzano

AMBATO-ECUADOR

Marzo – 2022

CERTIFICACIÓN

En mi calidad de Tutor del Proyecto Técnico, previo a la obtención del Título de Ingeniera Civil, con el tema: "DISEÑO DE LA RED DE ALCANTARILLADO SANITARIO Y PLUVIAL DE LOS SECTORES LA FLORIDA, REINA DEL TRÁNSITO Y JESÚS DEL GRAN PODER, CANTÓN CEVALLOS, PROVINCIA DE TUNGURAHUA", elaborado por la Srta. Daysi Belén Pérez Villacís, portadora de la cédula de ciudadanía C.I. 1850078856 estudiante de la Carrera de Ingeniería Civil, de la Facultad de Ingeniería Civil y Mecánica.

Certifico:

- Que el presente proyecto técnico es original de su autor.
- Ha sido revisado cada uno de sus capítulos componentes.
- Esta concluido en su totalidad.

Ambato, Marzo 2022

Ing. Mg. Fidel Alberto Castro Solórzano

TUTOR

AUTORÍA DE LA INVESTIGACIÓN

Yo, Daysi Belén Pérez Villacís, con C.I. 1850078856, declaro que todas las actividades y contenidos expuestos en el presente proyecto técnico con el tema: "DISEÑO DE LA RED DE ALCANTARILLADO SANITARIO Y PLUVIAL DE LOS SECTORES LA FLORIDA, REINA DEL TRÁNSITO Y JESÚS DEL GRAN PODER, CANTÓN CEVALLOS, PROVINCIA DE TUNGURAHUA", así como también los análisis estadísticos, gráficos, conclusiones y recomendaciones son de mi exclusiva responsabilidad como autora del proyecto, a excepción de las referencias bibliográficas citadas en el mismo.

Ambato, Marzo 2022

Daysi Belén Pérez Villacís

C.I. 1850078856

AUTORA

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que haga de este Proyecto Técnico o parte de él, un documento disponible para su lectura, consulta y procesos de investigación, según las normas de la Institución.

Cedo los Derechos en línea patrimoniales de mi Proyecto Técnico, con fines de difusión pública, además apruebo la reproducción de este documento dentro de las regulaciones de la Universidad, siempre y cuando esta reproducción no suponga una ganancia económica y se realice respetando mis derechos de autor.

Ambato, Marzo 2022

Daysi Belén Pérez Villacís

C.I. 1850078856

AUTORA

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del Tribunal de Grado aprueban el informe del Proyecto Técnico, realizado por la estudiante Daysi Belen Perez Villacís de la Carrera de Ingeniería Civil, bajo el tema: "DISEÑO DE LA RED DE ALCANTARILLADO SANITARIO Y PLUVIAL DE LOS SECTORES LA FLORIDA, REINA DEL TRÁNSITO Y JESÚS DEL GRAN PODER, CANTÓN CEVALLOS, PROVINCIA DE TUNGURAHUA".

	Miembro Calificador	Miembro Calificador
Ing.	Mg. Diego Sebastián Chérrez Gavilanes	Ing. Mg. Lenin Gabriel Silva Tipantasig
	Para constancia firman:	
		Ambato, Marzo 2022

DEDICATORIA

A Dios, por darme la sabiduría y entendimiento necesario para culminar esta meta tan importante en mi vida.
A mis padres, Rocío y Kléver quienes con su esfuerzo y ejemplo de lucha me motivan a alcanzar cada una de las metas que me propongo.
A mis Hermanos, Pamela y Paúl, este logro también es para ustedes, deseo que se sientan tan orgullosos de mí, como yo lo estoy de ustedes.
A ti Enrique, por ser uno de los pilares fundamentales que me permitieron hoy alcanzar este sueño.
Daysi Belén Pérez Villacís

AGRADECIMIENTO

A Dios, por darme salud y vida, por regalarme personas maravillosas que me acompañan en cada momento y por permitirme culminar hoy este sueño tan grande.

A mis padres, especialmente a mi mami por apoyarme en todo momento, por su amor incondicional, gracias por haber creído en mí y ser mi fortaleza en cada paso que doy.

A mis hermanos, por su amistad, cariño y paciencia en estos años, por aceptarme, quererme y apoyarme, por alegrarse en cada una de mis metas cumplidas.

A ti Enrique, por tu amor y apoyo incondicional en este camino llamado universidad. Gracias por cada acción, cada palabra de aliento y la enorme ayuda que me brindaste a lo largo de estos años. No lo hice sola, ¡LO HICIMOS!

Daysi Belén Pérez Villacís

ÍNDICE GENERAL DE CONTENIDOS

CERTIFICACIÓN	ii
AUTORÍA DE LA INVESTIGACIÓN	iii
DERECHOS DE AUTOR	iv
APROBACIÓN DEL TRIBUNAL DE GRADO	v
DEDICATORIA	vi
AGRADECIMIENTO	vii
ÍNDICE GENERAL DE CONTENIDOS	viii
ÍNDICE DE TABLAS	xiv
ÍNDICE DE FIGURAS	xvii
RESUMEN	xix
ABSTRACT	xx
CAPÍTULO I	1
MARCO TEÓRICO	1
1. ANTECEDENTES INVESTIGATIVOS	1
1.1. Antecedentes	1
1.2. Justificación	3
1.3. Fundamentación teórica	5
ASPECTOS GENERALES	5
1.3.1. Sistema de Alcantarillado	5
1.3.2. Clasificación de los sistemas de alcantarillado	5
1.3.3. Componentes de un sistema de alcantarillado	6
ALCANTARILLADO SANITARIO	8

1.3.4.	Bases de Diseño	8
1.3.5.	Componentes de un Sistema de Alcantarillado Sanitario	9
1.3.6.	Parámetros de Diseño	12
1.3.7.	Análisis de Caudales	20
1.3.8.	Caudal de Diseño Qd	28
1.3.9.	Condiciones hidráulicas de conducción	28
1.3.10.	Criterios de diseño	32
1.3.11.	Fórmulas para el diseño hidráulico	38
1.3.12.	Hidráulica de Conductos	39
1.3.13.	Propiedades Hidráulicas de las Tuberías	42
1.3.14.	Comprobaciones de Diseño	44
ALCAN	NTARILLADO PLUVIAL	45
1.3.15.	Bases de Diseño	45
1.3.16.	Componentes de un sistema de alcantarillado pluvial	46
1.3.17.	Parámetros de Diseño	49
1.3.18.	Condiciones Hidráulicas	61
1.3.19.	Criterios de Diseño	61
PLANT	A DE TRATAMIENTO DE AGUA RESIDUALES	63
1.3.20.	Aguas Residuales	63
1.3.21.	Clasificación de las Aguas Residuales	64
1.3.22.	Características de las Aguas Residuales	65
1.3.23.	Parámetros de las Aguas Residuales	68
1.3.24.	Tratamiento de Aguas Residuales	69
1.3.25.	Fases del tratamiento de aguas residuales	70
1.3.26.	Fases de Diseño para Tratar el Agua Residual	71

	1.4.	Objetivos	75
	1.4.1	. Objetivo General	75
	1.4.2	. Específicos	75
CA	APÍT Ul	LO II	76
Ml	ETOD	OLOGÍA	76
2.	MAT	TERIALES Y MÉTODOS	76
4	2.1.	Equipos y Materiales	76
	2.1.1	. Equipos	76
	2.1.2	. Materiales	81
4	2.2.	Metodología y Nivel de Investigación	83
	2.2.1	. PRIMERA ETAPA - Fase Preliminar del Proyecto	85
	2.2.2	. SEGUNDA ETAPA - Diseño de la Red de Alcantarillado Sanitario	85
	2.2.3	. TERCERA ETAPA - Diseño de la Red de Alcantarillado Pluvial	86
	2.2.4	. CUARTA ETAPA - Evaluación de la Planta de Tratamiento de Aguas	
	Resid	duales	86
	2.2.5	. QUINTA ETAPA: Fase Propuesta Técnica	88
CA	APÍTU l	LO III	90
RE	ESULT	ADOS Y DISCUSIÓN	90
3.	ANÁ	LISIS Y DISCUSIÓN DE LOS RESULTADOS	90
3	3.1.	PRIMERA ETAPA	90
	3.1.1	. Inspección del Lugar	90
	3.1.2	. Muestreo Poblacional	91
	3.1.3	. Características de la Zona del Proyecto	92
3	3.2.	SEGUNDA ETAPA - Diseño de la Red de Alcantarillado Sanitario	.102
	3.2.1	. Cálculo del Periodo de Diseño	102

	3.2.2.	Cálculo de la Tasa de Crecimiento	102
	3.2.3.	Población Actual	105
	3.2.4.	Cálculo de la Población Futura	105
	3.2.5.	Densidad Poblacional Futura	106
	3.2.6.	Cálculo de la Dotación Actual	107
	3.2.7.	Calculo de la Dotación Futura	108
	3.2.8.	Calculo del Caudal Medio Diario De Agua Potable	108
	3.2.9.	Calculo Caudal Medio Diario de Sanitario (<i>Qmds</i>)	109
	3.2.10.	Calculo Caudal Máximo Instantáneo <i>Qi</i>	109
	3.2.11.	Calculo Caudal de Infiltración (<i>Qinf</i>)	110
	3.2.12.	Calculo Caudal de Conexiones Erradas Qe	110
	3.2.13.	Calculo Caudal de Diseño Qd	110
	3.2.14.	Cálculo de la Gradiente Hidráulica	111
	3.2.15.	Cálculo del Diámetro	111
	3.2.16.	Calculo Pendiente mínima	112
	3.2.17.	Calculo Pendiente máxima	112
	3.2.18.	Calculo de Caudal en tubería Completamente Llena	113
	3.2.19.	Calculo de la Velocidad en tubería Completamente Llena	113
	3.2.20.	Cálculo Resultado Radio Hidráulico	113
	3.2.21.	Cálculo de los Elementos Hidráulicos Tubería Parcialmente Llena	114
3	3.3. TE	RCERA ETAPA - Diseño de la Red de Alcantarillado Pluvial	118
	3.3.1.	Cálculo del Período de diseño	118
	3.3.2.	Calculo del coeficiente de escurrimiento	118
	3.3.3.	Resultado de Estudios Hidrológicos	119
	3 3 4	Cálculo de la Intensidad	120

3.3.5.	Cálculo del Caudal de Diseño	.121
3.3.6.	Resultado Tiempo de concentración	.121
3.3.7.	Resultado diámetro de tubería	.121
3.3.8.	Calculo de la Pendiente del Terreno	.122
3.3.9.	Calculo Pendiente mínima	.122
3.3.10.	Calculo Pendiente máxima	.122
3.3.11.	Calculo de Caudal en tubería Completamente Llena	.123
3.3.12.	Cálculo de la Velocidad en tubería Completamente Llena	.123
3.3.13.	Cálculo Resultado Radio Hidráulico	.123
3.3.14.	Cálculo de los Elementos Hidráulicos Tubería Parcialmente Llena	.124
3.4. CU	ARTA ETAPA - Evaluación de la Planta de Tratamiento de Aguas	
Residuales	S	.126
3.4.1.	Características Generales y Físicas	.126
3.4.2.	Operación y Mantenimiento Actual de la Planta de Tratamiento	.127
3.4.3.	Diagnóstico de las Estructuras	.127
3.4.4.	Evaluación del Funcionamiento de la Planta de Tratamiento	.133
3.4.5.	Evaluación de los Componentes de la Planta de Tratamiento de Aguas	
Residua	les	.137
3.5. QU	INTA ETAPA – Fase Propuesta Técnica	.144
3.5.1.	Planos	.144
3.5.2.	Presupuesto referencial	.144
CAPÍTULO	IV	.146
CONCLUSI	ONES Y RECOMENDACIONES	.146
CONCLU	SIONES	.146
RECOME	NDACIONES	.148

BIBLIOGRAFÍA	150
ANEXOS	

ÍNDICE DE TABLAS

Tabla 1. Diámetros recomendados de pozos de revisión	10
Tabla 2. Distancias máximas entre pozos de revisión.	11
Tabla 3. Valores del Periodo de Diseño según la Norma Boliviana.	12
Tabla 4. Valores de período de diseño, según la Norma Boliviana	
Tabla 5. Vida útil sugerida para los elementos de un sistema de agua potable	13
Tabla 6. Tasas de Crecimiento Poblacional	15
Tabla 7. Dotaciones recomendadas	18
Tabla 8. Ingresos y dotación de agua	19
Tabla 9. Consumo Doméstico Máximo	19
Tabla 10. Contribución Industrial	21
Tabla 11. Contribución Comercial	21
Tabla 12. Contribución institucional mínima en zonas residenciales	22
Tabla 13. Coeficientes de retorno de aguas servidas domésticas	23
Tabla 14. Valores del coeficiente de Popel	25
Tabla 15. Valores de Caudales por Infiltraciones	26
Tabla 16. Valores de Infiltración (1/metro)	27
Tabla 17. Profundidad mínima de tuberías	31
Tabla 18. Velocidades máximas a tubo lleno recomendados	33
Tabla 19. Valores de coeficientes de rugosidad de Manning, para diferentes tipos	
conductos	34
Tabla 20. Pendientes Mínimas para Tuberías PVC	36
Tabla 21. Valores del coeficiente de Escurrimiento	50
Tabla 22. Valores de C para diversos tipos de superficies	51
Tabla 23. Coeficientes de Escorrentía Rural	52
Tabla 24. Valores de frecuencia para determinar la intensidad máxima	54
Tabla 25. Intensidad Duración Frecuencia Estación M0258 Querochaca	55
Tabla 26. Valores de m para la aplicación de la ecuación de Kerby	58
Tabla 27. Valores de a para la aplicación de la ecuación de soil conservation service	e59

Tabla 28. Velocidades máximas admisibles por el tipo de material	62
Tabla 29. Características físicas del agua residual y sus procedencias	65
Tabla 30. Características químicas del agua residual y sus procedencias	66
Tabla 31. Características biológicas del agua residual y sus procedencias	67
Tabla 32. Tiempo de digestión	73
Tabla 33. Rendimiento de eliminación del constituyente, Porcentaje	74
Tabla 34. Población de los barrios y Caseríos de Cevallos – Zona Rural año 2011	91
Tabla 35. Población de los barrios y Caseríos de Cevallos – Zona Rural año 2020	92
Tabla 36. Georreferenciación de la zona del Proyecto de Alcantarillado	95
Tabla 37. Formas de eliminación de excretas en el cantón Cevallos	98
Tabla 38. Acceso al servicio eléctrico en el cantón Cevallos	.100
Tabla 39. Vías por competencia en el cantón Cevallos	.100
Tabla 40. Sistema Vial urbano del cantón Cevallos	.101
Tabla 41. Tasa de Crecimiento – Método Aritmético	.102
Tabla 42. Tasa de Crecimiento – Método Geométrico	.103
Tabla 43. Tasa de Crecimiento – Método Exponencial	.103
Tabla 44. Población Futura – Método Geométrico	.105
Tabla 45. Lecturas AGOSTO RUTA (06)	.107
Tabla 46. Calculo Coeficiente de Escurrimiento	.118
Tabla 47. Georreferenciación de la planta del Tratamiento de Aguas Residuales del	
cantón Cevallos	.127
Tabla 48. Caudales de Ingreso a la PTAR del cantón Cevallos	.133
Tabla 49. Caudales de Ingreso a la PTAR del cantón Cevallos	.134
Tabla 50. Resultado del análisis físico-químico del afluente de la PTAR del cantón	
Cevallos	.135
Tabla 51. Resultado del análisis físico-químico del efluente de la PTAR del cantón	
Cevallos	.136
Tabla 52. Eficiencia de remoción de la PTAR del cantón Cevallos	.137
Tabla 53. Grado de tratamiento obtenido mediante diversos procesos unitarios	.138
Tabla 54. Remoción teórica total del tren de tratamiento	.138
Tabla 55 Porcentaie de remoción real de la planta de tratamiento	138

Tabla 56. Porcentaje de remoción teórica de la planta de tratamiento	140
Tabla 57. Dotaciones recomendadas	142

ÍNDICE DE FIGURAS

Figura	1. Esquema de un tramo de alcantarillado y sus áreas de aportación	9
Figura	2. Secciones transversales más usuales en conductos cerrados	29
Figura	3. Secciones transversales más usuales a cielo abierto	30
Figura	4. Tubería con Sección Totalmente Llena	39
Figura	5. Tubería con Sección Totalmente Llena	41
Figura	6. Sumidero de venta o acera	47
Figura	7. Sumidero de reja o calzada	47
Figura	8. Sumidero mixto o combinado	48
Figura	9. Curvas IDF Estación Talca	53
Figura	10. Curva Intensidad Duración Frecuencia Estación M0258 Querochaca	55
Figura	11. Monograma para determinar el tiempo de entrada	60
Figura	12. Componentes para tratar agua Residual	71
Figura	13. Estación total Trimble M3 de 5"	76
Figura	14. Trípode	77
Figura	15. Prisma	77
Figura	16. Bastón	78
Figura	17. Flexómetro	78
Figura	18. Estacas	79
Figura	19. Huawei Y9	79
Figura	20. Lenovo ideapad 310	80
Figura	21. Calculadora CASIO fx-350ES PLUS	80
Figura	22. Impresora EPSON L396	80
Figura	23. Papelería	81
Figura	24. Ubicación de la Provincia de Tungurahua	93
Figura	25. Ubicación del proyecto de alcantarillado Sanitario y Pluvial	94
Figura	26. Georreferenciación de la zona del Proyecto de Alcantarillado	95
Figura	27. Descarga del Sector Los Vinces a la quebrada Palahua	99
Figura	28. Tasa de Crecimiento – Método Aritmético	.102
Figura	29. Tasa de Crecimiento – Método Geométrico	.103

Figura	30. Tasa de Crecimiento – Método Exponencial	.104
Figura	31. Cálculos Elementos Hidráulicos Tubería Parcialmente Llena	.114
Figura	32. Temperatura del Aire estación meteorológica M258 QUEROCHACA	.119
Figura	33. Humedad relativa estación meteorológica M258 QUEROCHACA	.119
Figura	34 . Nubosidad estación meteorológica M258 QUEROCHACA	.120
Figura	35. Georreferenciación de la PTAR del cantón Cevallos	.126
Figura	36. Diagrama de Flujo de la PTAR del cantón Cevallos.	.127
Figura	37. Parshall de ingreso PTAR cantón Cevallos	.128
Figura	38. Desarenador PTAR cantón Cevallos	.128
Figura	39. Sedimentador Primario PTAR cantón Cevallos	.129
Figura	40. Sedimentador Secundario PTAR cantón Cevallos	.129
Figura	41. FAFA PTAR cantón Cevallos	.130
Figura	42. Lecho de secado de lodos PTAR cantón Cevallos	.130
Figura	43. Tanques de protección PTAR cantón Cevallos	.131
Figura	44. Compuertas de protección PTAR cantón Cevallos	.131
Figura	45. Senderos Internos PTAR cantón Cevallos	.132
Figura	46. Cerramiento de la PTAR cantón Cevallos	.132
Figura	47. Comportamiento de Caudales de Ingreso a la PTAR del cantón Cevallos	133
Figura	48. Comportamiento de Caudales de Salida a la PTAR del cantón Cevallos	.134
Figura	49. Remoción Real	.139
Figura	50. Estado actual de la PTAR del cantón Cevallos	.140
Figura	51 Remoción Teórica	141

RESUMEN

La dotación de servicios básicos mejora de manera notable la calidad de vida de los seres

humanos, siendo esta la razón primordial para diseñar una red de alcantarillado sanitario

y pluvial capaz de cumplir con las necesidades de saneamiento de los sectores La Florida,

Reina del Tránsito y Jesús del Gran Poder del cantón Cevallos.

Para el diseño del proyecto técnico presentado a continuación se realizó el levantamiento

topográfico de los sectores por medio de una estación total, posteriormente los datos

obtenidos fueron procesados mediante la herramienta computacional Civil 3D, a su vez

distintas normativas tanto nacionales e internacionales fueron aplicadas para garantizar el

funcionamiento y eficiencia del proyecto.

La red de alcantarillado sanitario posee un diámetro nominal de tubería PVC de 250

milímetros, cuenta con una longitud de 3517.93 metros, mientras que para el alcantarillado

pluvial se determinó un diámetro nominal de tubería PVC de 250 milímetros y una

longitud de 3225.38 ambas cumplen con los parámetros hidráulicos establecidos en las

normas. Para determinar el funcionamiento actual de la Planta de Tratamiento de Aguas

Residuales del cantón Cevallos se llevó a cabo un análisis de las propiedades físico-

químicas del agua residual que ingresa y sale de la planta de tratamiento.

Palabras clave: Alcantarillado sanitario, Alcantarillado pluvial, Planta de tratamiento, Aguas

residuales, PVC.

xix

ABSTRACT

The provision of basic services significantly improves the quality of life of human beings,

which is the main reason for designing a sanitary and pluvial sewerage network capable

of meeting the sanitation needs of the La Florida, Reina del Tránsito and Jesús del Gran

Poder sectors of the Cevallos canton.

For the design of the technical project presented below, a topographic survey of the sectors

was carried out using a total station, then the data obtained were processed using the Civil

3D computational tool. At the same time, different national and international regulations

were applied to guarantee the operation and efficiency of the project.

The sanitary sewer network has a nominal PVC pipe diameter of 250 millimeters and a

length of 3697.93 meters, while the storm sewer network has a nominal PVC pipe

diameter of 250 millimeters and a length of 3275.38 meters, both of which comply with

the hydraulic parameters established in the standards. To determine the current operation

of the Cevallos wastewater treatment plant, an analysis of the physical and chemical

properties of the wastewater entering and leaving the treatment plant was carried out.

Key words: Sanitary sewerage, Storm sewerage, Treatment plant, Wastewate, PVC.

XX

CAPÍTULO I

MARCO TEÓRICO

1. ANTECEDENTES INVESTIGATIVOS

1.1. Antecedentes

Martínez (1976), afirma que la descarga apropiada de deposiciones humanas, residuos líquidos comerciales e industriales y de aguas lluvias a través de sistemas de alcantarillado han demostrado desde la antigüedad, ser el procedimiento más seguro, práctico y eficaz para minimizar posibles enfermedades, infecciones y padecimientos que tengan un origen hídrico y a su vez permiten prevenir la contaminación de cuerpos de agua superficiales y el medio biofísico donde se desarrollan especies, mejorando así la calidad de vida de la sociedad[1].

El arco canal cloacal ubicado en Nagpur, India, es considerado como el sistema de alcantarillado más antiguo de la historia, su construcción se remonta 3,750 años a.C y las posteriores exploraciones realizadas en Layard, Nínive y Babilonia en las cuales se descubrieron enormes cloacas abovedadas datan del siglo VII a.C. En Roma la cloaca máxima era un arco canal, el cual se encargaba de drenar la zona del Foro Romano, actualmente esta gran cloaca se encuentra aún en funciones siendo una clara muestra de la relevancia e importancia que las civilizaciones antiguas ponían al momento de evacuar aguas negras [1].

El Centro de Investigaciones CIUDAD en su estudio denominado "Breve Historia de los Servicios en la Ciudad de Quito" indica que, en el siglo XVII, Quito fue la primera ciudad del Ecuador que tenía canales de agua los cuales atravesaban huertas y ejes de varias carreteras, estos canales eran los mismos por los cuales descendían las aguas servidas.

Ya en el año 1963 se inicia con la construcción del alcantarillado en sectores privilegiados en el aspecto económico y social, especialmente en las calles denominadas "principio" siendo aquellas calles que se encontraban empedradas[2].

En la actualidad los Gobiernos Autónomos Descentralizados Municipales son los encargados no solo de la construcción de sistemas para abastecimiento de agua potable y alcantarillado, sino también se encargan de dar el mantenimiento adecuado de forma periódica a los sistemas mencionados.

Conforme con la información expuesta en El Plan de Desarrollo y Ordenamiento Territorial del cantón Cevallos del 2014, el cantón se encuentra cubierto en un 95% de servicios básicos manejados no solamente por el GAD Municipal, sino también por la Junta administradora de agua potable y alcantarillado Yanahurco (JAAPARY) con 686 usuarios pertenecientes al cantón Cevallos, la Junta administradora de agua potable de Andignato con 331 usuarios, la Junta administradora de agua potable de Las Playas con 40 usuarios y la Junta administradora de agua potable de Jesús del Gran Poder con 55 usuarios.

El servicio de alcantarillado del cantón se encuentra cubierto en un 80% de su territorio y es manejado en su totalidad por el GAD municipal del cantón, los barrios, sectores y caseríos beneficiados son: Santa Rosa, San Pedro, Agua Santa, La Floresta, Santo Domingo, Andignato, El Rosario, Bellavista, La Unión, El Mirador, Corazón de Jesús, Nuevos Horizontes, José Francisco Arias, Aire Libre, El Belén, El Manantial, San Fernando, Tambo Centro, Tambo la Universidad, Aire Libre, El Triunfo, Las Playas, Reina del Tránsito.

Las aguas residuales recolectadas del cantón son evacuadas en la única planta de tratamiento existente en el cantón ubicada en el punto depresivo más bajo del mismo en el sector Reina del Tránsito, sin embargo, los sectores La Florida baja, parte de Reina del Tránsito y Jesús del Gran Poder parte alta, no cuentan con servicio de alcantarillado por lo que sus moradores descargan las aguas negras a orillas del río Pachanlica [3].

1.2. Justificación

De acuerdo con los Objetivos de Desarrollo Sostenible (ODS) establecidos por el Instituto Nacional de Estadísticas y Censos (INEC) y El Fondo de las Naciones Unidas para la Infancia (UNICEF) en el año 2018, al menos el 68% de la población mundial utiliza una red de saneamiento, sin embargo, se estima que al menos 2.400 millones de personas alrededor del mundo no poseen acceso a infraestructura de saneamiento y solo en Latinoamérica y el Caribe son 106 millones de personas quienes carecen de este servicio. La dificultad que se presenta para acceder al servicio de alcantarillado causa uno de los inconvenientes más preocupantes a nivel mundial; la muerte anual de alrededor de 340.000 niños y niñas menores de 5 años debido al padecimiento de enfermedades diarreicas con un origen parasitario [4].

Según las estadísticas presentadas por la Secretaría Nacional de Planificación y Desarrollo (Senplades), la Secretaría Técnica para la Erradicación de la Pobreza (Setep), la Secretaría Nacional del Agua (Senagua) y el Banco del Estado (BDE), señalan que en Ecuador el 63.1% de la población posee acceso a una red de alcantarillado sanitario, a su vez Tungurahua tiene una cobertura provincial del 76,7%, el porcentaje restante de la provincia no cuenta con las condiciones óptimas de conducción y evacuación de agua residuales domesticas e industriales y el tratamiento de dichas aguas negras es prácticamente nulo[5]. En la provincia de Tungurahua se encuentra el cantón Cevallos catalogado como relativamente joven, debido a su cantonización en 1986, razón por la cual el acceso que la población rural del cantón tiene a diferentes servicios básicos en especial al alcantarillado sanitario, pluvial o combinado, así como también al servicio de agua potable es significativamente bajo, debido a que apenas el 55.50% de los habitantes del cantón cuentan con el servicio de alcantarillado sanitario y el 83.9% se encuentra abastecido de agua potable[5].

El Plan de Desarrollo y Ordenamiento Territorial del cantón Cevallos presentado en el año 2014, establece el crecimiento socioeconómico y poblacional de diferentes zonas

ubicadas fuera del casco urbano del cantón; como es el caso de los sectores: La Florida, Reina del Tránsito y Jesús del Gran Poder los cuales conforman la zona baja del cantón siendo colindantes con el río Pachanlica, los sectores antes mencionados reflejan un aumento en el número de residencias, las mismas que no se encuentran conectadas a un sistema de alcantarillado sanitario, lo cual genera un elevado nivel de eliminación de aguas residuales en pozos ciegos, pozos sépticos, letrinas, quebradas, entre otros, esta descarga inconsciente de aguas servidas llega a orillas del río Pachanlica a través del suelo[3].

La descarga indiscriminada de excretas al medio ambiente ocasionan una severa contaminación en el suelo y una mala calidad del aire y del agua, razón por la cual, tanto la población en general como los mandatarios de turno requieren de manera sumamente necesaria tomar medidas en la evacuación y apropiado tratamiento de las aguas servidas que se generan en el sitio, debido al riesgo de contacto humano con heces fecales y a la presencia de bacterias en el medio ambiente, siendo un foco de infección con alta posibilidad de ocasionar problemas de salud severos como afecciones intestinales, parásitos, amebas, entre otros, por lo tanto, se debe implementar un sistema de alcantarillado sanitario y pluvial en los sectores de La Florida, Reina del Tránsito y Jesús del Gran Poder para proporcionar a sus habitantes una vida digna libre de enfermedades y contaminación ambiental[3].

A su vez, es sumamente necesaria la evaluación de la planta de tratamiento de aguas residuales del cantón debido a que se presume que el río Pachanlica se encuentra altamente contaminado por la descarga directa de aguas residuales domesticas e industriales sin ningún tipo de tratamiento previo, poniendo en riesgo la vida de la flora y fauna que habita a lo largo y ancho de él[3].

1.3. Fundamentación teórica

ASPECTOS GENERALES

1.3.1. Sistema de Alcantarillado

Alfaro, Carranza y González (2012), mencionan que un alcantarillado es aquel sistema compuesto por diferentes tuberías y estructuras complementarias cuyo objetivo es recoger y evacuar las aguas residuales procedentes de la población. Estas aguas residuales pueden ser reutilizadas siempre y cuando se realice un tratamiento previo cumpliendo con normas y condiciones ambientales establecidas de acuerdo a la zona de implantación. Los desechos líquidos de la población se componen básicamente de agua, sólidos orgánicos disueltos y en suspensión[6].

1.3.2. Clasificación de los sistemas de alcantarillado

Un sistema de alcantarillado se clasifica según el tipo de agua que conducen:

1.3.2.1. Alcantarillado Sanitario

Para Leon y otros (2017), un alcantarillado sanitario es aquel sistema formado por tuberías de distintos materiales, mediante la cual se evacuan las aguas servidas (domesticas, comerciales e industriales) de manera pronta y eficaz requiriendo tratamiento en una planta especializada para posteriormente ser vertida en un lugar donde no genere un impacto ambiental negativo y tampoco malestar en la población aledaña[7].

1.3.2.2. Alcantarillado Pluvial

Es la red de tuberías encargada de captar aguas de escorrentía superficial (lluvias), mediante rejillas de piso localizadas en las carreteras y conducirlas para su posterior, almacenamiento, infiltración o depósito en cauces naturales sin un tratamiento previo complejo (primario – sedimentación)[7].

1.3.2.3. Alcantarillado Mixto

Combina el alcantarillado pluvial y sanitario mediante la conducción de aguas servidas y de lluvia a través de dos tuberías estratégicamente separadas[7].

1.3.2.4. Alcantarillado Combinado

Aquel sistema que capta y conduce al mismo tiempo la totalidad de las aguas de los sistemas de alcantarillado sanitario y pluvial, para su respectiva disposición la cual se dificulta al requerir un tratamiento posterior, debido a que genera graves problemas de contaminación al ser vertidas en cauces naturales y su infiltración se ve restringida por impedimentos ambientales[7].

1.3.3. Componentes de un sistema de alcantarillado

Todo sistema de alcantarillado consiste principalmente en:

- Una red de tuberías (dispuestas en circuitos abiertos y/o cerrados)
- Colectores
- Emisarios

• Otras estructuras hidráulicas que permiten el adecuado funcionamiento del sistema como: acometidas, pozos de inspección, cajas de registro[8].

1.3.3.1. Tuberías

Moya (2018), establece que es un conducto comúnmente de sección circular y su uso dependerá de la capacidad requerida y la resistencia a la carga externa generada por los automóviles. La tubería de sección circular es la más recomendable para tuberías de recolección, mientras que las secciones restantes pueden ser de utilidad para la conducción de las aguas sanitarias o pluviales[9].

1.3.3.1.1. Tuberías secundarias

Son tubos de sección circular que captan los caudales de vías secundarias y los transportan a vías principales, reciben caudales de una gran cantidad de acometidas domiciliarias[10].

El diámetro mínimo de las tuberías secundarias de la red de alcantarillado será de 200 mm(diámetro interior) [11].

1.3.3.1.2. Tuberías principales

Son tubos de sección circular que receptan el caudal de descarga de las tuberías secundarias, así como también las acometidas domiciliarias, el diámetro mínimo de las tuberías principales para la red de alcantarillado será de 200 mm(diámetro interior) [11].

1.3.3.2. Colectores

Son estructuras de secciones grandes con formas diversas, su función principal es receptar caudales provenientes de las tuberías principales y secundarias, permitiendo reducir la

longitud de recorrido de los caudales residuales. Es indispensable considerar la carga externa que la estructura deberá soportar debido al tráfico vehicular, así como también el volumen del líquido para determinar la forma de la sección[9].

1.3.3.3. Emisarios

Son estructuras de conducción encargadas de recepta todas las tuberías y colectores, para transportar su caudal hacia la planta de tratamiento[12].

ALCANTARILLADO SANITARIO

1.3.4. Bases de Diseño

1.3.4.1. Área de Estudio

Moreno (2016), expresa que es aquella área definida por el sitio en donde se implantará el proyecto de alcantarillado, debido a que es necesario la recolección y transporte de los caudales procedentes de la descarga de aguas residuales domesticas e industriales[13].

1.3.4.2.Áreas de Aportación

De acuerdo con lo enunciado en el libro de Metodología de Diseño del Drenaje Urbano, las áreas de aportación o servicio es aquella área tributaria entre pozos, las cuales aportan caudal sanitario de la parte superior, inferior, izquierda y derecha de la tubería de recolección, es necesario considerar la topografía de la zona, la viabilidad de aportación de caudal y la disponibilidad física. El área de aportación es propia de cada red de tubería ya sea está abierta o cerrada, la dirección del flujo se da conforme al sentido que posee la pendiente del terreno[9]. La determinación de las áreas de aportación debe realizarse mediante el plano topográfico y el trazado del sistema de alcantarillado en la zona del proyecto[14].

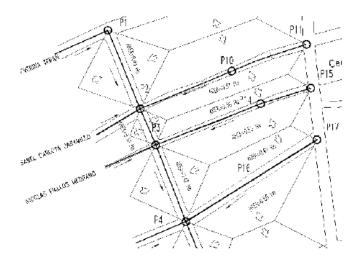


Figura 1. Esquema de un tramo de alcantarillado y sus áreas de aportación

Fuente: Metodología de diseño del drenaje urbano- Ing. M. Sc. Dilón Moya Medina[9].

1.3.4.3. Descargas finales

La descarga final de las aguas residuales se realizará desde el cuerpo receptor hasta el reuso de la mismas, de acuerdo al tipo de tratamiento que se requiera implementar en el agua residual y también según las características de la zona de implantación del proyecto[15].

1.3.5. Componentes de un Sistema de Alcantarillado Sanitario

1.3.5.1. Conexiones Domiciliarias

En el texto Metodología de Diseño del Drenaje Urbano, se establece que, las conexiones domiciliarias o acometidas son aquellas conexiones que van desde la caja de revisión localizada en el punto más bajo de la vivienda (en la mayoría de casos ubicada en la acera), donde concurren las demás acometidas intradomiciliarias, hacia la tubería de alcantarillado sanitario. Se debe considerar una deflexión de 30 a 45 grados entre la tubería de acometida y la tubería principal para mejor la movilidad e impedir obstrucciones innecesarias[9].

La CPE INEN 005-9-2 (1997), establece un diámetro mínimo (interior) de tubería de 100

mm y una pendiente mínima equivalente al 1% [16].

1.3.5.2.Pozos de revisión o inspección

Son estructuras verticales cilíndricas, diseñadas como medio de acceso e inspección a

tuberías y colectores para realizar trabajos de mantenimiento y limpieza. Estos pozos se

colocan bajos los siguientes aspectos:

• Inicio de nacientes

• Cambios considerables de pendientes

Cambios de dirección

Cambios de diámetro

• Variaciones de material de construcción

• Confluencia de dos o más tuberías, los empalmes directos de uniones domiciliarias

• Chequeos en el aforo, muestreo y análisis de aguas residuales [7].

La abertura superior del pozo será como mínimo 0,6m, el cambio de diámetro desde el

cuerpo de pozo hasta la superficie se hará preferiblemente usando un tronco de cono

excéntrico, para facilitar el descenso al interior del pozo.

El diámetro del cuerpo del pozo estará en función del diámetro de la máxima tubería

conectada al mismo, de acuerdo a la Tabla 1.

Tabla 1. Diámetros recomendados de pozos de revisión

DIÁMETRO DE TUBERÍA (mm)DIÁMETRO DEL POZO (m)Menor o igual a 5500,9Mayor a 550Diseño especial

Fuente: Norma CO 10.07-601[17]

Elaborado por: Daysi Belén Pérez Villacís

1.3.5.2.1. Distancia entre pozos de inspección o revisión

De acuerdo con el Instituto Ecuatoriano de Normalización (INEN,1992) en la *Tabla 2*, se muestran los valores de distancia máxima admisible entre dos pozos de revisión los cuales se encuentran en función de los diámetros de tubería que los conecta.

Tabla 2. Distancias máximas entre pozos de revisión

DIÁMETRO DE TUBERÍA	DISTANCIA MÁXIMA ENTRE
(mm)	POZOS (m)
Menor a 350	100
400 - 800	150
Mayores a 800	200

Fuente: Norma CO 10.07- 601[17].

Elaborado por: Daysi Belén Pérez Villacís

Los pozos de revisión para alcantarillado sanitario se colocarán de tal forma que se impida el flujo de escorrentía pluvial hacia ellos. Si esto es inevitable, será necesario el diseño de tapas herméticas especiales que lo impidan[12].

1.3.5.3. Pozos de revisión con salto

Son estructuras que permiten vencer desniveles originados en la confluencia de varias tuberías, permite también vencer pendientes en tramos continuos.

La altura libre entre la tubería de llegada y la tubería de salida, en un pozo normal oscila entre 0,60m y 0,70m, sin ocasionar turbulencia. De lo contrario, se colocará un salto, que es una tubería vertical paralela al pozo que conecta la tubería de llegada con el fondo del pozo, sin provocar turbulencia, el diámetro máximo de la tubería del salto será de 300mm. Para caídas superiores oscila desde los 0,70m hasta 0,80m, debe proyectarse para caídas extremas, con la ayuda de estructuras especiales, diseñadas según las alturas de dichas caídas y sus diámetros o dimensiones de acceso al pozo, para estas condiciones especiales[17].

1.3.6. Parámetros de Diseño

1.3.6.1. Período de Diseño

El periodo de diseño es aquel espacio de tiempo que involucra las etapas de formulación

del proyecto, diseño, financiamiento, adjudicación, construcción, operación y vida útil de

los materiales, así como también el desarrollo socioeconómico de la población[9].

Los sistemas de agua potable al igual que los sistemas de recolección y evacuación de

aguas residuales no deben proyectarse para un periodo menor a 20 años. En caso de ser

necesario se adoptará un período de diseño distinto justificadamente, sin embargo, en

ningún caso la población futura será mayor que 1.25 veces la población presente[11].

1.3.6.1.1. Valores recomendados para el Periodo de Diseño

Moya (2018), recomienda los valores que se pueden adoptar para establecer el periodo de

diseño los mismos que se encuentran en función de la población y de sus componentes.

a) En función de la Población

Tabla 3. Valores del Periodo de Diseño según la Norma Boliviana.

 Población (hab)
 Periodo (años)

 1000-15000
 15

 15001-50000
 15-20

>50001 15

Fuente: Metodología de diseño del drenaje urbano- Ing. M. Sc. Dilón Moya Medina[9].

Elaborado por: Daysi Belén Pérez Villacís

12

b) En función de los componentes

Tabla 4. Valores de período de diseño, según la Norma Boliviana.

Componentes y/o Equipos	Vida Útil (años)
Tuberías principales y secundarias	20 - 30
Colectores, Emisarios	30 - 50
Equipos mecánicos	5 - 10
Equipos eléctricos	10 - 15
Equipos con combustión	5-10

Fuente: Metodología de diseño del drenaje urbano- Ing. M. Sc. Dilón Moya Medina[9].

Elaborado por: Daysi Belén Pérez Villacís

Tabla 5. Vida útil sugerida para los elementos de un sistema de agua potable

Compone	Vida Útil (años)	
Diques grandes	50 a 100	
Obras de cap	25 a 50	
Pozos	10 a 25	
Conducciones de l	40 a 50	
Conducciones de asbesto	20 a 30	
Planta de Trata	30 a 40	
Tanques de Alma	30 a 40	
Tuberías principales y	De hierro dúctil	40 a 50
secundarias de la red:	De asbesto cemento	20 a 25
		Variables de acuerdo
Otros mater	especificaciones del	
	fabricante.	

Fuente: Norma CO 10.07- 601[17].

Elaborado por: Daysi Belén Pérez Villacís

1.3.6.2. Tasa de Crecimiento Poblacional

Es un parámetro con el que se establece la magnitud con la que determinada población puede crecer o decrecer a lo largo del tiempo depende fundamentalmente de la: Natalidad, Mortalidad, Inmigración o Emigración. Si la tasa de crecimiento poblacional llega a ser negativa se considerará un valor mínimo igual al 1%[18].

Las ecuaciones para determinar la tasa de crecimiento poblacional según los tres métodos de cálculo tradicionales son:

Método Lineal o Aritmético

$$r(\%) = \left\lceil \frac{\frac{Pf}{Pi} - 1}{n} \right\rceil \times 100$$
 Ec. 1 [9]

• Método Geométrico

$$r(\%) = \left[\left(\frac{Pf}{Pi} \right)^{\frac{1}{n}} - 1 \right] \times 100$$
 Ec. 2 [9]

Método Exponencial

$$r(\%) = \left\lceil \frac{ln(\frac{Pf}{Pi})}{n} \right\rceil \times 100$$
 Ec. 3 [9]

Donde:

- $\mathbf{r}(\%)$ = Tasa de crecimiento poblacional
- **Pi** = Población inicial
- Pf = Población final
- n = Periodo de tiempo

De no existir datos, se tomarán en cuenta los valores de los índices de crecimiento geométrico propuestos en la *Tabla 6*.

Tabla 6. Tasas de Crecimiento Poblacional

Región Geográfica	r(%)
Sierra	1.0
Costa, Oriente y Galápagos	1.5

Fuente: Norma CO 10.07-602[19].

Elaborado por: Daysi Belén Pérez Villacís

1.3.6.3. Población Actual

Población verificada inicialmente a través del censo poblacional y de vivienda efectuado por el órgano gestor encargado de generar la estadística nacional del Ecuador, el Instituto Nacional de Estadística y Censos (INEC), mismo que evidencia el número de habitantes. Los datos obtenidos se utilizarán como base para el cálculo de la población de diseño.

La población actual también puede ser verificada mediante la implementación de un micro censo o de encuestas dirigidas a los habitantes en el área de implantación del proyecto[9].

1.3.6.4. Población Futura o Población de Diseño

Es la proyección de la población actual mediante métodos de cálculo para estimar el número de beneficiarios futuros del sistema de alcantarillado sanitario y pluvial.

El uso de buen juicio en la estimación de la población es importante puesto que, si el valor estimado es muy bajo, el sistema será inadecuado siendo necesario rediseñar, reconstruir y refinanciar[20].

1.3.6.4.1. Tendencia Poblacional

La tendencia población será determinada mediante el estudio demográfico del sitio del proyecto o mediante la correlación con un sitio que disponga de datos, y que tenga semejanza geográfica con el sitio en estudio[9].

Se tomará en cuenta los métodos estadísticos tradicionales, según las siguientes expresiones:

• Método lineal o aritmético

Es un método de extrapolación en el que se determina la cifra media de crecimiento poblacional en un determinado tiempo, el cual puede aumentar o disminuir uniformemente por cada año transcurrido. El incremento poblacional es constante en todos los años lo cual refleja una velocidad constante de crecimiento[21].

La expresión utilizada para su cálculo es la siguiente:

$$Pf = Pa \times (1 + (r \times n))$$
Ec. 4 [9]

• Método Geométrico

Este método de extrapolación se aplica cuando el crecimiento poblacional es constante en proporción con su tamaño variable. Para este caso la velocidad de crecimiento es variable reflejando una aceleración constante[21].

La expresión utilizada para su cálculo es la siguiente:

$$Pf = Pa \times (1+r)^n$$
 Ec. 5[9]

• Método Exponencial

Método de extrapolación donde el crecimiento poblacional es continuo y no por cada unidad de tiempo[21].

La expresión utilizada para su cálculo es la siguiente:

$$\mathbf{Pf} = \mathbf{Pa} \times (\mathbf{e})^{r \times n} \qquad Ec. \ 6 \ [9]$$

Donde:

- **Pf** = Población futura (hab)
- **Pa** = Población actual (hab)
- **r** = Tasa de Crecimiento Poblacional (decimal)
- **n** =Período de tiempo (años)
- \mathbf{e} = Constate matemática de Euler (e= 2.71828)

1.3.6.5. Densidad Poblacional

La densidad de población es la relación existente entre los habitantes y el área que ocupan en función de un sector determinado, expresándose en habitantes por unidad de área (habitantes/Hectárea). El valor de área que se utilizara es el obtenido mediante el levantamiento topográfico.

$$\mathbf{Dp} = \frac{\mathbf{Pf}}{\text{Área del Proyecto}}$$
 Ec. 7[10]

Dónde:

- **Dp** = densidad poblacional futura (hab/Ha)
- **Pf** =población futura (hab)
- Área del Proyecto = (hab/Ha)

1.3.6.6. Demanda de Agua Potable

Es la cantidad de agua que consume una persona en un día, este gasto se encuentra condicionado por factores climáticos, económicos, sociales y de la disponibilidad del agua[22].

• Factores Climáticos

Tabla 7. Dotaciones recomendadas

POBLACIÓN	Clima	Dotación Media Futura
(Habitantes)	Ciniu	(litros/habitante/día)
	Frío	120-150
Hasta 5000	Templado	130-160
	Cálido	170-200
5000 a 50000	Frío	180-200
5000 a 50000	Templado	190-220
	Cálido	200-230
	Frío	>200
Más de 50000	Templado	>220
	Cálido	>230

Fuente: Norma CO 10.07-601[17].

• Factores socioeconómicos

Tabla 8. Ingresos y dotación de agua

Tipo de área a ser atendida según nivel de ingresos	Dotación per cápita (L/hab/día)	
Alto	250-180	
Medio	180-120	
Bajo	120-80	

Fuente: Manual de diseño y construcción de sistemas con dominiales de alcantarillado sanitario. Programa de Agua y Saneamiento. Bolivia[20].

Elaborado por: Daysi Belén Pérez Villacís

• Uso Domestico

Tabla 9. Consumo Doméstico Máximo

	CONSUMO (lt/hab/dia)			
USOS	CLIMA FRÍO		CLIMA CÁLIDO	
	NORMAL	MÁXIMO	NORMAL	MÁXIMO
Bebida	2	3	2	3
Alimentación y cocina	8	8	10	10
Lavado de utensilios	8	8	8	8
Aseo corporal menor	6	12	10	15
Baño de ducha	21	32	40	60
Lavado de ropa	15	15	15	15
Inodoro	15	15	15	15
Total per-cápita	75	93	100	125

Fuente: Norma de diseño para sistemas de abastecimiento de agua potable, disposición de excretas y residuos líquidos en el área rural. Proyecto Washed. Quito 1995[23].

1.3.6.7. Dotación Actual (Da)

La dotación actual es el volumen de agua que consume una persona en un día, expresada en lt/hab/día[21].

1.3.6.8. Dotación Futura (Df)

Para la determinación de la dotación futura se debe considerar el criterio que indica un incremento en la dotación equivalente a un 1 lt/día por cada habitante durante el periodo de diseño[12].

$$Df = Da + 1 \times n \qquad Ec. 8[12]$$

Donde:

- **Df** = dotación futura (lt/hab/día)
- **Da** = datación actual (lt/hab/día)
- **n** = periodo de diseño (años)

1.3.7. Análisis de Caudales

1.3.7.1. Aporte Doméstico

Aporte compuesto por flujos provenientes de actividades domésticas residenciales e institucionales. Son considerados aportes domésticos las actividades de limpieza, aseo personal, cocina y descargas con materia orgánica e inorgánica.

1.3.7.2. Aportes Industriales

Aquel aporte de flujos provenientes de procesos industriales, se determina mediante información de encuestas, censos y consumos industriales, así como también bajo estimaciones de consumos y ampliaciones futuras. En sectores netamente industriales,

localizados en zonas residenciales o comerciales es necesario llevar a cabo diferentes análisis específicos de las aguas residuales provenientes de la industria. No obstante, en industrias pequeñas localizadas en zonas residenciales o comerciales pueden utilizarse los valores mostrados en la *Tabla 10*[24].

Tabla 10. Contribución Industrial

Nivel de complejidad del	Contribución industrial
sistema	(l/s/ha-ind)
Bajo	0,4
Medio	0,6
Medio alto	0,8
Alto	1,0 - 1,5

Fuente: Normas de diseño de sistemas de alcantarillado para la EMAAP-Q[24].

Elaborado por: Daysi Belén Pérez Villacís

1.3.7.3. Aportes Comerciales

Aporte compuesto por el flujo de oficinas, tiendas y restaurantes, deben ser justificados a través de un estudio detallado de consumos diarios por personas, en densidades de población y coeficientes de retorno mayores a los aportes domésticos. En sectores mixtos (residenciales y comerciales) los caudales pueden ser ponderados empleando como base los valores de la *Tabla 11*[24].

Tabla 11. Contribución Comercial

Nivel de complejidad del	Contribución industrial	
sistema	(l/s/ha-ind)	
Cualquiera	0,4-0,5	

Fuente: Normas de diseño de sistemas de alcantarillado para la EMAAP-Q[24].

1.3.7.4. Aportes Institucionales

Aporte compuesto por el flujo proveniente de escuelas, colegios, universidades, hoteles, hospitales, cárceles, entre otros. Estos aportes deben establecerse para cada caso en particular, mediante información de consumos registrados en la localidad de instituciones afines. No obstante, en pequeñas instituciones situadas en zonas residenciales, los aportes de aguas residuales pueden ser estimados con los valores por unidad de área institucional, mostrados en la *Tabla 12*[24].

Tabla 12. Contribución institucional mínima en zonas residenciales

Nivel de complejidad del	Contribución industrial	
sistema	(l/s/ha-ind)	
Cualquiera	0,4-0,5	

Fuente: Normas de diseño de sistemas de alcantarillado para la EMAAP-Q[24].

Elaborado por: Daysi Belén Pérez Villacís

1.3.7.5. Caudal medio diario de Agua Potable (Qmd_{Ap})

El caudal medio diario sanitario deberá calcularse al inicio y fin del período de diseño, su cálculo se realizará mediante la ecuación:

$$Qmd_{Ap} = \frac{Pf \times D}{86400} \qquad Ec. 9 [25]$$

Donde:

- **Qmd**_{Ap} = Caudal medio diario sanitario lt/seg
- Pf = Población futura (hab)
- **D** = Consumo de agua potable (dotación) lt/hab/día

1.3.7.6. Caudal Medio Diario Sanitario (*Qmds*)

Es el volumen de agua producido por las descargas domiciliarias para su posterior evacuación en el sistema de alcantarillado, es un caudal contribuido en un período de 24 horas, obtenido como el promedio a lo largo de un año.

El caudal medio diario sanitario puede calcularse también mediante la ecuación:

$$Qmds = C \times Qmd_{AP} \qquad Ec. 10 [25]$$

Donde:

- **Qmds** = Caudal medio diario sanitario (lt/seg)
- **C** = Coeficiente de retorno o aporte (adimensional)
- **Qmd**_{AP} = Caudal medio diario de agua potable (lt/seg)

Moya (2018) en su libro Metodología de Diseño del Drenaje Urbano, menciona que el coeficiente de retorno (*C*), se refiere a la cantidad de agua consumida en una vivienda, ya que no todo el líquido retorna al alcantarillado. Este porcentaje se denomina también coeficiente de aporte y estadísticamente oscila entre 60% a 80%.

De ser inexistente o muy pobre la información sobre el coeficiente de retorno, se podrá utilizar los valores de la *Tabla 13*.

Tabla 13. Coeficientes de retorno de aguas servidas domésticas

Nivel de complejidad del sistema	Coeficientes de retorno
Bajo y medio	0,7 - 0,8
Medio alto y alto	0,8 - 0,85

Fuente: Normas de diseño de sistemas de alcantarillado para la EMAAP-Q[24].

1.3.7.7. Caudal Máximo Instantáneo (Qi)

Es el mayor caudal que puede escurrir en un periodo del día, el mismo que produce saturación en horas pico y resulta del producto del caudal domiciliar sanitario (Qms) y un factor de mayoración (M)[12].

$$Qi = M \times Qmds$$
 Ec. 11[12]

Donde:

- $\mathbf{Q}i$ = Caudal máximo instantáneo (1/s).
- M =Coeficiente de mayoración.
- **Qmds** = Caudal medio diario sanitario (l/s).

El coeficiente de mayoración (M), es la relación entre el gasto máximo horario y el gasto medio diario.

1.3.7.7.1. Coeficiente de Mayoración (M)

Es el factor de mayoración que permite determinar picos máximos y mínimos que tiene el caudal de aguas servidas en relación a las variaciones de consumo de agua potable[12].

Este coeficiente se pude obtener mediante los siguientes métodos:

• Coeficiente (M) según Harmon

Este método es comúnmente aplicado, para poblaciones medianamente grandes (1000 a 100000 habitantes), sin embargo, no presenta restricciones[12].

$$M = 1 + \frac{14}{4 + \sqrt{Pf}}$$
 Ec. 12[12]
 $2 \le M \le 3.8$

Donde:

Pf = Población (miles)

• Coeficiente (M) según Babit

Este tipo de método es más aplicable para condiciones rurales (poblaciones menores a 1000 habitantes)[12].

$$M = \frac{5}{P^{0,2}}$$
 Ec. 13[12]

Donde:

Pf = Población en miles

• Coeficiente (M) según Popel

Este método es utilizado para poblaciones grandes (urbes y ciudades) y se calcula según la población del proyecto mediante con la *Tabla 14*.

Tabla 14. Valores del coeficiente de Popel

Población en miles	Coeficiente M
Menor a 5	2,40 a 2.00
5 a 10	2,00 a 1,85
10 a 50	2,00 a 1,85
10 a 50	1,85 a 1,60
Mayor a 250	1,33

Fuente: Normativa Boliviana 688[26].

1.3.7.8. Caudal de Infiltración (Qinf)

De acuerdo con lo establecido en las Normas de diseño de Sistemas de Alcantarillado para la EMAAP-Q es inevitable la infiltración de aguas subsuperficiales a las redes de sistemas de alcantarillado, especialmente en zonas con un nivel freático alto, siendo el caudal de infiltración el volumen de agua que se infiltra en el suelo, dicha infiltración se presenta generalmente por fisuras en los colectores, juntas mal ejecutadas, en las uniones entre colectores y cámaras de inspección y dentro de las mismas cámaras[24].

Este coeficiente fluctúa debido a las condiciones presentadas a continuación:

- La altura del nivel freático.
- Permeabilidad del suelo.
- Dimensiones, estado y tipo de sistema de alcantarillado[25].

La ecuación de cálculo para determinar el caudal de infiltraciones la siguiente:

$$Qinf = I \times L$$
 Ec. 14[25]

Donde:

- *Qinf* = Caudal de Infiltración
- I = valor infiltración (l/m; l/Km)
- L = Longitud de la tubería (m; Km)

Tabla 15. Valores de Caudales por Infiltraciones

Nivel de complejidad del	Infiltración alta	Infiltración media	Infiltración baja
sistema	(l/s-ha)	(l/s-ha)	(l/s-ha)
Bajo y medio	0,1 -0,3	0,1 -0,3	0,05 - 0,2
Medio alto y alto	0,15 - 0,4	0,1 - 0,3	0,05 - 0,2

Fuente: Normas de diseño de sistemas de alcantarillado para la EMAAP-Q[24].

En la *Tabla 15* la categorización de la infiltración en alta, media y baja se relaciona con las características topográficas, de suelos, niveles freáticos y precipitación[24].

Tabla 16. Valores de Infiltración (1/metro)

Tipo de	Tubo de HS		Tubo PVC	
Unión	Mortero A/C	Caucho	Pegante	Caucho
N.F. Bajo	0.0005	0.0002	0.0001	0.00005
N.F. Alto	0.0008	0.0002	0.00015	0.0005

Fuente: Metodología de diseño del drenaje urbano- Ing. M. Sc. Dilón Moya Medinac.

Elaborado por: Daysi Belén Pérez Villacís

1.3.7.9. Caudal de Conexiones Erradas (Qe)

En los caudales de aguas residuales es necesario considerar los caudales pluviales debido a malas conexiones o conexiones erradas, para lo cual se fija un coeficiente de seguridad del 5-10 % del caudal máximo previsto de aguas residuales. El cálculo se lo realiza mediante la siguiente ecuación:

Debido a que es área rural y no posee cunetas para evacuaciones de aguas lluvias, empozamiento de agua que puede ingresar al alcantarillado sanitario por errores constructivos.

$$Qe = (0.05 - 0.10) \times Qi$$
 Ec. 15[25]

Donde:

- **Qe** = Caudal por conexiones erradas (lt/seg)
- **Qi** = Caudal máximo instantáneo de aguas residuales (lt/seg)

1.3.8. Caudal de Diseño (Qd)

Es el caudal máximo para el alcantarillado, teniendo un manejo adecuado en las conexiones domiciliarias. Toda red de alcantarillado presenta caudales adicionales, estos son: Caudal de infiltración (Qinf), el caudal de conexiones erradas (Qe) y el Caudal máximo instantáneo (Qi)[25].

Obtenidos estos caudales, el caudal de diseño (Qd) se calcula con la siguiente ecuación:

$$Qd = Qi + Qinf + Qe$$
 Ec. 16[25]

Donde:

- \mathbf{Qd} = Caudal de diseño (1/s).
- **Qi** = Caudal máximo instantáneo (l/s).
- **Qinf** = Caudal de infiltración (l/s).
- Qe = Caudal de conexiones erradas (1/s).

1.3.9. Condiciones hidráulicas de conducción

1.3.9.1. Elección del tipo de conducto

En base a lo expuesto por la Asociación Española de Abastecimientos de Agua y Saneamiento en las Recomendaciones para redes de alcantarillado el proyectista debe considerar dos aspectos importantes en la elección del tipo de conducto, el primero de ellos es la geometría o sección de las alcantarillas y el segundo aspecto es el material del conducto. La selección del conducto depende de los factores presentados a continuación:

- Rugosidad
- Coeficiente de rozamiento
- Tipo de agua a transportar
- Resistencia a la erosión y corrosión
- Resistencia mecánica

- Facilidad de manejo, instalación y mantenimiento
- Posibilidad de puesta en carga
- Tipo de unión
- Costo

1.3.9.1.1. Geometría o sección de las alcantarillas

La Asociación Española de Abastecimientos de Agua y Saneamiento en las Recomendaciones para redes de alcantarillado[27], menciona la existencia de dos tipos de alcantarillas: visitables y no visitables, las secciones comúnmente utilizadas en redes no visitables (conductos cerrados) son la circular y la ovoidal, en redes visitables (conductos cerrados) suelen emplearse secciones rectangulares, de tipo bóveda, semielíptica, triangulares, trapezoidales, lenticulares, de hastiales rectos, entre otros.

La sección circular es la que se empleada generalmente en poblaciones rurales y zonas urbanas en ramales de último orden o red terciaria, entre sus ventajas tenemos: la posibilidad de prefabricación, facilidad de instalación, gran capacidad resistente y la facilidad y seguridad de su unión[27].

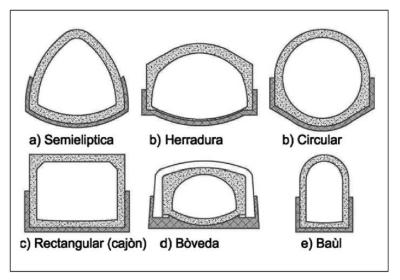


Figura 2. Secciones transversales más usuales en conductos cerrados

Fuente: Normas de diseño de sistemas de alcantarillado para la EMAAP-Q[24].

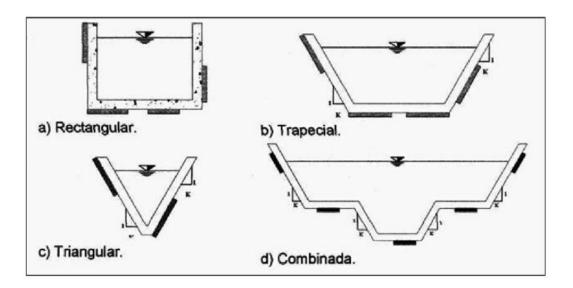


Figura 3. Secciones transversales más usuales a cielo abierto

Fuente: Normas de diseño de sistemas de alcantarillado para la EMAAP-Q[24].

1.3.9.1.2. Material del conducto

De acuerdo con las Normas de diseño de sistemas de alcantarillado para la EMAAP-Q los materiales comúnmente empleados en nuestro medio son:

- Hormigón simple (HS)
- Hormigón armado (HA)
- Policloruro de vinilo (PVC)
- Hierro fundido (HF)
- Poliéster reforzado con fibra de vidrio (PRFV)
- Polietileno de alta densidad (PEAD)

De emplearse otro material debe justificarse adecuadamente que sea apto para el fin propuesto y siempre que cumpla las exigencias normativas de cálculo estructural, hidráulico y de verificación a la corrosión[24].

1.3.9.2. Ubicación de las tuberías

Las Normas de diseño de sistemas de alcantarillado para la EMAAP-Q establecen una profundidad mínima para las redes de recolección y evacuación de aguas residuales la cual debe permitir el drenaje adecuado por gravedad de las descargas domiciliarias, aceptando una pendiente mínima del 2%.

Los valores mínimos permisibles se encuentran en la *Tabla 17* presentada a continuación:

Tabla 17. Profundidad mínima de tuberías

Servidumbre	Profundidad mínima a la clave del colector
Vías peatonales o zonas verdes	1,50
Vías vehiculares	1,50

Fuente: Normas de diseño de sistemas de alcantarillado para la EMAAP-Q[24]

Elaborado por: Daysi Belén Pérez Villacís

La profundidad máxima permisible debe proporcionar una aireación apropiada del flujo de aguas residuales para el caudal de diseño en una tubería, la cual se debe encontrar entre 70% y 85% del diámetro real de este.

En la Normas de Diseño de Sistemas de Alcantarillado para la EMAAP-Q (2009), se estable que la profundidad máxima de las tuberías generalmente es de 5 m, no obstante, se recomienda que la profundidad no exceda los 3m debido a procesos constructivos, sin embargo, puede ser mayor siempre y cuando se cumplan con los requerimientos estructurales y geotécnicos del proyecto[24].

1.3.10. Criterios de diseño

1.3.10.1. Diámetros

El Instituto Ecuatoriano de Normalización INEN (1998), considera para el alcantarillado sanitario un diámetro mínimo para tuberías secundaria y principal de 200 mm (diámetro interior) y para el alcantarillado pluvial o combinado, un diámetro de tubería mínimo de 250 mm (diámetro interior).

Las conexiones domiciliarias se realizarán con tubería de 100 mm de diámetro y con una pendiente mínima del 1%[11].

1.3.10.2. Velocidades Permisibles

1.3.10.2.1. Velocidades Mínimas

En las redes de alcantarillado sanitario la velocidad del fluido en los colectores, ya sean primarios, secundarios o terciarios, bajo condiciones de caudal máximo instantáneo, en cualquier año del período de diseño, no debe ser menor a 0,45 m/s y que preferentemente sea mayor que 0,6 m/s, para evitar la acumulación de gas sulfhídrico en el líquido[17].

De acuerdo al autor Moya, D (2018), se establecen los siguientes valores de velocidad mínima:

- Velocidad mínima a tubo lleno = 0.60 m/s
- Velocidad mínima a tubo parcialmente lleno = 0,30 m/s[9].

1.3.10.2.2. Velocidades Máximas

Las velocidades máximas admisibles en tuberías o colectores dependen del material de fabricación. Se recomienda usar los valores que constan en la *Tabla 18*.

Tabla 18. Velocidades máximas a tubo lleno recomendados

Tipo de Material Velocidad		Tipo de Material Velocidad	Coeficiente de Rugosidad
	Con uniones de mortero.	4	0,013
Hormigón simple	Con uniones de neopreno para nivel freático alto	3,5 – 4	0,013
Asbesto cer	mento	4,5 – 5	0,011
Plástico		4,5	0,011

Fuente: Norma CO 10.07-601[17].

Elaborado por: Daysi Belén Pérez Villacís

1.3.10.2.3. Coeficientes de rugosidad

Según (COON, 1998), el coeficiente de rugosidad llamado también coeficiente de Manning (n), es una medida de la resistencia fraccional ejercida por un canal sobre el flujo. Este coeficiente puede también reflejar otras pérdidas de energía, como consecuencia de un flujo inestable, turbulencia desmedida y el acarreo de material suspendido y escombros, resultando difíciles o casi imposibles de aislar y cuantificar[28].

Los valores de coeficientes de rugosidad son obtenidos de literatura especializada y el funcionamiento de la conducción debe ser comprobada en revestimiento nuevo y revestimiento viejo.

En la *Tabla 19*, se presentan valores que pueden ser utilizados como referencia en la fórmula de Manning.

Tabla 19. Valores de coeficientes de rugosidad de Manning, para diferentes tipos conductos

	Intervalo del	Valor de "n"	
TIPO DE CONDUCTO	valor de "n"	Recomendado	
Tubería de Hormigón Simple		0,013	
Tuberías de Plástico o PVC corrugada	0,012-0,015	0,013	
Tubería de Termoplástica de interior liso o PVC		0,010	
Colectores y tuberías de hormigón armado, fundido en sitio	0,013-0,015	0,015	
Ladrillo	0,014-0,019	0,016	
Mampostería de piedra	0,017-0,020	0,018	
Tubería de acero Corrugado	0,024-0,027	0,026	
Canal en tierra sin revestir	0,025-0,040	0,033	
Canal en roca sin revestir	0,030-0,045	0,038	
Canal revestido con hormigón	0,013-0,015	0,015	
Túnel en roca sin revestir	0,025-0,040	0,033	
Túnel revestido con hormigón	0,014-0,016	0,015	

Fuente: CPE- INEN 5 parte 9-1:1992[9].

Elaborado por: Daysi Belén Pérez Villacís

1.3.10.3. Pendientes del Proyecto

1.3.10.3.1. Gradiente Hidráulica

Una pendiente adecuada para la tubería de la red de alcantarillado permitirá velocidades óptimas, por ende, un buen funcionamiento del sistema.

$$S = \frac{c.Sup - c.Inf}{L} \times 1000$$
 Ec. 17[29]

Donde:

- **S**= Gradiente Hidráulica mínima (m/m)
- *C.Sup* = Cota superior del terreno (m)
- *C.Inf* = Cota inferior del terreno (m)
- L = Longitud total o por tramo (m)

1.3.10.3.2. Pendiente mínima

Smin =
$$\left(\frac{v_{min \times n}}{0.397 \, D_3^2}\right)^2$$
 Ec. 18[29]

$$Smin = 0.5\%$$

Donde:

- **Smin**= Gradiente Hidráulica mínima (m/m)
- *Vmin* = Velocidad mínima de la tubería (m/s)
- n = Coeficiente de rugosidad de Manning (adimensional)
- **D** = Diámetro de la tubería (m)

1.3.10.3.3. Pendiente máxima

$$Smax = \left(\frac{v_{max} \times n}{0.397 D_3^2}\right)^2$$

$$Ec. 19[29]$$

$$Smax > 5\%$$

Dónde:

• **Smax**= Gradiente Hidráulica máxima (m/m)

- *Vmax* = Velocidad mínima de la tubería (m/s)
- n = Coeficiente de rugosidad de Manning (adimensional)
- **D** = Diámetro de la tubería(m)

1.3.10.3.4. Gradientes Permisibles

Las pendientes de la *Tabla 20*, se encuentran en función del diámetro y las velocidades, lo cual se debe asumir las mínimas para evitar que se produzca asentamientos en el sistema de alcantarillado:

Tabla 20. Pendientes Mínimas para Tuberías PVC

Diámetro (mm)	Pendiente		Pendiente a	
	Manning	Chezy	adoptarse	
200	0.0033	0.0041	0.003	
250	0.0025	0.028	0.0025	
300	0.0019	0.0022	0.002	
380	0.0014	0.0016	0.0015	
450	0.0011	0.0012	0.0012	
600	0.00077	0.00080	0.0006	
760	0.00057	0.00059	0.0006	
910	0.00045	0.00046	0.0005	

Fuente: Norma EX - IEOS[22].

1.3.10.4. Tirante o Profundidad de flujo

Es la altura de las aguas servidas en el interior del alcantarillado, los tirantes de agua deben ser determinados admitiendo un escurrimiento en régimen uniforme y permanente, la altura del tirante del flujo será mayor al 10% del diámetro de la tubería y menor al 75%, estos parámetros garantizan el funcionamiento de la red como un canal abierto y la funcionalidad en el acarreo de los sedimentos. El tirante máximo de flujo a transportar, es representado por la relación de tirantes d/D, donde d es la altura del flujo y D es el diámetro interior de la tubería [12].

1.3.10.5. Tensión Tractiva (τ)

Taco, F (2012) menciona acerca de la tensión tractiva o tensión de arrastre de sedimentos (τ), que es aquel esfuerzo tangencial unitario ejercido por el líquido sobre el colector y en consecuencia sobre el material depositado, su unidad de medida es el Pascal.

Se utiliza la siguiente ecuación para su cálculo:

$$\boldsymbol{\tau} = \boldsymbol{\delta} \times \boldsymbol{g} \times \boldsymbol{R} \times \boldsymbol{S}$$
 Ec. 20[10]

Dónde:

- τ = Tensión tractiva (Pa)
- δ = Densidad del agua (1000 kg/m3)
- g = Aceleración de la gravedad (9,8 m/seg2)
- \mathbf{R} = Radio hidráulico (m)
- S = Pendiente de la tubería (m/m)

Para que se cumpla las condiciones mínimas de arrastre, la tensión tractiva mínima será de 1,0 Pa[10].

1.3.11. Fórmulas para el diseño hidráulico

Se considera que el flujo en las tuberías del sistema de alcantarillado será uniforme y permanente, en donde la velocidad media y el caudal permanecen constantes en una determinada longitud de conducto[12], para lo cual es necesario emplear:

1.3.11.1. Fórmula de Chézy

Chézy mediante su fórmula calcula la velocidad que posee el agua en una sección de un cauce o canal. Se calcula con la ecuación:

$$V = C\sqrt{R \times S}$$
 Ec. 21[30]

Donde:

- V= Velocidad media del agua (m/s)
- C =Coeficiente de Chezy
- R = Radio hidráulico (m)
- S = Gradiente Hidráulica (m/m)

En la ecuación 22 se presenta un coeficiente C el cual se calcula de la siguiente forma:

$$C = \frac{1}{n} \times R^{\frac{1}{6}}$$
 Ec. 22[30]

Donde:

- C = Coeficiente de Manning a aplicar en la fórmula de Chézy
- *n* =parámetro de rugosidad de Manning
- R = Radio hidráulico (m)

1.3.11.2. Fórmula de Manning

Mediante la sustitución del coeficiente de Manning en la fórmula original de Chézy en la, es posible hallas la velocidad mediante la siguiente ecuación:

$$V = \frac{1}{n} \times R^{\frac{2}{3}} \times S^{\frac{1}{2}}$$
 Ec. 23[30]

Donde:

- V = Velocidad (m/s)
- n = Parámetro de rugosidad de Manning
- R = Radio hidráulico (m)
- S = Pendiente (m/m)

1.3.12. Hidráulica de Conductos

1.3.12.1. Tuberías con Sección Totalmente Llena

Para diseñar conductos circulares, se manejan tablas, nomogramas o softwares computacionales, los cuales se fundamentan en la fórmula de Manning y relacionan el diámetro, pendiente, velocidad y caudal (capacidad hidráulica), para flujo en tuberías de sección llena[7].

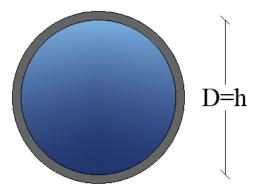


Figura 4. Tubería con Sección Totalmente Llena

• Área Mojada

$$A_{TLL} = \frac{\pi \times D^2}{4}$$
 Ec. 24[29]

• Perímetro Mojado

$$P_{TLL} = \pi \times D^2 \qquad Ec. 25[29]$$

• Radio Hidráulico

$$R_{TLL} = \frac{A}{P} \quad o \quad \frac{D}{4}$$
 Ec. 26[29]

De las cuales se derivan las fórmulas siguientes:

• Velocidad

$$V_{TLL} = \frac{0.397}{n} \times D^{\frac{2}{3}} \times S^{\frac{1}{2}}$$
 Ec. 27[29]

• Caudal

$$Q_{TLL} = \frac{0.312}{n} \times D^{\frac{8}{3}} \times S^{\frac{1}{2}}$$
 Ec. 28[29]

Donde:

- A_{TLL} = Área mojada sección llena (m2)
- P_{TLL} = Perímetro mojado sección llena (m)
- R_{TLL} = Radio hidráulico a tubo totalmente lleno (m)
- V_{TLL} = Velocidad a tubo totalmente lleno (m/s)

- QTLL = Caudal a tubo totalmente lleno (lt/s)
- n =Coeficiente de Rugosidad
- D = Diámetro de la tubería (m)
- S= Gradiente hidráulico (m/m)

1.3.12.2. Tuberías con Sección Parcialmente Llena

El flujo en conductos circulares de redes de alcantarillado, es a sección parcialmente llena (condiciones reales), con una superficie de agua libre y en contacto con el aire, debido a que el flujo a sección llena se produce en condiciones especiales. En el cálculo es necesario emplear las propiedades hidráulicas de sección circular la cuales vinculan las características de flujo a sección llena y parcialmente llena[7].

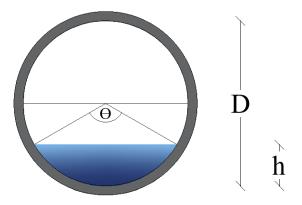


Figura 5. Tubería con Sección Totalmente Llena

Elaborado por: Daysi Belén Pérez Villacís

• Ángulo Central

$$\theta = 2\arccos\left(1 - \frac{2h}{D}\right) \qquad Ec. 29[29]$$

• Radio Hidráulico

$$R_{TPL} = \frac{D}{4} \left(1 - \frac{360 \operatorname{sen} \theta}{2\pi \theta} \right)$$
 Ec. 30[29]

Velocidad

$$V_{TPL} = \frac{0.397 \times D^{\frac{2}{3}}}{n} \left(1 - \frac{360 \operatorname{sen} \theta}{2\pi \theta} \right)^{\frac{2}{3}} \times S^{\frac{1}{2}}$$
 Ec. 31[29]

• Caudal

$$Q_{TPL} = \frac{D^{\frac{8}{3}}}{7257.15 (n)(2\pi\theta)^{\frac{2}{3}}} \times (2\pi\theta - 360 \times 2 \operatorname{sen} \theta)^{\frac{5}{3}} \times S^{\frac{1}{2}}$$
 Ec. 32[29]

Donde:

- θ = Ángulo central en grado sexagesimal
- h = Calado normal (m)
- R_{TPL} = Radio hidráulico a tubo parcialmente lleno (m)
- V_{TPL} = Velocidad a tubo parcialmente lleno (m/s)
- Q_{TPL} = Caudal a tubo parcialmente lleno (lt /s)
- n =Coeficiente de Rugosidad
- D = Diámetro de la tubería (m)
- S = Gradiente hidráulico (m/m)

1.3.13. Propiedades Hidráulicas de las Tuberías

• Área en régimen hidráulico

$$A = 0.125 \times (\theta rad - sen \theta) \times do^{2} \qquad Ec. 33[29]$$

Donde:

 $\theta rad =$ Ángulo (radianes y grados)

do = Diámetro u orificio interno, diseño (m)

• Contorno mojado

$$P_m = 0.5 \times \theta \times do$$

Ec. 34[29]

Donde:

 θ = Ángulo (radianes)

do = Diámetro u orificio inicial (m)

• Radio en condición hidráulica

$$Rh = A \times Pm$$

Ec. 35[29]

Donde:

A =Área calculada con los criterios de ángulo (m2)

Pm = Perímetro mojado (m)

• Energía específica

$$E = Y_{no} + \frac{V^2}{2 \times 9.81}$$

Ec. 36[29]

Donde:

 Y_{no} = Tirante normal de la sección (m)

V = Velocidad (m/s)

• Número de Froude

$$\#F = V\sqrt{9.81} \times D$$

Ec. 37[29]

Donde:

V = Velocidad (m/s)

D =Profundidad o altura hidráulica (m)

• Profundidad hidráulica

$$D = A \times T$$

Ec. 38[29]

Donde:

A =Área calculada con los criterios de ángulo (m2)

T: Ancho superficial (m)

• Ancho superficial

$$T = sen(0.5\theta) do Ec. 39[29]$$

Donde:

 $\theta = \text{Ángulo (grados}^{\circ})$

do = Diámetro inicial (m)

1.3.14. Comprobaciones de Diseño

La velocidad a sección totalmente llena debe comprobarse con la velocidad máxima permisible, donde la velocidad a tubería lleno debe ser menor a la velocidad máxima permisible.

$$V < V max$$
 Ec. 40[12]

La velocidad a sección parcialmente llena debe compararse con la velocidad mínima, donde la velocidad a tubería llena debe ser mayor o igual a la velocidad mínima.

$$V \ge V min$$
 Ec. 41[12]

En los tramos iniciales el caudal es sumamente pequeño por lo que no necesariamente se debe chequear la velocidad debido al criterio de pendiente mínima, sino debe chequearse bajo el criterio de la tensión tractiva[12].

ALCANTARILLADO PLUVIAL

1.3.15. Bases de Diseño

1.3.15.1. Área de Estudio

Esta área estará definida por el sitio en donde se implantará el proyecto de alcantarillado, debido a que es necesario la recolección y transporte de los caudales procedentes de las precipitaciones[13].

1.3.15.2. Áreas de Aportación

Para determinar las áreas de aportación es necesario contar con datos hidrológicos del área de estudio como el tipo de superficie, la cuenca hidrográfica que drena el sector, para establecer sus características y obtener superficies, pendientes, la forma y longitud del cauce principal, a su vez se debe identificar las subcuencas que atraviesan la zona y determinar el aporte al cause principal de la cuenca[13].

Las áreas tributarias son el conjunto de superficies que resultan al dividir el área del proyecto. En áreas perceptiblemente cuadradas se trazan líneas diagonales entre los pozos de revisión. En áreas perceptiblemente rectangulares, se dividirá la sección rectangular por la mitad (lados menores), para después trazar rectas con una inclinación de 45° (lados menores), formando triángulos o trapecios como las áreas de drenaje[31].

1.3.15.3. Descargas finales

La descarga se la realiza de manera directa en lugares aptos como quebradas, ríos, esteros, entre otros[16].

1.3.16. Componentes de un sistema de alcantarillado pluvial

1.3.16.1. Conexiones Domiciliarias

En un alcantarillado pluvial, la acometida suele ser rectangular o circular en hormigón simple o armado, confinando una rejilla con su respectivo cerco, habitualmente de hierro fundido, acero dúctil o PVC, por medio de una tubería de acometida con un diámetro comprendido entre 150 mm a 200mm, no obstante, dependerá del juicio del calculista estimar y justificar diámetros mayores, dicha tubería se conectará directamente con un pozo o cámara de revisión. La ubicación de la rejilla en la calzada será en un punto bajo que evite la retención de caudal[9].

Se realizarán con una tubería de diámetro mínimo de 100 m[11].

1.3.16.2. Sumideros

Según Ex – IEOS, son estructuras que permiten el ingreso y posterior recolección de aguas lluvia en las tuberías de la red de alcantarillado pluvial, deberán ser ubicados en los puntos más bajos de las vías, terraplenes, sobre quebradas y accesos de puentes, entre otros. Todos los sumideros se conectarán al pozo de inspección más próximo a través de una tubería diseñada con suficiente capacidad hidráulica[22].

1.3.16.2.1. Tipos de sumideros

• Tipo Ventana

Consta de un orificio en el bordillo de la acera a modo de ventana, facilitando la captación de aguas lluvias que se desplazan por la cuneta. Debido a su ubicación no obstruyen el tránsito, pero su más grande desventaja es la acumulación fácil de basura y sedimentos, sin embargo, puede evitarse colocando rejillas en la ventana[32].

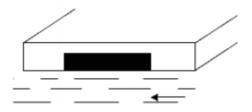


Figura 6. Sumidero de venta o acera

Fuente: Diseño del sistema de alcantarillado pluvial del barrio "La Campiña del Inca" cantón Quito, provincia de Pichincha - Jessica Rivadeneira Molina[32].

• Tipo Rejilla en Calzada

Es una cámara en forma de caja donde se evacuan las aguas de escorrentía, costa de una rejilla con barras en sentido paralelo al flujo. Poseen una mayor capacidad de captación a comparación de los sumideros de tipo ventana, no obstante, pueden acumular desperdicios reduciendo el área útil de la rejilla[32].



Figura 7. Sumidero de reja o calzada

Fuente: Diseño del sistema de alcantarillado pluvial del barrio "La Campiña del Inca" cantón Quito, provincia de Pichincha - Jessica Rivadeneira Molina[32].

Combinados

Combina los dos tipos de sumideros mencionados anteriormente, buscan aumentar la eficiencia del sumidero de ventana y disminuir el espacio ocupado en la calzada por los sumideros de rejillas. Se recomienda su uso en lugares donde sería favorable uno de ventana, pero donde su eficacia de captación es menos del 70% [32].

Figura 8. Sumidero mixto o combinado

Fuente: Diseño del sistema de alcantarillado pluvial del barrio "La Campiña del Inca" cantón Quito, provincia de Pichincha - Jessica Rivadeneira Molina[32].

1.3.16.2.2. Dimensiones de los sumideros

En base a las recomendaciones de la Ex – IEOS presentadas a continuación, las dimensiones de los sumideros se relacionan directamente con la ubicación de los mismos:

- Cada 80 m de longitud de calle o en cada esquina de la manzana será colocado un sumidero estándar de 30x46 cm, si esta longitud es menor a 80 m, las descargas se realizarán directamente al pozo de revisión.
- En el caso de calles con longitudes mayores a 80 m o con pendientes muy pronunciadas, es conveniente aumentar el número de sumideros o variar su sección con longitudes de 1,5 y hasta 2,0 m, siempre y cuando su cálculo sea justificado por el proyectista.
- En las calles donde exista acumulación de aguas lluvias superficiales, se colocarán sumideros de bordillo directos, los cuales contarán con una longitud máxima paralela a la vía de 1,50 m y en el pozo de inspección de descarga se colocará una válvula de clapeta[22].

1.3.17. Parámetros de Diseño

1.3.17.1. Período de diseño

El periodo de diseño en sistemas de alcantarillado pluvial debe ser menor que la vida útil de la obra y esta a su vez no debe ser menor a 30 años según la planificación del drenaje urbano. Dicha planificación debería ser lo adecuadamente flexible para permitir posibles actualizaciones cada 5 años, o cuando se presenten daños importantes [24].

1.3.17.2. Caudal de Diseño

Es aquel caudal recolectado en el área de drenaje conforme al tipo de precipitación estudiado, considerando la curva de intensidad, duración y frecuencia.

El método racional es aplicado en áreas con una superficie menor a 5 km², siendo necesario obtener los registros de precipitaciones de la zona, de no existir dichos registros, se deberán obtener las curvas intensidad, duración, frecuencia a partir de las lluvias máximas de 24h registradas en el sector o registros pluviográficos de sectores con características climatológicas equivalentes[13].

La ecuación de cálculo para el método racional tiene los siguientes fundamentos:

- Considera una intensidad de precipitación constante a lo largo del periodo de lluvia.
- Las precipitaciones de corta duración y gran intensidad son las responsables de inundaciones.
- El tiempo de concentración de la cuenca es igual a la duración de la lluvia.
- Mediante la curva Intensidad- Duración- Frecuencia se halla la intensidad media máxima para un período de retorno escogido[9].

$$Q = 2.78 CIA$$
 Ec. 42[13]

Donde:

- \mathbf{Q} = Caudal de escurrimiento (lt/s).
- **C** = Coeficiente de escurrimiento (adimensional).
- *I* = Intensidad de lluvia para una duración de lluvias, igual al tiempo de concentración de la cuenca en estudio (mm/h).
- A = Área de la cuenca (ha).

1.3.17.3. Coeficiente de Escurrimiento (C)

Es el resultado de la relación entre los volúmenes totales del escurrimiento superficial y el volumen de precipitación a lo largo del periodo de lluvia, en su análisis es necesario considerar el tipo y uso de suelo, permeabilidad del suelo, perdidas por infiltración, construcción, efectos de evo transpiración, evaporación, pendiente media, entre otros[13].

Tabla 21. Valores del coeficiente de Escurrimiento

TIPO DE ZONA	VALORES DE C	
Zonas centrales densamente construidas, con vías y calzadas pavimentadas	0,7 - 0,9	
Zonas adyacentes al centro de menor densidad poblacional con calles pavimentadas	0,7	
Zonas residenciales medianamente pobladas	0,55 - 0,65	
Zonas residenciales con baja densidad	0,35 - 0,55	
Parques, campos de deportes	0,1 - 0,2	

Fuente: Norma EX – IEOS, Parte 5 - Disipaciones Especificas[22].

La *Tabla 21*, presenta los valores del coeficiente C según el tipo de zona, para frecuencias entre 2 y 10 años.

De ser necesario el cálculo de un coeficiente de escurrimiento compuesto, el cual se basa en porcentajes de diferentes tipos de superficie, los valores presentados en la *Tabla 22*, pueden ser empleados[13].

Tabla 22. Valores de C para diversos tipos de superficies

TIPO DE SUPERFICIE	С	
Cubierta metálica o teja vidriada	0,95	
Cubierta con teja ordinaria o impermeabilizada	0,9	
Pavimentos asfalticos en buenas condiciones	0,85 - 0,9	
Pavimentos de hormigón	0,8 - 0,85	
Empedrados (juntas pequeñas)	0,75 - 0,8	
Empedrados (juntas ordinarias)	0,4 - 0,5	
Pavimentos de macadam	0,25 - 0,6	
Superficies no pavimentadas	0,1 - 0,3	
Parques y jardines	0,05 - 0,25	

 $\textbf{Fuente:} \ \ Norma\ EX-IEOS, Parte\ 5-Disipaciones\ Especificas [22].$

La *Tabla 23*, presenta los valores de escorrentía típicos empelados en áreas rurales.

Tabla 23. Coeficientes de Escorrentía Rural

		Textura del suelo		
Vegetación y topografía		Limo arenoso abierto	Arcilla y limo	Arcilla abierta
Bosque	Plano pend 0-5%	0.10	0.30	0.40
	Ondulada pend 5-10%	0.25	0.35	0.50
	Montañosa pend 10-30%	0.30	0.50	0.60
Pastura	Plano	0.10	0.30	0.40
	Ondulada	0.16	0.36	0.55
	Montañosa	0.22	0.42	0.60
Cultivos	Plano	0.30	0.50	0.60
	Ondulada	0.40	0.60	0.70
	Montañosa	0.52	0.72	0.82

Fuente: Normas de diseño de sistemas de alcantarillado para la EMAAP-Q, Titulo 5: Redes de alcantarillado de aguas lluvias[24].

Elaborado por: Daysi Belén Pérez Villacís

En la práctica, se zonifican superficies diferentes, las cuales arrojan datos de área y el tipo de superficie, de las cuales se deberán ir sumando a los valores del resto de zonas, hasta culminar con el total del área de drenaje y posteriormente emplear la ecuación siguiente:

$$C = \frac{\sum_{i=1}^{n} (Ai \times Ci)}{At}$$
 Ec. 43[9]

Donde:

- C =Promedio del coeficiente de escurrimiento de la zona de drenaje del proyecto.
- Ai =área parcial de acuerdo al tipo de superficie
- At =área total del proyecto
- Ci = coeficiente de acuerdo al tipo de superficie

1.3.17.4. Intensidad de Precipitaciones

En la ecuación racional, la intensidad de precipitación es otro de los parámetros

requeridos, la misma que se define como el volumen de agua, nieve o granizo, que se

precipita en la zona del proyecto por una unidad de tiempo generalmente expresada en

(mm/hora) o (lt/s/ha), la intensidad de la lluvia depende de la duración.

1.3.17.4.1. Duración de la lluvia

La duración es el periodo de tiempo que comprende el inicio y fin de la precipitación, sus

límites de duración están fijados de acuerdo a lo intervalos de registro en los pluviógrafos,

los cuales habitualmente van desde los 5 minutos (intervalo mínimo) hasta 24 horas.

1.3.17.5. Curva Intensidad-Duración-Frecuencia

Según (Témez, 1978), las curvas de Intensidad – Duración – Frecuencia (IDF) son el

resultado de unir puntos característicos de la intensidad media en intervalos de distinta

duración con una misma frecuencia o período de retorno[33].

Estas curvas permiten determinar las máximas intensidades para convertirse en

herramientas para diseñar obras de drenaje urbano y estimación de caudales de evacuación

en cuencas pequeñas a nivel rural[34].

T= 5 aflos

T= 10 aflos

T= 20 aflos

T= 30 aflos

T= 30 aflos

T= 40 aflos

T= 5 aflos

T= 60 aflos

T= 60 aflos

T= 75 aflos

T= 10 a

Figura 9. Curvas IDF Estación Talca

Fuente: Módulo 2 - Curvas Intensidad Duración Frecuencia [33].

53

Es importante determinar la frecuencia, debido a que esta establece la capacidad del sistema de alcantarillado, al igual que el periodo de retorno, su selección depende de la importancia y características zonales.

En la *Tabla 24*, se muestran distintas frecuencias en obras de drenaje que ayudan a la determinación de la intensidad máxima de precipitaciones:

Tabla 24. Valores de frecuencia para determinar la intensidad máxima

Obras de Drenaje	Frecuencia (años)
Redes en áreas urbanas y suburbanas	1-2
Redes en áreas urbanas residenciales y comerciales.	2-5
Colectores de segundo orden como canalización de riachuelos.	10
Diseño de obras especiales como canalizadores de primer orden.	20 - 50
Ríos principales que forman parte del sistema de drenaje global.	100

Fuente: Metodología de diseño del drenaje urbano- Ing. M. Sc. Dilón Moya Medina[9].

Elaborado por: Daysi Belén Pérez Villacís

1.3.17.5.1. Curvas Tipo INAMHI - Zona del proyecto

Mediante los datos presentados por el Instituto Nacional de Meteorología e Hidrología INAMHI, en el Estudio para la determinación de ecuaciones para el cálculo de intensidades máximas de precipitación presentado en la versión (2) 2019, tenemos la siguiente ecuación:

$$I = \frac{K \times T^m}{t^n}$$
 Ec. 44[35]

Donde

- I = Intensidad (mm/h)
- K, m, n = Constantes de ajuste propias de cada estación.

- T = Periodo de retorno (años)
- t = Tiempo de duración (minutos)

A partir de la *ecuación 44* se obtienen las siguientes ecuaciones y gráfica para la estación M0258 Querochaca:

Tabla 25. Intensidad Duración Frecuencia Estación M0258 Querochaca

Estación		INTERVALOS DE TIEMPO	Ecuaciones	R	\mathbb{R}^2	
Código	Nombre	(minutos)	Leuaciones	K	•	
		5<30	$i = 85.4334 \times T^{0.1904} \times t^{-0.5548}$	0.9833	0.9669	
M0258	QUEROCHACA	30<120	$i = 115.1696 \times T^{0.1698} \times t^{-0.6168}$	0.9901	0.9802	
		120<1440	$i = 278.5952 \times T^{0.1489} \times t^{-0.7720}$	0.9965	0.9929	

Fuente: INAMHI, Estudio para la determinación de ecuaciones para el cálculo de intensidades máximas de precipitación presentado en la versión (2) 2019[35].

Elaborado por: Daysi Belén Pérez Villacís

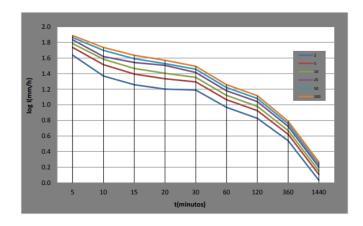


Figura 10. Curva Intensidad Duración Frecuencia Estación M0258 Querochaca

Fuente: INAMHI, Estudio para la determinación de ecuaciones para el cálculo de intensidades máximas de precipitación presentado en la versión (2) 2019[35].

1.3.17.6. Período de Retorno (T_r)

El período de retorno de un suceso hidrológico es calculado de manera inversa a la probabilidad de excedencia anual y este representa el periodo de tiempo promedio (probabilístico) dentro del cual ese evento puede volver a presentarse siendo igualado o excedido, asumiendo que los eventos naturales suelen presentarse aleatoriamente, como el caso de los caudales o precipitaciones[13].

Este parámetro nos permite proyectar la intensidad de la lluvia, en un tiempo de retorno corto la intensidad es menor, con una probabilidad de ocurrencia mayor y si el tiempo de retorno es largo se supone una intensidad alta, pero con una probabilidad de ocurrencia mínima. De presentarse el último de los casos mencionados anteriormente, en un periodo de retorno largo el incremento económico del proyecto será notorio debido al aumento de diámetro en las tuberías de las redes de alcantarillado[9].

La ecuación de cálculo del periodo de retorno es la siguiente:

$$T_r = \frac{1}{p(\%)} \times 100\%$$
 Ec. 45[9]

Donde

- T_r = Periodo de retorno (años)
- p(%) = Probabilidad de ocurrencia (%)

1.3.17.7. Tiempo de concentración (Tc)

Es el tiempo que el agua demora en alcanzar el punto más lejano de la cuenca hasta el colector, desde el inicio de la lluvia, sumándole los cauces principales y secundarios hasta el momento de desagüe[13].

En el método racional el tiempo de concentración es igual a la duración de la lluvia, siendo el aumento del caudal pluvial directamente proporcional al aumento del área de drenaje[9].

El tiempo de concentración se divide en dos partes: tiempo de entrada y tiempo flujo.

$$Tc = Ti + Tf Ec. 46[13]$$

Donde:

- Tc = Tiempo de concentración (min)
- Ti = Tiempo de entrada (min)
- Tf = Tiempo de flujo (min)

1.3.17.8. Tiempo de entrada (Ti)

Es el tiempo que se necesita el escurrimiento superficial para lograr alcanzar el punto más lejano de la cuenca hasta el primer sumidero, los valores recomendados par áreas urbanas fluctúan en entre 10 min y 30 min, el tiempo de entrada depende de los siguientes aspectos:

- La capa vegetal
- La pendiente de la superficie
- Almacenamiento en las depresiones
- Lluvia precedente
- Longitud del escurrimiento, entre otros[36].

Para la determinación del tiempo de entrada, se emplean también los siguientes criterios:

- En áreas densamente pobladas en una ciudad, con un alto porcentaje de superficies impermeables con sumideros cercanos entre sí, puede utilizarse un Ti de 5 minutos.
- *En distritos comerciales* con pendientes planas, entradas (sumideros) más espaciados, se puede utilizar un *Ti* de 10 a 15 minutos.
- *En distritos residenciales planos*, con sumideros muy espaciadas, puede utilizarse un *Ti* de 20 a 30 minutos[9].

No obstante, además de estos criterios existen un número considerable de ecuaciones que se pueden emplear para hallar el tiempo de entrada (*Ti*), la aplicación adecuada de las mismas es responsabilidad del proyectista quien debe argumentar correctamente su uso para evitar valores fuera de la realidad.

Las ecuaciones a utilizar garantizaran que el tiempo de escurrimiento no se distorsione.

• Según la Ecuación de *Kerby*

$$Ti = 1.44 \left(\frac{L \times m}{S^{\frac{1}{2}}}\right)^{0.467}$$
 Ec. 47[9]

Donde:

- *Ti* =tiempo de entrada (min)
- L = Longitud máxima de escurrimiento superficial (m)
- m = Coeficiente de retardo (adimensional)
- S = Pendiente promedio entre el punto más alejado y el sitio de recolección (m/m)

Tabla 26. Valores de m para la aplicación de la ecuación de Kerby

Tipo de superficie	m
Impermeable	0.02
Suelo sin cobertura, compacto y liso	0.10
Superficie sin cobertura moderadamente rugosa	0.20
Pastos ralos	0.30
Terrenos con arborización	0.70
Pastos densos	0.80

Fuente: Metodología de diseño del drenaje urbano- Ing. M. Sc. Dilón Moya Medina[9].

Elaborado por: Daysi Belén Pérez Villacís

• Según la Ecuación de soil conservation service (SCS) U.S.

$$Ti = \frac{L}{(60 \times Ve)}$$
 Ec. 48[9]

$$Ve = a \times S^{\frac{1}{2}}$$
 Ec. 49[9]

Donde:

- *Ti* =tiempo de entrada (min)
- L = Longitud máxima de escurrimiento superficial (m)
- **Ve** = Velocidad media de escurrimiento superficial (m/sg)
- a = Constante (adimensional)
- S = Pendiente promedio entre el punto más alejado y el sitio de recolección (m/m)

Tabla 27. Valores de a para la aplicación de la ecuación de soil conservation service.

Tipo de superficie		
Bosque denso – poblado de árboles y arbustos	0.70	
Pastos y patios	2.00	
Área cultivada en surcos	2.70	
Suelos desnudos	3.15	
Áreas pavimentadas y tramos iniciales de quebradas	6.50	

Fuente: Metodología de diseño del drenaje urbano- Ing. M. Sc. Dilón Moya Medina[9].

Elaborado por: Daysi Belén Pérez Villacís

• Según Monogramas

Los monogramas relacionan la distancia de recorrido superficial, la pendiente y el tipo de suelo. El valor del tiempo de entrada se halla partiendo desde el valor de recorrido superficial en la regleta de la izquierda en metros, seguidamente traza una línea que cruce por el tipo de suelo del proyecto hasta la línea auxiliar que se encuentra en el centro del monograma, para después trazar otra línea a partir del punto anterior la cual debe atravesar

la pendiente del terreno y llega hasta la otra regleta del tiempo de entrada en la parte derecha del monograma, siendo este último valor que coincide con la línea final el valor asumido para los cálculos.

Figura 11. Monograma para determinar el tiempo de entrada

Fuente: Comisión Nacional del Agua de México, 2009

1.3.17.9. Tiempo de flujo

Llamado también tiempo de recorrido, es el tiempo que el agua de los causes primario y secundario tarda en recorrer el sistema de tuberías desde el punto de entrada hasta el punto de salida del sumidero o de la tubería[13].

$$Tf = \frac{L}{60 \times V}$$
 Ec. 50[24]

Donde:

- **Tf** = Tiempo de viaje en el conducto (min)
- L = Longitud (m).
- V = Velocidad media en la sección de escurrimiento (m/seg) = Q/A

1.3.18. Condiciones Hidráulicas

1.3.18.1. Ubicación de tuberías

Las tuberías de alcantarillado pluvial se colocarán de forma aproximada en el centro de la calzada[22].

1.3.18.2. Profundidad de la tubería

Las tuberías deberán contar con la suficiente profundidad para recolectar las aguas lluvias de los domicilios y de lotes de terrenos más bajos a los dos de la calzada.

Para la profundidad mínima se deberá determinar a qué profundidad fueron colocadas las tuberías para abastecimiento de agua potable, a esta profundidad se le sumará una separación mínima vertical de 0.20m y en lugares donde se presenten cruces también se le sumará el diámetro exterior de la tubería[32].

En caso de que la tubería de alcantarillado pluvial se ubique por debajo de la tubería de alcantarillado sanitario Castro, F (2022) manifiesta que se debe realizar un recubrimiento o introducir dicha tubería dentro de otra para protegerla en el caso de presentarse algún tipo de fisuración o rotura de la tubería de alcantarillado sanitario.

1.3.19. Criterios de Diseño

1.3.19.1. Diámetros

De acuerdo a lo establecido por el Instituto Ecuatoriano de Normalización INEN,1998 el diámetro mínimo para una red de alcantarillado pluvial es de 250 mm. Para conexiones domiciliarias el diámetro mínimo es de 150 mm[16].

1.3.19.2. Velocidades Permisibles

1.3.19.2.1. Velocidad mínima

Para alcantarillado pluvial o combinado, la velocidad mínima para caudal máximo instantáneo es de 0.90 m/sg, debido a que el líquido evacuado acarrea consigo los sólidos suspendidos que son evacuados conjuntamente con el caudal líquido[17].

1.3.19.2.2. Velocidad máxima

Las velocidades máximas admisibles en tuberías o colectores en una red de alcantarillado pluvial dependen del material de fabricación. Se recomienda usar los valores que constan en la *Tabla 28*.

Tabla 28. Velocidades máximas admisibles por el tipo de material

MATERIAL DE LA TUBERÍA	VELOCIDADES MÁXIMAS (m/seg)
Tubería de hormigón simple hasta 60 cm de diámetro	4,5
Tubería de hormigón armado de 60 cm de diámetro o mayores	6,0
Hormigón armado en obra para grandes conducciones 210/240 kg/ cm2	6,0 – 6,5
Hormigón armado en obra 280/350 kg/cm2. Grandes conducciones	7,0 – 7,5
PEAD, PVC, PRFV	7,5
Acero	9,0 o mayor
Hierro dúctil o fundido	9,0 o mayor

Fuente: Normas de diseño de sistemas de alcantarillado para la EMAAP-Q, Titulo 5: Redes de alcantarillado de aguas lluvias[24].

Elaborado por: Daysi Belén Pérez Villacís

1.3.19.3. Pendiente de las Tuberías

1.3.19.3.1. Pendiente mínima

La pendiente del sistema será similar en todos los tramos a la pendiente del terreno para facilitar excavaciones, sin embargo, puede adoptarse un valor de pendiente mínima de 0.5%[9].

Las conexiones domiciliarias se instalarán con una pendiente mínima del 1%[11].

1.3.19.3.2. Pendientes máximas

Los valores de pendiente máxima permitirán la comprobación de las velocidades máximas mostradas en la *Tabla 28*, si las velocidades máximas exceden estos valores se deberán realizar obras hidráulicas.

PLANTA DE TRATAMIENTO DE AGUA RESIDUALES

Alfaro, Carranza y González (2012), definen al tratamiento de aguas residuales como un conjunto de procedimientos químicos, físicos y biológicos con la finalidad de eliminar los contaminantes físicos, químicos, biológicos y una serie de características indeseables como materia orgánica, sólidos de gran tamaño, agentes patógenos, entre otros, que se encuentra presentes en el agua residual.

El tratamiento de las aguas residuales tiene como objetivo es generar agua limpia y un residuo solido o lodo, capaz de ser reutilizados en el ambiente[6].

1.3.20. Aguas Residuales

Castañeda y Flores (2015), denominan a las aguas residuales, negras o cloacales como aquellas aguas de uso doméstico, comercial e industrial que se implementaron en procesos de limpieza o transformación, en ciertos casos están compuestas también por aguas lluvias

y de infiltraciones en el suelo para posteriormente ser conducidas a través de un sistema de alcantarillado. Estas aguas residuales son descargadas principalmente por uso municipal, comercial, industrial, servicios domésticos, agrícola, pecuario, entre otros y la mezcla de los mismos.

Este tipo de agua no puede ser reutilizada de forma directa sin antes haber sido intervenida mediante procesos de tratamiento, ya que al encontrarse contaminada pierde su potabilidad debido a que sus características físicas, químicas y biológicas o su composición se han visto alteradas resultando nocivas para la salud[37].

1.3.21. Clasificación de las Aguas Residuales

1.3.21.1. Agua Residual de Origen Doméstica

Según Chinchilla y Rodríguez (2010), las aguas de origen domestico son aquellas aguas residuales provenientes de actividades metabólicas y cotidianas mediante baterías sanitarias, lavabos, cocinas y otros elementos domésticos, su calidad suele ser uniforme y presenta variaciones de acuerdo al nivel económico, social y cultural de los habitantes [8].

1.3.21.2. Aguas Residuales de Origen Industrial

Se generan debido a procesos industriales o manufactureros, es posible que contengan sustancia y elementos tóxicos: como cobre, mercurio, plomo, níquel y otros siendo necesaria su remoción antes de ser vertidos al sistema de alcantarillado[8].

1.3.21.3. Aguas Residuales de Origen Agrícola

Espín (2016), señala que las aguas de origen agrícola son aquellas aguas residuales que provienen de actividades agrícolas y ganaderas como cultivos y pastoreo intenso, arrastran elevadas cantidades de fertilizantes (fosfatos) y pesticidas[10].

1.3.21.4. Aguas Residuales de Origen Pluvial

Aquellas aguas lluvias causadas por las precipitaciones, arrastran contaminantes atmosféricos los cuales son descargados sobre el suelo[10].

1.3.22. Características de las Aguas Residuales

En la *Tabla 29*, *Tabla 30*, y la *Tabla 31* presentadas a continuación se detalla la procedencia de las características físicas, químicas y biológicas de las aguas residuales.

Tabla 29. Características físicas del agua residual y sus procedencias

CARACTERÍSTICAS		PROCEDENCIA			
		Agua de suministro			
		Aguas residual doméstica e industrial			
	Solidos Totales	Erosión del suelo			
		Infiltración			
FÍSICAS		Conexiones descontroladas			
	Temperatura	Aguas residuales domésticas e industriales			
		Agua residual doméstica e industrial			
	Color	Degradación natural de materia orgánica			
		Agua residual en descomposición			
	Olor	Residuos industriales			

Fuente: Ingeniería de aguas residuales: Volumen 1, Capítulo 3: Características de las aguas residuales - METCALF & EDDY[38].

Elaborado por: Daysi Belén Pérez Villacís

Tabla 30. Características químicas del agua residual y sus procedencias

CARACTERÍSTICAS		PROCEDENCIA		
	Orgánicos	Materia Orgánica Volátil		
		Proteínas		
		Carbohidratos	Aguas residuales domésticas,	
		Grasas animales y aceites	industriales y comerciales	
		Orgánicos Agentes Tensoactivos		
		Contaminantes Prioritarios		
		Pesticidas	Residuos agrícolas	
		Fenoles	Vertidos industriales	
QUÍMICAS		Otros	Degradación natural de materia orgánica	
	Inorgánicos	Alcalinidad	Aguas residuales domésticas, agua de suministro, infiltración de agua subterránea.	
		Cloruros	Metales pesados Vertidos industriales	
		Nitrógeno	Residuos agrícolas y aguas residuales domésticas.	
		pН	Aguas residuales domésticas,	
		Contaminantes prioritarios	industriales y comerciales.	
		Azufre	Agua de suministro; aguas residuales domésticas, comerciales e industriales	
		Fósforo	Aguas residuales domésticas, industriales y comerciales; aguas de escorrentía.	
		Sulfuro de hidrógeno	Descomposición de residuos	
		Metano	domésticos.	

Oxigeno Agua de suministro; infiltración de agua superficial.	Oxigeno Agua de suministro; infiltración de agua superficial.
---	---

Fuente: Ingeniería de aguas residuales: Volumen 1, Capítulo 3: Características de las aguas residuales – METCALF & EDDY[38].

Elaborado por: Daysi Belén Pérez Villacís

Tabla 31. Características biológicas del agua residual y sus procedencias

CARACTERÍSTICAS			PROCEDENCIA	
	Sulfuro de hidrógeno Metano		Descomposición de residuos domésticos.	
	Oxigeno		Agua de suministro; Infiltración de agua superficial	
BIOLÓGICAS	Animales Plantas		Cursos de agua y plantas de tratamiento	
		Eubacterias	Aguas residuales domésticas,	
	Protistas Arqueobacterias		infiltración de agua superficial, plantas de tratamiento.	
	Virus	1	Aguas residuales domésticas.	

Fuente: Ingeniería de aguas residuales: Volumen 1, Capítulo 3: Características de las aguas residuales – METCALF & EDDY[38].

Elaborado por: Daysi Belén Pérez Villacís

1.3.23. Parámetros de las Aguas Residuales

1.3.23.1. Demanda Bioquímica de Oxigeno (DBO5)

Es un parámetro que permite el cálculo de la cantidad de oxígeno que la materia orgánica requiere para ser degradada en el curso de aguas residuales, el oxígeno requerido para la oxidación de la materia orgánica, consume el oxígeno utilizado para el desarrollo de la fauna y flora acuática, debido a las variaciones de la calidad del agua y la posible elevación del pH, provocando la desaparición de peces y plantas.

Se determina mediante la medición de la cantidad de oxígeno consumida por microorganismos a los 5 primeros días de biodegradación, se expresa en (mg/lt)[39].

1.3.23.2. La demanda química de oxígeno (DQO)

Es un parámetro que señala la cantidad de materia orgánica en una masa de agua; es empleado para la medición del oxígeno equivalente a la materia orgánica oxidable por medio de un elemento químico oxidante, el dicromato de potasio es el agente oxidante utilizado comúnmente debido a sus características oxidantes de la mayoría de compuestos orgánicos (excepto ácidos grasos). Es altamente empleado en determinaciones de materia orgánica de aguas servidas domesticas e industriales[39].

1.3.23.3. Potencial Hidrogeno (pH)

Es un parámetro que nos permite conocer la acidez o alcalinidad del agua residual, si dicha agua posee una gran concentración del ion de hidrógeno será difícil realizar un tratamiento por medios biológicos y si su concentración no se ve alterada se presentaran microrganismos biológicos[8].

1.3.23.4. Nitrógeno (N)

Es un elemento químico esencial para el desarrollo de la vida, se encuentra presente como nitrógeno orgánico, amoniacal, nitritos, nitratos, entre otros. Para tratar el agua residual será necesario un contenido bajo de nitrógeno, de usarse en cantidades más altas se dará origen a un desarrollo desmedido de algas y plantas en los elementos receptores[8].

1.3.23.5. Fósforo (P)

Es un elemento químico primordial para el crecimiento de especies acuáticas, su presencia en las aguas residuales se debe al uso de detergentes, fertilizantes y excretas humanas, en cantidades excesivas causa el deterioro de los cuerpos de agua[7].

1.3.23.6. Coliformes totales y fecales

Son el conjunto de agentes patógenos, como virus y salmonellas de origen humano o animal, presentes en aguas residuales, superficiales y sedimentos, a través de deposiciones, su eliminación tiene como objetivo principal cortar el ciclo epidemiológico de contagio para impedir la contaminación biológica[12].

1.3.24. Tratamiento de Aguas Residuales

La finalidad del tratamiento de aguas residuales es reducir o eliminar por completo la contaminación de las mismas, para obtener agua con propiedades aptas según el uso que requieran, es necesario ubicar una planta de tratamiento al finalizar el alcantarillado sanitario.

Existen ciertas consideraciones para elegir el tipo de tratamiento:

- Las leyes vigentes
- Objetivos para la protección de la salud y el ambiente de la población
- Factores económicos como la recuperación de los costos de construcción y operación, disponibilidad y precios de los mismos.
- Capacidades de operación y mantenimiento

Se recomienda considerar y planificar futuras ampliaciones de la planta de tratamiento debido a aumentos de caudal[6].

1.3.25. Fases del tratamiento de aguas residuales

1.3.25.1. Pre tratamiento

Se realiza para acondicionar a las aguas negras para que reciban un tratamiento posterior sin obstrucciones de tuberías y sin depósitos permanentes en los tanques, minimizan presencia de materia flotante, como grasas y aceites, a su vez evita grandes variaciones de caudal[6].

1.3.25.2. Tratamiento Primario

Tiene como finalidad retener la mayor cantidad de los sólidos suspendidos que transporta el agua residual y entre un 90 a 95% de los sólidos sedimentables, esto bajo la acción de la gravedad, los sólidos son depositados en lagunas o sedimentadores donde los sólidos son fácilmente removidos mediante la sedimentación, filtración, flotación y precipitación. En esta etapa se espera eliminar del 50% al 70% de los sólidos suspendidos y del 25 al 40% de la demanda bioquímica de oxígeno (DBO5)[6].

1.3.25.3. Tratamiento Secundario

En esta etapa se pretende remover materia orgánica suspendida, mediante procesos biológicos, donde microorganismos degradan la materia orgánica alimentándose de ella, también se pueden añadir reactivos para una rápida eliminación de fósforo y sólidos disueltos.

El oxígeno disuelto presente en las aguas residuales define dos procesos basados en la actividad biológica:

- Aerobios (en presencia de oxígeno)
- Anaerobios (en ausencia de oxígeno)[6].

1.3.25.4. Tratamiento Avanzado o Terciario

Se pretende alcanzar una gran calidad física, química y biológica del agua residual, conocida como desinfección. Este tratamiento va encaminado hacia la reducción de la demanda bioquímica de oxígeno (DBO5), químicos contaminantes y metales pesados, así como también a la eliminación de parásitos y agentes patógenos.

Este tipo de tratamiento no es comúnmente utilizado para aguas residuales municipales, a menos que su reutilización tenga como objeto aplicaciones industriales o la protección ecológica de zonas determinadas[6].

1.3.26. Fases de Diseño para Tratar el Agua Residual

Figura 12. Componentes para tratar agua Residual

Elaborado por: Daysi Belén Pérez Villacís

1.3.26.1. Cribado

Parte del pre tratamiento cuya finalidad es evitar el obstrucción de los equipos de la planta de tratamiento como laguna so vertederos, debido a sólidos gruesos y material fibroso de dimensiones considerables[17].

1.3.26.2. Desarenador

Es un elemento hidráulico tipo cámara destinado para reducir la velocidad de transporte del agua residual, tiene como objetivo permitir la disgregación de solidos minerales (arena) mediante la sedimentación. Suelen ser ubicados antes de los demás componentes de tratamiento facilitando el procedimiento de etapas posteriores[17].

1.3.26.3. Desarenador del flujo horizontal

Este tipo de desarenador es el más utilizado en las plantas de tratamiento, aquí el agua residual pasa a lo largo de un tanque en dirección horizontal. De acuerdo a lo establecido en las Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a 1000 hab se establecen las siguientes consideraciones para el diseño de estos desarenadores:

- Partículas a ser removidas con un diámetro medio, igual o superior a 0,2 mm.
- **Velocidad de flujo** de 0,3 m/s con una tolerancia del (+/-) 20%.
- La relación entre el largo y la altura de agua debe ser como mínimo 25
- Tiempo de retención recomendable de 60 seg[17].

1.3.26.4. Tanque Séptico

Permite la remoción de solidos mediante decantación para que esto ocurra, las aguas residuales deben permanecer por lo menos 24 horas dentro del tanque séptico. Del total de la materia sólida contenida, aproximadamente el 50% se descompone y el 50% restante se acumula en el tanque conforme se realizan las descargas[8].

1.3.26.5. Filtro Anaerobio de Flujo Ascendente (FAFA)

Son comúnmente utilizados en el tratamiento secundario de aguas residuales, está constituido por un sistema de tanques cuyas secciones dependen de las propiedades del flujo y de dicho parámetro dependerá el tiempo de retención del flujo en el sistema. Su finalidad es garantizar una mayor retención de sólidos, promover la proliferación de bacterias en la superficie, promoviendo la oxidación anaeróbica de la materia orgánica.

Para su adecuado funcionamiento el flujo debe ingresar al filtro por la parte inferior y el procedimiento de llenado lo hace atravesar totalmente el medio filtrante ascendentemente, dentro del litro en el cual ocurren una serie de procesos físicos, químicos y microbiológicos que depuran el afluente [40].

1.3.26.6. Lecho de Secado de Lodos

Componen el método más simple y rentable para deshidratar los lodos o fangos estabilizados (lodos digeridos), en pequeñas comunidades su implementación resulta ideal. El secado de lodos es un proceso unitario que radica en la reducción del contenido de agua mediante vapor, la temperatura es un elemento prioritario para la determinación del tiempo que se requiere para la digestión[12].

1.3.26.6.1. Tiempo requerido para digestión de lodos (Td)

En la *Tabla 32*, se presentan los tiempos requeridos para la digestión de lodos según la temperatura empleada.

Tabla 32. Tiempo de digestión

Temperatura °C	Tiempo de digestión en días
5	110
10	76
15	75
20	40
>25	30

Fuente: Guía para el diseño de tanques sépticos y lagunas de estabilización- UNATSABAR (2005)[12].

Elaborado por: Daysi Belén Pérez Villacís

1.3.26.7. Desinfección

Consiste en la eliminación selectiva de microrganismos causantes de enfermedades, como los virus, bacterias y quistes amebianos. Existen algunos método de desinfección como la cloración que es la técnica más utilizada al rededor del mundo por su efectividad para

desinfectar el agua, sin embargo existen otros método como la ozonización, radiación ultravioleta, diferentes mecanismos desinfección solar, entre otros[8].

1.3.26.8. Porcentaje de remoción teórica por procesos

Tabla 33. Rendimiento de eliminación del constituyente, Porcentaje

UNIDADES DE TRATAMIENTO	RENDIMIENTO DE ELIMINACIÓN DEL CONSTITUYENTE, PORCENTAJE					
IRATAMENTO	DBO	DQO	SS	$\mathbf{P}^{\mathbf{b}}$	N-Org ^c	NH ₃ -N
Rejas de Barras	nulo	nulo	nulo	nulo	nulo	nulo
Desarenadores	0 -5 ^d	0 -5 ^d	0 -10 ^d	nulo	nulo	nulo
Sedimentación Primaria	30 -40	30 -40	50 -65	10 - 20	10 - 20	0
Fangos Activos						
Proceso Convencional	80 -95	80 -85	80 -90	10 - 25	15 - 50	8 - 15
Filtros Percoladores						
Alta Carga Medio Pétreo	65 -80	60 -80	60 -85	8 - 12	15 - 50	8 - 15
Carga Muy alta Medio Sintético	65 -85	65 -85	65 -85	8 -12	15 - 20	8 - 15
Biodiscos (RBCs)	80 -85	80 -85	80 -85	10 - 25	15 - 20	8 - 15
Cloración	nulo	nulo	nulo	nulo	nulo	nulo

Fuente: Ingeniería de aguas residuales: Volumen 1, Capítulo 3: Características de las aguas residuales - METCALF & EDDY[38].

Elaborado por: Daysi Belén Pérez Villacís

1.4.Objetivos

1.4.1. Objetivo General

Diseñar la red de alcantarillado sanitario y pluvial de los sectores La Florida, Reina del Tránsito y Jesús del Gran Poder, cantón Cevallos, provincia de Tungurahua.

1.4.2. Específicos

- Realizar el levantamiento topográfico de los sectores La Florida, Reina del Tránsito y Jesús del Gran Poder, cantón Cevallos, provincia de Tungurahua.
- Proponer una red de alcantarillado sanitario y pluvial que permita una adecuada recolección y manejo de aguas residuales y pluviales cumpliendo con los parámetros señalados en la normativa vigente.
- Evaluar la eficiencia de la planta de tratamiento de aguas residuales ubicada en el sector de Reina del Tránsito.
- Realizar el análisis de precios unitarios para la ejecución de la obra.
- Analizar las condiciones técnicas, ambientales y económicas que componen el diseño de una red de alcantarillado sanitario y pluvial que permitan mejorar calidad de vida de la comunidad.

CAPÍTULO II

METODOLOGÍA

2. MATERIALES Y MÉTODOS

2.1. Equipos y Materiales

En el diseño de la red de alcantarillado sanitario y pluvial de los sectores La Florida, Reina del Tránsito y Jesús del Gran Poder, cantón Cevallos, provincia de Tungurahua se emplearon los siguientes materiales.

2.1.1. Equipos

2.1.1.1. Estación total

Equipo topográfico de marca Trimble M3 de 5" perteneciente al GAD del cantón Cevallos Provincia de Tungurahua, posee un sistema operativo Windows con software Trimble Access, tiene doble batería interna y doble pantalla táctil a color con 3 sistemas láser. Incluye una memoria interna con lectura de hasta 10'000.000 puntos, permite el cálculo de volúmenes, replanteos, dibujo por códigos, entre otras funciones. En la parte inferior tiene integrada una base niveladora triangular con acople y ajuste para trípode.

Figura 13. Estación total Trimble M3 de 5"

Fuente: https://instrumentalyoptica.com.ec/product/trimble-m3-alquiler/

2.1.1.2. Trípode

Equipo marca Trimble de aluminio con tres patas, con un cabezal triangular el cual brinda estabilidad y seguridad a la estación total ya sea en superficies planos o accidentadas.

Figura 14. Trípode

Fuente: https://todotripodes.com/tripode-aluminio-estacion-total/

2.1.1.3. Prisma

Conocido como objetivo (target) se coloca sobre un punto cualquiera y al ser observado a través de la Estación Total se dispara un láser el cual rebota de vuelta hacia el aparato para la lectura de puntos.

Para este levantamiento topográfico se lo realizo con la ayuda de dos prismas para optimizar la lectura de puntos.

Figura 15. Prisma

Fuente: https://geobax.com/topografia/prisma-topografico/

2.1.1.4. Bastón

Es un bastón metálico de altura graduable, sobre el que se coloca el prisma. Tiene un nivel circular para situarlo con exactitud sobre el punto del terreno a ser leído.

Para este levantamiento topográfico se necesitaron dos bastones uno para cada prisma en uso.

Figura 16. Bastón

Fuente: https://tienda.geotecnologias.com/products/44/baston-de-prisma-plegable-con-bloqueo-de-compresion

2.1.1.5. Flexómetro

Es una herramienta de medición, en el levantamiento topográfico se lo utilizó para determinar la distancia existente desde el suelo hasta el nivel medio la estación total y hasta el nivel medio de los prismas.

Figura 17. Flexómetro

Fuente: Daysi Belén Pérez Villacís

2.1.1.6. Mojones y estacas

Son materiales que permiten marcar BMs y puntos de referencia que posibilitan la implantación de la estación total, los mojones tomados fueron rocas grandes, ladrillos y troncos de árboles etc. Las estacas fueron de madera con una longitud de 0,15m[41].

Figura 18. Estacas

Fuente: Daysi Belén Pérez Villacís

2.1.1.7. Teléfono Celular

Dispositivo electrónico Huawei Y9 con 128 GB de memoria interna con una cámara trasera de 16 MP+8 MP +2 MP utilizado para la toma de fotografías, comunicación por voz y texto y mediante la instalación de aplicaciones en el dispositivo se lo utilizó como GPS y brújula.

Figura 19. Huawei Y9

Fuente: Daysi Belén Pérez Villacís

2.1.1.8. Computador Portátil

Dispositivo electrónico de marca LENOVO ideapad 310 con Windows 10 y un procesador Intel Core de 7° generación, con 1 TB de memoria interna y una tarjeta gráfica de 4 GB,

mediante la instalación de softwares especializados se utilizó en el diseño cálculos, volúmenes, APUs, entre otros del proyecto de alcantarillado sanitario, pluvial.

Figura 20. Lenovo ideapad 310

Fuente: Daysi Belén Pérez Villacís

2.1.1.9. Calculadora

Equipo CASIO *fx-350ES PLUS* facilita el cálculo en el diseño del alcantarillado sanitario y pluvial del proyecto.

Figura 21. Calculadora CASIO fx-350ES PLUS

Fuente: Daysi Belén Pérez Villacís

2.1.1.10. Impresora

Equipo EPSON L396 equipo necesario para imprimir hojas de avances, cálculos y revisiones.

Figura 22. Impresora EPSON L396

Fuente: Daysi Belén Pérez Villacís

2.1.2. Materiales

2.1.2.1. Papelería

Se utilizaron hojas y cuadernos para la toma de datos in situ, así como también para redactar notas relevantes y el avance diario.

Figura 23. Papelería

Fuente: Daysi Belén Pérez Villacís

2.1.2.2. Softwares Computacionales

• Word 2016

Permite la creación y modificación de documentos en blanco o mediante plantillas, posee herramientas básicas redacción de textos o inserción de datos numéricos y alfanuméricos. Se lo utilizo para la redacción del Proyecto de alcantarillado.

Fuente: https://support.microsoft.com/es-es/office/tareas-b%C3%A1sicas-en-word-87b3243c-b0bf-4a29-82aa-09a681999fdc

• Excel 2016

Son hojas de cálculo con diferentes funciones como:

- ✓ Exportar datos topográficos obtenidos con la estación total.
- ✓ Operaciones matemáticas.

✓ Cálculos de diámetros de tuberías, pendientes, secciones etc.

Fuente: https://support.microsoft.com/es-es/office/funciones-de-excel-por-categor%C3%ADa-5f91f4e9-7b42-46d2-9bd1-63f26a86c0eb

• Google Earth Pro

Es un software con herramientas SIG incorporadas, permite obtener mapas e imágenes en alta resolución.

 $\textbf{Fuente:} https://static.googleusercontent.com/media/www.google.com/es//intl/es_ar/enterprise/earthmaps/pdf/earth_pro_ds.pdf$

Civil 3D 2019

Es un software descargado gratuitamente con licencia de Autodesk Student obtenida por la Universidad Técnica de Ambato el cual permite:

- ✓ Emplazamiento de topografía.
- ✓ Importar de puntos
- ✓ Modelar superficies de terreno.
- ✓ Generar y modelar perfiles longitudinales y secciones transversales.
- ✓ Calculo de volúmenes.
- ✓ Crear y diseñar redes de tuberías.

Fuente: https://latinoamerica.autodesk.com/products/civil-3d/features

2.2. Metodología y Nivel de Investigación

El proyecto técnico relacionado al diseño del alcantarillado sanitario y pluvial de los sectores La Florida, Jesús del Gran Poder, Reina del Tránsito, cantón Cevallos, provincia de Tungurahua se llevará a cabo mediante las siguientes etapas:

a) PRIMERA ETAPA - Investigación de campo

Para el cumplimiento de esta etapa se recolectará información obteniendo datos de muestreo poblacional y particularidades generales de la población, también se realizará el levantamiento topográfico en los tres sectores mencionados en el numeral 2.2, lugar donde se desarrollará el proyecto técnico, obteniendo la topografía, ubicación, elevaciones y coordenadas del terreno con la ayuda del equipo especificado en el numeral 2.1.1, el levantamiento se realizó con lecturas de puntos cada 20 metros aproximadamente, en los extremos de la vía y en los pozos de inspección existentes.

b) SEGUNDA ETAPA - Investigación documental y de campo

La etapa de diseño del alcantarillado sanitario se desarrollará mediante la recolección de datos de censos poblacionales realizados por el INEC y mediante ecuaciones y tablas especificadas en normativas actuales y manuales de diseño para alcantarillado sanitario, las cuales permiten establecer valores para el periodo de diseño, crecimiento poblacional, poblaciones actuales y futuras, entre otros, con los valores obtenidos, se efectuará trabajo de escritorio para calcular, diseñar y modelar el alcantarillado sanitario con los materiales especificados en el numeral 2.1.2, esta etapa beneficiará la calidad de vida y desarrollo social y económico de los habitantes.

c) TERCERA ETAPA – Investigación documental y de campo

La etapa de diseño del alcantarillado pluvial se realizará a través ecuaciones y tablas detalladas en normativas actuales y manuales de diseño para alcantarillado pluvial, las cuales facilitan valores para el periodo de diseño, caudales de diseño, coeficientes de escurrimiento, intensidades de precipitación, entre otros, a su vez se recolectará datos del régimen pluviométrico y de distintos factores que afectan la meteorología e hidrología de la zona del proyecto, se hará uso de la curvas IDF proporcionadas por el Instituto Nacional de Meteorología e Hidrología (INAMHI), posteriormente se efectuará trabajo de escritorio para calcular, diseñar y modelar el alcantarillado pluvial con los materiales especificados en el numeral 2.1.2.

d) CUARTA ETAPA – Investigación documental, laboratorio y campo

Para llevar a cabo esta etapa se recolectará información de campo, acerca de los caudales de entrada y salida de la PTAR, en el transcurso de una semana, al pasar una hora, posteriormente se realizará análisis de laboratorio que exponga las características del agua residual, se efectuará trabajo de escritorio para evaluar, la planta de tratamiento de aguas residuales ubicada en la parte baja del cantón: sector Reina del Tránsito con los materiales especificados en el numeral 2.1.2.

e) QUINTA ETAPA - Investigación documental

En esta etapa se verán reflejados los cálculos de diseño y modelado de la red de alcantarillado sanitario y pluvial mediante una memoria técnica, análisis de precios unitarios con sus respectivas especificaciones de construcción y mantenimiento, planos detallados en 2D.

2.2.1. PRIMERA ETAPA - Fase Preliminar del Proyecto

En esta etapa preliminar se desarrollaron las siguientes actividades:

2.2.1.1. Inspección del Lugar

La inspección del lugar se lleva a cabo mediante la observación directa y recorriendo el lugar donde se desarrollará el proyecto de alcantarillado sanitario y pluvial, aquí se toman también coordenadas geográficas UTM (Universal Transverse Mercator), para delimitar los sectores de implantación del proyecto.

2.2.1.2. Muestreo Poblacional

Consiste en determinar el número de habitantes y viviendas beneficiadas por el proyecto, se identifican también el número de conexiones domiciliarias en el área de implantación para establecer parámetros reales de diseño y no subdimensionar o sobredimensionar el alcantarillado sanitario y pluvial.

2.2.1.3. Características de la Zona del Proyecto

La caracterización de la zona permite conocer la ubicación del proyecto mediante mapas politos, así como también el relieve del terreno mediante coordenadas geográficas UTM (Universal Transverse Mercator), de las zonas involucradas en el desarrollo del proyecto.

2.2.2. SEGUNDA ETAPA - Diseño de la Red de Alcantarillado Sanitario

Para realizar el diseño del alcantarillado sanitario de los sectores La Florida, Jesús del Gran Poder y Reina del Tránsito del cantón Cevallos, provincia de Tungurahua se tomará un periodo de diseño en función de los componentes de la red de alcantarillado, conforme a la Norma Boliviana NB688 y la Norma CO 10.7-601.

2.2.3. TERCERA ETAPA - Diseño de la Red de Alcantarillado Pluvial

El diseño del alcantarillado pluvial se realizará de acuerdo a las normas de diseño de sistemas de alcantarillado para la EMAAP-Q, Norma Boliviana NB688 y la Norma CO 10.7-601, con un periodo de diseño no menor que la vida útil de la obra y esta a su vez no debe ser menor a 30 años con actualizaciones cada 5 años[24].

2.2.4. CUARTA ETAPA - Evaluación de la Planta de Tratamiento de Aguas Residuales

2.2.4.1. Características Generales y Físicas

Consiste en una descripción breve de la localización y área de ocupación de la planta de tratamiento de aguas residuales, se determinará la población que será beneficiada, aspectos económicos y sociales de los sectores, se llevará a cabo la valoración in situ de cada elemento que conforma la planta de tratamiento.

2.2.4.2. Operación y Mantenimiento Actual de la Planta de Tratamiento

En este numeral se describe la forma de operación y mantenimiento actual de la Planta de Tratamiento, al igual que el personal a cargo del laboratorio con un rápido detalle de la infraestructura.

2.2.4.3.Diagnóstico de las Estructuras

Se llevará a cabo mediante trabajo de campo realizando visitas de inspección que permitan el diagnóstico de las infraestructuras que compone la Planta de Tratamiento, dicho diagnostico nos permitirá identificar grietas, fisuras, daños estructurales, posibles filtraciones y obstrucciones causadas por sólidos y cualquier otro daño o inconveniente que se presente en la PTAR.

2.2.4.4. Evaluación del Funcionamiento de la Planta de Tratamiento

El adecuado funcionamiento de la Planta de Tratamiento de Aguas Residuales depende de la eficiencia de remoción de contaminantes en el líquido a ser tratado.

2.2.4.4.1. Eficiencia de Remoción

Para cumplir con esta etapa se recolectan muestras del agua residual a la entrada y salida de la PTAR mediante recipientes adecuados a una temperatura idónea, para que las características físicas, químicas y microbiológicas del agua residual no presenten alteraciones. Previo a la etapa de recolección de muestras se realizará una medición de caudales de entrada y salida de la PTAR para determinar su pico crítico de funcionamiento, este procedimiento que se realizará con la lectura cronometrada y toma de caudales de entrada y salida mediante un balde de capacidad, a lo largo de una semana en horario de 8h00 am – 17h00 pm, se aplica la relación Caudal = Volumen / Tiempo.

Las características físicas, químicas y microbiológicas que se analizarán son:

- pH
- Temperatura
- Solidos Suspendidos
- Demanda Química de Oxígeno (DQO)
- Turbidez
- Coliformes Fecales y
- Coliformes Totales

1.4.2.1.Evaluación de los Componentes de la Planta de Tratamiento de Aguas

Residuales

El funcionamiento adecuado de los componentes de la Planta de Tratamiento de Aguas

Residuales depende de un análisis de contaminantes, así como también de la vida

remanente de la PTAR.

2.2.4.4.2. Porcentaje de Remoción de Contaminantes

El manual de Diseño de la PTAR (Metcalf and Eddy,1985) permite comparar los

porcentajes de remoción de sólidos en suspensión total y DBO de la Planta de Tratamiento

de Aguas Residuales y los porcentajes admisibles de cada componente de la PTAR.

2.2.4.4.3. Vida remanente de la PTAR

La vida remanente de la PTAR será calculada conforme el cumplimiento del tiempo de

retención descrito en la norma Ex – IEOS, la misma que emplea una estimación de la

capacidad de tratamiento de la unidad de filtración anaeróbica N°1. Se calculará el caudal

y diseñará un filtro anaerobio de flujo descendente utilizado en la comparación del caudal

estimado en la valoración hidráulica de la red actual de alcantarillado.

2.2.5. QUINTA ETAPA: Fase Propuesta Técnica

2.2.5.1. Planos

A través de la herramienta informática Autocad Civil 3D se realizará trabajo de escritorio

en donde se obtendrá:

• La planimetría de la zona del proyecto (curvas de nivel y trazado de vías levantadas

mediante la estación total)

• Planos de implantación de tuberías y pozos de inspección

• Planos de áreas de aportación y perfiles de los tramos de tubería (detalles de pozos

y tuberías).

88

2.2.5.2. Presupuesto Referencial

Se realizará un Análisis de Precios Unitarios (APU) calculando los diferentes rubros involucrados en el proyecto, se utilizarán los precios unitarios que maneja actualmente el GAD municipal del cantón Cevallos. Una vez realizado el APU se obtendrá el presupuesto necesario para la construcción del proyecto de alcantarillado sanitario y pluvial.

CAPÍTULO III

RESULTADOS Y DISCUSIÓN

3. ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS

3.1. PRIMERA ETAPA

3.1.1. Inspección del Lugar

El cantón Cevallos fue fundado en 1986, sin embargo, en 1829 era considerado una parroquia perteneciente al Capote, a inicios del siglo XX se convirtió en el puerto terrestre con la estación de ferrocarril más cercana a la amazonia, es así como llegó a ser un punto estratégico para comercializar diferentes productos provenientes de la costa y el oriente ecuatoriano.

De acuerdo con lo establecido en el Plan de Desarrollo y Ordenamiento territorial del cantón Cevallos, este se encuentra cubierto por el servicio de alcantarillado en un 80% del total de viviendas, mientras que el área rural cuenta solamente con el 42,1% del total de viviendas conectadas a una red de alcantarillado sanitario. Barrios como: La Florida parte baja, Jesús del Gran Poder zona alta y una parte de Reina del Transito no cuentan con servicio de alcantarillado, por lo que llegan a descargar sus aguas negras en pozos sépticos o en el peor de los casos las descargan directamente a la quebrada Palahua o a orillas del Río Pachanlica.

En el barrio Reina del Tránsito siendo este el punto más bajo del cantón, se encuentra la planta de tratamiento de agua residuales la cual recolecta y trata las aguas negras provenientes de actividades domésticas e industriales realizadas en el cantón[3].

3.1.2. Muestreo Poblacional

En razón de que los datos presentados por el Instituto Nacional de Estadística y Censos (INEC), en el censo poblacional del año 2010 muestra la población total del cantón Cevallos y debido a que para el desarrollo del presente proyecto se requieren solamente los datos poblacionales de los sectores La Florida, Jesús del Gran Poder, y Reina del Tránsito, se optó por hacer uso de las estadísticas presentadas en la actualización del Plan de Desarrollo Local del Cantón Cevallos en el 2009 con proyección al 2011 donde se obtuvieron los siguientes datos de los tres sectores antes mencionados en los cuales se implantará el proyecto:

Tabla 34. Población de los barrios y Caseríos de Cevallos – Zona Rural año 2011

CASERÍOS	PERSONAS	FAMILIAS	ÁREA (km²)	DENSIDAD POBLACIONAL (hab/ha)
La Florida	308	77	1,774	1,74
Jesús del Gran Poder	152	38	0,868	1,75
Reina del Tránsito	144	36	0,370	3,90
TOTAL	604	151	3,012	2,46 (Promedio)

Fuente: "Plan de Desarrollo Local Cantón Cevallos 2009" Proyección al 2011[3].

Elaborado por: Daysi Belén Pérez Villacís

Tabla 35. Población de los barrios y Caseríos de Cevallos – Zona Rural año 2020

CASERÍOS	PERSONAS	ÁREA (km²)	DENSIDAD POBLACIONAL
		(1111)	(hab/ha)
La Florida	356	1,774	2.01
Jesús del Gran Poder	175	0,868	2.02
Reina del Transito	166	0,370	4.49
TOTAL	697	3,012	2.84
	0,77	3,012	(Promedio)

Fuente: Técnico GAD cantón Cevallos 2020.

Elaborado por: Daysi Belén Pérez Villacís

3.1.3. Características de la Zona del Proyecto

3.1.3.1. Ubicación del Proyecto

El proyecto se encuentra ubicado en el sector centro-sur de la provincia de Tungurahua, en el cantón Cevallos, sus límites cantonales son:

• Norte: cantón Ambato

• Sur: cantones Mocha y Quero

• Este: cantón Pelileo

• Oeste: cantones Tisaleo y Mocha

El cantón se localiza a 14 Km al Sur - Oriente del cantón Ambato, cuenta con una superficie de 18,78 Km², el diseño del alcantarillado sanitario y pluvial se llevará a cabo en la zona baja del cantón; en los sectores: La Florida, Jesús del Gran Poder y Reina del Tránsito[3].

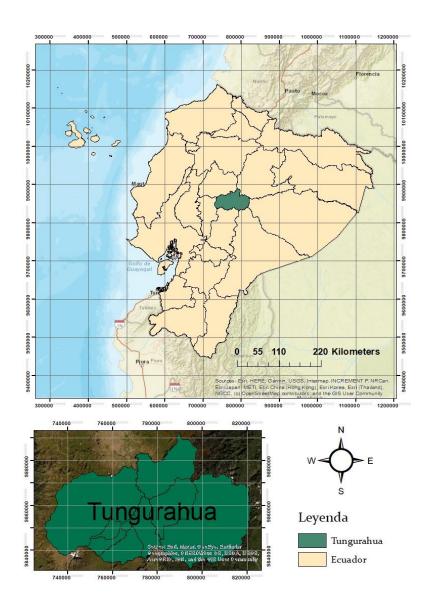


Figura 24. Ubicación de la Provincia de Tungurahua

Elaborado por: Daysi Belén Pérez Villacís

3.1.3.2. Ubicación del cantón Cevallos

El proyecto se encuentra ubicado en el Nor-Este del cantón Cevallos los límites del proyecto el cual conforma los sectores: La Florida, Jesús del Gran Poder y Reina del Tránsito son:

3.1.3.2.1. Límites del proyecto

• Norte: cantón Ambato

• Sur: barrios Santa Rosa, Nuevos Horizontes, Las Playas y La Amistad

• Este: cantón Pelileo

• Oeste: barrios Vinces y Agua Santa

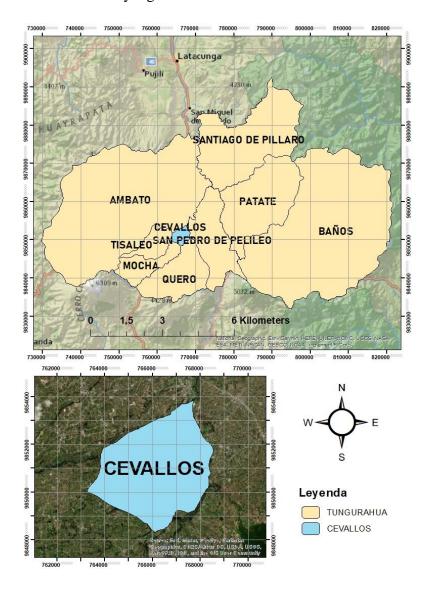


Figura 25. Ubicación del proyecto de alcantarillado Sanitario y Pluvial

Elaborado por: Daysi Belén Pérez Villacís

3.1.3.3.Georreferenciación del proyecto mediante coordenadas UTM

Figura 26. Georreferenciación de la zona del Proyecto de Alcantarillado

Fuente: Google Earth Pro

Elaborado por: Daysi Belén Pérez Villacís

Tabla 36. Georreferenciación de la zona del Proyecto de Alcantarillado

Sector	Coore	Coordenadas		
Sector	Norte	Este		
Sector 1: La Florida	9851500.43	766518.24		
Sector 2: Jesús del Gran Poder	9852952.69	766729.57		
Sector 3: Reina del Tránsito	9852357.00	767116.00		

Fuente: Google Earth Pro

Elaborado por: Daysi Belén Pérez Villacís

3.1.3.4.Relieve

La superficie dentro el callejón interandino es levemente ondulada; siendo la zona alta el Camino Real (Kápac Ñan) con 3080 msnm, hasta la zona baja el Río Pachanlica con 2640 msnm[3].

3.1.3.5. Suelo

El cantón no posee muchos tipos de suelo, debido a su pequeña extensión territorial, sin embargo, predominan los siguientes tipos de suelos:

- Suelo negro u oscuro arenoso, de origen piro-clástico poco meteorizado,
- Arena fina con diámetros menores a los 0,5 mm de cangahua pura erosionada, con un bajo contenido de humedad, casi seco y con riesgo de sufrir stress hídrico por la falta de agua de regadío,
- Suelo joven con un porcentaje de materia orgánica inferior al 3%,
- Limos con arena muy fina y cangahua pura erosionada[3].

3.1.3.6. Sector económico

Los habitantes del cantón Cevallos se encuentran especializado en la producción frutícola (fresas, manzanas, moras), se dedican a criar especies menores (cuyes, conejos, aves), son productores de calzado, con mano de obra artesanal, el cantón sirve como centro de acopio y comercialización de productos al ser sede de un centro de investigación y formación, también funciona como punto de acceso al Sur-Occidente de la provincia de Tungurahua[3].

3.1.3.7. Sector social

Son 1.664 personas que equivalen al 24.4% del total cantonal las cuales se encuentran en situación de extrema pobreza, ocasionadas porque al menos 1.000 personas que es el 12.5% de su población reciben el bono de desarrollo humanos siendo la mitad de estas los jefes de hogar[3].

3.1.3.8. Sector Salud

De acuerdo con los datos estadísticos presentados por el Subcentro de Salud del cantón las principales enfermedades que afectan a la población son las de origen respiratorio

(faringitis, amigdalitis), digestivo (parásitos, amebas) y propias de la mujer (infección de vías urinarias, vaginitis) causados por cambios bruscos de temperatura, higiene inadecuada[3]. De acuerdo a las estadísticas presentadas por el Sistema Integrado de Indicadores Sociales del Ecuador SIISE, el canton Cevallos posee una tasa de mortalidad del 10,63%, el cual se encuentra por debajo del índice provincial y nacional [3].

3.1.3.9. Sector Educación

En el cantón Cevallos existen dos unidades educativas públicas las cuales unificaron los establecimientos educativos que existían en el cantón, la primera es la Unidad Educativa Alberto Guerra su capacidad es de 500 estudiantes y tiene un área de terreno de 5.600 m2, la segunda es la Unidad Educativa Pedro Fermín Cevallos con capacidad para recibir a 1270 alumnos cuenta con un área de terreno de 1.4 ha. Su oferta educativa va de 1er año a 10mo de Educación General Básica EGB y desde 1er año a 3ero de Bachillerato, respectivamente, con jurisdicción hispana, jornada matutina y mixta.

La tasa de analfabetismo en el área urbana es del 3,31% y en el área rural es del 4,58%, no obstante, los mayores niveles de analfabetismo se presentan en el área rural en mujeres mayores de 15 años [3].

3.1.3.10. Servicios Básicos

3.1.3.10.1. Agua Potable

Parte del agua para el consumo humano del cantón proviene del río Mocha que es captada en el puente de Olalla con un caudal de 8,3 lt/seg, este caudal es administrado por el GAD Municipal, a su vez del páramo de Sachaguayco proviene un caudal de 4,5 l/s, el cual es administrado por la Regional Yanahurco la cual dota mediante macro medidor a la planta de tratamiento ubicada en el barrio El Mirador, la Junta Administradora de Agua Potable de Andignato maneja un caudal de 2,15 l/s proveniente de las vertientes de Cacuango, la Junta Administradora de Agua Potable de Las Playas administra un caudal de 0,37 l/s y

proviene de una vertiente propia desde el sector de lo Poglios, Para el año 2014 la cobertura del servicio cuenta con 1608 acometidas, siendo un total de 2929 acometidas existentes en el cantón.

El GAD Municipal cuenta con dos planta de tratamiento de agua potable donde sea realiza el proceso de sedimentación, filtración, floculación y cloración para que el líquido vital sea apto para el consumo humano, el agua para consumo humano es analizada en sus parámetros físico- químicos y bacteriológicos [3].

3.1.3.10.2. Alcantarillado

En el Plan de Desarrollo y Ordenamiento Territorial del cantón Cevallos (2011), se establece que el cantón se encuentra cubierto en un 80% de su territorio con el servicio de alcantarillado el cual es administrado en su totalidad por el GAD municipal del cantón Cevallos, las viviendas que tienen conexión a la red de alcantarillado en el área urbana es del 85,9% y en el área rural el 42,1%, lo cual refleja que los domicilios en el área rural se encuentran conectados en su mayoría a pozos sépticos y pozos ciegos.

Tabla 37. Formas de eliminación de excretas en el cantón Cevallos

Cobertura a nivel Cantonal de Cevallos			
Tipo de servicio higiénico o escusado	Número de Casos	Porcentaje %	
Conectado a red pública de alcantarillado	1258	55.5	
Conectado a pozo séptico	547	24.1	
Conectado a pozo ciego	341	15.0	
Letrina	55	2.4	
No tiene	66	2.9	
Total	2267	100.0	

Fuente: Plan de Desarrollo y Ordenamiento Territorial del cantón Cevallos, 2011[3].

Elaborado por: Daysi Belén Pérez Villacís

Una mención importante del Plan de Desarrollo y Ordenamiento Territorial del cantón Cevallos (2011), es que los barrios los Vinces y la Florida descargan sus aguas negras de forma directa al Río Pachanlica, mientas que los barrios El Cristal, Jesús del Gran Poder zona alta y La Florida parte baja no cuentan con servicio de alcantarillado, las aguas residuales recolectadas de los barrios restantes del cantón son evacuadas en la única planta de tratamiento existente en el cantón ubicada en el punto depresivo más bajo del mismo en el sector Reina del Tránsito[3].

Figura 27. Descarga del Sector Los Vinces a la quebrada Palahua

Elaborado por: Daysi Belén Pérez Villacís

3.1.3.10.3. Electricidad

De acuerdo con los datos presentados en el Plan de Desarrollo y Ordenamiento Territorialdel cantón Cevallos el servicio eléctrico atiende al 95.1% del total de hogares, el porcentaje restante no disponen de energía eléctrica y existen cinco vivienda que poseen de energía eléctrica de fuentes alternativas [3].

Tabla 38. Acceso al servicio eléctrico en el cantón Cevallos

Cobertura a nivel Cantonal			
Categorías	Viviendas	Porcentaje %	
Red de empresa eléctrica de servicio público	2214.00	97.66	
Otro	5.00	0.22	
No tiene	48.00	2.12	
Total	2267.00	100.00	

Fuente: Plan de Desarrollo y Ordenamiento Territorial del cantón Cevallos, 2011[3].

Elaborado por: Daysi Belén Pérez Villacís

3.1.3.10.4. Vialidad

La longitud de vías en el cantón es de 90.69 Km con competencia del Gobierno Provincial de Tungurahua. La mayor parte de las vías del cantón se encuentran asfaltadas, entre las vías principales tenemos:

- Vía Ambato Cevallos Quero
- Vía Cevallos Totoras Ambato
- Vía Cevallos Pelileo
- Vía Cevallos Mocha

En la *Tabla 39*, se muestran las vías de acuerdo a la competencia del cantón Cevallos.

Tabla 39. Vías por competencia en el cantón Cevallos

Vías	Longitud (Km)	Porcentaje
Secundaria	15.80	17.42
Terciaria	43.57	48.04
Vecinal	31.32	34.54
Total	90.69	100.00

Fuente: Plan de Desarrollo y Ordenamiento Territorial del cantón Cevallos, 2011[3].

Elaborado por: Daysi Belén Pérez Villacís

En la *Tabla 40*, se presenta el sistema vial de acuerdo a el material colocado en la capa de rodadura.

Tabla 40. Sistema Vial urbano del cantón Cevallos

Capa de rodadura	Clasificación vial rural				
Capa de Todadura	Arterial	Colectoras	Locales	Total	Porcentaje %
Asfalto	1.90	1.90 4.92	7.55	14.37	59.75
Adoquinado	0.00	1.08	0.93	2.01	8.36
Empedrado	0.00	0.00	3.86	3.86	16.05
Tierra	0.00	0.00	3.81	3.81	15.84
Total	1.90	6.00	16.15	24.05	100.00
Porcentaje %	7.90	24.95	67.15	100.00	

Fuente: Plan de Desarrollo y Ordenamiento Territorial del cantón Cevallos, 2011[3].

Elaborado por: Daysi Belén Pérez Villacís

3.1.3.10.5. Desechos solidos

La recolección de basura en el casco urbano se realiza de lunes a viernes mediante un carro recolector mientras que en los sectores rurales se recolecta una vez por semana. Anualmente el cantón produce 2496 toneladas de basura, el 90% de la población rural elimina la basura con el carro recolector, mientras que el 10% restante la quema, desecha directamente a los terrenos o la arroja a cielo abierto causando una severa contaminación en el ambiente y los canales de agua de regadío[3].

3.2. SEGUNDA ETAPA - Diseño de la Red de Alcantarillado Sanitario

3.2.1. Cálculo del Periodo de Diseño

Se determinó un periodo de diseño de 25 años, mismo que se encuentra en función de los componentes de la red de alcantarillado.

3.2.2. Cálculo de la Tasa de Crecimiento

Método Aritmético

Tabla 41. Tasa de Crecimiento – Método Aritmético

POBLACIÓN TOTAL SECTORES: LA FLORIDA, JESÚS DEL GRAN PODER Y REINA DEL TRANSITO			
AÑO CENSAL	POBLACIÓN RURAL	INTERVALO "t" años	TASA DE CRECIMIENTO "r"
2011	604	9	1.71%
2020	697		

Elaborado por: Daysi Belén Pérez Villacís

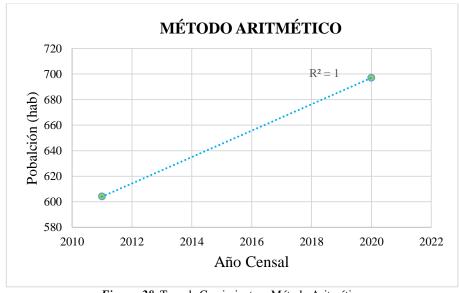


Figura 28. Tasa de Crecimiento - Método Aritmético

Elaborado por: Daysi Belén Pérez Villacís

• Método Geométrico

Tabla 42. Tasa de Crecimiento – Método Geométrico

LA FLOR	POBLACIÓN TOTAL SECTORES: LA FLORIDA, JESÚS DEL GRAN PODER Y REINA DEL TRÁNSITO			
AÑO	POBLACIÓN	INTERVALO "t"	TASA DE CRECIMIENTO "r"	
CENSAL	RURAL	años	%	
2011	604			
		9	1.60%	
2020	697			

Elaborado por: Daysi Belén Pérez Villacís



Figura 29. Tasa de Crecimiento – Método Geométrico

Elaborado por: Daysi Belén Pérez Villacís

• Método Exponencial

Tabla 43. Tasa de Crecimiento – Método Exponencial

LA FLOR	POBLACIÓN TOTAL SECTORES: LA FLORIDA, JESÚS DEL GRAN PODER Y REINA DEL TRANSITO			
AÑO CENSAL	POBLACIÓN RURAL	INTERVALO "t" años	TASA DE CRECIMIENTO "r" %	
2011	604			
	_	9	1.59%	
2020	697			

Elaborado por: Daysi Belén Pérez Villacís

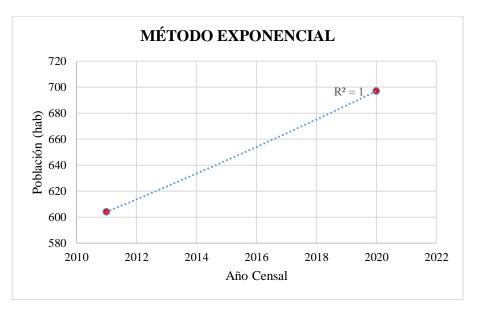


Figura 30. Tasa de Crecimiento – Método Exponencial

Elaborado por: Daysi Belén Pérez Villacís

Una vez analizados los datos poblacionales obtenidos en el Plan de Desarrollo y Ordenamiento Territorial del cantón Cevallos y calculada la tasa de crecimiento poblacional mediante los métodos aritmético, geométrico y exponencial se seleccionó la tasa de crecimiento mediante el método geométrico debido a que solamente se cuenta con los datos de los dos últimos censos poblacionales de los sectores, razón por la cual no se puede proceder por el método aritmético ya que para desarrollar dicho método de manera efectiva se requieren al menos los tres últimos datos poblacionales, de igual manera no se realiza el cálculo mediante el método exponencial ya que el crecimiento poblacional de

los sectores no se ajusta al crecimiento poblacional acelerado en el tiempo como el método lo describe.

$$r(\%) = \left[\left(\frac{Pf}{Pi} \right)^{\frac{1}{n}} - 1 \right] \times 100$$

$$r(\%) = \left[\left(\frac{697}{604} \right)^{\frac{1}{25}} - 1 \right] \times 100$$

$$r(\%) = 1.60\%$$

$$r(\%) = 0.0160$$

3.2.3. Población Actual

La población actual para el desarrollo del proyecto en los tres sectores es de 697 habitantes para el año 2020, de acuerdo a lo expresado por técnicos de Gobierno Autónomo Descentralizado del cantón Cevallos.

3.2.4. Cálculo de la Población Futura

Para determinar la población futura se implementará el método geométrico, debido a que la tasa de crecimiento del mismo es la que más se ajusta al crecimiento poblacional del lugar donde se implantara el proyecto.

$$Pf = Pa \times (1+r)^n$$

Tabla 44. Población Futura – Método Geométrico

POBLACIÓN FUTURA MÉTODO GEOMÉTRICO		
AÑO	HABITANTES	
2021	709	
2022	720	
2023	731	
2024	743	

2025	755
2026	767
2027	779
2028	792
2029	805
2030	817
2031	830
2032	844
2033	857
2034	871
2035	885
2036	899
2037	913
2038	928
2039	943
2040	958
2041	973
2042	989
2043	1005
2044	1021
2045	1037
2046	1054

Elaborado por: Daysi Belén Pérez Villacís

3.2.5. Densidad Poblacional Futura

$$Dpf = \frac{Pf}{\text{Área del Proyecto}}$$

$$Dpf = \frac{1054 \text{ hab}}{301.2 \text{ Ha}}$$

$$Dpf = 3.50 \frac{hab}{Ha}$$

3.2.6. Cálculo de la Dotación Actual

El cálculo de la dotación actual de agua se realizó mediante la lectura de 497 medidores ubicados dentro de la Ruta 06 del cantón durante del mes de agosto del 2021, lecturas que fueron facilitadas por técnicos de la jefatura de Agua Potable y Alcantarillado del GAD del cantón Cevallos de cada una de las viviendas y sus respectivos medidores ubicados en la ruta antes mencionada, de esta forma se obtuvo un valor promedio real del consumo de agua de cada habitante de los sectores en donde se desarrollara el proyecto de alcantarillado sanitario y pluvial, a diferencia de los valores expuestos en la *Tabla 7*, *Tabla 8 y Tabla 9* donde dichos valores son aproximados de acuerdo al clima, nivel de ingresos y uso doméstico.

Ver **Anexo** #3: Lecturas Ruta 06 del cantón Cevallos

Tabla 45. Lecturas AGOSTO RUTA (06)

Lecturas AGOSTO RUTA (06)									
	N.Medidor	Lec.	Lec.	VOL.	VOL.	Núm.	CONSUMO		
		Anterior	Actual	m3/mes	m3/d	hab/viv	lt/hab/día		
1	12014598	40	44	4	0.13	4.00	33.33		
2	12014593	74	82	8	0.27	4.00	66.67		
3	12014599	69	70	1	0.03	4.00	8.33		
4	1605010647	305	309	4	0.13	4.00	33.33		
5	121103271	494	497	3	0.10	4.00	25.00		
493	4535576	10952	10992	40	1.33	4.00	333.33		
494	4535620	8352	8370	18	0.60	4.00	150.00		
495	04-991748	6125	6158	33	1.10	4.00	275.00		
496	12015612	216	218	2	0.07	4.00	16.67		
497	06-140502	1296	1310	14	0.47	4.00	116.67		
	57225.00								
	132.16								

Elaborado por: Daysi Belén Pérez Villacís

En la *Tabla 45*, presentada anteriormente se calculó un volumen promedio de agua potable para 31 días calendario que posee el mes de Agosto, con un promedio de 4 habitantes por vivienda de acuerdo a los datos presentados por el Instituto Nacional de Estadística y Censos (INEC), el uso de dos decimales se debe a requerimientos del GAD cantonal para presentar la dotación actual de los sectores en el Plan de Desarrollo y Ordenamiento territorial 2020 que se encuentra actualmente en desarrollo.

En la RUTA 06 del cantón Cevallos 64 medidores no presentan lecturas en el mes de agosto teniendo como resultado en las fichas facilitadas por el GAD cantonal las siglas SM lo cual representa Sin Medidor, razón por la cual se restaron del total siendo 433 los medidores tomados en cuenta para el cálculo de la dotación actual.

3.2.7. Calculo de la Dotación Futura

$$Df = Da + 1 \times n$$
 $Df = 132.16 \text{ lt/hab/día} + 1 \times 25a\tilde{n}os$
 $Df = 157.16 \text{ lt/hab/día}$

3.2.8. Calculo del Caudal Medio Diario De Agua Potable

$$Qmd_{Ap} = rac{Pf imes D}{86400}$$
 $Qmd_{Ap} = rac{1054 \ hab imes 157.16 \ lt/hab/día}{86400}$
 $Qmd_{Ap} = 1.92 rac{lt}{seg}$

3.2.9. Calculo Caudal Medio Diario de Sanitario (Qmds)

$$Qmds = C \times Qmd_{AP}$$

$$Qmds = 0.7 \times 1.92 \frac{lt}{seg}$$

$$Qmds = 1.34 \frac{lt}{seg}$$

3.2.10. Calculo Caudal Máximo Instantáneo (Qi)

• Coeficiente de Mayoración (M) según Harmon

$$M=1+\frac{14}{4+\sqrt{Pf}}$$

$$2 \leq M \leq 3.8$$

$$M = 1 + \frac{14}{4 + \sqrt{1054 \ hab}}$$
$$M = 3.79$$

$$2 \le 3.79 \le 3.8$$
 OK

$$Qi = M \times Qmds$$

$$\mathbf{Qi} = 3.79 \times 1.34 \frac{lt}{seg}$$

$$\mathbf{Qi} = 5.08 \frac{\mathrm{lt}}{\mathrm{seg}}$$

3.2.11. Calculo Caudal de Infiltración (Qinf)

Para determinar el caudal de infiltración se considerará un nivel freático bajo con un valor de 0.0005 según la *Tabla 15*.

$$Qinf = I \times L$$

$$Qinf = 0.0005 \times 3704.98 \text{ m}$$

$$Qinf = 1.85 \frac{lt}{seg}$$

3.2.12. Calculo Caudal de Conexiones Erradas (Qe)

Se empleará un coeficiente de seguridad del 10 % debido a posibles fallos por errores constructivos.

$$Qe = (0.05 - 0.10) \times Qi$$

$$Qe = 0.10 \times 1.85 \frac{lt}{seg}$$

$$Qe = 0.25 \frac{lt}{seg}$$

3.2.13. Calculo Caudal de Diseño (Qd)

$$Qd = Qi + Qinf + Qe$$

$$Qd = 5.08 \frac{lt}{seg} + 1.85 \frac{lt}{seg} + 0.25 \frac{lt}{seg}$$

$$Qd = 7.19 \frac{lt}{seg}$$

A continuación, se realizará un cálculo típico en el tramo del Pozo 1 al Pozo 2, los cuales se encuentran detallados desde el numeral 3.2.14 al numeral 3.2.21.10, representando los cálculos efectuados en el diseño de la red de alcantarillado sanitario evitando así la repetición y exceso en el número de hojas para el desarrollo del presente proyecto.

3.2.14. Cálculo de la Gradiente Hidráulica

Tramo Pozo 1 - Pozo 2

$$S = \frac{C.Sup - C.Inf}{L} \times 1000$$

$$S = \frac{2854.53 \, m - 2852.84 \, m}{62.04 \, m} \times 1000$$

$$S = 27.27\%$$

3.2.15. Cálculo del Diámetro

Tramo Pozo 1 - Pozo 2

$$Q_d = \frac{0.312}{n} \times D^{\frac{8}{3}} \times S^{\frac{1}{2}}$$

$$D = \left(\frac{Q \times n}{0.312 \times S^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D = \left(\frac{0.0669 \times 0.011}{0.312 \times 0.024^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

$$D = 0.208m$$

La norma EMAAP-Q actual, establece un diámetro mínimo de 200 mm, una vez realizados los cálculos hidráulicos se determinó un resultado de 208 mm, para lo cual se

asume un diámetro de tubería de 250 mm, con el fin de que el diseño cumpla con las condiciones que establece un sistema de alcantarillado.

Diametro asumido = 0.25m

3.2.16. Calculo Pendiente mínima

$$Smin = \left(\frac{v_{min \times n}}{0.397 \, p_3^{\frac{2}{3}}}\right)^2$$

$$Smin = 0.5\%$$

$$Smin = \left(\frac{0.6 \, \left(\frac{m}{s}\right) \times 0.011 \times 1000}{397 \, \times 0.25^{\frac{2}{3}}}\right)^2$$

$$Smin = 1.75 \, \%$$

3.2.17. Calculo Pendiente máxima

$$Smax = \left(\frac{v_{max \times n}}{0.397 \, D^{\frac{2}{3}}}\right)^{2}$$
$$Smax > 5\%$$

Smax =
$$\left(\frac{4.5 \text{ m/s} \times 0.011 \times 10000}{0.397 \times 0.25^{\frac{2}{3}}}\right)^{2}$$

Smax = 13.29%

3.2.18. Calculo de Caudal en tubería Completamente Llena

$$Q_{TLL} = \frac{0.312}{n} \times D^{\frac{8}{3}} \times S^{\frac{1}{2}}$$

$$Q_{TLL} = \frac{0.312}{0.011} \times 0.25 m^{\frac{8}{3}} \times 0.024^{\frac{1}{2}}$$

$$Q_{TLL} = 0.09213 \frac{m^3}{\text{seg}}$$

$$Q_{TLL} = 92.13 \frac{\text{lt}}{\text{seg}}$$

3.2.19. Calculo de la Velocidad en tubería Completamente Llena

$$\begin{aligned} \mathbf{V}_{TLL} &= \frac{0.397}{n} \times \mathbf{D}^{\frac{2}{3}} \times \mathbf{S}^{\frac{1}{2}} \\ V_{TLL} &= \frac{0.397}{0.011} \times 0.25^{\frac{2}{3}} \times 0.024^{\frac{1}{2}} \\ V_{TLL} &= 1.88 \frac{m}{\text{seg}} \end{aligned}$$

La velocidad es la adecuada al encontrarse dentro de los límites permisibles de 0.60 - 4.5 m/s.

3.2.20. Cálculo Resultado Radio Hidráulico

$$R_{h} = \frac{D}{4}$$

$$R_{h} = \frac{0.25 m}{4}$$

$$R_{h} = 0.063 m$$

3.2.21. Cálculo de los Elementos Hidráulicos Tubería Parcialmente Llena

Mediante el programa HCanales realizaremos los cálculos presentados a continuación.

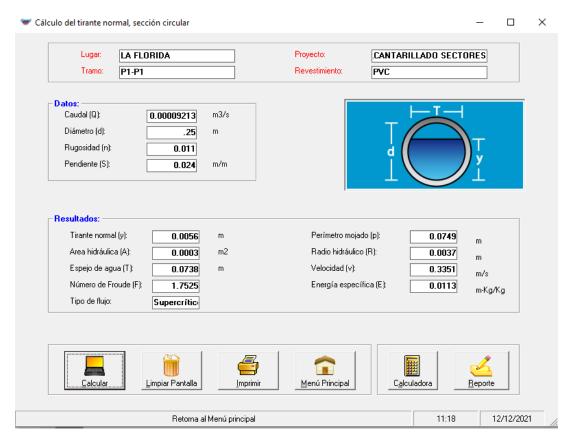


Figura 31. Cálculos Elementos Hidráulicos Tubería Parcialmente Llena

Elaborado por: Daysi Belén Pérez Villacís

3.2.21.1. Cálculo del Área Hidráulica

$$\beta = \cos^{-1}\left(\frac{\frac{D}{2} - YN}{\frac{D}{2}}\right)$$
$$\beta = \cos^{-1}\left(\frac{\frac{0.25}{2} - 0.056}{\frac{0.25}{2}}\right)$$
$$\beta = 17.21^{\circ}$$

$$\theta = 2\beta$$

$$\theta = 17.21^{\circ} \times 2$$

$$\theta = 34.42^{\circ}$$

$$\theta = 0.60 \, rad$$

$$A = 0.125 \times (\theta rad - \sin \theta) \times do^2$$

$$A = 0.125 \times (0.60 rad - sen 34.42) \times 0.25^{2}$$

$$A = 0.0003 m^2$$

3.2.21.2. Cálculo del Perímetro Mojado

$$Pm = 0.5 \times \theta \times do$$

$$Pm = 0.5 \times 0.60 \times 0.25$$

$$Pm = 0.075 m$$

3.2.21.3. Cálculo del Radio Hidráulico

$$Rh = \frac{A}{Pm}$$

$$Rh = \frac{0.0003m^2}{0.075 m}$$

$$Rh = 0.0037 m$$

$$Rh = 37 cm$$

3.2.21.4. Verificación del Tirante Normal

$$\frac{Q \times n}{S^{1/2}} = A \times Rh^{2/3}$$

$$\frac{0.00009213 \times 0.011}{0.024^{1/2}} = 0.0003 \times 0.0037^{2/3}$$
$$0.000007 = 0.000007$$

3.2.21.5. Cálculo de la Velocidad

$$V_N = \frac{1}{n} \times Rh^{2/3} \times S^{1/2}$$

$$V_N = \frac{1}{0.011} \times 0.0037^{2/3} \times 0.024^{1/2}$$

$$V_N = 0.34 \frac{m}{\text{seg}}$$

$$V_N = 0.34 \frac{m}{\text{seg}} > 0.30 \frac{m}{\text{seg}}$$

3.2.21.6. Cálculo de la Energía Específica

$$E = Y_{no} + \frac{V^2}{2 \times 9.81}$$
$$E = 0.0056 + \frac{0.34^2}{2 \times 9.81}$$
$$E = 0.0113 \text{ kgm/kg}$$

3.2.21.7. Cálculo del Ancho superficial

$$T = sen(0.5\theta) do$$
 $T = sen(0.5(34.42)) 0.25$
 $T = 0.0738 m$

3.2.21.8. Cálculo de la Profundidad de Agua

$$D = \frac{A}{T}$$

$$D = \frac{0.0003 \ m^2}{0.0738 \ m}$$

$$D = 0.00407 \ m$$

3.2.21.9. Cálculo del Número de Froude

$$#F = \frac{V}{\sqrt{9.81 \times D}}$$

$$#F = \frac{0.34}{\sqrt{9.81 \times 0.00407}}$$

$$#F = 1.7525$$

Flujo Supercrítico

3.2.21.10. Cálculo de la Tensión Tractiva

$$\tau = \delta \times g \times R \times S$$

$$\tau = 1000 \frac{kg}{m^3} \times 9.81 \frac{m}{seg^2} \times 0.0037m \times 2.4\%$$

$$\tau = 1.09 \text{ Pa} > 1 Pa$$

Se garantiza la fuerza de arrastre de solidos con el criterio de tensión tractiva mayor a 1 Pa.

3.3.TERCERA ETAPA - Diseño de la Red de Alcantarillado Pluvial

3.3.1. Cálculo del Período de diseño

Se determinó un periodo de diseño de 30 años, mismo que se encuentra en función de lo estipulado en la Norma de Diseño de Alcantarillado para la EMAAP-Q.

3.3.2. Calculo del coeficiente de escurrimiento

Tabla 46. Calculo Coeficiente de Escurrimiento

COEFICIENTE DE ESCURRIMIENTO						
Superficie	С	A	A*C			
Empedrados (juntas ordinarias)	0.45	1.69	0.76			
Superficies no pavimentadas	0.2	0.44	0.09			
		2.13	0.85			

Elaborado por: Daysi Belén Pérez Villacís

$$C = \frac{\sum_{i=1}^{n} (A \times C)}{At}$$

$$C = \frac{\sum_{i=1}^{n} (0.85Ha)}{2.13 Ha}$$

$$C = 0.40$$

Donde:

- C: es el coeficiente de escurrimiento presentado en la *Tabla 21*, *Tabla 22* y *Tabla 23*, valores que se toma en cuenta de acuerdo al tipo de zona, tipo de superficie, vegetación y topografía.
- A: representa el área de la vía en la cual se realizará el diseño del alcantarillado pluvial.

3.3.3. Resultado de Estudios Hidrológicos

3.3.3.1.1. Temperatura Ambiental

La temperatura del cantón Cevallos oscila entre los 11 y 15 °C, desde el mes de mayo al mes de agosto la temperatura promedio baja, mientras que desde los meses de octubre a noviembre la temperatura aumenta de manera notable [3].

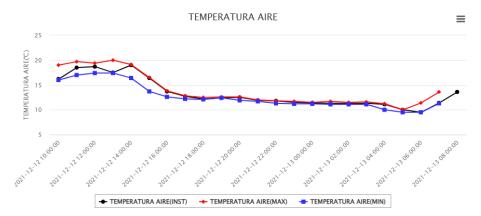


Figura 32. Temperatura del Aire estación meteorológica M258 QUEROCHACA.

Elaborado por: Daysi Belén Pérez Villacís

3.3.3.1.2. Humedad

Los anuarios meteorológicos del INAMHI permiten determinar la humedad del ambiente mediante la medición de la cantidad de vapor que existe en el aire.

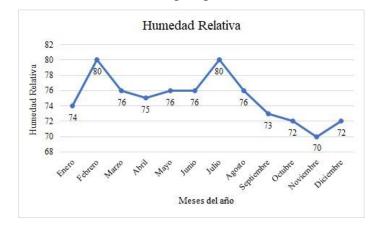


Figura 33. Humedad relativa estación meteorológica M258 QUEROCHACA.

Elaborado por: Daysi Belén Pérez Villacís

3.3.3.1.3. *Nubosidad*

Es medida de forma directa visualizando la fracción de cielo cubierto con nubes, su unidad de medición es la octa, los anuarios meteorológicos del INAMHI contienen los valores de nubosidad máxima y mínima.

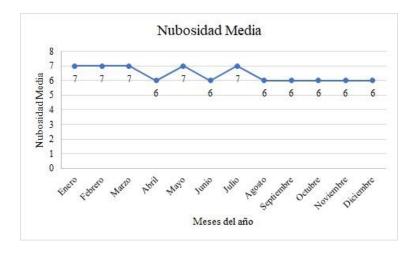


Figura 34. Nubosidad estación meteorológica M258 QUEROCHACA.

Elaborado por: Daysi Belén Pérez Villacís

3.3.3.1.4. Precipitaciones

Según el Instituto Nacional de Meteorología e Hidrología (INAMHI) a través de la estación M258 QUEROCHACA, ubicada en los predios de la Universidad Técnica de Ambato establece una precipitación media anual varía entre los 440mm a 820mm[3].

3.3.4. Cálculo de la Intensidad

$$I = \frac{K \times T^m}{t^n}$$

$$I = \frac{85.4334 \times 5^{0.1904}}{5^{-0.5548}}$$

$$I = 47.53 \frac{lt}{seg} / Hab$$

Para el cálculo de la variable I (Intensidad) los valores de T (Periodo de retorno) y t (Tiempo de duración) se toman en años y minutos respectivamente.

A continuación, se realizará un cálculo típico en el tramo del Pozo 3 al Pozo 4, los cuales se encuentran detallados desde el numeral *3.3.5* al numeral *3.3.14.5*, representando los cálculos efectuados en el diseño de la red de alcantarillado pluvial evitando así la repetición y exceso en el número de hojas para el desarrollo del presente proyecto.

3.3.5. Cálculo del Caudal de Diseño

Tramo Pozo 3 – Pozo 4

$$egin{aligned} oldsymbol{Q}_p &= oldsymbol{A} imes oldsymbol{I} \ Q_p &= 0.10 Ha imes 43.79 rac{Ilt}{seg} / Ha \ Q_p &= 4.54 \ lt/seg \end{aligned}$$

3.3.6. Resultado Tiempo de concentración

En las Normas de Diseño de Sistemas de Alcantarillado para la EMAAP-Q se establece un tiempo de concentración de 5 minutos para tramos iniciales sin sistemas afluentes.

3.3.7. Resultado diámetro de tubería

En el diseño del sistema de alcantarillado pluvial se utilizará tubería PVC de 250 mm de diámetro, el cual cumple con las condiciones establecidas en las Normas de Diseño de Sistemas de Alcantarillado para la EMAAP-Q la cual establece un diámetro mínimo de 250 mm.

3.3.8. Calculo de la Pendiente del Terreno

Tramo Pozo 3 – Pozo 4

$$S = \frac{C.Sup - C.Inf}{L} \times 1000$$

$$S = \frac{2852.30 \ m - 2851.95 \ m}{16.62 \ m} \times 1000$$

$$S = 21.06\%$$

3.3.9. Calculo Pendiente mínima

$$Smin = \left(\frac{v_{min \times n}}{0.397 \, D^{\frac{2}{3}}}\right)^{2}$$

$$Smin = 0.5\%$$

$$Smin = \left(\frac{2.47 \, \left(\frac{m}{s}\right) \times 0.011}{0.397 \times 0.25^{\frac{2}{3}}}\right)^{2}$$

$$Smin = 1.20 \, \%$$

3.3.10. Calculo Pendiente máxima

$$Smax = \left(\frac{v_{max \times n}}{0.397 \, D^{\frac{2}{3}}}\right)^{2}$$

$$Smax > 5\%$$

$$Smax = \left(\frac{4.5 \, \text{m/s} \times 0.011}{0.397 \times 0.2^{\frac{2}{3}}}\right)^{2}$$

$$Smax = 13.29\%$$

3.3.11. Calculo de Caudal en tubería Completamente Llena

$$Q_{TLL} = \frac{0.312}{n} \times D^{\frac{8}{3}} \times S^{\frac{1}{2}}$$

$$Q_{TLL} = \frac{0.312}{0.011} \times 0.25 m^{\frac{8}{3}} \times 0.02980^{\frac{1}{2}}$$

$$Q_{TLL} = 0.12132 \frac{m^3}{\text{seg}}$$

$$Q_{TLL} = 121.32 \frac{\text{lt}}{\text{seg}}$$

3.3.12. Cálculo de la Velocidad en tubería Completamente Llena

$$\begin{aligned} \textbf{V}_{TLL} &= \frac{\textbf{0}.397}{\textbf{n}} \times \textbf{D}^{\frac{2}{3}} \times \textbf{S}^{\frac{1}{2}} \\ V_{TLL} &= \frac{0.397}{0.011} \times 0.25^{\frac{2}{3}} \times 0.02980^{\frac{1}{2}} \\ V_{TLL} &= 2.47 \frac{m}{\text{seg}} \end{aligned}$$

La velocidad es la adecuada al encontrarse dentro de los límites permisibles de 0.90-4.5 m/s.

3.3.13. Cálculo Resultado Radio Hidráulico

$$R_{h} = \frac{D}{4}$$

$$R_{h} = \frac{0.25 m}{4}$$

$$R_{h} = 0.063 m$$

3.3.14. Cálculo de los Elementos Hidráulicos Tubería Parcialmente Llena

3.3.14.1. Cálculo del Área Hidráulica

$$\beta = \cos^{-1}\left(\frac{\frac{D}{2} - YN}{\frac{D}{2}}\right)$$
$$\beta = \cos^{-1}\left(\frac{\frac{0.25}{2} - 0.0060}{\frac{0.25}{2}}\right)$$
$$\beta = 17.82^{\circ}$$

$$\theta = 2\beta$$

$$\theta = 17.21^{\circ} \times 2$$

$$\theta = 35.64^{\circ}$$

$$\theta = 0.62 \, rad$$

$$A = 0.125 \times (\theta rad - \sin \theta) \times do^{2}$$

 $A = 0.125 \times (0.62rad - \sin 35.64) \times 0.25^{2}$
 $A = 0.0003 m^{2}$

3.3.14.2. Cálculo del Perímetro Mojado

$$Pm = 0.5 \times \theta \times do$$

$$Pm = 0.5 \times 0.62 \times 0.25$$

$$Pm = 0.0766 m$$

3.3.14.3. Cálculo del Radio Hidráulico

$$Rh = \frac{A}{Pm}$$

$$Rh = \frac{0.0003m^2}{0.0766 m}$$

$$Rh = 0.0040 m$$

$$Rh = 40 cm$$

3.3.14.4. Verificación del Tirante Normal

$$\frac{Q \times n}{S^{1/2}} = A \times Rh^{2/3}$$

$$\frac{0.00012132 \times 0.011}{0.02968^{1/2}} = 0.0003 \times 0.0040^{2/3}$$

$$0.00000077 = 0.00000077$$

3.3.14.5. Cálculo de la Velocidad

$$V_N = \frac{1}{n} \times Rh^{2/3} \times S^{1/2}$$

$$V_N = \frac{1}{0.011} \times 0.0040^{2/3} \times 0.02968^{1/2}$$

$$V_N = 0.92 \frac{m}{\text{seg}}$$

3.4. CUARTA ETAPA - Evaluación de la Planta de Tratamiento de Aguas

Residuales

3.4.1. Características Generales y Físicas

3.4.1.1. Ubicación

El agua residual originada por actividades domésticas, agrícolas, comerciales e

industriales son evacuadas en la planta de Tratamiento de Aguas Residuales del cantón

Cevallos, la cual se encuentra ubicada en el punto depresivo más bajo al nor-este del

cantón en el sector Reina del Tránsito.

3.4.1.2. Georreferenciación de la planta de tratamiento mediante coordenadas UTM

PTAR CANTÓN CEVALLOS

Figura 35. Georreferenciación de la PTAR del cantón Cevallos

Fuente: Google Earth Pro

Elaborado por: Daysi Belén Pérez Villacís

126

Tabla 47. Georreferenciación de la planta del Tratamiento de Aguas Residuales del cantón Cevallos

Provincia	Tungurahua		
Cantón	Cevallos		
Coordenadas	Norte	Este	
	9851713.86	767939.89	

Fuente: Google Earth Pro

Elaborado por: Daysi Belén Pérez Villacís

3.4.2. Operación y Mantenimiento Actual de la Planta de Tratamiento

El Gobierno Autónomo Descentralizado del cantón Cevallos es la entidad encargada actualmente de la operación y mantenimiento de la Planta de Tratamiento de Aguas Residuales, personal capacitado se encarga del mantenimiento y la correcta operación de la PTAR. El GAD municipal del cantón no cuenta con un laboratorio especializado en el análisis de aguas residuales que permita un control detallado de las características del agua servida.

3.4.3. Diagnóstico de las Estructuras

3.4.3.1.Diagrama de Flujo de la Planta de Tratamiento de Aguas Residuales del cantón Cevallos

Figura 36. Diagrama de Flujo de la PTAR del cantón Cevallos.

3.4.3.2. Rejillas y Control

Las rejillas se encuentran ubicadas al inicio de la PTAR como lo indica el diagrama de flujo, forman parte de la canaleta Parshall de ingreso, al momento retienen adecuadamente los sólidos de gran tamaño, sin embargo, solidos pequeños logran pasar hacia el desarenador.

Figura 37. Parshall de ingreso PTAR cantón Cevallos

Elaborado por: Daysi Belén Pérez Villacís

3.4.3.3. Desarrador

Tiene forma rectangular, actualmente funciona de manera adecuada, sin embargo, necesita mantenimiento ya que por factores externos se ha perdido cierto espesor en el recubrimiento de la estructura y la superficie se encuentra con una capa de moho.

Figura 38. Desarenador PTAR cantón Cevallos

3.4.3.4.Sedimentador Primario

Tiene forma rectangular y cuenta con 4 compuertas, su funcionamiento no es el adecuado debido a que en horas con mayor ingreso de caudal a la Planta de Tratamiento el agua residual se desborda hacia otras zonas de la PTAR, lo cual ha ocasionado un socavón en el terreno de la misma.

Figura 39. Sedimentador Primario PTAR cantón Cevallos

Elaborado por: Daysi Belén Pérez Villacís

3.4.3.5. Sedimentador Secundario

Construido en una segunda etapa, de forma rectangular, tiene 4 compuertas trabaja adecuadamente, es necesario el cambio en una de las tuberías de ventilación ya que se encuentra rota.

Figura 40. Sedimentador Secundario PTAR cantón Cevallos

3.4.3.6. Filtro Anaerobio de Flujo Ascendente

Existen dos Filtros Anaerobios de Flujo Ascendente, actualmente ninguno de los dos trabaja de manera adecuada debido a que existen filtraciones por la aparición de grietas en la estructura y la tubería en uno de los tanques se encuentra rota, de igual forma se recomienda realizar una limpieza adecuada y la reposición del material filtrante.

Figura 41. FAFA PTAR cantón Cevallos

Elaborado por: Daysi Belén Pérez Villacís

3.4.3.7.Lecho de secado de lodos

El lecho de secado de lodos se encuentra conformado por dos tanques construidos rectangularmente, desempeñan de manera conveniente el secado de lodos derivados de

Figura 42. Lecho de secado de lodos PTAR cantón Cevallos

3.4.3.8. Otros Componentes

Tanques de protección

Destinados a conservar en óptimas condiciones diferentes elementos como las válvulas de control de los elementos que componen la PTAR, es necesario limpiarlos y retirar la maleza existente.

Figura 43. Tanques de protección PTAR cantón Cevallos

Elaborado por: Daysi Belén Pérez Villacís

Compuertas de protección

Con la inspección visual realizada se determinó que es necesaria una reposición de las compuertas debido a que la mayoría se encuentran oxidadas o simplemente han sido retiradas.

Figura 44. Compuertas de protección PTAR cantón Cevallos

Senderos Internos

Formados por caminos que facilitan el acceso interno a las diferentes estructuras que conforman la PTAR, es necesario realizar una limpieza para retirar la vegetación que puede afectar el funcionamiento de los tanques.

Figura 45. Senderos Internos PTAR cantón Cevallos

Elaborado por: Daysi Belén Pérez Villacís

Cerramiento

Su función es delimitar la superficie total de la planta de tratamiento e impedir el paso hacia ella evitando que los habitantes tengan contacto directo con el agua residual.

Figura 46. Cerramiento de la PTAR cantón Cevallos

3.4.4. Evaluación del Funcionamiento de la Planta de Tratamiento

3.4.4.1. Eficiencia de Remoción

La muestra para llevar a cabo la evaluación del funcionamiento de la Planta de Tratamiento de Aguas Residuales del cantón Cevallos se tomó el día jueves 9 de diciembre de 2021 de acuerdo a la lectura de mayor ingreso misma que representa el caudal máximo de entrada de aguas servidas a la Planta de Tratamiento de Aguas Residuales del cantón Cevallos, el análisis realizado se detalla en la *Tabla 48*.

Tabla 48. Caudales de Ingreso a la PTAR del cantón Cevallos

CAUDALE	CAUDALES DE INGRESO A LA PTAR DEL CANTÓN CEVALLOS (I/seg)					
HORA	LUNES	MARTES	MIÉRCOLES	JUEVES	VIERNES	
08:00 a 09:00	22.992	24.279	24.013	21.696	34.614	
09:00 a 10:00	24.647	22.828	29.486	25.828	27.029	
10:00 a 11:00	27.376	23.649	29.130	25.658	29.272	
11:00 a 12:00	22.665	24.313	29.843	26.016	24.313	
12:00 a 13:00	25.320	28.073	31.649	35.370	26.026	
13:00 a 14:00	24.814	23.980	30.201	27.515	38.057	
14:00 a 15:00	25.999	20.742	34.991	24.306	31.678	
15:00 a 16:00	26.341	23.649	28.424	38.447	30.561	
16:00 a 17:00	25.320	25.320	27.724	26.546	28.741	

Elaborado por: Daysi Belén Pérez Villacís

25.000
25.000
10.000
08:00 a 09:00 09:00 a 10:00 10:00 a 11:00 11:00 a 12:00 12:00 a 13:00 13:00 a 14:00 14:00 a 15:00 15:00 a 16:00 16:00 a 17:00

LUNES MARTES MIÉRCOLES JUEVES VIERNES

Figura 47. Comportamiento de Caudales de Ingreso a la PTAR del cantón Cevallos

El día viernes 10 de diciembre de 2021 se tomó la muestra de acuerdo a la lectura de mayor salida de aguas servidas a la Planta de Tratamiento de Aguas Residuales del cantón Cevallos, misma que representa el caudal máximo de salida del agua residual, el análisis realizado se detalla en la *Tabla 49*.

Tabla 49. Caudales de Ingreso a la PTAR del cantón Cevallos

CAUDAL	CAUDALES DE SALIDA A LA PTAR DEL CANTÓN CEVALLOS					
HORA	LUNES	MARTES	MIÉRCOLES	JUEVES	VIERNES	
08:00 a 09:00	2.017	1.831	2.017	1.805	1.979	
09:00 a 10:00	1.972	2.109	1.862	1.675	1.916	
10:00 a 11:00	1.948	2.237	2.043	1.693	2.010	
11:00 a 12:00	1.892	2.160	1.858	1.744	2.254	
12:00 a 13:00	1.868	2.024	1.527	1.638	2.109	
13:00 a 14:00	1.981	1.992	1.760	1.701	2.129	
14:00 a 15:00	2.069	1.970	1.914	1.636	2.228	
15:00 a 16:00	1.750	1.843	2.057	1.803	2.045	
16:00 a 17:00	1.803	2.119	2.036	1.762	2.137	

Elaborado por: Daysi Belén Pérez Villacís

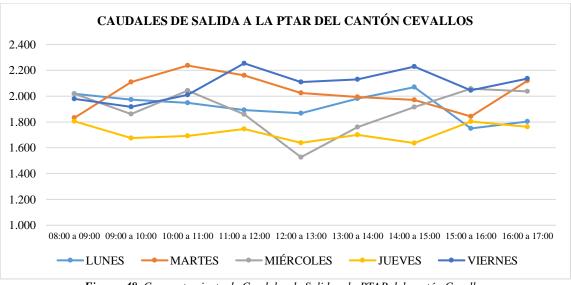


Figura 48. Comportamiento de Caudales de Salida a la PTAR del cantón Cevallos

3.4.4.2. Resultado del análisis físico-químico del afluente a la planta de tratamiento del cantón Cevallos

En la *Tabla 50* presentada a continuación se detalla el análisis físico-químico del influente de la PTAR del cantón Cevallos mismo que se realizó en el Laboratorio de Investigación y Análisis Ambiental "LIAA-GADMA".

Tabla 50. Resultado del análisis físico-químico del afluente de la PTAR del cantón Cevallos

PARÁMETROS	UNIDAD	RESULTADO	Límite Máximo Permisible
pН	UpH	7,6	5-9
Temperatura	°C	15	< 35
Demanda Química de Oxigeno	mg/L	412	200 mg/L
Demanda Bioquímica de Oxigeno	mg/L	206,0	100 mg/L
Coliformes Fecales	ufc/100ml	Incontables	Remoción > al 99.9%
Coliformes Totales	ufc/100ml	Incontables	-
Solidos Disueltos	mg/L	937,7	1600 mg/L

Elaborado por: Daysi Belén Pérez Villacís

Anexo#4: Resultados "LIAA-GADMA"

En base a lo estipulado en el Anexo 1 del Libro VI del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente y bajo la comparación de los resultados obtenidos en el análisis de laboratorio, se determina que las muestras no cumplen con la norma señalada, siendo necesario dar un tratamiento al agua residual antes de que esta sea descargada.

3.4.4.3. Resultado del análisis físico-químico del efluente a la planta de tratamiento

En la *Tabla 51* presentada a continuación se detalla el análisis físico-químico del efluente de la PTAR realizado en el Laboratorio de Investigación y Análisis Ambiental "LIAA-GADMA.

Tabla 51. Resultado del análisis físico-químico del efluente de la PTAR del cantón Cevallos

PARÁMETROS	UNIDAD	RESULTADO	Límite Máximo Permisible
pН	UpH	7.1	5-9
Temperatura	°C	14	< 35
Demanda Química de Oxigeno	mg/L	462	200 mg/L
Demanda Bioquímica de Oxigeno	mg/L	231,0	100 mg/L
Coliformes Fecales	ufc/ml	Incontables	Remoción > al 99.9%
Coliformes Totales	ufc/ml	Incontables	-
Solidos Disueltos	mg/L	799,3	1600 mg/L

Elaborado por: Daysi Belén Pérez Villacís

Anexo#4: Resultados "LIAA-GADMA"

En base a lo estipulado en el Anexo 1 del Libro VI del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente y bajo la comparación de los resultados obtenidos en el análisis de laboratorio, se determina que las muestras no cumplen con los límites permisibles señalados en la norma, debido a que la Demanda Química de Oxigeno (DQO) y la Demanda Bioquímica de Oxigeno (DBO₅), se ven incrementados al momento en que salen de la PTAR.

Tabla 52. Eficiencia de remoción de la PTAR del cantón Cevallos

PARÁMETROS	UNIDAD	ENTRADA	SALIDA	REMOCIÓN	LÍMITE MÁXIMO PERMISIBLE
pН	UpH	7,6	7.1	0	5-9
Temperatura	°C	15	14	0	< 35
DQO	mg/L	412	462	-12.14	200 mg/L
DBO ₅	mg/L	206	231	-12.14	100 mg/L
Coliformes Fecales	ufc/ml	Incontables	Incontables	-	Remoción > al 99.9%
Coliformes Totales	ufc/ml	Incontables	Incontables	_	-
Solidos Disueltos	mg/L	937,7	799,3	14.76	1600 mg/L

Elaborado por: Daysi Belén Pérez Villacís

Anexo#4: Resultados "LIAA-GADMA"

En base a la comparación de los resultados obtenidos en el análisis de laboratorio del agua que ingresa y sale de la PTAR del cantón Cevallos se determina que el funcionamiento actual de la misma no es el adecuado para su caudal de diseño.

3.4.5. Evaluación de los Componentes de la Planta de Tratamiento de Aguas Residuales

3.4.5.1.Porcentaje de Remoción de Contaminantes

El porcentaje de remoción de contaminantes de la Planta de Tratamiento de Aguas Residuales del cantón Cevallos se determina a través del análisis los porcentajes de remoción conforme a los análisis físico-químico del afluente y efluente de la PTAR realizados en el Laboratorio de Investigación y Análisis Ambiental "LIAA-GADMA.

Tabla 53. Grado de tratamiento obtenido mediante diversos procesos unitarios

Unidades de tratamiento	Rendimiento de eliminación del constituyente, porcentaje		
tratamento	DBO	DQO	
Rejas de barras	Nulo	Nulo	
Desarenadores	0 - 5	0 - 5	
Reactor	80 - 95	80 - 85	
Filtro biológico	65 - 80	60 - 80	

Fuente: Ingeniería de aguas residuales: Volumen 1, Capítulo 3: Características de las aguas residuales - METCALF & EDDY[38].

Elaborado por: Daysi Belén Pérez Villacís

Tabla 54. Remoción teórica total del tren de tratamiento

Unidades de tratamiento	Rendimiento de eliminación del constituyente, porcentaje		
ti ataimento	DBO	DQO	
Rejas de barras	Nulo	Nulo	
Desarenadores	5	5	
Reactor	85	85	
Filtro biológico	70	70	
Total remoción teórica	95.73	95.73	

Elaborado por: Daysi Belén Pérez Villacís

Tabla 55. Porcentaje de remoción real de la planta de tratamiento

Parámetros	Unidad	Entrada	Salida	% de remoción real	Equivalente
DBO5	mg/l	206	231	-12.14%	0.00
DQO	mg/l	412	462	-12.14%	0.00

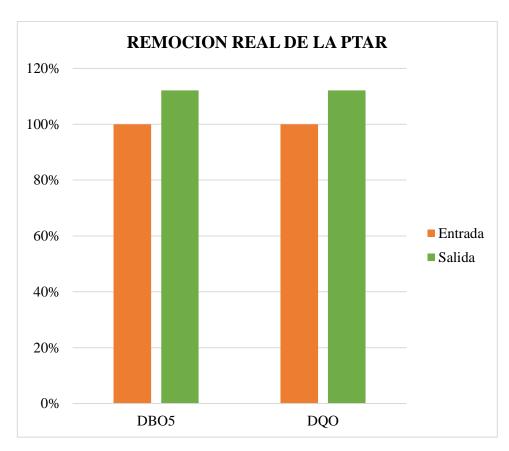


Figura 49. Remoción Real

Elaborado por: Daysi Belén Pérez Villacís

De acuerdo con los análisis de laboratorio se determinó que no se ha presentado ningún tipo de remoción de DBO5 ni de DQO, en la gráfica presentada mediante la *Figura 49* se expone como el porcentaje de DBO5 y de DQO que sale de la Planta de Tratamiento de Aguas Residuales del cantón Cevallos en lugar de disminuir aumenta en un 12,14%.

Este aumento en los porcentajes de remoción tanto del DBO5 como del DQO se puede presentar debido a que inicialmente la planta de tratamiento fue calculada para un caudal de ingreso de 20 lt/seg (dato impartido por la jefatura de Agua Potable y Alcantarillado del cantón Cevallos) mientras que en la actualidad el caudal más crítico tomado el jueves 9 de diciembre del 2021 arrojó un resultado de 38.447 lt/seg, caudal que al ser excesivo está causando un colapso de la misma.

Otra de las causas de este aumento en los porcentajes de DBO5 y de DQO puede deberse al escaso o nulo mantenimiento realizado en la Planta de Tratamiento del cantón desde el momento de su construcción en el año 2011 hasta la fecha, en la *Figura 50* se puede observar las condiciones actuales en las que se encuentra la PTAR.

Figura 50. Estado actual de la PTAR del cantón Cevallos

Elaborado por: Daysi Belén Pérez Villacís

Tabla 56. Porcentaje de remoción teórica de la planta de tratamiento

Parámetros	Unidad	Entrada	Salida	% de remoción teórica
DBO5	mg/l	206	8.81	95.73%
DQO	mg/l	412	17.61	95.73%

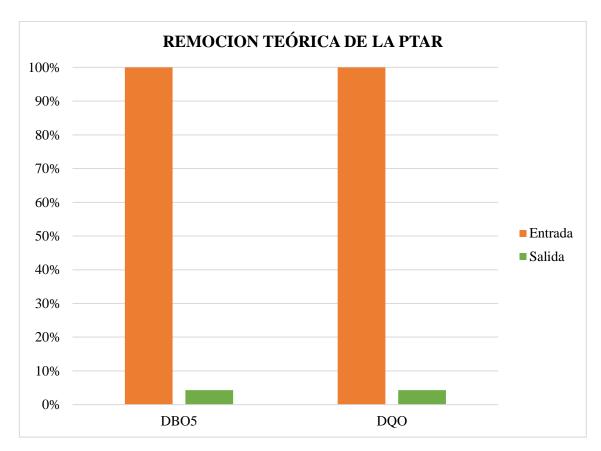


Figura 51. Remoción Teórica

Elaborado por: Daysi Belén Pérez Villacís

La grafica presentada en la *Figura 51* representa el porcentaje de DBO y DQO que se espera obtener a la salida de la PTAR a futuro, con un diseño y mantenimiento adecuados y de acuerdo a la teoría se pretende una remoción de DBO y DQO del 95.73%, dando como resultado un afluente con una concentración de tan solo el 4.27% de dichos parámetros como se observa en la figura.

3.4.5.2.Determinación de la vida remanente de la Planta de Tratamiento de Aguas Residuales

La vida remanente de la PTAR se calcula mediante la evaluación de la capacidad de filtración, para lo cual es necesario identificar el tiempo de retención hidráulica que recomienda la norma EX – IEOS.

Se efectúa un análisis del volumen total del filtro existente, para determinar de manera aproximada la población de diseño de la PTAR, su objetivo es obtener el caudal de diseño del filtro para compararlo con el caudal que ingresa en la actualidad.

Volumen Total del Filtro

$$V_{TF} = \frac{1.6(D.A.P)(Cf.RA.S)TRH}{1000}$$

Población

$$Poblacion = \frac{Volumen\ Total\ (1000)}{1.6(D.A.P)(Cf.RA.S)TRH}$$

Tabla 57. Dotaciones recomendadas

POBLACIÓN (Habitantes)	Clima	Dotación Media Futura (litros/habitante/día)
	Frío	120-150
Hasta 5000	Templado	130-160
	Cálido	170-200
5000 a 50000	Frío	180-200
	Templado	190-220
	Cálido	200-230
	Frío	>200
Más de 50000	Templado	>220
	Cálido	>230

Fuente: Norma CO 10.07- 601[17].

Volumen

• El Filtro N°1 tiene un diámetro de 5.50 m y una altura de 2.3 m.

$$Volumen_{Filtro\ 1} = \pi \times r^2 \times h$$

$$Volumen_{Filtro\ 1} = \pi \times (2.75m)^2 \times 2.3m$$

$$Volumen_{Filtro\ 1} = 54.64m^3$$

• El Filtro N°2 tiene un diámetro de 5.60 m y una altura de 2.3 m.

$$Volumen = \pi \times r^2 \times h$$

$$Volumen_{Filtro\ 2} = \pi \times (2.8m)^2 \times 2.3m$$

$$Volumen_{Filtro\ 3} = 56.65 \ m^3$$

Caudal sanitario de diseño de FAFA

$$Q_{Sanitario} = \frac{(Poblacion \times D.A.P)(Coeficiente de Retorno)}{86400}$$

$$Q_{Sanitario} = \frac{(8163)(190)(80\%)}{86400}$$

$$Q_{Sanitario} = 14.36lt/seg$$

Una vez calculado el caudal sanitario se lo compara con el caudal estimado de ingreso a la PTAR, mismo que fue registrado a lo largo de una semana y se lo detalló en la *Tabla* 48, a su vez este valor nos muestra que existe un excedente en el volumen de caudal que ingresa a la PTAR, razón por la cual es necesario realizar un control de las descargas provenientes de diferentes industrias especialmente de avícolas que existen en el cantón.

3.5.QUINTA ETAPA – Fase Propuesta Técnica

3.5.1. Planos

Se obtuvieron un total de 17 planos entre ellos: Planimetría de la zona del proyecto, ubicación de pozos y tuberías, áreas tributarias, implantación de pozos y tuberías, perfiles del terreno tanto del alcantarillado sanitario como del alcantarillado pluvial y distintos planos de detalles.

3.5.2. Presupuesto referencial

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

CARRERA DE INGENIERÍA CIVIL

PROYECTO:

DISEÑO DE LA RED DE ALCANTARILLADO SANITARIO - PLUVIAL DE LOS SECTORES LA FLORIDA, REINA DEL TRANSITO Y JESÚS DEL GRAN PODER, CANTÓN CEVALLOS - PROVINCIA DE TUNGURAHUA

Ubicación:	Cantón Cevallos	Realizó: Egda. Daysi Pérez
Fecha:	Diciembre 2021	Revisó: Ing. Vicente Palate A

PRESUPUESTO REFERENCIAL DE OBRA

Rubro No. Cod		Descripción		Cantidad	Precio unitario	Precio total		
	PRELIMINARES							
1	E01-14	Derrocamiento de elementos de hormigón incluye desalojo	m3	2.00	19.92	39.84		
2	AP-06	Desempedrado y reempedrado	m2	1215.69	4.00	4862.76		
3	V02-08b	Corte, desalojo y reposición (e=2") de pavimento asfaltico manual	m2	18.00	13.82	248.76		

		ALCANTARILLADO SANITARIO					
4	H01-04	Replanteo y Nivelación del Proyecto	Km	3.51	146.77	515.16	
5	H02-10.2	Excavación a máquina de zanjas en tierra en seco h=0-2 m	m3	6057.11	1.41	8540.5	
6	H02-10.4	Excavación a máquina de zanjas en tierra en seco h=2-4 m	m3	2396.64	1.7	4074.2	
7	H02-10.6	Excavación a máquina de zanjas en tierra en seco h= > 4m	m3	1011.4	2.14	2164.4	
8	H02-50	Resanteo a mano a fondo de zanja	m2 3471.59 0.29 10				
9	Н03-20.250	Prov. e instalación tubería pvc e/c d=250 mm	m 3506.39 16.15 5				
10	H02-40	Relleno compactado con maguinaria con suelo propio, capa 50					
11	H03-90	Pozos de revisión H. S. F'c= 210 Kg/cm2 D=1,0 m e=0,20 m	m	247.7	140.31	34754.	
12	H03-91	Cerco y tapa hierro nodular para pozo de revisión	u	86.00	221.82	19076.	
13	H03-80	Conexiones domic. alcantarillado tub. PVC Ø 160mm, inc CR, excav. y relleno	u	36.00	166.4	5990.4	
14	E05-110	Canal de riego tipo A0. 5H0.5, inc Encof y hormigón Simple F'c= 180 kg/cm3	m	30.00	16.79	503.7	
		ALCANTARILLADO PLUVIAL					
	1	ALCANTARILLADO PLUVIAL					
15	H01-04	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto	Km	3.22	146.77	.,	
16	H02-10.2	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto Excavación a máquina de zanjas en tierra en seco h=0-2 m	m3	5610.18	1.41	7910.3	
16 17	H02-10.2 H02-10.4	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto Excavación a máquina de zanjas en tierra en seco h=0-2 m Excavación a máquina de zanjas en tierra en seco h=2-4 m	m3 m3	5610.18 2543.77	1.41	7910.3 4324.4	
16 17 18	H02-10.2 H02-10.4 H02-10.6	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto Excavación a máquina de zanjas en tierra en seco h=0-2 m Excavación a máquina de zanjas en tierra en seco h=2-4 m Excavación a máquina de zanjas en tierra en seco h=> 4m	m3 m3 m3	5610.18 2543.77 1627.87	1.41 1.7 2.14	7910.3 4324.4 3483.6	
16 17 18	H02-10.2 H02-10.4 H02-10.6 H02-50	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto Excavación a máquina de zanjas en tierra en seco h=0-2 m Excavación a máquina de zanjas en tierra en seco h=2-4 m Excavación a máquina de zanjas en tierra en seco h= > 4m Resanteo a mano a fondo de zanja	m3 m3 m3 m2	5610.18 2543.77 1627.87 3215.47	1.41 1.7 2.14 0.29	7910.3 4324.4 3483.6 932.4	
16 17 18	H02-10.2 H02-10.4 H02-10.6	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto Excavación a máquina de zanjas en tierra en seco h=0-2 m Excavación a máquina de zanjas en tierra en seco h=2-4 m Excavación a máquina de zanjas en tierra en seco h=> 4m Resanteo a mano a fondo de zanja Prov. e instalación tubería pvc e/c d=250 mm	m3 m3 m3	5610.18 2543.77 1627.87	1.41 1.7 2.14	7910.3 4324.4 3483.6 932.4	
15 16 17 18 19 20 21	H02-10.2 H02-10.4 H02-10.6 H02-50	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto Excavación a máquina de zanjas en tierra en seco h=0-2 m Excavación a máquina de zanjas en tierra en seco h=2-4 m Excavación a máquina de zanjas en tierra en seco h= > 4m Resanteo a mano a fondo de zanja	m3 m3 m3 m2	5610.18 2543.77 1627.87 3215.47	1.41 1.7 2.14 0.29	7910.3 4324.4 3483.6 932.4 51960.	
16 17 18 19 20	H02-10.2 H02-10.4 H02-10.6 H02-50 H03-20.250	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto Excavación a máquina de zanjas en tierra en seco h=0-2 m Excavación a máquina de zanjas en tierra en seco h=2-4 m Excavación a máquina de zanjas en tierra en seco h=> 4m Resanteo a mano a fondo de zanja Prov. e instalación tubería pvc e/c d=250 mm Relleno compactado con maquinaria con suelo propio, capa 50	m3 m3 m3 m2 m	5610.18 2543.77 1627.87 3215.47 3217.38	1.41 1.7 2.14 0.29 16.15	7910.3 4324.4 3483.6 932.4 51960.	
16 17 18 19 20	H02-10.2 H02-10.4 H02-10.6 H02-50 H03-20.250 H02-40	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto Excavación a máquina de zanjas en tierra en seco h=0-2 m Excavación a máquina de zanjas en tierra en seco h=2-4 m Excavación a máquina de zanjas en tierra en seco h=> 4m Resanteo a mano a fondo de zanja Prov. e instalación tubería pvc e/c d=250 mm Relleno compactado con maquinaria con suelo propio, capa 50 cm	m3 m3 m3 m3 m2 m m3	5610.18 2543.77 1627.87 3215.47 3217.38 9369.45	1.41 1.7 2.14 0.29 16.15 1.81	7910.3 4324.4 3483.6 932.4 51960. 16958. 23194.	
16 17 18 19 20 21	H02-10.2 H02-10.4 H02-10.6 H02-50 H03-20.250 H02-40 H03-90	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto Excavación a máquina de zanjas en tierra en seco h=0-2 m Excavación a máquina de zanjas en tierra en seco h=2-4 m Excavación a máquina de zanjas en tierra en seco h=> 4m Resanteo a mano a fondo de zanja Prov. e instalación tubería pvc e/c d=250 mm Relleno compactado con maquinaria con suelo propio, capa 50 cm Pozos de revisión H. S. F'c= 210 Kg/cm2 D=1,0 m e=0,20 m	m3 m3 m3 m3 m2 m m3 u	5610.18 2543.77 1627.87 3215.47 3217.38 9369.45 165.31	1.41 1.7 2.14 0.29 16.15 1.81 140.31 221.82	472.6 7910.3 4324.4 3483.6 932.4 51960. 16958. 23194. 13087. 276,717	
16 17 18 19 20 21	H02-10.2 H02-10.4 H02-10.6 H02-50 H03-20.250 H02-40 H03-90	ALCANTARILLADO PLUVIAL Replanteo y Nivelación del Proyecto Excavación a máquina de zanjas en tierra en seco h=0-2 m Excavación a máquina de zanjas en tierra en seco h=2-4 m Excavación a máquina de zanjas en tierra en seco h=> 4m Resanteo a mano a fondo de zanja Prov. e instalación tubería pvc e/c d=250 mm Relleno compactado con maquinaria con suelo propio, capa 50 cm Pozos de revisión H. S. F'c= 210 Kg/cm2 D=1,0 m e=0,20 m	m3 m3 m3 m3 m2 m m3 m2 m m3 TOT	5610.18 2543.77 1627.87 3215.47 3217.38 9369.45 165.31 59	1.41 1.7 2.14 0.29 16.15 1.81 140.31 221.82	7910.3 4324.4 3483.6 932.4 51960. 16958. 23194.	

El presupuesto referencial fue realizado en conjunto con técnicos del GAD del cantón Cevallos, el código, descripción, unidad, cantidad y precio unitario fueron facilitados por los técnicos mencionados, mismos que poseen una base de datos actualizada.

CAPÍTULO IV

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- Se realizó el levantamiento topográfico mediante una estación total (equipo de precisión) perteneciente al GAD municipal del cantón Cevallos con la cual se obtuvieron las coordenadas y elevaciones necesarias de los sectores involucrados en el proyecto, posteriormente los datos obtenidos fueron procesados en el software de diseño Civil 3D.
- De acuerdo con la normativa vigente se estableció un periodo de diseño para la red alcantarillado sanitario de 25 años, mientras que para el alcantarillado pluvial el periodo de diseño es de 30 años, el material propuesto para los dos tipos de alcantarillado es de PVC con un diámetro de 250 mm, los materiales y parámetros de diseño establecidos cumplen con los límites que permiten garantizar el funcionamiento adecuado de ambos sistemas de alcantarillado.
- Se propuso el diseño del alcantarillado sanitario en tres sectores del cantón Cevallos; La Florida con una población futura aproximada de 538 habitantes, Jesús del Gran poder con 265 habitantes futuros aproximadamente y Reina del Tránsito con una población futura aproximada de 251 habitantes, se dividió el proyecto en tres tramos el primero de ellos La Florida Jesús del Gran Poder para el cual se calculó un caudal instantáneo de 0,101 lt/seg, un caudal por conexiones erradas de 0,010 lt/seg y un caudal de infiltración de 0,251 lt/seg dando como resultado un caudal de diseño igual a 0.362 lt/seg el cual es descargado en un pozo existente con una profundidad de 2,30 metros, el segundo tramo La Florida Reina del Tránsito para el cual se calculó un caudal instantáneo de 0,222 lt/seg, un caudal por conexiones erradas de 0,022 lt/seg y un caudal de infiltración de 0,519 lt/seg dando como resultado un caudal de diseño igual a 0.763 lt/seg el cual es descargado en un pozo existente con una profundidad de 2,70 metros, para el

tercer y último tramo Reina del Tránsito – Jesús del Gran Poder se calculó un caudal instantáneo de 0,048 lt/seg, un caudal por conexiones erradas de 0,005 lt/seg y un caudal de infiltración de 0,815 lt/seg dando como resultado un caudal de diseño igual a 1.228 lt/seg el cual es descargado en un pozo existente con una profundidad de 2,10 metros.

- De acuerdo con los análisis físico químicos realizados al agua residual de la planta de tratamiento del cantón Cevallos se determinó que la misma no se encuentra trabajando de manera adecuada debido a que los resultados del DBO5 del afluente fue de 412 y el efluente de 462, ambos superan los límites establecidos por el TULSMA para ser considerada con un agua residual domestica clásica.
- El diseño del alcantarillado sanitario y pluvial para los sectores La Florida, Reina del Tránsito y Jesús del Gran Poder del cantón Cevallos tiene como presupuesto referencial un valor de 276,755.54 el cual no incluye IVA, se encuentra conformado por un total de 23 rubros.

RECOMENDACIONES

- Previo a la ejecución de la red de alcantarillado sanitario y pluvial se recomienda realizar un reconocimiento de campo en la zona del proyecto que permita la determinación de la orografía y relieve de los sectores la Florida, Reina del Tránsito y Jesús del Gran poder del cantón Cevallos.
- Al momento de realizar el levantamiento topográfico es necesario contar con el equipo de precisión adecuado (estación total y GPS), los mismos que deben tener las actualizaciones necesarias, encontrarse debidamente calibrados y estar colocados correctamente en el terreno para obtener lecturas de mayor precisión.
- En el diseño del alcantarillado deben seguirse de manera estricta las normativas vigentes para minimizar errores de cálculo que provoquen un sub dimensionamiento o sobredimensionamiento de la red de alcantarillado lo cual representan pérdidas económicas.
- La memoria de cálculo al igual que los parámetros de diseño de la red de alcantarillado sanitario y pluvial deben cumplirse para que el sistema construido sea eficiente.
- Se recomienda al municipio del cantón Cevallos controlar las descargas de aguas residuales que realizan diferentes industrias, fábricas y avícolas hacia el sistema de alcantarillado ya que el funcionamiento actual de la Planta de Tratamiento no es el adecuado ya que se han presenciado desbordamientos de distintos componentes de la PTAR.
- Se sugiere al GAD del cantón Cevallos y a las autoridades pertinentes agilizar el proceso de contratación y construcción de la segunda planta de tratamiento del cantón, misma que se ubicará en la quebrada Palahua y será construida en conjunto con el Honorable Consejo Provincial de Tungurahua, de esta forma se evitará la contaminación que se genera al descargar las aguas servidas a las orillas del río Pachanlica.
- Para la obtención de muestras de las aguas servidas en la Planta de Tratamiento es necesario colocarse el equipo de protección adecuada, caso contrario los contaminantes, bacterias y microorganismos que conducen dichas aguas negras

pueden ocasionar severos daños a la salud al ponerse en contacto con el ser humano.

BIBLIOGRAFÍA

- [1] I. P. Martínez Pereda, "Algunos aspectos del alcantarillado y drenaje en México," *Bol. la Of. Sanit. Panam.*, vol. 63, no. 4, pp. 330–336, 1967.
- [2] M. Vásconez, A. Carrión, A. M. Goetschel, and N. Sanchez, "Breve Historia de los servicios en la ciudad de Quito," p. 146, 1997, [Online]. Available: http://biblio.flacsoandes.edu.ec/catalog/resGet.php?resId=49071.
- [3] M. del C. C. GAD-Cevallos, "PLAN DE DESARROLLO Y ORDENAMIENTO TERRITORIAL canton Cevallos," *Chasqui Rev. Latinoam. Comun.*, pp. 1–275, 2011, [Online]. Available: http://www.cevallos.gob.ec/index.php/component/phocadownload/category/170-plan-de-ordenamiento-y-desarrollo-territorial-pdot.
- [4] A. Molina, M. Pozo, and J. Serrano, *Agua, saneamiento e higiene: medición de los ODS en Ecuador*. 2018.
- [5] Senplades, "Agua potable y alcantarillado para erradicar la pobreza en el Ecuador," p. 120, 2014.
- [6] J. Alfaro, J. Carranza, and I. González, "Diseño del sistema de alcantarillado sanitario, aguas lluvias y planta de tratamiento de aguas residuales para el área urbana del municipio de San Isidro, departamento de Cabañas.," p. 435 pp., 2012, [Online].

 Available: http://ri.ues.edu.sv/id/eprint/1698/1/DISEÑO_DEL_SISTEMA_DE_ALCANTA RILLADO_SANITARIO,_AGUAS_LLUVIAS_Y_PLANTA_DE_TRATAMIE NTO_DE_AGUAS_RE.pdf.
- [7] J. R. León Blanco, E. A. Salinas Rodriguez, and M. A. Lima Zepeda, "Diseño de red de alcantarillado sanitario y planta de tratamiento del municipio de Turín, departamento de Ahuachapán, El Salvador," 2017.
- [8] E. Chinchilla Menjivar and E. Rodríguez Ayala, "Diseño De Sistema De Alcantarillado Sanitario Y Planta De Tratamiento De Aguas Residuales Para La

- Ciudad San José Guayabal, Municipio De San José Guayabal, Departamento De Cuscatlán," p. 431, 2010, [Online]. Available: http://ri.ues.edu.sv/4043/1/Diseño de sistema de alcantarillado sanitario y planta de tratamiento de aguas residuales para la ciudad de San Jose Guayabal, municipio de San Jose Guayabal, departamento%25.
- [9] D. Moya Mediana, "Metodología De Diseño Del Drenaje Urbano," p. 161, 2018.
- [10] T. M. Espín, "Estudio y diseño de un sistema de alcantarillado sanitario y planta de tratamiento de aguas residuales utilizando un tanque imhoff en la comunidad Chocaló-San francisco del cantón Santiago de Quero, provincia de Tungurahua.," pp. 1–302, 2016.
- [11] SENAGUA, "Norma de diseño para sistemas de abastecimiento de agua potable, disposición de excretas y residuos líquidos en el área rural," *Secr. del Agua*, pp. 1–44, 2016, [Online]. Available: https://www.normalizacion.gob.ec/buzon/normas/cpe_inen_5 Parte_9-2.pdf.
- [12] R. del P. Manobanda Supe, "Las aguas residuales y su incidencia en la condición sanitaria de los habitantes de Huapante Grande, parroquia San Andrés, cantón Píllaro provincia de Tungurahua.," pp. 1–337, 2015.
- [13] G. P. Moreno Vásquez, "Diseño del sistema de alcantarillado sanitario y pluvial para el barrio México, ciudad Puyo, provincia de Pastaza," pp. 1–150, 2016.
- [14] D. Armando and B. Vallejo, "DISEÑO DEL NUEVO SISTEMA DE ALCANTARILLADO SANITARIO PARA LA PARROQUIA EL ALTAR, CANTON PENIPE, PROVINCIA DE CHIMBORAZO Previa a la obtención de Titulo de: INGENIERÍA CIVIL ELABORADO POR," 2009.
- [15] A. Sanitario, "Lineamientos Técnicos para Factibilidades, SIAPA CRITERIOS Y LINEAMIENTOS TÉCNICOS PARA FACTIBILIDADES," *Actual. los criterios y lineamientos técnicos para factibilidades en la Z.M.G.*, vol. 38, pp. 1–38, 2014.
- [16] Instituto Ecuatoriano de Normalización, "CPE INEN 005-9-2 (1997):Código de

- práctica para el diseño de sistemas de abastecimiento de agua potable, disposición de excretas y residuos líquidos en el área rural.," vol. 2, p. 52, 1997.
- [17] Instituto Ecuatoriano de Normalización, "NORMAS PARA ESTUDIO Y DISEÑO DE SISTEMAS DE AGUA POTABLE Y DISPOSICIÓN DE AGUAS RESIDUALES PARA POBLACIONES MAYORES A 1000 HABITANTES," p. 21, 1992.
- [18] F. N. Molina Jácome, "Sistema de Alcantarillado Sanitario para mejorar el estado de vida de los habitantes del sector El Mariscal Sucre Occidental del cantón Saquisilí de la Provincia de Cotopaxi," pp. 1–199, 2011.
- [19] Inen, "CÓDIGO DE PRACTICA PARA EL DISEÑO DE SISTEMAS DE ABASTECIMIENTO DE AGUA POTABLE, DISPOSICIÓN DE EXCRETAS Y RESIDUOS LÍQUIDOS EN EL ÁREA RURAL," *Inst. ecuatoriano Norm.*, p. 50, 1997.
- [20] OPS, "Guías Para el Diseño de Tecnologías de Alcantarillado," *Organ. Panam. La Salud Cepi*, p. 73, 2005, [Online]. Available: http://www.bvsde.opsoms.org/tecapro/documentos/sanea/169esp-diseno-alcantar.pdf.
- [21] ANDA, "Manual de Planificación de Alcantarillado," p. 131, 2009.
- [22] Ex-IEOS, "Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a 1000 habitantes," *Galileo*, pp. 1–457, 1997.
- [23] B. P. Lárraga Jurado, "Diseño del sistema de Agua Potable para Augusto Valencia, cantón Vinces, Provincia de Los Ríos," pp. 1–195, 2016, [Online]. Available: http://repositorio.puce.edu.ec/bitstream/handle/22000/13464/BOLÍVAR PATRICIO LÁRRAGA JURADO_.pdf?sequence=1&isAllowed=y.
- [24] EMAAP-Q, "NORMAS DE DISEÑO PARA SISTEMAS DE ALCANTARILLADO PARA LA EMPAAP-Q," pp. 1–176, 2009, [Online].

 Available: http://www.ecp.ec/wp-

- content/uploads/2017/08/NORMAS_ALCANTARILLADO_EMAAP.pdf.
- [25] R. A. Quiroga Gonzalez, "Diseño del alcantarillado sanitario para los sectores altos de la Parroquia Quinchicoto del Cantón Tisaleo, con la implementación de una metodología de construcción anexada a Microsoft Project," pp. 1–231, 2017.
- [26] Instituto Boliviano de Normalización y Calidad, "Reglamentos técnicos de diseño de sistemas de alcantarillado sanitario y pluvial," *Minist. del agua viceministerio* Serv. basicos, p. 250, 2007.
- [27] Asociación Española de Abastecimiento de Agua y Saneamiento, "Recomendaciones Para Redes De Alcantarillado," 1998.
- [28] V. A. Danna Mora, "Afectación Del Coeficiente De Rugosidad Para La Ecuación De Manning Con El Envejecimiento De Tuberías De Diferentes Materiales," *J. Chem. Inf. Model.*, vol. 53, no. 9, pp. 1689–1699, 2013.
- [29] J. J. Analuisa Sánchez, "Diseño del sistema de alcantarillado sanitario y del Tratamiento de sus aguas residuales con el método Doyoo Yookasoo para el barrio El Cristal, parroquia Totoras, cantón Ambato, provincia de Tungurahua," pp. 1–284, 2016.
- [30] J. Sánchez, "Cálculo aproximado de la altura de inundación," no. 1, pp. 1–4, 2012,
 [Online]. Available: http://hidrologia.usal.es/Complementos/Calculo_altura_agua.pdf.
- [31] J. C. Aldás Castro, "Diseño del alcantarillado sanitario y pluvial y tratamiento de aguas Servidas de 4 lotizaciones unidas (varios propietarios), del cantón el Carmen," 2011.
- [32] J. Rivadeneira, "Previo a La Obtención De Título De Ingeniera Civil Diseño Del Sistema De Alcantarillado Pluvial Del Barrio 'La Campiña Del Inca 'Canton Quito , Provincia De Pichincha Autora: Jessica Rivadeneira Molina Quito / Diciembre / 2012," pp. 1–191, 2012.
- [33] R. Pizarro, J. P. Flores, C. Sangüesa, and E. Martínez, "Módulo 2: Curvas

- intensidad duración frecuencia," *Eias*, 2003, [Online]. Available: http://eias.utalca.cl/Docs/pdf/Publicaciones/manuales/b_modulo_IDF.pdf.
- [34] J. M. Maldonado Erazo, J. R. Samaniego Merchán, D. M. Ramos Criollo, and R. V. Abril Saltos, "Curvas de intensidad, duración y frecuencia de la estación meteorológica Puyo," *Ing. Hidráulica y Ambient.*, vol. 41, no. 1, pp. 127–137, 2020.
- [35] INAMHI, "Determinación de ecuaciones para el cálculo de intensidades máximas de precipitación," *Inst. Nac. Meteorol. e Hidrol.*, no. 2, p. 282, 2019, [Online]. Available:

 http://www.serviciometeorologico.gob.ec/Publicaciones/Hidrologia/ESTUDIO_D
 E_INTENSIDADES_V_FINAL.pdf.
- [36] Instituto Ecuatoriano de Normalización, "Código Ecuatoriano de la Construcción C.E.C. Normas Para Estudio y Diseño de Sistemas de Agua Potable y Disposición de Aguas Residuales Para Poblaciones Mayores a 1 000 Habitantes," vol. 1, p. 293, 1992, [Online]. Available: https://law.resource.org/pub/ec/ibr/ec.cpe.5.9.1.1992.pdf.
- [37] A. A. Castañeda Villanueva and H. E. Flores López, "Tratamiento de aguas residuales domésticas mediante plantas macrófitas típicas en Los Altos de Jalisco, México Introducción Desarrollo Diseño del experimento Resultados Conclusiones," *Rev. Tecnol. y Soc. "innovación y difusión la Tecnol.*, vol. 5, no. 5, pp. 1–18, 2015, [Online]. Available: https://dialnet.unirioja.es/descarga/articulo/5695425.pdf.
- [38] E. Metcalf, Ingenieria de aguas residuales, tratamiento, vertido y reutilizacion. 2000.
- [39] E. Raffo Lecca and E. Ruiz Lizama, "Caracterización de las aguas residuales y la demanda bioquímica de oxígeno," *Rev. la Fac. Ing. Ind.*, pp. 1–11, 2014, doi: http://www.redalyc.org/articulo.oa?id=81640855010.
- [40] A. Alvarado, "Evaluación De Materiales De Desecho Como Medio Filtrante En

- Filtros Anaerobios De Flujo Ascendente," p. 71, 2011.
- [41] L. Valencia Hernández, "Manual De Operación De La Estación Total," *Abreco.Com.Mx*, p. 77, 2011, [Online]. Available: http://www.abreco.com.mx/manuales_topografia/teodolitos_estaciones/Manual de Operacion de Estacion Total.pdf.
- [42] INAMHI, Anuario meteorológico № 53-2013, no. 52. 2017.

ANEXOS

ANEXO N°1: Fotografías de la zona

Fotografía 1	Fotografía 2
Reconocimiento del lugar	Implantación del equipo topográfico
Fotografía 3	Fotografía 4
Levantamiento Topográfico	Medición de pozos existentes
Fotografía 5	Fotografía 6
Reconocimiento PTAR cantón Cevallos	Toma de muestras de agua residual en la PTAR del cantón Cevallos

ANEXO N°2: Coordenadas UTM del Proyecto

PUNTO	NORTE	ESTE	ELEVACIÓN	DESCRIPCIÓN
1	9851404.54	766317.993	2852.4912	E1
2	9851421.18	766323.23	2852.5612	PR
3	9851398.78	766228.601	2854.5337	POZO 1
4	9851403.54	766229.079	2854.4229	VÍA
5	9851393.68	766228.639	2854.4947	VÍA
6	9851404.95	766249.504	2854.1966	VÍA
7	9851395.65	766249.467	2854.1608	VÍA
8	9851406.71	766269.456	2853.8354	VÍA
9	9851398.01	766269.205	2853.8977	VÍA
10	9851408.17	766291.372	2852.9298	VÍA
11	9851398.21	766290.354	2852.8134	VÍA
12	9851406.81	766310.909	2852.545	VÍA
13	9851397.12	766309.566	2852.4159	VÍA
14	9851405.49	766315.395	2852.5099	VÍA
15	9851395.22	766311.439	2852.4037	VÍA
16	9851403.03	766319.55	2852.4242	VÍA
17	9851398.6	766321.945	2852.4109	VÍA
18	9851388.14	766322.693	2852.3606	VÍA
19	9851386.32	766312.582	2852.3212	VÍA
20	9851381.23	766324.254	2852.3306	VÍA
21	9851379.85	766314.91	2852.3019	VÍA
22	9851377.12	766324.41	2852.3086	VÍA
23	9851375.32	766317.387	2852.2814	VÍA
24	9851373.76	766329.14	2852.2294	VÍA
25	9851369.46	766322.136	2852.2241	VÍA
26	9851370.46	766333.271	2852.181	VÍA
27	9851365.55	766328.915	2852.0888	VÍA
28	9851369.49	766335.623	2851.9736	VÍA
29	9851363.63	766333.226	2851.9313	VÍA
30	9851368.36	766340.993	2851.8901	VÍA
31	9851362.92	766339.872	2851.7434	VÍA
32	9851366.53	766360.629	2851.431	VÍA
33	9851361.37	766360.065	2851.382	VÍA
34	9851365.89	766380.065	2850.8871	VÍA
35	9851360.32	766379.157	2850.8459	VÍA
36	9851365.35	766398.487	2850.3712	VÍA
37	9851359.78	766397.269	2850.3164	VÍA
38	9851364.65	766417.721	2850.0859	VÍA

40 9 41 9 42 9 43 9 44 9 45 9 46 9 47 9 48 9 50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851358.94 9851362.76 9851356.09 9851361.39 9851354.92 9851355.03 9851355.03 9851360.92 9851356.16 9851361.4 9851361.4 9851361.79 9851357.78 9851357.78 9851358.81 9851364.6	766417.308 766438.421 766437.922 766460.664 766459.743 766475.608 766475.608 766495.989 766495.421 766501.097 766501.21 766502.498 766504.126 766503.699 766509.415 766506.917 766511.575	2850.0072 2849.5978 2849.5586 2849.2669 2849.1744 2848.5753 2848.6076 2848.0339 2848.0869 2847.8491 2847.8336 2847.8217 2847.8272 2847.4771 2847.4736 2847.4642	VÍA
41 9 42 9 43 9 44 9 45 9 46 9 47 9 48 9 50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851356.09 9851361.39 9851354.92 9851355.03 9851355.03 9851360.92 9851356.16 9851361.4 9851361.4 9851361.79 9851357.78 9851363.45 9851358.81	766437.922 766460.664 766459.743 766476.466 766475.608 766495.989 766495.421 766501.097 766501.21 766502.498 766504.126 766503.699 766509.415 766506.917	2849.5586 2849.2669 2849.1744 2848.5753 2848.6076 2848.0339 2848.0869 2847.8491 2847.8336 2847.8217 2847.8272 2847.4771 2847.4736	VÍA
42 9 43 9 44 9 45 9 46 9 47 9 48 9 50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851361.39 9851354.92 9851355.03 9851355.03 9851360.92 9851356.16 9851361.26 9851356.43 9851361.4 9851356.78 9851361.79 9851357.78 9851363.45 9851358.81	766460.664 766459.743 766476.466 766475.608 766495.989 766495.421 766501.097 766501.21 766502.498 766504.126 766503.699 766509.415 766506.917	2849.2669 2849.1744 2848.5753 2848.6076 2848.0339 2848.0869 2847.8491 2847.8336 2847.8217 2847.8272 2847.4771 2847.4736	VÍA
43 9 44 9 45 9 46 9 47 9 48 9 50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851354.92 9851360.79 9851355.03 9851360.92 9851356.16 9851361.26 9851356.43 9851361.4 9851356.78 9851361.79 9851357.78 9851363.45 9851358.81	766459.743 766476.466 766475.608 766495.989 766495.421 766501.097 766501.21 766502.498 766504.126 766503.699 766509.415 766506.917	2849.1744 2848.5753 2848.6076 2848.0339 2848.0869 2847.8491 2847.8336 2847.8217 2847.8272 2847.4771 2847.4736	VÍA
44 9 45 9 46 9 47 9 48 9 50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851360.79 9851355.03 9851360.92 9851356.16 9851361.26 9851356.43 9851361.4 9851356.78 9851361.79 9851357.78 9851363.45 9851358.81	766476.466 766475.608 766495.989 766495.421 766501.097 766501.21 766502.498 766504.126 766503.699 766509.415 766506.917	2848.5753 2848.6076 2848.0339 2848.0869 2847.8491 2847.8336 2847.8217 2847.8272 2847.4771 2847.4736	VÍA
45 9 46 9 47 9 48 9 50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851355.03 9851360.92 9851356.16 9851361.26 9851356.43 9851361.4 9851356.78 9851361.79 9851357.78 9851363.45 9851358.81	766475.608 766495.989 766495.421 766501.097 766501.21 766502.498 766504.126 766503.699 766509.415 766506.917	2848.6076 2848.0339 2848.0869 2847.8491 2847.8336 2847.8217 2847.8272 2847.4771 2847.4736	VÍA
46 9 47 9 48 9 49 9 50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851360.92 9851356.16 9851361.26 9851356.43 9851361.4 9851356.78 9851357.78 9851363.45 9851358.81	766495.989 766495.421 766501.097 766501.21 766502.498 766504.126 766503.699 766509.415 766506.917	2848.0339 2848.0869 2847.8491 2847.8336 2847.8217 2847.8272 2847.4771 2847.4736	VÍA VÍA VÍA VÍA VÍA VÍA VÍA VÍA VÍA
47 9 48 9 49 9 50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851356.16 9851361.26 9851356.43 9851361.4 9851356.78 9851361.79 9851357.78 9851363.45 9851358.81	766495.421 766501.097 766501.21 766502.498 766504.126 766503.699 766509.415 766506.917	2848.0869 2847.8491 2847.8336 2847.8217 2847.8272 2847.4771 2847.4736	VÍA VÍA VÍA VÍA VÍA VÍA VÍA
48 9 49 9 50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851361.26 9851356.43 9851361.4 9851356.78 9851361.79 9851357.78 9851363.45 9851358.81	766501.097 766501.21 766502.498 766504.126 766503.699 766509.415 766506.917	2847.8491 2847.8336 2847.8217 2847.8272 2847.4771 2847.4736	VÍA VÍA VÍA VÍA VÍA VÍA
49 9 50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851356.43 9851361.4 9851356.78 9851361.79 9851357.78 9851363.45 9851358.81	766501.21 766502.498 766504.126 766503.699 766509.415 766506.917	2847.8336 2847.8217 2847.8272 2847.4771 2847.4736	VÍA VÍA VÍA VÍA
50 9 51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851361.4 9851356.78 9851361.79 9851357.78 9851363.45 9851358.81	766502.498 766504.126 766503.699 766509.415 766506.917	2847.8217 2847.8272 2847.4771 2847.4736	VÍA VÍA VÍA VÍA
51 9 52 9 53 9 54 9 55 9 56 9 57 9	9851356.78 9851361.79 9851357.78 9851363.45 9851358.81	766504.126 766503.699 766509.415 766506.917	2847.8272 2847.4771 2847.4736	VÍA VÍA VÍA
52 9 53 9 54 9 55 9 56 9 57 9	9851361.79 9851357.78 9851363.45 9851358.81	766503.699 766509.415 766506.917	2847.4771 2847.4736	VÍA VÍA
53 9 54 9 55 9 56 9 57 9	9851357.78 9851363.45 9851358.81	766509.415 766506.917	2847.4736	VÍA
54 9 55 9 56 9 57 9	9851363.45 9851358.81	766506.917		
55 9 56 9 57 9	9851358.81		2847.4642	T T .
56 9 57 9		766511.575		VÍA
57 9	9851364.6		2847.4633	VÍA
h		766508.579	2847.4575	VÍA
50 0	9851359.56	766512.189	2847.4563	VÍA
30 9	9851366.02	766509.517	2847.4434	VÍA
59	9851360.8	766512.972	2847.4433	VÍA
60 9	9851367.89	766509.944	2847.4333	VÍA
61 9	9851365.24	766513.679	2847.4386	VÍA
62 9	9851368.88	766509.854	2847.4278	VÍA
63	9851368.1	766514.214	2847.4265	VÍA
64 9	9851382.14	766511.465	2846.9943	VÍA
65 9	9851381.58	766515.844	2846.9678	VÍA
66	9851395.3	766511.678	2846.3994	VÍA
67 9	9851394.58	766517.446	2846.3614	VÍA
68 9	9851414.86	766512.858	2845.8166	VÍA
69	9851413.3	766519.438	2845.8512	VÍA
70 9	9851432.77	766514.262	2845.6653	VÍA
71 9	9851431.4	766521.307	2845.6321	VÍA
72 9	9851448.71	766514.211	2845.5139	VÍA
73 9	9851447.88	766521.107	2845.4129	VÍA
74 9	9851461.03	766514.68	2845.3826	VÍA
75	9851460.3	766521.466	2845.3245	VÍA
76 9	9851474.74	766514.404	2845.5145	VÍA
77 9	9851473.18	766521.99	2845.4558	VÍA
78 9	9851489.38	766513.691	2845.9818	VÍA
79 9	9851489.31	766520.407	2845.7112	VÍA

				1
80	9851492.15		2846.0324	POZO 2
81	9851502.81	766512.983	2846.4749	VÍA
82	9851501.25		2846.3579	VÍA
83	9851525.48	766513.886	2847.4413	VÍA
84	9851524.29	766520.449	2847.3458	VÍA
85	9851546.72	766513.475	2848.5468	VÍA
86	9851546.03	766520.607	2848.5428	VÍA
87	9851567.98	766513.552	2849.7472	VÍA
88	9851566.02	766520.57	2849.6782	VÍA
89	9851586.74	766512.62	2850.6221	VÍA
90	9851587.61	766521.2	2850.5958	VÍA
91	9851599.67	766512.728	2851.6751	VÍA
92	9851599.41	766520.958	2851.5388	VÍA
93	9851611.51	766513.11	2852.8118	VÍA
94	9851613.06	766521.068	2852.6709	VÍA
95	9851633.68	766513.725	2853.5404	VÍA
96	9851635.2	766520.668	2853.5647	VÍA
97	9851654.55	766508.212	2854.1966	VÍA
98	9851655.78	766516.113	2854.1668	VÍA
99	9851674.64	766503.037	2854.8535	VÍA
100	9851675.32	766510.356	2854.8546	VÍA
101	9851694.77	766498.286	2855.6204	VÍA
102	9851695.89	766505.893	2855.5918	VÍA
103	9851716.65	766492.268	2856.4278	VÍA
104	9851717.36	766499.435	2856.2053	VÍA
105	9851730.9	766487.441	2856.8579	VÍA
106	9851730.63	766494.758	2856.7488	VÍA
107	9851743.29	766485.933	2857.382	VÍA
108	9851744.1	766493.13	2857.2841	VÍA
109	9851764.77	766483.515	2857.823	VÍA
110	9851766.07	766490.286	2857.7382	VÍA
111	9851782	766478.848	2857.5633	VÍA
112	9851783.63	766485.225	2857.4802	VÍA
113	9851802.92	766471.753	2856.7769	VÍA
114	9851803.65	766478.16	2856.7154	VÍA
115	9851810.3	766469.55	2855.9728	VÍA
116	9851811.66	766476.54	2855.8541	VÍA
117	9851823.85	766466.769	2854.6813	VÍA
118	9851824.97	766473.704	2854.8085	VÍA
119	9851844.17	766462.1	2853.6035	VÍA
120	9851845.25	766469.212	2853.6597	VÍA

121					
123 9851864.39 766458.637 2851.7468 VÍA 124 9851865.29 766465.016 2851.8215 VÍA 125 9851884.7 766455.094 2850.8587 VÍA 126 9851885.54 766462.043 2850.8615 VÍA 127 9851903.55 766451.858 2850.1038 VÍA 128 9851904.24 766458.668 2850.0825 VÍA 129 9851909.12 766450.24 2849.541 VÍA 130 9851909.08 766457.24 2849.4821 VÍA 131 9851921.55 766447.29 2849.3622 VÍA 132 9851922.02 766457.24 2849.4821 VÍA 133 9851941.86 766447.79 2848.0859 VÍA 133 9851941.86 766447.77 2848.0859 VÍA 135 9851961.46 766441.03 2847.8532 VÍA 135 9851961.46 766441.03 2847.8532 VÍA 136 9851962.54 766443.04 2847.8241 VÍA 137 9851979.29 766436.573 2847.7667 VÍA 138 9851980.49 766433.067 2847.5156 VÍA 140 9851993.42 766433.067 2847.5156 VÍA 141 9851993.33 766441.31 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852002.12 766439.57 2846.7975 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852032.56 766429.78 2846.7975 VÍA 146 9852032.67 766431.616 2845.1338 VÍA 147 985203.82 766427.378 2846.0825 VÍA 149 9852002.17 766421.246 2845.1021 VÍA 149 9852040.7 766421.246 2845.1021 VÍA 149 9852040.7 766421.246 2845.1938 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766411.151 2842.8517 VÍA 152 9852062 766421.278 2845.1021 VÍA 153 9852061.14 766411.151 2842.8517 VÍA 153 9852062.7 766421.246 2843.9593 VÍA 154 9852082.07 766421.246 2843.9593 VÍA 155 9852062 766421.278 2842.8366 VÍA 155 9852062.7 766398.288 2840.6191 VÍA 155 9852102.82 766398.288 2840.6191 VÍA 159 9852141.1 766398.	121	9851855.08	766460.47	2852.6776	VÍA
124 9851865.29 766465.016 2851.8215 VÍA 125 9851884.7 766455.094 2850.8587 VÍA 126 9851885.54 766462.043 2850.8615 VÍA 127 9851903.55 766451.858 2850.1038 VÍA 128 9851904.24 766458.668 2850.0825 VÍA 129 9851909.12 766450.24 2849.541 VÍA 130 9851909.08 766457.24 2849.4821 VÍA 131 9851921.55 766447.29 2849.3279 VÍA 132 9851922.02 766454.759 2849.3279 VÍA 133 9851941.86 766447.72 2848.0859 VÍA 134 9851942.73 766451.127 2848.0045 VÍA 135 9851961.46 766441.03 2847.8532 VÍA 136 9851962.54 766448.304 2847.8532 VÍA 137 9851979.29 766436.573 2847.7667 VÍA 137 9851980.49 766443.913 2847.7588 VÍA 139 9851993.42 766430.673 2847.7588 VÍA 140 9851993.42 766430.673 2847.5156 VÍA 141 9851993.37 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.7975 VÍA 145 9852002.12 766437.902 2846.798 VÍA 146 985201.76 766431.408 2846.103 VÍA 147 985203.82 766421.378 2846.0825 VÍA 149 985203.82 766424.827 2845.1021 VÍA 149 985203.82 766421.246 2845.1338 VÍA 149 9852040.7 766421.246 2845.1338 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766411.151 2842.8517 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2845.0513 VÍA 155 9852062.9 766406.805 2841.859 VÍA 156 985202.28 766405.875 2840.6191 VÍA 157 985210.98 766398.288 2840.6191 VÍA 159 985210.98 766398.288 2840.6191 VÍA 159 9852141.1 766398.2	122	9851855.87	766466.45	2852.7393	VÍA
125	123	9851864.39	766458.637	2851.7468	VÍA
126	124	9851865.29	766465.016	2851.8215	VÍA
127 9851903.55 766451.858 2850.1038 VÍA 128 9851904.24 766458.668 2850.0825 VÍA 129 9851909.12 766450.24 2849.541 VÍA 130 9851909.08 766457.24 2849.4821 VÍA 131 9851921.55 766447.29 2849.3622 VÍA 132 9851922.02 766454.759 2849.3279 VÍA 133 9851941.86 766444.077 2848.0859 VÍA 134 9851942.73 766451.127 2848.0045 VÍA 135 9851961.46 766441.03 2847.8532 VÍA 136 9851962.54 766448.304 2847.8532 VÍA 137 9851979.29 766436.573 2847.7588 VÍA 138 9851993.42 766433.067 2847.5156 VÍA 139 9851993.42 766436.3067 2847.5156 VÍA 140 9851995.25 766440.616 2847.4442 VÍA 141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.7975 VÍA 145 985202.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 985203.82 766424.827 2845.1021 VÍA 148 985201.76 766434.408 2846.103 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766421.278 2842.8366 VÍA 151 985208.04 766421.278 2842.8366 VÍA 153 985208.09 766496.805 2841.859 VÍA 154 985208.04 766441.081 2842.8517 VÍA 155 985208.04 766496.805 2841.859 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 985210.95 766398.288 2840.6191 VÍA 158 985210.95 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.2817 VÍA 159 9852141.1 766383.294 2840.2817 VÍA 160 9852142.67 766390.759 2840.2817 VÍA 160 9852142.67 76639	125	9851884.7	766455.094	2850.8587	VÍA
128 9851904.24 766458.668 2850.0825 VÍA 129 9851909.12 766450.24 2849.541 VÍA 130 9851909.08 766457.24 2849.4821 VÍA 131 9851921.55 766447.29 2849.3622 VÍA 132 9851922.02 766454.759 2849.3279 VÍA 133 9851941.86 766444.077 2848.0859 VÍA 134 9851942.73 766451.127 2848.0045 VÍA 135 9851961.46 766441.03 2847.8532 VÍA 136 9851962.54 766448.304 2847.8241 VÍA 137 9851979.29 766436.573 2847.7667 VÍA 138 9851980.49 766436.3067 2847.5156 VÍA 139 9851993.42 766433.067 2847.5156 VÍA 140 9851993.42 766433.067 2847.5156 VÍA 141 9851993.72 766431.34 2846.9834 VÍA 141	126	9851885.54	766462.043	2850.8615	VÍA
129	127	9851903.55	766451.858	2850.1038	VÍA
130	128	9851904.24	766458.668	2850.0825	VÍA
131 9851921.55 766447.29 2849.3622 VÍA 132 9851922.02 766454.759 2849.3279 VÍA 133 9851941.86 766444.077 2848.0859 VÍA 134 9851942.73 766451.127 2848.0045 VÍA 135 9851961.46 766441.03 2847.8532 VÍA 136 9851962.54 766448.304 2847.8241 VÍA 137 9851979.29 766436.573 2847.7667 VÍA 138 9851980.49 766443.913 2847.7588 VÍA 139 9851993.42 766433.067 2847.5156 VÍA 140 9851995.25 766440.616 2847.4442 VÍA 141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852002.12 766429.78 2846.798 VÍA 144 9852002.23 766427.378 2846.0825 VÍA 145	129	9851909.12	766450.24	2849.541	VÍA
132 9851922.02 766454.759 2849.3279 VÍA 133 9851941.86 766444.077 2848.0859 VÍA 134 9851942.73 766451.127 2848.0045 VÍA 135 9851961.46 766441.03 2847.8532 VÍA 136 9851962.54 766448.304 2847.8241 VÍA 137 9851979.29 766436.573 2847.7667 VÍA 138 9851980.49 766436.573 2847.7588 VÍA 139 9851993.42 766433.067 2847.5156 VÍA 140 9851995.25 766440.616 2847.4442 VÍA 141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.798 VÍA 144 9852002.23 766427.378 2846.0825 VÍA 145 9852030.82 766424.827 2845.1021 VÍA 148	130	9851909.08	766457.24	2849.4821	VÍA
133 9851941.86 766444.077 2848.0859 VÍA 134 9851942.73 766451.127 2848.0045 VÍA 135 9851961.46 766441.03 2847.8532 VÍA 136 9851962.54 766448.304 2847.8241 VÍA 137 9851979.29 766436.573 2847.7667 VÍA 138 9851979.29 766436.573 2847.7588 VÍA 139 9851980.49 766443.913 2847.7588 VÍA 140 9851993.42 766433.067 2847.5156 VÍA 140 9851995.25 766443.913 2847.75156 VÍA 141 9851993.3 766431.34 2846.9834 VÍA 141 9851993.3 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.7975 VÍA 144 9852007.9 766427.378 2846.0825 VÍA 145	131	9851921.55	766447.29	2849.3622	VÍA
134 9851942.73 766451.127 2848.0045 VÍA 135 9851961.46 766441.03 2847.8532 VÍA 136 9851962.54 766448.304 2847.8241 VÍA 137 9851979.29 766436.573 2847.7667 VÍA 138 9851980.49 766433.067 2847.5156 VÍA 139 9851993.42 766433.067 2847.5156 VÍA 140 9851995.25 766440.616 2847.4442 VÍA 141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 98520002.12 766437.902 2846.798 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852020.23 766427.378 2846.0825 VÍA 146 9852032.82 766424.827 2845.1021 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148	132	9851922.02	766454.759	2849.3279	VÍA
135 9851961.46 766441.03 2847.8532 VÍA 136 9851962.54 766448.304 2847.8241 VÍA 137 9851979.29 766436.573 2847.7667 VÍA 138 9851980.49 766443.913 2847.7588 VÍA 139 9851993.42 766433.067 2847.5156 VÍA 140 9851995.25 766440.616 2847.4442 VÍA 141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.7975 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852002.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852040.7 766421.246 2843.9593 VÍA 150	133	9851941.86	766444.077	2848.0859	VÍA
136 9851962.54 766448.304 2847.8241 VÍA 137 9851979.29 766436.573 2847.7667 VÍA 138 9851980.49 766443.913 2847.7588 VÍA 139 9851993.42 766433.067 2847.5156 VÍA 140 9851995.25 766440.616 2847.4442 VÍA 141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.795 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852020.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766431.616 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150	134	9851942.73	766451.127	2848.0045	VÍA
137 9851979.29 766436.573 2847.7667 VÍA 138 9851980.49 766443.913 2847.7588 VÍA 139 9851993.42 766433.067 2847.5156 VÍA 140 9851995.25 766440.616 2847.4442 VÍA 141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.7975 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852020.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852032.56 766421.348 2845.1021 VÍA 148 9852032.56 766421.246 2843.9593 VÍA 149 9852040.7 766428.527 2843.9819 VÍA 150 9852061.14 766414.015 2842.8517 VÍA 152	135	9851961.46	766441.03	2847.8532	VÍA
138 9851980.49 766443.913 2847.7588 VÍA 139 9851993.42 766433.067 2847.5156 VÍA 140 9851995.25 766440.616 2847.4442 VÍA 141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.795 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852020.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766431.616 2845.1338 VÍA 149 9852040.7 766428.527 2843.9819 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852062 766421.278 2842.8366 VÍA 152	136	9851962.54	766448.304	2847.8241	VÍA
139 9851993.42 766433.067 2847.5156 VÍA 140 9851995.25 766440.616 2847.4442 VÍA 141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.7975 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852020.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766431.616 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852062 766421.278 2842.8517 VÍA 152 9852062 766406.805 2841.859 VÍA 153 <td< td=""><td>137</td><td>9851979.29</td><td>766436.573</td><td>2847.7667</td><td>VÍA</td></td<>	137	9851979.29	766436.573	2847.7667	VÍA
140 9851995.25 766440.616 2847.4442 VÍA 141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.7975 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852020.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766431.616 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8366 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154	138	9851980.49	766443.913	2847.7588	VÍA
141 9851999.33 766431.34 2846.9834 VÍA 142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.7975 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852020.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766431.616 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2840.9513 VÍA 156	139	9851993.42	766433.067	2847.5156	VÍA
142 9852002.12 766439.57 2846.4527 VÍA 143 9852006.82 766429.78 2846.7975 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852020.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766431.616 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.859 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156	140	9851995.25	766440.616	2847.4442	VÍA
143 9852006.82 766429.78 2846.7975 VÍA 144 9852007.49 766437.902 2846.798 VÍA 145 9852020.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766421.827 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852110.94 766391.112 2840.5318 VÍA 158	141	9851999.33	766431.34	2846.9834	VÍA
144 9852007.49 766437.902 2846.798 VÍA 145 9852020.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766421.616 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158	142	9852002.12	766439.57	2846.4527	VÍA
145 9852020.23 766427.378 2846.0825 VÍA 146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766421.616 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159	143	9852006.82	766429.78	2846.7975	VÍA
146 9852021.76 766434.408 2846.103 VÍA 147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766431.616 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160	144	9852007.49	766437.902	2846.798	VÍA
147 9852030.82 766424.827 2845.1021 VÍA 148 9852032.56 766431.616 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852082 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	145	9852020.23	766427.378	2846.0825	VÍA
148 9852032.56 766431.616 2845.1338 VÍA 149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	146	9852021.76	766434.408	2846.103	VÍA
149 9852040.7 766421.246 2843.9593 VÍA 150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	147	9852030.82	766424.827	2845.1021	VÍA
150 9852041.97 766428.527 2843.9819 VÍA 151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	148	9852032.56	766431.616	2845.1338	
151 9852061.14 766414.151 2842.8517 VÍA 152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	149	9852040.7	766421.246	2843.9593	VÍA
152 9852062 766421.278 2842.8366 VÍA 153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	150	9852041.97	766428.527	2843.9819	VÍA
153 9852080.92 766406.805 2841.859 VÍA 154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	151	9852061.14	766414.151	2842.8517	VÍA
154 9852082.04 766414.081 2841.8651 VÍA 155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	152	9852062	766421.278	2842.8366	VÍA
155 9852100.95 766398.485 2840.9513 VÍA 156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	153	9852080.92	766406.805	2841.859	
156 9852102.82 766405.474 2840.9564 VÍA 157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	154	9852082.04	766414.081	2841.8651	VÍA
157 9852119.94 766391.112 2840.5318 VÍA 158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	155	9852100.95	766398.485	2840.9513	VÍA
158 9852120.91 766398.288 2840.6191 VÍA 159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	156	9852102.82	766405.474	2840.9564	VÍA
159 9852141.1 766383.294 2840.1082 VÍA 160 9852142.67 766390.759 2840.2817 VÍA	157	9852119.94	766391.112	2840.5318	VÍA
160 9852142.67 766390.759 2840.2817 VÍA	158	9852120.91	766398.288	2840.6191	VÍA
	159	9852141.1	766383.294	2840.1082	VÍA
161 9852161.24 766375.146 2839.1015 VÍA	160	9852142.67	766390.759	2840.2817	
	161	9852161.24	766375.146	2839.1015	VÍA

163 164 165 166 167 168 169	9852163.63 9852179.9 9852181.86 9852199.77 9852202.52 9852218.09 9852220.57 9852227.63	766382.537 766366.959 766373.917 766358.626 766365.091 766348.697	2839.092 2837.7367 2837.7285 2834.9497 2834.9778	VÍA VÍA VÍA VÍA
164 165 166 167 168 169	9852181.86 9852199.77 9852202.52 9852218.09 9852220.57	766373.917 766358.626 766365.091	2837.7285 2834.9497	VÍA VÍA
165 166 167 168 169	9852199.77 9852202.52 9852218.09 9852220.57	766358.626 766365.091	2834.9497	VÍA
166 167 168 169	9852202.52 9852218.09 9852220.57	766365.091		
167 168 169	9852218.09 9852220.57		2834.9778	7.7f A
168 169	9852220.57	766348.697		VÍA
169			2833.071	VÍA
-	0852227 63	766356.08	2833.1139	VÍA
170	9632221.03	766343.97	2831.1733	VÍA
	9852229.44	766350.852	2831.2243	VÍA
171	9852240.6	766337.342	2830.7194	VÍA
172	9852244.31	766343.624	2830.6847	VÍA
173	9852242	766339.776	2830.7189	POZO 3
174	9852003.93	766441.93	2845.1859	VÍA
175	9852000.52	766446.02	2845.3284	VÍA
176	9852002.76	766448.093	2845.1466	VÍA
177	9852005.33	766443.875	2845.1259	VÍA
178	9852011.02	766459.654	2844.3442	VÍA
179	9852014.49	766457.744	2844.3777	VÍA
180	9852016.05	766470.981	2843.3817	VÍA
181	9852019.77	766470.723	2843.3772	VÍA
182	9852021.53	766483.526	2842.1077	VÍA
183	9852024.83	766482.14	2842.1441	VÍA
184	9852027.98	766498.771	2840.9553	VÍA
185	9852031.27	766497.385	2840.89	VÍA
186	9852037.3	766518.898	2839.8536	VÍA
187	9852040.64	766517.394	2839.7585	VÍA
188	9852047.34	766539.482	2838.4513	VÍA
189	9852051.27	766538.303	2838.3822	VÍA
190	9852056.43	766558.101	2837.0322	VÍA
191	9852060.15	766557.017	2837.0128	VÍA
192	9852065.26	766578.637	2835.8502	VÍA
193	9852069.23	766576.965	2835.5929	VÍA
194	9852073.38	766596.266	2834.4903	VÍA
195	9852076.93	766594.88	2834.4394	VÍA
196	9852080	766616.238	2833.5495	VÍA
197	9852084.15	766615.342	2833.4825	VÍA
198	9852086.03	766638.241	2832.8161	VÍA
199	9852090.11	766637.266	2832.6993	VÍA
200	9852093.04	766658.997	2831.9566	VÍA
201	9852096.18	766657.795	2831.8392	VÍA
202	9852097.53	766676.826	2830.3489	VÍA

203	9852100.63	766676.12	2830.2289	VÍA
204	9852104.37	766695.899	2828.6302	VÍA
205	9852107.56	766694.968	2828.6574	VÍA
206	9852109	766709.937	2826.9182	VÍA
207	9852113.1	766708.746	2826.8145	VÍA
208	9852115.49	766731.399	2825.1472	VÍA
209	9852118.98	766730.535	2825.1287	VÍA
210	9852122.56	766749.455	2823.4663	VÍA
211	9852125.72	766748.378	2823.4198	VÍA
212	9852129.67	766767.982	2821.8832	VÍA
213	9852132.44	766767.077	2821.9041	VÍA
214	9852134.92	766787.132	2820.3244	VÍA
215	9852138.54	766786.171	2820.2254	VÍA
216	9852141.39	766808.918	2818.8561	VÍA
217	9852145.84	766807.543	2818.7582	VÍA
218	9852147.94	766828.905	2817.2823	VÍA
219	9852152.11	766827.768	2817.3826	VÍA
220	9852155.82	766850.62	2815.0481	VÍA
221	9852159.48	766849.476	2815.0116	VÍA
222	9852162.76	766871.49	2812.6097	VÍA
223	9852167.75	766869.99	2812.4517	VÍA
224	9852168.46	766892.766	2810.1564	VÍA
225	9852172.67	766891.758	2810.0262	VÍA
226	9852172.96	766911.997	2807.7735	VÍA
227	9852177.2	766911.089	2807.6536	VÍA
228	9852177.55	766928.189	2805.3018	VÍA
229	9852181.51	766927.293	2805.1949	VÍA
230	9852180.81	766948.018	2802.5735	VÍA
231	9852185.35	766947.309	2802.5175	VÍA
232	9852183.86	766965.655	2800.2121	VÍA
233	9852188.13	766964.555	2800.0105	VÍA
234	9852190.84	766986.271	2797.4318	VÍA
235	9852195.39	766985.048	2797.2493	VÍA
236	9852199.14	767006.361	2795.2463	VÍA
237	9852203.35	767004.29	2795.1089	VÍA
238	9852211.16	767028.804	2793.2467	VÍA
239	9852215.16	767026.543	2793.1784	VÍA
240	9852220.76	767048.693	2791.1347	VÍA
241	9852224.93	767046.894	2791.0789	VÍA
242	9852232.29	767069.345	2789.2863	VÍA
243	9852235.92	767068.126	2789.1877	VÍA

244 9852243.9 767089.697 2787.4075 VÍA 245 9852247.13 767088.193 2787.3423 VÍA 246 9852253.19 767106.792 2785.4763 VÍA 247 9852256.28 767105.188 2785.423 VÍA 248 9852268.1 767126.366 2782.5321 VÍA 250 9852268.2 767136.638 2779.91 VÍA 251 9852272.08 767136.638 2779.91 VÍA 251 9852272.2 767143.21 2774.3854 VÍA 253 9852276.64 767139.921 2774.2922 VÍA 254 9852278.45 767141.784 2773.3658 VÍA 255 9852278.45 767141.784 2773.3445 VÍA 255 9852278.45 767142.732 2772.4016 VÍA 255 9852288.51 767142.732 2772.4016 VÍA 256 9852284.88 767147.236 2771.1459 VÍA 259					
246 9852253.19 767106.792 2785.4763 VÍA 247 9852256.28 767105.188 2785.423 VÍA 248 9852264.62 767128.092 2782.723 VÍA 249 9852268.1 767126.366 2782.5321 VÍA 250 9852268.2 767133.638 2779.91 VÍA 251 9852272.08 767133.686 2779.6012 VÍA 252 9852272.2 767143.21 2774.3854 VÍA 253 9852276.64 767139.921 2774.3854 VÍA 254 9852275.46 767145.86 2773.3658 VÍA 255 9852275.46 767145.86 2773.3445 VÍA 256 9852279.53 767142.732 2772.4016 VÍA 257 9852280.51 767142.732 2771.1459 VÍA 258 9852284.88 767147.659 2771.1459 VÍA 260 9852295.9 767142.365 2771.1951 VÍA 261 <	244	9852243.9	767089.697	2787.4075	VÍA
247 9852256.28 767105.188 2785.423 VÍA 248 9852264.62 767128.092 2782.723 VÍA 249 9852268.1 767126.366 2782.5321 VÍA 250 9852268.62 767136.638 2779.91 VÍA 251 9852272.08 767136.686 2779.6012 VÍA 252 9852272.2 767143.21 2774.3854 VÍA 253 9852275.46 767139.921 2774.2922 VÍA 254 9852275.46 767145.86 2773.3658 VÍA 255 9852276.45 767145.86 2773.3455 VÍA 256 9852279.53 767142.732 2772.3183 VÍA 257 9852280.51 767142.732 2771.1459 VÍA 258 9852284.88 767147.659 2771.1459 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 9852318.04 767132.018 2769.9208 VÍA 262	245	9852247.13	767088.193	2787.3423	VÍA
248 9852264.62 767128.092 2782.723 VÍA 249 9852268.1 767126.366 2782.5321 VÍA 250 9852268.62 767136.638 2779.91 VÍA 251 9852272.08 767133.686 2779.6012 VÍA 252 9852272.2 767143.21 2774.3854 VÍA 253 9852276.64 767139.921 2774.3922 VÍA 254 9852275.46 767145.86 2773.3658 VÍA 255 9852278.45 767141.784 2773.445 VÍA 256 9852279.53 767142.732 2772.3183 VÍA 257 9852280.51 767142.732 2772.1416 VÍA 258 9852284.58 767147.059 2771.1459 VÍA 259 9852284.55 767142.365 2771.1951 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 9852318.04 767139.595 2770.326 VÍA 262	246	9852253.19	767106.792	2785.4763	VÍA
249 9852268.1 767126.366 2782.5321 VÍA 250 9852268.62 767136.638 2779.91 VÍA 251 9852272.08 767133.686 2779.6012 VÍA 252 9852272.2 767143.21 2774.3854 VÍA 253 9852276.64 767145.86 2773.3658 VÍA 254 9852275.46 767145.86 2773.3658 VÍA 255 9852278.45 767141.784 2773.445 VÍA 256 9852280.51 767142.732 2772.3183 VÍA 257 9852284.85 767142.732 2772.4016 VÍA 258 9852284.85 767142.365 2771.1459 VÍA 259 9852284.55 767142.365 2771.1459 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 98522318.04 767139.595 2770.326 VÍA 262 9852318.04 767127.779 2769.9208 VÍA 263	247	9852256.28	767105.188	2785.423	VÍA
250 9852268.62 767136.638 2779.91 VÍA 251 9852272.08 767133.686 2779.6012 VÍA 252 9852272.2 767143.21 2774.3854 VÍA 253 9852276.64 767145.86 2773.3658 VÍA 254 9852275.46 767145.86 2773.3658 VÍA 255 9852278.45 767141.784 2773.445 VÍA 256 9852279.53 767148.269 2772.3183 VÍA 257 9852280.51 767142.732 2772.4016 VÍA 258 9852284.88 767147.659 2771.1459 VÍA 259 9852284.55 767142.365 2771.1951 VÍA 260 9852293.96 767143.9595 2770.2747 VÍA 261 98522318.04 767139.595 2770.326 VÍA 262 9852318.04 767139.595 2770.326 VÍA 263 9852318.04 767120.528 2769.6785 VÍA 264	248	9852264.62	767128.092	2782.723	VÍA
251 9852272.08 767133.686 2779.6012 VÍA 252 9852272.2 767143.21 2774.3854 VÍA 253 9852276.64 767139.921 2774.2922 VÍA 254 9852275.46 767145.86 2773.3658 VÍA 255 9852278.45 767141.784 2773.445 VÍA 256 9852279.53 767142.732 2772.3183 VÍA 257 9852280.51 767142.732 2772.4016 VÍA 258 9852284.88 767147.365 2771.1459 VÍA 259 9852284.55 767142.365 2771.1951 VÍA 260 9852293.96 767143.9595 2770.2747 VÍA 261 9852293.96 767139.595 2770.326 VÍA 262 9852318.04 767139.595 2770.326 VÍA 263 9852318.04 767139.595 2770.326 VÍA 264 9852338.03 767120.528 2769.6785 VÍA 265	249	9852268.1	767126.366	2782.5321	VÍA
252 9852272.2 767143.21 2774.3854 VÍA 253 9852276.64 767139.921 2774.2922 VÍA 254 9852275.46 767145.86 2773.3658 VÍA 255 9852278.45 767141.784 2773.445 VÍA 256 9852279.53 767142.732 2772.3183 VÍA 257 9852280.51 767142.732 2772.4016 VÍA 258 9852284.88 767147.659 2771.1459 VÍA 259 9852284.55 767142.365 2771.1951 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 9852293.96 767139.595 2770.326 VÍA 262 9852318.04 767132.018 2769.9208 VÍA 263 9852315.95 767127.779 2769.9208 VÍA 264 9852338.03 767116.515 2769.65 VÍA 265 9852381.72 767105.47 2768.9381 VÍA 266	250	9852268.62	767136.638	2779.91	VÍA
253 9852276.64 767139.921 2774.2922 VÍA 254 9852275.46 767145.86 2773.3658 VÍA 255 9852278.45 767141.784 2773.445 VÍA 256 9852279.53 767148.269 2772.3183 VÍA 257 9852280.51 767142.732 2772.4016 VÍA 258 9852284.88 767147.659 2771.1459 VÍA 259 9852284.55 767142.365 2771.1951 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 9852293.96 767139.595 2770.326 VÍA 261 9852293.96 767132.018 2769.9465 VÍA 262 9852318.04 767132.018 2769.9208 VÍA 263 98523315.95 767127.779 2769.9208 VÍA 264 9852338.03 767110.528 2769.65 VÍA 265 9852338.03 767109.24 2768.9381 VÍA 266	251	9852272.08	767133.686	2779.6012	VÍA
254 9852275.46 767145.86 2773.3658 VÍA 255 9852278.45 767141.784 2773.445 VÍA 256 9852279.53 767148.269 2772.3183 VÍA 257 9852280.51 767142.732 2772.4016 VÍA 258 9852284.88 767147.659 2771.1459 VÍA 259 9852284.55 767142.365 2771.1951 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 9852293.96 767139.595 2770.326 VÍA 262 9852318.04 767132.018 2769.9465 VÍA 263 9852315.95 767127.779 2769.9208 VÍA 264 9852339.82 767120.528 2769.6785 VÍA 265 9852338.03 7671105.47 2768.9381 VÍA 266 9852363.59 767109.244 2768.9381 VÍA 269 9852384.05 767095.21 2768.5234 VÍA 269	252	9852272.2	767143.21	2774.3854	VÍA
255 9852278.45 767141.784 2773.445 VÍA 256 9852279.53 767148.269 2772.3183 VÍA 257 9852280.51 767142.732 2772.4016 VÍA 258 9852284.88 767147.659 2771.1459 VÍA 259 9852284.55 767142.365 2771.1951 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 9852293.96 767139.595 2770.326 VÍA 262 9852318.04 767132.018 2769.9465 VÍA 263 9852315.95 767127.779 2769.9208 VÍA 264 9852339.82 767127.779 2769.9208 VÍA 265 9852338.03 767116.515 2769.65 VÍA 266 9852338.03 7671105.47 2768.9381 VÍA 267 9852361.72 767105.47 2768.9381 VÍA 269 9852382.42 767095.21 2768.5206 VÍA 270	253	9852276.64	767139.921	2774.2922	VÍA
256 9852279.53 767148.269 2772.3183 VÍA 257 9852280.51 767142.732 2772.4016 VÍA 258 9852284.88 767147.659 2771.1459 VÍA 259 9852284.55 767142.365 2771.1951 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 9852293.96 767139.595 2770.326 VÍA 262 9852318.04 767132.018 2769.9465 VÍA 263 9852315.95 767127.779 2769.9208 VÍA 264 9852339.82 767120.528 2769.6785 VÍA 265 9852338.03 767116.515 2769.65 VÍA 266 9852361.72 767109.224 2768.9709 VÍA 267 9852381.05 767099.866 2768.5234 VÍA 268 9852382.42 767099.866 2768.5206 VÍA 270 9852389.99 767098.208 2768.3698 VÍA 271	254	9852275.46	767145.86	2773.3658	VÍA
257 9852280.51 767142.732 2772.4016 VÍA 258 9852284.88 767147.659 2771.1459 VÍA 259 9852284.55 767142.365 2771.1951 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 9852293.96 767139.595 2770.326 VÍA 262 9852318.04 767132.018 2769.9465 VÍA 263 9852315.95 767127.779 2769.9208 VÍA 264 9852339.82 767120.528 2769.6785 VÍA 265 9852338.03 767116.515 2769.65 VÍA 266 9852363.59 767109.224 2768.9709 VÍA 267 9852381.0 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852389.99 767098.208 2768.5206 VÍA 270 9852389.90 767097.911 2768.1296 VÍA 271	255	9852278.45	767141.784	2773.445	VÍA
258 9852284.88 767147.659 2771.1459 VÍA 259 9852284.55 767142.365 2771.1951 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 9852293.96 767139.595 2770.326 VÍA 262 9852318.04 767132.018 2769.9465 VÍA 263 9852315.95 767127.779 2769.9208 VÍA 264 9852339.82 767120.528 2769.6785 VÍA 265 9852338.03 767116.515 2769.65 VÍA 266 9852363.59 767109.224 2768.9381 VÍA 267 9852361.72 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852382.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3698 VÍA 271 9852397.16 767097.011 2768.1296 VÍA 272	256	9852279.53	767148.269	2772.3183	VÍA
259 9852284.55 767142.365 2771.1951 VÍA 260 9852295.9 767145.446 2770.2747 VÍA 261 9852293.96 767139.595 2770.326 VÍA 262 9852318.04 767132.018 2769.9465 VÍA 263 9852315.95 767127.779 2769.9208 VÍA 264 9852339.82 767120.528 2769.6785 VÍA 265 9852338.03 767116.515 2769.65 VÍA 266 9852363.59 767109.224 2768.9709 VÍA 267 9852361.72 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852382.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3698 VÍA 271 9852399.39 767093.087 2768.0288 VÍA 272 9852397.16 767097.011 2768.0288 VÍA 273	257	9852280.51	767142.732	2772.4016	VÍA
260 9852295.9 767145.446 2770.2747 VÍA 261 9852293.96 767139.595 2770.326 VÍA 262 9852318.04 767132.018 2769.9465 VÍA 263 9852315.95 767127.779 2769.9208 VÍA 264 9852339.82 767120.528 2769.6785 VÍA 265 9852338.03 767116.515 2769.65 VÍA 266 9852363.59 767109.224 2768.9709 VÍA 267 9852361.72 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852389.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3698 VÍA 271 9852389.06 767093.987 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397.7 767093.027 2768.0288 VÍA 274	258	9852284.88	767147.659	2771.1459	VÍA
261 9852293.96 767139.595 2770.326 VÍA 262 9852318.04 767132.018 2769.9465 VÍA 263 9852315.95 767127.779 2769.9208 VÍA 264 9852339.82 767120.528 2769.6785 VÍA 265 9852338.03 767116.515 2769.65 VÍA 266 9852363.59 767109.224 2768.9709 VÍA 267 9852361.72 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852389.99 767099.806 2768.3012 VÍA 270 9852389.99 767098.208 2768.3698 VÍA 271 9852389.99 767093.987 2768.3698 VÍA 272 9852389.16 767097.011 2768.1296 VÍA 273 9852397.16 767097.011 2768.0288 VÍA 274 9852399.39 767092.745 2767.9318 VÍA 275	259	9852284.55	767142.365	2771.1951	VÍA
262 9852318.04 767132.018 2769.9465 VÍA 263 9852315.95 767127.779 2769.9208 VÍA 264 9852339.82 767120.528 2769.6785 VÍA 265 9852338.03 767116.515 2769.65 VÍA 266 9852363.59 767109.224 2768.9709 VÍA 267 9852361.72 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852382.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3698 VÍA 271 9852389.06 767093.987 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9403 VÍA 275 9852399.39 767092.745 2767.8911 VÍA 276	260	9852295.9	767145.446	2770.2747	VÍA
263 9852315.95 767127.779 2769.9208 VÍA 264 9852339.82 767120.528 2769.6785 VÍA 265 9852338.03 767116.515 2769.65 VÍA 266 9852363.59 767109.224 2768.9709 VÍA 267 9852361.72 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852382.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3012 VÍA 271 9852389.06 767093.987 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8802 VÍA 278	261	9852293.96	767139.595	2770.326	VÍA
264 9852339.82 767120.528 2769.6785 VÍA 265 9852338.03 767116.515 2769.65 VÍA 266 9852363.59 767109.224 2768.9709 VÍA 267 9852361.72 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852382.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3012 VÍA 271 9852389.06 767093.987 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 278 9852405.64 767095.763 2767.7884 VÍA 279	262	9852318.04	767132.018	2769.9465	VÍA
265 9852338.03 767116.515 2769.65 VÍA 266 9852363.59 767109.224 2768.9709 VÍA 267 9852361.72 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852382.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3012 VÍA 271 9852389.99 767098.208 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397.16 767093.027 2768.0288 VÍA 274 9852399.51 767093.027 2768.0288 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 276 9852405.64 767095.763 2767.8802 VÍA 279 9852411.37 767095.763 2767.7557 VÍA 280	263	9852315.95	767127.779	2769.9208	VÍA
266 9852363.59 767109.224 2768.9709 VÍA 267 9852361.72 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852382.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3698 VÍA 271 9852389.06 767093.987 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 276 9852405.64 767091.836 2767.7884 VÍA 279 9852411.37 767091.257 2767.8802 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281	264	9852339.82	767120.528	2769.6785	VÍA
267 9852361.72 767105.47 2768.9381 VÍA 268 9852384.05 767099.866 2768.5234 VÍA 269 9852382.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3012 VÍA 271 9852389.06 767093.987 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281	265	9852338.03	767116.515	2769.65	VÍA
268 9852384.05 767099.866 2768.5234 VÍA 269 9852382.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3012 VÍA 271 9852389.06 767093.987 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852421.02 767100.981 2767.813 VÍA 282	266	9852363.59	767109.224	2768.9709	VÍA
269 9852382.42 767095.21 2768.5206 VÍA 270 9852389.99 767098.208 2768.3012 VÍA 271 9852389.06 767093.987 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.7438 VÍA 283	267	9852361.72	767105.47	2768.9381	VÍA
270 9852389.99 767098.208 2768.3012 VÍA 271 9852389.06 767093.987 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.7438 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	268	9852384.05	767099.866	2768.5234	VÍA
271 9852389.06 767093.987 2768.3698 VÍA 272 9852397.16 767097.011 2768.1296 VÍA 273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	269	9852382.42	767095.21	2768.5206	VÍA
272 9852397.16 767097.011 2768.1296 VÍA 273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	270	9852389.99	767098.208	2768.3012	
273 9852397 767093.027 2768.0288 VÍA 274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	271	9852389.06	767093.987	2768.3698	
274 9852399.51 767096.83 2767.9318 VÍA 275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	272	9852397.16	767097.011	2768.1296	VÍA
275 9852399.39 767092.745 2767.9403 VÍA 276 9852405.46 767095.792 2767.8911 VÍA 277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	273	9852397	767093.027	2768.0288	VÍA
276 9852405.46 767095.792 2767.8911 VÍA 277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	274	9852399.51	767096.83	2767.9318	
277 9852405.64 767091.836 2767.7884 VÍA 278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	275	9852399.39	767092.745	2767.9403	
278 9852409.94 767095.763 2767.8802 VÍA 279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	276	9852405.46			
279 9852411.37 767091.257 2767.7557 VÍA 280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	277	9852405.64	767091.836	2767.7884	
280 9852415.58 767098.101 2767.8218 VÍA 281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA			767095.763	2767.8802	
281 9852417.96 767093.661 2767.7504 VÍA 282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	279	9852411.37	767091.257	2767.7557	
282 9852421.02 767100.981 2767.813 VÍA 283 9852424.62 767097.705 2767.7438 VÍA	280	9852415.58	767098.101	2767.8218	
283 9852424.62 767097.705 2767.7438 VÍA	281	9852417.96	767093.661	2767.7504	
	282	9852421.02	767100.981	2767.813	
284 9852428.89 767108.52 2767.8023 VÍA	_				
	284	9852428.89	767108.52	2767.8023	VÍA

285	9852431.72	767103.88	2767.7419	VÍA
286	9852435.86	767111.721	2767.7916	VÍA
287	9852438.77	767107.554	2767.7391	VÍA
288	9852441.94	767115.891	2767.6963	VÍA
289	9852445.88	767113.056	2767.6285	VÍA
290	9852452.27	767134.847	2767.3107	VÍA
291	9852458.04	767132.739	2767.2938	VÍA
292	9852458.45	767146.071	2767.0191	VÍA
293	9852465.06	767144.047	2767.0874	VÍA
294	9852476.76	767162.951	2767.4917	VÍA
295	9852481.2	767160.647	2767.388	VÍA
296	9852491.32	767175.654	2767.5689	VÍA
297	9852495.08	767172.78	2767.6064	VÍA
298	9852498.07	767182.552	2767.6723	VÍA
299	9852499.57	767177.493	2767.6401	VÍA
300	9852504.16	767197.523	2767.2957	VÍA
301	9852508.34	767194.318	2767.2786	VÍA
302	9852505.64	767200.814	2766.7334	VÍA
303	9852509.98	767196.915	2766.7227	VÍA
304	9852522.33	767214.248	2766.4214	VÍA
305	9852525.54	767210.194	2766.3588	VÍA
306	9852541.03	767227.175	2765.4527	VÍA
307	9852543.56	767223.31	2765.4107	VÍA
308	9852560.01	767242.111	2764.2296	VÍA
309	9852563.57	767237.556	2764.1662	VÍA
310	9852579.98	767255.8	2762.9286	VÍA
311	9852583	767251.021	2762.8931	VÍA
312	9852598.59	767269.231	2761.3015	VÍA
313	9852602.48	767264.287	2761.2565	VÍA
314	9852616.29	767280.898	2759.7089	VÍA
315	9852619.97	767276.329	2759.7418	VÍA
316	9852634.57	767295.494	2757.9603	VÍA
317	9852638.68	767290.337	2757.979	VÍA
318	9852648.89	767306.246	2755.622	VÍA
319	9852653.81	767301.564	2755.6702	VÍA
320	9852659.5	767313.708	2751.3293	VÍA
321	9852663.1	767308.717	2751.5765	VÍA
322	9852665.43	767318.763	2747.4843	VÍA
323	9852673.39	767318.469	2748.2414	VÍA
324	9852667.58	767324.667	2747.0948	VÍA
325	9852667.39	767325.722	2746.9218	VÍA

326	9852665.01	767330.299	2745.8915	VÍA
327	9852674.47	767332.607	2747.8892	VÍA
328	9852663.47	767338.607	2745.6165	VÍA
329	9852650.92	767337.267	2743.9385	VÍA
330	9852650.83	767330.656	2743.9829	VÍA
331	9852628.59	767334.316	2742.5072	VÍA
332	9852629.44	767329.023	2742.5289	VÍA
333	9852606.42	767331.173	2741.7716	VÍA
334	9852607.41	767326.268	2741.8677	VÍA
335	9852584.8	767325.13	2740.2595	VÍA
336	9852585.51	767320.373	2740.315	VÍA
337	9852562.8	767320.063	2739.5555	VÍA
338	9852564.26	767315.248	2739.6248	VÍA
339	9852542.39	767318.453	2738.18	POZO 4
340	9852539.16	767315.364	2738.1378	VÍA
341	9852539.97	767311.388	2738.2928	VÍA
342	9852516.51	767312.32	2736.9391	VÍA
343	9852517.53	767308.008	2736.9854	VÍA
344	9852493.92	767306.99	2735.4546	VÍA
345	9852494.9	767302.759	2735.6698	VÍA
346	9852484.07	767304.284	2734.6115	VÍA
347	9852484.45	767299.913	2734.7828	VÍA
348	9852484.05	767302.425	2734.7094	POZO 5
349	9852505.81	767178.885	2768.3916	VÍA
350	9852510.14	767189.594	2768.4032	VÍA
351	9852514.56	767180.876	2768.9196	VÍA
352	9852513.1	767187.624	2768.6113	VÍA
353	9852515.2	767188.53	2768.9905	VÍA
354	9852530.4	767193.912	2770.9447	VÍA
355	9852532.51	767188.794	2770.9643	VÍA
356	9852550.64	767199.84	2772.6807	VÍA
357	9852552.55	767194.698	2772.7142	VÍA
358	9852564.55	767202.4	2773.7891	VÍA
359	9852564.32	767197.31	2773.9276	VÍA
360	9852570.88	767197.896	2774.3195	VÍA
361	9852570.82	767203.298	2774.2866	VÍA
362	9852589.44	767202.494	2775.0201	VÍA
363	9852590.34	767195.672	2775.2648	VÍA
364	9852609.39	767199.042	2775.6419	VÍA
365	9852609.99	767192.46	2775.5523	VÍA
366	9852627.18	767193.395	2775.6638	VÍA

367 9852627.87 767187.729 2775.566 VÍA 368 9852642.29 767188.786 2775.6802 VÍA 369 9852642.86 767183.796 2775.69073 VÍA 370 9852663.66 767183.703 2775.6964 VÍA 371 9852663.57 767179.561 2775.6548 VÍA 372 9852684.3 767179.3 2776.034 VÍA 373 9852684.37 767175.27 2776.0442 VÍA 374 9852704.51 767175.44 2776.4791 VÍA 375 9852684.37 767175.44 2776.4791 VÍA 376 9852714.89 767171.461 2776.434 VÍA 376 9852714.89 767171.461 2776.8721 VÍA 377 9852715.5 767166.58 2776.6944 VÍA 378 9852718.85 767164.274 2776.6866 VÍA 380 9852720.97 767167.319 2776.8393 VÍA 381 9852720.18 767164.246 2776.7396 VÍA 382 9852718.20 767164.246 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852723.1 767156.968 2776.7003 VÍA 385 9852724.29 767156.968 2776.4004 VÍA 386 9852723.1 767156.968 2776.4004 VÍA 386 985273.2 767150.801 2776.4597 VÍA 387 985273.5 767150.801 2776.4597 VÍA 387 985273.5 767150.801 2776.4597 VÍA 389 985273.5 767150.801 2776.4597 VÍA 389 9852732.53 767145 2776.2858 VÍA 389 9852732.53 767145 2776.2858 VÍA 399 9852733.7 767130.36 2775.902 VÍA 391 9852733.7 767130.36 2775.902 VÍA 391 9852734.28 76719.47 2775.5162 VÍA 392 9852734.28 76719.47 2775.5162 VÍA 393 985273.29 767097.251 2774.463 VÍA 394 9852734.28 76719.69 2775.1373 VÍA 395 9852734.28 76719.5 2774.463 VÍA 399 9852734.28 767097.251 2774.463 VÍA 399 9852733.78 767097.251 2774.463 VÍA 399 9852733.79 76708.89 2774.575 VÍA 400 9852741.2 76708.99 2774.575 VÍA 400 9852741.2 76708.99 2774.575 VÍA 400 9852741.2 76708.99 2774.575 VÍA 400 9852741.2 76708.696 2774.5305 VÍA 404 9852747.95 767079.886 2774.5305 VÍA 406 9852731.11 76708.646 2774.2146 VÍA 407 98527					
369	367	9852627.87	767187.729	2775.566	VÍA
370 9852663.66 767183.703 2775.6964 VÍA 371 9852663.57 767179.561 2775.6548 VÍA 372 9852684.3 767179.3 2776.034 VÍA 373 9852684.3 767175.27 2776.0442 VÍA 374 9852704.51 767175.44 2776.4791 VÍA 375 9852704.74 767171.201 2776.434 VÍA 376 9852714.89 767171.461 2776.8721 VÍA 377 9852714.89 767171.461 2776.8721 VÍA 378 9852718.85 767166.58 2776.6944 VÍA 378 9852718.85 767164.274 2776.6866 VÍA 379 9852718.67 767164.274 2776.6866 VÍA 380 9852720.97 767167.319 2776.8396 VÍA 381 9852720.18 767162.195 2776.5161 VÍA 382 9852724.79 767164.246 2776.7396 VÍA 383 9852728.31 767156.968 2776.4804 VÍA 384 9852728.31 767156.968 2776.404 VÍA 385 9852724.22 767155.062 2776.4104 VÍA 386 9852730.9 767150.801 2776.8597 VÍA 387 9852725.88 767150.801 2776.2858 VÍA 389 9852725.88 767150.801 2776.2858 VÍA 390 9852733.71 767130.36 2775.902 VÍA 390 9852734.28 767119.47 2775.5162 VÍA 391 9852728.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852734.28 767106.477 2775.5162 VÍA 394 9852734.28 767106.477 2775.5162 VÍA 395 9852734.28 767106.477 2775.5162 VÍA 396 9852734.28 767106.477 2775.5162 VÍA 399 9852734.28 767106.477 2775.5162 VÍA 399 9852734.06 767006.9 2775.1373 VÍA 396 9852734.06 76709.758 2774.463 VÍA 399 9852734.06 76709.758 2774.463 VÍA 399 9852734.06 76709.758 2774.463 VÍA 399 9852734.06 76709.758 2774.463 VÍA 400 9852744.2 767080.905 2774.3397 VÍA 401 9852734.87 767080.646 2774.5486 VÍA 402 9852744.2 767083.395 2774.3045 VÍA 403 9852733.11 767080.646 2774.5496 VÍA 406 9852741.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.5406 VÍA 406 9852753.11 767080.646 2774.2146 VÍA 406 9852753.11 76	368	9852642.29	767188.786	2775.6802	VÍA
371 9852663.57 767179.561 2775.6548 VÍA 372 9852684.3 767179.3 2776.034 VÍA 373 9852684.37 767175.27 2776.0442 VÍA 374 9852704.51 767175.44 2776.4791 VÍA 375 9852704.74 767171.201 2776.434 VÍA 376 9852714.89 767171.461 2776.8721 VÍA 377 9852715.5 767166.58 2776.6944 VÍA 378 9852718.85 767168.917 2776.8533 VÍA 379 9852718.67 767164.274 2776.6866 VÍA 380 9852720.97 767167.319 2776.8536 VÍA 381 9852720.18 767162.195 2776.5161 VÍA 382 9852720.18 767162.195 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767155.062 2776.4104 VÍA 386 985273.2 767150.801 2776.2858 VÍA 387 9852725.88 767150.081 2776.2858 VÍA 389 9852727.11 767145.46 2775.2858 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852734.28 767119.47 2775.5162 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852728.81 767130.924 2775.902 VÍA 394 9852734.28 767119.47 2775.5162 VÍA 395 9852734.28 767119.6 2775.6613 VÍA 396 9852734.28 767106.477 2775.2302 VÍA 397 9852734.28 767106.477 2775.2302 VÍA 396 9852734.28 767106.477 2775.2302 VÍA 397 9852734.28 767106.477 2775.2302 VÍA 398 9852730.1 767106.477 2775.2302 VÍA 398 9852730.2 767097.251 2774.463 VÍA 399 9852734.96 767092.758 2774.488 VÍA 399 9852735.58 767089.166 2774.5486 VÍA 400 9852744.2 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767080.905 2774.305 VÍA 403 9852738.87 767084.408 2774.2146 VÍA 405 9852731.11 767080.646 2774.2146 VÍA 406 9852753.11 767	369	9852642.86	767183.896	2775.6073	VÍA
372 9852684.3 767179.3 2776.034 VÍA 373 9852684.37 767175.27 2776.0442 VÍA 374 9852704.51 767175.44 2776.4791 VÍA 375 9852704.74 767171.201 2776.434 VÍA 376 9852714.89 767171.461 2776.8721 VÍA 377 9852715.5 767166.58 2776.6944 VÍA 378 9852718.85 767168.917 2776.8533 VÍA 379 9852718.67 767164.274 2776.6686 VÍA 380 9852720.97 767167.319 2776.8396 VÍA 381 9852720.18 767162.195 2776.8396 VÍA 382 9852720.18 767162.195 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767159.85 2776.4104 VÍA 386 985273.23 767150.801 2776.2858 VÍA 387 9852725.88 767150.801 2776.2858 VÍA 389 9852727.11 767145.46 2776.1829 VÍA 390 985273.71 767130.36 2775.902 VÍA 391 9852734.28 767119.47 2775.5162 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 394 9852734.28 767119.47 2775.5162 VÍA 395 9852734.28 767106.477 2775.2302 VÍA 396 9852734.96 767106.477 2775.2302 VÍA 397 9852732.29 767097.251 2774.463 VÍA 398 9852732.29 767097.251 2774.463 VÍA 398 9852732.29 767097.251 2774.463 VÍA 399 9852734.96 767106.477 2775.2302 VÍA 399 9852734.96 76706.99 2775.1373 VÍA 399 9852734.96 767097.251 2774.463 VÍA 399 9852734.96 767097.58 2774.575 VÍA 400 9852744.2 767089.798 2774.575 VÍA 401 9852734.58 767084.408 2774.5396 VÍA 402 9852734.79 76708.666 2774.5305 VÍA 404 9852747 76708.3395 2774.3045 VÍA 405 9852734.79 76709.686 2774.5305 VÍA 406 9852753.11 76708.646 2774.2146 VÍA 406 9852753.11 76708.646 2774.2146 VÍA 406 9852753.11 76708.646 2774.2146 VÍA 406 9852753.11 76708.646 277	370	9852663.66	767183.703	2775.6964	VÍA
373 9852684.37 767175.27 2776.0442 VÍA 374 9852704.51 767175.44 2776.4791 VÍA 375 9852704.74 767171.201 2776.434 VÍA 376 9852714.89 767171.461 2776.8721 VÍA 377 9852715.5 767166.58 2776.6944 VÍA 378 9852718.65 767164.274 2776.8533 VÍA 380 9852718.67 767164.274 2776.6686 VÍA 380 9852720.97 767167.319 2776.5161 VÍA 381 9852720.18 767162.195 2776.5161 VÍA 382 9852724.79 767164.246 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852721.82 767159.88 2776.7003 VÍA 385 9852723.31 767150.801 2776.4104 VÍA 386 9852730.9 767150.801 2776.2858 VÍA 387	371	9852663.57	767179.561	2775.6548	VÍA
374 9852704.51 767175.44 2776.4791 VÍA 375 9852704.74 767171.201 2776.434 VÍA 376 9852714.89 767171.461 2776.8721 VÍA 377 9852715.5 767166.58 2776.6944 VÍA 378 9852718.85 767166.917 2776.8533 VÍA 379 9852718.67 767167.319 2776.6896 VÍA 380 9852720.97 767167.319 2776.5161 VÍA 381 9852721.82 767162.195 2776.5161 VÍA 382 9852724.79 767164.246 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767150.801 2776.4597 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852732.58 767145 2776.2858 VÍA 389	372	9852684.3	767179.3	2776.034	VÍA
375 9852704.74 767171.201 2776.434 VÍA 376 9852714.89 767171.461 2776.8721 VÍA 377 9852715.5 767166.58 2776.6944 VÍA 378 9852718.85 767166.917 2776.8533 VÍA 379 9852718.67 767164.274 2776.6686 VÍA 380 9852720.97 767167.319 2776.8396 VÍA 381 9852720.18 767162.195 2776.5161 VÍA 382 9852724.79 767164.246 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767155.962 2776.4104 VÍA 385 9852724.22 767150.801 2776.4597 VÍA 386 9852732.53 767145 2776.2858 VÍA 387 9852725.88 767150.801 2776.2858 VÍA 388 9852732.53 767145.46 2776.1829 VÍA 390	373	9852684.37	767175.27	2776.0442	VÍA
376 9852714.89 767171.461 2776.8721 VÍA 377 9852715.5 767166.58 2776.6944 VÍA 378 9852718.85 767168.917 2776.8533 VÍA 379 9852718.67 767164.274 2776.6686 VÍA 380 9852720.97 767167.319 2776.8396 VÍA 381 9852720.18 767162.195 2776.5161 VÍA 382 9852724.79 767164.246 2776.7396 VÍA 384 9852721.82 767159.85 2776.4804 VÍA 385 9852722.81 767159.85 2776.4804 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852732.58 767145 2776.2858 VÍA 388 9852732.53 767145 2776.2858 VÍA 389 9852733.71 767130.36 2775.902 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 985	374	9852704.51	767175.44	2776.4791	VÍA
377 9852715.5 767166.58 2776.6944 VÍA 378 9852718.85 767168.917 2776.8533 VÍA 379 9852718.67 767164.274 2776.6686 VÍA 380 9852720.97 767167.319 2776.8396 VÍA 381 9852720.18 767162.195 2776.5161 VÍA 382 9852724.79 767164.246 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767155.062 2776.4104 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852732.53 767145 2776.2858 VÍA 388 9852732.53 767145 2776.2858 VÍA 389 9852733.71 767130.36 2775.902 VÍA 390 9852733.71 767130.36 2775.9416 VÍA 392 9	375	9852704.74	767171.201	2776.434	VÍA
378 9852718.85 767168.917 2776.8533 VÍA 379 9852718.67 767164.274 2776.6686 VÍA 380 9852720.97 767167.319 2776.8396 VÍA 381 9852720.18 767162.195 2776.5161 VÍA 382 9852724.79 767164.246 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767155.062 2776.4104 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852732.53 767145 2776.2858 VÍA 389 9852732.53 767145 2776.2858 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852734.28 767119.47 2775.5162 VÍA 392 9852734.28 767106.9 2775.1373 VÍA 394 9	376	9852714.89	767171.461	2776.8721	VÍA
379 9852718.67 767164.274 2776.6686 VÍA 380 9852720.97 767167.319 2776.8396 VÍA 381 9852720.18 767162.195 2776.5161 VÍA 382 9852724.79 767164.246 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767155.062 2776.4104 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852725.88 767150.801 2776.4597 VÍA 388 9852732.53 767145 2776.2858 VÍA 389 9852732.53 767145 2776.2858 VÍA 390 9852733.71 767145.46 2776.1829 VÍA 391 9852733.71 767130.924 2775.902 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 394 <td< td=""><td>377</td><td>9852715.5</td><td>767166.58</td><td>2776.6944</td><td>VÍA</td></td<>	377	9852715.5	767166.58	2776.6944	VÍA
380 9852720.97 767167.319 2776.8396 VÍA 381 9852720.18 767162.195 2776.5161 VÍA 382 9852724.79 767164.246 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767155.062 2776.4104 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852725.88 767150.081 2776.3556 VÍA 388 9852732.53 767145 2776.2858 VÍA 390 9852733.71 767145.46 2776.1829 VÍA 391 9852733.71 767130.36 2775.902 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852734.28 767119.47 2775.5162 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 <td< td=""><td>378</td><td>9852718.85</td><td>767168.917</td><td>2776.8533</td><td>VÍA</td></td<>	378	9852718.85	767168.917	2776.8533	VÍA
381 9852720.18 767162.195 2776.5161 VÍA 382 9852724.79 767164.246 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767155.062 2776.4104 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852725.88 767150.081 2776.3556 VÍA 388 9852732.53 767145 2776.2858 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852728.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852734.28 767106.9 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396	379	9852718.67	767164.274	2776.6686	VÍA
382 9852724.79 767164.246 2776.7396 VÍA 383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767155.062 2776.4104 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852725.88 767150.081 2776.3556 VÍA 388 9852732.53 767145 2776.2858 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852728.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852734.28 767119.47 2775.56613 VÍA 394 9852734.28 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767097.251 2774.6324 VÍA 399 <t< td=""><td>380</td><td>9852720.97</td><td>767167.319</td><td>2776.8396</td><td>VÍA</td></t<>	380	9852720.97	767167.319	2776.8396	VÍA
383 9852721.82 767159.85 2776.4804 VÍA 384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767155.062 2776.4104 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852725.88 767150.081 2776.3556 VÍA 388 9852732.53 767145 2776.2858 VÍA 389 9852732.53 767145 2776.2858 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852738.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852729.26 767119.6 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852732.29 767097.251 2774.6324 VÍA 399 9852	381	9852720.18	767162.195	2776.5161	VÍA
384 9852728.31 767156.968 2776.7003 VÍA 385 9852724.22 767155.062 2776.4104 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852725.88 767150.081 2776.3556 VÍA 388 9852732.53 767145 2776.2858 VÍA 389 9852727.11 767145.46 2776.1829 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852728.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852734.28 767119.6 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852732.29 767097.251 2774.463 VÍA 399 9852738.78 767093.82 2774.575 VÍA 400 985	382	9852724.79	767164.246	2776.7396	VÍA
385 9852724.22 767155.062 2776.4104 VÍA 386 9852730.9 767150.801 2776.4597 VÍA 387 9852725.88 767150.081 2776.3556 VÍA 388 9852732.53 767145 2776.2858 VÍA 389 9852732.53 767145 2776.1829 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852738.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852734.28 767119.47 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.5488 VÍA 400 985274	383	9852721.82	767159.85	2776.4804	VÍA
386 9852730.9 767150.801 2776.4597 VÍA 387 9852725.88 767150.081 2776.3556 VÍA 388 9852732.53 767145 2776.2858 VÍA 389 9852732.11 767145.46 2776.1829 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852728.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852734.26 767119.6 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.575 VÍA 400 9852744.06 767092.758 2774.575 VÍA 401 985273	384	9852728.31	767156.968	2776.7003	VÍA
387 9852725.88 767150.081 2776.3556 VÍA 388 9852732.53 767145 2776.2858 VÍA 389 9852727.11 767145.46 2776.1829 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852728.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852734.28 767119.6 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852734.06 767093.82 2774.4488 VÍA 399 9852734.06 767089.798 2774.575 VÍA 400 9852741.42 767089.798 2774.5486 VÍA 402 9852	385	9852724.22	767155.062	2776.4104	VÍA
388 9852732.53 767145 2776.2858 VÍA 389 9852727.11 767145.46 2776.1829 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852728.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852734.28 767119.6 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.5486 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852	386	9852730.9	767150.801	2776.4597	VÍA
389 9852727.11 767145.46 2776.1829 VÍA 390 9852733.71 767130.36 2775.902 VÍA 391 9852728.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852734.28 767119.6 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852735.58 767089.798 2774.5486 VÍA 401 9852735.58 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404	387	9852725.88	767150.081	2776.3556	VÍA
390 9852733.71 767130.36 2775.902 VÍA 391 9852728.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852729.26 767119.6 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404	388	9852732.53	767145	2776.2858	VÍA
391 9852728.81 767130.924 2775.9416 VÍA 392 9852734.28 767119.47 2775.5162 VÍA 393 9852729.26 767119.6 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852732.29 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9	389	9852727.11	767145.46	2776.1829	VÍA
392 9852734.28 767119.47 2775.5162 VÍA 393 9852729.26 767119.6 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9	390	9852733.71	767130.36	2775.902	VÍA
393 9852729.26 767119.6 2775.6613 VÍA 394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	391	9852728.81	767130.924	2775.9416	VÍA
394 9852734.96 767106.9 2775.1373 VÍA 395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	392	9852734.28	767119.47	2775.5162	VÍA
395 9852730.1 767106.477 2775.2302 VÍA 396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	393	9852729.26	767119.6	2775.6613	VÍA
396 9852736.58 767099.1 2774.463 VÍA 397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	394	9852734.96	767106.9	2775.1373	
397 9852732.29 767097.251 2774.6324 VÍA 398 9852738.78 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	395	9852730.1	767106.477	2775.2302	VÍA
398 9852738.78 767093.82 2774.4488 VÍA 399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	396	9852736.58	767099.1	2774.463	VÍA
399 9852734.06 767092.758 2774.575 VÍA 400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	397	9852732.29	767097.251	2774.6324	
400 9852741.42 767089.798 2774.3596 VÍA 401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	398	9852738.78	767093.82	2774.4488	
401 9852735.58 767089.166 2774.5486 VÍA 402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	399	9852734.06	767092.758	2774.575	
402 9852744.2 767086.905 2774.3397 VÍA 403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	400	9852741.42	767089.798	2774.3596	
403 9852738.87 767084.408 2774.5439 VÍA 404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA			767089.166	2774.5486	
404 9852747 767083.395 2774.3045 VÍA 405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	402	9852744.2	767086.905	2774.3397	
405 9852742.79 767079.686 2774.5305 VÍA 406 9852753.11 767080.646 2774.2146 VÍA	403	9852738.87	767084.408	2774.5439	
406 9852753.11 767080.646 2774.2146 VÍA	404	9852747	767083.395	2774.3045	
	405	9852742.79	767079.686	2774.5305	
407 9852747.95 767075.78 2774.4046 VÍA					
	407	9852747.95	767075.78	2774.4046	VÍA

408	9852757.36	767080.183	2774.1019	VÍA
409	9852755.89	767074.99	2774.1666	VÍA
410	9852770.43	767080.12	2772.7544	VÍA
411	9852769.66	767075.213	2772.628	VÍA
412	9852785.64	767080.493	2771.9437	VÍA
413	9852785.48	767076.024	2771.7738	VÍA
414	9852805.46	767080.304	2771.0547	VÍA
415	9852805.29	767075.735	2771.0024	VÍA
416	9852825.27	767076.714	2770.2818	VÍA
417	9852825.11	767071.446	2770.2067	VÍA
418	9852845.09	767073.825	2769.5561	VÍA
419	9852844.92	767068.456	2769.4589	VÍA
420	9852864.9	767072.636	2769.2181	VÍA
421	9852864.73	767067.167	2769.047	VÍA
422	9852884.71	767072.347	2768.6848	VÍA
423	9852884.55	767066.378	2768.6012	VÍA
424	9852904.53	767070.158	2768.1104	VÍA
425	9852904.36	767064.189	2768.0318	VÍA
426	9852924.34	767067.968	2767.5702	VÍA
427	9852924.18	767062	2767.4485	VÍA
428	9852944.16	767066.779	2767.1258	VÍA
429	9852943.99	767061.21	2767.1406	VÍA
430	9852963.97	767065.89	2766.8502	VÍA
431	9852963.8	767060.621	2766.9234	VÍA
432	9852983.78	767065.101	2766.6579	VÍA
433	9852983.62	767059.332	2766.5548	VÍA
434	9853003.6	767062.212	2766.3827	VÍA
435	9853003.43	767056.043	2766.2407	VÍA
436	9853023.41	767057.922	2765.8319	VÍA
437	9853023.25	767051.754	2765.751	VÍA
438	9853043.23	767054.633	2765.402	VÍA
439	9853043.06	767048.264	2765.5903	VÍA
440	9853063.04	767050.144	2763.9043	VÍA
441	9853062.88	767043.775	2763.9841	VÍA
442	9853082.86	767042.655	2762.3265	VÍA
443	9853082.69	767035.286	2762.2664	VÍA
444	9853095.67	767036.866	2760.3446	VÍA
445	9853093.5	767028.297	2760.3878	VÍA
446	9853101.48	767032.876	2759.4943	VÍA
447	9853099.32	767024.308	2759.4335	VÍA
448	9853107.3	767027.887	2759.1097	VÍA

449 98	853103.13	767020.318	2759.0041	VÍA
450 98	853112.11	767020.898	2758.6945	VÍA
451 98	853106.25	767016.329	2758.4231	VÍA
452 98	853115.23	767014.909	2758.3395	VÍA
453 98	853108.76	767011.34	2758.0324	VÍA
454 98	853116.34	767008.92	2758.0082	VÍA
455 98	853109.97	767006.351	2758.0611	VÍA
456 98	853116.56	767003.93	2757.9374	VÍA
457 98	853110.19	767001.362	2757.708	VÍA
458 98	853116.47	766998.941	2757.8246	VÍA
459 9	9853110.1	766996.372	2757.5172	VÍA
460 98	853115.98	766993.952	2757.6697	VÍA
461 98	853109.22	766991.383	2757.434	VÍA
462 9	9853114.1	766988.263	2757.4202	VÍA
463 98	853107.97	766987.394	2757.1905	VÍA
464 98	853112.85	766984.274	2757.03	VÍA
465 98	853106.43	766983.405	2756.8446	VÍA
466 98	853110.91	766979.284	2756.6308	VÍA
467 98	853104.48	766979.416	2756.495	VÍA
468 98	853109.36	766975.295	2756.5612	VÍA
469 98	853102.83	766975.426	2756.4033	VÍA
470 98	853107.71	766971.306	2756.4728	VÍA
471 98	853100.99	766971.437	2756.3116	VÍA
472 98	853104.87	766965.317	2756.4153	VÍA
473 98	853099.44	766967.448	2756.2949	VÍA
474 98	853102.62	766961.328	2756.0469	VÍA
475 9	9853097.5	766963.459	2756.0609	VÍA
476 98	853100.38	766957.338	2755.7066	VÍA
477 98	853095.25	766959.47	2755.652	VÍA
478 98	853097.13	766951.349	2755.4268	VÍA
479 98	853091.11	766952.48	2755.3451	VÍA
480 98	853090.64	766941.371	2754.8945	VÍA
481 98	853085.91	766943.502	2754.8383	VÍA
482 9	9853077.3	766922.403	2753.7015	VÍA
	853073.18	766925.534	2753.8737	VÍA
—————————————————————————————————————	853065.17	766904.436	2752.3544	VÍA
485 98	853061.74	766907.567	2752.4725	VÍA
486 98	853053.73	766886.468	2750.4251	VÍA
487 9	9853049.3	766889.599	2750.5145	VÍA
-	853042.29	766868.5	2748.9931	VÍA
489 98	853038.16	766871.632	2748.9699	VÍA

490	9853031.85	766850.533	2746.2828	VÍA
491	9853027.83	766853.664	2746.2095	VÍA
492	9853021.92	766832.565	2744.9868	VÍA
493	9853017.49	766835.696	2744.9083	VÍA
494	9853012.48	766814.598	2743.8356	VÍA
495	9853008.67	766817.729	2743.8039	VÍA
496	9853003.65	766796.63	2742.8196	VÍA
497	9852999.84	766799.761	2742.8341	VÍA
498	9852994.83	766778.662	2741.908	VÍA
499	9852991.02	766781.794	2741.8686	VÍA
500	9852986.01	766760.695	2740.9708	VÍA
501	9852982.19	766763.826	2740.9945	VÍA
502	9852976.18	766742.727	2740.4139	VÍA
503	9852972.37	766745.858	2740.3121	VÍA
504	9852966.36	766724.76	2739.8416	VÍA
505	9852962.55	766727.891	2739.7918	VÍA
506	9852955.54	766706.792	2739.297	VÍA
507	9852951.72	766709.923	2739.2393	VÍA
508	9852951.39	766700.494	2738.4461	VÍA
509	9852947.57	766703.625	2738.5851	VÍA
510	9852947.24	766695.196	2737.9121	VÍA
511	9852942.43	766697.328	2737.8281	VÍA
512	9852944.97	766691.78	2737.8077	VÍA
513	9852937.28	766691.03	2737.7853	VÍA
514	9852943.48	766688.461	2737.7725	VÍA
515	9852934.21	766684.364	2737.7351	VÍA
516	9852942.51	766684.333	2737.7377	POZO 6
517	9852936.21	766681.364	2737.7697	VÍA
518	9852944.48	766686.461	2737.6877	VÍA
	-			

ANEXO N°3: Lecturas Ruta 06 del cantón Cevallos

	- 60	1	Consumidor	N Med	L.Act	L.Ant	LECTURA	Novedad	Tarifa
	ito Cta 60000	254 VILI	ACIS GUEVARA ANDREA CAROLINA	1101027435	0	1558	7-17		Domestic
	600.02		AREZ CAMPANA JORGE PATRICIO	01-803141	0	1279	12-5		Domestic
	60544		PUZ SULCA LIDA LUCIA	06-141164	0	1621	1		Domestic
	50033		US GUEVARA JACINTO	99-196613	6	225	231		Domestic
	60034	1110: MAN	OBANDA TAYO JORGE HUMBERTO	1605009751	0	301	3 3		Domestic
	80035		CO PILCO JOSE FRANCISCO	890798	0	1935	0.11		Domestic
	50617		TA SALAGATA SEGUNDO LIMNES	1211035778	0	452	41.1		Domestic
	80877		ZAGUANO CAJILEMA JOSE VICENTE	1605009759	0	397	1		Domestic
	60036		NOSANDA TAYO MANUEL MESIAS	99-196617	0	2084			Domestic
			INAS LUIS STALIN	12015627	0	169	15		Domestic
	60037		NCERO GAVILANES MERY DORILA	99-196586	0	996			Domestic
	60368		PUZ GUEVARA JOSE MANUEL	05-067742	0	2489			Domesti
	60039		RIN RODRIGUEZ LUIS ALFONSO	1605011309	0	422	2.1		Domestic
0	60671			890312	0	3093			Domestic
	60040		O MERA LUIS CARLOS	01-803162	0	1799			Domesur
C	60041	11366 PIC	O VILLACIS FAUSTO ALFREDO	080665946	0	642			Domestic
6.3	60573		AMAN FLORES JANETH DE LOURDES		0	1970			Domestic
0	60351	11716 SA	NCHEZ PAREDES MOISES DE LA CRUZ	01-803142	0	2510			Domestic
100	60370	11209 RO	SERO VACA TATIANA MARISOL	890604	0	583			Domestic
1	050043		ENTES PILATASIG MARIA LUCILA		0	3441			Domestic
- (060044	4451 PIC	O PICO BECKER GIOVANNY	890316	0	2744			Domestic
	360645	11103 114	NICERO BOSQUEZ LEOFRE GREGORIO	99-196594	0	841	-		Domestic
	060536	2995 MA	NCERO GAVILANES JOFFRE DANIEL	06-140391	0	1103	7117		Domestic
	060517	11059 GL	IAMAN FLORES MAYRA MARITZA	000000	- 0	1375			Domestic
	030043	7785 JIE	AJA CHECA VICENTE NICANOR	12015674	0	378	-		Domestic
	030381	9822 VII	LEGAS EAYAS LUIS FERNANDO	06-140393	0	1090			Domestic
	080537	7323 ZA	MORA BONILLA VILMA OLIVA	890799	0	447	1		Domestin
	060047	6051 VI	LEGAS BAYAS JORGE HUMBERTO	01-803201	0	970			Domestic
	060049	7308 VI	LLEGAS JUAN ERNESTO		0	769	7-1		Domestic
	060050	11367 VI	LLEGAS VILLEGAS TRANCITO MERCED	1211035022	0	2779			Domestic
	060051	11052 V	LLEGAS CARRANZA CESAR MEDARDO	1211035744	0	1056	-		Domestic
2	060614	5712 PF	RIETO SARMIENTO MARIA ROSAURA	12014606	0	301	4		Domestic
5	060708	1109 TR	REJO ANDACHI ISABEL MERCEDES		0	576			Domestic
5	060372	11264 V	LLEGAS VILLACIS MARIA DE LAS NIEVE	890805	0	1873			Domestic
0	060053	5492 M	OYA CASTILLO ROSA MAGDALENA	01-803140	0	2897			Domestic
0	060054	5492 M	OYA CASTILLO ROSA MAGDALENA	080926161	0	1657			Domestic
9.,	060055	6071 Z	AMBRANO SAMBI SEGUNDO ROMULO	01-803148	0	3731			Domestic
8	060373	5574 P	ICO ZAMBRANO BAIRON HERNAN	890320	0	31	-		Domestic
0	030053	11053 L	OPEZ VACA NELSON EDUARDO	06-141194	0	993	for the second		Domestic
0	080060	4858 V	ILLEGAS LUIS HUMBERTO	06-140460	0	1124			Donastic
0	060061	3574 V	ACA MIRANDA JORGE HERIBERTO	06-140413	0	666			Domestic
5	060540	1126 V	ACA MIRANDA ESTHER ALICIA BUEVARA VILLEGAS GLADYS CONCEPCI		0	2051	-		Domestic
0	060062	11201 G	SUEVARA VILLEGAS GLADYS CONCEPC SUAMAN PANIMBOZA SEGUNDO MANUE	L 1411024448	0	832	-		Domestic
20	060063	1618 G	TILLEGAS RAMOS FANNY RITA DEL CARI	ME 85998	0	1240			Domesti:
25	060354	3665 V	ILLEGAS RAMOS CATALINA VERENISE	4535481	0	1507			Domesti
30	060064			4535362	0	4166	-		Domesti
40		1240 4	URITA PICO SEGUNDO LUIS URITA PICO GLADIS FABIOLA	01-803205	0	5224			Domesti
44	060377	9854 2	URITA VILLACIS FREDDY OSWALDO	080924666	0	1103			
45		114112	ALLACIS QUISPE ANTONIO RODRIGO	99-196599	0	3733			Domesti
50	060066	11254			, STA	23-18-5			Domesti

Copia del archivo original con un total de 10 páginas

ANEXO N°4: Resultados de los análisis del agua residual de entrada y salida de la PTAR del cantón Cevallos.

Laboratorio de Investigación y Análisis Ambiental "LIAA-GADMA"

INFORME DE ANALISIS

Informe No. CA- 26- 2021
Código de Muestra: RML-21- 133

Datos proporcionados por el cliente:

Nombre de la empresa: PTAR de Cevallos
Dirección de la empresa que solicita: Canton Cevallos

Sitio de Muestreo: Ingreso de la Planta de tratamiento Aguas residuales de Cevallos

Tipo de Muestra Agua residual

Nombre del contacto del cliente : DAYSI PEREZ VILLACIS Teléfono:

Fecha de recepción o Toma de

muestra: 09/12/2021 Hora de muestreo: 15:00

Fecha de Análisis: 09/12/2021

Fecha Entrega resultados: 14/12/2021 Condiciones ambientales in situ

Descripción de la muestra : Muestra simple HR%

Muestreado DAYSI PEREZ VILLACIS Receptado por: Ing. Diego Sánchez

RESULTADO ANALISIS

Parámetros	Simbología	Método	Unidad	Resultado	Incertidumbre	Limites de descraga	
			34763776	resultado	incertitumbre	Tabla;8 Sistema de A	lcantarillado
Potencial de hidrógeno	pН	PEALAA-GADMARIJAPIIA 4500 HB / POTENCIOMETRICO	-	7,6	0,09 upH	6-9	upH
Demanda química de oxígeno	DQO	PEALAA-GADMAASKAPEA 3220 D / UV- VINIBLE	mg/L	412	1,4%	500	mg/l
Demanda Bioquímica de oxigeno *	DBOS	APIA 3210B/ METODO REMPROMETRICO	mg/L	206,0		250	mg/l
E coli •		APHA 9221	ufc/ml	Incontables			
E coli Totales *		APIIA 9221	ufc/ml	Incontables			_
Sólidos Totales a 105°C *	SDT	APHA 2340 B / SECADO A 103 -105 °C	mg/L	937,7		1600	

Acreditación N.- SAE - LEN - 16-017 Laboratorio de Ensayos

Condiciones Ambientales de Laboratorio: Temperatura media * 19,4 Humedad relativa media: 65,5 (%HR)

Los resultados reportados en este informe solo tiene relación con los items de ensayo para esta muestra

(o>oratorio

GEST

Parámetro no acreditado

El laboratorio no se responsabiliza de la integridad de la muestra cuando esta es suministrada por el cliente, siendo los resultados reportados en este informe exclusivos de la muestra recibida.

Nota: se prohibe la reproducción parcial de este documento sin la debida autorización

Nota: Los métodos utilizados corresponden al Standard Method ed. 23

Responsable del Laboratorio Dr. Julio Núñez

> Dirección: Av. Los Shyris y Naripillahunz: ED. GADMA SERVICIOS PUBLICOS Telf.: 2844825

l de l

N/A

Laboratorio de Investigación y Análisis Ambiental "LIAA-GADMA"

INFORME DE ANALISIS

Informe No.

CA- 26- 2021

Código de Muestra:

RML-21-134

Datos proporcionados por el cliente: Nombre de la empresa:

PTAR de Cevallos

Dirección de la empresa que solicita:

Canton Cevallos

Salida de la Planta de tratamiento Aguas residuales de Cevallos

Tipo de Muestra

Agua residual

Nombre del contacto del cliente :

Teléfono:

Fecha de recepción o Toma de

DAYSI PEREZ VILLACIS

Hora de muest

muestra:

10/12/2021

11:30

Fecha de Análisis:

10/12/2021 14/12/2021

Condiciones ambientales in situ

N/A N/A ·c

Fecha Entrega resultados: Descripción de la muestra :

Muestra simple

HR% Temperatura ambiental:

RESULTADO ANALISIS

DAYSI PEREZ VILLACIS

Receptado por:

Ing. Diego Sánchez

Parámetros	Simbología	Método	Unidad	Resultado	Incertidumbre	Limites de descraga Tabla,8 Sistema de Alcantarillado	
		ttuau	Cintuad	Resultado	incertidumbre		
Potencial de hidrógeno	pH	PEALAA-GADMA-01/APSIA 4500 HB / POTENCIONETRICO		7,1	0,09 upH	6-9	upH
Demanda química de oxígeno	DQO	PEALAA-GADMA/63/APHA 5220 D7 UV- VISIRLE	mg/L	462	1,4%	500	mg1
Demanda Bioquímica de oxigeno *	DBO5	APIIA 32108V METOIXO RESPIRCIMETRICO	mg/L	231.0	jaj	250	mg1
E coli •		APISA 9221	ufc/ml	Incontables	4		
E coli Totales *		AJ46A 9221	ufc/ml	Incontables		=	
Sólidos Totales a 105°C *	SDT	APRA 2549 B / SECADO A 103 -105 °C	mg/L	799,3		1600	mg1

Acreditación N.- SAE - LEN - 16-017 Laboratorio de Ensayos

Condiciones Ambientales de Laboratorio: Temperatura media:

Humedad relativa media:

(%HR)

Los resultados reportados en este informe solo tiene relación con los ítems de ensayo para esta muestra

* Parámetro no acreditado

El laboratorio no se responsabiliza de la integridad de la muestra cuando esta es suministrada por el cliente, siendo los resultados reportados en este informe exclusivos de la muestra

Nota: se prohíbe la reproducción parcial de este documento sin la debida autorización

Nota: Los métodos utilizados corresponden al Standard Method ed. 23

(a)oratorio