UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

MAESTRÍA EN MECÁNICA

(COHORTE 2017)

TEMA:

"ESTUDIO DEL ESTADO ACTUAL DE MÁQUINAS Y EQUIPOS DEL ÁREA DE INYECCIÓN DE ACCESORIOS DE PVC DE LA EMPRESA HOLVIPLAS S.A. A TRAVÉS DE LOS REGISTROS DE FALLA MEDIANTE LA LEY DE WEIBULL"

Trabajo de Titulación

Previa a la obtención del Grado Académico de Magíster en Mecánica Mención Diseño

Autor: Ing. Nelson Rodrigo Poaquiza Rivera

Director: Ing. Jorge Enrique López Velástegui, Mg.

Ambato - Ecuador

2020

A la Unidad Académica de Titulación de la Facultad de Ingeniería Civil y Mecánica

El tribunal receptor del Trabajo de Titulación presidido por el Ing. Wilson Santiago Medina Robalino, Mg., e integrado por: Ing. Francisco Agustín Peña Jordán, Mg., Ing. Juan Gilberto Paredes Salinas, Mg., designados por la Unidad Académica de Titulación de la Universidad Técnica de Ambato, para receptar el Trabajo de Titulación con el tema: "ESTUDIO DEL ESTADO ACTUAL DE MÁQUINAS Y EQUIPOS DEL ÁREA DE INYECCIÓN DE ACCESORIOS DE PVC DE LA EMPRESA HOLVIPLAS S.A. A TRAVÉS DE LOS REGISTROS DE FALLA MEDIANTE LA LEY DE WEIBULL", elaborado y presentado por el señor: Ing. Nelson Rodrigo Poaquiza Rivera, para optar por el Grado Académico de Magister en Mecánica Mención Diseño; una vez escuchada la defensa oral del Trabajo de Investigación el Tribunal aprueba y remite el trabajo para uso y custodia en las bibliotecas de la UTA.

Ing. Wilson Santiago Medina Robalino, Mg.

Presidente del Tribunal

Ing. Francisco Agustin Peña Jordán, Mg.

Miembro del Tribunal

Ing. Juan Gilberto Paredes Salinas, Mg.

Miembro del Tribunal

AUTORIA DEL TRABAJO DE TITULACIÓN

La responsabilidad de las opiniones, comentarios y críticas emitidas en el Trabajo de Investigación presentado con el tema: "ESTUDIO DEL ESTADO ACTUAL DE MÁQUINAS Y EQUIPOS DEL ÁREA DE INYECCIÓN DE ACCESORIOS DE PVC DE LA EMPRESA HOLVIPLAS S.A. A TRAVÉS DE LOS REGISTROS DE FALLA MEDIANTE LA LEY DE WEIBULL", le corresponde exclusivamente al Ingeniero Nelson Rodrigo Poaquiza Rivera, Autor bajo la Dirección del Ingeniero Jorge Enrique López Velástegui, Mg, Director del Trabajo de Investigación; y el patrimonio intelectual a la Universidad Técnica de Ambato.

Ing. Nelson Rodrigo Poaquiza Rivera C.C. 1804378071

AUTOR

Ing. Jorge Enrique López Velástegui, Mg. C.C. 1802630416

DIRECTOR

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que el Trabajo de Investigación, sirva como un documento disponible para su lectura, consulta y procesos de investigación, según las normas de la Institución.

Cedo los derechos de mi trabajo, con fines de difusión pública, además apruebo la reproducción de esta, dentro de las regulaciones de la Universidad.

Ing. Nelson Rodrigo Poaquiza Rivera CC: 1804378071

DEDICATORIA

Esta tesis va dedicada a Dios, mi todo, poderoso, grande y majestuoso, por permitirme llegar a este momento tan especial en mi vida. Por los triunfos y los momentos difíciles que me han enseñado a valorarlo cada día más.

Con todo mi cariño y mi amor para las personas que hicieron todo en la vida para que yo pudiera lograr mis sueños, por motivarme y darme la mano cuando sentía que el camino se terminaba, por acompañarme toda mi vida estudiantil y hoy mi vida profesional, a mi madrecita María Elvira Rivera, a mi padre, por siempre mi corazón y mi agradecimiento.

A tu paciencia y compresión que me inspira a ser mejor para ti, gracias por estar a mi lado, te amo Virginia Pilar.

A mis hermanos David, Nelly mi cuñada Maggi, que estuvieron siempre junto a mí, mi sobrinito Diego Ismael y mi sobrinita Mileth Aithana que día a día va creciendo y algún día verá este trabajo.

A todos mil pero mil gracias por su apoyo compresión y consejos en los momentos difíciles.

Nelson Rodrigo

AGRADECIMIENTO

Gracias DIOSITO, por la fuerza, valor y salud para lograr mis metas y uno de mis sueños convertidos en realidad.

A mi madrecita por su apoyo incondicional para lograr mi sueño siempre estarán en mi mente y mi corazón.

A mi tutor de tesis Ing. Jorge Enrique López Velástegui, Ing. Christian Castro por guiar este trabajo investigativo hasta su exitosa culminación.

A la empresa Holviplas S.A. por abrirme sus puertas para desempeñarme como profesional y permitirme realizar este trabajo de investigación.

A la Universidad Técnica de Ambato y docentes de la Facultad de Ingeniería Civil y Mecánica, por haberme brindado sus conocimientos y prepararme para enfrentar los retos de mi vida profesional.

Nelson Rodrigo

ÍNDICE GENERAL

PÁGINAS PRELIMINARES

AUTORIA DEL TRABAJO DE TITULACIÓN	III
DERECHOS DE AUTOR	IV
DEDICATORIA	V
AGRADECIMIENTO	VI
ÍNDICE DE CONTENIDOS	VII
ÍNDICE DE TABLAS	X
ÍNDICE DE FIGURAS	XIV
RESUMEN EJECUTIVO	XVIII
CAPÍTULO I	1
1.1 TEMA	1
1.2 Planteamiento del problema	1
1.2.1 Contextualización	1
1.2.2 Análisis Critico	3
1.2.3 Prognosis	4
1.2.4 Formulación del problema	5
1.2.5 Preguntas directrices	5
1.2.6 Delimitación del problema	5
1.3 Justificación	6
1.4 Objetivos	7
1.4.1 Objetivo General	7
1.4.2 Objetivos Específicos	7
CAPÍTULO II	9
MARCO TEÓRICO	9
2.1 Antecedentes Investigativos	9
2.2 Fundamentación Teórica	11
2.2.1 Diseño Mecánico	11
2.2.2 Sistemas Mecánicos Confiables	11
2.2.3 Estado actual de máquinas	12
2.2.4 Mantenimiento Industrial	16
2.2.5 Análisis de Métodos de Falla	22
2.2.6 Análisis de confiabilidad mediante la ley de Weibull	28

2.3 Fundamentación Filosófica	42
2.4 Fundamentación legal	42
2.5 Categorías fundamentales	43
2.6 Hipótesis	43
2.7 Señalamiento de variables	43
2.7.1 Variable independiente	43
2.7.2 Variable dependiente	43
2.7.3 Término de Relación	43
CAPÍTULO III	44
METODOLOGÍA	44
3.1 Enfoque	44
3.2 Modalidad Básica de la Investigación	44
3.2.1 Documental	44
3.2.2 Investigación de Campo	45
3.2.2.1 Investigación Experimental	45
3.3 Nivel o tipo de Investigación	45
3.3.1 Exploratorio	45
3.3.2 Descriptiva	45
3.3.3 Correlacional	46
3.4 Población y Muestra	46
3.4.1 Población	46
3.4.2. Muestra	46
3.5 Operacionalización de Variables	48
3.5.1 Variable Independiente	48
3.5.2 Variable Dependiente	49
3.6 Plan de recolección de la investigación	50
3.7 Procesamiento y Análisis	51
3.7.1 Procesamiento de la información recogida	51
3.7.2 Análisis e interpretación de resultados	52
CAPÍTULO IV	53
ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	53
1.1 Análisis de Resultados	53
4.1.1 Estudio inicial del área de inyección de PVC de la Empresa Holviplas S.A	54
4.2 Análisis del estado actual de las máquinas y equipos del área de inyección de PVC	. 55

4.2.1 Ficha Técnica de las Máquinas Inyectoras y equipos de la empresa Holviplas S.A.55
4.2.2 Análisis de registro de fallas de las máquinas y equipos del área de inyección de PVC de la Empresa Holviplas S.A
4.2.3 Análisis de disponibilidad y confiabilidad de máquinas y equipos del área de inyección de PVC de la empresa Holviplas S.A
4.2.4 Análisis de Confiabilidad de Máquinas y Equipos mediante la Distribución de Weibull Modelo Matemático
4.2.5 Análisis de la Confiabilidad de Máquinas y Equipos mediante la Distribución de Weibull Modelo Gráfico
4.2.6 Análisis Modal de Falla – Efecto de Máquinas y Equipos del área de inyección Holviplas S.A
4.2.7 Desarrollo del Plan de Mantenimiento Preventivo
4.3 Interpretación de Resultados
4.3.1 Resumen e Interpretación de la Disponibilidad y Confiabilidad
4.3.2 Resumen e Interpretación de confiabilidad de Weibull para máquinas y equipos del área de inyección
4.3.3 Resumen e Interpretación AMFE
4.4 Aprobación de la Hipótesis
4.4.1 Cálculo de la Confiabilidad y Probabilidad de fallo de Weibull
4.4.2 Análisis de datos de la Confiabilidad de Weibull
4.4.4 Aplicación del diseño Experimental
4. 5 Verificación de la hipótesis
CAPÍTULO V185
5. Conclusiones y Recomendaciones
5.1 Conclusiones
5.2 Recomendaciones
CAPÍTULO VI189
PROPUESTA
6.1 Datos Informativos
6.1.1 Título de la Propuesta
6.1.2 Institución Ejecutora
6.1.3 Beneficiarios
6.1.4 Ubicación de la empresa
6.2 Antecedentes de la Propuesta
6.3 Justificación

6.4 Objetivos	191
6.4.1 Objetivo General	191
6.4.1 Objetivo Específico	191
6.5 Análisis de Factibilidad	192
6.6 Fundamentación	192
6.6.1 Documentos de Mantenimiento	193
6.6.2 Software Especializado	194
6.6.3 Creación de Grafical User Interface (Interfaz Gráfica)	194
6.6.4 Confiabilidad	200
6.6.5 Disponibilidad	202
6.7 Metodología	203
6.7.1 Desarrollo de la programación del índice de confiabilidad aplicar Weibull en un software especializado.	•
6.7.2 Desarrollo de la programación del índice de Disponibilidad er especializado	
6.8 Administración	213
6.9 Previsión de la Evaluación	214
BIBLIOGRAFÍA	215
ANEXOS	219
ÍNDICE DE TABLAS	
Tabla 2. 1 Valores de Interpretación de Correlación	16
Tabla 2. 2 Evolución del Mantenimiento.	19
Tabla 2. 3 Plantilla para análisis AMFE	25
Tabla 2. 4 Criterios para evaluación de la Frecuencia (F) del Fallo	27
Tabla 2. 5 Criterios para evaluación de la Gravedad (G) del Fallo.	27
Tabla 2. 6 Criterios para evaluación de detección (D) del Fallo	27
Tabla 2. 7 Características del análisis NPR	
Tabla 2. 8 Ejemplo tabla de valores para porcentaje de falla	

Tabla 3.1 Lista de Máquinas y Equipos	46
Tabla 3.2 Estudio del estado actual de máquinas y equipos del área de inyección	ı de
accesorios de PVC de la empresa Holviplas S.A.	48
Tabla 3.3 Análisis de falla mediante la ley de Weibull	49
Tabla 4. 1 Ficha Técnica de Inyectora Haitian HTF 300	56
Tabla 4. 2 Ficha Técnica de Inyectora Haitian HTF 200	56
Tabla 4. 3 Ficha Técnica de Inyectora Haitian HTF 320	57
Tabla 4. 4 Ficha Técnica de Inyectora Haitian PL4500	57
Tabla 4. 5 Ficha Técnica de Inyectora Haitian PL1600	58
Tabla 4. 6 Ficha Técnica de Triturador de PVC Cumberland	58
Tabla 4. 7 Ficha Técnica de Montacargas Toyota	59
Tabla 4. 8 Ficha Técnica de Transportador Hidráulico Manual de Pallets	59
Tabla 4. 9 Ficha Técnica de Tecle de cadena Truper	60
Tabla 4. 10 Análisis de tiempos para Inyectora HTF 300	
Tabla 4. 11 Análisis de tiempos para Inyectora HTF 200	62
Tabla 4. 12 Análisis de tiempos para Inyectora HTF320	63
Tabla 4. 13 Análisis de tiempos para Inyectora PL4500	64
Tabla 4. 14 Análisis de tiempos para Inyectora PL1600	65
Tabla 4. 15 Análisis de tiempos de Triturador de Accesorios de PVC	66
Tabla 4. 16 Análisis de Tiempos de Montacargas Toyota	67
Tabla 4. 17 Análisis de Tiempos de Transportador Hidráulico Manual	68
Tabla 4. 18 Análisis de Tiempos de Tecle de Cadena	69
Tabla 4. 19 Análisis de fiabilidad y disponibilidad de Máquina Inyectora HTF300	70
Tabla 4. 20 Análisis de fiabilidad y disponibilidad de Máquina Inyectora HTF200	71
Tabla 4. 21 Análisis de fiabilidad y disponibilidad de Máquina Inyectora HTF320	72
Tabla 4. 22 Análisis de fiabilidad y disponibilidad de Máquina Inyectora PL4500	73
Tabla 4. 23 Análisis de fiabilidad y disponibilidad de Máquina Inyectora PL1600	74
Tabla 4. 24 Análisis de fiabilidad y disponibilidad de Triturador de PVC	75
Tabla 4. 25 Análisis de fiabilidad y disponibilidad de Montacarga Toyota	76
Tabla 4. 26 Análisis de fiabilidad y disponibilidad de Transportador Hidráulico	77

Tabla 4. 27 Análisis de fiabilidad y disponibilidad de Tecle	78
Tabla 4. 28 Datos estadísticos y cálculo de parámetros para Inyectora HTF300	88
Tabla 4. 29 Cálculo de parámetros iniciales de Inyectora HTF300	89
Tabla 4. 30 Datos estadísticos y cálculo de parámetros para Inyectora HTF200	91
Tabla 4. 31 Cálculo de parámetros iniciales de Inyectora HTF200	91
Tabla 4. 32 Datos estadísticos y cálculo de parámetros para Inyectora HTF320	93
Tabla 4. 33 Cálculo de parámetros iniciales de Inyectora HTF320	94
Tabla 4. 34 Datos estadísticos y cálculo de parámetros para Inyectora PL4500	95
Tabla 4. 35 Cálculo de parámetros iniciales de Inyectora PL4500	96
Tabla 4. 36 Datos estadísticos y cálculo de parámetros para Inyectora PL1600	98
Tabla 4. 37 Cálculo de parámetros iniciales de la Inyectora PL1600	98
Tabla 4. 38 Datos estadísticos y cálculo de parámetros para Montacargas Toyota	. 100
Tabla 4. 39 Cálculo de variables para determinar la confiabilidad del Montacargas To	oyota
	. 100
Tabla 4. 40 Datos estadísticos y cálculo de parámetros para Triturador de PVC	. 102
Tabla 4. 41 Cálculo de parámetros iniciales del Triturador de PVC	. 103
Tabla 4. 42 Datos estadísticos y cálculo de parámetros para Tecle de Cadena Truper	. 105
Tabla 4. 43 Cálculo de parámetros iniciales del Tecle de cadena Truper	. 105
Tabla 4. 44 Datos estadísticos y cálculo de parámetros para Transportador Hidráulio	o de
Pallets	. 107
Tabla 4. 45 Cálculo de parámetros iniciales del Transportador Hidráulico (Pallets)	. 107
Tabla 4. 46 Cálculo porcentaje de falla acumulativa F(i) Inyectora HTF300	. 109
Tabla 4. 47 Parámetros gráfico de Weibull Inyectora HTF300	. 111
Tabla 4. 48 Confiabilidad de Weibull Inyectora HTF300	. 111
Tabla 4. 49 Cálculo porcentaje de falla acumulativa F(i) de la Inyectora HTF200	. 113
Tabla 4. 50 Parámetros gráfico de Weibull Inyectora HTF200.	. 115
Tabla 4. 51 Confiabilidad de Weibull Inyectora HTF200	. 115
Tabla 4. 52 Cálculo porcentaje de falla acumulativa F(i) de la Inyectora HTF320	. 117
Tabla 4. 53 Parámetros gráfico de Weibull Inyectora HTF320	. 119
Tabla 4. 54 Confiabilidad de Weibull Inyectora HTF320	. 119
Tabla 4. 55 Cálculo porcentaje de falla acumulativa F(i) Inyectora PL4500	. 121
Tabla 4. 56 Parámetros gráfico de Weibull Invectora PI 4500	123

Tabla 4. 57 Confiabilidad de Weibull Inyectora PL4500	. 123
Tabla 4. 58 Cálculo porcentaje de falla acumulativa F(i) Inyectora PL1600	. 125
Tabla 4. 59 Parámetros gráfico de Weibull Inyectora PL1600	. 127
Tabla 4. 60 Confiabilidad de Weibull Inyectora PL1600	. 127
Tabla 4. 61 Cálculo porcentaje de falla acumulativa F(i) de Montacargas Toyota	. 129
Tabla 4. 62 Parámetros gráfico de Weibull Montacargas Toyota	. 131
Tabla 4. 63 Confiabilidad de Weibull Montacargas Toyota	. 131
Tabla 4. 64 Cálculo porcentaje de falla acumulativa F(i) de Triturador de PVC	. 133
Tabla 4. 65 Parámetros gráfico de Weibull Triturador de PVC	. 135
Tabla 4. 66 Confiabilidad de Weibull Triturador de PVC	. 135
Tabla 4. 67 Cálculo porcentaje de falla acumulativa F(i) del tecle de cadena	. 137
Tabla 4. 68 Parámetros gráfico de Weibull Tecle de Cadena	. 139
Tabla 4. 69 Confiabilidad de Weibull Tecle de cadena	. 139
Tabla 4. 70 Datos histórico de falla Transportador Hidráulico de Pallets	
Tabla 4. 71 Parámetros gráfico de Weibull Transportador Hidráulico	. 143
Tabla 4. 72 Confiabilidad de Weibull Transportador Hidráulico	. 143
Tabla 4. 73 Análisis Modal de Fallos Máquina Inyectora de PVC	. 145
Tabla 4. 74 Análisis Modal de Fallos de Montacargas Toyota	. 153
Tabla 4. 75 Análisis Modal de Fallos de Máquina Triturador de PVC	. 157
Tabla 4. 76 Análisis Modal de Transportador Hidráulico	. 160
Tabla 4. 77 Análisis Modal de Fallos de Equipo Tecle de cadena	. 163
Tabla 4. 78 Matriz de Mantenimiento de Inyectoras	. 167
Tabla 4. 79 Matriz de Mantenimiento Montacargas Toyota	. 168
Tabla 4. 80 Matriz de Mantenimiento Tecle de Cadena	. 169
Tabla 4. 81 Matriz de Mantenimiento Transportador Hidráulico	. 170
Tabla 4. 82 Matriz de Mantenimiento Triturador de PVC (Molino)	. 171
Tabla 4. 83 Plan de Mantenimiento Anual de Máquinas y Equipos	. 172
Tabla 4. 84 Resumen del Análisis de Disponibilidad y Confiabilidad de máquinas y equ	iipos
	. 174
Tabla 4. 85 Resumen del Análisis de la Confiabilidad de Weibull	. 175
Table 4 86 Resumen del Análisis Model de Fallos AMEE de les méquines y equipos	177

Tabla 4. 87 Cálculo de Correlación de la Confiabilidad y Probabilidad de Fallo de We	eibull
Tabla 4. 88 Cálculo de valores de dispersión	178
Tabla 4. 89 Verificación del supuesto normalidad de la Confiabilidad	180
Tabla 4. 90 Verificación del supuesto de igualdad de varianza de la Confiabilidad	181
Tabla 4. 91 Diseño factorial completo del estado actual por la ley de Weibull (ANC	OVA)
	183
Tabla 4. 92 Valor P del estado actual de maquinas y equipos por la ley de Weibull	184
Tabla 6. 1 Lista de Componentes de GUIDE	198
Tabla 6. 2 Detalle de Costos Totales	213
ÍNDICE DE FIGURAS	
Fig 2. 1 Interpretación de la covarianza	15
Fig 2. 2 Diagrama de dispersión valores de r	16
Fig 2. 3 Herramientas para la Confiabilidad Operacional	23
Fig 2. 4 Función de densidad de probabilidad Weibull para varios valores de forma $\beta.$	32
Fig 2. 5 Curva de la bañera Weibull	33
Fig 2. 6 Encabezado Papel Weibull	35
Fig 2. 7 Ejemplo de aplicación de datos en papel de Weibull	38
Fig 2. 8 Ejemplo de obtención de datos β y Pμ	39
Fig 2. 9 Ejemplo de obtención de datos MTBF	40
Fig 2. 10 Ejemplo de obtención de n estimador	41
Fig 2. 11 Categoría Fundamental	43
Fig.3.1 Diagrama de recolección de información	50
Fig.3.2 Diagrama de procesamiento y análisis de información	51
Fig 4. 1 Diagrama de las actividades para realizar el estudio	
Fig 4. 2 Ubicación de máquinas y equipos del área Invección de PVC	54

Fig 4. 3 Fiabilidad vs Tiempo Operación de la Inyectora HTF300	79
Fig 4. 4 Gráfica de la curva de la bañera de la Inyectora HTF300	79
Fig 4. 5 Fiabilidad vs Tiempo Operación de la Inyectora HTF200	80
Fig 4. 6 Gráfica de la curva de la bañera de la Inyectora HTF200	80
Fig 4. 7 Fiabilidad vs Tiempo Operación de la Inyectora HTF320	81
Fig 4. 8 Gráfica de la curva de la bañera de la Inyectora HTF320	81
Fig 4. 9 Fiabilidad vs Tiempo Operación de la Inyectora PL4500	82
Fig 4. 10 Gráfica de la curva de la bañera de la Inyectora PL4500	82
Fig 4. 11 Fiabilidad vs Tiempo Operación de la Inyectora PL1600	83
Fig 4. 12 Gráfica de la curva de la bañera de la Inyectora PL1600	83
Fig 4. 13 Fiabilidad vs Tiempo Operación del Triturador de PVC (Molino)	84
Fig 4. 14 Gráfica de la curva de la bañera Triturador de PVC (Molino)	84
Fig 4. 15 Fiabilidad vs Tiempo Operación del Montacargas Mitsubishi	85
Fig 4. 16 Gráfica de la curva de la bañera del Montacargas Mitsubishi	85
Fig 4. 17 Fiabilidad vs Tiempo Operación del Transportador Hidráulico	86
Fig 4. 18 Gráfica de la curva de la bañera del Transportador Hidráulico	86
Fig 4. 19 Fiabilidad vs Tiempo Operación del Tecle de Cadena	87
Fig 4. 20 Gráfica de la curva de la bañera del Tecle de Cadena	87
Fig 4. 21 Confiabilidad de Weibull Inyectora HTF300	90
Fig 4. 22 Densidad de probabilidad de fallo para Inyectora HTF300	90
Fig 4. 23 Confiabilidad de Weibull Inyectora HTF200	92
Fig 4. 24 Densidad de probabilidad de fallo para Inyectora HTF200	92
Fig 4. 25 Confiabilidad de Weibull Inyectora HTF320	94
Fig 4. 26 Densidad de probabilidad de fallo para Inyectora HTF320	95
Fig 4. 27 Confiabilidad de Weibull Inyectora PL4500	97
Fig 4. 28 Densidad de probabilidad de fallo para Inyectora PL4500	97
Fig 4. 29 Confiabilidad de Weibull Inyectora PL1600	99
Fig 4. 30 Densidad de probabilidad de fallo para Inyectora PL1600	99
Fig 4. 31 Confiabilidad de Weibull Montacargas Toyota	101
Fig 4. 32 Densidad de probabilidad de fallo de Montacargas Toyota	101
Fig 4. 33 Confiabilidad de Weibull Triturador de PVC	103
Fig 4. 34 Densidad de probabilidad de fallo para Triturador de PVC	104

Fig 4. 35 Confiabilidad de Weibull Tecle de Cadena Petrul	106
Fig 4. 36 Densidad de probabilidad de fallo de Tecle de Cadena Petrul	106
Fig 4. 37 Confiabilidad de Weibull Transportador Hidráulico Pallets	108
Fig 4. 38 Densidad de probabilidad de fallo para Transportador Hidráulico	108
Fig 4. 39 Papel Weibull aplicado a Inyectora HTF300	110
Fig 4. 40 Confiabilidad y Probabilidad de falla de la Inyectora HTF 300	112
Fig 4. 41 Papel Weibull aplicado a Inyectora HTF200	114
Fig 4. 42 Confiabilidad y Probabilidad de falla de inyectora HTF 200	116
Fig 4. 43 Papel Weibull aplicado a Inyectora HTF320	118
Fig 4. 44 Confiabilidad y Probabilidad de falla de inyectora HTF 320	120
Fig 4. 45 Papel Weibull aplicado a Inyectora PL4500	122
Fig 4. 46 Confiabilidad y Probabilidad de falla de inyectora PL4500	124
Fig 4. 47 Papel Weibull aplicado a Inyectora PL1600	126
Fig 4. 48 Confiabilidad y Probabilidad de falla de inyectora PL1600	128
Fig 4. 49 Papel Weibull aplicado a Montacargas Toyota	130
Fig 4. 50 Confiabilidad y Probabilidad de falla de Montacargas Toyota	132
Fig 4. 51 Papel Weibull aplicado a Triturador de PVC (Molino)	134
Fig 4. 52 Confiabilidad y Probabilidad de falla del Triturador de PVC.	136
Fig 4. 53 Papel Weibull aplicado a un Tecle de cadena Truper	138
Fig 4. 54 Confiabilidad y Probabilidad de falla de un Tecle de Cadena	140
Fig 4. 55 Papel Weibull aplicado a un Transportador Hidráulico de Pallets	142
Fig 4. 56 Confiabilidad y Probabilidad de falla de un Transportador hidráulico	144
Fig 4. 57 Predicción de falla de máquinas y equipos por la ley de Weibull	176
Fig 4. 58 Correlación de Confiabilidad vs Probabilidad de fallo de Weibull	179
Fig 4. 59 Gráfica de Orden de observación vs Residuo de Confiabilidad	182
Fig. 6. 1 Formato de Registro de actividades [39].	193
Fig. 6. 2 Ventana principal Software Especializado	195
Fig. 6. 3 Acceso a GUI desde Command Window	196
Fig. 6. 4 Acceso a GUI desde Menú Software	196
Fig. 6. 5 Menú para seleccionar el tipo de GUI inicial	197
Fig. 6. 6 Plataforma de diseño GUI	197

Fig. 6. 7 Acceso a Property Inspector del componente	198
Fig. 6. 8 Diseño Interfaz gráfica con varios componentes	199
Fig. 6. 9 Menú M-File Editor de un GUI	199
Fig. 6. 10 Interfaz gráfica de una GUI al presionar Run Guide	200
Fig. 6. 11 Pantalla principal Guide	203
Fig. 6. 12 Escenario Interfaz gráfica de análisis de confiabilidad aplicando la ley d	e Weibull
	204
Fig. 6. 13 Panel Ingreso de Datos.	205
Fig. 6. 14 Código de botones del panel de ingreso de Datos	205
Fig. 6. 15 Panel de Ingreso de Archivo	205
Fig. 6. 16 Código para cargar un archivo	205
Fig. 6. 17 Panel de Parámetros Weibull	206
Fig. 6. 18 Código para calcular parámetros Weibull	206
Fig. 6. 19 Panel despegable para graficar	207
Fig. 6. 20 Código para el panel del menú despegable	207
Fig. 6. 21 Gráfica de Confiabilidad	207
Fig. 6. 22 Tabla de valores Weibull calculados	208
Fig. 6. 23 Código para el botón Regresar al menú principal	208
Fig. 6. 24 Escenario Interfaz gráfica de análisis del índice de Disponibilidad	209
Fig. 6. 25 Panel de control del índice de Disponibilidad	209
Fig. 6. 26 Código de botones del panel de ingreso	210
Fig. 6. 27 Panel resultados de Disponibilidad	210
Fig. 6. 28 Código para visualizar el índice de disponibilidad	210
Fig. 6. 29 Tabla de valores del índice de Disponibilidad	211
Fig. 6. 30 Simbología de tabla de valores de Disponibilidad	211
Fig. 6. 31 Panel para representar y guardar imagen	211
Fig. 6. 32 Código para archivar imagen	211
Fig. 6. 33 Gráfica de Tasa de Fallo del índice de Disponibilidad	212
Fig. 6. 34 Código para el botón Regresar al menú Principal	212
Fig. 6. 35 Retorno Pantalla del Menú Principal	212

RESUMEN EJECUTIVO

En la actualidad el mantenimiento a nivel de empresas es importante, la cual consiste en la planeación de ciertas medidas dedicadas al estado de máquinas y equipos que tiene como objetivo primordial determinar la confiabilidad y disponibilidad, con esto se pretende conocer las óptimas condiciones de operación, disminuyendo la tasa de fallo, tiempos de paro y así se incrementará la vida útil de los elementos y la productividad de la empresa.

Se inició con la determinación de las fichas técnicas y la recopilación de datos de actividades de mantenimiento registrados de cada máquina y equipo existente en el área, en donde se obtuvo los tiempos de operación (To), tiempo de reparación (TR), tiempos de paro (TP) y se analizó el tiempo medio entre fallas (TPEF), Tiempo promedio entre reparaciones (TPPR), tasa de fallos, Confiabilidad, y Disponibilidad (D). Posteriormente se realizó el análisis mediante una herramienta estadística según la Norma NTP331 análisis de Weibull, para determinar la confiabilidad por el método matemático y modelo gráfico para cada maquinaria, lo que facilitó emitir un criterio relevante sobre las gráficas de la curva de la bañera y las etapas que se encuentran cada máquina y equipo. También según la Norma NTP 679 AMFE, se identificó mediante una matriz de criterios ponderados los componentes cruciales a sufrir fallos, en la cual se obtuvo el número de prioridad de riesgo (NPR) de cada sistema, las misma que indica las acciones que se debe tomar para cada componente con mayor (NPR) de la maquinaria. Se desarrolló un software especializado que permite y facilita el calculó de los parámetros característicos de la función Weibull, así como los parámetros de medición de confiabilidad como: tasa de falla, probabilidad de falla, tiempo entre fallas, Disponibilidad etc. El programa requiere el ingreso de los datos históricos de tiempos de operación ordenados de menor a mayor ya sea de forma manual o mediante un archivo excel por el método seleccionado. Se realizó varias pruebas prácticas para comprobar el alcance y se logró obtener un programa que es capaz de calcular los parámetros mencionados y de también graficar con una precisión a la altura de algunos softwares comerciales, con una interfaz de usuario simple.

Con el software desarrollado se pretende en un futuro aplicar a múltiples máquinas y equipos de diferentes empresas ya sean manufactureras o de cualquier otra actividad que requieran una estrategia de mantenimiento industrial.

Palabras Claves: Mantenimiento, Confiabilidad de máquinas y equipos, Ley de Weibull, Disponibilidad, área de inyección de PVC, Software especializado.

EXECUTIVE SUMMARY

At present, maintenance at the company level is important, which consists of planning certain measures dedicated to the condition of machines and equipment that has as its primary objective to determine the reliability and availability, with this it is intended to know the optimal operating conditions, reducing the failure rate, downtime and thus increase the life of the elements and the productivity of the company.

It began with the determination of technical data sheets and the collection of data on maintenance activities recorded for each machine and equipment in the area, where operating times (To), repair time (TR), downtime (TP) were obtained and the mean time between failures (TPEF), mean time between repairs (TPPR), failure rate, reliability, and availability (D) were analyzed. Afterwards, the analysis was made by means of a statistical tool according to the NTP331 Weibull analysis, to determine the reliability by the mathematical method and graphic model for each machinery, which facilitated to issue a relevant criterion on the graphs of the curve of the bath and the stages that each machine and equipment are in. Also according to the Standard NTP 679 AMFE, the crucial components to suffer failures were identified through a matrix of weighted criteria, in which the risk priority number (NPR) of each system was obtained, which indicates the actions that must be taken for each component with greater (NPR) of the machinery. A specialized software was developed that allows and facilitates the calculation of the characteristic parameters of the Weibull function, as well as the reliability measurement parameters such as: failure rate, failure probability, time between failures, availability, etc. The program requires the entry of the historical data of operation times ordered from minor to major either manually or by means of an excel file by the selected method. Several practical tests were carried out to check the scope and it was possible to obtain a program that is capable of calculating the mentioned parameters and also of graphing with a precision at the level of some commercial softwares, with a simple user interface.

The software developed is intended in the future to be applied to multiple machines and equipment from different companies, whether they are manufacturing companies or any other activity that requires an industrial maintenance strategy.

Keywords: Maintenance, Reliability of machines and equipment, Weibull law, Availability, PVC injection area, Specialized software.

CAPÍTULO I

1.1 TEMA

"ESTUDIO DEL ESTADO ACTUAL DE MÁQUINAS Y EQUIPOS DEL ÁREA DE INYECCIÓN DE ACCESORIOS DE PVC DE LA EMPRESA HOLVIPLAS S.A. A TRAVÉS DE LOS REGISTROS DE FALLA MEDIANTE LA LEY DE WEIBULL"

1.2 Planteamiento del problema

1.2.1 Contextualización

El Mantenimiento se puede considerar claramente que nació con el desarrollo industrial, y en un principio consistía exclusivamente en reparaciones, las cuales fueron hasta 1914 realizadas por el mismo grupo de operación. Ya a partir del año mencionado, con la implementación de la producción en serie de Ford, se crearon grupos especiales dedicados al mantenimiento, que aún consistía en reparaciones [1].

Con el desarrollo aeronáutico, se ha considerado más que reparaciones era preciso evitar que las fallas ocurriesen, tanto por el impacto de una eventual avería, como por el costo asociado a la misma, dando origen al mantenimiento preventivo. Luego de la aparición de los microprocesadores y la electrónica digital a mediados de la década de los 70, se dio origen a instrumentos con capacidad de predecir la ocurrencia de fallas, denominado el mantenimiento predictivo [1].

Motivado por la masificación de los ordenadores personales, así como la acogida de la filosofía de gestión de activos, se desarrolló el concepto de la confiabilidad, haciendo uso de la herramienta como el mantenimiento asistido por ordenador, facilita la coordinación de la producción, la selección de la estrategia correcta de mantenimiento, que se flexibilice el mantenimiento basado en la confiabilidad (RCM) y el mantenimiento productivo total (TPM) que se desarrollen en las empresas [1].

A medida de incrementar la confiabilidad en la producción y evitar pérdidas por averías, aparece el Mantenimiento Preventivo, Predictivo y Proactivo, la gestión de Mantenimiento asistida por ordenador, además del mantenimiento basado en la Confiabilidad (RCM), estudia los modos de fallo de máquinas y equipos aplicando las técnicas estadísticas y tecnológicas de detección. El planteamiento común de la Confiabilidad es determinar probabilidad de que un componente o sistema puede cumplir su función en las condiciones operativas especificadas durante un intervalo de tiempo establecido [2].

En Latinoamérica específicamente en Ecuador la industria ha pasado de una política de mantenimiento correctivo, destinado atender averías producidas en equipos, a implementar políticas de mantenimiento preventivo, con el objetivo de adelantarse al deterioro y pérdidas de funcionalidad de máquinas. En los últimos años se ha visto la aplicación del mantenimiento basado en la Confiabilidad que se enfoca en la optimización de maquinaria, procedimientos y presupuestos para lograr una mantenibilidad, confiabilidad de sistemas y disponibilidad de los mismos [3].

En la empresa Holviplas S.A, actualmente no cuenta con la información suficiente para el debido desarrollo de un mantenimiento adecuado, lo cual dificulta un control y mantenibilidad de las máquinas y equipos, por lo cual es necesario crear herramientas que nos permita contribuir a la realización del presente estudio. Las actividades, en su mayoría se realizan solo por reparaciones debido a que no existe un cronograma de mantenimiento que permita una alta eficiencia, confiabilidad y disponibilidad, principalmente para la máquinas y equipos del área de inyección de accesorios de PVC. Debido a lo expuesto el estado de las mismas se ven afectados en la producción y los costos elevados para mantenimiento correctivo.

En el presente estudio se requiere conocer el estado actual de máquinas y equipos del área de inyección de PVC de la empresa HOLVIPLAS S.A, para eso se buscará registros históricos de daño o falla que haya ocurrido y mediante la aplicación de herramientas como el análisis estadístico, análisis de modos de fallo y la distribución de Weibull. Basado en este estudio permitirá estimar el porcentaje de disponibilidad y aplicar estrategias de mantenimiento, en donde se pueda optimizar ordenes de trabajo, gestión de

actividades preventivas y los datos encontrados convertir en datos útiles para la toma de decisiones y mejorar la mantenibilidad de dichas máquinas y por ende lo económico.

En una investigación reciente que aplica la distribución de Weibull en ingeniería de la confiabilidad, interpreta que los valores extremos de la función de Weibull esta ligada a la vida útil de los productos en estudio que han generado una iniciativa de perfeccionamiento relacionado con la calidad o de cero fallas entre otros. Teóricamente observaremos que los cambios de parámetros generan una familia de distribuciones cuyos casos específicos coinciden con otras distribuciones como la exponencial, gaussiana o chi-cuadrado entre otras [4].

La distribución de Weibull es la más utilizadas en ingeniería de confiabilidad, ya que permite encontrar la falla de un componente que se pretende controlar y que a través de registros histórico o actuales de fallas se observa que estos varían a lo largo del tiempo normal de uso. Dicha distribución facilita la identificación de las variables que influye en la tasa de fallos y su consideración además de disponer de una herramienta de predicción del comportamiento en un futuro, la cual son métodos muy útiles para empresas que desarrollan programas de mantenimiento de máquinas y equipos [4].

1.2.2 Análisis Critico

A nivel de empresas es importante el mantenimiento, consiste en la planeación de ciertas medidas dedicadas al estado de máquinas y equipos en óptimas condiciones de operación, por lo que al realizar una óptima gestión de mantenimiento y bien aplicado incrementará la vida útil, reducirá los costos de servicio, disminuye la tasa de fallo, los tiempos de paro y se conseguirá el incremento de productividad de mejor calidad [4].

Por desgracia, la empresa Holviplas S.A, no ha sufrido la evolución en el mantenimiento y sigue sumido en el antiguo mantenimiento ordinario, específicamente en el área de inyección de accesorios de PVC, en donde sigue persistiendo la reparación urgente de averías la que dirige la actividad del mantenimiento correctivo, la mayor gestión de mantenimiento se realiza cuando una máquina tiende a dejar de operar en su totalidad, la cual lleva a elevados tiempos de reparación, tiempos de para, perdida de producción y costos elevados de mantenimiento correctivo.

Dentro de la empresa Holviplas S.A., no se ha realizado un estudio del estado actual de máquinas y equipos, al no tener un cronograma de mantenimiento no se documenta los registros de falla por averías o daños, los tiempos de para, tiempo de reparaciones, tampoco se conoce la vida útil de componentes y sistemas de cada máquina y equipo diseñadas para cumplir un trabajo. Es una gran realidad es el desinterés de la empresa debido a que no permite ejecutar un mantenimiento basado en herramientas tecnológicas, análisis estadístico como la distribución de Weibull, en donde miran como un gasto y no una inversión, ya que sería de gran ayuda para lograr una mejor mantenibilidad, fiabilidad de sistemas y disponibilidad de equipos aplicando el mantenimiento centrado en la confiabilidad. El propósito es presentar un análisis con conclusiones y datos reales que permita aplicar un sistema de mantenimiento al área mencionada.

1.2.3 Prognosis

Es considerable hacer énfasis en conocer estado actual de las máquinas y equipos que cuenta el área de inyección de la empresa Holviplas S.A., debido al tiempo que transcurre y en un futuro los daños que se podría presentar serían muy graves, las máquinas y equipos finalmente dejarían de funcionar, causando costos de reparación elevados, el descenso de producción de la empresa.

Al no realizar el análisis del estado actual de máquinas y equipos en el área de inyección de accesorios de PVC de la empresa Holviplas S.A., y al no existir documentación necesaria no se podrá aplicar el análisis estadístico Weibull y diagnosticar la disponibilidad de equipos, a la larga serán más graves hasta el punto que los elementos a analizar dejarían de trabajar en su totalidad dando como resultado retrasos en la producción, gasto económicos sumamente altos y se interrumpieran anhelos de crecer como una empresa de competitividad a nivel nacional.

1.2.4 Formulación del problema

¿Se podrá determinar el estado actual de máquinas y equipos del área de inyección de accesorios de PVC de la empresa Holviplas S.A., debido a fallas continuas y su incidencia en la ley de Weibull?

1.2.5 Preguntas directrices

¿Será necesario realizar un análisis de registro de fallas de las máquinas y equipos del área de inyección de accesorios de PVC de la Empresa Holviplas S.A.?

¿Se logrará determinar el estado actual de máquinas y equipos en el área de inyección de accesorios de PVC?

¿Se podrá elaborar un diagnóstico de confiabilidad mediante la distribución de Weibull de las máquinas y equipos del área de inyección de accesorios de PVC?

¿Se podrá identificar los problemas principales y modos de fallo de las máquinas y equipos del área de inyección de PVC mediante un análisis AMFE?

¿Se logrará desarrollar un plan de mantenimiento preventivo y predictivo de acuerdo al análisis de confiabilidad de la ley de Weibull?

1.2.6 Delimitación del problema

1.2.6.1. Delimitación de contenidos

El análisis estará enfocado en el campo de la Ingeniería Mecánica en sus diferentes áreas como son: Gestión de Mantenimiento, Fiabilidad de Sistemas Mecánicos, Diseño de Experimentos, Diagnostico Industrial y Producción, siendo estas las líneas de investigación.

1.2.6.2. Delimitación Espacial

El estudio del estado actual de máquinas y equipos del área de inyección de accesorios de PVC debido a registro de fallas aplicando la ley de Weibull se llevará a cabo, en la provincia de Tungurahua, ciudad de Ambato, en la planta de producción Holviplas S.A. ubicada en el Km 11 1/2 vía a Baños de igual forma de ser necesario en el laboratorio de

la Facultad de Ingeniería Civil y Mecánica, dentro de la Universidad Técnica de Ambato, Campus Huachi.

1.2.6.3. Delimitación temporal

El estudio del estado actual de máquinas y equipos del área de inyección de accesorios de PVC, se realizará durante el periodo Julio del 2018 – Noviembre del 2019, tiempo en el cual se establecerán las variables que influirán debido a registro de falla aplicando la ley de Weibull.

1.3 Justificación

La justificación del desarrollo del presente tema de trabajo de titulación tiene como propósito realizar un análisis de los registros de averías o falla, debido al mantenimiento correctivo que se ha venido aplicando hasta la actualidad, ya que tiene como finalidad conocer el estado actual de las máquinas y equipos del área de inyección en la empresa Holviplas S.A., para ello se realizó en primer lugar la recolección de registros de fallas existentes, como segundo punto el análisis de tiempos de operación (TO), tiempo entre fallos(TPEF) y tiempo medio de reparación (TPPR), para conocer la disponibilidad del equipo. Además de un análisis crítico denominado AMFE que ayudara a determinar la prioridad de riesgo de cada componente.

Por este motivo el estudio se realizará con el fin de detectar fallas en máquinas y equipos del área de inyección de accesorios de PVC, siendo necesario analizar y evaluar sus comportamientos mediante herramientas y modelos estadísticos como la ley de Weibull, debido a que en dicha área se realiza un mantenimiento correctivo, lo que con lleva interferencias de operación y paradas forzadas de altos tiempos, afectando la producción establecida diariamente.

El mantenimiento de máquinas y equipos juega un papel fundamental dentro de cualquier organización y en la empresa Holviplas S.A. quiere prevalecer en la producción de PVC, al no existir un análisis detallado ha decidido tomar en cuenta este punto a fin de preservar las máquinas y equipos con el fin de disminuir fallas, garantizar funcionamiento continuo y sobre todo tratar de que la vida útil de componentes o el sistema incremente en un nivel

aceptables de disponibilidad, mediante un mantenimiento planificado basado en la confiabilidad y además el incremento de la productividad.

Mediante la aplicación de la distribución de Weibull, que es ampliamente utilizado se buscará analizar los registros de fallas de las máquinas y equipos del área de inyección de accesorios de PVC, a través de un análisis estadístico como son el modelo matemático y gráfico de Weibull variando parámetros de escala, se logrará determinar según una curva de la bañera la etapa de falla que se encuentra la máquina o equipo, con los resultados obtenidos se podrá predecir el índice de fallas.

Al realizar un estudio en base a un análisis de modo y efectos de fallos considerados como críticos, se podrá minimizar los orígenes de fallas obteniendo un índice elevando de mantenimiento centrado en la confiabilidad. La aplicación de dicha ley permitirá calcular los tiempos óptimos para el mantenimiento y ayudará a diagnosticar nuevos proyectos para una futura inversión.

Además, con este estudio se desarrollará la investigación tecnológica y científica, como ayuda de solución de inconvenientes de las empresas manufactureras dedicadas a la elaboración de accesorios con máquinas inyectoras, con la finalidad de un funcionamiento eficiente y confiable y a nivel nacional aportar al desarrollo del país.

1.4 Objetivos

1.4.1 Objetivo General

 Estudiar el estado actual de máquinas y equipos del área de inyección de accesorios de PVC de la empresa Holviplas S.A. a través registros de fallas y su incidencia en la ley de Weibull.

1.4.2 Objetivos Específicos

- Realizar un análisis de registro de fallas de las máquinas y equipos del área de inyección de accesorios de PVC de la Empresa Holviplas S.A.
- Determinar el estado actual de máquinas y equipos en el área de inyección de PVC.
- Elaborar un diagnóstico de fiabilidad mediante la distribución de Weibull de las de máquinas y equipos el área de inyección de PVC.

- Identificar los problemas principales y modos de fallo de las máquinas y equipos del área de inyección de PVC mediante un análisis AMFE.
- Desarrollar un plan de mantenimiento preventivo y predictivo de acuerdo al análisis de confiabilidad mediante la ley de Weibull.

CAPÍTULO II

MARCO TEÓRICO

2.1 Antecedentes Investigativos

El presente proyecto se apoyará en investigaciones realizadas con anterioridad por otros autores, a continuación, se presenta referencias respecto al tema de trabajo que se ha encontrado:

Ramírez S [5], desarrolló un tema de investigación bajo el título: "Análisis de Datos de Falla", la cual demostró que es indispensable tener una buena historia clínica de las máquinas, equipos y sistemas que incluyan un buen registro de datos de falla y de interacciones, donde estén registrados los tiempos de falla, tiempos de reparaciones, etc. Este análisis realizado, permite tomar decisiones sobre los cambios operativos del sistema o ejecutar el mantenimiento adecuado o determinado en que momento no es rentable, de acuerdo como estén operando los equipos.

Zamora C [6], desarrolló un tema de investigación bajo el título: "Análisis de Weibull en la gestión de mantenimiento de equipos trackles (minería subterránea)", determino la siguiente conclusión: El análisis de falla utilizando la distribución de Weibull, ayudó a demostrar que la falla sucede por desgaste, es decir se puede aplicar mantenimiento preventivo basado en el uso. Aplicando una política preventiva de cambio de cables de avance con una frecuencia de 125 horas, se obtiene un ahorro significativo cada año en la flota de equipos de perforación.

El Ingeniero Redondo J. [7], desarrolló el tema de investigación bajo el título: "Un modelo matemático óptimo de mantenimiento y fiabilidad aplicada a la aviación comercial", donde menciona la siguiente conclusión: La precisión en la predicción de la fiabilidad es crucial desde el punto de vista económico; ésta determina la productividad operativa del equipo o sistema, así como los gastos de reparación y mantenimiento. De igual manera, puede determinar el intervalo en que se distribuyen los costes operativos y en el que se

obtienen ingresos o servicios. Por consiguiente, la fiabilidad es un factor central para determinar el coste del ciclo de vida de un producto.

Serrano J. [8], ha realizado un artículo de la Universidad Tecnológica de Pereira con el tema "Comparación de métodos para determinar los parámetros de Weibull para la generación de energía eólica "concluye dentro de su investigación que los métodos numéricos que usan iteraciones matemáticas para determinar los parámetros de forma y escala presentan mejor ajuste a la distribución de Weibull. Además, pueden ser usados cuando una mayor precisión es requerida.

Miño P. [9], desarrolló un tema de investigación bajo el título: "Análisis de Confiabilidad, Disponibilidad y mantenibilidad de un motor de combustión interna Wartsila 18V32LNGD", la cual determinó que el motor de combustión interna analizado en cada uno de sus periodos y en su análisis total, el deficiente estado en el que se encuentra la gestión del mantenimiento con un índice de confiabilidad, mantenibilidad y disponibilidad bien bajos. De igual manera el análisis de Repuestos Centrado en la Confiabilidad, ha permitido determinar la criticidad de los repuestos de los diferentes componentes, estableciendo como resultado: muy alta, alta y media criticidad en los componentes de estudio.

Saavedra O. [10], desarrolló el tema de investigación bajo el título: "Análisis de los factores que inciden en el envejecimiento prematuro de máquinas inyectoras para suelas de PVC que afectan la confiabilidad para el proceso de producción en la industria de plástico Garcés localizada en la ciudad de Guayaquil", del cual obtuvo como conclusión que el 91% indica que la inadecuada planificación incide en la asignación de tareas del personal de mantenimiento en el cuarto de máquinas inyectoras que afecta el cumplimiento del mantenimiento generando e envejecimiento de las mismas y provocando un índice bajo de confiabilidad en el proceso de producción.

La empresa no cuenta con un programa de mantenimiento para poder generar archivos que permitan planificar y obtener datos históricos de novedades diarias, horas históricas de trabajo en la maquinas inyectoras, frecuencia de daños de partes de máquinas y con ello adquirir una cantidad de repuestos necesarios en inventario para realizar el mantenimiento preventivo y disminuir la frecuencia de paros no programados en las máquinas inyectoras.

Barrionuevo P. [11], Illicachi J, desarrolló el tema "Análisis de la confiabilidad de los equipos de la central de hormigonado de la empresa pública cementera del ecuador", que llegó a concluir que la confiabilidad del sistema es de 25.21% la cual considera como inaceptable según las políticas internas del coeficiente de cronbach, también determinaron que el activo crítico en el sistema es la mezcladora con un 54.45% de confiabilidad y por último establecieron un plan de mantenimiento para el sistema mencionado.

2.2 Fundamentación Teórica

2.2.1 Diseño Mecánico

Actualmente el diseño mecánico es muy importante debido que está vinculado con el ingenio y la evolución tecnológica. En ingeniería el diseño mecánico es el proceso de dar forma, dimensiones, materiales, tecnología de fabricación y funcionamiento de una máquina para que cumpla determinas funciones o necesidades [12].

Es el diseño de objetos y sistemas de naturaleza mecánica como: estructuras dispositivos e instrumentos, para su consecución el diseñador o el ingeniero hace uso de las ciencias puras como la matemática, física, la ciencia de materiales y la ciencia de la mecánica aplicada al diseño de máquinas que se ocupa de la creación de la maquinaria que funcione de una manera segura y confiable [13] 14].

2.2.2 Sistemas Mecánicos Confiables

Las empresas generadoras de bienes y/o servicios que utilizan instalaciones, edificios, máquinas, equipos, herramientas, dispositivos, etc; para lograr el objetivo necesitan que estos activos se mantengan en un estado de funcionamiento, confiabilidad, mantenibilidad y Disponibilidad adecuados a sus necesidades, al procurar que su vida útil sea la máxima posible al mínimo costo, lo cual se logra a través del mantenimiento.

La ingeniería del Mantenimiento se enfoca en la optimización de equipos, procedimientos y presupuestos para lograr una mejor mantenibilidad, confiabilidad de sistemas y disponibilidad de los equipos, así como alcanzar objetivos del mantenimiento de una empresa [3].

2.2.3 Estado actual de máquinas

Para realizar el análisis del estado actual de máquinas en primer lugar se toma en cuenta el inventario total de una empresa. Para elaborar un inventario o lista de máquinas o equipos que existen en una empresa que sea útil como información, Se realizará un inventario organizado en donde especifique el vínculo de dependencia. Una empresa puede tener una o varias zonas de producción, esas pueden estar divididas en departamentos, en cada una de estos existe diversos máquinas y equipos similares o distintitos, cumpliendo una función particular. Los equipos a su vez están divididos en sistemas, los que están compuestos por elementos, que son los que generalmente se realizan actividades de mantenimiento [15].

A continuación, se define cada uno de estos elementos:

Equipo: El mecanismo individual utilizado para el proceso productivo que conforman un área.

Sistema: Es la conformación de un grupo de elementos que realizan una función en común en un equipo.

Elemento: Constituyen un sistema que en ocasiones pueden existir confusiones entre equipos y elementos, ya que los quipos pueden estar vinculados con otros equipos para ofrecer un servicio, y un elemento solo puede formar parte de un equipo.

Componente: Son piezas en las cuales un elemento puede dividirse [15].

2.2.3.1 Análisis de registros de actividad de mantenimiento de máquinas

Cuando ya se ha determinado un inventario o una lista de todos los equipos es necesario que puedan ser identificados con un código exclusivo, mediante el cual la ubicación será más sencilla, su mención en planos, documentos técnicos, facilitando la realización de registros históricos de acciones y averías y posibilita el cálculo de indicadores [15].

Para realizar el análisis de registros de falla de cada máquinas de una área seleccionada, se procedió a la recopilación de información en el departamento de estudio, la cual se encontrará en hojas de reporte diario de producción en forma de observaciones, en hojas de reporte de mantenimiento o en hojas manuales dependiendo de la forma que registre cada empresa, obtenido datos coherentes se realiza el análisis por lo mínimo de 1 año en

el mes seleccionado por el investigador, la información del departamento de mantenimiento y operadores del área no será podrán descartar debido que será de gran apoyo para determinar el número de fallas, tiempos de operación, tiempos de reparación y tiempos de paro de una maquinaria.

Para realizar todo el análisis descrito se procede a utilizar los siguientes parámetros:

TPEF: Tiempo promedio entre fallos sucesivos $\left(\frac{TO_1+TO_2+TO_n}{n}\right)$, siendo n el número de datos.

TPPR: Tiempo Promedio de paro por Reparación $\left(\frac{TR_1+TR_2+TR_n}{\Sigma n}\right)$, siendo n el número de datos.

λ: Tasa de Fallo
$$\left(\frac{1}{TPEF}\right)$$

μ: Tasa de Reparación
$$\left(\frac{1}{TPPF}\right)$$

D: Disponibilidad (Capacidad de un ítem para desarrollar su función durante un determinado período de tiempo $D = \left(\frac{TPEF}{TPEF+TPPR}\right)$

Donde:

To: Tiempo de operación en horas

TR: Tiempo de reparación en horas

TM: Tiempo muerto en horas

TP: Tiempo de paro en horas

Días: Tiempo que transcurre hasta la ocurrencia de una falla desde el inicio de operación [35].

2.2.3.2 Coeficiente de correlación lineal de Pearson

Es un método estadístico paramétrico, ya que utiliza la media, la varianza y, por tanto, requiere criterios de normalidad para las variables analizadas.

El coeficiente de correlación de Pearson es, quizá, el mejor coeficiente y el más utilizado para estudiar el grado de relación lineal existente entre dos variables cuantitativas, toma

valores entre -1 y 1 en donde un valor de 1 indica relación lineal perfecta negativa (en ambos casos los puntos se encuentran dispuestos en una línea recta), un valor de 0 indica lineal nula. El coeficiente r es una medida simétrica, la correlación entre X e Y es la misma que entre Y y X [36].

A continuación, se indica la covarianza de muestras entre X e Y dividida por el producto de las desviaciones típicas de cada variable:

$$r = \frac{S_{xy}}{S_x S_y} o \frac{S_{xy}}{\sqrt{S^2 x S^2 y}}$$
 Ec. 2.1

Donde:

r = Coeficiente de Correlación de Pearson

 S_{xy} = Covarianza de variables X e Y

 S_x = Desviación típica de la variable X

 S_y = Desviación típica de la variable Y

 $S^2x = Desviación típica de la variable X$

 $S^2y = Desviación típica de la variable Y$

a) Covarianza

El numerador del coeficiente de correlación es la covarianza de las muestras S_{xy} entre X e Y, la cual nos indica la posible de relación entre dos variables es directa o inversa. Es una medida que nos habla de la variabilidad conjunta de dos variables cuantitativas.

$$S_{xy} = \sum \frac{(xi - \dot{X})((yi - Y))}{n - 1}$$
 Ec. 2.2

Si los valores altos o bajos de X tienden a asociarse con valores altos o bajos de Y, el producto de las desviaciones tenderá a ser positivo y la covarianza de igual forma. Lo contrario, si valores altos de una variable se relacionan con valores bajos de la otra variable, el producto de las desviaciones tiende a ser negativo y la covarianza será también negativa.

De tal manera que:

- Si $S_{xy} > 0$ Las dos variables crecen o decrecen a la vez (puntos crecientes).
- Si S_{xy} < 0 cuando una variable crece, la otra tiene tendencia a decrecer (puntos decrecientes).
- Si los puntos se reparten con igual densidad alrededor del centro de gravedad, S_{xy}
 =0 (no hay relación lineal).

El signo de la covarianza nos dice si el aspecto del grupo de puntos es creciente o no, pero no menciona nada sobre el grado de relación entre las variables.

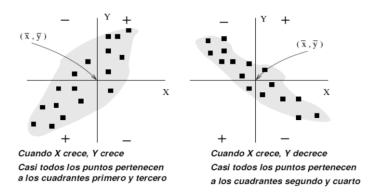


Fig 2. 1 Interpretación de la covarianza [36].

Resulta complicado determinar el grado de asociación lineal entre dos variables a partir de la magnitud de la covarianza, ya que ésta depende de las unidades de medida de las variables.

b) Propiedades del coeficiente de correlación lineal (r)

- Carece de unidades de medida (adimensional).
- Sólo toma valores comprendidos entre [-1,1].
- Cuando |r| esté próximo a uno, r = +1 (la recta lineal es creciente de izquierda a derecha) o r = -1 (la recta lineal es decreciente), se entiende que existe una relación lineal fuerte entre las variables.
- Cuando r ≈ 0, se puede afirmar que no existe relación lineal entre las dos variables.
 Se menciona en este caso que las variables son incorreladas.

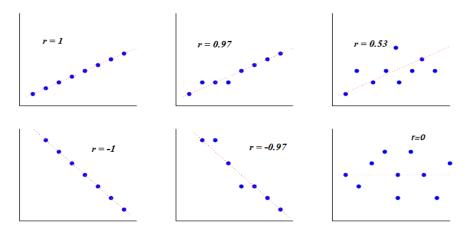


Fig 2. 2 Diagrama de dispersión valores de r [36].

En la figura 4.57 se observa que $r = \pm 1$ es decir que las observaciones de las dos variables están perfectamente alineadas. El signo de r, hace referencia a S_{xy} , por tanto, muestra el crecimiento o decrecimiento de la recta. La relación lineal es más perfecta cuanto r está cercano a ± 1 [37].

Tabla 2. 1 Valores de Interpretación de Correlación [37].

Valor	Representación Correlación
± 1	Perfecta
$\pm (0.7 - 0.89)$	Alta
$\pm (0.4 - 0.69)$	Moderada
$\pm (0.01 - 0.39)$	Baja
0	Nula

2.2.4 Mantenimiento Industrial

UNE EN 13306, Interpreta que el mantenimiento es el conjunto de todas las acciones como son: técnicas, administrativas y gerenciales durante el ciclo de vida de un elemento o componente con el fin de mantenerlo, o restablecerlo, a un estado en el cual pueda realizar la función requerida [16].

La principal función del mantenimiento es preservar la función de los equipos. Bajo ésta premisa se puede entender la importancia del área de mantenimiento al sobrevivir y crecer a las distintas épocas acorde a las necesidades de sus clientes [16].

El Mantenimiento son todas tareas que deben ser ejecutadas de manera sistemática, con el objetivo de mantener en condiciones de funcionamiento confiables y económicas, la maquinaria, equipos y herramientas de producción e instalaciones de una industria, de tal forma que cumpla las funciones para las cuales fueron diseñados y asignados, además de restablecer dicha condición cuando esta se pierde [17] [18].

2.2.4.1 Objetivos del mantenimiento

El mantenimiento tiene como objetivo principal mantener el funcionamiento de los activos físicos, maximizar la disponibilidad y la eficacia, lo cual se simplifica en los siguientes aspectos: [18].

- Aprovechar al máximo los componentes de los equipos, para disminuir los costos de mantenimiento.
- Mejorar continuamente los equipos hasta su nivel más alto operativamente, mediante el incremento de la disponibilidad, efectividad y confiabilidad.
- Garantizar el buen funcionamiento de los equipos, para aumentar la producción.
- Cumplir todas las normas de seguridad y medio ambiente.
- Disminuir la gravedad de las fallas que no se lleguen a evitar.
- Evitar detenciones inútiles o paros de máquinas.
- Mejorar las funciones y la vida útil de los activos.

2.2.4.2 Actividades principales del mantenimiento

Inspección. - Consiste en realizar un análisis del funcionamiento y operación de los equipos, con el fin de determinar su estado físico y posibilidades de falla, antes de que puedan presentarse y genera una parada del sistema [17].

Tipos de inspecciones

Servicio. - Son actividades que se realizar con el fin de mantener la apariencia y las propiedades físicas de los equipos e instalaciones, y son necesarias para la supervivencia de los equipos, las acciones de servicio más comunes son [17]:

- a) Limpieza
- **b**) Pintura
- c) Desinfección

d) Desoxidación

Reparación. - Es la actividad más común, consiste en corregir defectos, sustituir partes o piezas o equipos, que han cesado de ejecutar su función principal, o que han cumplido su vida útil, para que los sistemas vuelvan a operar eficientemente, los principales tipos de reparación son:

- a) Reparación mayor: Requiere gran cantidad de mano de obra y de materiales
- **b) Reparación menor:** se realiza con menor utilización de la mano de obra, en poco tiempo y con poco herramental [17].

Montaje. - Consiste en establecer, arrancar y poner en operación normal, equipos nuevos o reconstruirlos, los montajes tienen como una ventaja muy importante el adiestramiento que se adquiere por parte de los trabajadores que posteriormente se encargan de operar o mantener estos equipos, puesto que generalmente los montajes son dirigidos por técnicos especialistas, o por los mismos fabricantes [17].

Cambio. - Es el reemplazo de partes o equipos que han agotado su vida útil, y su reparación o recuperación no son rentables, todas las actividades de cambio deben fundamentarse en las necesidades de modernización, o de ajustes en las líneas de producción para mejorar la eficiencia, aumentar la capacidad productiva, o la calidad del producto [17].

2.2.4.3 Tipos de Mantenimiento

El mantenimiento centrado en confiabilidad, el incremento en el número y variedad de bienes físicos como son plantas, equipos, edificios que deben ser mantenidos alrededor del mundo, diseños más complejos, nuevas técnicas de mantenimiento y cambiar la ideología con respecto a la organización y responsabilidades del mantenimiento [19].

Tabla 2. 2 Evolución del Mantenimiento [19].

			Cuarta Generación
	Segunda Generación	Tercera Generación Monitoreo de la	Gestión integrada del mantenimiento basada
EL mantenimiento correctivo se interviene si algo se rompe	Planificación y control de trabajo, revisión programada de computadoras grandes y lentas	condición. Análisis de modos de falla. Diseño de la confiabilidad y mantenibilidad. Computadoras pequeñas y rápidas. Sistemas expertos. Trabajo de equipo. Certificación de calidad	en nuevos conceptos. Análisis de riesgo. Gestión orientada a resultados y a clientes. Reingeniería de proceso, mejora de la disponibilidad, confiabilidad y costos
1940 - 1950	1960 - 1970	1980 - 1990 - 2000	Actual

Existen diversos tipos de mantenimiento con relación a la tarea dirigida y el método que se ocupe para ejecutarla, en la actualidad se clasifican en enfoque metodológico como [20]:

- Mantenimiento correctivo
- Mantenimiento preventivo
- Mantenimiento predictivo

2.2.4.4 Mantenimiento correctivo

Este tipo de mantenimiento puede ser definido como el que se ejecuta para restaurar equipos averiados que han dejado de funcionar a sus estándares óptimos. La mayoría de las ocasiones este tipo de mantenimiento es una operación no planificada, fundamentalmente conformada por obligaciones de mantenimiento inevitables que no pueden planearse con anterioridad en un periodo determinado. La actividad que requiere acción urgente debe ser adicionada, integrada y reemplazada según los componentes programados [20].

Ventajas

- No se requiere una gran infraestructura técnica ni elevada capacidad de análisis.
- Máximo aprovechamiento de la vida útil de los equipos.

Inconvenientes

- Las averías se presentan de forma imprevista lo que origina trastornos a la producción.
- Riesgo de fallos de elementos difíciles de adquirir, lo que implica la necesidad de un "stock" de repuestos importante. Baja calidad del mantenimiento como consecuencia del poco tiempo disponible para reparar.

Pasos para el mantenimiento correctivo

Muchos autores han mencionado diversos pasos ordenados para realizar un mantenimiento correctivo. Los pasos relevantes que se debe seguir son: [21].

- 1. Identificación del fallo
- 2. Ubicación
- 3. Evaluación
- 4. Reparación
- 5. Verificación.

2.2.4.5 Mantenimiento Preventivo

UNE - EN 13306, Define como: El Mantenimiento realizado a intervalos predeterminado o según criterios establecidos, cuyo fin es reducir la probabilidad de fallo o la degradación del funcionamiento de un elemento [16].

Es el conjunto de actividades programadas a máquinas y equipos en funcionamiento que permiten en la forma más económica, continuar su operación eficiente y segura, con tendencia a prevenir las fallas y paros imprevistos. Consiste en la vigilancia y la asistencia del personal relacionado con el mantenimiento para conservar los equipos en condiciones óptimas de trabajo, por medio de inspecciones sistematizadas, la localización y reparación de los fallos, ya sean previos a su aparición y que se pueda transformar en una avería significativa [17] [21].

Ventajas

- Importante reducción de paradas imprevistas en equipos.
- Solo es adecuado cuando, por la naturaleza del equipo, existe una cierta relación entre probabilidad de fallos y duración de vida.

Inconvenientes

- No se aprovecha la vida útil completa del equipo.
- Aumenta el gasto y disminuye la disponibilidad si no se elige convenientemente la frecuencia de las acciones preventivas.

Objetivos de mantenimiento preventivo [21]

- Incrementar la vida útil de los equipos e instalaciones.
- Minimizar los fallos críticos en los componentes.
- Realizar una mejor planificación de los equipos y programación de las actividades de mantenimiento.
- Reducción de los costos de producción por fallos imprevistos.
- Fomentar la salud y seguridad del personal.

2.2.4.6 Mantenimiento Predictivo

ISO 13372, Define al mantenimiento predictivo "como el mantenimiento enfocado en la predicción de la falla y en la toma de decisiones basadas en la condición del equipo para prevenir su degradación o falla". También consiste en el análisis de los parámetros de funcionamiento del sistema estudiando su evolución temporal para detectar un fallo antes de que este provoque consecuencias más graves, evitando así fallas repentinas [22].

EL mantenimiento Predictivo es conocido como "Mantenimiento Basado en Condiciones", monitorea y detecta parámetros operativos de los sistemas, máquinas y equipos. Realiza un seguimiento del desgaste de los mismos para determinar o predecir el punto exacto de cambio o reparación. Busca determinar el punto óptimo para la ejecución del mantenimiento preventivo en un equipo, en resumen, el punto a partir del cual la probabilidad que el equipo falle y asuma valores despreciables y programa el mantenimiento basado en el pronóstico de ocurrencia de fallas o vida útil [23].

Las principales herramientas de diagnóstico que utiliza son:

 Análisis de vibraciones: es una medida excelente para evaluar las condiciones mecánicas de un equipo, la vibración es un síntoma de una falla potencial, cualquier anormalidad en el nivel de vibración indica sin dudas cambio y posible deterioro en las condiciones del activo.

- **Termografía:** que se realiza en cámaras infrarrojas que proporcionan imágenes térmicas de las máquinas.
- Análisis de muestra de los fluidos: se realiza a los lubricantes para medir su calidad.
- Análisis dinámico de operaciones en proceso: Alineaciones de ejes con láser, ultrasonido para detectar el desgaste y corrosión en las tuberías, consumo de motores eléctricos, ruidos, etc [17].

2.2.5 Análisis de Métodos de Falla

El método AMFE parte del concepto del que se conoce todas las fallas reales y potenciales, se conoce de los modos de falla que se puede presentar y se tiene un perfecto dominio de toda las funciones principales y secundarias de los elementos o maquinas por diagnosticar [9].

Para un mejor entendimiento veraz se indica a continuación algunas definiciones de los términos que se utilizan para la elaboración e identificación de las fallas y que deben ser escritas en un (AMEF) [24].

La confiabilidad como metodología de análisis debe soportarse en una serie de herramientas que permitan evaluar el comportamiento del activo de una forma sistemática a fin de poder determinar el nivel de operatividad, la cuantía del riesgo y las demás acciones de mitigación que se requieren, para asegurar su integridad y continuidad operacional [25] [26].

Las principales herramientas que sirven para la gestión de activos las cuales aportan de manera sustancial al mejoramiento de la confiabilidad, las seis que se indican a continuación son las más utilizadas:

Fig 2. 3 Herramientas para la Confiabilidad Operacional [27].

Análisis de Criticidad (CA).

Es una técnica que permite jerarquizar instalaciones, sistemas y equipos, en función de su impacto y consecuencia que representa para las instalaciones industriales, esto ayuda y facilita la toma de decisiones [27].

• Análisis de modos y efectos de falla (FMECA O AMFE) Es una metodología que permite determinar los modos de falla de los componentes de un sistema, el impacto y la frecuencia con que se presentan los eventos [27].

2.2.5.1 Análisis de modos y efectos de Falla

El análisis del modo y efecto de falla, es una función esencial en el diseño, desde el concepto hasta el desarrollo. Para ser efectivo, el análisis debe ser iterativo para corresponder con la naturaleza propia del proceso de diseño. El grado de esfuerzo y de la sofisticación del enfoque utilizado, dependerá de la naturaleza y requisitos del programa individual. Es un método inductivo y cualitativo que permite inspeccionar el conjunto de los órganos de un sistema o instalación, definiendo: [28] [29].

- Los tipos de fallos reales o potenciales.
- Causas posibles.
- Consecuencias.

Medios para evitar sus consecuencias.

Sus principales objetivos es identificar las causas de fallos aún no producidas, evaluando su criticidad. En definitiva, es una búsqueda sistemática de tipos de fallos, sus causas y sus efectos.

Con el análisis AMFE se logrará lo siguiente:

- Estudiar los fallos y las consecuencias que estos pueden provocar a un equipo, sistema o instalación.
- Reconocer los modos de fallo que causan efectos importantes con relación a criterios como disponibilidad, confiabilidad, etc.
- Determinar una acción o procedimiento de detección para cada fallo como inspecciones, localización, etc.
- Analizar y valorar los medios adoptados para detección del fallo

a) Plantilla

Para la realización de una plantilla AMFE debe considerarse las siguientes etapas:

- Identificación: en la cual debe contener información del equipo, sistema, elemento encargados, códigos, etc.
- Análisis: Al igual que la etapa de evaluación estos son el punto central de la matriz.
 Aquí se ubica los tipos de fallo, los efectos o consecuencias, causas y los registros relacionados.
- Acciones: aquí deben constar todas las acciones que se van a realizar para eludir los fallos previstos, en conformidad con las prioridades instauradas.
- Resultados: Se establecen las acciones tomadas, reiterando las valoraciones, encontrando nuevos valores y prioridades de accionamientos [29].

Tabla 2. 3 Plantilla para análisis AMFE [28].

	Análisis de modo de falla y efecto (AMFE)									
	Carrocería de un autobús interprovincial									
Sec	ción:			Elaborado por:				Fecha:		
Sist	ema:			Revisado por:				Fecha:		
Código	Componente	Fallo fincional	Modo de fillo	Causa	Efecto		Valor	ación		Recomendaciones
Codigo	Сопронеше	rano marcional	Modo de Mio	Causa	Electo	F	G	D	NPR	Recomendaciones

b) Fallo Funcional

Definido como el incumplimiento de la función, operando fuera de los parámetros normales para los que fue diseñado [23].

c) Modos de falla

El modo de falla es la forma en que un equipo, sistema, dispositivo puede fallar o incumplir con la función para el que fue diseñado. Se realiza una suposición que la falla puede generarse y no obligatoriamente que haya ocurrido.

El paso siguiente para la elaboración del AMFE es tratar de identificar los modos de falla que tienen más posibilidad de causar la pérdida de una función. Esto permite comprender exactamente qué es lo que puede que se esté tratando de prevenir. Cuando se está realizando este paso, es importante identificar cuál es la causa origen de cada falla. Esto asegura que no se malgaste el tiempo y el esfuerzo tratando los síntomas en lugar de las causas. Al mismo tiempo, cada modo de falla debe ser considerado en el nivel más apropiado, para asegurar que no se malgasta demasiado tiempo en el análisis de falla en sí mismo [23].

d) Efectos

Los efectos están directamente relacionados con los modos falla, como impacta en el cliente. El análisis de estos efectos incluye un análisis de las posibles consecuencias y gravedad a las que puede llevar dicha consecuencia [23].

e) Causas

Predecir el aviso de un posible fallo que podría generarse, por ejemplo, puede ser un aviso de una fragilidad en el diseño, hay una relación entre modo de fallo, si la causa se genera entonces el modo de fallo puede ocurrir [23].

f) Medidas de ensayo y control previstas

En algunos casos estas pueden añadirse a la sección de estudio para evidenciar la valoración y comprobación existentes, para garantizar la calidad de reacción del componente, elemento, o proceso. Las valoraciones deberían concatenar con cada una de las causas potenciales de los modos de fallos [23].

F: Frecuencia (1-10)

Se basa en una valoración subjetiva de la ocurrencia del modo de fallo, para esto es recomendable hacer uso de historiales de la empresa.

G: Gravedad (1-10)

Evalúa el grado de consecuencias, como el incremento al valor del registro en función con la disconformidad del usuario y el costo de arreglo.

D: Detección (1-10)

Determina la capacidad de que la supuesta causa o fallo sea previamente localizado para eludir averías.

En las siguientes tablas se detallan los criterios y valoraciones para la evaluación de los fallos:

Tabla 2. 4 Criterios para evaluación de la Frecuencia (F) del Fallo [28].

GRAVEDAD	CRITERIO	VALOR
Muy Baja Improbable	Ningún fallo se asocia a procesos casi idénticos, ni se ha dado nunca en el pasado, pero es concebible.	1
Baja	Fallos aislados en procesos similares o casi idénticos. Es razonable esperable en la vida del sistema.	2-3
Moderada	Defecto aparecido ocasionalmente en procesos similares o previos al actual. Probablemente aparecerá algunas veces en la vida del sistema o equipo	4-5
Alta	El fallo se ha presentado con cierta frecuencia en el pasado en procesos similares o previos procesos que han fallado.	6-8
Muy Alta	Fallo casi inevitable. Es seguro que el fallo se producirá frecuentemente.	9-10

Tabla 2. 5 Criterios para evaluación de la Gravedad (G) del Fallo [28].

GRAVEDAD	CRITERIO	VALOR
Muy Baja Repercusiones Imperceptibles	No es razonable esperar que este fallo de pequeña importancia origine efecto real alguno sobre el rendimiento del sistema.	1
Baja Repercusiones irrelevantes	El tipo de fallo originaria un ligero inconveniente al cliente. Probablemente, éste observara un pequeño deterioro del rendimiento del sistema sin importancia.	2-3
Moderada Defectos de relativa importancia	El fallo produce cierto disgusto e insatisfacción en el cliente. El cliente observará deterioro en el rendimiento del sistema	4-6
Alta	El fallo puede ser crítico y verse inutilizado el sistema. Produce un grado de insatisfacción elevado.	7-8
Muy Alta	Modalidad de fallo potencial muy crítico que afecta el funcionamiento de seguridad del producto o proceso y/o involucra seriamente el incumplimiento de normas reglamentarias.	9-10

Tabla 2. 6 Criterios para evaluación de detección (D) del Fallo [28].

GRAVEDAD	CRITERIO	VALOR
Muy Alta	El defecto es obvio. Resulta muy improbable que no sea detectado por los controles existentes.	1
Alta	El defecto, aunque es obvio y fácilmente detectable, podría en alguna ocasión escapar a un primer control, aunque sería detectado con toda seguridad a posterioridad.	2-3
Mediana	El defecto es detectable y posiblemente no llegue al cliente. Posiblemente se detecte en los últimos estudios de producción.	4-6
Pequeña	Es defecto es de tal naturaleza que resulta dificil detectarlo con los procedimientos establecidos hasta el momento.	7-8
Improbable	El defecto no puede detectarse. Casi seguro que lo percibirá el cliente final.	9-10

Número de prioridad de riesgo (NPR)

El producto de los tres criterios define el número de prioridad de riesgos (NPR), la cual no se define un criterio de valoración, si bien NPR menores a 100 no necesitarán de intervención, a menos que la intervención sea introducida de una manera fácil y ayude a la calidad del producto o proceso productivo [28].

$$NPR$$
= $Gravedad(G)$ x $Frecuencia (F)$ x $Detección (D)$ $Ec 2.1$

A continuación, en la tabla 2.6 se indica las características de análisis del número de prioridad de riesgo (NPR).

NPR > 200 Inaceptable (I)

200 > NPR > 125 Reducción deseable (R)

125 > NPR Aceptable (A)

Tabla 2. 7 Características del análisis NPR [28].

2.2.6 Análisis de confiabilidad mediante la ley de Weibull

2.2.6.1 La lev de Weibull

El ingeniero y matemático suizo Waloddi Weibull propuso una función de distribución de tres parámetros cuyas características para su época eran difícil de manejar. Al inicio, la expectativa de dicha propuesta presentaba dificultades que radicaba en el manejo de las no lineales para encontrar los parámetros de ajuste. Sin embargo, con el tiempo el desarrollo tecnológico ha permitido hacer un uso intensivo de dicha distribución sobre todo en el medio industrial [32] [33].

¿Qué es la Distribución de Weibull?

Es una distribución versátil que se puede utilizar para modelar una amplia gama de aplicaciones en ingeniería, investigación médica, control de calidad, finanzas y climatología. Por ejemplo, la distribución se utiliza frecuentemente en análisis de fiabilidad para modelar datos de tiempo de falla, como la probabilidad de que una parte

falle después de uno, dos o más años. La distribución de Weibull también se utiliza para modelar datos asimétricos del proceso en el análisis de capacidad [33].

Según Handbook la distribución de Weibull se utiliza frecuentemente en análisis de confiabilidad para modelar datos de tiempo por falla, como, por ejemplo, la probabilidad de que una parte falle después de uno, dos o más años. La distribución de Weibull se especifica según los parámetros de forma, escala y valor umbral. En el caso en que el parámetro de valor umbral es cero se conoce como la distribución de Weibull de 2 parámetros [33].

Para el análisis de Weibull, es necesario tener claro el concepto básico de "falla", donde se refiere a cualquier condición que cause la degradación de un material, producto o proceso la cual ya no elabore las funciones de una forma segura, confiable y aun costo moderado para el que fue adquirido [33].

La función de densidad de una variable aleatoria es la siguiente ecuación:

$$f(t) = \frac{\beta}{\eta} \left(\frac{t - \gamma}{\eta}\right)^{\beta - 1} e^{-\left(\frac{t - \gamma}{\eta}\right)^{\beta}}$$
 Ec. 2.2

 β = Parámetro de forma – indicador del mecanismo de falla

η= Parámetro de Escala

 γ = Parámetro de localización – la vida mínima

2.2.6.2 Modos de fallo mediante la ley de Weibull

El estudio de la distribución se pueden dar las siguientes combinaciones de los parámetros de Weibull con mecanismos de fallo particulares [31]:

- a) Caso 1: $\gamma = 0$: el mecanismo no tiene una duración de confiabilidad intrínseca.
- Si β < 1 la tasa de fallos disminuye con la edad sin llegar a cero, por lo que podemos suponer que nos encontramos en la juventud del componente con un margen de seguridad bajo, dando lugar a fallos por tensión de rotura.
- Si β = 1 la tasa de fallo se mantiene constante siempre lo que nos indica una característica de fallos aleatoria o pseudoaleatoria. En este caso nos encontramos que la distribución de Weibull es igual a la exponencial.

- Si $\beta > 1$ la tasa de fallo se incrementa con la edad de forma continua lo que indica que los desgastes empiezan en el momento en que el mecanismo se pone en servicio.
- si $\beta = 3,44$ se cumple que la media es igual a la mediana y la distribución de Weibull es sensiblemente igual a la normal.
- **b)** Caso 2: $\gamma > 0$: El mecanismo es intrínsecamente confiable desde el momento en que fue puesto en servicio hasta que $t = \gamma$, además:
- Si β < 1 hay fatiga u otro tipo de desgaste en el que la tasa de fallo disminuye con el tiempo después de un súbito incremento hasta γ ; valores de β bajos (\sim 0,5) pueden asociarse con ciclos de fatigas bajos y los valores de β más elevados (\sim 0,8) con ciclos más altos.
- si β > 1 hay una erosión o desgaste similar en la que la constante de duración de carga disminuye continuamente con el incremento de la carga.
- c) Caso 3: γ < 0. Indica que el mecanismo fue utilizado o tuvo fallos antes de iniciar la toma de datos, de otro modo.
- Si β < 1 podría tratarse de un fallo de juventud antes de su puesta en servicio, como resultado de un margen de seguridad bajo.
- Si β > 1 se trata de un desgaste por una disminución constante de la resistencia iniciado antes de su puesta en servicio, por ejemplo, debido a una vida propia limitada que ha finalizado o era inadecuada.

2.2.6.3 Modelo matemático de Weibull

Waloddi Weibull, ha propuesto un modelo matemático para las funciones de confiabilidad y tasa de falla que se presentan en las siguientes ecuaciones: [32].

$$R(t) = exp\left[-\left(\frac{t-\gamma}{\alpha}\right)^{\frac{1}{\beta}}\right]$$
 Ec. 2.3

$$F(t) = 1 - R(t)$$
 Ec. 2.4

Donde:

R(t) = Función de confiabilidad

 β = Es el parámetro de forma y es el indicador del mecanismo de falla

 γ = Es el parámetro de localización- la vida mínima. Cuando γ = 0

 α = es el parámetro de escala – vida característica

F(t) = Desconfiabilidad o Función de densidad de probabilidad de falla

La distribución de Weibull no ejerce cuando no ha ocurrido fallas, es decir se aplica para caracterizar el histórico de averías o fallas en componentes, permitiendo la determinación de las probabilidades de fallo y duración media de cada componente [33].

Para determinar los parámetros β y α , es necesario realizar el cálculo de valores de media aritmética (\bar{x}) , la varianza (S^2) , la desviación estándar (S), el tiempo de falla de cada actividad (ti), y el número de actividades (n), a través de datos históricos de cada máquina o equipo.

A continuación, se muestra las siguientes ecuaciones:

• La media aritmética (\bar{x})

$$\bar{x} = \frac{\sum_{i=1}^{n} \ln(t_i)}{n}$$
 Ec. 2.6

• La varianza (S^2)

$$S^{2} = \frac{(\sum \ln(t_{i}) - \bar{x})^{2}}{(n-1)}$$
 Ec. 2.7

■ La desviación estándar (S)

$$S = \sqrt{S^2}$$
 Ec. 2.8

- El tiempo de falla de cada evento (t_i)
- El número de datos o eventos (*n*)

Se pueden determinar los parámetros β y α como se muestra las ecuaciones a continuación:

$$\beta = \frac{\pi}{S\sqrt{6}}$$
 Ecu. 2.9

$$\alpha = exp\left(\bar{x} + \left(\frac{0.5772}{\beta}\right)\right)$$
 Ecu. 2.10

 γ =0 cuando no existen datos de falla anterior del elemento.

2.2.6.4 Características generales de la ley de Weibull

La figura 2.3 indica el comportamiento de la distribución de Weibull para diferentes valores del parámetro de forma β .

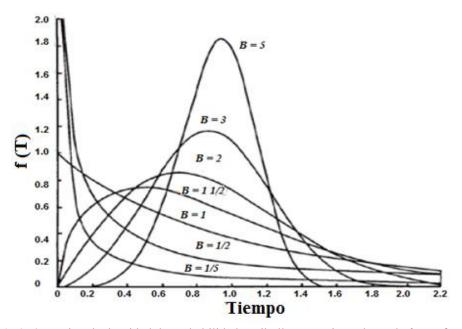


Fig 2. 4 Función de densidad de probabilidad Weibull para varios valores de forma β [32].

Sabemos que la tasa de fallos se puede describir en función de la fiabilidad de la siguiente manera:

$$R(t) = exp(-\int \gamma(t) dt)$$
 Ec. 2.11

Donde:

t =Tiempo

 $\lambda(t)$ =Tasa de fallos

R (t)= Confiabilidad

Weibull propuso una expresión empírica muy simple que podía representar una gran variedad de datos reales por lo que la confiabilidad expreso en la siguiente ecuación:

$$R(t) = exp\left[-\left(\frac{t-to}{\eta}\right)\right]^{\beta}$$
 Ecu. 2.12

Donde:

t =Tiempo

β =parámetro de forma

t0 =parámetro inicial de localización

η =parámetro de escala o vida característica

R (t)= Confiabilidad

2.2.6.5 Interpretación del gráfico Weibull

La ley de Weibull proporciona una idea acerca de los mecanismos de falla, con los diferentes parámetros de forma, implicando en las diferentes formas de falla. La tasa de fallos varia en el tiempo, como se observa se asemeja a una bañera que representa tres fases de comportamiento de vida de un componente.

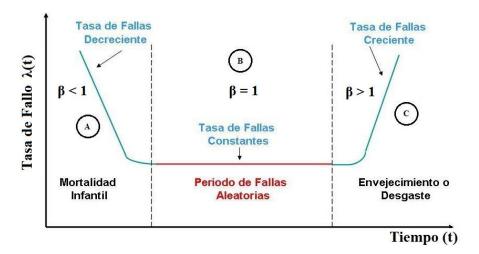


Fig 2. 5 Curva de la bañera Weibull [32].

β < 1 Implica Mortalidad Infantil

Los diseños de equipos mecánicos pueden iniciar con una alta grado de fallas, como se detallan varios modos de falla a continuación:

- Reparaciones inadecuado o fuerzas, presiones ocultas.
- Problemas de producción
- Problemas de ensamble.
- Problemas de control de calidad.
- Problemas de inspecciones programadas.
- Fallas en componentes eléctricos [32].

$\beta = 1$ Implica falla aleatoria

Falla independiente del tiempo o aleatorias y es igual a una distribución exponencial.

- Errores de mantenimiento / errores humanos
- Fallas debido a naturaleza, daños u objetos desconocidos, rayaduras.
- Mezcla de datos de 2 o más modos de falla.
- Intervalos entre fallas.
- Inspecciones programadas no apropiadas [32].

$1 < \beta < 4$ Implica falla por deterioro temprano

Si esta falla ocurre dentro del ciclo de vida es una desagradable sorpresa. Estas son muchas fallas de modo mecánicos en esta clase.

- Bajo un ciclo de fatiga.
- Muchas fallas de rodamientos.
- · Corrosión.
- Erosión [32].

$\beta > 4.0$ Implica deterioro rápido por edad de uso

Típicos modos de falla de piezas con edades muy viejas o por uso pesado, también incluye:

- Corrosión por esfuerzos.
- Propiedades de los materiales.
- Algunas formas de erosión [32].

2.2.6.6 Método Gráfico Weibull

Los métodos gráficos se basan en obtener los parámetros directamente en el gráfico, relacionando estos con características fácilmente medibles en el gráfico. Estos métodos son los más ampliamente usados en los diferentes programas o aplicaciones informáticas que se usan para determinar la distribución de Weibull a partir de un conjunto de muestras. La facilidad de implementación radica en el hecho de que únicamente es necesario disponer de un programa capaz de efectuar regresiones dependiendo del tipo de regresión usada se obtiene un resultado o a su vez otro. Esta diferencia de resultados se ve incrementada al disminuir el número de muestras ensayadas [31].

En el eje de ordenadas se tiene: $ln \ln[1/1 - F(t)]$

En el eje de abscisas, tenemos: ln(t - to)

Existen tres casos posibles en función del valor de to.

Fig 2. 6 Encabezado Papel Weibull [31].

Las celdas de la Figura 2.5. Se describen a continuación:

- 1.- Número de prueba.
- 2.- Elemento de máquina o componente a evaluar.
- 3.- Fecha.
- 4.- Tipo de test
- 5.- Promedio de tiempo de fallas.

- 6.- Tamaño de la muestra
- 7.- Beta (β), parámetro de forma
- 8.- η, parámetros de escala o vida característica.
- 9.- γ, Gamma, parámetro de posición.
- 10.- Punto de referencia para figura rectas en el gráfico, con este punto de referencia para hallar los valores de Pu y β [31].

Para determinar los parámetros para realizar el cálculo de la distribución de Weibull utilizaremos la norma NTP 331, tomando en cuenta como está graduado a escala funcional como se indica en la figura. 2.5, de la siguiente forma:

A continuación, se detallan los pasos a seguir para la determinación de la fiabilidad de Weibull por el método gráfico [35]:

Paso 1:

Se debe tener un registro de las fallas con sus respectivos tiempos agrupados en forma ascendente, según el tiempo de falla; posteriormente se procede a estimar el porcentaje de fallas acumulativa (función de distribución acumulativa F_i).

Paso 2:

Para calcular el porcentaje de fallas acumulativas Fi se determina a partir de la probabilidad de que ocurra la falla utilizando la ecuación siguiente:

$$F(i) = \frac{\text{# de fallas}}{\text{# total de fallas}}$$
 Ecu. 2.13

Debido a que el método de Weibull tiene una confiabilidad alta, en los datos no se recomienda utilizar la ecuación anterior, por ello y para una mejor aproximación de *Fi* se usa los valores de Rango Medio los cuales están tabulados y se obtienen a partir de:

$$\sum_{r=i}^{n} \frac{n!}{r!(n-r)!} [F(i)]^r [1 - F(i)]^{n-r} = 0.5$$
 Ecu. 2.14

Donde:

i = número de orden de la observación (número de falla)

n = tamaño del ejemplo o de la muestra (total de fallas)

En caso de haber tamaños de muestra mayores a 20, se aplicará la fórmula de aproximación de rangos medios que se muestra a continuación:

$$F(i) = \frac{i - 0.3}{n + 0.4}$$
 Ecu. 2.15

Para tamaños de muestra mayores a 100 se aplicará la ecuación siguiente:

$$F(i) = \frac{i}{n+1}$$
 Ecu. 2.16

Una vez calculados los parámetros obtendremos una tabla de valores:

Tabla 2. 8 Ejemplo tabla de valores para porcentaje de falla [35].

Tiempo de falla	Porcentaje de falla acumulativa $F(i)$
T1	F(1)
T2	F(2)
Т3	F(3)
T4	F(4)
Т5	F(5)

Cabe mencionar que los valores calculados pertenecen a valores con una confianza del 50%, por lo que es posible incrementar el valor y confianza mediante procedimientos gráficos en el papel de Weibull, con los datos tabulados anteriormente.

Paso 3:

En el papel de Weibull se grafica los valores de tiempo de falla en el eje x y distribución acumulativa eje y, obteniendo una consecución de puntos en los cuales se traza una recta que contenga la mayor cantidad de datos (línea de tendencia), como se indica en la figura:

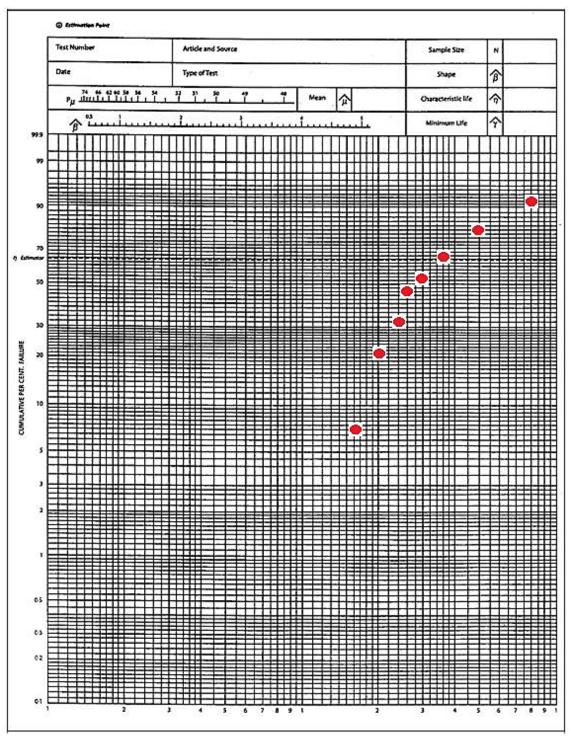
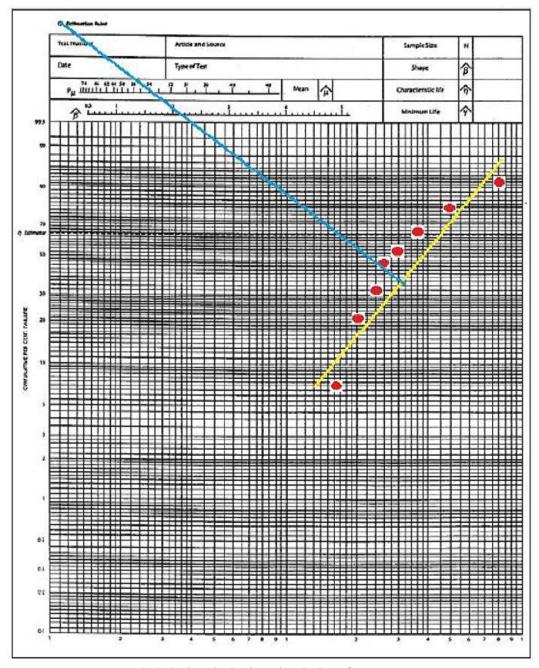



Fig 2. 7 Ejemplo de aplicación de datos en papel de Weibull [35].

Paso 4:

Para obtener el parámetro β y $P\mu$ se traza una perpendicular a la recta graficada con anterioridad, esta línea se traza a partir del punto de referencia (Estimación puntos)

ubicado en la parte superior izquierda del papel de Weibull como se muestra en la figura 2.7.

Fig 2. 8 Ejemplo de obtención de datos β y P μ [35].

Paso 5:

Con el valor $P\mu$ obtenido trazamos una recta horizontal desde el eje y hasta encontrar la línea de tendencia graficada, a continuación, proyectamos la misma recta hasta encontrar el eje x (figura 2.8), adquiriendo así el valor de la media (MTBF) el cual debemos multiplicar por el valor de 100.

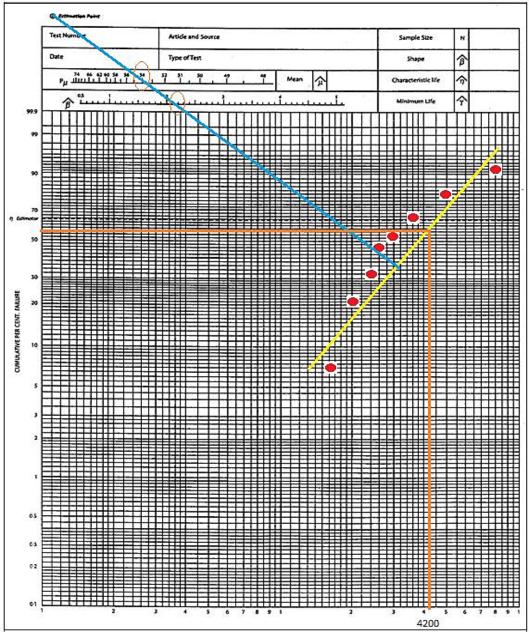


Fig 2. 9 Ejemplo de obtención de datos MTBF [35].

Paso 6:

Por último, trazamos desde el punto de referencia "n estimador" una línea horizontal que llegue hacia la línea de tendencia y proyectamos hacia el eje x como muestra la línea de color verde en la figura siguiente:

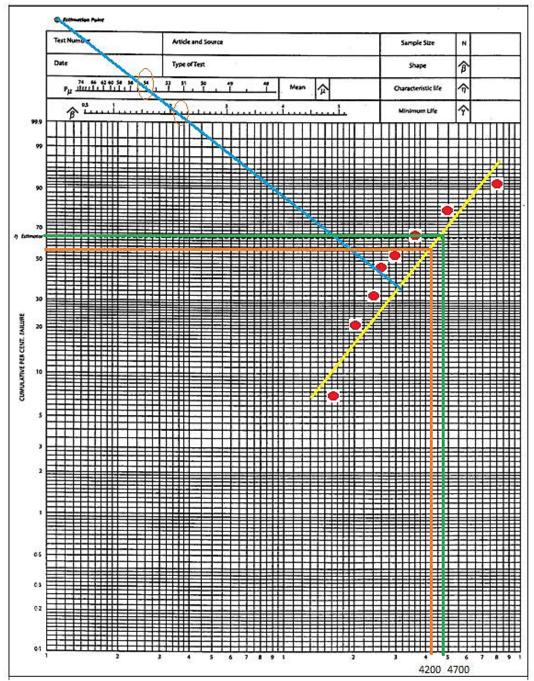


Fig 2. 10 Ejemplo de obtención de n estimador [35].

Una vez determinado los parámetros procedemos a reemplazar en la ecuación siguiente:

$$R(t) = e \left[-\left(\frac{t-\lambda}{\eta}\right) \right]^{\beta}$$
 Ecu. 2.17

Donde:

to = Tiempo de operación (h)

 β = Parámetro de forma: representa la pendiente de la recta describiendo el grado de

variación de la tasa de fallos

 γ = Parámetro de localización – la vida mínima (γ = 0)

n = Parámetro calculado de papel de Weibull [35].

2.3 Fundamentación Filosófica

La presente investigación está ubicada en el paradigma critico – propositivo; critico

debido a que en la actualidad el problema que se estudia es un caso real existente, cabe

recalcar que el proyecto analizará el estado actual de máquinas y equipos en el área de

inyección de accesorios de PVC de la Empresa Holviplas S.A. y propositiva porque se

buscará diagnosticar los elementos critico de falla mediante registros de fallas de

mantenimiento aplicando los parámetros beta de la ley de Weibull.

2.4 Fundamentación legal

El desarrollo de la presente investigación estará basado en las siguientes normas técnicas:

NTP 331: Fiabilidad: La distribución de Weibull.

NTP 316: Fiabilidad la distribución Exponencial

NTP 679 Análisis Modal y Fallo y Efecto

NTP 319 Transporte Hidráulico

Norma UNE EN 13306 – 2011

Norma COVENIN 3049 – 93

ISO 13372 Monitoreo de condiciones y diagnóstico de máquinas

42

2.5 Categorías fundamentales

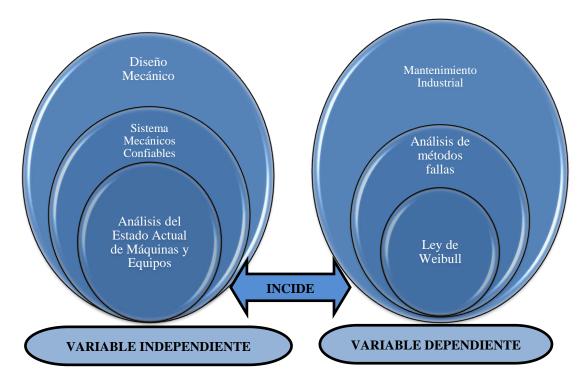


Fig 2. 11 Categoría Fundamental

Elaborado por: Autor

2.6 Hipótesis

El análisis del estado actual de máquinas y equipos del área de inyección de PVC de la empresa Holviplas S.A permitirá generar un modelo de predicción de fallas aplicando la ley de Weibull.

2.7 Señalamiento de variables

2.7.1 Variable independiente

Análisis del estado actual de las máquinas y equipos del área de invección de PVC

2.7.2 Variable dependiente

Generar un modelo de predicción de fallas aplicando la ley de Weibull.

2.7.3 Término de Relación

Permitirá

CAPÍTULO III METODOLOGÍA

3.1 Enfoque

Para el presente trabajo de investigación se utiliza un enfoque mixto como son: cuantitativos y cualitativos:

Cuantitativo: Este enfoque se caracteriza porque maneja variables de valor numérica para la evaluación de registros históricos y determinar el estado actual de máquinas y equipos adquiridas mediante el mantenimiento a causa de fallas correctivas y paradas por causas no controladas.

Cualitativo: Porque se tomaron en cuenta ciertas variables como la confiabilidad, y disponibilidad aplicada a la ley de weibull de los componentes existentes de máquinas y equipos en el área establecida.

Además, la información requerida para el desarrollo de este trabajo fue procedente en primera instancia de fuentes primordiales que proporcionó información importante como son libros, artículos, revistas, tesis, publicaciones de internet, etc. Para luego analizar todo lo obtenido y plantear una propuesta que se obtenga una solución.

3.2 Modalidad Básica de la Investigación

Además de los enfoques establecidos también es importante las modalidades básicas de investigación tratando de recopilar la información sumamente servible para el problema a investigar, así se utiliza las modalidades siguientes:

3.2.1 Documental

La recolección de información de libros virtuales eLibro y físicos, tesis doctorales y de maestría, catálogos técnicos internacionales, artículos virtuales como: scince direct, Scopus, Springer, etc, es importante para la investigación la cual ayudará a profundizar en el tema y adquirir conocimientos científicos de algunos parámetros que se tomaran en cuenta para un análisis satisfactorio.

3.2.2 Investigación de Campo

El levantamiento de información del estado actual de máquinas y equipos en la empresa Holviplas será de gran necesidad para determinar la existencia de los problemas que presenta y a su vez realizar un análisis posterior.

3.2.2.1 Investigación Experimental

El levantamiento de información del estado actual de máquinas y equipos en la empresa Holviplas se realizará mediante una lista de registro de fallas históricas de mantenimiento correctivos además de un análisis estadístico que determine problemas principales y modos de fallo mediante un análisis AMFE, de igual forma se analizara el índice de confiabilidad, índice de tasa de fallo de vida operativa en base a variación de los parámetros de forma β como establece la ley de Weibull y por último se realizará una propuesta de plan de mantenimiento para el incremento del índice de confiabilidad de máquinas y equipos.

3.3 Nivel o tipo de Investigación

3.3.1 Exploratorio

En este nivel de investigación se efectuará de forma exploratoria debido a que se determinará el problema mediante el análisis causa-efecto, que permitirá establecer factores predominantes que influyen en estudio del estado actual de máquinas y equipos del área de inyección de accesorios de PVC, además que ayudó a identificar y tener un criterio propio en forma general del objeto a investigar. Para ejecutar este trabajo se conseguirá información del departamento de mantenimiento, los operadores y registros de intervenciones y fallas de la empresa.

3.3.2 Descriptiva

Se aplicará este nivel de investigación para conocer la situación preponderante y determinar causas del problema a través de la descripción precisa del estado actual de máquinas y equipos que se utilizan en el área de inyección de accesorios de PVC, para establecer los elementos propensos a averías que generan inconvenientes a la empresa.

3.3.3 Correlacional

Este nivel tiene como propósito medir el grado de incidencia entre las variables que se va analizar en la investigación, de tal forma que se logrará relacionar la variable independiente que se refiere al estudio de estado actual de máquinas y equipos en el área de inyección de accesorios de PVC por medio del análisis de los registros históricos de falla y su incidencia en la ley de Weibull como variable dependiente.

3.4 Población y Muestra

3.4.1 Población

Para realizar el presente estudio del estado actual de máquinas y equipos del área de inyección de accesorios de PVC, a través del análisis de registros históricos de falla aplicando la ley de Weibull, se considera el inventario total de las máquinas y equipos existentes en la empresa Holviplas S.A que son utilizadas a diario. El trabajo de investigación se realiza exclusivamente en el área de inyección de PVC y se analizará el proceso actual de mantenimiento aplicado a las máquinas y equipos, la empresa en la actualidad cuenta con un total de 62 unidades.

Tabla 3.1 Lista de Máquinas y Equipos

ITEM	DESCRIPCIÓN	TIPO	CODIGO	CANTIDAD
1	Haitian PL1600	Inyectora	INYH 05	1
2	Haitian PL4500	Inyectora	INYH 04	1
3	Haitian HTF 200	Inyectora	INYH 02	1
4	Haitian HTF 300	Inyectora	INYH 01	1
5	Haitian HTF 320	Inyectora	INYH 03	1
6	Cumberland Triturador	Molino PVC	MOL 01	1
7	Truper Tecle de Cadena	Polipasto	TCH 01	1
8	Toyota Transportador Hidráulico	Montacargas	MCH 03	1
9	Caterpillar Transportador Manual	Transportador	THH 01	1

Elaborado por: El Autor

3.4.2. Muestra

En este caso de estudio es importante determinar el tamaño adecuado de la muestra para no desperdiciar recurso y adquirir resultados confiables. Como población se tomó

todas las máquina y equipos existentes que se encuentran en la empresa Holviplas dando un total de 62 entre máquinas y equipos **Anexo A1**, la cual será por primera vez que se realizará esta investigación además se dejará documentos de todos los trabajos que se realicen para mantener y optimizar el estado de máquinas y equipos. En este caso como ya se conoce el número total de máquinas y equipos con que se cuentan se empleara la fórmula para muestra finita. (*Herrera E, Medina F, & Naranjo L,2014*)

$$n = \frac{Z^2 * P * Q * N}{Z^2 * P * Q + N * e^2}$$
 Ecu. 3.1

Donde;

n: Tamaño de la muestra

Z: Nivel de confiabilidad (95-99) %

P: Probabilidad de ocurrencia

Q: Probabilidad de no ocurrencia

N: Población total, 62 maquinas

e: Error de muestreo

Parámetros

- Se tomará un nivel de confianza del 95%
- Las probabilidades reales de que una ocurrencia tome lugar o no son iguales por lo que se presenta de la siguiente forma:

P+Q=1 Por lo tanto P=Q=0.5

- El nivel de confianza Z, se obtiene dividiendo el rango de confiabilidad para 2 y de la forma siguiente: 0.95/2 = 0.475 se obtiene Z = 1.96
- Error de estimación máximo aceptado.

Cálculo:

$$n = 10.27 \cong 10$$

3.5 Operacionalización de Variables

3.5.1 Variable Independiente

Tabla 3.2 Estudio del estado actual de máquinas y equipos del área de inyección de accesorios de PVC de la empresa Holviplas S.A.

CONCEPTUALIZACIÓN	CATEGORÍA	INDICADORES	ÍTEMS	TÉCNICAS E INSTRUMENTOS
Es de gran importancia un	Tiempo	¿Cómo se obtendrá el tiempo de operación y reparación de las máquinas y equipos?	-Formato de fallas (To) -Formato de reparación (Tr)	Registros deMantenimientoCuaderno de Notas
análisis del estado actual de las máquinas y equipos del área de inyección de accesorios de PVC de la empresa Holviplas S.A., depende de su funcionamiento a	Mantenibilidad	¿Cuál será el tiempo promedio para la reparación las máquinas y equipos?	-Número de fallas detectadas (n) -Tiempo total de fallas (TTF)	Análisis EstadisticoCuaderno de NotasReportes de máquinas
un buen nivel para el incremento de la productividad y un bajo costo de mantenimiento.	Disponibilidad	¿Cual será porcentaje de disponibilidad que posee las máquinas y equipos?	 Tiempo medio entre fallos (TPEF) Tiempo promedio de reparación (TPPR) 	Observación Directa:Cuaderno de NotasReportes de máquinas

3.5.2 Variable Dependiente

Tabla 3.3 Análisis de falla mediante la ley de Weibull

CONCEPTUALIZACIÓN	CATEGORÍA	INDICADORES	ÍTEMS	TÉCNICAS E INSTRUMENTOS
El análisis de los registros históricos de fallas hoy en día son de suma importancia para definir límites y funcionalidad de equipamientos, de igual forma conocer la vida útil y el tiempo de vida de la misma mediante la ley de Weibull, en	Análisis de fallos mediante AMFE	¿Qué valor de NPR se obtendra evaluando la frecuencia, gravedad y detección?	Frecuencia Gravedad Detección 125 > NPR Aceptable	- Norma NTP 679 - Cuadernos de notas - Análisis estadístico
	Ley de Weibull	Tasa de fallos variable (λ)	$R(t) = e^{\left(\frac{t-\gamma}{\eta}\right)^{\beta}}$ $\beta < 1$ $\beta = 1$ $\beta > 1$	- Análisis estadístico - Cuaderno de notas
consecuencia este estudio se encuentran dentro del departamento de Mantenimiento.	Mantenimiento	Tipos de Mantenimiento	- M. Preventivo - M. predictivo - M Correctivo	Observación directaAnálisis estadísticoRegistros mantenimientoCuaderno de notas

3.6 Plan de recolección de la investigación

Desarrollada la operacionalización de variables, las técnicas que se utilizarán son las siguientes:

La recolección de la información se realizará mediante los registros de falla de máquinas y equipos existentes en el área de inyección de accesorios de PVC, se tomará apuntes necesarios de actividades de mantenimiento correctivo, de paradas innecesarias y de igual forma registros del departamento de mantenimiento y se seguirá el presente flujograma.

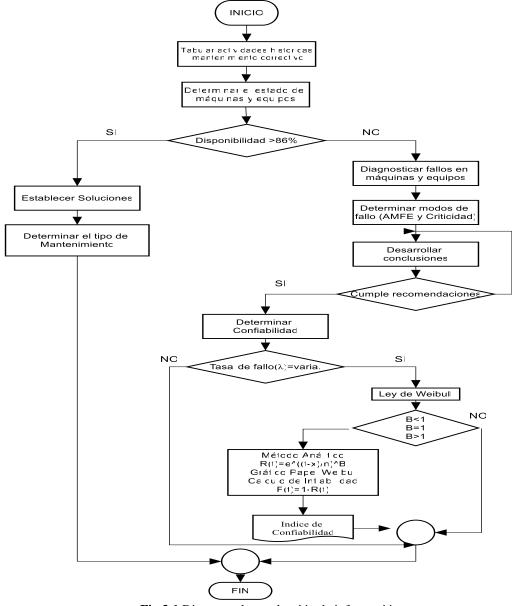


Fig.3.1 Diagrama de recolección de información Elaborado por: El Autor

3.7 Procesamiento y Análisis

3.7.1 Procesamiento de la información recogida

Para el análisis de la información recolectada mediante registro de datos histórico de fallas en el departamento de mantenimiento y producción se usarán el método estadístico Inferencial utilizando Microsoft Excel donde se tabularán fichas técnicas de máquinas y equipos, tiempos de operación, tiempo de reparación, tiempos muertos de igual forma se obtendrá el índice de confiabilidad y disponibilidad y de igual forma se analizará como incide en la ley de weibull. Además, se realizará el análisis de modo de fallo AMFE, criticidad y de igual forma de acuerdo a la necesidad y a la relación que tenga con la variable de la hipótesis se aplicará la ley de weibull método analítico y gráfico.

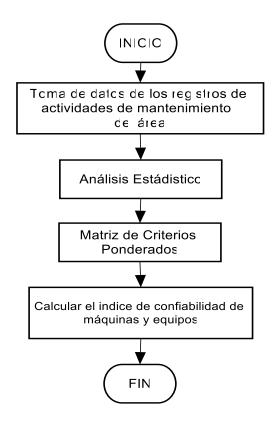


Fig.3.2 Diagrama de procesamiento y análisis de información Elaborado por: El Autor

3.7.2 Análisis e interpretación de resultados

Se analizará los resultados estadísticos obtenidos mediante el registro de actividades de mantenimiento realizando el procedimiento de cálculo de los tiempos de operación, tiempos de reparación y tiempos muertos se calculará el índice de confiabilidad, disponibilidad de máquinas y equipos, de igual forma aplicando la ley de weibull se observará el índice de la confiabilidad y disponibilidad que se encuentran los mismos.

Finalmente se tabulará los resultados necesarios y se interpretará la conclusiones y recomendaciones relacionado al análisis e interpretación con el propósito de comprobar la hipótesis planteada.

Realizado el estudio y análisis de resultados se planteará una propuesta para la solución del problema establecido.

CAPÍTULO IV

ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.1 Análisis de Resultados

En el presente estudio se ha considerado el siguiente proceso para el desarrollo y análisis de resultados del "ESTUDIO DEL ESTADO ACTUAL DE MÁQUINAS Y EQUIPOS DEL ÁREA DE INYECCIÓN DE ACCESORIOS DE PVC DE LA EMPRESA HOLVIPLAS S.A A TRAVÉS DE LOS REGISTROS DE FALLA MEDIANTE LA LEY DE WEIBULL".

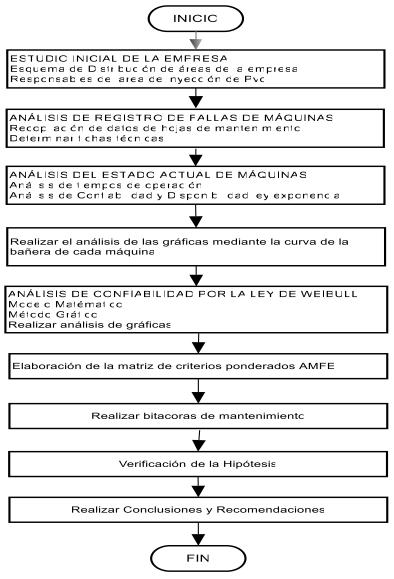


Fig 4. 1 Diagrama de las actividades para realizar el estudio Elaborado por: Autor

4.1.1 Estudio inicial del área de inyección de PVC de la Empresa Holviplas S.A.

a) Esquema de distribución de máquinas y equipos en el área

El área se encuentra ubicado en la parte central de la planta en donde podemos encontrar 5 máquinas inyectoras y sus 4 equipos para la fabricación de todo tipo de accesorios de PVC como son: codos, tee, yee, sifón y reducciones de 50mm hasta 160mm de diámetro.

Las máquinas en la actualidad se encuentran compartidas de la siguiente forma:

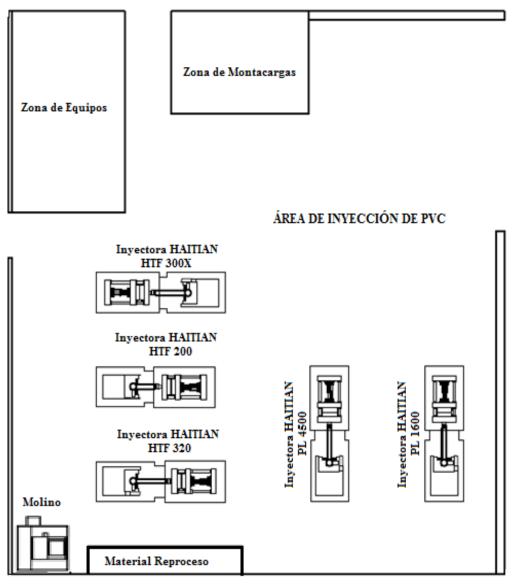


Fig 4. 2 Ubicación de máquinas y equipos del área Inyección de PVC Elaborado por: Autor

b) Responsables del área

Dentro de la empresa y exclusivamente en el área de inyección los encargados de la producción y conservación son las siguientes personas:

Gerente General: Es la máxima autoridad que se encarga de gestionar absolutamente toda la empresa.

Jefe del Área de Inyección: Encargado de notificar al personal la ordenes de producción para cada máquina.

Jefe de Mantenimiento: Persona encargada de precautelar la conservación de las máquinas y equipos del área de inyección.

Operador: Es el encargado de cumplir con las ordenes de producción notificadas por el Jefe de área.

4.2 Análisis del estado actual de las máquinas y equipos del área de inyección de PVC.

Para el presente estudio en primer lugar se realizó el inventario total de máquina y equipos de la empresa Holviplas como se indica en el **Anexo A1** y a su vez se eligió realizar el análisis de registro de fallas exclusivamente del área de inyección de accesorios de PVC como se desarrolló en la selección de la población y muestra **Tabla 3.1**.

4.2.1 Ficha Técnica de las Máquinas Inyectoras y equipos de la empresa Holviplas S.A.

Para realizar el estudio se necesita conocer los datos técnicos y componentes para cada una de las máquinas y equipos existentes, se obtuvo con la ayuda de manuales de operación y manuales de cada máquina existentes en la empresa como se presentan a continuación:

Tabla 4. 1 Ficha Técnica de Inyectora Haitian HTF 300

FICHA TÉCNICA DE MAQUINARIA								
	UNIVERSIDAD	TÉCNICA DE AME	вато					
	FACULTAD DE INGI	ENIERÍA CIVIL Y M	IECÁNICA					
Holviplas s.a.	CARRERA DE I	NGENIERÍA MECÁ	FICH					
Máquina:	INYECTORA HTF300	Área de trabajo:		Inyección de P	PVC			
Estado actual:	En actividad	Horas de operación	:	24 Horas Conti	inuas			
Marca:	Haitian	Modelo:		HTF300X				
Fabricante:	China	Serie:		6053001584	12			
Año fabricación:	2006	Codigo:		IYNH1				
		CA	ARACTERÍS	TICAS GENERALES				
				Voltaje:	220 - 380 V			
				Presión Bomba:	16 Mpa			
		Amperaje:	32 Amp	Potencia Motor Bomba: 37 Kw				
HAITIAH			DIMI	ENSIONES:				
		Longuitud:		6.90 m				
		Ancho:		1.91 m				
		Alto:		2.08 m				
1		Peso de la máquina:		13 Tn				
		Diámetro Tornillo		70 mm				
Contract of the second			COM	PONENTES				
		Mecanismo de Cierre		Cilindros de Inyección				
		Resistencia Eléctrica		Mangueras de presión de	agua			
		Termocuplas		Mecanismo de Expulsión				
ELINCIÓN D. 1		Husillo		Rodamientos				

FUNCIÓN: Producir accesorios partir de un material de PVC. El material es inyectado bajo presión y temperatura al interior de un molde metálico en donde se solidifica tomando la forma de la cavidad.

Elaborado por: Autor

Tabla 4. 2 Ficha Técnica de Inyectora Haitian HTF 200

	FICHA	TÉCNICA DE MAQ	UINARIA	T		
	UNIVERSIDAD TÉCNICA DE AMBATO					
	FACULTAD DE INGI	ENIERÍA CIVIL Y N	IECÁNICA			
Holviplas s.a.	CARRERA DE I	CARRERA DE INGENIERÍA MECÁNICA				
MÁQUINA:	INYECTORA HTF200	Área de trabajo:		Inyección de P	VC	
Estado actual:	En actividad	Tiempo de operacio	n:	24 Horas Cont	inua	
Marca:	Haitian	Modelo:		HTF200X		
Fabricante:	China	Serie:		60902001574	14	
Año fabricación:	2006	Codigo:		IYNH2		
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	CARACTERÍSTICAS GENERALES				
	70000000000000000000000000000000000000	Procedencia:	China	Voltaje:	220 V	
HENRY IN		Frecuencia:	60 HZ	Presión Bomba: 16 M		
ΦB14	IIII	Amperaje:	32 Amp	Potencia Motor Bomba: 30 Kw		
HTF200	WIAN		DIM	ENSIONES:		
		Longuitud:		5.45 m		
		Ancho:		1.58 m		
		Alto:		2.04 m		
		Peso de la máquina:		6.9 Tn		
		Diámetro Tornillo		50 mm		
100				IPONENTES		
		Mecanismo de Cierro	;	Cilindros de Inyección		
		Resistencia Eléctrica		Mangueras de presión de a	igua	
	S. STORE ST. L. ST.	Termocuplas		Mecanismo de Expulsión		
,		Husillo		Rodamientos		
		*		material es inyectado bajo pr	esión y	
temperatura al interior de ur	n molde en donde se solidifi	ca tomando la forma d	e la cavidad.			

Tabla 4. 3 Ficha Técnica de Inyectora Haitian HTF 320

	Tabla 4. 5 Picha P	cenica de mycei	Ora Traitia	11111 320	
	FICHA '	TÉCNICA DE MAQ	UINARIA		
	UNIVERSIDAD TÉCNICA DE AMBATO			2	
	FACULTAD DE INGI	ENIERÍA CIVIL Y M	IECÁNICA		
Holviplas s.a.	CARRERA DE I	NGENIERÍA MECÁ	NICA	FICM	
MÁQUINA:	INYECTORA HTF320	Área de trabajo:		Inyección de F	PVC
Estado actual:	En actividad	Tiempo de operacio	n:	24 Horas Cont	inuas
Marca:	Haitian	Modelo:		HTF320X	
Fabricante:	China	Serie:		6053001618	35
Año fabricación:	2006	Codigo:		IYNH3	
		CARACTERÍS			
PHE STATE OF THE S		Procedencia:	China	Voltaje:	220 - 380 V
A LANGE BY		Frecuencia:	60 HZ	Presión Bomba:	16 Mpa
Anus		Amperaje: 32 Amp		Potencia Motor Bomba: 37 Kw	
HTF3ZOW		DIMI		ENSIONES:	
		Longuitud:		6.90 m	
		Ancho:		1.91 m	
	A STATE OF THE STA	Alto:		2.08 m	
		Peso de la máquina:		13 Tn	
1	2 2 20	Diámetro Tornillo		70 mm	
	N. A.		COM	PONENTES	
		Mecanismo de Cierre		Cilindros de Inyección	
		Resistencia Eléctrica		Mangueras de presión de	agua
	1	Termocuplas		Mecanismo de Expulsión	
		Husillo		Rodamientos	
		1.1 DIVO EL		and the second s	

FUNCIÓN: Producir accesorios a partir de un material de PVC. El material es inyectado bajo presión y temperatura al interior de un molde en donde se solidifica tomando la forma de la cavidad.

Elaborado por: Autor

Tabla 4. 4 Ficha Técnica de Inyectora Haitian PL4500

	1 abia 4. 4 1 icila 1	cemea de myce	wia mani	an i L+300		
	FICHA '	TÉCNICA DE MAÇ	UINARIA			
	UNIVERSIDAD	TÉCNICA DE AMI	BATO	8		
	FACULTAD DE INGI	ENIERÍA CIVIL Y M	IECÁNICA			
Holviplas s.a.	CARRERA DE I	NGENIERÍA MECÁ	NICA	FIGM		
MÁQUINA:	INYECTORA PL4500	Área de trabajo:		Inyección de P	VC	
Estado actual:	En actividad	Tiempo de operacio	n:	24 Horas Conti	nua	
Marca:	Haitian	Modelo:		PL4500		
Fabricante:	China	Serie:		201207045032	229	
Año fabricación:	2012	Codigo:		IYNH4		
THE STATE OF THE S	CA	ARACTERÍS	TICAS GENERALES			
THE RESERVE		Procedencia:	China	Voltaje:	380 V	
111		Frecuencia: 60 HZ		Presión Bomba:	16 Mpa	
	A STATE OF THE STA	Amperaje: 32 Amp		Potencia Motor Bomba: 45 Kw		
			DIM	ENSIONES:		
in m		Longuitud:		7.80 m		
		Ancho:		2.30 m		
		Alto:		2.60 m		
		Peso de la máquina:		18.5 Tn		
		Diámetro Tornillo		80 mm		
			COM	IPONENTES		
		Mecanismo de Cierre	;	Cilindros de Inyección		
00		Resistencia Eléctrica		Mangueras de presión de a	gua	
Comment of the Commen		Termocuplas		Mecanismo de Expulsión		
		Husillo		Rodamientos		
FUNCIÓN: Producir en fo	rma discontinua accesorios	a partir de un materia	de PVC Fla	naterial es invectado bajo no	esión v	

FUNCIÓN: Producir en forma discontinua accesorios a partir de un material de PVC. El material es inyectado bajo presión y temperatura al interior de un molde en donde se solidifica tomando la forma de la cavidad.

Tabla 4. 5 Ficha Técnica de Inyectora Haitian PL1600

	FICHA '	TÉCNICA DE MA(QUINARIA		
	UNIVERSIDAD TÉCNICA DE AMBATO			2	
	FACULTAD DE INGI	ENIERÍA CIVIL Y N	MECÁNICA		
Holviplas s.a.	CARRERA DE I	NGENIERÍA MECA	ÁNICA	FNGM	
Máquina:	INYECTORA PL1600	Área de trabajo:		Inyección de	PVC
Estado actual:	En actividad	Tiempo de operacio	on:	24 Horas Con	tinuas
Marca:	Haitian	Modelo:		PL1600j	<u>i </u>
Fabricante:	China	Serie:		20120701603	2167
Año fabricación:	2012	Codigo:		IYNH5	
	- Services and a service and a	CARACTERÍSTICAS GENERALES			
	INVHS	Procedencia:	China	Voltaje:	380 V
		Frecuencia:	60 HZ	Presión Bomba:	16 Mpa
♦ TANJAN		Amperaje: 32 Amp		Potencia Motor Bomba:	15 Kw
	HARRIST A		DIMI	ENSIONES:	
		Longuitud:		4.62 m	
		Ancho:		1.21 m	
	9 Mariana	Alto:		1.70 m	
and the same		Peso de la máquina:		4.8 Tn	
The state of the s		Diámetro Tornillo		50 mm	
	Control of the Contro		COM	PONENTES	
	Mecanismo de Cierro	e	Cilindros de Inyección		
		Resistencia Eléctrica		Mangueras de presión de	agua
		Termocuplas		Mecanismo de Expulsión	
		Husillo		Rodamientos	
ETINICIÓN, D 1	1		1.1. DVC EL.		.,

FUNCIÓN: Producir en forma discontinua accesorios a partir de un material de PVC. El material es inyectado bajo presión y temperatura al interior de un molde en donde se solidifica tomando la forma de la cavidad.

Elaborado por: Autor

Tabla 4. 6 Ficha Técnica de Triturador de PVC Cumberland

	abia 4. o Ficha Tec			C Cumbertana	
	FICHA	<u>TÉCNICA DE N</u>	IAQUINARIA		
	UNIVERSIDA	D TÉCNICA DE A	AMBATO	1	
	FACULTAD DE INC	GENIERÍA CIVIL	Y MECÁNICA		
Holviplas s.a.	CARRERA DE	INGENIERÍA M	ECÁNICA	FI	divi
Máquina:	Triturador de PVC	Área de trabajo	:	Inyecc	ión de PVC
Estado actual:	En actividad	Tiempo de oper	acion:	8 Ho	ras diarias
Marca:	Cumberland	Modelo:			6508
Fabricante:	Mexico	Serie:			BTP
Año fabricación:	2006	Codigo:		TMH1	
		Procedencia: Frecuencia: Amperios: Rendimiento:	Mexico 60 Hz 32 Amp 150 Kg/h	Voltaje: Potencia: Motor: Corte: IENSIONES:	360 - 480 14.91 Kw 20 HP Cuchillas
	J. 7. 1	Longuitud:			.50 m
Land Land	MI telle.	Ancho:		_	.20 m
	Te	Alto:			2.10 m
			COM	1PONENTES	
	Fusibles		Tolva de descarga		
		Motor Electrico		Eje rotatorio	
		Mecanismo o tra		Cuchillas	
,		Cables eléctricos		Criba	
FUNCIÓN: Triturar acces	sorios de PVC que no cum	ple con el control d	le calidad.		

Tabla 4. 7 Ficha Técnica de Montacargas Toyota

	FICH	A TÉCNICA DE MAG	QUINARIA	_		
	UNIVERSIDA	AD TÉCNICA DE AMI	7			
	FACULTAD DE IN	GENIERÍA CIVIL Y N	MECÁNICA	D		
Holviplas s.a.	CARRERA DI	E INGENIERÍA MECA	ÁNICA	FICM		
Equipo:	Montacargas	Área de trabajo:		Inyección de P	VC	
Estado actual:	En actividad	Tiempo de operacio	on:	8 Horas		
Marca:	Toyota	Modelo:		7FGOU30		
Fabricante:	China	Serie:		65354		
Año fabricación:	2014	Codigo:		МСН3		
PT VI		C	CARACTERÍSTICAS GENERALES			
		Capacidad carga:	2.8 Tn	Radio Giro:	2.35 m	
		9	Centro de carga:	0.60 m	Potencia media:	2600 rpm
		Velocidad elev.	30.5 m/min	Combustible:	GLP	
	No.	Tipo llanta:	Masisa	Max Velocidad:	18.6 Km/h	
		Modelo motor:	4Y-ECS	Poder:	42.6 Kw	
			DIM	ENSIONES:		
		Longuitud:		2.75 m		
Figure 1		Ancho:		1.24 m		
The Royal		Alto:		2.17 m		
	70		COM	PONENTES:		
N K M		Mastil de la armadura	a	Motor Comb. Interna		
	The state of	Cilindro hidráulico de	el Mastil	Sistema de funcionamiento		
		Contrapeso de la arm	nadura	Cilindro Actuador		
		Ruedas		Sistema de refrigeracion		
FUNCIÓN: Desplazar carg	gas muy pesadas en todo	tipo de aplicaciones de	ntro del area			

Elaborado por: Autor

Tabla 4. 8 Ficha Técnica de Transportador Hidráulico Manual de Pallets

1567	UNIVERSIDA	AD TÉCNICA DE AI	МВАТО	8		
	FACULTAD DE IN	GENIERÍA CIVIL Y	MECÁNICA	A CO		
Holviplas s.a.	CARRERA DI	E INGENIERÍA ME	CÁNICA	FNG	M	
Equipo:	Transportador Hidráuli	ico Codigo:		TH	H1	
Estado actual:	En actividad	Tiempo de operac	cion:	8 H	oras	
Marca:	Caterpilar	Modelo:		A4000	02748	
Fabricante:	EEUU	Serie:		27	48	
Año fabricación:	2012	Área de trabajo:		Inyecciór	Inyección de PVC	
				ÍSTICAS GENERALI		
		Capacidad:	3000 Kg	Espesor:	6 mm	
			70 mm	Peso equipo:	75 Kg	
	-	Altura de horquilla		Altura de carga: 200 mm		
	The second second		DIN	ENSIONES:		
		Longuitud:			1.20 m	
	19	Ancho:		***	8 m	
		Alto manubrio:			2 m	
1-1			CON	MPONENTES		
		Bomba hidráulica		Ruedas de nylon		
	* 5	Rodamiento de bol		Graseros		
		Seguros de rodami	entos	Estructura Metálica		
		Pernos de seguridad		Sellos polipack		

Tabla 4. 9 Ficha Técnica de Tecle de cadena Truper

	FICH	A TÉCNICA DE MAQUINARIA	_
	UNIVERSIDA	D TÉCNICA DE AMBATO	8
	FACULTAD DE INC	GENIERÍA CIVIL Y MECÁNICA	
stado actual: I arca: abricante:	CARRERA DE	E INGENIERÍA MECÁNICA	FIGM
Equipo:	Tecle de cadena	Área de trabajo:	Inyección de PVC
Estado actual:	En actividad	Tiempo de operacion:	8 Horas
Marca:	Truper	Modelo:	CF020
Fabricante:	Mexico	Serie:	CF
Año fabricación:	2016	Codigo:	TCH1
(a)		Tipo:	ENSIONES:
(8)	A. C.	Capacidad:	2 Ton
	Ľ	Longuitud:	510 mm
	• 10	Ancho:	147mm
		Alto:	204 mm
	TOURSELL PARTY AND ADDRESS OF THE PARTY AND AD	Elevación estandar:	3 m
W		Fuerza para elevar la carga:	40 Kg
9	n A	COM	PONENTES
0	& X	Cadena Manual	Trinquete de disco
A	8 1	Pernos	Prisionero del disco
I	20	Tren engranes	Pasadores de suspensión
		Poleas	Rodamientosodamiento
FUNCIÓN: Realizar el aco	censo y descenso de los r	moldes de inyeccion hacia las máquinas	

Elaborado por: Autor

4.2.2 Análisis de registro de fallas de las máquinas y equipos del área de inyección de PVC de la Empresa Holviplas S.A.

Para realizar el análisis de registros de cada uno de las máquinas y equipos del área de inyección de PVC, se procedió a la recopilación de información en el departamento de producción, la cual se encontró en hojas de reporte diario de producción en forma de observaciones el tipo de actividad de mantenimiento ejecutado, se realizó desde el mes de mayo 2017 al mes de mayo del 2018, la información del departamento de mantenimiento y operadores del área fue de gran apoyo para determinar el número de fallas, tiempos de operación, tiempos de reparación y tiempos de paro de las máquinas y equipos del área.

4.2.2.1 Análisis de tiempos de máquinas y equipos.

Para realizar el cálculo de los tiempos mencionados se tomó en cuenta los días laborables y se excluyó los días de feriado decretados del año 2017 – 2018.

A continuación de presentan en tablas los siguientes resultados:

Tabla 4. 10 Análisis de tiempos para Inyectora HTF 300

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

A NTÁ	T TOTO	DET	IEMPOS

MÁQUINA: INYECTORA HAITIAN HTF300			(CÓDIGO	INYH1		
FECHA DE INICIO:	02 DE MAY	O 2017	FEC	HA FINAL:	31 D	E MAYO 2	2018
ACTIVIDAI	`	FECHA	DÍAS	TI	EMPO (horas)		
ACTIVIDAL		FECHA	DIAS	OPERACIÓN	REPAR.	MUERTO	PARO
Inicio		02/05/2017	0	0	0	0	0
Limpieza de filtros de succion	adora	12/05/2017	8	192	2	3	5
Limpieza de cabezal y boquill	a de inyección	16/05/2017	2	43	1.5	2.5	4
Cambio de aceite general de la	a máquina	23/06/2017	28	668	5	6	11
Llenado de aceite a nivel máx	imo de la bomba	29/06/2017	4	85	1	2	3
Chequeo de la bomba hidráuli	ca principal	31/07/2017	22	525	2.5	3.5	6
Reinicio de parámetros de la r calibración		10/08/2017	8	186	1.5	2.5	4
Limpieza de material quemadinyección		18/09/2017	27	644	1	1.5	2.5
Cambio de sensor de unidad d maquina	le cierre de la	17/10/2017	21	501.5	1	2	3
Cambio de empaques de elect	roválvula	13/11/2017	19	453	1.5	2.5	4
Completar nivel de aceite del y limpieza de la maquina		20/11/2017	5	116	1	2.5	3.5
Ajuste del sistema de expulsió cierre	ón de la zona de	05/12/2017	10	236.5	0.5	1.5	2
Limpieza de tornillo de mater	ial quemado	03/01/2018	21	502	1	2	3
Limpieza de tornillo y cabeza	l de la maquina	19/01/2018	12	285	1.5	2.5	4
Cambio de electroválvula prin	icipal	05/02/2018	11	260	1.5	2.5	4
Mantenimiento general de la 1		27/02/2018	6	140	4	5.5	9.5
Chequeo de microcontrolador de cierre	de fin de carrera	13/03/2018	10	230.5	0.5	1	1.5
Limpieza de tornillo de mater	ial quemado	21/03/2018	8	190.5	1	2	3
Cambio de fusible de tablero	principal	13/04/2018	15	357	1.5	2.5	4
Cambio del filtro de la bomba	principal	23/04/2018	6	140	3	4	7
Limpieza de material quemadinyección		02/05/2018	6	137	1	2	3
Limpieza de la punta de inyec	ción	23/05/2018	7	165	0.5	1.5	2
Fin		31/05/2018	5	118			
TOTAL			261	6175	34		89

Tabla 4. 11 Análisis de tiempos para Inyectora HTF 200

TOTAL

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

ANÁLISIS DE TIEMPOS

MÁQUINA: INYECTORA HAITIAN HTF2		F200		CÓDIGO		INYH2		
FECHA DE INICIO:	02 DE M.	AYO 2017	FEC	CHA FINAL:	31 D	31 DE MAYO 2018		
				TI	EMPO (l	noras)		
ACTIVIDAI)	FECHA	DÍAS	OPERACIÓN	REPAR.	MUERTO	PARO	
Inicio		02/05/2017	0	0	0	0	0	
Calibración general de la ma	íquina	17/05/2017	11	264	1.5	2	3.5	
Arreglo de cañería de agua o área de inyección	del sistema del	31/05/2017	10	236.5	2	3	5	
Limpieza de boquilla de iny	ección	13/06/2017	9	211	1	1.5	2.5	
Cambio de termocuplas zon	Cambio de termocuplas zona 3		10	237.5	1	2	3	
Limpieza de boquilla de iny	ección	10/07/2017	9	213	1	1.5	2.5	
Limpieza de tornillo y cañón	n de maquina	07/11/2017	86	2061.5	1.5	2.5	4	
Calibración general de la ma	íquina	05/12/2017	19	452	1.5	2	3.5	
Limpieza de punto de inyeco	ción	15/12/2017	8	188.5	0.5	1.5	2	
Limpieza de material quema	do del tornillo	05/02/2018	35	838	1.5	2.5	4	
Limpieza de la boquilla de i	nyección	19/03/2018	30	716	1	1.5	2.5	
Cambio del punto de inyecc	ión	29/03/2018	8	189.5	0.5	1	1.5	
Cambio de electroválvula pr	rincipal	03/05/2018	24	574.5	2	3	5	
Chequeo de bomba hidráulio	ca principal	18/05/2018	11	259	2	3.5	5.5	
Fin		31/05/2018	8	186.5				

Elaborado por: Autor

278

6627.5

17

44.5

Tabla 4. 12 Análisis de tiempos para Inyectora HTF320

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ANÁLISIS DE TIEMPOS

MÁQUINA: INYECTORA HAITIA	(CÓDIGO	IYNH3				
FECHA DE INICIO: 02 DE N	MAYO 2017	FEC	CHA FINAL:	31 D	31 DE MAYO 2018		
		5 4.0	TI	EMPO (horas)			
ACTIVIDAD	FECHA	DÍAS	OPERACIÓN	REPAR.	MUERTO	PARO	
Inicio	02/05/2017	0	0	0	0	0	
Chequeo del sistema de enfriamiento	18/05/2017	12	288	0.5	1.5	2	
Limpieza de tornillo y cañón de maquina	31/05/2017	9	214	1.5	2.5	4	
Limpieza de boquilla de inyección	09/06/2017	7	164	1	1.5	2.5	
chequeo de zona de calentamiento	21/06/2017	8	189.5	1	2	3	
Limpieza de tornillo y cañón de maquina	12/07/2017	15	357	1.5	2.5	4	
Cambio de resistencia de zona 3	18/07/2017	4	92	2	3	5	
Cambio de cañerías de aceite de bomba principal de aceite	15/08/2017	20	475	2	3	5	
Llenado de aceite a nivel máximo de la maquina	22/08/2017	5	115	0.5	1.5	2	
Limpieza del tornillo y cañón de la maquina	11/09/2017	14	334	1.5	2.5	4	
Limpieza de filtro de tanque de aceite	09/10/2017	20	476	2	3	5	
Cambio de aceite general de la máquina	14/11/2017	26	619	4	5	9	
Limpieza de electroválvula de expulsión	24/11/2017	8	183	1.5	2.5	4	
Cambio de filtro de papel de aceite	07/12/2017	9	9 212		1.5	2	
Limpieza del tornillo y cañón de la maquina	22/12/2017	11	262	1.5	2.5	4	
Limpieza de la punta de tornillo y cañón de la máquina	11/01/2018	13	308	1.5	2.5	4	
Chequeo de la zonas de calentamiento	23/02/2018	31	740	0.5	1.5	2	
Cambio de termocupla de zona 1 de calentamiento	13/03/2018	12	286	1	2	3	
Mantenimiento general de la máquina	20/04/2018	28	669	5	6	11	
Cambio de microcontrolador de puerta principal y chequeo de cables de tablero por corto circuito	30/04/2018	6	133	1.5	2.5	4	
Cambio de fusible de tablero de control	07/05/2018	4	92	0.5	1.5	2	
Arreglo de succionadora de material	15/05/2018	6	142	2	3	5	
Fin	31/05/2018	11	259				
TOTAL		279	6609.5	33		86.5	

Tabla 4. 13 Análisis de tiempos para Inyectora PL4500

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

ANÁLISIS DE TIEMPOS

MÁQUINA: INYECTORA HAITIAN PL4500			CÓDIGO	INYH4			
FECHA DE INICIO: 02 DE MAYO 2	2017	FECHA FINAL: 31 DE MAYO 2018					
			TIEMPO (horas)				
ACTIVIDAD	FECHA	DÍAS	OPERACIÓN	REPAR.	MUERTO	PARO	
Inicio	02/05/2017	0	0	0	0	0	
Cambio de resistencias de la zona 3	11/05/2017	7	168	2	3	5	
Limpieza de tornillo y cañón de inyección	05/06/2017	17	403	1	1.5	2.5	
Limpieza de boquilla de inyección	13/07/2017	28	669.5	1.5	2	3.5	
Limpieza de boquilla de inyección	25/07/2017	8	188.5	1.5	2	3.5	
Limpieza de tornillo y cañón de inyección	23/08/2017	20	476.5	2	3	5	
Limpieza de filtro de tanque hidráulico principal	24/08/2017	1	19	2	3	5	
Cambio de filtro de papel de aceite	28/08/2017	2	43	0.5	1	1.5	
Limpieza de boquilla de inyección	04/09/2017	7	166.5	1.5	2	3.5	
Cambio de ventilador	21/09/2017	13	308.5	1	1.5	2.5	
Cambio de resistencias de zona 4 y limpieza de boquilla de inyección	02/10/2017	7	165.5	2	4	6	
Chequeo de zona de calentamiento y limpieza de boquilla de inyección	11/10/2017	7	162	1.5	2.5	4	
Limpieza de boquilla de inyección	27/10/2017	12	284	1	1.5	2.5	
Cambio de manguera hidráulico principal	01/11/2017	3	69.5	1	2	3	
Limpieza de tornillo y cañón de inyección	21/12/2017	36	861	2	3	5	
Cambio de Resistencia de la zona 1	03/01/2018	9	211	1.5	2	3.5	
Chequeo de zonas de calentamiento	29/01/2018	18	428.5	1	2	3	
Chequeo de zona de calentamiento	02/03/2018	4	93	2	3	5	
Arreglo de resistencias de zona 1	06/03/2018	2	43	1	2	3	
Cambio de termocuplas zona 2	08/03/2018	2	45	0.5	1.5	2	
Arreglo de acoples de manguera hidráulica principal	19/03/2018	7	166	1.5	2.5	4	
Cambio de manguera hidráulica por ruptura	21/03/2018	2	44	1.5	2.5	4	
Limpieza de material quemado del tornillo	04/04/2018	10	236	1	2	3	
Limpieza la punta del cañón	23/04/2018	13	309	1	2.5	3.5	
Chequeo de la zona de calentamiento	10/05/2018	12	284.5	1	1.5	2.5	

Limpieza de boquilla de inyección	16/05/2018	4	93.5	1.5	2	3.5
Limpieza de la boquilla de inyección	21/05/2018	3	68.5	1.5	2	3.5
Cambio de tubería rota en la red principal del área	29/05/2018	8	188.5	2	3.5	5.5
fin	31/05/2018	2	42.5			
TOTAL		264	6237.5	37.5		98.5

Elaborado por: Autor

Tabla 4. 14 Análisis de tiempos para Inyectora PL1600

		ІВАТО		F	GM	
Holviplas s.a.		CÁNICA				
	ANÁLISIS					
MÁQUINA: INYECTORA HA	ITIAN PL1600	(CÓDIGO		INYH5	
FECHA DE INICIO: 02 DE MAY	O 2017	FEC	CHA FINAL:	31 DE	MAYO 20)18
			TI	EMPO (ho	oras)	
ACTIVIDAD	FECHA	DÍAS	OPERACIÓN	REPAR.	MUERTO	PARO
Inicio	02/05/2017	0	0	0	0	0
Calibración general de la máquina	10/05/2017	6	144	1	2	3
Cambio de resistencia en la zona 1	23/05/2017	9	213	1.5	2.5	4
Mantenimiento general de la maquina	12/06/2017	14	332	5	6	11
Cambio de filtro de la bomba principal	19/06/2017	5	109	1	2	3
Limpieza de boquilla de inyección	21/11/2017	110	2637	1	1.5	2.5
Colocación de rodelas en la barra de expulsor	11/12/2017	14	333.5	0.5	1.5	2
Cambio de manguera hidráulica de la máquina	22/12/2017	9	214	1.5	2.5	4
Limpieza de boquilla de inyección	16/01/2018	16	380	1	1.5	2.5
Cambio de filtro de papel del aceite	05/04/2018	57	1365.5	1	2	3
Calibración general de la máquina	03/05/2018	19	453	1	2	3
Fin	31/05/2018	19	453			
TOTAL		278	6634	14.5		38

Tabla 4. 15 Análisis de tiempos de Triturador de Accesorios de PVC

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ANÁLISIS DE TIEMPOS

MÁQUINA: TRITURAD		CÓDIGO	TMH1					
FECHA DE INICIO:	02 DE MAYO	2017	FE	CHA FINAL:	31 DE MAYO 2018			
ACTIVID	AD	FECHA	DÍAS	TIE	MPO (horas)			
nen i		1 Lenn	DIM	OPERACIÓN	REPAR.	MUERTO	PARO	
Inicio		02/05/2017	0	0	0	0	0	
Desmontaje de cuchillas fija afilado		09/05/2017	5	40	4	6	10	
Limpieza de residuos de ma corte	terial de la cámara de	15/05/2017	4	22	2	3	5	
Cambio de pernos de soport	e de cuchillas	25/05/2017	8	59	1	1.5	2.5	
Ajuste de cuchillas rotativas corte		05/06/2017	7	53.5	2	2.5	4.5	
Limpieza de malla para retir acumulado de PVC		15/06/2018	8	59.5	2	3	5	
Cambio de pulsador de man eléctrico	do del sistema	17/07/2017	22	171	2	3.5	5.5	
Chequeo del motor principa	l del molino	01/08/2017	11	82.5	4	5	9	
Limpieza de malla para retir acumulado de PVC	npieza de malla para retirar material ımulado de PVC		6	39	2	3	5	
Soldadura de la malla rota d	Soldadura de la malla rota del molino			107	4	5	9	
Chequeo del sistema mecáni	ico del molino	18/09/2017	14	103	2	3	5	
Cambio de pernos regulados	res de la malla	12/10/2017	18	139	1	2	3	
Desmontaje de cuchillas fija afilado	as y rotativas para el	13/11/2017	22	173	4	6	10	
Limpieza de molino para ref acumulados	tirar hilos plásticos	20/11/2017	5	30	2	3	5	
Lubricación del sistema rota	tivo del molino	11/12/2017	15	115	3	4	7	
Limpieza general del molino)	22/12/2017	9	65	5	6	11	
Ajuste de cuchillas fijas de l	a cámara de corte	22/01/2018	21	157	2	2.5	4.5	
Desmontaje de cuchillas fija afilado	as y rotativas para el	20/02/2018	24	187.5	4	6	10	
Cambio de pernos de soport	e de cuchillas	28/02/2018	7	46	1	1.5	2.5	
Soldadura de la malla rota d	el molino	14/03/2018	14	109.5	4	5	9	
Chequeo del sistema mecán	ico del molino	27/03/2018	10	71	2	3	3	
Limpieza de malla para retirar material acumulado de PVC		11/04/2018	12	93	2	3	3	
Cambio de cuchillas de la ca	ámara de corte	14/05/2018	25	197	4	5	3	
Fin		31/05/2018	12	93				
TOTAL	L		293	2212.5	59		131.5	
	T) 1		•					

Tabla 4. 16 Análisis de Tiempos de Montacargas Toyota

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

ANÁLISIS DE TIEMPOS

EQUIPO: MONTACARGA TOYOTA			CÓDIGO MCH3				
FECHA DE INICIO:	02 DE MA	YO 2017	FEC	CHA FINAL:	31 DE MAYO 2018		
A COPILITIO A D		FECHA	DÍAS	TI	EMPO (horas)	
ACTIVIDAD		FECHA	DIAS	OPERACIÓN	REPAR.	MUERTO	PARO
Inicio		02/05/2017	0	0	0	0	0
Lubricación de cadena de las ho	orquillas	03/05/2017	1	8	2	2.5	4.5
Inspección del cilindro de fuerz dirección	a de la	18/05/2017	11	83.5	1.5	2	3.5
Cambio de aceite del motor y el	filtro	06/06/2017	13	100.5	4	5	9
Chequeo de los neumáticos y tuerca de seguridad		16/06/2017	8	60.5	2	2.5	4.5
Cambio de aceite embrague		31/07/2018	31	239	4	4.5	8.5
Inspección del mástil		21/08/2017	15	115.5	2	2.5	4.5
Revisión del nivel de líquido hi	dráulico	25/09/2017	25	195.5	1	2	3
Chequeo del fluido de la batería	ı	13/10/2017	14 109		1	1.5	2.5
Lubricación de puntos móviles		30/10/2017	11	85.5	3	3.5	6.5
Limpieza del filtro de aire		22/11/2017	17	129.5	1	2	3
Cambio de aceite del motor y el	filtro	08/01/2018	32	253	4	5	9
Cambio de aceite del sistema hi	dráulico	31/01/2018	17	127	3	4	7
Cambio de neumáticos del montacargas		26/03/2018	38	297	6	7	13
Cambio de aceite del motor y el filtro		09/04/2018	11	75	4	5	9
Lubricación de puntos móviles		15/05/2018	25	191	2	2.5	4.5
Fin		31/05/2018	12	91.5			
	TOTAL		281	2161	40.5		92

Tabla 4. 17 Análisis de Tiempos de Transportador Hidráulico Manual

FACULTAD DE INGENIERÍA CIVIL Y **MECÁNICA**

1 .	~-~			
ANA	LISIS	DE	THEN	APOS

EQUIPO: TRANSPORTADOR HIDRÁULICO		CÓDIGO		THH1			
FECHA DE INICIO:	02 DE MAYO 2017	FEC	HA FINAL:	31 DE MAYO 2018			
		,	TIEMPO (horas)				
ACTIVIDAD	FECHA	DÍAS	OPERACIÓN	REPAR.	MUERTO	PARO	
Inicio	02/05/2017	0	0	0	0	0	
Cambio de empaques en mal estado	29/05/2017	19	152	0.5	1	1.5	
Reposición de seguros averiados	26/06/2017	20	158.5	1	2	3	
Cambio de aceite de bomba hidráulica	24/07/2017	20	157	1.5	2.5	4	
Cambio de pernos aislados del sistema de descenso	14/08/2017	15	116	0.5	1	1.5	
Cambio de rodamientos	28/08/2017	10	78.5	1	2	3	
Cambio de llantas de Nylon	27/11/2017	65	517	2	3	5	
Reparación del sistema de accenso y descenso	12/03/2018	74	587	3	4	7	
Soldar y pintar la estructura	07/05/2018	38	297	2.5	3.5	6	
Fin	31/05/2018	17	130				
TOTAL		278	2193	12		31	

Tabla 4. 18 Análisis de Tiempos de Tecle de Cadena

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

ANÁLISIS	DE	TIEMPOS
----------	----	----------------

EQUIPO: TECLE DE CADENA DE 5 TN			CÓDIGO		TCH1		
FECHA DE INICIO:	02 DE MAYO 2017	FEC	CHA FINAL:	31 DE MAYO 2018			
		,	TIEMPO (horas)				
ACTIVIDAD	FECHA	DÍAS	OPERACIÓN	REPAR.	MUERTO	PARO	
Inicio	02/05/2017	0	0	0	0	0	
Mantenimiento de tecle	07/06/2017	25	200	1.5	2.5	4	
Cambio de rodamientos del tecle	07/08/2017	40	316	1	1.5	2.5	
Mantenimiento de tecle	16/10/2017	50	397.5	1.5	2.5	4	
Lubricación de cadena	28/11/2017	30	236	0.5	1.5	2	
Lubricaciones del tren de engranes	02/01/2018	24	190	1	1.5	2.5	
Lubricación de los pasadores de suspensión	26/02/2018	39	309.5	0.5	1	1.5	
Cambio de trinquete de disco	16/04/2018	34	270.5	2	3	5	
Cambio de prisioneros de disco	14/05/2018	19	147	0.5	1	1.5	
Fin	31/05/2018	12	94.5				
TOTAL		273	2161	8.5		23	

Elaborado por: Autor

4.2.3 Análisis de disponibilidad y confiabilidad de máquinas y equipos del área de inyección de PVC de la empresa Holviplas S.A.

Una vez desarrollado el análisis de tiempos de operación, reparación y tiempos de paro de máquinas y equipos, se elaboró el cálculo de la confiabilidad y disponibilidad, usando las formulas descritas con anterioridad en el capítulo 2 del marco teórico literal 2.2.3.1.

Tabla 4. 19 Análisis de fiabilidad y disponibilidad de Máquina Inyectora HTF300

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

MECÁNICA ANÁLISIS DE FIABILIDAD Y DISPONIBILIDAD

EQUIPO: INYECTO	L DRA HTF3		PONIBII	CÓDIGO		INYH1			
PERIODO:			02 Γ		017 - 31 D	E MAYO 201			
MES	TIEMPO DE OPERACIÓN	TIEMPO PROMEDIO ENTRE FALLAS	TIEMPO DE PARO	TIEMPO PROMEDIO DE PAROS DE REPARACIÓN	DISPONIBILIDAD	TASA DE FALLOS	TASA DE REPARACIÓN	FIABILIDAD	
	T.O. (horas)	TPEF (horas)	T. P. (horas)	TPPR (horas)	D (%)	λ	μ	F (%)	
May-17	235	117.5	9	4.5	96.31	0.0085	0.2222	13.57	
Jun-17	753	376.5	14	7	98.17	0.0027	0.1429	13.09	
Jul-17	525	525	6	6	98.87	0.0019	0.1667	36.88	
Ago-17	186	186	4	4	97.89	0.0054	0.2500	36.63	
Sep-17	644	644	2.5	2.5	99.61	0.0016	0.4000	35.69	
Oct-17	501.5	501.5	3	3	99.41	0.0020	0.3333	36.68	
Nov-17	569	284.5	7.5	3.75	98.70	0.0035	0.2667	13.65	
Dic-17	236.5	236.5	2	2	99.16	0.0042	0.5000	37.04	
Ene-18	787	393.5	7	3.5	99.12	0.0025	0.2857	13.98	
Feb-18	400	200	13.5	6.75	96.74	0.0050	0.1481	13.53	
Mar-18	421	210.5	4.5	2.25	98.94	0.0048	0.4444	13.25	
Abr-18	497	248.5	11	5.5	97.83	0.0040	0.1818	13.70	
May-18	420	210	5	2.5	98.824	0.0048	0.4000	36.78	
TOTAL	6175	4134	89	53.25	98.728	0.000242	0.018779	23.80	

Tabla 4. 20 Análisis de fiabilidad y disponibilidad de Máquina Inyectora HTF200

TOTAL

UNIVERSIDAD TÉCNICA DE **AMBATO**

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ANÁLISIS DE FIABILIDAD Y

DISPONIBILIDAD **EQUIPO:** INYECTORA HTF200 CÓDIGO INYH2 02 DE ENERO 2017 - 31 DE MAYO 2018 PERIODO: TASA DE FALLOS TIEMPO DE PARO ENTRE FALLAS DISPONIBILIDAD PAROS DE REPARACIÓN TASA DE REPARACIÓN PROMEDIO DE TIEMPO DE OPERACIÓN TIEMPO PROMEDIO FIABILIDAD TIEMPO **MES TPEF** T.P. **TPPR** D (%) T.O. (horas) λ F (%) μ (horas) (horas) (horas) May-17 500.5 250.25 98.33 0.0040 0.2352 13.53 8.5 4.25 Jun-17 448.5 224.25 5.5 98.79 0.0045 0.3636 13.53 2.75 Jul-17 213 213 2.5 2.5 98.84 0.0047 0.4000 36.79 Nov-17 2061.5 2061.5 4 99.81 0.0005 0.2500 36.79 320.25 2.75 0.0031 Dic-17 640.5 5.5 99.15 0.3636 13.53 Feb-18 838 4 99.53 0.0012 0.2500 36.79 838 4 Mar-18 905.5 452.75 4 2 99.56 0.0022 0.5000 13.53 833.5 416.75 10.5 5.25 98.75 0.0024 0.1904 13.53 May-18

> 27.5 Elaborado por: Autor

4776.75

6441

44.5

99.43

0.00021

0.0364

25.97

Tabla 4. 21 Análisis de fiabilidad y disponibilidad de Máquina Inyectora HTF320

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ANÁLISIS DE FIABILIDAD Y DISPONIBILIDAD

EQUIPO: INYE	CTORA HTF320)	DISTON	CÓDIGO		INYH3			
PERIODO:	C101(1111152)	,	0		2017 - 31	DE MAYO 20			
MES	TIEMPO DE OPERACIÓN	TIEMPO PROMEDIO ENTRE FALLAS	TIEMPO DE PARO	TIEMPO PROMEDIO PARO REPARACIÓN	DISPONIBILIDAD	TASA DE FALLOS	TASA DE REPARACIÓN	FIABILIDAD	
	T.O. (horas)	TPEF (horas)	T. P. (horas)	TPPR (horas)	D (%)	λ	μ	F (%)	
May-17	502	251	6	3	98.82	0.0040	0.3333	13.53	
Jun-17	353.5	176.75	5.5	2.75	98.47	0.0057	0.3636	13.53	
Jul-17	449	224.5	9	4.5	98.03	0.0045	0.2222	13.53	
Ago-17	590	295	7	3.5	98.83	0.0034	0.2857	13.53	
Sep-17	334	334	4	4	98.82	0.0030	0.2500	36.79	
Oct-17	476	476	5	5	98.96	0.0021	0.2000	36.79	
Nov-17	802	401	13	6.5	98.40	0.0025	0.1538	13.53	
Dic-17	474	237	6	3	98.75	0.0042	0.3333	13.53	
Ene-18	308	308	4	4	98.72	0.0032	0.2500	36.79	
Feb-18	740	740	2	2	99.73	0.0014	0.5000	36.79	
Mar-18	286	286	3	3	98.96	0.0035	0.3333	36.79	
Abr-18	802	401	15	7.5	98.16	0.0025	0.1333	13.53	
May-18	234	117	7	3.5	97.10	0.0085	0.2857	13.53	
TOTAL	6350.5	4247.25	86.5	52.25	98.78	0.0002	0.0191	22.42	

Tabla 4. 22 Análisis de fiabilidad y disponibilidad de Máquina Inyectora PL4500

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ANÁLISIS DE FIABILIDAD Y

			DISPONII						
EQUIPO: INYEC	CTORA PL4500		CÓD		INYH4				
PERIODO:	I		02 D	E ENERO 20		DE MAYO 2018			
MES	TIEMPO DE OPERACIÓN	TIEMPO PROMEDIO ENTRE FALLAS	TIEMPO DE PARO	TIEMPO PROMEDIO PAROS REPARACIÓN	DISPONIBILIDAD	TASA DE FALLOS	TASA DE REPARACIÓN	FIABILIDAD	
	T.O. (horas)	TPEF (horas)	T. P. (horas)	TPPR (horas)	D (%)	λ	μ	F (%)	
May-17	168	168.00	5	5.00	97.11	0.0060	0.200	36.49	
Jun-17	403	403.00	2.5	2.50	99.38	0.0025	0.400	36.51	
Jul-17	858	429.00	7	3.50	99.19	0.0023	0.286	13.90	
Ago-17	538.5	179.50	11.5	3.83	97.91	0.0056	0.261	4.90	
Sep-17	475	237.50	6	3.00	98.75	0.0042	0.333	13.60	
Oct-17	611.5	203.83	12.5	4.17	98.00	0.0049	0.240	5.00	
Nov-17	69.5	69.50	3	3.00	95.86	0.0144	0.333	36.76	
Dic-17	861	861.00	5	5.00	99.42	0.0012	0.200	35.59	
Ene-18	639.5	319.75	6.5	3.25	98.99	0.0031	0.308	13.77	
Mar-18	391	78.20	18	3.60	95.60	0.0128	0.278	0.67	
Abr-18	545	272.50	6.5	3.25	98.82	0.0037	0.308	13.31	
May-18	635	158.75	15	3.75	97.69	0.0063	0.267	1.83	
TOTAL	6195	3380.53	98.5	43.85	98.72	0.00030	0.023	15.98	

Tabla 4. 23 Análisis de fiabilidad y disponibilidad de Máquina Inyectora PL1600

TOTAL

6181

5508.25

UNIVERSIDAD TÉCNICA DE AMBATO

0.0408

32.56

0.00018

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ANÁLISIS DE FIABILIDAD Y DISPONIBILIDAD

EQUIPO: INYECTORA PL1600 CÓDIGO INYH5 **PERIODO:** 02 DE ENERO 2017 - 31 DE MAYO 2018 TIEMPO PROMEDIO PAROS REPARACIÓN TIEMPO PROMEDIO ENTRE FALLAS TIEMPO DE PARO TASA DE FALLOS DISPONIBILIDAD TASA DE REPARACIÓN TIEMPO DE OPERACIÓN FIABILIDAD **MES** T.O. **TPEF** T. P. **TPPR** D (%) F (%) λ μ (horas) (horas) (horas) (horas) May-17 178.5 7 3.5 98.08 0.0056 0.2857 13.53 357 7 Jun-17 441 220.5 14 96.92 0.0045 0.1429 13.53 Nov-17 2637 2637 2.5 2.5 99.91 0.0004 0.4000 36.79 Dic-17 547.5 273.75 3 98.92 0.0037 13.53 6 0.3333 380 380 99.35 0.0026 0.4000 36.79 Ene-18 2.5 2.5 Abr-18 1365.5 1365.5 3 3 99.78 0.0007 36.79 0.3333May-18 453 453 3 3 99.34 0.0022 0.3333 36.79

Elaborado por: Autor

24.5

99.56

38

Tabla 4. 24 Análisis de fiabilidad y disponibilidad de Triturador de PVC

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ANÁLISIS DE FIABILIDAD Y

		DISPONIBILIDAD								
EQUIPO: TRIT	URADOR DE I	PVC		CÓDIGO			TMH1			
PERIODO:			02 DE ENERO 2017 - 31 DE MAYO 2018							
MES	TIEMPO DE OPERACIÓN	TIEMPO PROMEDIO ENTRE FALLAS	TIEMPO DE PARO	TIEMPO PROMEDIO PARO REPARACIÓN	DISPONIBILIDAD	TASA DE FALLOS	TASA DE REPARACIÓN	FIABILIDAD		
	T.O. (horas)	TPEF (horas)	T. P. (horas)	TPPR (horas)	D (%)	λ	μ	F (%)		
May-17	121	40.3	17.5	5.8	87.36	0.0248	0.1714	4.98		
Jun-17	113	56.5	9.5	4.8	92.24	0.0177	0.2105	13.53		
Jul-17	171	171	5.5	5.5	96.88	0.0058	0.1818	36.79		
Ago-17	228.5	76.2	23	7.7	90.85	0.0131	0.1304	4.98		
Sep-17	103	103	5	5	95.37	0.0097	0.2000	36.79		
Oct-17	139	139	3	3	97.89	0.0072	0.3333	36.79		
Nov-17	203	101.5	15	7.5	93.12	0.0099	0.1333	13.53		
Dic-17	180	90	18	9	90.91	0.0111	0.1111	13.53		
Ene-18	157	157	4.5	4.5	97.21	0.0064	0.2222	36.79		
Feb-18	233.5	116.75	12.5	6.25	94.92	0.0086	0.1600	13.53		
Mar-18	180.5	90.25	12	6	93.77	0.0111	0.1667	13.53		
Abr-18	93	93	3	3	96.88	0.0108	0.3333	36.79		
May-18	197	197	3	3	98.50	0.0051	0.3333	36.79		
TOTAL	2119.5	1431.5	131.5	71.0	95.27	0.00069	0.01408	22.75		

Tabla 4. 25 Análisis de fiabilidad y disponibilidad de Montacarga Toyota

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ANÁLISIS DE FIABILIDAD Y DISPONIBILIDAD

EQUIPO: MONTACARGA TOYOTA CÓDIGO MCH3 PERIODO: 02 DE ENERO 2017 - 31 DE MAYO 2018 **TIEMPO DE PARO** PROMEDIO PARO DISPONIBILIDAD TASA DE FALLOS ENTRE FALLAS TASA DE REPARACIÓN TIEMPO DE OPERACIÓN TIEMPO PROMEDIO REPARACIÓN FIABILIDAD **TIEMPO MES** TPEF T. P. **TPPR** T.O. (horas) D (%) λ F (%) μ (horas) (horas) (horas) May-17 91.5 45.75 8 4 91.96 0.0219 0.2500 13.53 92.26 0.0124 0.1481 Jun-17 161 80.5 13.5 6.75 13.53 Jul-17 239 239 8.5 8.5 96.57 0.0042 0.1176 36.79 115.5 115.5 4.5 4.5 96.25 0.0087 0.2222 36.79 Ago-17 195.5 195.5 0.0051 Sep-17 3 3 98.49 0.3333 36.79 Oct-17 194.5 97.25 9 4.5 95.58 0.0103 0.2222 13.53 Nov-17 129.5 129.5 3 3 97.74 0.0077 0.3333 36.79 Ene-18 380 190 16 8 95.96 0.0053 0.1250 13.53 Mar-18 297 297 13 13 95.81 0.0034 0.0769 36.79 9 Abr-18 75 75 9 89.29 0.0133 0.1111 36.79 191 191 4.5 4.5 97.70 0.0052 0.2222 May-18 36.79 **TOTAL** 2069.5 92 68.75 96.01 0.00060 0.01455 1656 28.66

Tabla 4. 26 Análisis de fiabilidad y disponibilidad de Transportador Hidráulico

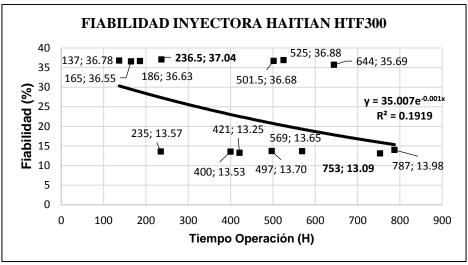
FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

ANÁLISIS DE FIABILIDAD Y DISPONIBILIDAD

		DISPONIBILIDAD							
EQUIPO: TRA	NSPORTADOR H	IDRÁULIC	CO CO		CÓDIGO	CÓDIGO THH1			
PERIODO:				02 DE ENERO 2017 - 31 DE MAYO 2018					
MES	TIEMPO DE OPERACIÓN	TIEMPO PROMEDIO ENTRE FALLAS	TIEMPO DE PARO	TIEMPO PROMEDIO PARO REPARACIÓN	DISPONIBILIDAD	TASA DE FALLOS	TASA DE REPARACIÓN	FIABILIDAD	
	T.O. (horas)	TPEF (horas)	T. P. (horas)	TPPR (horas)	D (%)	λ	μ	F (%)	
May-17	152	152	1.5	1.5	99.02	0.0066	0.6667	36.79	
Jun-17	158.5	158.5	3	3	98.14	0.0063	0.3333	36.79	
Jul-17	157	157	4	4	97.52	0.0064	0.2500	36.79	
Ago-17	194.5	97.25	4.5	2.25	97.74	0.0103	0.4444	13.53	
Sep-17	78.5	78.5	3	3	96.32	0.0127	0.3333	36.79	
Nov-17	517	517	5	5	99.04	0.0019	0.2000	36.79	
Mar-18	587	587	7	7	98.82	0.0017	0.1429	36.79	
May-18	297.0	297	6	6	98.02	0.0034	0.1667	36.79	
TOTAL	2063	2063	31	31	98.56	0.00048	0.03226	36.79	

Tabla 4. 27 Análisis de fiabilidad y disponibilidad de Tecle

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ANÁLISIS DE FIABILIDAD Y


			BILIDAD	•				
EQUIPO:	TECLE DE CADEN	(CÓDIGO		TCH1			
PERIODO	:		02	DE ENERO 2	2017 <i>-</i> 31 I	DE MAYO 20	18	
MES	TIEMPO DE OPERACIÓN	TIEMPO PROMEDIO ENTRE FALLAS	TIEMPO DE PARO	TIEMPO PROMEDIO PARO REPARACIÓN	DISPONIBILIDAD	TASA DE FALLOS	TASA DE REPARACIÓN	FIABILIDAD
	T.O. (horas)	TPEF (horas)	T.P. (horas)	TPPR (horas)	D (%)	λ	μ	F (%)
Jun-17	200	200	4	4	98.04	0.00500	0.2500	36.79
Ago-17	316	316	2.5	2.5	99.22	0.00316	0.4000	36.84
Oct-17	397.5	397.5	4	4	99.00	0.00252	0.2500	36.73
Nov-17	236	236	2	2	99.16	0.00424	0.5000	36.76
Ene-18	190	190	2.5	2.5	98.70	0.00526	0.4000	36.81
Feb-18	309.5	309.5	1.5	1.5	99.52	0.00323	0.6667	36.80
Abr-18	270.5	270.5	5	5	98.19	0.00370	0.2000	36.76
May-18	147	147	1.5	1.5	98.99	0.00680	0.6667	36.80
TOTAL	2161	2161	23	23	98.52	0.00046	0.04348	36.80

Elaborado por: Autor

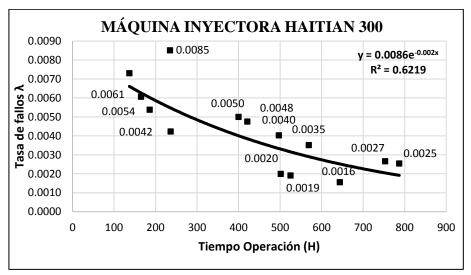
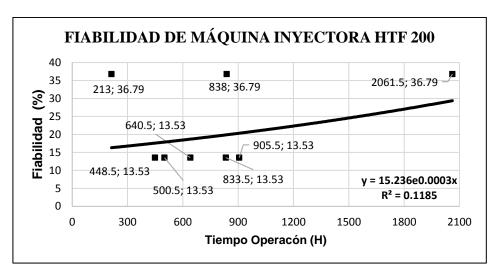
4.2.2.1 Análisis de gráficas según la curva de la bañera de las máquinas y equipos

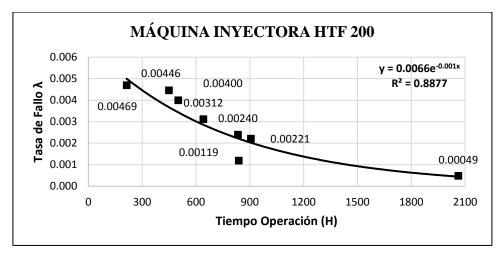
Mediante la teoría e interpretación de la curva de la bañera descrita en el capítulo 2 del marco teórico literal 2.2.6.5, se procedió a identificar la etapa de vida en la que se encuentra las máquinas y equipos del área de inyección de PVC, de acuerdo a los valores obtenidos de las tablas 4.19 a la 4.27, en donde se calculó la disponibilidad, la confiabilidad (%) y tasa de fallos (λ) para cada maquinaria en estudio.

En las siguientes gráficas se presentan el comportamiento y la confiabilidad R(t) con respecto al tiempo (T_o) de las máquinas y equipos del área de inyección de accesorios de PVC.

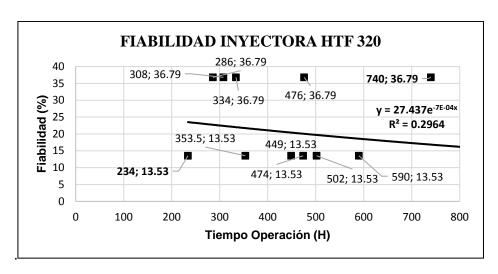
Fig 4. 3 Fiabilidad vs Tiempo Operación de la Inyectora HTF300 **Elaborado por:** Autor

En la figura 4.3, muestra un valor máximo de fiabilidad de 37.04% con un (TO=236.5 h), correspondiente al mes de dic. del 2017, y de igual forma un valor mínimo de fiabilidad de 13.09% con un (TO=753 h), respecto al mes de junio del mismo año. No tiene correlación cercana a la unidad debido que los datos se encuentran dispersos.


Fig 4. 4 Gráfica de la curva de la bañera de la Inyectora HTF300 Elaborado por: Autor

De acuerdo a la figura 4.4, se puede observar que la máquina inyectora HTF300 se encuentra en buen funcionamiento hasta la fecha, en donde se visualiza la línea de tendencia de los datos y se puede decir que está a un límite de la fase 1 de la curva de la bañera en la zona infantil y la tasa de fallo decreciente.


Fig 4. 5 Fiabilidad vs Tiempo Operación de la Inyectora HTF200 **Elaborado por:** Autor

De acuerdo a la figura 4.5, se observa un valor máximo de fiabilidad de 36.79% y un (TO = 2061.5 h), correspondiente al mes de nov. del 2017, de igual forma un valor mínimo de fiabilidad de 13.53% y un (TO = 448.5 h) con un tiempo de operación de 211 horas respecto al mes de junio del mismo año. No tiene correlación cercana a la unidad debido que los datos se encuentran dispersos y se encuentra iniciando la falla por desgaste.

Fig 4. 6 Gráfica de la curva de la bañera de la Inyectora HTF200 **Elaborado por:** Autor

De acuerdo a la figura 4.6, se puede observar que la maquina inyectora HTF200 se encuentra en buen funcionamiento hasta la fecha, en donde se visualiza la línea de tendencia de los datos y se puede decir que está a un límite de la fase 1 de la curva de la bañera, en el cual las fallas se adquieren de forma aleatoria.

Fig 4. 7 Fiabilidad vs Tiempo Operación de la Inyectora HTF320 **Elaborado por:** Autor

De acuerdo a la figura 4.7, se observa un valor máximo de fiabilidad de 36.79%, (TO = 740 h) correspondiente al mes de febrero del 2018, y de igual forma un valor mínimo de fiabilidad de 13.53% (TO = 234 h), respecto al mes de mayo del año en mención. No tiene correlación cercana a la unidad debido que los datos se encuentran dispersos y se encuentra en la zona de falla infantil.

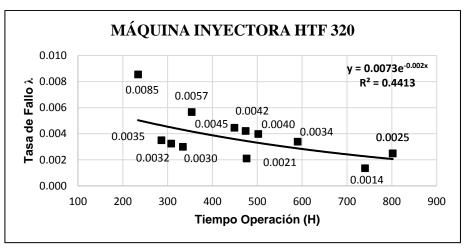


Fig 4. 8 Gráfica de la curva de la bañera de la Inyectora HTF320 Elaborado por: Autor

De acuerdo a la figura 4.8, se puede observar que la maquina inyectora HTF320 se encuentra en buen funcionamiento hasta la fecha, en donde se visualiza la línea de tendencia de los datos y se puede decir que está a un límite de la fase 1 de la curva de la bañera, en el cual las fallas se adquieren de forma aleatoria.

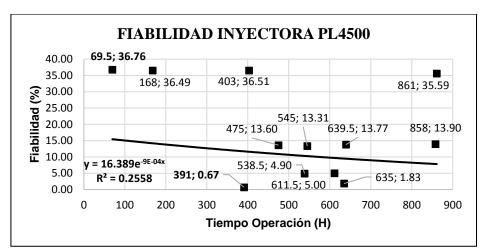


Fig 4. 9 Fiabilidad vs Tiempo Operación de la Inyectora PL4500 Elaborado por: Autor

De acuerdo a la figura 4.9, muestra un valor máximo de fiabilidad de 36.76% y un (TO = 69.5 h), correspondiente al mes de noviembre del 2017, y de igual forma un valor mínimo de fiabilidad de 0.67% con un (TO = 391 h), respecto al mes de marzo del año 2018. No tiene correlación cercana a la unidad debido que los datos se encuentran dispersos y se encuentra en la zona de falla infantil.

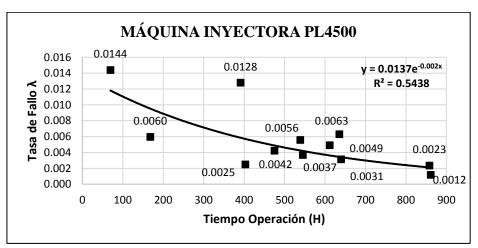


Fig 4. 10 Gráfica de la curva de la bañera de la Inyectora PL4500 Elaborado por: Autor

De acuerdo a la figura 4.10, se puede observar la tasa de fallo vs el tiempo de operación en la cual la línea de tendencia de los datos de la máquina inyectora PL4500, se encuentra ingresando a la fase de taso de fallo constante, en donde las fallas se adquieren de forma aleatoria.

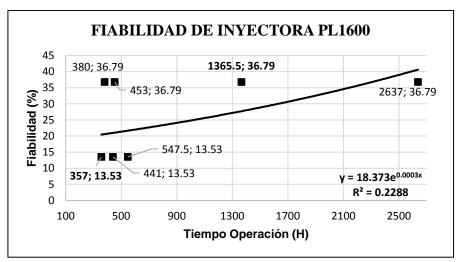


Fig 4. 11 Fiabilidad vs Tiempo Operación de la Inyectora PL1600 Elaborado por: Autor

De acuerdo a la figura 4.11, muestra un valor máximo de fiabilidad de 36.79% y un (TO = 1365.5 h), que corresponde al mes de abril del 2018 y de igual forma un valor mínimo de fiabilidad de 13.53% con un (TO = 357 h), de acuerdo al mes de diciembre del año 2017. No tiene correlación cercana a la unidad debido que los datos se encuentran dispersos y se encuentra iniciando la zona por desgaste.

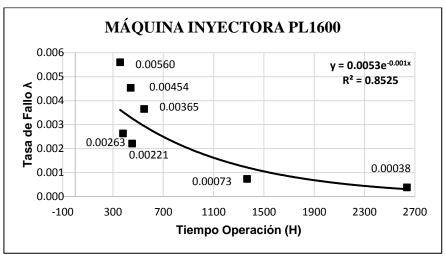


Fig 4. 12 Gráfica de la curva de la bañera de la Inyectora PL1600 Elaborado por: Autor

De acuerdo a la figura 4.12, se puede observar que la maquina inyectora HPL1600 se encuentra en buen funcionamiento hasta la fecha, en donde se visualiza la línea de tendencia de los datos y se puede decir que está a un límite de la fase 1 de la curva de la bañera, en el cual las fallas se adquieren de forma aleatoria.

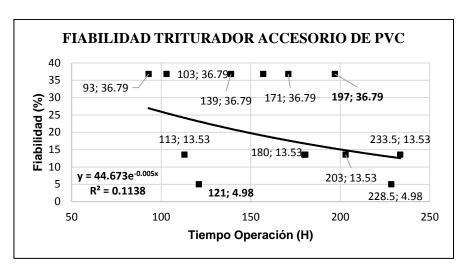


Fig 4. 13 Fiabilidad vs Tiempo Operación del Triturador de PVC (Molino)

Elaborado por: Autor

De acuerdo a la figura 4.13, muestra un valor máximo de fiabilidad de 36.79% y un (TO = 197 h), que corresponde al mes de mayo del 2018, y un valor mínimo de fiabilidad de 4.98% con un (TO = 121 h), en el mes de mayo del año 2017. No tiene correlación cercana a la unidad debido que los datos se encuentran dispersos y se encuentra en la zona de falla infantil

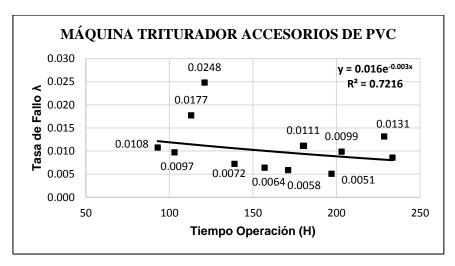
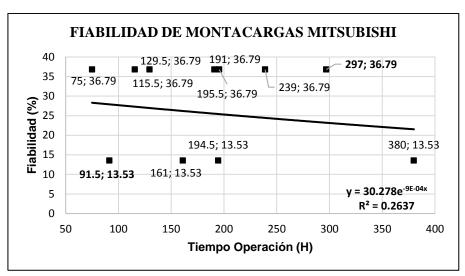



Fig 4. 14 Gráfica de la curva de la bañera Triturador de PVC (Molino)

Elaborado por: Autor

Para la figura 4.14, se puede observar que la máquina trituradora de PVC se encuentra en buen funcionamiento hasta la fecha, en donde se visualiza la línea de tendencia de los datos y se puede decir que está a un límite de la fase 1 de la curva de la bañera, en el cual las fallas se adquieren de forma aleatoria.

Fig 4. 15 Fiabilidad vs Tiempo Operación del Montacargas Mitsubishi **Elaborado por:** Autor

De acuerdo a la gráfica 4.15, se observa un valor máximo de fiabilidad de 36.79% (TO=297 h), que corresponde al mes de marzo del 2018, y un valor mínimo de fiabilidad de 13.53% (TO=91.5 h), que corresponde al mes de enero del año 2018. No tiene correlación cercana a la unidad debido que los datos se encuentran dispersos y se encuentra en la zona de falla infantil.

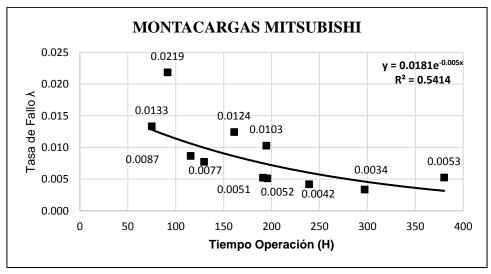


Fig 4. 16 Gráfica de la curva de la bañera del Montacargas Mitsubishi Elaborado por: Autor

En la figura 4.16, indica que montacargas se encuentra en buen funcionamiento hasta la fecha, en donde se visualiza la línea de tendencia de los datos y se puede decir que está a un límite de la fase 1 de la curva de la bañera, en el cual las fallas se adquieren de forma aleatoria.

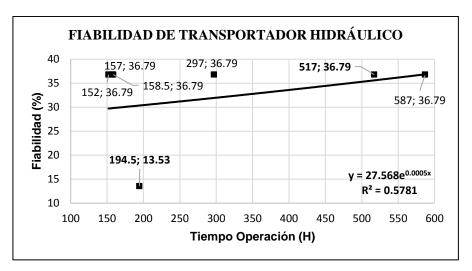


Fig 4. 17 Fiabilidad vs Tiempo Operación del Transportador Hidráulico Elaborado por: Autor

En la figura 4.17, presenta un valor máximo de fiabilidad de 36.79% (TO=517 h), que corresponde al mes de mayo del 2018, y un valor mínimo de fiabilidad de 13.53% (TO=194.5 h), que corresponde al mes de agosto del año 2017. No tiene correlación cercana a la unidad debido que los datos se encuentran dispersos y se encuentra entrando en la zona de falla por desgaste.

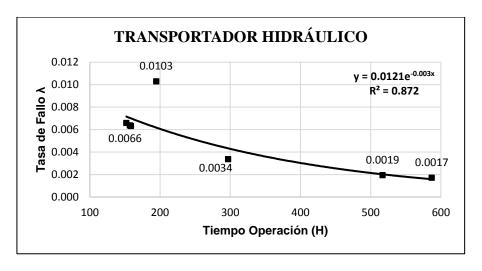


Fig 4. 18 Gráfica de la curva de la bañera del Transportador Hidráulico Elaborado por: Autor

Para la figura 4.18, se observa que el equipo transportador hidráulico se encuentra en buen funcionamiento hasta la fecha, en donde se visualiza la línea de tendencia de los datos y se puede observar a un límite de la fase 1 y 2 de la curva de la bañera, en el cual las fallas se adquieren de forma aleatoria.

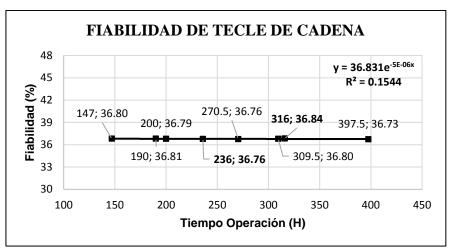


Fig 4. 19 Fiabilidad vs Tiempo Operación del Tecle de Cadena Elaborado por: Autor

En la figura 4.19, presenta un valor máximo de fiabilidad de 36.84% (TO=316 h), que corresponde al mes de agosto del 2017 y un valor mínimo de fiabilidad de 36.73% (TO=236 h), que corresponde al mes de octubre del año mencionado. No tiene correlación cercana a la unidad debido que los datos se encuentran dispersos y se encuentra en la zona de fallas constante.

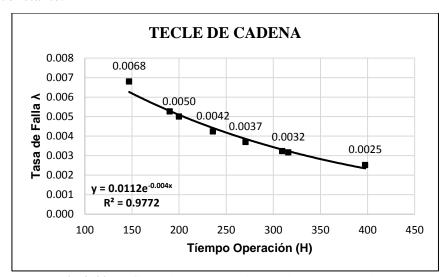


Fig 4. 20 Gráfica de la curva de la bañera del Tecle de Cadena Elaborado por: Autor

Para la figura 4.20, se presenta el equipo tecle de cadena y se encuentra en buen funcionamiento hasta la fecha, en donde se visualiza la línea de tendencia de los datos y se puede decir que está a un límite de la fase 1 de la curva de la bañera, en el cual las fallas se adquieren de forma aleatoria.

4.2.4 Análisis de Confiabilidad de Máquinas y Equipos mediante la Distribución de Weibull Modelo Matemático

Debido a que no existe un plan de mantenimiento de máquinas y equipos en la empresa, el parámetro de localización es (γ =0) de manera que este parámetro indica el tiempo, el momento en la cual genera la distribución de Weibull por primera vez. A continuación, con los datos de actividades obtenidos y con la ayuda de un software de análisis estadístico se procede a calcular la confiabilidad y probabilidad de fallo de máquinas y equipos de estudio, mediante el uso de las ecuaciones 2.2 y 2.3.

Tabla 4. 28 Datos estadísticos y cálculo de parámetros para Inyectora HTF300

	EMPRESA HOLVIPLAS S.A.							
	AREA DE INYECCIÓN DE ACCESORIOS DE PVC CONFIABILIDAD Y PROBABILIDAD DE FALLO WEIBULL							
MÁ(QUINA:	INYECTO			1	EIBULL IGO:	IYN	TH1
# de falla	ACTIVIDAD	FECHA	T. OPER (horas)	ln (Ti)	(ln(Ti)-X)^2	R(t)	R (t)	F (t)
	Inicio	02/05/2017						
1	Limpieza de filtros de succionadora	12/05/2017	127	4.010091	1.01424	0.6031	60.32	39.68
1	Limpieza de cabezal y boquilla de inyección	16/05/2017	- 137 4.919981	1.01424	0.6031	00.32	39.08	
1	Cambio de aceite general de la máquina	23/06/2017	165	5.105945	0.67426	0.57290	57.29	42.71
1	Llenado de aceite a nivel máximo de la bomba	29/06/2017	103	3.103943	0.07420	0.37270		72.71
1	Chequeo de la bomba hidráulica principal	31/07/2017	186	5.225747	0.49187	0.55269	55.27	44.73
2	Reinicio de parámetros de la máquina y calibración	10/08/2017	235	5.459586	0.21855	0.51178	51.18	48.82
1	Limpieza de material quemado de cañón de inyección	18/09/2017	236.5	5.465948	0.21264	0.51065	51.06	48.94
2	Cambio de sensor de unidad de cierre de la maquina	17/10/2017	400	5.991465	0.00415	0.41315	41.31	58.69
	Cambio de empaques de electroválvula	13/11/2017						
2	Completar nivel de aceite del motor hidráulico y limpieza de la maquina	20/11/2017	421	6.042633	0.01335	0.40339	40.34	59.66
2	Ajuste del sistema de expulsión de la zona de cierre	05/12/2017	497	6.208590	0.07925	0.37161	37.16	62.84
1	Limpieza de tornillo de material quemado	03/01/2018	501.5	6.217604	0.08441	0.36988	2400	63.01
1	Limpieza de tornillo y cabezal de la máquina	19/01/2018	301.3	0.21/004	0.08441	0.30988	36.99	03.01
1	Cambio de electroválvula principal	05/02/2018	525	6.263398	0.11311	0.36109	36.11	63.89
1	Mantenimiento general de la máquina	27/02/2018	323	0.203370	0.11311	0.50107	50.11	03.07

2	Chequeo de microcontrolador de fin de carrera de cierre	13/03/2018	569	6.343880	0.17372	0.34567	34.57	65.43
	Limpieza de tornillo de material quemado	21/03/2018						
1	Cambio de fusible de tablero principal	13/04/2018	644	6.467699	0.29227	0.32203	32.20	67.80
1	Cambio del filtro de la bomba principal	23/04/2018	044	0.407099	0.29221	0.32203	32.20	07.80
2	Limpieza de material quemado del cañón de inyección	02/05/2018	1540		1.99504	0.16775	16.78	83.22
	Limpieza de la punta de inyección	23/05/2018	1340	7.339538	1.99304	0.10773	10.76	63.22
	Fin	31/05/2018						
19	TOTAL			77.052013	5.36686			

Elaborado por: Autor

Con la aclaración anterior, mediante el software de análisis estadístico se procede al cálculo de la media aritmética (\dot{x}), la varianza (S^2), la desviación estándar (S), el parámetro de forma β y el parámetro de escala (α); según las ecuaciones 2.4 a la 2.9, y se obtiene los resultados como se indica en la tabla 4.29.

Tabla 4. 29 Cálculo de parámetros iniciales de Inyectora HTF300

CÁLCULO DE PARÁMETROS WEIBULL					
Media (X)	5.92				
Varianza (S^2)	0.44				
Desviación Estándar (S)	0.66				
Betta (β)	1.91				
Alpha (α)	506.76				
Gamma (γ)	0				

Elaborado por: Autor

Los resultados de la Tabla 4.28 y 4.29, han permitido generar las gráficas de distribución de Weibull, para la confiabilidad (Tiempo vs $R_{(t)}$) y la probabilidad de falla (Tiempo vs $F_{(t)}$) de la máquina inyectora HTF300.

En la Figura 4.21, se puede representar el punto (A), establece que para un proceso operativo completo (137 h), se tiene una confiabilidad máxima de 60.32% y una mínima de 16.78%, con un (To = 1540 h). Se describe una correlación de tendencia logarítmica debido a que es cercano a 1 (R = 0.9997), quiere decir que los datos están correlacionados permitiendo una curva de confiabilidad adecuada para el análisis de disponibilidad, también se puede identificar que la inyectora se encuentra en la etapa 1 de la curva de la bañera denominado zona de mortalidad infantil.

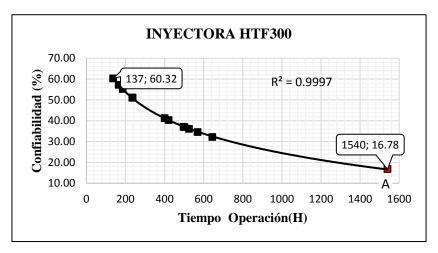
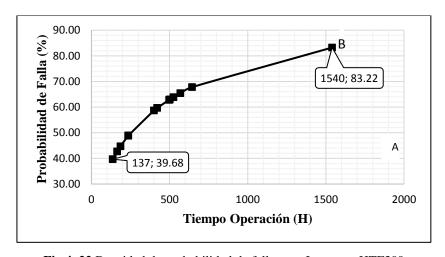



Fig 4. 21 Confiabilidad de Weibull Inyectora HTF300 Elaborado por: Autor

Así mismo, en la Figura 4.22, se puede representar el punto (B), que indica una probabilidad de falla del 83.22%, al cumplirse un tiempo de operación (1500 h).

Fig 4. 22 Densidad de probabilidad de fallo para Inyectora HTF300 **Elaborado por:** Autor

Tabla 4. 30 Datos estadísticos y cálculo de parámetros para Inyectora HTF200

		EM	PRESA H	OLVII	PLAS S.	A.						
		ÁREA DE IN					$\overline{\mathbf{c}}$					
	CONFIABILIDAD Y PROBABILIDAD DE FALLOS WEIBULL											
MÁ	QUINA:	INYECTO	RA HTF 20	0	CÓDIGO	0:		IYN	īH2			
# de falla	A	CTIVIDAD	FECHA	T. OPER (horas)	ln (Ti)	(ln(Ti)-X)^2	R(t)	R (t)	F (t)			
		Inicio	02/05/2017	Ì								
2.	máquina	general de la	17/05/2017	211	5.35186	0.83400	0.4816	48.16	51.84			
	sistema del	cañería de agua del área de inyección	31/05/2017	211	3.33180							
2	inyección	e boquilla de	13/06/2017	332.5	5.80664	0.21018	0.4344	43.44	56.56			
		termocuplas zona 3	27/06/2017									
1	inyección	e boquilla de	10/07/2017	450.5	6.11036	0.02394	0.4022	40.22	59.78			
1	tanque princ		14/08/2017	500.5	6.21561	0.00245	0.3910	39.10	60.90			
1	principal	manguera hidráulica	13/09/2017	525.5	6.26435	0.00000	0.3858	38.58	61.42			
1	Cambio de zona de plas	resistencia de la stificación	03/10/2017	573.5	6.35176	0.00751	0.3765	37.65	62.35			
1	maquina	e tornillo y cañón de	07/11/2017	597	6.39192	0.01608	0.3722	37.22	62.78			
2	Calibración máquina	general de la	05/12/2017	620	6.42972	0.02710	0.3682	36.82	63.18			
	Limpieza de	e punto de inyección	15/12/2017									
1	del tornillo	e material quemado	05/02/2018	636	6.45520	0.03614	0.3655	36.55	63.45			
1	Limpieza de inyección	e la boquilla de	19/03/2018	664.5	6.49903	0.05473	0.3608	36.08	63.92			
1	Cambio del	punto de inyección	20/04/2018	716	6.57368	0.09522	0.3528	35.28	64.72			
2	Cambio de principal	electroválvula	03/05/2018									
2	Chequeo de principal	bomba hidráulica	18/05/2018	838	6.73102	0.21708	0.3361	33.61	66.39			
		Fin	31/05/2018	<u> </u>			<u></u>	<u></u>				
16		TOTAL		6665	75.1811	1.5244						

Tabla 4. 31 Cálculo de parámetros iniciales de Inyectora HTF200

CÁLCULO DE PARÁMETRO	S WEIBULL
Media (X)	6.26
Varianza (S^2)	0.13
Desviación Estándar (S)	0.37
Betta (β)	3.44
Alpha (α)	621.80
Gamma (γ)	0

Elaborado por: Autor

En la Figura 4.23, se puede representar el punto (A), establece que para un proceso operativo completo (211 h) se tiene una confiabilidad máxima de 48.16% y una mínima de 33.61% con un (TO = 838 h). Se describe una correlación de tendencia logarítmica debido a que es (R = 1), quiere decir que los datos están correlacionados permitiendo una curva de confiabilidad adecuada para el análisis de disponibilidad, además se puede identificar que la inyectora se encuentra en la etapa 1 de la curva de la bañera denominado zona de mortalidad infantil o rodaje.

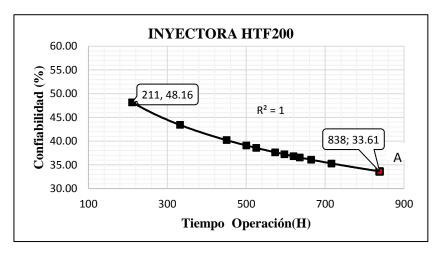


Fig 4. 23 Confiabilidad de Weibull Inyectora HTF200 Elaborado por: Autor

Así mismo, en la Figura 4.24, se puede representar el punto (B), que indica una probabilidad de falla del 66.39%, al cumplirse un tiempo de operación (838 h).

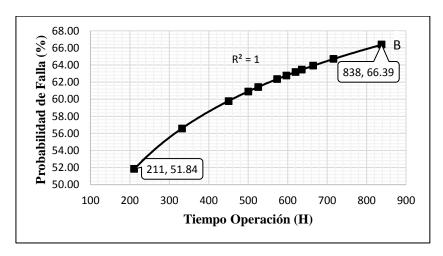
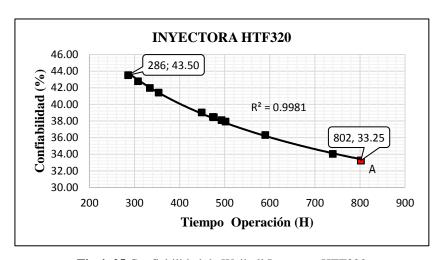


Fig 4. 24 Densidad de probabilidad de fallo para Inyectora HTF200 Elaborado por: Autor


Tabla 4. 32 Datos estadísticos y cálculo de parámetros para Inyectora HTF320

		EMPRES	SA HOLVI	PLAS S.	A.			
	ARÉA		CIÓN DE AC					
	CONFIABIL					LL		
	MÁQUINA	INYECTOR	A HTF320	CÓ	DIGO]	INYH3	
# de fallas	ACTIVIDAD	FECHA	T(i) OPER. (horas)	ln (Ti)	(ln(Ti)-X)^2	R (t)	R (t)	F (t) (%)
	Inicio	02/05/2017						
2	Chequeo del sistema de enfriamiento	18/05/2017	286	5.65599	0.26968	0.43502	43.50	56.50
	Limpieza de tornillo y cañón de maquina	31/05/2017						
2	limpieza de boquilla de inyección	09/06/2017	308	0.19820	0.42772	42.77	57.23	86.49
	chequeo de zona de calentamiento	21/06/2017						
2	Limpieza de tornillo y cañón de maquina	12/07/2017	334	5.81114	0.13261	0.41972	41.97	58.03
	Cambio de resistencia de zona 3	18/07/2017						
2	Cambio de cañerías de aceite de bomba principal de aceite	15/08/2017	353.5	5.86788	0.09450	0.41410	41.41	58.59
	Llenado de aceite a nivel máximo de la maquina	22/08/2017						
1	Limpieza del tornillo y cañón de la maquina	11/09/2017	449	6.10702	0.00466	0.39033	39.03	60.97
1	Limpieza de filtro de tanque de aceite	09/10/2017	474	6.16121	0.00020	0.38493	38.49	61.51
2	Cambio de aceite general de la máquina	14/11/2017	476	6.16542	0.00010	0.38451	38.45	61.55
	Limpieza de electroválvula de expulsión	24/11/2017						
2	Cambio de filtro de papel de aceite	07/12/2017	493	6.20051	0.00064	0.38100	38.10	61.90
	Limpieza del tornillo y cañón de la maquina	22/12/2017						
1	Limpieza de la punta de tornillo y cañón de la máquina	11/01/2018	502	6.21860	0.00188	0.37920	37.92	62.08
1	Chequeo de la zonas de calentamiento	23/02/2018	590	6.38012	0.04195	0.36307	36.31	63.69
1	Cambio de termocupla de zona 1 de calentamiento	13/03/2018	740	6.60665	0.18607	0.34048	34.05	65.95
2	Mantenimiento general de la máquina	20/04/2018	802	6.68711	0.26195	0.33247	33.25	66.75
	Cambio de microcontrolador de puerta principal y chequeo de cables de tablero por corto circuito	30/04/2018						
2	Cambio de fusible de tablero de control	07/05/2018	802	6.68711	0.26195	0.33247	33.25	66.75
	Arreglo de succionador de material	15/05/2018						
	Fin	31/05/2018						
13	TOTAL		6609.5 do por: El A	80.2789	1.4544			

Tabla 4. 33 Cálculo de parámetros iniciales de Inyectora HTF320

CÁLCULO DE PARÁMETROS WEIBULL				
Media (X)	6.17			
Varianza (S^2)	0.12			
Desviación Estándar (S)	0.34			
Parámetro de Forma Betta (β)	3.68			
Parámetro Escala Alpha (α)	562.26			
Parámetro Localización Gamma (γ)	0			

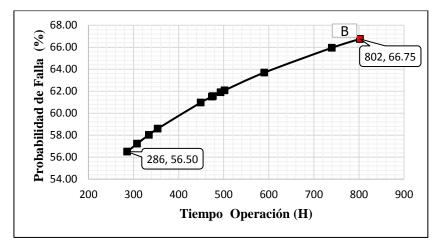

Los resultados de la Tabla 4.32 y 4.33, han permitido generar las gráficas de distribución de Weibull, para la confiabilidad (Tiempo vs $R_{(t)}$) y la probabilidad de falla (Tiempo vs $F_{(t)}$) de la inyectora HTF320.

Fig 4. 25 Confiabilidad de Weibull Inyectora HTF320 **Elaborado por:** Autor

En la Figura 4.25, se representa el punto (A), establece que para un proceso operativo completo (286 h) se tiene una confiabilidad máxima de 43.50% y una mínima de 33.25%, con un (To = 802 h). Se describe una correlación de tendencia logarítmica debido a que es cercano a 1, (R = 0.9981), quiere decir que los datos están correlacionados permitiendo una curva de fiabilidad adecuada para el análisis de disponibilidad. También se puede identificar que la inyectora se encuentra en la etapa 1 de la curva de la bañera denominado zona de mortalidad infantil o rodaje.

Así mismo, en la Figura 4.26, se puede representar el punto (B), que indica una probabilidad de falla del 99.81%, al cumplirse un tiempo operativo de (802 h).

Fig 4. 26 Densidad de probabilidad de fallo para Inyectora HTF320 **Elaborado por:** Autor

Tabla 4. 34 Datos estadísticos y cálculo de parámetros para Inyectora PL4500

	EMPRESA HOLVIPLAS S.A.										
	ÁREA DE INYECCIÓN DE ACCESORIOS DE PVC										
	CONFIABILIDAD Y PROBABILIDAD DE FALLOS WEIBULL										
	MÁQUINA:	INYECTOR	A PL4500		CÓDIGO		INY	′H4			
# falla	ACTIVIDAD	FECHA	T. OPER (horas)	ln (Ti)	(ln(Ti)- X)^2	R(t)	R (t) %	F(t) (%)			
	Inicio	02/05/2017									
1	Cambio de resistencias de la zona 3	11/05/2017	69.5	4.2413	3.39036	0.7454	74.54	25.46			
1	Limpieza de tornillo y cañón de inyección	05/06/2017	168	5.1239	0.91902	0.616	61.64	38.36			
2	Limpieza de boquilla de inyección	npieza de boquilla de ección 13/07/2017	391	5.9687	0.01298	0.4584	45.85	54.15			
2	Limpieza de boquilla de inyección	25/07/2017	391	3.9067	0.01298	0.4364	43.83	34.13			
	Limpieza de tornillo y cañón de inyección	23/08/2017									
3	Limpieza de filtro de tanque hidráulico principal	24/08/2017	403	5.9989	0.00700	0.4523	45.24	54.76			
	Cambio de filtro de papel de aceite	28/08/2017									
2	Limpieza de boquilla de inyección	04/09/2017	474	6.1612	0.00618	0.4191	41.92	58.08			
	Cambio de ventilador	21/09/2017									

	Cambio de resistencias de zona 4 y limpieza de boquilla de inyección	02/10/2017						
3	Chequeo de zona de calentamiento y limpieza de boquilla de inyección	11/10/2017	538.5	6.2887	0.04251	0.3928	39.28	60.72
	Limpieza de boquilla de inyección	27/10/2017						
1	Cambio de manguera hidráulico principal	01/11/2017	545	6.3007	0.04760	0.3903	39.03	60.97
1	Limpieza de tornillo y cañón de inyección	21/12/2017	611.5	6.4159	0.11109	0.3663	36.64	63.36
2	Cambio de Resistencia de la zona 1	03/01/2018	639.5	6.4606	0.14294	0.3570	35.71	64.29
2	Chequeo de zonas de calentamiento	29/01/2018	039.3	6.4606	0.14294	0.3370	33.71	04.29
	Chequeo de zona de calentamiento	02/03/2018						
	Arreglo de resistencias de zona 1	06/03/2018		6.5184		0.3451	34.51	65.49
5	Cambio de termocuplas zona 2	08/03/2018	677.5		.5184 0.18991			
	Arreglo de acoples de manguera hidráulica principal	19/03/2018						
	Cambio de manguera hidráulica por ruptura	21/03/2018						
2	Limpieza de material quemado del tornillo	04/04/2018	858	6.7546	0.45156	0.2964	29.65	70.35
	Limpieza la punta del cañón	23/04/2018						
	Chequeo de la zona de calentamiento	10/05/2018						
4	Limpieza de boquilla de inyección	16/05/2018						
4	Limpieza de la boquilla de inyección	21/05/2018	861	6.7580	0.45627	0.2957	29.58	70.42
	Cambio de tubería rota en la red principal del área	29/05/2018						
	Fin	31/05/2018						
20	TOTAL		6236.5	72.991	5.77740			

Tabla 4. 35 Cálculo de parámetros iniciales de Inyectora PL4500

CALCULO DE PARÁMETROS WEIBULL					
Media (X)	6.08				
Varianza (S^2)	0.52				
Desviación Estándar (S)	0.72				
Parámetro de Forma Betta (β)	1.76				
Parámetro Escala Alpha (α)	607.14				
Parámetro Localización Gamma (γ)	0				

Elaborado por: Autor

Los resultados de la Tabla 4.35, han permitido generar las gráficas de distribución de Weibull, para la confiabilidad (Tiempo vs $R_{(t)}$) y la probabilidad de falla (Tiempo vs $F_{(t)}$) de la inyectora PL4500.

En la Figura 4.27, se puede representar el punto (A), establece que para un proceso operativo completo (69.5 h) se tiene una confiabilidad máxima de 74.54% y una mínima de 29.58%, con un (To = 861 h). Se describe una correlación de tendencia exponencial debido a que es cercano a 1, (R = 0.9952), se resume que los datos están correlacionados permitiendo una curva de fiabilidad adecuada para el análisis de disponibilidad. Además, se puede identificar que la inyectora se encuentra en la etapa 1 de la curva de la bañera denominado zona de mortalidad infantil o rodaje.

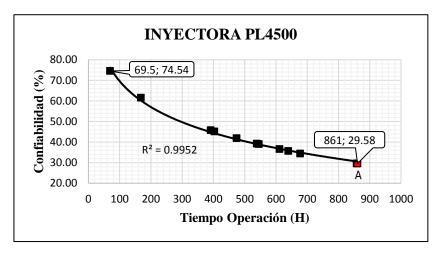


Fig 4. 27 Confiabilidad de Weibull Inyectora PL4500 Elaborado por: Autor

Así mismo, en la Figura 4.28, se puede representar el punto (B), que indica una probabilidad de falla del 70.42%, al cumplirse un tiempo de operación de (861 h).

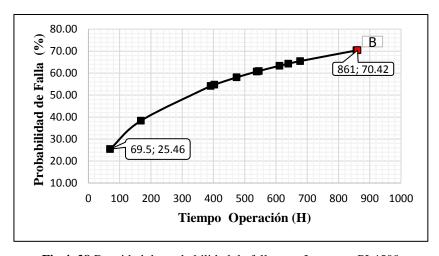


Fig 4. 28 Densidad de probabilidad de fallo para Inyectora PL4500 Elaborado por: Autor

Tabla 4. 36 Datos estadísticos y cálculo de parámetros para Inyectora PL1600

	EMPRESA HOLVIPLAS S.A.										
	ÁREA DE I	NYECCIÓN	N DE ACCES	SORIOS	DE PV	C					
	CONFIABILIDAD Y PROBABILIDAD DE FALLOS WEIBULL										
MÁQ	UINA:	INYECTO	RA PL1600	CÓDIO	60		INYH	I 5			
# de falla	ACTIVIDAD	FECHA	T. OPER. (horas)	ln (Ti)	(ln(Ti)- X)^2	R(t)	R (t)	F(t) (%)			
	Inicio	02/05/2017									
2	Calibración general de la máquina	10/05/2017	288	5.6630	0.2912	0.4614	46.14	53.86			
	Cambio de resistencia en la zona 1	23/05/2017	200	3.0030			44.22 44.22 43.35				
1	Mantenimiento general de la maquina	12/06/2017	336	5.8171	0.1486	0.4422	44.22	55.78			
1	Chequeo de sistema eléctrico	20/07/2017	336	5.8171	0.1486	0.4422	44.22	55.78			
1	Cambio de filtro de la bomba principal	07/09/2017	360	5.8861	0.1002	0.4335	43.35	56.65			
1	Cambio de relé estado sólido sistema eléctrico	10/10/2017	456	6.1225	0.0064	0.4036	40.36	59.64			
1	Limpieza de boquilla de inyección	21/11/2017	456	6.1225	0.0064	0.4036	40.36	59.64			
1	Colocación de rodelas en la barra de expulsor	11/12/2017	480	6.1738	0.0008	0.3971	39.71	60.29			
1	Cambio de manguera hidráulica de la máquina	22/01/2018	528	6.2691	0.0044	0.3850	38.50	61.50			
1	Limpieza de boquilla de inyección	16/02/2018	552	6.3135	0.0123	0.3793	37.93	62.07			
1	Chequeo de resistencias de zona de calentamiento	20/03/2018	572	6.3491	0.0215	0.3748	37.48	62.52			
1	Cambio de filtro de papel del aceite	05/04/2018	696	6.5453	0.1175	0.3497	34.97	65.03			
1	Cambio de componente eléctrico del sistema	03/05/2018	720	6.5793	1.3221	0.2490	24.90	75.10			
	Fin	31/05/2018	840	6.7334	0.2912	0.4614	46.14	53.86			
12	TOTAL		6620	74.431	2.1800						

Tabla 4. 37 Cálculo de parámetros iniciales de la Inyectora PL1600

CÁLCULO DE PARÁMETR	OS WEIBULL
Media (X)	6.20
Varianza (S^2)	0.19
Desviación Estándar (S)	0.44
Parámetro de Forma Betta (β)	2.88
Parámetro Escala Alpha (α)	603.65
Parámetro Localización Gamma (γ)	0

Elaborado por: Autor

Los resultados de la Tabla 4.37, han permitido generar las gráficas de distribución de Weibull, para la confiabilidad (Tiempo vs $R_{(t)}$) y la probabilidad de falla (Tiempo vs $F_{(t)}$) de la inyectora PL1600.

En la Figura 4.29, se puede representar el punto (A), establece que para un proceso operativo completo (1560 h) se tiene una confiabilidad máxima de 46.14% y una mínima de 24.90% con un (To = 288 h). Se describe una correlación de tendencia logarítmica debido a que es, (R = 1), quiere decir que los datos están correlacionados permitiendo una curva de confiabilidad adecuada para el análisis de disponibilidad. Además, se puede identificar que la inyectora se encuentra en la etapa 1 de la curva de la bañera denominado zona de mortalidad infantil o rodaje.

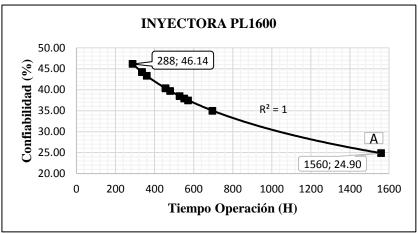


Fig 4. 29 Confiabilidad de Weibull Inyectora PL1600 Elaborado por: Autor

Así mismo, en la Figura 4.30, se puede representar el punto (B), que indica una probabilidad de falla del 75.10%, al cumplirse un tiempo de operación de (1560 h).

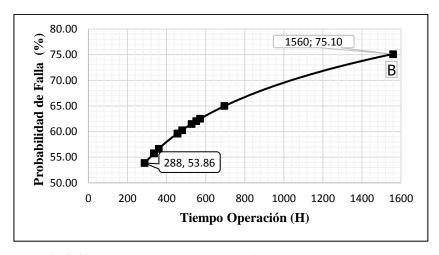


Fig 4. 30 Densidad de probabilidad de fallo para Inyectora PL1600 Elaborado por: Autor

Tabla 4. 38 Datos estadísticos y cálculo de parámetros para Montacargas Toyota

	EMPRESA HOLVIPLAS S.A. ÁREA DE INYECCIÓN DE ACCESORIOS DE PVC											
	AREA DE INY CONFIABILIDAD Y											
EQU		ARGAS TO		CÓDIG		DULL	мсна	3				
# de falla	ACTIVIDAD	FECHA	T. OPER (horas)	ln (Ti)	(ln(Ti)- X)^2	R (t)	R (t)	F (t) (%)				
	Inicio	02/05/2017	(
2	Lubricación de cadena de las horquillas	03/05/2017	75	4 2175	0.66118	0.5099	50.00	49.01				
2	Inspección del cilindro de fuerza de la dirección	18/05/2017	75	4.3175	0.00118	0.5099	50.99	49.01				
2	Cambio de aceite del motor y el filtro	06/06/2017	91.5	4.5163	0.37734	0.4835	48.35	51.65				
2	Chequeo de los neumáticos y tuerca de seguridad	16/06/2017	91.5	4.5163	0.37734	0.4033	48.33	31.63				
1	Cambio de aceite embrague	31/07/2018	115.5	4.7493	0.14543	0.4519	45.18	54.81				
1	Inspección del mástil	21/08/2017	129.5	4.8637	0.07126	0.4361	43.60	56.39				
1	Revisión del nivel de líquido hidráulico	25/09/2017	161	5.0814	0.00242	0.4058	40.57	59.42				
2	Chequeo del fluido de la batería	13/10/2017	101	101	101	101	191	5.2523	0.01480	0.3818	38.18	61.82
2	Lubricación de puntos móviles	30/10/2017	191	3.2323	0.01480	0.3616	30.10	01.82				
1	Limpieza del filtro de aire	22/11/2017	194.5	5.2704	0.01955	0.3793	37.92	62.07				
2	Cambio de aceite del motor y el filtro	08/01/2018	195.5	5.2756	0.02101	0.3785	37.85	62.15				
2	Cambio de aceite del sistema hidráulico	31/01/2018	193.3	3.2736	0.02101	0.3783	37.83	62.15				
1	Cambio de neumáticos del montacargas	26/03/2018	239	5.4765	0.11961	0.3503	35.02	64.97				
1	Cambio de aceite del motor y el filtro	09/04/2018	297	5.6937	0.31710	0.3199	31.98	68.01				
1	Lubricación de puntos móviles	15/05/2018	380	5.9402	0.65537	0.2858	28.57	71.42				
	Fin	31/05/2018										
15	TOTAL		2069.5	56.436	2.4050							

Tabla 4. 39 Cálculo de variables para determinar la confiabilidad del Montacargas Toyota

CÁLCULO DE PARÁMETROS WEIBULL					
Media (X)	5.13				
Varianza (S^2)	0.24				
Desviación Estándar (S)	0.49				
Betta (β)	2.61				
Alpha (α)	210.88				
Gamma (γ)	0				

Elaborado por: Autor

Los resultados de la Tabla 4.39, han permitido generar las gráficas de distribución de Weibull, para la confiabilidad (Tiempo vs $R_{(t)}$) y la probabilidad de falla (Tiempo vs $F_{(t)}$) del Montacargas Toyota.

En la Figura 4.31, se puede representar el punto (A), establece que para un proceso operativo completo (75 h) se tiene una confiabilidad máxima de 50.99% y una mínima de 28.58% con un (To = 380 h). Se describe una correlación de tendencia logarítmica debido a que es cercano a 1, (R = 0.9999), lo cual se interpreta que los datos están correlacionados permitiendo una curva de confiabilidad adecuada para el análisis de disponibilidad. De igual forma se puede identificar que el montacargas se encuentra en la etapa 1 de la curva de la bañera denominado zona de mortalidad infantil o rodaje.

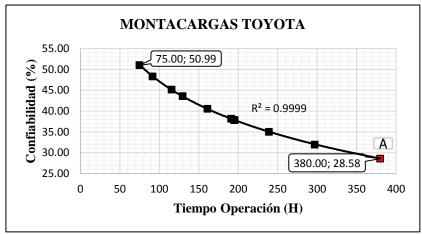
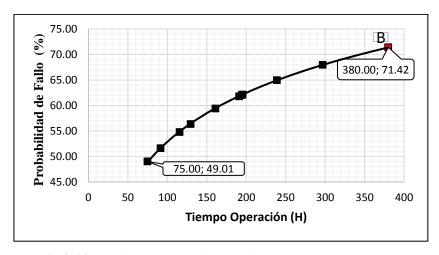



Fig 4. 31 Confiabilidad de Weibull Montacargas Toyota Elaborado por: Autor

Así mismo, en la Figura 4.32, se puede representar el punto (B), que indica una probabilidad de falla del 71.42%, al cumplirse un tiempo de operación de (380 h).

Fig 4. 32 Densidad de probabilidad de fallo de Montacargas Toyota **Elaborado por:** Autor

Tabla 4. 40 Datos estadísticos y cálculo de parámetros para Triturador de PVC

			RESA HO						
		ÁREA DE INY							
MÁO	CONF OUINA:	IABILIDAD Y TRITURADO			E FALL CÓDIG		BULL	тмн	1
# de falla	ACTIV	l	FECHA	T OPER.	ln (Ti)	(ln(Ti)- X)^2	R (t)	R(t)	F (t) (%)
	Ini	cio	02/05/2017						
	Desmontaje de c rotativas para el	uchillas fijas y	09/05/2017						
1	Limpieza de reside la cámara de d		15/05/2017	93	4.5326	1.5159	0.4383	43.83	56.17
1	Ajuste de cuchill la cámara de cort	te	05/06/2017	103	4.6347	1.7778	0.4281	12.82	57.18
1	Limpieza de mal material acumula	ido de PVC	15/06/2018	103	4.0347	1.7776	0.4281	R (t) %	37.10
1	Cambio de pulsa del sistema eléctr	rico	17/07/2017	113	4.7274	2.0334	0.4189	41.90	58.10
1	Limpieza de mal material acumula	ido de PVC	09/08/2017	121	4.7958	2.2332	0.4121	41.21	58.79
•	Soldadura de la r molino		29/08/2017	121	1.730	2.232		11.21	20.77
1	Chequeo del siste del molino		18/09/2017	139	4.9345	2.6669	0.3982 7	39.83	60.17
1	Cambio de perno la malla	os reguladores de	12/10/2017	157	5.0562	3.0795	0.3860 4	38.60	61.40
1	Desmontaje de c rotativas para el	afilado	13/11/2017	171	5.1417	3.3866	0.3774	37.75	62.25
1	Limpieza de mol hilos plásticos ac	rumulados	20/11/2017	171	3.1417	3.3000	0.3774	41.90 41.21 39.83 38.60 37.75	02.23
1	Lubricación del s del molino	sistema rotativo	11/12/2017	180	5.1930	3.5780	0.3723	43.83 42.82 41.90 41.21 39.83 38.60 37.75 37.23 37.20 36.32 36.02 34.83	62.77
	Limpieza genera		22/12/2017						
1	Ajuste de cuchill cámara de corte		22/01/2018	180.5	5.1957	3.5885	0.3720	37.20	62.80
1	Desmontaje de c rotativas para el	afilado	20/02/2018	197	5.2832	3.9276	0.3632	36 32	63.68
1	Cambio de perno cuchillas		28/02/2018	177	3.2032	3.5270	0.3032	30.32	05.00
1	Soldadura de la r molino		14/03/2018	203	5.3132	4.0474	0.3602	36.02	63.98
1	Chequeo del siste del molino		27/03/2018	203	3.3132	7.04/4	0.3002	30.02	05.70
1	Limpieza de mal material acumula	ido de PVC	11/04/2018	228.5	5.4315	4.5375	0.3483	34.83	65.17
1	Cambio de cuchi cámara de corte	llas de la	14/05/2018	326.5	5.7884	6.1853	0.3126	31.26	68.74
	Fi	in	31/05/2018						
13	TOT	ΓAL		2212.5	66.028	1.4758			

Tabla 4. 41 Cálculo de parámetros iniciales del Triturador de PVC

CÁLCULO DE PARÁMETROS WEIBULL					
Media (X)	5.079				
Varianza (S^2)	0.12				
Desviación Estándar (S)	0.35				
Parámetro de Forma Betta (β)	3.65				
Parámetro Escala Alpha (α)	188.08				
Parámetro Localización Gamma (γ)	0				


Los resultados de la Tabla 4.40, han permitido generar las gráficas de distribución de Weibull, para la confiabilidad (Tiempo vs $R_{(t)}$) y la probabilidad de falla (Tiempo vs $F_{(t)}$) del Triturador de PVC.

En la Figura 4.33, se puede representar el punto (A), establece que para un proceso operativo completo (93 h) se tiene una confiabilidad máxima de 43.83% y una mínima de 31.26% con un (To = 326.5 h). Se describe una correlación de tendencia logarítmica debido a que es R = 1, quiere decir que los datos están correlacionados permitiendo una curva de confiabilidad adecuada para el análisis de disponibilidad. Además, se puede identificar que el triturador de PVC se encuentra en la etapa 1 de la curva de la bañera denominado zona de mortalidad infantil o rodaje.

Fig 4. 33 Confiabilidad de Weibull Triturador de PVC **Elaborado por:** Autor

Así mismo, en la Figura 4.34, se puede representar el punto (B), que indica una probabilidad de falla del 68.74%, al cumplirse un tiempo de operación de (326.5 h).

Fig 4. 34 Densidad de probabilidad de fallo para Triturador de PVC **Elaborado por:** Autor

Tabla 4. 42 Datos estadísticos y cálculo de parámetros para Tecle de Cadena Truper

	EMPRESA HOLVIPLAS S.A.									
	ÁREA DE INYECCIÓN DE ACCESORIOS DE PVC									
	CONFIABI	LIDAD Y PROB	ABILID	AD DE FA	ALLOS V	VEIBUL	L			
EQU	IPO: TECLE	DE CADENA T		(<u>CÓDIGO</u>		TC	H1		
# de falla	ACTIVIDAD	FECHA	T(i) OPER (horas)	ln (Ti)	(ln(Ti)- X)^2	R (t)	R (t) %	F (t) (%)		
	Inicio	02/05/2017								
1	Mantenimiento gener de tecle	07/00/2017	78.5	4.3631	1.2121	0.4668	46.68	53.32		
1	Limpieza de poleas y cadena	14/07/2017	94	4.5432	0.8478	0.4465	44.65	55.35		
1	Cambio de rodamien del tecle	tos 07/08/2017	94.5	4.5486	0.8381	0.4459	44.59	55.41		
1	Alineación de las 2 marcas de los engran	es 15/09/2017	117.5	4.7664	0.4867	0.4210	42.10	57.90		
1	Mantenimiento gener de tecle	ral 16/10/2017	123	4.8121	0.4249	0.4157	41.57	58.43		
1	Lubricación de cader	na 28/11/2017	147	4.9904	0.2243	0.3952	39.52	60.48		
1	Inspección del resorte el trinquete	15/12/2017	165.5	5.1089	0.1261	0.3814	38.14	61.86		
1	Lubricación del tren engranes	de 08/01/2018	198.5	5.2907	0.0300	0.3603	36.03	63.97		
1	Lubricación de los pasadores de suspens	26/02/2018	200	5.2983	0.0275	0.3595	35.95	64.05		
1	Chequeo de freno	12/03/2018	212	5.3565	0.0116	0.3527	35.27	64.73		
1	Cambio de trinquete disco	10/04/2018	221.5	5.4004	0.0041	0.3476	34.76	65.24		
1	Cambio de prisionero de disco	os 14/05/2018	236	5.4638	0.0000	0.3403	34.03	65.97		
	Fin	31/05/2018	277.5	5.6258	0.0262	0.3216	32.16	67.84		
12	TOTAL		2165.5	65.5687	1.9627					

Tabla 4. 43 Cálculo de parámetros iniciales del Tecle de cadena Truper

CÁLCULO DE PARÁMETROS WEIBULL						
Media (X)	5.04					
Varianza (S^2)	0.16					
Desviación Estándar (S)	0.40					
Parámetro de Forma Betta (β)	3.17					
Parámetro Escala Alpha (α)	186.00					
Parámetro Localización Gamma (γ)	0					

Elaborado por: Autor

Los resultados de la Tabla 4.42, han permitido generar las gráficas de distribución de Weibull, para la confiabilidad (Tiempo vs $R_{(t)}$) y la probabilidad de falla (Tiempo vs $F_{(t)}$) del Tecle de cadena Truper.

En la figura 4.35, se puede representar el punto (A), establece que para un proceso operativo completo (78.5 h) se tiene una confiabilidad máxima de 46.68% y una mínima de 32.16% con un (To = 277.5 h). Se describe una correlación de tendencia logarítmica debido a que es (R = 1), esto quiere decir que los datos están correlacionados permitiendo una curva de confiabilidad adecuada para el análisis de disponibilidad. Además, se puede identificar que el tecle de cadena se encuentra en la etapa 1 de la curva de la bañera denominado zona de mortalidad infantil o rodaje.

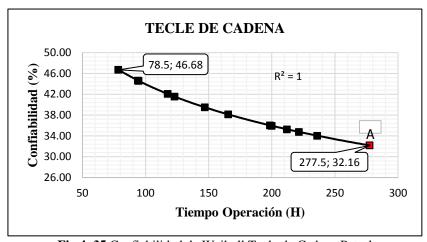


Fig 4. 35 Confiabilidad de Weibull Tecle de Cadena Petrul Elaborado por: Autor

Así mismo, en la figura 4.36, se puede representar el punto (B), que indica una probabilidad de falla del 67.84%, al cumplirse un tiempo de operación de (277.5 h).

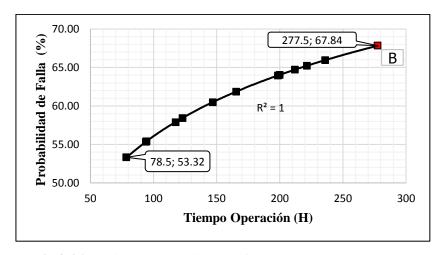


Fig 4. 36 Densidad de probabilidad de fallo de Tecle de Cadena Petrul Elaborado por: Autor

Tabla 4. 44 Datos estadísticos y cálculo de parámetros para Transportador Hidráulico de Pallets

	EMPRESA HOLVIPLAS S.A.								
	ÁREA DE INYECCIÓN DE ACCESORIOS DE PVC								
	CONFIABILIDAD Y PROBABILIDAD DE FALLOS WEIBULL								
EQU	EQUIPO: TRANSPORTADOR DE PALLETS CÓDIGO THH1						H1		
# de falla	ACTIVIDAD	FECHA	T(i) OPER (horas)	ln (Ti)	(ln(Ti)- X)^2	R(t)	R (t)	F (t) (%)	
	Inicio	02/05/2017							
1	Cambio de empaques en mal estado	29/05/2017	96	4.5643	0.4183	0.4527	45.27	54.73	
1	Cambio de seguros averiados	26/06/2017	120	4.7875	0.1795	0.4296	42.96	57.04	
1	Cambio de aceite de bomba hidráulica	24/07/2017	128	4.8520	0.1289	0.4229	42.29	57.71	
2	Cambio de pernos aislados del sistema de descenso	14/08/2017	152	5.0239	0.0351	0.4049	40.49	59.51	
	Cambio de rodamientos	28/08/2017							
1	Inspección de Muelle de retorno vertical de barra de tracción	20/09/2017	160	5.0752	0.0185	0.3996	39.96	60.04	
1	Chequeo de Conjunto hidráulico del chasis del transporte	23/10/2018	184	5.2149	0.0000	0.3849	38.49	61.51	
1	Cambio de rodillos delanteros	27/11/2017	200	5.2983	0.0076	0.3761	37.61	62.39	
1	Chequeo del mando de válvula elevación y descenso	26/01/2018	200	5.2983	0.0076	0.3761	37.61	62.39	
1	Chequeo de freno de mano del transportador	16/02/2019	232	5.4467	0.0555	0.3605	36.05	63.95	
1	Reparación del sistema de accenso y descenso	12/03/2018	248	5.5134	0.0914	0.3534	35.34	64.66	
1	Limpieza de Ruedas directrices	11/04/2018	296	5.6904	0.2297	0.3349	33.49	66.51	
1	Soldar y pintar el chasis de transportador hidráulico	07/05/2018	320	5.7683	0.3105	0.3267	32.67	67.33	
	Fin	31/05/2018							
12	TOTAL		2496	62.533	1.4825				

Tabla 4. 45 Cálculo de parámetros iniciales del Transportador Hidráulico (Pallets)

CÁLCULO DE PARÁMETROS WEIBULL					
Media (X)	5.21				
Varianza (S^2)	0.13				
Desviación Estándar (S)	0.36				
Parámetro de Forma Betta (β)	3.49				
Parámetro Escala Alpha (α)	216.22				
Parámetro Localización Gamma (γ)	0				

Elaborado por: Autor

Los resultados de la Tabla 4.44, han permitido generar las gráficas de distribución de Weibull, para la confiabilidad (Tiempo vs $R_{(t)}$) y la probabilidad de falla (Tiempo vs $F_{(t)}$) del Tecle de cadena Truper.

En la Figura 4.37, se puede representar el punto (A), establece que para un proceso operativo completo (96 h) se tiene una confiabilidad máxima de 45.27% y una mínima de 32.67% con un (To = 320 h). Se describe una correlación de tendencia logarítmica debido a que es (R = 1), esto quiere decir que los datos están correlacionados permitiendo una curva de confiabilidad adecuada para el análisis de disponibilidad. De igual forma se puede identificar que el trasportador hidráulico se encuentra en la etapa 1 de la curva de la bañera denominado zona de mortalidad infantil o rodaje.

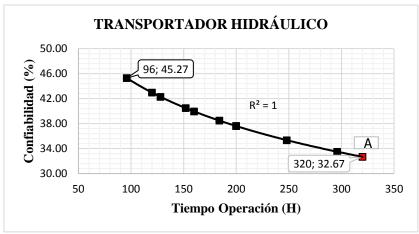


Fig 4. 37 Confiabilidad de Weibull Transportador Hidráulico Pallets Elaborado por: Autor

Así mismo, en la Figura 4.38, se puede representar el punto (B), que indica una probabilidad de falla del 67.33%, al cumplirse un tiempo de operación de (320 h).

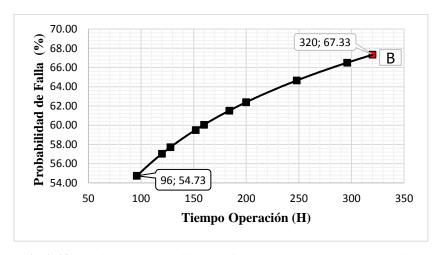


Fig 4. 38 Densidad de probabilidad de fallo para Transportador Hidráulico Elaborado por: Autor

4.2.5 Análisis de la Confiabilidad de Máquinas y Equipos mediante la Distribución de Weibull Modelo Gráfico.

Después de haber aplicado el modelo de Weibull matemático se tiene un criterio técnico para interpretar el análisis, luego para el desarrollo y el análisis del modelo gráfico se procede a identificar de manera gráfica los parámetros necesarios descrito en el capítulo II.

4.2.5.1 Modelo Gráfico de Weibull Máquina Inyectora HTF300

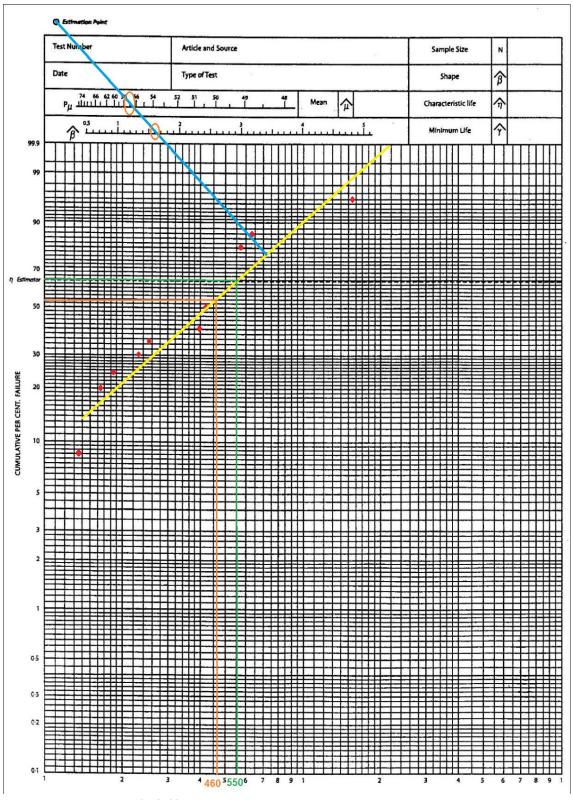

Para determinar la confiabilidad de la Inyectora HTF300, mediante el modelo grafico se debe tener en cuenta el papel Weibull y los datos de tiempos de operación detallados en la tabla 4.19 ordenados de forma ascendente, aplicando la ecuación 2.15 se calcula el valor medio y luego el valor del porcentaje de falla acumulativa.

Tabla 4. 46 Cálculo porcentaje de falla acumulativa F(i) Inyectora HTF300

REGISTRO DE FALLAS			CÁLCU	LOS
N° Falla	Falla acumulada (i)	T(o) (horas)	Valor Medio (Mr)	F (i) (%)
1	2	137	0.0876	8.76
2	4	165	0.1907	19.07
3	5	186	0.2423	24.23
4	6	235	0.2938	29.38
5	7	236.5	0.3454	34.54
6	8	400	0.3969	39.69
7	10	421	0.5000	50.00
8	11	497	0.5515	55.15
9	13	501.5	0.6546	65.46
10	14	525	0.7062	70.62
11	16	569	0.8093	80.93
12	17	644	0.8608	86.08
13	19	1540	0.9639	96.39

Elaborado por: Autor

En la tabla 4.46 se muestra valores del tiempo operación y porcentaje de falla acumulada calculado, luego procedemos a graficar los puntos y los otros datos requeridos en el papel Weibull.

Fig 4. 39 Papel Weibull aplicado a Inyectora HTF300 **Elaborado por:** Autor

Tabla 4. 47 Parámetros gráfico de Weibull Inyectora HTF300

MÉTODO GRÁFICO WEIBULL				
Beta β	1.6			
η	460			
μ	550			

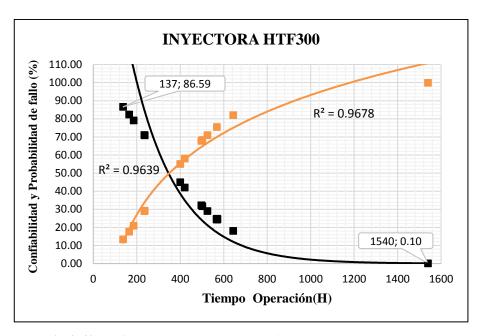

En la tabla 4.47 se detalla los parámetros obtenidos mediante la figura 4.39, y con estos datos se realiza el cálculo de la confiabilidad de Weibull aplicando la ecuación 2.17.

Tabla 4. 48 Confiabilidad de Weibull Inyectora HTF300

REGI	STRO DE F.	ALLAS	S CÁLCULOS			
N° Falla	Falla acumulada (i)	T(o) (horas)	Valor Medio (Mr)	F (i) (%)	R(t)	R(t) %
1	2	137	0.0876	8.76	0.86589	86.59
2	4	165	0.1907	19.07	0.82375	82.37
3	5	186	0.2423	24.23	0.79068	79.07
4	6	235	0.2938	29.38	0.71076	71.08
5	7	236.5	0.3454	34.54	0.70828	70.83
6	8	400	0.3969	39.69	0.44950	44.95
7	10	421	0.5000	50.00	0.41986	41.99
8	11	497	0.5515	55.15	0.32246	32.25
9	13	501.5	0.6546	65.46	0.31720	31.72
10	14	525	0.7062	70.62	0.29069	29.07
11	16	569	0.8093	80.93	0.24530	24.53
12	17	644	0.8608	86.08	0.18029	18.03
13	19	1540	0.9639	96.39	0.00100	0.10

Elaborado por: Autor

Con los datos de la tabla 4.48, se procede a realizar la gráfica de confiabilidad vs tiempo de operación.

Fig 4. 40 Confiabilidad y Probabilidad de falla de la Inyectora HTF 300 **Elaborado por:** Autor

De la gráfica se interpreta lo siguiente:

- En la figura 4.40, según el método gráfico Weibull se obtuvo un porcentaje de confiabilidad máximo de 86.59% con (TO=137 h) y así mismo una confiabilidad mínima de 0.10% con (TO=1540 h).
- El coeficiente de correlación es cercano a 1 (0.9639), esto quiere decir que los datos se encuentran correlacionados con una tendencia exponencial permitiendo identificar en una zona de mantenimiento infantil según la curva de la bañera.
- Se puede interpretar que a mayor tiempo de operación la confiabilidad de los componentes es menor debido al desgaste y fallas que en ese tiempo pueden presentar.
- Mediante la aplicación del modelo gráfico de Weibull se puede determinar que la máquina inyectora se halla en la fase 1 de mortalidad infantil, según la curva de la bañera la tasa de fallos es decreciente.

4.2.5.2 Modelo Gráfico de Weibull Máquina Inyectora HTF200

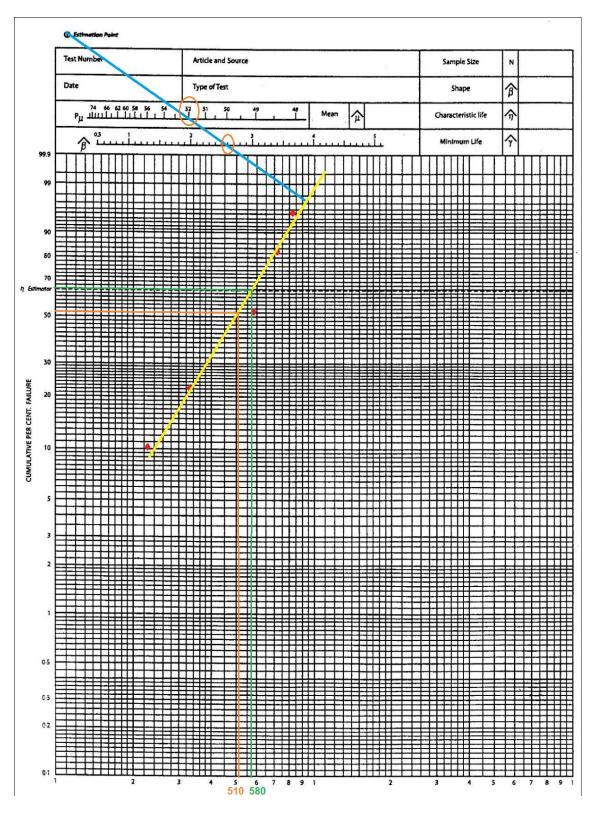

Para determinar la confiabilidad de la inyectora HTF200, mediante el modelo gráfico se debe tener en cuenta el papel Weibull y los datos de tiempos de operación detallados en la tabla 4.20 y aplicando el procedimiento anterior se obtiene los siguientes cálculos:

Tabla 4. 49 Cálculo porcentaje de falla acumulativa F(i) de la Inyectora HTF200

REG	SISTRO DE	CÁLCI	ULOS	
N° Falla	Falla acumulada	T(o) (horas)	Valor Medio (Mr)	F (t) (%)
1	2	211	0.1037	10.37
2	4	332.5	0.2256	22.56
3	5	450.5	0.2866	28.66
4	6	500.5	0.3476	34.76
5	7	525.5	0.4085	40.85
6	8	573.5	0.4695	46.95
7	9	597	0.5305	53.05
8	11	620	0.6524	65.24
9	12	636	0.7134	71.34
10	13	664.5	0.7744	77.44
11	14	716	0.8354	83.54
12	16	838	0.9573	95.73

Elaborado por: Autor

En la tabla 4.49, se muestra valores del tiempo operación y porcentaje de falla acumulada calculado, luego procedemos a graficar los puntos y los otros datos requeridos en el papel Weibull.

Fig 4. 41 Papel Weibull aplicado a Inyectora HTF200 **Elaborado por:** Autor

Tabla 4. 50 Parámetros gráfico de Weibull Inyectora HTF200

MÉTODO GRAFICO WEIBULL				
Beta β	2.6			
η	510			
μ 580				

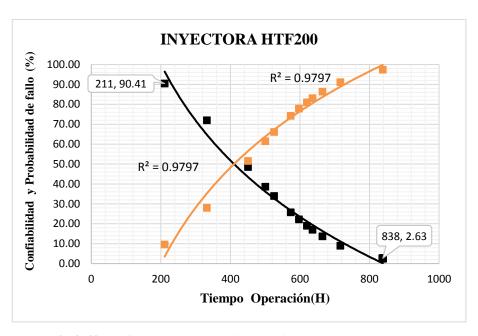

En la tabla 4.50 se detalla los parámetros obtenidos mediante la figura 4.41, y con estos datos se realiza el cálculo de la confiabilidad de Weibull.

Tabla 4. 51 Confiabilidad de Weibull Inyectora HTF200

REG	SISTRO DE I	FALLA	CÁLCULOS				
N° Falla	Falla acumulada	T(o) (horas)	Valor Medio (Mr)	F (t) (%)	R(t)	R(t) %	
1	2	211	0.1037	10.37	0.9041	90.41	
2	4	332.5	0.2256	22.56	0.7198	71.98	
3	5	450.5	0.2866	28.66	0.4847	48.47	
4	6	500.5	0.3476	34.76	0.3859	38.59	
5	7	525.5	0.4085	40.85	0.3393	33.93	
6	8	573.5	0.4695	46.95	0.2575	25.75	
7	9	597	0.5305	53.05	0.2218	22.18	
8	11	620	0.6524	65.24	0.1898	18.98	
9	12	636	0.7134	71.34	0.1694	16.94	
10	13	664.5	0.7744	77.44	0.1367	13.67	
11	14	716	0.8354	83.54	0.0893	8.93	
12	16	838	0.9573	95.73	0.0263	2.63	

Elaborado por: Autor

Con los datos de la tabla 4.50, se procede a realizar la gráfica de confiabilidad vs tiempo de operación.

Fig 4. 42 Confiabilidad y Probabilidad de falla de inyectora HTF 200 **Elaborado por:** Autor

De la gráfica se interpreta lo siguiente:

- En la figura 4.42, según el método grafico Weibull se obtuvo un porcentaje de confiabilidad máximo de 90.41% con (TO=211 h) y así mismo una confiabilidad mínima de 2.63% con (TO=838 h).
- El coeficiente de correlación es cercano a 1 (0.9797), esto quiere decir que los datos se encuentran correlacionados con una tendencia logarítmica permitiendo identificar en una zona de mantenimiento infantil.
- Se puede interpretar que a mayor tiempo de operación la confiabilidad de los componentes es menor debido al desgaste y fallas que en ese tiempo pueden presentar.
- Mediante la aplicación del modelo gráfico de Weibull se puede determinar que la máquina inyectora se halla en la fase 1 de mortalidad infantil, según la curva de la bañera la tasa de fallos es decreciente.

4.2.5.3 Modelo gráfico de Weibull Máquina Inyectora HTF320

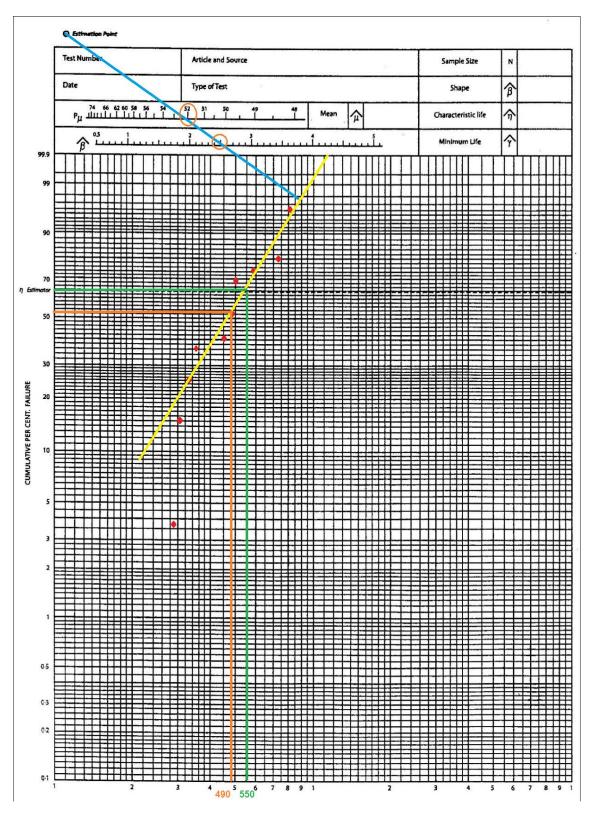

Para determinar la confiabilidad de la inyectora HTF320, mediante el modelo gráfico se debe tener en cuenta el papel Weibull y los datos de tiempos de operación detallados en la tabla 4.21 y aplicando el procedimiento anterior se obtiene los siguientes cálculos:

Tabla 4. 52 Cálculo porcentaje de falla acumulativa F(i) de la Inyectora HTF320

RI	EGISTRO DE	CÁLC	CULOS	
N° Falla	Falla acumulada	T(o) (horas)	Valor Medio (Mr)	F (t) (%)
1	1	286	0.0380	3.80
2	3	308	0.1467	14.67
3	5	334	0.2554	25.54
4	7	353.5	0.3641	36.41
5	8	449	0.4185	41.85
6	9	474	0.4728	47.28
7	10	476	0.5272	52.72
8	12	493	0.6359	63.59
9	13	502	0.6902	69.02
10	14	590	0.7446	74.46
11	15	740	0.7989	79.89
12	17	802	0.9076	90.76
13	18	802	0.9620	96.20

Elaborado por: Autor

En la tabla 4.52 se muestra valores del tiempo operación y porcentaje de falla acumulada calculado, luego procedemos a graficar los puntos y los otros datos requeridos en el papel Weibull.

Fig 4. 43 Papel Weibull aplicado a Inyectora HTF320 **Elaborado por:** Autor

Tabla 4. 53 Parámetros gráfico de Weibull Inyectora HTF320

MÉTODO GRAFICO WEIBULL					
Beta β	2.5				
η	490				
μ	550				

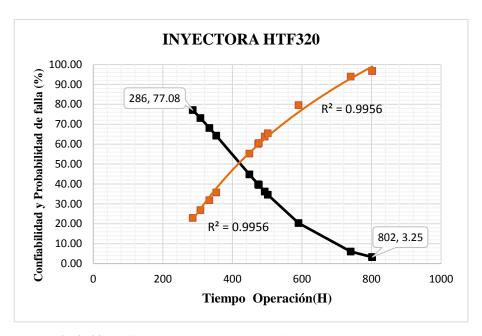

En la tabla 4.54 se detalla los parámetros obtenidos mediante la figura 4.43, y con estos datos se realiza el cálculo de la confiabilidad de Weibull.

Tabla 4. 54 Confiabilidad de Weibull Inyectora HTF320

REGISTRO DE FALLA			CÁLCULOS			
N° Falla	Falla acumulada	T(o) (horas)	Valor Medio (Mr)	F (t) (%)	R(t)	R(t) %
1	1	286	0.0380	3.80	0.7708	77.08
2	3	308	0.1467	14.67	0.7311	73.11
3	5	334	0.2554	25.54	0.6814	68.14
4	7	353.5	0.3641	36.41	0.6427	64.27
5	8	449	0.4185	41.85	0.4476	44.76
6	9	474	0.4728	47.28	0.3984	39.84
7	10	476	0.5272	52.72	0.3945	39.45
8	12	493	0.6359	63.59	0.3623	36.23
9	13	502	0.6902	69.02	0.3456	34.56
10	14	590	0.7446	74.46	0.2037	20.37
11	15	740	0.7989	79.89	0.0606	6.06
12	17	802	0.9076	90.76	0.0325	3.25
13	18	802	0.9620	96.20	0.0325	3.25

Elaborado por: Autor

Con los datos de la tabla 4.54, se procede a realizar la gráfica de confiabilidad vs tiempo de operación.

Fig 4. 44 Confiabilidad y Probabilidad de falla de inyectora HTF 320 **Elaborado por:** Autor

De la gráfica se interpreta lo siguiente:

- En la figura 4.44, según el método grafico Weibull se obtuvo un porcentaje de confiabilidad máximo de 77.08% con (TO=286 h) y así mismo una confiabilidad mínima de 3.25% con (TO=802 h).
- El coeficiente de correlación es cercano a 1 (0.9956), esto quiere decir que los datos se encuentran correlacionados con una tendencia logarítmica permitiendo identificar en una zona de mantenimiento infantil.
- Se puede interpretar que a mayor tiempo de operación la confiabilidad de los componentes es menor debido al desgaste y fallas que en ese tiempo pueden presentar.
- Mediante la aplicación del modelo gráfico de Weibull se puede determinar que la máquina inyectora se halla en la fase 1 de mortalidad infantil, según la curva de la bañera la tasa de fallos es decreciente.

4.2.5.4 Modelo gráfico de Weibull Máquina Inyectora PL4500

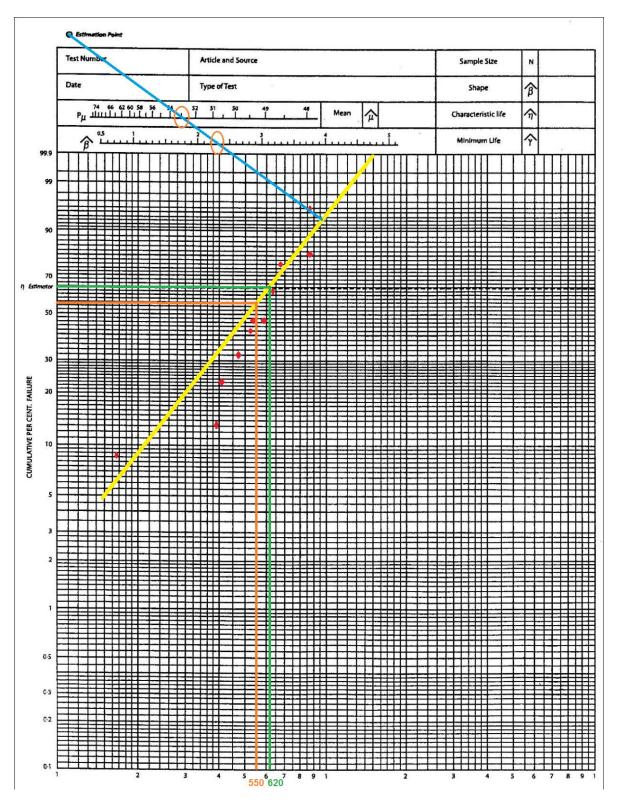

Para determinar la confiabilidad de la inyectora PL4500, mediante el modelo gráfico se debe tener en cuenta el papel Weibull y los datos de tiempos de operación detallados en la tabla 4.22 y aplicando el procedimiento anterior se obtiene los siguientes cálculos:

Tabla 4. 55 Cálculo porcentaje de falla acumulativa F(i) Inyectora PL4500

REGISTRO DE FALLA			CÁLCULOS		
N° Falla	Falla acumulada	T(o) (horas)	Valor Medio (Mr)	F (t) (%)	
1	1	69.5	0.0343	3.43	
2	2	168	0.0833	8.33	
3	3	391	0.1324	13.24	
4	5	403	0.2304	23.04	
5	7	474	0.3284	32.84	
6	9	538.5	0.4265	42.65	
7	10	545	0.4755	47.55	
8	11	611.5	0.5245	52.45	
9	13	639.5	0.6225	62.25	
10	16	677.5	0.7696	76.96	
11	17	858	0.8186	81.86	
12	20	861	0.9657	96.57	

Elaborado por: Autor

En la tabla 4.55, se muestra valores del tiempo operación y porcentaje de falla acumulada calculado, luego procedemos a graficar los puntos y los otros datos requeridos en el papel Weibull.

Fig 4. 45 Papel Weibull aplicado a Inyectora PL4500 **Elaborado por:** Autor

Tabla 4. 56 Parámetros gráfico de Weibull Inyectora PL4500

MÉTODO GRAFICO WEIBULL				
Beta β	2.3			
η	550			
μ	620			

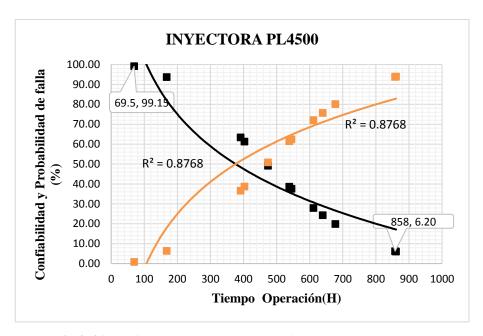

En la tabla 4.56 se detalla los parámetros obtenidos mediante la figura 4.45, y con estos datos se realiza el cálculo de la confiabilidad de Weibull.

Tabla 4. 57 Confiabilidad de Weibull Inyectora PL4500

REGISTRO DE FALLA			CÁLCULOS			
N° Falla	Falla acumulada	T(o) (horas)	Valor Medio (Mr)	F (t) (%)	R(t)	R(t) %
1	1	69.5	0.0343	3.43	0.9915	99.15
2	2	168	0.0833	8.33	0.9367	93.67
3	3	391	0.1324	13.24	0.6337	63.37
4	5	403	0.2304	23.04	0.6132	61.32
5	7	474	0.3284	32.84	0.4915	49.15
6	9	538.5	0.4265	42.65	0.3858	38.58
7	10	545	0.4755	47.55	0.3756	37.56
8	11	611.5	0.5245	52.45	0.2791	27.91
9	13	639.5	0.6225	62.25	0.2431	24.31
10	16	677.5	0.7696	76.96	0.1988	19.88
11	17	858	0.8186	81.86	0.0620	6.20
12	20	861	0.9657	96.57	0.0606	6.06

Elaborado por: Autor

Con los datos de la tabla 4.57, se procede a realizar la gráfica de confiabilidad vs tiempo de operación.

Fig 4. 46 Confiabilidad y Probabilidad de falla de inyectora PL4500 **Elaborado por:** Autor

De la gráfica se interpreta lo siguiente:

- En la figura 4.46, según el método grafico Weibull se obtuvo un porcentaje de confiabilidad máximo de 99.15% con (TO=69.5 h) y así mismo una confiabilidad mínima de 6.20% con (TO=858 h).
- El coeficiente de correlación es cercano a 1 (0.8768), esto quiere decir que los datos se encuentran correlacionados con una tendencia logarítmica permitiendo identificar en una zona de mantenimiento infantil.
- Se puede interpretar que a mayor tiempo de operación la confiabilidad de los componentes es menor debido al desgaste y fallas que en ese tiempo pueden presentar.
- Mediante la aplicación del modelo gráfico de Weibull se puede determinar que la máquina inyectora se halla en la fase 1 de mortalidad infantil, según la curva de la bañera la tasa de fallos es decreciente.

4.2.5.5 Modelo gráfico de Weibull Máquina Inyectora PL1600

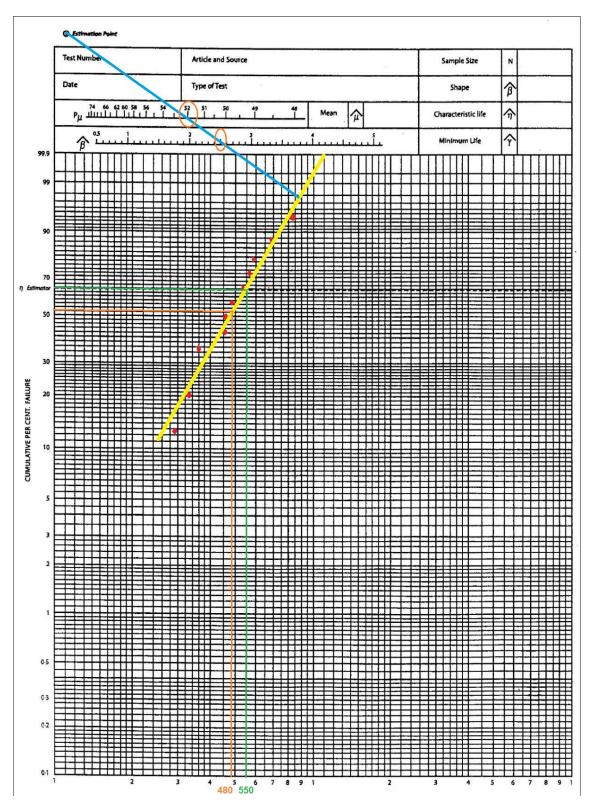

Para determinar la confiabilidad de la inyectora PL1600, mediante el modelo gráfico se debe tener en cuenta el papel Weibull y los datos de tiempos de operación detallados en la tabla 4.23 y aplicando el procedimiento anterior se obtiene los siguientes cálculos:

Tabla 4. 58 Cálculo porcentaje de falla acumulativa F(i) Inyectora PL1600

REGISTRO DE FALLA			CÁLCULOS		
N° Falla	Falla acumulada (i)	T(o) (horas)	Valor Medio (Mr)	F (t) (%)	
1	2	288	0.1269	12.69	
2	3	336	0.2015	20.15	
3	4	336	0.2761	27.61	
4	5	360	0.3507	35.07	
5	6	456	0.4254	42.54	
6	7	456	0.5000	50.00	
7	8	480	0.5746	57.46	
8	9	528	0.6493	64.93	
9	10	552	0.7239	72.39	
10	11	572	0.7985	79.85	
11	12	696	0.8731	87.31	
12	13	840	0.9478	94.78	

Elaborado por: Autor

En la tabla 4.58 se muestra valores del tiempo operación y porcentaje de falla acumulada calculado, luego procedemos a graficar los puntos y los otros datos requeridos en el papel Weibull.

Fig 4. 47 Papel Weibull aplicado a Inyectora PL1600 **Elaborado por:** Autor

Tabla 4. 59 Parámetros gráfico de Weibull Inyectora PL1600

MÉTODO GRAFICO WEIBULL				
Beta β 2.5				
η	480			
μ	550			

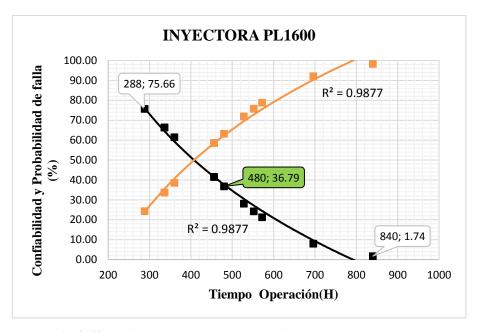

En la tabla 4.59 se detalla los parámetros obtenidos mediante la figura 4.47, y con estos datos se realiza el cálculo de la confiabilidad de Weibull.

Tabla 4. 60 Confiabilidad de Weibull Inyectora PL1600

REGISTRO DE FALLA				CÁLCI	ULOS	
N° Falla	Falla acumulada (i)	T(o) (horas)	Valor Medio (Mr)	F (t) (%)	R(t)	R(t) %
1	2	288	0.1269	12.69	0.7566	75.66
2	3	336	0.2015	20.15	0.6637	66.37
3	4	336	0.2761	27.61	0.6637	66.37
4	5	360	0.3507	35.07	0.6144	61.44
5	6	456	0.4254	42.54	0.4149	41.49
6	7	456	0.5000	50.00	0.4149	41.49
7	8	480	0.5746	57.46	0.3679	36.79
8	9	528	0.6493	64.93	0.2811	28.11
9	10	552	0.7239	72.39	0.2421	24.21
10	11	572	0.7985	79.85	0.2122	21.22
11	12	696	0.8731	87.31	0.0795	7.95
12	13	840	0.9478	94.78	0.0174	1.74

Elaborado por: Autor

Con los datos de la tabla 4.60, se procede a realizar la gráfica de confiabilidad vs tiempo de operación.

Fig 4. 48 Confiabilidad y Probabilidad de falla de inyectora PL1600 **Elaborado por:** Autor

- En la figura 4.48, según el método grafico Weibull se obtuvo un porcentaje de confiabilidad máximo de 75.66% con (TO=288 h) y así mismo una confiabilidad mínima de 1.74% con (TO=840 h), se podría predecir un mantenimiento a una confiabilidad de 36.79% con (TO=480 h).
- El coeficiente de correlación es cercano a 1 (0.9639), esto quiere decir que los datos se encuentran correlacionados con una tendencia exponencial permitiendo identificar en una zona de mantenimiento infantil.
- Se puede interpretar que a mayor tiempo de operación la confiabilidad de los componentes es menor debido al desgaste y fallas que en ese tiempo pueden presentar.
- Mediante la aplicación del modelo gráfico de Weibull se puede determinar que la máquina inyectora se halla en la fase 1 de mortalidad infantil, según la curva de la bañera la tasa de fallos es decreciente.

4.2.5.6 Modelo gráfico de Weibull de Equipo Montacargas Toyota

Para determinar la confiabilidad del montacargas, mediante el modelo gráfico se debe tener en cuenta el papel Weibull y los datos de tiempos de operación detallados en la tabla 4.25 y aplicando el procedimiento anterior se obtiene los siguientes cálculos:

Tabla 4. 61 Cálculo porcentaje de falla acumulativa F(i) de Montacargas Toyota

REGI	STRO DE FA	CÁLC	ULOS	
N° Falla	Falla acumulada (i)	T(o) (horas)	Valor Medio (Mr)	F (t) (%)
1	2	75	0.1104	11.0390
2	4	91.5	0.2403	24.0260
3	5	115.5	0.3052	30.5195
4	6	129.5	0.3701	37.0130
5	7	161	0.4351	43.5065
6	9	191	0.5649	56.4935
7	10	194.5	0.6299	62.9870
8	12	195.5	0.7597	75.9740
9	13	239	0.8247	82.4675
10	14	297	0.8896	88.9610
11	15	380	0.9545	95.45

Elaborado por: Autor

En la tabla 4.61, se indica los valores del tiempo operación y porcentaje de falla acumulada calculado, luego procedemos a graficar los puntos y los otros datos requeridos en el papel Weibull.

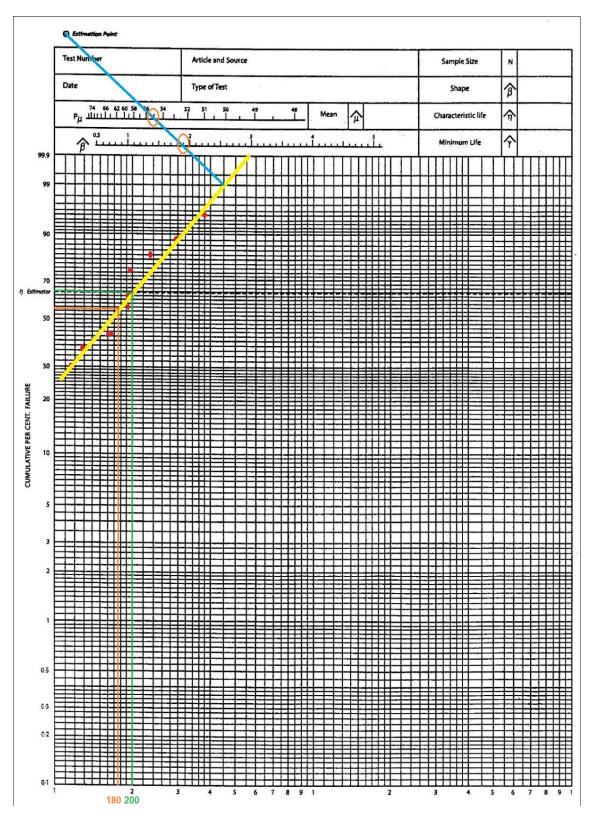


Fig 4. 49 Papel Weibull aplicado a Montacargas Toyota Elaborado por: Autor

Tabla 4. 62 Parámetros gráfico de Weibull Montacargas Toyota

MÉTODO GRAFICO WEIBULL				
Beta β	1.9			
η	180			
μ	200			

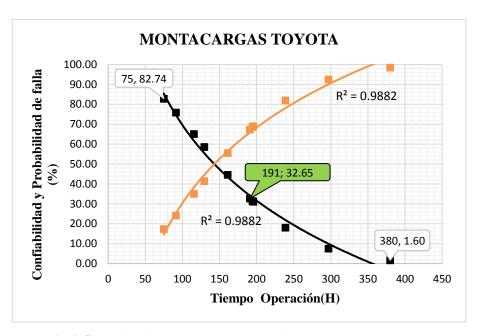

En la tabla 4.62se detalla los parámetros obtenidos mediante la figura 4.49, y con estos datos se realiza el cálculo de la confiabilidad de Weibull.

Tabla 4. 63 Confiabilidad de Weibull Montacargas Toyota

REG	SISTRO DE	FALLA		CÁLC	ULOS	
N° Falla	Falla acumulada (i)	T(o) (horas)	Valor Medio (Mr)	F (t) (%)	R(t)	R(t) %
1	2	75	0.1104	11.0390	0.8274	82.74
2	4	91.5	0.2403	24.0260	0.7584	75.84
3	5	115.5	0.3052	30.5195	0.6502	65.02
4	6	129.5	0.3701	37.0130	0.5857	58.57
5	7	161	0.4351	43.5065	0.4453	44.53
6	9	191	0.5649	56.4935	0.3265	32.65
7	10	194.5	0.6299	62.9870	0.3139	31.39
8	12	195.5	0.7597	75.9740	0.3104	31.04
9	13	239	0.8247	82.4675	0.1802	18.02
10	14	297	0.8896	88.9610	0.0751	7.51
11	15	380	0.9545	95.45	0.0160	1.60

Elaborado por: Autor

Con los datos de la tabla 4.63, se procede a realizar la gráfica de confiabilidad vs tiempo de operación.

Fig 4. 50 Confiabilidad y Probabilidad de falla de Montacargas Toyota **Elaborado por:** Autor

- En la figura 4.50, según el método grafico Weibull se obtuvo un porcentaje de confiabilidad máximo de 82.74% con (TO=75 h) y así mismo una confiabilidad mínima de 1.60% con (TO=380 h), se podría predecir un mantenimiento a una confiabilidad de 32.65% con (TO=191 h).
- El coeficiente de correlación es cercano a 1 (0.9882), esto quiere decir que los datos se encuentran correlacionados con una tendencia logarítmica permitiendo identificar en una zona de mantenimiento infantil.
- Se puede interpretar que a mayor tiempo de operación la confiabilidad de los componentes es menor debido al desgaste y fallas que en ese tiempo pueden presentar.
- Mediante la aplicación del modelo gráfico de Weibull se puede determinar que la máquina inyectora se halla en la fase 1 de mortalidad infantil, según la curva de la bañera la tasa de fallos es decreciente.

4.2.5.7 Modelo gráfico de Weibull máquina Triturador de PVC (Molino)

Para determinar la confiabilidad de la inyectora HTF320, mediante el modelo grafico se debe tener en cuenta el papel Weibull y los datos de tiempos de operación detallados en la tabla 4.24 y aplicando el procedimiento anterior se obtiene los siguientes cálculos:

Tabla 4. 64 Cálculo porcentaje de falla acumulativa F(i) de Triturador de PVC

REC	SISTRO DE F	CÁLC	ULOS	
N° Falla	Falla acumulada (i)	T(o) (horas)	Valor Medio (Mr)	F (t) (%)
1	2	93	0.0833	8.33
2	4	103	0.1814	18.14
3	5	113	0.2304	23.04
4	7	121	0.3284	32.84
5	8	139	0.3775	37.75
6	9	157	0.4265	42.65
7	11	171	0.5245	52.45
8	13	180	0.6225	62.25
9	14	180.5	0.6716	67.16
10	16	197	0.7696	76.96
11	18	203	0.8676	86.76
12	19	228.5	0.9167	91.67
13	20	326.5	0.9657	96.57

Elaborado por: Autor

En la tabla 4.64 se observa valores del tiempo de operación y porcentaje de falla acumulada calculado, luego procedemos a graficar los puntos y los otros datos requeridos en el papel Weibull.

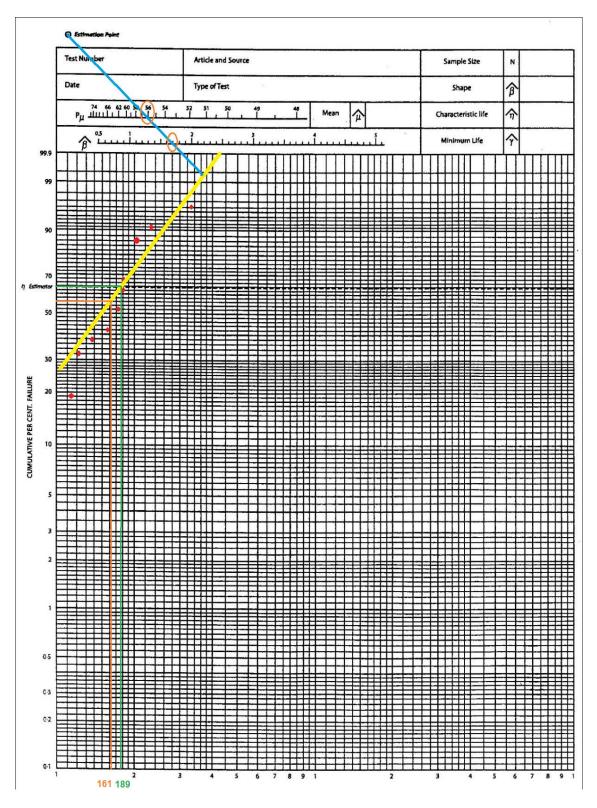
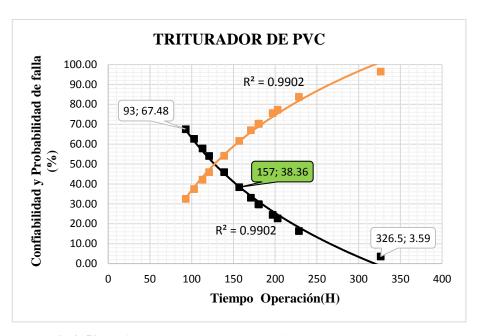


Fig 4. 51 Papel Weibull aplicado a Triturador de PVC (Molino)

Elaborado por: Autor

Tabla 4. 65 Parámetros gráfico de Weibull Triturador de PVC


MÉTODO GRAFICO WEIBULL				
Beta β 1.7				
η	161			
μ	189			

En la tabla 4.65 se detalla los parámetros obtenidos mediante la figura 4.51, y con estos datos se realiza el cálculo de la confiabilidad de Weibull.

Tabla 4. 66 Confiabilidad de Weibull Triturador de PVC

REGISTRO DE FALLA				CÁLCU	JLOS	
N° Falla	Falla acumulada (i)	T(o) (horas)	Valor Medio (Mr)	F (t) (%)	R(t)	R(t) %
1	2	93	0.0833	8.33	0.674769	67.48
2	4	103	0.1814	18.14	0.626271	62.63
3	5	113	0.2304	23.04	0.578215	57.82
4	7	121	0.3284	32.84	0.540445	54.04
5	8	139	0.3775	37.75	0.458878	45.89
6	9	157	0.4265	42.65	0.383609	38.36
7	11	171	0.5245	52.45	0.330261	33.03
8	13	180	0.6225	62.25	0.298551	29.86
9	14	180.5	0.6716	67.16	0.296850	29.69
10	16	197	0.7696	76.96	0.244326	24.43
11	18	203	0.8676	86.76	0.226957	22.70
12	19	228.5	0.9167	91.67	0.163093	16.31
13	20	326.5	0.9657	96.57	0.035916	3.59

Elaborado por: Autor

Fig 4. 52 Confiabilidad y Probabilidad de falla del Triturador de PVC. **Elaborado por:** Autor

- En la figura 4.52, según el método grafico Weibull se obtuvo un porcentaje de confiabilidad máximo de 67.48% con (TO=93 h) y así mismo una confiabilidad mínima de 3.59% con (TO=326.5 h), se podría predecir un mantenimiento a una confiabilidad de 38.36% con (TO=157 h).
- El coeficiente de correlación es cercano a 1 (0.9902), esto quiere decir que los datos se encuentran correlacionados con una tendencia logarítmica permitiendo identificar en una zona de mantenimiento infantil.
- Se puede interpretar que a mayor tiempo de operación la confiabilidad de los componentes es menor debido al desgaste y fallas que en ese tiempo pueden presentar.
- Mediante la aplicación del modelo gráfico de Weibull se puede determinar que la máquina inyectora se halla en la fase 1 de mortalidad infantil, según la curva de la bañera la tasa de fallos es decreciente.

4.2.5.8 Modelo gráfico de Weibull Equipo Tecle de Cadena

Para determinar la confiabilidad del tecle, mediante el modelo grafico se debe tener en cuenta el papel Weibull y los datos de tiempos de operación detallados en la tabla 4.27 y aplicando el procedimiento anterior se obtiene los siguientes cálculos:

Tabla 4. 67 Cálculo porcentaje de falla acumulativa F(i) del tecle de cadena

REG	ISTRO DE FA	CÁLC	ULOS	
N° Falla	Falla acumulada (i)	T(o) (horas)	Valor Medio (Mr)	F (t) (%)
1	1	78.5	0.0565	5.65
2	2	94	0.1371	13.71
3	3	94.5	0.2177	21.77
4	4	117.5	0.2984	29.84
5	5	123	0.3790	37.90
6	6	147	0.4597	45.97
7	7	165.5	0.5403	54.03
8	8	198.5	0.6210	62.10
9	9	200	0.7016	70.16
10	10	212	0.7823	78.23
11	11	221.5	0.8629	86.29
12	12	513.5	0.9435	94.35

Elaborado por: Autor

En la tabla 4.67, se puede observar valores del tiempo de operación y porcentaje de falla acumulada calculado, luego se procede a graficar los puntos y los otros datos requeridos en el papel Weibull.

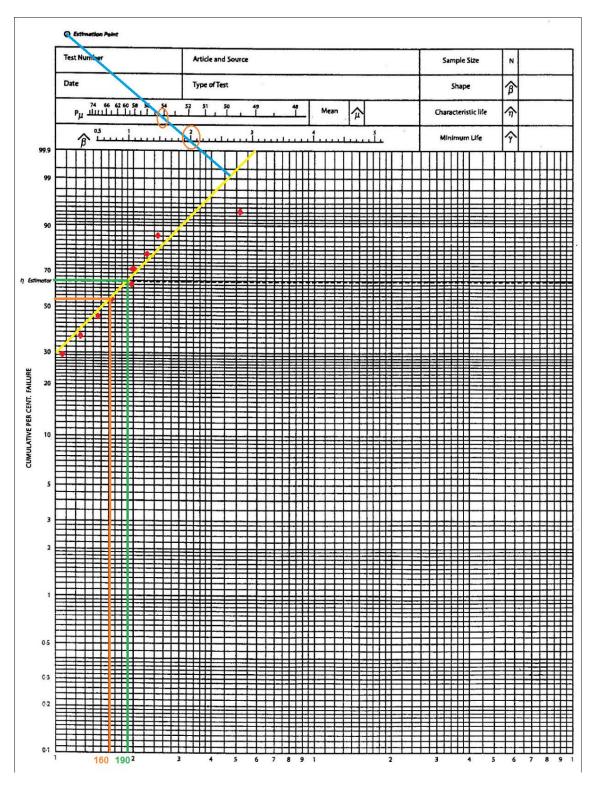


Fig 4. 53 Papel Weibull aplicado a un Tecle de cadena Truper Elaborado por: Autor

Tabla 4. 68 Parámetros gráfico de Weibull Tecle de Cadena

MÉTODO GRAFICO WEIBULL				
Beta β 2.00				
η	160			
μ	190			

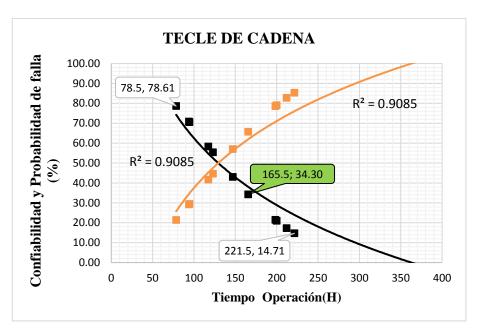

En la tabla 4.68 se detalla los parámetros obtenidos mediante la figura 4.53, y con estos datos se realiza el cálculo de la confiabilidad de Weibull.

Tabla 4. 69 Confiabilidad de Weibull Tecle de cadena

REGISTRO DE FALLA			CÁLCULOS			
N° Falla	Falla acumulada (i)	T(o) (horas)	Valor Medio (Mr)	F (t) (%)	R(t)	R(t) %
1	1	78.5	0.0565	5.65	0.78607	78.61
2	2	94	0.1371	13.71	0.70811	70.81
3	3	94.5	0.2177	21.77	0.70551	70.55
4	4	117.5	0.2984	29.84	0.58315	58.32
5	5	123	0.3790	37.90	0.55379	55.38
6	6	147	0.4597	45.97	0.42994	42.99
7	7	165.5	0.5403	54.03	0.34303	34.30
8	8	198.5	0.6210	62.10	0.21456	21.46
9	9	200	0.7016	70.16	0.20961	20.96
10	10	212	0.7823	78.23	0.17280	17.28
11	11	221.5	0.8629	86.29	0.14712	14.71
12	12	513.5	0.9435	94.35	0.00003	0.003

Elaborado por: Autor

Con los datos de la tabla 4.69, se procede a realizar la gráfica de confiabilidad vs tiempo de operación.

Fig 4. 54 Confiabilidad y Probabilidad de falla de un Tecle de Cadena **Elaborado por:** Autor

- En la figura 4.54, según el método grafico Weibull se obtuvo un porcentaje de confiabilidad máximo de 78.61% con (TO=78.5 h) y así mismo una confiabilidad mínima de 14.71% con (TO=221.5 h), se podría predecir un mantenimiento a una confiabilidad de 34.30% con (TO=165 h).
- El coeficiente de correlación es cercano a 1 (0.9085), esto quiere decir que los datos se encuentran correlacionados con una tendencia logarítmica permitiendo identificar en una zona de mantenimiento infantil.
- Se puede interpretar que a mayor tiempo de operación la confiabilidad de los componentes es menor debido al desgaste y fallas que en ese tiempo pueden presentar.
- Mediante la aplicación del modelo gráfico de Weibull se puede determinar que la máquina inyectora se halla en la fase 1 de mortalidad infantil, según la curva de la bañera la tasa de fallos es decreciente.

4.2.5.9 Modelo gráfico de Weibull Equipo Transportador Hidráulico

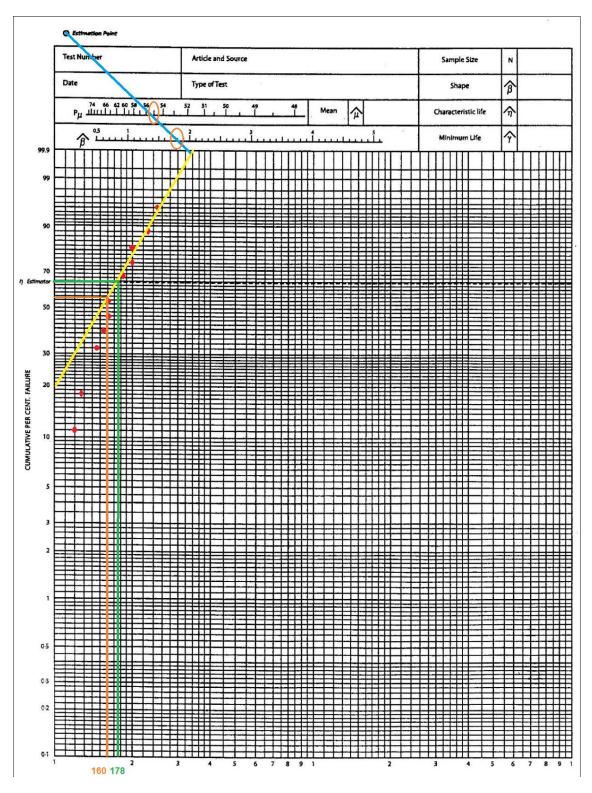

Para determinar la confiabilidad del transportador hidráulico, mediante el modelo grafico se debe tener en cuenta el papel Weibull y los datos de tiempos de operación detallados en la tabla 4.26 y aplicando el procedimiento anterior se obtiene los siguientes cálculos:

Tabla 4. 70 Datos histórico de falla Transportador Hidráulico de Pallets

RE	GISTRO DE FA	CÁLC	ULOS	
N° Falla	Falla acumulada(i)	T(o) (horas)	Valor Medio (Mr)	F (t) (%)
1	1	96	0.0486	4.86
2	2	120	0.1181	11.81
3	3	128	0.1875	18.75
4	5	144	0.3264	32.64
5	6	152	0.3958	39.58
6	7	160	0.4653	46.53
7	8	160	0.5347	53.47
8	9	160	0.6042	60.42
9	10	184	0.6736	67.36
10	11	200	0.7431	74.31
11	12	200	0.8125	81.25
12	13	232	0.8819	88.19
13	14	248	0.9514	95.14

Elaborado por: Autor

En la tabla 4.70, se indica valores del tiempo de operación y porcentaje de falla acumulada calculado, luego procedemos a graficar los puntos y los otros datos requeridos en el papel Weibull.

Fig 4. 55 Papel Weibull aplicado a un Transportador Hidráulico de Pallets **Elaborado por:** Autor

Tabla 4. 71 Parámetros gráfico de Weibull Transportador Hidráulico

MÉTODO GRAF	ICO WEIBULL
Beta β	1.8
η	160
μ	178

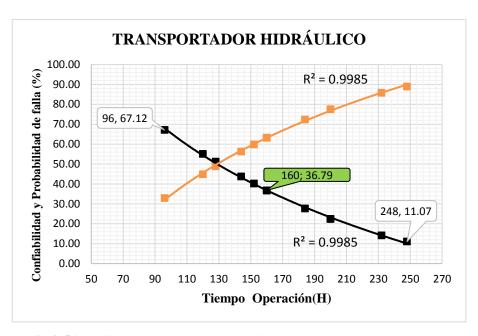

En la tabla 4.71 se detalla los parámetros obtenidos mediante la figura 4.55, y con estos datos se realiza el cálculo de la confiabilidad de Weibull.

Tabla 4. 72 Confiabilidad de Weibull Transportador Hidráulico

RI	EGISTRO DE	FALLA		CÁLCUL	os	
N° Falla	Falla acumulada(i)	T(o) (horas)	Valor Medio (Mr)	F (t) (%)	R(t)	R(t) %
1	1	96	0.0486	4.86	0.67118	67.12
2	2	120	0.1181	11.81	0.55111	55.11
3	3	128	0.1875	18.75	0.51211	51.21
4	5	144	0.3264	32.64	0.43725	43.73
5	6	152	0.3958	39.58	0.40180	40.18
6	7	160	0.4653	46.53	0.36788	36.79
7	8	160	0.5347	53.47	0.36788	36.79
8	9	160	0.6042	60.42	0.36788	36.79
9	10	184	0.6736	67.36	0.27636	27.64
10	11	200	0.7431	74.31	0.22441	22.44
11	12	200	0.8125	81.25	0.22441	22.44
12	13	232	0.8819	88.19	0.14200	14.20
13	14	248	0.9514	95.14	0.11071	11.07

Elaborado por: Autor

Con los datos de la tabla 4.72, se procede a realizar la gráfica de confiabilidad vs tiempo de operación.

Fig 4. 56 Confiabilidad y Probabilidad de falla de un Transportador hidráulico **Elaborado por:** Autor

- En la figura 4.56, según el método grafico Weibull se obtuvo un porcentaje de confiabilidad máximo de 67.12% con (TO=96 h) y así mismo una confiabilidad mínima de 11.07% con (TO=248 h), se podría predecir un mantenimiento a una confiabilidad de 36.79% con (TO=160 h).
- El coeficiente de correlación es cercano a 1 (0.9985), esto quiere decir que los datos se encuentran correlacionados con una tendencia logarítmica permitiendo identificar en una zona de mantenimiento infantil.
- Se puede interpretar que a mayor tiempo de operación la confiabilidad de los componentes es menor debido al desgaste y fallas que en ese tiempo pueden presentar.
- Mediante la aplicación del modelo gráfico de Weibull se puede determinar que la máquina inyectora se halla en la fase 1 de mortalidad infantil, según la curva de la bañera la tasa de fallos es decreciente.

${\bf 4.2.6~An\'alisis~Modal~de~Falla-Efecto~de~M\'aquinas~y~Equipos~del~\'area~de~inyecci\'on~Holviplas~S.A.}$

Tabla 4. 73 Análisis Modal de Fallos Máquina Inyectora de PVC

					CNICA DE AMB						
					<mark>ERÍA CIVIL Y ME</mark> C						8
		ANÁ	LISIS AMFE PAR	RA MÁQUINAS Y E	QUIPOS DE LA EM	PRESA HOLV	1				1
		M	IÁOHINA INVEC	TORA DE PVC HAI	TIAN	Pág.: 1 de		AMI		1	
	Holviplas s.a.	171	TQUINI II II EC	TORN DET VE IIM		Fecha:		9/2019			FIGM
•	ioivipias siai	SISTEMA:		HIDRÁULICO		Elaborado por:		Nelso			
	T	515121111		1112111121100		Revisado por:		Jorge			
N	COMPONENTE	FUNCIÓN		MODO DE FALLO CAUSA DE FALLO FALLO		CONTROL		VALC			RECOMENDACIÓN
		T	FALLO		FALLO	ACTUALES	F	G	D	NPR	
1	Bomba Hidráulica	Transformar la energía mecánica en energía hidráulica	Desgaste y Fugas	Cavitación	Presiones bajas de aceite	Ninguno	6	3	2	36	Revisar sino se encuentra con el fenómeno de cavitación
2	Motor Hidráulico accionamiento de husillo	Cargar el material plástico de PVC derretido en bruto en el barril	Sobrecalentamient o	Incremento de la temperatura de aceite	Dificultad de accionamiento del husillo	Ninguno	3	3	2	18	Chequeo de la viscosidad del aceite durante horas de operación
3	Válvula reguladora de flujo	Regular el flujo de agua para el enfriamiento	Desgaste	Mantenimiento inexistente	Daño en la bomba hidráulica	Ninguno	1	3	5	15	Inspección general de la válvula
4	Actuador del Husillo	Suministrar movimiento a la unidad inyectora y de cierre	Desgaste y Endurecimiento	Taponamiento por endurecimiento de retenedores	Impide el movimiento del sistema de inyección y cierre	Ninguno	1	3	6	18	Inspeccionar que no exista fugas de aceite del actuador
5	Mangueras Hidráulicas	Conducir el aceite desde un contenedor	Desgaste y rotura	Mangueras dobladas y acoples en mal estado	Presión inadecuada en los actuadores del sistema	Cambio	3	2	5	30	Chequeo visual de la mangueras hidráulicas
6	Acoples de Manguera	Conector para el paso del aceite	Deterioro y Rotura	Acoples defectuosos y aislados	Hermeticidad deficiente entre conexiones	Cambio	4	3	1	12	Realizar el cambio regularmente de acoples

N°	COMPONENTE	FUNCIÓN	MODO DE	CAUGA DE EALLO	EFECTO DE	CONTROL	VA	VALORACIÓN F G D NPR		CIÓN	DECOMENDA CIÓN
N°	COMPONENTE	FUNCION	FALLO	CAUSA DE FALLO	FALLO	ACTUALES	F	G	D	NPR	RECOMENDACIÓN
7	Cañerías	Transportar el fluido por todo el sistema	Atascamiento	Acumulación de partículas contaminantes	Fugas de fluido	Ninguno	4	3	1	12	Verificación de las cañerías
8	Filtro papel de aceite	Retener suciedad del aceite	Taponamiento	Presencia de impurezas en el aceite	Reducción del aceite en los componentes	Cambio	5	4	3	60	Realizar el cambio regularmente del filtro
9	Filtro para el tanque	Retener impurezas del aceite del sistema	Obturación	Presencia suciedades en el aceite	Reducción del aceite en el sistema	Cambio	6	2	4	48	Realizar el cambio regularmente del filtro
10	Manómetro	Indicar la fuerza de un pistón hidráulico y la presión manométrica	Deterioro y Averías	Vibraciones en la máquina y corrosión por el ambiente	Obtención de valores erróneos	Ninguno	6	3	1	18	Chequear periódicamente el manómetro
11	Válvula de alivio	Controlar un flujo excesivo de fluido	Atascamiento y Ruptura	Desgaste del componente	Refrigeración inadecuada del sistema de inyección	Ninguno	5	3	1	15	Revisar periódicamente la válvula
12	Válvula hidráulica	Controlar presión y regular el caudal	Daños internos y suciedad	Obstrucción de aceite por contaminación	Cantidad de aceite inadecuado en los actuadores hidráulicos	Ninguno	3	3	2	18	Chequear periódicamente la válvula
13	Tanque de aceite	Almacenar el aceite del sistema	Oxidación y Desgaste	Fugas de aceite en el sistema	Quedar sin aceite el sistema y deterior de bombas	Cambio de aceite	1	3	5	15	Inspeccionar el tanque de aceite en el cambio de aceite
14	Intercambiador de calor	Refrigerar el aceite del sistema	Rotura, obstrucción y deficiencia	Deterioro por los años de uso	Mezcla del agua con el aceite	Mtto. Correctivo	4	1	3	12	Realizar mantenimiento cumplida cierta horas de operación
15	Cilindros Hidráulico	Transformar la energía suministrada por la bomba en energía mecánica que da el movimiento lineal	Expansión de Liquido	Deterioro de aceite y filtros, corrosión en la paredes del cilindro	Desgaste precipitado del cilindro, Reducción de la compresión	Ninguno	2	3	6	36	Revisar periódicamente el estado del cilindro
			SIS	ΓΕΜΑ: CONTROL	L ELÉCTRICO						
16	Motor Eléctrico	Generar y trasmitir movimiento que requiere la inyectora	Sobrecarga	Carga excesiva de material	Para parcial de la máquina	Mtto. Correctivo	3	3	2	18	Inspección del motor antes de puesta en marcha
17	PLC	Recibir e interpretar la señales de entrada y salida	Recibir una señal errónea	Error de programación	Paro de la operación de la máquina hasta reprogramar el PLC	Ninguno	4	3	1	12	Chequear por completo el PLC
18	Panel de control	Controlar el funcionamiento de todo el sistema de la máquina	Mantenimiento Inadecuado	Cables y controladores malogrado	Defectuoso control del proceso de inyección	Ninguno	1	4	5	20	comprobar las conexiones eléctrica general del panel de control

N°	COMPONENTE	FUNCIÓN	MODO DE	CAUSA DE	EFECTO DE	CONTROL	VALORACIÓN F G D NPI				RECOMENDACIÓN
11	COMICINE	reneion	FALLO	FALLO	FALLO	ACTUALES	F	G	D	NPR	RECOMENDACION
19	Pulsador paro de emergencia	Prevenir daños en operador y máquina	Desgaste del componente	Impide la desactivación de la máquina	Daños personales y Avería en la máquina	Cambio	1	3	5	15	Chequeo a diario del pulsador
20	sensor de temperatura de aceite	Medir la temperatura del aceite en operación de la máquina	Daños internos y suciedad	Cortocircuito y conexión inadecuado del contacto	Información adquirida errónea	Ninguno	5	3	1	15	Comprobar que las conexiones no presenten daños y averías
21	Válvula reguladora de caudal	Permite regular el flujo de la velocidad de inyección	Taponamiento	Bobina del solenoide deteriorada	Excesivo fluido de salida	Ninguno	3	3	1	9	Inspeccionar parcialmente las válvulas
22	Válvula proporcional	Magnitud física del fluido es proporcional a una señal eléctrica de entrada	Rotura y Bloqueo	Fugas excesivas de aceite en el sistema	Dificultad de cierre del flujo de aceite del sistema	Ninguno	5	3	1	15	Inspeccionar parcialmente las válvulas
23	Pirómetro	Sirve para medir temperaturas muy elevadas	Elevadas temperaturas	Sobrecarga y cortocircuito del sistema eléctrico	Lecturas erróneas de temperaturas	Cambio	3	3	1	9	Chequeo de los pirómetros al momento de poner en marcha la máquina
24	Válvula solenoide eléctrico	Dirigir el aceite al suministrar corriente eléctrica al imán de la bobina	Defecto	Desgaste y Daños en el sensor	Parada total o parcial del funcionamiento hidráulico	Ninguno	5	3	1	15	Realizar la inspección frecuente de la válvula
25	Relé de estado sólido	Realizar la conmutación de cargas resistivas con señales de control en DC o AC	Vibración y Choques	Desgaste de contactos bobinados abiertos y acortados	Daños a otros circuitos	Ninguno	4	3	1	12	Inspeccionar con frecuencia el estado del relé
26	Electroválvula de control	Mover el cañón de plastificación hacia adelante o hacia atrás	Desgaste	Aparición de impurezas	Atascamiento del cañón de plastificación	Mtto. Correctivo	3	5	1	15	Revisión constante de la válvula y el sistema
27	Resistencias eléctricas	Generar calor mediante energía eléctrica	Calentamiento Insuficiente	Deterioro de Niquelinas	No genera calor adecuado	Cambio	4	5	3	60	Verificar la continuidad y de ser posible realizar el cambio
28	Terminales de cables eléctricos	Contactos que permite conectar y trasmitir energía	Sobrecarga y Deterioro	Impide el paso de corriente eléctrica	Riesgo de corto circuito	Cambio	4	2	2	16	Cambio de terminales en un cierto periodo
29	Sensor inductivo	Detectar objetos metálicos y miden la posición o la velocidad	Desgaste de contactos	Funciona automática obsoleta	Para parcial del sistema	Cambio	5	3	1	15	Revisar el estado de sensor inductivo con frecuencia
30	Sensor fin de carrera	Permite censar un recorrido de elemento móvil	Averías	Rotura de resorte de presión	Falso contacto	Cambio	3	4	1	12	Chequear el sensor de fin de carrera parcialmente

N°	COMPONENTE	FUNCIÓN	MODO DE	CAUGA DE EALLO	EFECTO DE	CONTROL	V	VALORACIÓN E C D NPP		ΙÓΝ	RECOMENDACIÓN
N	COMPONENTE		FALLO	CAUSA DE FALLO	FALLO	ACTUALES	F	G	D	NPR	RECOMENDACION
31	Tomacorriente bifásico empotrable	Permite la alimentación de una instalación mediante un cable flexible	Daños mecánicos exteriores	Tensión eléctrica inestable	No resiste al calor y la llama	Cambio	3	1	3	9	Realizar la limpieza y de ser necesario remplazarlo
32	Cables eléctricos	Conducir electricidad por todo el circuito	Mal estado	Exposición a agentes contaminantes del medio	Corto circuito y paro parcial	Cambio	3	3	2	18	Chequear periódicamente los cables del sistema eléctrico
33	Relé térmico	Proteger los motores de sobrecargas débiles y prolongadas	Fundición de microcomponentes	Desgaste y amperaje fuera de rango	Daño del motor	Inspección	3	3	2	18	Realizar la inspección con frecuencia del Relé Térmico
34	Breakers	Proveer protección a equipos eléctricos y cableado	Desgaste y rotura	Cortocircuito, Recalentamiento y corriente de sobrecarga	No permite el paso de corriente, daños constante en el breakers	Ninguno	4	3	1	12	Inspección periódicamente el breakers
35	Temporizadores	Controla el tiempo de inyección del material al molde, enfriamiento y la apertura y cierre	Daños y Deterioro	Pines rotos y daños en la bobina	Dificultad de abrir y cerrar los contactos del temporizador	Cambio	1	3	6	18	Chequear el estado del temporizador casualmente
36	Contactor eléctrico	Permite el paso de corriente eléctrica por medio de una señal de voltaje aplicado a la bobina	No enclava	Tensión fuera de rango, desgaste de pastillas interiores, polvo en el tablero	No permite el cierre y la apertura del circuito	Ninguno	4	3	2	24	Realizar la limpieza y de ser necesario remplazarlo
37	Fusible	Interrumpe la intensidad de corriente eléctrica debido a un cortocircuito	Fundido y Quemado	Incremento de tensión eléctrica	Dificultado de encendido de todo el sistema	Cambio	6	1	3	18	Comprobar el voltaje necesario
38	Termocuplas	Medir la temperatura mediante un voltaje pequeño	No mide temperatura deseada	termocuplas deteriorada	Inestabilidad del valor requerido de temperatura	Cambio	3	2	5	30	Chequear el estado y de ser necesario realizar el cambio
				SISTEMA: IN	YECCIÓN						
39	Tolva	Almacenar la materia prima en un estado sólido para alimentar el barril	Taponamiento	Sensor de nivel averiado no da señal	Problema de succión de materia prima	Ninguno	3	1	5	15	Revisar frecuentemente la tolva
40	Cubierta de barril	Cubrir las resistencias	Fisuras	Oxidación debido agentes del medio	Sistema de resistencia que no calientan	Ninguno	5	1	2	10	Limpieza constante del componente

N°	COMPONENTE	FUNCIÓN	MODO DE	CAUSA DE FALLO	EFECTO DE	CONTROL	VALORACIÓN E C D NB				RECOMENDACIÓN
IN.	COMPONENTE	FUNCION	FALLO		FALLO	ACTUALES	F	G	D	NPR	RECOMENDACION
41	Barril	Soportar altas presiones	Desgaste y Fisura	Holgura de barril y husillo excedida y no genera fricción	No resiste las presiones requeridas	Cambio	3	1	5	15	Reparar o cambiar el barril
42	Válvula check del husillo	Sellar la punta del husillo en la inyección y se dispare una cantidad constante en cada ciclo	Desgaste y rotura	Superficie de la válvula no sella y anillo fisurados	Parada parcial de la máquina	Cambio	3	1	5	15	Rectificar la superficie de ser necesario realizar el cambio de la válvula
43	Cilindro de inyección	Guiar el desplazamiento mediante una presión	Desgaste y Endurecimiento	Fugas de aceite internas en el cilindro	Presiones y velocidades de inyección menores a las requeridas	Ninguno	3	3	2	18	Chequeo visual parcial del cilindro de inyección
44	Boquilla de inyección	Generar un canal de flujo para el llenado del molde	Taponamiento	No permite el paso del flujo del material al molde	Dificultad de continuar con el ciclo de inyección	Limpieza	4	5	3	60	Bajar y limpiar el material que no permite el paso del flujo al molde
45	Husillo	Recibir el plástico, fundir, mezclar y transportar hacia el molde	Desgaste	Deterioro por el tiempo de uso	Carga lenta del material	Cambio	1	4	2	8	Cambiar o reconstruir el filete externos hasta obtener el diámetro original
				SISTEMA DE	CIERRE						
46	Mecanismo cierre	Generar movimientos de apertura y cierre de molde	Desgaste y Lubricación inadecuada	Des calibración de barras del mecanismo	Posibles pandeo de las placas de cierre y daños en el molde	Ninguno	4	1	4	16	Inspección periódica de barras de mecanismo de cierre
47	Guías de los soportes	Orientar el movimiento de la placa móvil conservando el paralelismo con la placa fija	Lubricación inadecuada	Obstrucción de la operación de movimiento	Desgaste en las guías de soporte	Ninguno	2	3	3	18	Realizar la lubricación constante de las guías
48	Engranes de placas	Realizar el movimiento de brazos encogedores	Desgaste	Fricción	Vibraciones en la máquina	Ninguno	2	3	3	18	Realizar el engrasado del engranaje antes de su operación
49	Ejes Guía	Guiar el movimiento lineal de la placa móvil	Desgaste y Fisura	Baja calidad del acero	Dificultad de deslizamiento y pérdida de velocidad	Ninguno	5	1	2	10	Inspeccionar el estado de los ejes guía de la máquina
50	Placa Fija y Móvil	Sostener el molde	Desgaste	Rosca de placas aisladas	Deslizamiento de molde	Ninguno	4	3	1	12	Verificar los orificios roscados de placas en el cambio de moldes

N°	COMPONENTE	FUNCIÓN	MODO DE	CAUGA DE EALLO	EFECTO DE	CONTROL	VALORACIÓN F G D NP			IÓN	DECOMENDA CIÓN
IN.	COMPONENTE	FUNCION	FALLO	CAUSA DE FALLO	FALLO	ACTUALES	F	G	D	NPR	RECOMENDACIÓN
51	Placa Posterior	Permite el apoyo al sistema de cierre del molde	Desgaste	No trasmite fuerza de cierre	Cilindro de cierre no genera fuerza de cierre	Ninguno	1	3	5	15	Chequeo no a menudo de la placa base
52	Pernos de sujeción	Permite el ajuste adecuado del porta moldes	Desgaste y Aislamiento	Desgaste del perno	Porta moldes en constante vibración	Cambio	3	2	4	24	Chequear el pernos de ser necesario realizar el cambio
53	Brazos encogedores	Trasmitir la fuerza de cierre	Avería	Eslabón de cadena desgastada o cadena floja	Bloqueo de placas y no permite el cierre del molde	Ninguno	1	3	5	15	Chequeo de cadena del sistema de brazos encogedores
54	Mecanismo de Expulsión	Expulsar el artículo de la cavidad del molde	Daños y Desgaste	Baja presión de cilindro hidráulico y sensor averiado	Interrumpe el ciclo de la máquina	Ninguno	2	2	4	16	Revisar el sistema de expulsión parcialmente
55	Rodamientos	Permitir la rotación relativa de los elementos bajo carga	Desgaste y Rotura	Instalación defectuosa y falta de lubricación	Rozamiento, Ruido y Vibración	Ninguno	3	4	2	24	Inspeccionar si contiene lubricación el rodamiento
56	Bancada de Inyectora	Soportar la unidad de cierre y da rigidez a la máquina	Desnivel	Componentes con anclaje inadecuado	Ruido	Ninguno	3	2	3	18	Comprobar el nivel del sistema
57	Bridas de Soporte	Proporciona el ajuste del molde	Rotura	Desgaste del componente	Moldes desalineados	Ninguno	3	1	4	12	Chequeo y Cambio de bridas de soporte de estar averiadas
58	Porta moldes	Sujetar el molde en la posición adecuada	Desgaste	Excesiva presión en el molde	Moldes desalineados	Ninguno	1	4	5	20	Limpiar la zona de trabajo
59	Electroválvula de Control	Abrir y cerrar porta moldes	Desgaste	Aparición de impurezas	Atascamiento del porta moldes	Cambio	2	6	2	24	Revisión habitual de la válvula y el sistema
60	Servo - motor	Realizar el movimiento de las partes móviles	Desgaste	Mecanismos averiados del servomotor	Dificultad de cierre del porta moldes	Ninguno	2	3	3	18	Chequeo frecuente del servomotor
61	Cilindro Actuador	Generar y Trasmitir la fuerza de cierre	Desgaste de Retenedores	Taponamiento	Impide el movimiento del sistema de cierre	Ninguno	1	3	5	15	Inspeccionar que no exista fugas de aceite del pistón

N°	COMPONENTE	FUNCIÓN	MODO DE	CAUSA DE FALLO	EFECTO DE	CONTROL	VALORACIÓN		IÓN	RECOMENDACIÓN	
IN.	COMPONENTE	FUNCION	FALLO	CAUSA DE FALLO	FALLO	ACTUALES	F	G	D	NPR	RECOMENDACION
				SISTEMA DE ENF	RIAMIENTO						
61	Tubería Hg	Permite conducir un fluido de enfriamiento a las máquinas	Desgaste y Fugas	Excesiva presión de trabajo y Choque con factor externo	Perdida de potencia de fluido de enfriamiento al sistema	Cambio	2	2	3	12	Chequeo visual periódico del sistema de tubería
62	Universal HG	Permite unir tramos que se han realizado cortes de segmento	Fugas	Daños por el tiempo de uso	Parada parcial del sistema	Cambio	3	3	2	18	Realizar el cambio de accesorios
63	Codo, Tee, Unión H6	Posibilita el cambio de dirección del flujo liquido	Desgaste y Oxidación	Fugas de agua	Paro parcial del sistema de enfriamiento	Cambio	3	3	2	18	Realizar el cambio de accesorios
64	Llaves de media vuelta	Regular el caudal del fluido	Desgaste	Oxidación por el agua	Filtración de líquido	Cambio	3	1	3	9	Inspeccionar semanal las válvulas de enfriamiento
65	Manguera presión de agua	Trasladar el agua a la máquina para el enfriamiento	Rotura	Degradación por los años de uso	Fugas del fluido	Ninguno	3	4	3	36	Chequeo visual periódicamente las mangueras de presión
66	Mangueras Neumáticas	Transportar el aire comprimido hacia la máquina	Rotura	Desgaste por agentes corrosivos del ambiente	Fuga de fluido	Cambio	3	5	2	30	Chequear que las mangueras no se encuentre dobladas
67	Válvula Check	Permite cerrar el paso contrario del agua	Desgaste y Desajuste	Manipulación inadecuada	Sistema con necesidad de cebado	Ninguno	1	2	3	6	Inspección de una manipulación adecuada de válvula

N°	COMPONENTE	FUNCIÓN	MODO DE	CAUSA DE	EFECTO DE	CONTROL	VALORACIÓN F G D NPR				RECOMENDACIÓN
			FALLO	FALLO	FALLO ACIÓN AUTOMÁ	ACTUALES	F	G	D	NPR	
68	Tanque de almacenamiento	Fuente de almacenamiento de material de PVC	Rotura y Desgaste	Derrame de material de PVC	Acumulación de partículas contaminantes	Ninguno	3	1	3	9	Inspección diaria de tanque de almacenamiento
69	Manguera de succión	Transportar el material a través de la succión	Fugas y Desgaste	Desgaste por tiempo de Uso	Dificultad de succión de material de PVC	Cambio	4	2	2	16	Chequeo parcial de la manguera de succión
70	Cargador de vacío	Transportar el material PVC hacia la tolva	Fugas, Desgaste y Rotura	Deterioro por el tiempo utilizado	Dificultad para retener aire de succión	Ninguno	3	1	5	15	Revisar a diario el cargador de vacío
71	Imanes de Retención de Cargador	Permite la obstrucción de material metálico hacia la tolva	Desgaste	Desgaste por el tiempo de uso	Permite el paso de metales hacia la tolva	Ninguno	4	1	3	12	Realizar limpieza mensual de imanes de la tolva
72	Filtro	Obstruir el paso de partículas que no sea de material PVC	Desgaste	Inadecuada manipulación y cambio retardado	Contaminación de material de PVC	Cambio	2	3	4	24	Chequeo del filtro mensual de ser necesario remplazarlo
73	Motor Eléctrico	Dispositivo que brinda energía para el funcionamiento del sistema	Sobrecarga	Carga excesiva de material	Parada parcial del succionador	Mtto Correctivo	2	3	4	24	Inspección del motor antes de puesta en marcha
						Valor	pro	me	dio	19	

Observaciones: El número de prioridad de riesgos (NPR) crítico será determinado con el promedio de todos los NPR de los diferentes componentes lo cual permitirá priorizar las acciones a tomar. En este caso los elementos con NPR ≥ 19 son los resaltados de color rojo.

Elaborado por: El Autor

Tabla 4. 74 Análisis Modal de Fallos de Montacargas Toyota

UNIVERSIDAD TECNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA											
		ANÁ			UIPOS DE LA EMPR		AS	SA			(A)
				-		Pág.: 2 de		AMI	FE:	2	
		EQUIPO	JS TRANSPORT	ADOR MONTACARO	SAS TOYOTA	Fecha:		09/20			
H	lolviplas s.a.	SISTEMA:		HIDRÁULICO		Elaborado por:	Poa	. Nels	l		FIGM
N	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	Revisado por: CONTROL ACTUALES		Jorg ALO G		Pez CIÓN NPR	RECOMENDACIÓN
1	Cilindro - Pistón	Suministrar presión al fluido para generar potencia y carga	Desgaste y Fugas	Cilindros defectuosos con derrame de fluido	Dificultad de movimiento de componentes	Mtto. Correctivo	6	3	1	18	Inspección general del estado de los cilindros
2	Motor Hidráulico	Convertir en movimiento rotatorio mediante el flujo de aceite	Desgaste y fugas	Avería de pistones por el tiempo de uso	Reducción de la revoluciones del motor	Ninguno	3	3	1	9	Inspeccionar periódicamente el motor hidráulico
3	Aceite Hidráulico	Transformar, Controlar y Trasmitir esfuerzos mecánicos a través del flujo	Contaminantes en el fluido	Perdida de Viscosidad y temperaturas elevadas	Propenso a corrosión de los metales del sistema	Cambio	6	3	4	72	Revisar semanal de a viscosidad e impurezas en el fluido
4	Filtro	Retener contaminantes que pueden dañar los componentes	Desgaste y Obstrucción	Sedimentos en el fluido	Rendimiento inadecuado del sistema hidráulico	Cambio	3	3	2	18	Chequear el filtro con la horas trabajadas para su cambio
5	Enfriador de aceite	Controlar la temperatura del aceite	Daños en el enfriador del aceite	Separación del radiador y manguera	Rendimiento excesivamente bajo	Ninguno	3	3	1	9	Inspección del enfriador del aceite a menudo
6	Bomba Hidráulica	Transformar la energía mecánica en energía hidráulica	Desgaste y Fugas	Cavitación	Presiones bajas de aceite	Ninguno	4	3	1	12	Revisar sino se encuentra con el fenómeno de cavitación

N	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROL ACTUALES	F	G	D	NPR	RECOMENDACIÓN
8	Acoples Hidráulicos	Conectar componentes como cañería o mangueras	Deterioro y Rotura	Acoples defectuosos que aíslan acoples de mangueras	Hermeticidad deficiente entre conexiones	Cambio	4	3	1	12	Realizar el cambio regularmente de acoples
9	Cañerías y Mangueras	Desplazar fluido del sistema hidráulico	Rotura y Deterioro	Acoples en mal estado	Transporte insuficiente de elementos	Cambio	5	3	2	30	Cambiar acoples según la inspección
				SISTEMA E	LÉCTRICO						
10	Batería	Entregar energía eléctrica al motor del montacargas	Mantenimiento inadecuado	Corrosión de placas, deformación de paletas	Deficiente almacenamiento de energía eléctrica	Ninguno	2	3	5	30	Revisar periódicamente la válvula
11	Alternador	Generar corriente alterna por medio de campos magnéticos	Deterioro del sistema	Desgaste de escobillas e inductor en mal estado	Carga negativa en el alternador	Ninguno	4	3	1	12	Cambiar escobillas durante un cierto kilometraje
12	Motor de arranque eléctrico	Encender el motor de combustión interna del equipo	Desgaste	No arranca el motor	no mover el motor al accionar el switch	Ninguno	2	3	4	24	Realizar el chequeo periódico del motor de arranque
13	Luces direccionales	Indicar la dirección de giro del equipo	Rotura y Deterioro	Fusible quemados, focos rotos, conexiones averiados y cortocircuito	Iluminación defectuosa, poco alcance de luces y por último no encienden	Cambio	3	1	3	9	Chequeo semanal de luces de ser necesario realizar el cambio
14	Luces frontales	Iluminar al conductor en lugares de baja visibilidad	Desgaste y Rotura	Fusible quemados, focos rotos, conexiones averiados y cortocircuito	Iluminación defectuosa, poco alcance de luces y por último no encienden	Cambio	3	1	3	9	Chequeo semanal de luces de ser necesario realizar el cambio
15	Bocina	Aplicar como advertencia de sonido para el paso del equipo	Deterioro y en corto	instalación inadecuado y fusibles incinerado	Riesgo alto de accidentes	Cambio	4	1	3	12	Revisar frecuentemente el componente
				SISTEMA M							
16	Cilindros	Guiar el desplazamiento del pistón	Expansión de Liquido	Deterioro de aceite y filtros, corrosión en la paredes del cilindro	Desgaste precipitado del cilindro, Reducción de la compresión	Operativo	3	3	1	9	Revisar periódicamente el cilindro
17	Válvulas	Permite el ingreso de aire y salida de gases	Desgaste y Rotura	Válvulas inestables, con juego inapropiado y deformaciones	Reducción de potencia y ruido en el motor	Ninguno	4	3	1	12	Chequeo de válvulas reguladoras
18	Pedales de control	Controlar el movimiento de freno y aceleración	Atascamiento	Retorno truncado debido a obstrucción	Ruido al accionar el pedal	Ninguno	3	1	3	9	Inspeccionar el accionamiento de pedales antes del funcionamiento

N	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROL ACTUALES	F	G	D	NPR	RECOMENDACIÓN
19	Horquilla	Posibilita el transporte como porta cargas	Fisuras y Ruido	Sobrecargas y golpe externos	Desgaste prematuro de las estructura	Ninguno	3	3	1	9	Chequeo de la estructura
20	Palancas de control hidráulico	Permite desplazar, alzar y bajar las horquilla	Funcionamiento defectuoso	Movimientos falsos	Riesgo de accidente	Ninguno	3	1	3	9	Inspección general de las palancas de control
21	Mástil	Mover la horquilla de carga de forma vertical subir y bajar	Fisuras y Atascamiento	Lubricación inadecuada en el sistema	Obstrucción de movimiento a las horquillas	Ninguno	3	1	3	9	Revisar periódicamente el mástil
22	Volante	Controlar el movimiento total del montacargas	Dificultad para mover	Fallos sistema de dirección	Dirección robusta no reacciona al instante	Ninguno	3	1	1	3	Chequear el sistema de dirección de movimiento
23	Tubo de escape de gases	Fluir el gas de la combustión hacia el exterior	Desgaste y Rotura	Daños por tiempo de uso	Contaminación del operador que conduce	Ninguno	3	1	3	9	Inspección del tubo de escape de gases
24	Bomba de combustible	Suministrar el combustible hacia los inyectores	Desgaste y Atascamiento	Perdida de presión de combustible	Encendido defectuoso del motor	Cambio	3	3	1	9	Cambio de bomba si ya cumplió el kilometraje
25	Cañerías	Transportar el combustible hacia los inyectores	Fisuras, Atascamiento y Rotura	Golpes o montaje defectuoso de componentes	Derrame de combustible y riesgo de incendio	Ninguno	3	3	1	9	Revisión semanal de cañería del equipo
26	Cámara de mezcla Aire - Combustible	Permitir la mezcla adecuada de aire - combustible	Mezcla inadecuada	Taponamiento de inyectores	Consumo excesivo de combustible	Ninguno	3	3	3	27	Realizar un ABC del equipo si lo amerita
				SISTEMA TRAN	SMISOR						
27	Motor a GLP	Transformar energía térmica en mecánica	Desgaste de batería, bobina y contactos	Falla de arranque	Paro del equipos por componentes anormal	Ninguno	3	1	4	12	Realizar un ABC del motor de combustión
28	Caja de velocidad	Trasmitir la relación de movimiento entre el cigüeñal y ruedas	Desgaste y rotura	Piñones interiores rotos los dientes	Movimiento de transmisión obstaculizada	Mtto. Correctivo	2	3	4	24	Realizar chequeo de caja con un personal automotriz
29	Cadena de Potencia	Trasmitir la fuerza de movimiento vertical mediante las poleas	Ruido, desgaste y Rotura	Lubricación inadecuada, fatiga y sobrecarga	Corrosión de la cadena o dientes del piñón	Cambio	3	1	3	9	Realizar la lubricación pertinente del sistema

N°	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROL ACTUALES	F	G	D	NPR	RECOMENDACIÓN
30	Cilindro Actuador	Suministrar Fuerza de recorrido lineal	Desgaste y Fugas	Empaques en mal estado o ensambles defectuosos	Pérdida de fuerza de levantamiento de carga	Ninguno	3	4	1	12	Chequear a diario fugas del cilindro actuador
31	Bomba de dirección	Enviar fluido a la dirección para realizar el giro derecha e izquierda	Desgaste y fugas	Cavitación de la bomba	No permite el movimiento de la dirección	Ninguno	3	3	1	9	Inspeccionar el estado de la bomba de dirección
32	Rueda direccionales	Control del movimiento del montacargas	Desgaste y deterioro	Separación del caucho de las ruedas	Excesiva carga y perdida de estabilidad	Cambio	6	3	2	36	Inspección del estado de ser necesario pedir el cambio
	Valor promedio										

Observaciones: El número de prioridad de riesgos (NPR) crítico será determinado con el promedio de todos los NPR de los diferentes componentes lo cual permitirá priorizar las acciones a tomar. En este caso los elementos con NPR ≥ 15 son los resaltados de color rojo.

Elaborado por: El Autor

Tabla 4.75 Análisis Modal de Fallos de Máquina Triturador de PVC

		UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA									
		ANÁLISIS									
			Pág.: 5 de		'AM		5				
1	lolviplas s.a.		Fecha: Elaborado por:	Ing. Nelson Poaquiza Ing. Jorge López				FICM			
•	ivivipias s.a.	SISTEMA:	SISTEMIA: BLECTRICO								
			MODO DE	Re		Revisado por:				ción	
N	COMPONENTE	FUNCIÓN	FALLO	CAUSA DE FALLO	EFECTO DE FALLO	ACTUALES	F			NPR	RECOMENDACIÓN
1	Motor Eléctrico	Generar y trasmitir movimiento que requiere la inyectora	Sobrecarga	Carga excesiva de material	Para parcial de la máquina	Mtto. Correctivo	6	3	3	54	Inspección del motor antes de puesta en marcha
2	PLC	Recibir e interpretar la señales de entrada y salida	Recibir una señal errónea	Error de programación	Paro de la operación de la máquina hasta reprogramar el PLC	Ninguno	5	4	1	20	Chequear por completo el PLC
3	Pulsador paro de emergencia	Prevenir daños en operador y máquina	Desgaste y rotura	Impide la desactivación de la máquina	Daños personales y Avería en la máquina	Cambio	4	2	2	16	Chequeo a diario del pulsador
4	Bornes de cables eléctricos	Contactos que permite conectar y trasmitir energía	Sobrecarga y Deterioro	Impide el paso de corriente eléctrica	Riesgo de corto circuito	Cambio	4	2	6	48	Cambio de terminales en un cierto periodo
5	Toma corriente empotrable	Permite la alimentación de una instalación mediante un cable flexible	Daños mecánicos exteriores	Tensión eléctrica inestable	No resiste al calor ni a la llama	Cambio	4	1	4	16	Realizar la limpieza y de ser necesario remplazarlo
6	Cables eléctricos	Conducir electricidad por todo el circuito	Deterioro	Exposición a agentes contaminantes del medio	Corto circuito y paro parcial	Cambio	4	2	2	16	Inspeccionar y cambiar los cables averiados
7	Relé térmico	Proteger los motores de sobrecargas débiles y prolongadas	Daños y Deterioro	Desgaste y amperaje fuera de rango	No conserva el motor	Cambio	4	5	1	20	Chequeo frecuentemente el relé térmico

N°	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROL ACTUALES	F	G	D	NPR	RECOMENDACIÓN
8	Transistor	Entregar una señal de salida en respuesta de entrada	Fatiga	Grandes cantidades de horas de trabajo	Recalentamientos en la fuente de alimentación	Cambio	3	3	1	9	Realizar el cambio de Transistor dependiendo del estado
9	Breakers	Proveer protección a equipos eléctricos y cableado	Desgaste y rotura	Cortocircuito, Recalentamiento y corriente de sobrecarga	No permite el paso de corriente, daños constante en el breakers	Ninguno	4	3	2	24	Inspección periódicamente el breakers
10	Pulsadores	Permite comandar el paso y la interrupción de corriente eléctrica hacia el motor	Deterioro	Resorte roto y contactos pegados entre otros	Mando del dispositivo incorrecta	Cambio	3	3	1	9	Chequeo semestral del pulsador
11	Contactor eléctrico	Establecer o interrumpir el paso de corriente en circuito de potencia o mando al energizar la bobina	No enclava	Tensión fuera de rango, desgaste de pastillas interiores, polvo en el tablero	No permite el cierre y la apertura del circuito	Ninguno	6	4	1	24	Realizar la limpieza y de ser necesario remplazarlo
12	Amperímetro	Permite observar el consumo del motor eléctrico	Deterioro y Daños	Daños en la bobina y el imán	Inadecuado valor de voltaje del sistema eléctrico	Cambio	3	1	1	3	Verificar el estado de amperímetro
13	Fusible	Interrumpe la intensidad de corriente eléctrica por un cortocircuito	Quemado o Fundido	Incremento de tensión eléctrica	Dificultado de encendido de todo el sistema	Cambio	3	1	3	9	Comprobar el voltaje necesario
				SISTEMA MI	ECÁNICO						
14	Tolva de Alimentación	Posicionar el material directamente al sistema de trituración	Atascamiento	Material fuera de la dimensión especificada	Ruido y Posible arrojamiento del material hacia el exterior	Ninguno	3	1	4	12	Revisar frecuentemente la tolva de alimentación
15	Tolva de Descarga	Descargar el material triturado del sistema	Atascamiento	Excesiva dimensione de hojuelas	Dificultad de descarga de hojuelas	Ninguno	3	2	2	12	Revisar frecuentemente la tolva descarga
16	Criba	Determinar las dimensiones de las hojuelas que resultará del proceso de molienda	Desgaste y Rotura	Partículas intrusas como el acero	Ruido y rotura del filo de las cuchillas del triturador	Cambio	5	1	3	15	Comprobar el voltaje necesario
17	Cámara de Molienda	Lugar donde lleva acabo la trituración de los materiales	Desgaste	Sobrecarga interna de la cámara	Atascamiento de la máquina trituradora	Ninguno	3	3	1	9	Revisar la cámara de molienda
18	Eje Rotatorio	Elemento de soporte giratorio sometido a cargas cíclicas	Fatiga por esfuerzos	Dureza del eje baja y daños superficiales	Dificultad de adquirir material triturado	Cambio	3	1	3	9	Chequear en cada limpieza y engrases del eje rotario del molino

N°	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROL ACTUALES	F	G	D	NPR	RECOMENDACIÓN
19	Rotor Porta cuchillas	Permite alojar la herramienta de corte y cillazamiento	Desgaste y rotura	Carga excesiva de trabajo y medio corrosivo	Dificultad de ajuste óptimo de cuchilla	Cambio	3	3	1	9	Chequear frecuente mente el portacuhillas
20	Cuchillas	Realizar fuerza de corte y cizallamiento de productos	Rotura y Desgaste	Inadecuado afilado y velocidad excesiva	Dimensiones sobrepasadas	Cambio	6	3	3	54	Verificar el estado del corte de las cuchillas
21	Volante de Inercia	Almacenar energía para moderar las fluctuaciones de la velocidad a la que gire el eje	Desalineación volante - motor	Montaje inadecuado y mal ajuste	Perdida de potencia y rotura de bandas	Ninguno	3	1	4	12	Inspeccionar periódicamente la alineación de los componentes
22	Bancada	Proporciona una gran solidez y absorber vibraciones	Desnivel	Componentes con anclaje inadecuado	Ruido	Ninguno	3	1	3	9	Comprobar el nivel del sistema
23	Cobertores laterales	Cubrir el volante del rotor, la polea y el motor	Deformación y Deterioro	Oxidación debido agentes del medio	Cobertores flojos con alto índice de ruido	Ninguno	3	3	1	9	Limpieza constante del componente
24	Tapa frontal	Permite la limpieza o cambio de la criba del triturador	Desgaste y Deformación	Carga excesiva y rozamiento del material	Dificultad de cierre y ruido excesivo	Ninguno	3	1	3	9	Comprobar el cierre total de la tapa frontal
25	Pernos	Unir dos o varias piezas mecánicas como las cuchillas	Flexión o Tensión	Fractura por fatiga debido a cargas	Vibración y Ruido de las cuchillas	Cambio	5	3	2	30	Chequeo frecuente de pernos del sistema
26	Polea	Trasmitir el movimiento que produce el motor a través del eje	Desalineación	Excesiva tensión de la banda y una montaje inadecuado	Desgaste prematuro de las bandas	Ninguno	3	3	1	9	Verificar la alineación de las bandas frecuentemente
27	Bandas	Trasmitir potencia de polea a polea	Desgaste y rotura	Desgaste por el tiempo de uso	Dificultad de trasmitir la potencia del motor	Cambio	3	4	1	12	Verificar el estado actual de la bandas
28	Chumaceras	Permite el soporte para la rotación del eje portacuhillas	Rotura, Ruido y Vibración	Sobrecarga, Corrosión y falta de lubricación	Desgaste raudo de los cojinetes	Ninguno	5	1	3	15	Verificar periódicamente el estado de las chumaceras
						Valor	Pro	me	dio	17	

Observaciones: El número de prioridad de riesgos (NPR) crítico será determinado con el promedio de todos los NPR de los diferentes componentes lo cual permitirá priorizar las acciones a tomar. En este caso los elementos con NPR ≥ 17 son los resaltados de color rojo.

Elaborado por: El Autor

Tabla 4.76 Análisis Modal de Transportador Hidráulico

		ANÁL	FACULT	TAD DE INGENII	CNICA DE AMBATO ERÍA CIVIL Y MEC QUIPOS DE LA EMPRE	ÁNICA	AS S	.A			
		EQUIDO.	TD A NICDODTA	Pág.: 4 de	N°	AM	FE:	4			
		EQUIPO TRANSPORTADOR HIDRÁULICO DE PALLETS F					- 0,	09/20			FICM
ı	Holviplas s.a.	SISTEMA: MECÁNICO			Elaborado por:	Ing. Nelson Poaquiza				The state of the s	
•		SISTEMIN.		I III CHI II CO	Revisado por		Ing. Jorge López VALORACIÓN				
N	COMPONENTE	FUNCIÓN	MODO DE	CAUSA DE FALLO	EFECTO DE FALLO	CONTROLES					RECOMENDACIÓN
			FALLO			ACTUALES	F	G	D	NPR	
1	Muelle de Retorno a vertical	Operar elásticamente almacenando energía y desprenderse sin deformación	Deterioro y Rotura	Corrosión del muelle por el tiempo de uso	No realizar el retorno al lugar establecido	Ninguno	6	3	1	18	Chequeo del muelle periódicamente
2	Rueda Directrices	Controlar el movimiento del transportador	Desgaste y Deterioro	Desgaste por el tiempo de uso	Desequilibrio del equipo transportador	Cambio	6	3	2	36	Inspección del estado de ser necesario remplazar
3	Leva de mecanismo de elevación	Impulsar por contacto directo la estructura del equipo	Desgaste	Lubricación insuficiente	Dificultad para elevar el equipo	Ninguno	7	2	1	14	Chequeo al momento de su utilización
4	Barra de empuje de elevación	Permite el movimiento completa de la estructura	Rotura	Aplicar cargas excesivas	Dificultad para el movimiento de la estructura	Ninguno	6	3	1	18	Chequeo frecuente de la barra antes del uso
5	Rueda sencilla delantera	Guiar el movimiento hacia el soporte de carga	Desgaste y Deterioro	Desgaste por el tiempo de uso	Problema de movimiento del equipo	Cambio	1	2	4	8	Inspección del estado de ser necesario remplazar
6	Perno de rueda delantera	Permite sujetar y fijar uniones de elementos desmontables	Sobrecarga y Asilamiento	Debido a sobrecargas de pernos sometidos a tensión	Dificultad de estabilidad de la rueda	Cambio	5	1	1	5	Inspección frecuente de la tuerca
7	Rodillos de entrada	Posibilita guiar mediante rodadura hacia el soporte	Desgaste	Daño por el tiempo de uso	Perno flojo en funcionamiento	Ninguno	4	1	4	16	Chequeo semanal del componente

N°	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROL ACTUALES	F	G	D	NPR	RECOMENDACIÓN
8	Estructura o Chasis	Sostener y aportar rigidez	Deformación y Rotura	Uso inadecuado y excesiva carga	Parada parcial del equipo	Mtto Correctivo	4	2	3	24	Realizar el mantenimiento periódicamente
9	Barra de tracción	Dirigir y Accionar la bomba de elevación del equipo	Flexión y Rotura	Uso inapropiado y deterioro por el tiempo de uso	Problemas de elevación respecto al nivel de suelo	Ninguno	5	1	3	15	Inspección visual frecuente de la barra de tracción
10	Mando de válvulas elevación y descenso	Permite elevar, bajar y situar en un punto muerto o de reposo	Deterioro y Rotura	Repetitivos movimientos inadecuados del mando	Dificultad manual de elevación del equipo	Ninguno	6	3	2	36	Revisar frecuentemente de ser necesario realizar el cambio
11	Empuñadura	Facilita el desplazamiento con la mano	Deterioro	Desprendimiento de la empuñadura	Riesgo de accidente en la mano del operador	Ninguno	3	3	2	18	Inspección completo del sistema
12	Sellos hidráulicos	Sellar internamente y no dejar pasar el flujo en cilindros	Desgaste y Endurecimiento	Tiempo de uso y la exposición al abuso	Fugas de aceite de los cilindros	Cambio	6	3	2	36	Realizar el remplazo periódicamente
13	Anillo seeger	Permite la sujeción o retención de algún tipo de pieza	Deformación y Desgaste	Elementos flojos	Elementos con el riesgo desprendimiento	Cambio	3	1	3	9	Revisar periódicamente los anillos seeger
14	Rodamientos	Permite la rotación relativa entre dos elementos bajo carga	Desgaste y Rotura	Deterioro por el tiempo de uso	Dificultad de rotación y movimiento del equipo	Cambio	6	1	5	30	Revisar lubricación frecuentemente de ser necesario realizar el cambio
15	Freno de mano	Facilita el no desplazamiento del equipo mecánico	Desgaste	Manipulación excesiva del frenado con carga	Problemas con la estabilidad del equipo	Mtto Correctivo	5	4	1	20	Inspección periódica del sistema de freno
				SISTEMA HID	RÁULICO						
16	Depósito de aceite	Almacenar el fluido del sistema	Oxidación y Desgaste	Fugas de aceite en el sistema	Daños en la bomba	Cambio	4	4	1	16	Cambiar el aceite periódicamente
17	Filtro	Control de la contaminación por partículas externas	Desgaste y Obstrucción	Sedimentos en el fluido	Bajo rendimiento del sistema hidráulico	Cambio	5	1	2	10	Chequear el filtro con la horas trabajadas para su cambio

N°	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROL ACTUALES	F	G	D	NPR	RECOMENDACIÓN
18	Bomba	Proporcionar una presión y caudal adecuado del fluido	Desgaste y Fugas	Cavitación	Presión baja	Ninguno	6	3	1	18	Revisar si no existe el fenómeno de cavitación
19	Elemento de Regulación	Regular el paso del aceite desde la bomba al actuador	Deterioro	Daño por el tiempo de uso	Filtración por flujo excesivo al actuador	Cambio	6	3	1	18	Verificar el estado de ser necesario realizar el cambio
20	Actuadores	Transformar energía de presión en energía mecánica	Desgaste y Fugas	Desgaste de retenedores	Fugas de aceite en el sistema	Ninguno	1	4	4	16	Inspeccionar que no exista fugas de aceite en el actuador
21	Aceite Hidráulico	Transformar, Controlar y Trasmitir esfuerzos mecánicos a través del flujo	Contaminantes en el fluido	Perdida de Viscosidad y temperaturas elevadas	Propenso a corrosión de los metales del sistema	Cambio	6	2	2	24	Revisar semestralmente el nivel del aceite y la viscosidad
22	Sellos Poli pack	Sellar internamente y no dejar pasar el flujo en cilindros	Desgaste y Endurecimiento	Tiempo de uso y la exposición al abuso	Fugas de aceite de los cilindros	Cambio	4	1	4	16	Realizar el remplazo periódicamente
						Valor	pro	me	dio	19	

Observaciones: El número de prioridad de riesgos (NPR) crítico será determinado con el promedio de todos los NPR de los diferentes componentes lo cual permitirá priorizar las acciones a tomar. En este caso los elementos con NPR ≥ 19 son los resaltados de color rojo.

Elaborado por: El Autor

Tabla 4. 77 Análisis Modal de Fallos de Equipo Tecle de cadena

			UN	IVERSIDAD TEC	NICA DE AMBAT	0					
					RÍA CIVIL Y MECA						8
		ANALISI	<u>IS AMFE PARA</u>	MAQUINAS Y EQ	UIPOS DE LA EMP						
			EQUIPO TECL	E DE CADENA TRUPE	R	Pág.: 1 de		AM		3	1
			EQUITOTECE	E DE CADEANT TROI E		Fecha:		09/20	_		FICM
h	olviplas s.a.	SISTEMA:	L	EVANTAMIENTO DE (CARGA	Elaborado por:	Ŭ			oaquiza	
	-	515121111			· · · · · · · · · · · · · · · · · · ·	Revisado por:		. Jorg			
N	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROLES ACTUALES	F	ALO G	RAC D	IÓN NPR	RECOMENDACIONES
1	Gancho Superior	Sujetar el tecle y la carga	Desgaste y Deformación	Colapso del tecle junto a la carga	Riesgo alto de accidente	Ninguno	3	3	1	9	Chequeo al momento de su utilización
2	Cerrojo del gancho superior	Permitir seguridad del gancho	Desgaste y Rotura	Aplicar cargas mayores al establecido	No permite el cierre completo del gancho con carga	Ninguno	3	3	1	9	Chequeo frecuente del cerrojo del gancho
3	Pasador gancho superior	Permite desmontar dos o varias piezas	Cizalladura y Tensión	Concentración de cargas elevadas	Riesgo de accidente	Cambio	3	3	1	9	Chequeo del pasador periódicamente
4	Gancho inferior	Sujetar todo el tecle junto con la carga que se le aplique	Desgaste y Deformación	Colapso del tecle junto a la carga	Riesgo alto de accidente	Ninguno	3	3	1	9	Chequeo al momento de su utilización
5	Cerrojo del gancho inferior	Permite el aseguramiento del gancho	Desgaste y Rotura	Aplicar cargas de dimensiones mayores que diámetro del gancho	No permite el cierre completo del gancho con carga	Ninguno	3	3	1	9	Chequeo frecuente del cerrojo del gancho
6	Pasador de la cadena	Permite la fijación mecánica desmontable de dos o varias piezas	Cizalladura y Tensión	Concentración de cargas elevadas	Riesgo de accidente	Cambio	3	3	1	9	Inspección del pasador periódicamente
7	Tuerca ranurada	Permite sujetar y fijar uniones de elementos desmontables	Sobrecarga y Asilamiento	Debido a sobrecargas de pernos sometidos a tensión	Dificultad de apriete en la unión de 2 elementos	Cambio	3	1	3	9	Inspección frecuente de la tuerca
8	Chaveta	Inserta entre dos elementos para trasmitir potencia sin deslizamiento	Cizalladura y Fatiga	Exceso de cargas aplicadas al elemento	Deslizamiento de un solo elemento	Ninguno	3	3	1	9	Chequeo semanal del componente

N°	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROL ACTUALES	F	G	D	NPR	RECOMENDACIÓN
9	Armazón	Permite el ensamble de componentes del sistema	Desgaste y Deterioro	Desgaste por la frecuencia de uso	Parada parcial del tecle	Ninguno	3	1	3	9	Realizar la limpieza del armazón
10	Piñón	Permite variar la relación de transmisión del sistema	Desgaste y rotura	Golpeteo y ruido por daños en los dientes	Atascamiento de los eslabones de la cadena	Cambio	3	1	3	9	Inspección visual de ser necesario cambiar el piñón
11	Rodamiento de bolas	Permite la rotación relativa entre dos elementos bajo carga	Desgaste y Rotura	Deterioro por el tiempo de uso	Dificultad de rotación del sistema del tecle	Cambio	3	3	1	9	Revisar frecuentemente de ser necesario realizar el cambio
12	Polea de carga	Permite levantar y mover carga con una ventaja mecánica	Desgaste y Fisura	Atascamiento y movimiento deficiente	Riesgo de caída de carga	Ninguno	3	1	3	9	Inspección completo del sistema
13	Engranaje de Carga	Facilita elevar la carga	Desgaste y Deterioro	Dificultado de engranaje para la elevación	Obstrucción total del tecle	Ninguno	3	3	1	9	Verificar el estado actual del sistema
14	Guía de la cadena	Orienta el paso de la cadena al operar el equipo	Deterioro y Rotura	Paso de los eslabones de la cadena frecuentemente	Dificultad de elevación de carga	Cambio	3	1	3	9	Revisar periódicamente la guía de la cadena
15	Guía de Rodillo	Orienta el paso de la cadena	Deterioro y Rotura	Paso del rodillo al momento del movimiento de la cadena	Dificultad de elevación de carga	Cambio	3	3	1	9	Inspección visual del rodillo de ser necesario cambiarlo
16	Perno de buje	Unir dos o varias elementos mecánicas	Flexión o Tensión	Apriete excesivo del pernos con la dos tapas	Aislamiento del pernos provoca que la tapas se aflojen	Cambio	3	3	2	18	Verificación del aislamiento del perno frecuentemente
17	Tuerca U para el cuerpo	Permite sujetar y fijar dos elementos mecánicos	Aislamiento	Manipulación inadecuada y sonido del trinquete	Dificultad de fijación del trinquete	Cambio	3	3	2	18	Inspección periódica de la tuerca y der posible realizar el cambio
18	Pasador del trinquete	Sujetador de los componentes trinquete, resorte y disco	Deformación y Rotura	Funcionamiento inadecuado de los componentes	Declive del tecle con carga aplicada	Cambio	3	3	2	18	Chequeo del pasador periódicamente
19	Resorte de trinquete	Controla el bloqueo y desbloqueo de los componentes	Deformación y Resorte defectuoso	Mantenimiento inadecuado	Resorte suelto y riesgo de accidente	Ninguno	3	3	1	9	Realizar el mantenimiento y de ser necesario cambio de resorte

N°	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROL ACTUALES	F G	D	NPR	RECOMENDACIÓN
20	Trinquete	Permite bloqueo del tecle	Desgaste y fisura	Instalación incorrecta del trinquete	Desbloqueo y riesgo de accidente	Ninguno	3 1	3	9	Chequear el sonido clic antes de usar el equipo
21	Anillo de fijación	Permite sujetar y fijar dos elementos mecánicos	Sobrecarga y Asilamiento	Debido a sobrecargas se produce aislamiento del anillo	Problemas de fijación del trinquete	Ninguno	3 3	1	9	Inspección frecuente del anillo de fijación
22	Disco de fricción	Permite la elevación de la carga mediante el movimiento de la cadena	Desgaste y Agrietamiento	Cargas excesivas y uso frecuente y prolongado del equipo	Riesgo de caída de carga y accidentes	Cambio	3 1	2	6	Visualización del disco de fricción para su mantenimiento o remplazo
23	Disco de tambor dentado	Permite el aseguramiento del trinquete	Corrosión y Desgaste	Residuos e impurezas en el tambor	Riesgo de atascamiento del tambor dentado	Ninguno	3 3	1	9	Realizar la limpieza y lubricación del tambor dentado
24	Buje para el disco del trinquete	Conectar elementos en movimiento como el disco de fricción	Desgaste y Vibración	Deterioro del grosor uniforme del buje	Riesgo del no frenado del sistema	Cambio	3 1	3	9	Cambio de bujes periódicamente
25	Placa de fricción	Permite el ensamble de los bujes, disco y piñón	Agrietamiento y Desgaste	Deterior debido al uso frecuente y prolongado	Ruido excesivo y acumulación de partículas del medio	Ninguno	3 3	2	18	Mantenimiento frecuente de las placas
26	Rueda Manual	Proporciona movimiento de elevación y descenso de la carga	Desgaste y Deterioro	Debido a la acumulación de partículas contaminantes	Inadecuado paso de la cadena sobre la rueda manual	Ninguno	3 1	3	9	Inspeccionar la rueda manual antes de la operación
27	Tope de la rueda	Faculta el bloqueo del elemento rueda manual	Desgaste	Deterior de componentes por inadecuada instalación	Vibración de la rueda manual y componentes	Cambio	3 3	1	9	Chequeo del tope de la rueda seguidamente
28	Pasador del tope de la rueda	Permite la fijación y desamable de elementos del equipo	Deformación y Rotura	Sujeción inadecuada de componentes	Imposibilitado para la utilización con carga	Cambio	3 3	1	9	Chequeo del pasador periódicamente
29	Cubierta de la rueda	Proteger y cubrir los elementos del sistema	Deformación y Rotura	Manipulación inadecuada del operador	Problemas de acumulación de partículas en la rueda	Cambio	3 1	3	9	Inspección usual de la cubierta de la rueda
30	Rondana de resorte	Permite el ajuste necesario del resorte	Desgaste y Deterioro	Inadecuada manipulación	Aflojamiento de cubierta y demás elementos	Cambio	3 3	1	9	Cambiar rondanas que aprietan el resorte

N°	COMPONENTE	FUNCIÓN	MODO DE FALLO	CAUSA DE FALLO	EFECTO DE FALLO	CONTROL ACTUALES	F	G	D	NPR	RECOMENDACIÓN
31	Pasador del extremo	Permite la fijación mecánica desmontable de dos o varias piezas	Tensión y Cizalladura	Concentración de cargas elevadas	Riesgo de accidente	Cambio	1	3	3	9	Chequeo del pasador periódicamente
32	Cadena de carga	Trasmite energía por medio de fuerzas extensibles	Fatiga de eslabones	Atascamiento de eslabones en la polea	Dificultad de levantamiento de carga	Cambio	3	3	1	9	Inspeccionar si no existe desgaste y deformación de la cadena
33	Cadena Manual	Trasmite energía por medio de fuerzas extensibles	Fatiga de eslabones	Atascamiento de eslabones en la polea	Dificultad operar el levantamiento de la carga	Ninguno	3	1	3	9	Verificar que no existe desgaste y deformación de la cadena
34	Perno	Unir dos o varias piezas mecánicas	Flexión o Tensión	Fractura por fatiga debido a cargas	Tecle inservible hasta su mantenimiento	Cambio	3	3	2	18	Chequeo frecuente de pernos del sistema
35	Pasador del resorte	Permite la fijación mecánica desmontable de varias piezas	Deformación y Rotura	Sujeción inadecuada de componentes	Imposibilitado para la utilización con carga	Cambio	3	3	1	9	Chequeo del pasador periódicamente
36	Polea libre	Trasmitir fuerza necesaria para mover peso	Desgaste y Fisura	Daños en el tensor debido a excesiva tensión	Dificultad de trasmitir movimiento	Ninguno	3	1	3	9	Verificación trimestral de la polea
37	Eslabón de tope de la cadena	Permite la unión de elementos a través de nodos	Fatiga	Esfuerzo excesivos anormales	Problemas de utilización del tecle con carga	Cambio	3	3	1	9	Realizar el cambio periódico del eslabón del sistema
						Valor	pro	me	dio	10	

Observaciones: El número de prioridad de riesgos (NPR) crítico será determinado con el promedio de todos los NPR de los diferentes componentes lo cual permitirá priorizar las acciones a tomar. En este caso los elementos con NPR ≥ 10 son los resaltados de color rojo.

Elaborado por: El Autor

4.2.7 Desarrollo del Plan de Mantenimiento Preventivo

4.2.7.1 Bitácora de Mantenimiento

La bitácora de mantenimiento se elabora a partir de estimaciones estadísticas de confiabilidad de weibull realizado en los puntos anteriores, donde se en lista las actividades que realizan los operadores de las máquinas y equipos del área inyección de PVC para evitar fallos imprevistos de los componentes y sistemas. A continuación, se describe el código de colores como se indica en la tabla 4.69.

Tabla 4. 78 Matriz de Mantenimiento de Inyectoras

MÁQUINA	CÓDIGO	Meses			ENE	RO	FEI	BRERG	0 1	MARZ	ю	AF	RIL	1	MAYO		JU	NIO		JULIC	,	AG	OSTC	SE	PTIE	MBRI	Ε Ο	CTUB	RE I	NOVI	EMBR	E 1	DICIE	MBRE
INYECTORAS	INYH3	Semanas			1 2	3 4	5 6	[₇],	8 9	10 11	12	13 14	15 1	16 17	18 10	20 2	1 22	23 24	25	27	8 20	30 31	32	3 34	35 26	37 2	8 30	40 41	42 42	44	5 46	47 40	49 5	0 51 52
SISTEMA	COMPONENTE	Semanas ACTIVIDADES	MANT.	MAQ UINA	1 2	. 4	5 6	1/ 1	0 9	10 11	12	13 14	113 1	10 17	13 19	20 2	.1 22	23 24	23 2	.0 27	.0 29	30 31	32 3	J 34 .	JJ 30	, 3/ 3	0 39	40 41	42 43	44 4	5 40	+/ 48	49 30	, 31 32
343 IEVIA	Bomba Hidráulica	Revisar el fenómeno de cavitación	Preventivo	Encendido		-		1 1		П	1 1	1	1 1	1 1		П	1	П	1 1	1 1		-	1 1	т т	1	1 1	11		П	1 1	1 1	1	П	
	M otor Hidráulico accionamiento							++	_		+	-			_	 	+		++		-		+	+	-	++	+			+	+	-	++	+
	de husillo	Chequeo de la viscosidad del aceite	Predictivo	Encendido												ш											\perp						ш	
	Actuador del Husillo	Inspeccionar visualmente fugas de aceite del actuador	Predictivo	Encendido							\perp								1				11		_								ш	4
	M angueras Hidráulicas	Inspección visual mangueras hidráulicas	Predictivo	Encendido							\perp																						4	
0	Acop les de Manguera	Realizar el cambio de acop les	Preventivo	Apagado		_		11			\perp						4		1 1			_	11									_	щ	
Hidráulico	Cañerías	Verificar fugas en las cañerías	Preventivo	Encendido		_		11				_											11		_							_	┷	
drá	Filtro de aceite de papel	Realizar el cambio del filtro	Preventivo	Apagado		_		_ _			44								44				44									_	Щ.	\bot
臣	Filtro metálico de aceite	Realizar la limpieza del filtro	Preventivo	Apagado		_		_ _			44						4		1 4			_	44				\perp					_	$\perp \! \! \perp$	\bot
	Válvula hidráulica	Limpiar la válvula	Preventivo	Apagado		_		1			44						4					_	44									_	$\perp \! \! \perp$	
	Tanque de aceite	Inspeccionar y Limpiar el tanque de aceite	Preventivo	Apagado				44	_		44		Ш		_				1 4				1							\perp		_	$\bot \bot$	\bot
	Intercambiador de calor	Realizar mantenimiento cumplida las horas de operación	Preventivo	Apagado																														
	Aceite Hidráulico	Analisis de aceite para conocer el estado	Predictivo	Apagado							\perp					ш											\perp						ш	
	Cilindros Hidráulico	Revisar el estado del cilindro	Preventivo	Apagado	\Box			$\perp \! \! \perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			$\perp 1$		\coprod	┸				\Box	11	1	Ш		11			$\perp \perp$		\Box		\perp	$\perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp$		щ	\bot
	M otor Eléctrico	Medir voltaje y corriente antes del arranque	Predictivo	Encendido				$\perp 1$		ш	Ш		\sqcup			Щ		Ш	$\perp \downarrow$				$\perp 1$			$\perp \Gamma$		Ш		ш	$\perp \perp 1$		ш	
	Pulsador paro de emergencia	Chequear el pulsador	Preventivo	Apagado																													ш	
	Sensor de temperatura de aceite	Comprobar las conexiones con daños y averías	Preventivo	Apagado				$\perp \downarrow$		$\sqcup \bot$			\sqcup			ш		oxdot					$\perp \downarrow$			11		oxdot		ш	$\perp \downarrow \downarrow$		44	\bot
1 _ 1	Rele de estado sólido	Inspeccionar el estado del relé	Preventivo	Apagado	Щ			44		Ш		_	Ш				4						Ш		_	$\perp \perp$	\perp		$\sqcup \sqcup$	ш	Ш	_	$\perp \downarrow $	
ico	Electroválvula de control	Revisar la válvula y el sistema	Preventivo	Apagado																													ш	
Control Eléctrico	Resistencias eléctricas	Verificar la continuidad, voltaje y corriente	Predictivo	Apagado																													44	
鱼	Sensor fin de carrera	Chequear el sensor de fin de carrera	Preventivo	Apagado		_		1			44	_					4					_	44		_							_	ш	┵┢
DI CI	Cables eléctricos	Cambiar los cables en mal estado	Preventivo	Apagado				11			\perp								1 1				44		_								ш	┵┢
, Jo	Relé térmico	Realizar la limpieza del Relé Térmico	Preventivo	Apagado																													ш	
	Breakers	Verificar conexiones de ser necesario remplazar	Preventivo	Apagado		_	-	-	_			_	ш		_	ш	_		-			_	+		_	\bot			\vdash	_	44	_	4	
	Contactor eléctrico	Limpiar y de ser necesario remplazar	Preventivo	Apagado							44																						4	4
	Fusible	Comprobar el voltaje necesario	Preventivo	Apagado	-H	_	++	+		\vdash	+		++		-		_	⊢ ⊢	+ +	-	-	_	++		+	++		⊢⊢		-	\dashv	-	\vdash	
	Tablero eléctrico	Termografía para analizar futuras fallas	Predictivo	Apagado	-H	_	-	+			+		+		-			\vdash	+	-	-		++		+	++	_				+	_	₩	+
	Termocuplas	Chequear el estado y cambiar de ser necesario	Preventivo	Apagado		_	-	+			-		+-+		_			\vdash	+		-		++		_	++	-			-	+	_	\vdash	+
	Tolva	Revisar el estado de la tolva	Preventivo	Encendido		_	-	+		\vdash	+		+		_			\vdash	+		-		++		-	++		-		-	+	_	₩	++
ión	Barril Válvula check del husillo	Reparar o cambiar el barril Limpiar la superficie de la válvula	Preventivo	Apagado	+		++	+ 1	_		1 1	_	+	+	_	H	+		+ +	-	-		++	+	_	+	-		1	++	+	-	₩	+
3		1	Preventivo	Apagado					_		++		1		_			-	+ +	++	-		+-+			+ +				+		-	\vdash	
Inyección	Cilindro de inyección	Chequear el cilindro de inyección	Preventivo	Apagado																													4	
	Boquilla de inyección Husillo	Limpiar el material Cambiar o reconstruir	Preventivo Preventivo	Apagado	_	_		++			++		-						+-	_		_	-			-					-	-	#	
	Guías de los soportes	Realizar la lubricación de las guías		Apagado							_								1													_	4	
	Engranes de placas	Realizar la lubricación de las guias Realizar el engrasado antes de su operación	Preventivo Preventivo	Apagado Apagado	-			++	_				+		_								++							\blacksquare	+	-	#	
	Ejes Guía	Limpiar los ejes guía de la máquina	Preventivo	Apagado Apagado																														
	Placa Fija y Móvil	Controlar el paralelismo entre placa fija y móvil	Preventivo	Apagado																														
	Pernos de sujeción	Inspección visual del pernos de ser necesario remplazar	Predictivo	Apagado	+		++	+		\vdash	+		tt		+			H	+ 1	++	+		+			++		$\vdash\vdash$	H	H	+		+	$+\mathbf{f}$
Cierre	M ecanismo de Expulsión	Revisar el sistema de expulsión	Preventivo	Apagado	\pm		1	$\pm \pm$			+		++					\vdash		+	+		++		+	++					$\pm \pm \pm$		+	
Ü	Rodamientos	Analisis de vibraciones para verificar el funcionamiento	Predictivo	Apagado	-		++	+	-		+	\dashv	++	\dashv	-	\vdash	+	\vdash			+		+	+	\dashv	++	\dashv		++	++	+	+	+	
	Bancada de Inyectora	Comprobar el nivel del sistema	Preventivo	Apagado			tt	+	-	\vdash	+	-	++	+	-	\vdash	+	\vdash			+		+	+	-	++	\dashv	\vdash	++	+	\pm	+	+	1
	Bridas de Soporte	Chequear las bridas y de estar averiadas remplazar	Preventivo	Apagado																														
	Porta moldes	Limpiar la zona de trabajo	Preventivo	Encendido																														
	Cilindro Actuador	Inspeccionar visualmente fugas de aceite	Predictivo	Encendido																			П											
_	Tanque de almacenamiento	Chequear el estado del tanque	Preventivo	Encendido			П	\top	1		Ħ	T	Ħ	\top	1	П	T	Ħ					\Box		T	T		l l	tt	Ħ			\vdash	
Alimentación automática	Manguera de succión	Inspeccionar la manguera de succión	Preventivo	Encendido				T					Ħ					Ħ		1 1			T^{\dagger}		T			ΙT		ΠŤ	T			
Alimentació automática	Cargador de vacío	Revisar el cargador de vacío	Preventivo	Encendido																														
mer		Realizar limpieza de imanes de la tolva	Preventivo	Encendido																			П							П				
Alin	Filtro	Limpiar el filtro de ser necesario remplazar	Preventivo	Encendido				11					Ħ		1			t t		1			T			+		Ιİ			\top			
, ,	Motor Eléctrico	Medir voltaje y corriente antes del arranque	Predictivo	Encendido	$\exists \exists$	T	11	+ 1					Ħ	П	1			Ħ	1	1	\top		\Box	П	1	T	П			Ħ	11	Т	T	
	•		•									•					_				_				•							_		
							Man	tenim	iento				I	Inspec	ción				Lim	pieza														

Tabla 4. 79 Matriz de Mantenimiento Montacargas Toyota

FOLTO	COPTO	.,,	1						HENT				3517	70	***	·0 I	***	TO.		oamo		overner -	nnr I	0.000	I	NOT	ma m ~		TOTAL CO.
EQUIPO:	CODIGO	Mes es	ı		+ -	ERO	+	RERO			ABR	-	MAY	_	JUNI		JUL 26 27		AG	OSTO	SE	PTIEM	BRE	OCTU	_		IEMBR		ICIEMBR
MONTACARGAS	MCH3	Semanas		MÁQUINA	1 2	3 4	5 6	7 8	9 10	11 12 1	3 14 1	5 16 1	/ [18] [9 20 2	22 2	3 24 25	26 27	28 29	30 3	1 32 3	3 34 3	36	37 38 3	39 40 4	1 42	43 44	45 46	7 48 4	49 50 51
SISTEMA	COMPONENTE	ACTIVIDADES	MANT.			1 1		1 1										П		1 1							1 1		$\overline{}$
	Cilindro - Pistón	Inspeccionar el estado de los cilindros	Preventivo	Apagado		++		-								+		$\vdash\vdash$		++								\blacksquare	$+\!+\!$
	Motor Hidráulico	Chequear el motor hidráulico	Preventivo	Apagado	Н	++	++	++			++		++			++	++-	$\vdash\vdash$	++	++						+		╼	$+\!+\!$
00	Aceite Hidráulico	Analisis de aceite para conocer el estado	Predictivo	Apagado	Н	++	₩		Ш		44	++	44			+	Н	\vdash	₩	44					+-	_		-	$+\!+\!$
Hidráulico	Filtro	Chequear y limpiar el filtro de ser necesario cambiar	Preventivo	Apagado	 	++	H	₩			++	+	++			++		\vdash		+		+	+	++	++	++	-H	-	++
idrê	Enfriador de aceite	Inspecionar el estado del aceite	Preventivo	Apagado	Н	++					_		_			+	44	\vdash	ш	44				_	-	\blacksquare		╼	$+\!+\!$
H	Bomba Hidráulica	Revisar el fenómeno de cavitación	Preventivo	Encendido	_	++		44		_	44		44			+				44		44						#	$-\!$
	Deposito Hidráulico	Inspeccionar y Limpiar el deposito hidráulico	Preventivo	Apagado																								Ш	\bot
	Acoples Hidráulicos	Limpiar o cambiar los acoples	Preventivo	Apagado		Ш	ш										ш	Ш	Ш	ш	Ш	\perp			\perp			ш	44
	Cañerías y Mangueras	Verificar el estado y realizar la limpieza	Preventivo	Apagado																								4	
	Batería	Revisar el agua de la batería	Preventivo	Apagado																Ш						Ш		╨	$\bot \bot \bot$
0,	Alternador	Cambiar escobillas en un cierto kilometraje	Preventivo	Apagado																								Ш	
Eléctrico	Motor de arranque eléctrico	Chequear el estado del motor de arranque	Preventivo	Apagado																	Ш							ш	$\perp \! \! \perp \! \! \! \perp$
316c	Luces direccionales	Chequear conexiones de ser necesario remplazar	Preventivo	Encendido																									
ш.	Luces frontales	Chequear conexiones de ser necesario remplazar	Preventivo	Encendido																									
	Bocina	Revisar el estado del componente	Preventivo	Encendido																									
	Cilindros	Revisar el estado del cilindro	Preventivo	Apagado																									
	Pedales de control	Inspeccionar el accionamiento	Preventivo	Encendido																									
	Horquilla	Chequear y Limpiar de la estructura	Preventivo	Encendido																									
8	Palancas de control hidráulico	Inspeccionar y Limpiar las palancas de control	Preventivo	Encendido																									
Mecánico	Mástil	Revisar el estado del mástil	Preventivo	Encendido																									
joe;	Volante	Chequear el sistema de dirección de movimiento	Preventivo	Encendido															П										
Σ	Tubo de escape de gases	Inspeccionar fugas de gases	Preventivo	Encendido																									
	Bomba de combustible	Inspección, Limpieza o Cambio de ser necesario	Preventivo	Apagado																									
	Cañerías	Inspección visual de fugas	Predictivo	Encendido																									
	Cámara de mezcla Aire- Combustible	Realizar un ABC si es necesario	Preventivo	Apagado										TT							П							П	
	Aceite de Motor	Analisis de Aceite de motor y Cambiar	Predictivo	Apagado																								TT	
	Motor a GLP	Realizar un ABC del motor	Preventivo	Apagado																								TT	
or	Caja de velocidad	Chequear el estado de caja	Preventivo	Apagado							TT		TT	11								Ħ	T	Ħ	Ħ	Ħ			\Box
Transmisor	Aceite de caja de velocidad	Cambiar de aceite	Preventivo	Apagado							T		TT	11					TT	TT	П	Ħ	11		Ħ	丁	\Box	\Box	\top
sus	Filtro de GLP	Cambiar de Filtro	Preventivo	Apagado							T		T	11						TT		Ħ	T		11	一寸	\Box		\top
Tr	Cadena de Potencia	Inspección visual de las condiciones de la cadena	Predictivo	Encendido		Ħ				T	TT		TT			TT				TT		\top	Ħ	11	Ħ	11	\Box		\top
	Cilindro Actuador	Chequear visualmente fugas del cilindro	Predictivo	Encendido																									
	Bomba de dirección	Inspeccionar el estado de la bomba	Preventivo	Apagado																									
	1	-	<u>. </u>				Mant	enimie	nto			Insp	ección			L	impieza			1 1	, <u> </u>			-					

Tabla 4. 80 Matriz de Mantenimiento Tecle de Cadena

QUIPO ECLE CADENA	CODIGO	Meses	ENE	210	FEE	RER		MAR			BRIL		MA			JUNIC			LIO			OSTO			EMB1			UBRE	110		BRE		ICIEN
	TCH1	Semanas	1 2	3 4	5 6	7	8 9	10 1	11 12	+	4 15	_		19 20	_	22 23			27 28	8 29	30 31	32	33 3/	35	36 37	38	_	41 42	-		46 47	-	19 50
ISTEMA	COMPONENTE	ACTIVIDADES	1 2	J 4	5 0	,	0 2	10 1	11 12	13 1	4 13	10 1	/ 10	19 20	/ 21	22 23	24 2.	J [20].	21 20	3 29	30 31	32	33 34	35	30 37	30 .	39 40	41 42	45 4	4 43	40 47	40	+9 30
	Gancho Superior	Inspeccionar el estado antes de su utilización					Т					П					П			Т		1 1											
-	Cerrojo del gancho superior	Chequear el estado del cerrojo (seguro)		\vdash					+			\vdash			+			\blacksquare	\dashv	+		+				H				+	-		+
-	Pasador gancho superior	Supervisar el estado del pasador		\vdash					+			\vdash			+		H		-	+ +		+											_
-	Gancho inferior	Inspeccionar el estado antes de su utilización		\vdash					+			\vdash			+		H		-	+ +		+											_
-	Cerrojo del gancho inferior	Chequear el estado del cerrojo (seguro)		\vdash					+			\vdash			+		H		-	+ +		+											_
H	Pasador de la cadena	Controlar el ajuste del pasador		\vdash					+			\vdash			+				-	+ 1		+				H							_
	Tuerca ranurada	Verificar el ajuste de la tuerca	+				-		+			-				-			_	+	-					H	-			-			-
-	Chaveta	Chequear el estado de la chaveta	+	\vdash				+	+	t		\vdash			+	+			-	++	-	+				H	-		t				_
H	Armazón	Limpiar la carcasa																															
	Piñón	Limpiar y engrasar el piñón		\vdash		+	_	++	+	H	+	\vdash	\top	_	+ +	_	\vdash	\pm	+	+ 1	_	+	_		+	H	+		H		_	+	+
-	Rodamiento de bolas	Revisar el estado y de ser necesario remplazar																						П		П							
-	Polea de carga	Limpieza y ajuste de polea	\pm			1 1	_			tt			\pm		+		tt		\dashv	\pm				+					tt				\pm
-	Engranaje de Carga	Verificar el estado actual					+	П					\top		+		t		\dashv	1		1 1	+	+									_
-	Guía de la cadena	Revisar el estado de la guía		\vdash					+			\vdash			+		H		-	+ 1		+											_
L	Guía de Rodillo	Inspeccionar el estado de ser necesario cambiar		\vdash					+			\vdash			+		H		-	+ +		+											_
Car	Perno de buje	Verificar el estado del perno						\blacksquare							+																		
) e	Pasador del trinquete	Limpiar del pasador de trinquete				+		++		H		-	+		+		H	+	_	+		+			+	H	+	H				H	+
9	Resorte de trinquete	Inspeccionar la rigidez del resorte					_	++					+		+ +			+	_	+ +						++							
ien	Trinquete Trinquete	Supervisar el sonido clic antes de usar																								Н							
tam	Anillo de fijación	Controlar el ajuste del anillo de fijación		+	++	+	+	++	+	++	+	\vdash	+	+	+	+	++	+	\dashv	+	+	+	+	+	+	++	+	\vdash	++	+	+	+	+
≒ ⊢	Disco de fricción	Limpiar y verificar del estado o remplazo				+		++				-	+		+		H	+	_	+		\blacksquare			+	H	+	H				\Box	+
Le	Disco de tambor dentado	Limpiar y Lubricar el sistema dentado		+	++	+	+	++	+	++	+	+	+	+	+	+	\vdash	+	+	+	+	+	+	+	+	H	+	H	++	+	+	+	+
H	Buje para el disco del trinquete	Cambiar de bujes					_	+					+		+ +			+	_	+ +							_						
-	Placa de fricción	Cambio de las placas	+				-	+	+			-	+			-			_	+	-		-	+		t				-		++	-
-	Rueda Manual	Limpiar y verificar el estado de la rueda	+	\vdash		1		H	+	t		\vdash	+		+		H		-	++	-	+		+		H			t				_
	Tope de la rueda	Supervisar el ajuste del tope de la rueda	+				-		+			-	+						_	+	-		-	+		H				-			-
-	Pasador del tope de la rueda	Chequear el estado del pasador	+	\vdash				+	+	t		\vdash	+		+	+	H		-	++	-	+		+					t			++	_
-	Cubierta de la rueda	Limpieza de la cubierta de la rueda	+	\vdash				+	+	t		\vdash	+		+		H		-	++	-	+		+					t				_
-	Rondana de resorte	Inspeccionar el apriete del resorte								tt			11		1 1		tt		1	1		+		\dagger					tt			П	-
Ī	Pasador del extremo	Chequear el ajuste del pasador	+			1									\dagger				- -														-
l l	Cadena de carga	Inspeccionar si no hay desgaste y deformación			tt	T	1			tt			11				tt		1	11			+						tt				1
<u> </u>	Cadena Manual	Limpiar y verificar del estado de la cadena			tt	T	1	t		tt			11		T		tt		1	11			+						tt				1
	Perno del mecanismo	Verificar si no hay aislamiento del perno			tt	1 1	\dashv						\top		+		t		\dashv	1		1 1	+	+								H	_
H	Pasador del resorte	Limpiar y Chequear el estado del pasador		\vdash		+	+		+	╁		H			+		H		+	+		+	+	Н	-	H		$\vdash \vdash$	H	+			+
-	Polea libre	Verificar los canales de la polea		H		Ħ	\dashv		+	Ħ		H			\forall		tt		+	$\dagger \dagger$		$\dag \dag$	╅	Ħ	\pm	H		H	Ħ	+		Ħ	+
	Eslabón de tope de la cadena	Realizar el cambio del eslabón del sistema	+	\vdash	++	+	$^+$		+	tt	+	\vdash	+	-	+	+	H		+	+		+	-	H	-	H		$\vdash \vdash$	++	+	+	++	+

Tabla 4. 81 Matriz de Mantenimiento Transportador Hidráulico

OLTDO	CODICO	3.7	TOUT	TD ()	TTD	RER	_	MAR	70		BRIL		3 5 4 3 70		TIBIL	^	-	TT 10		1.0	oamo		TDT	T3 M I	DT:	OOT	TDDD	376	\X7777	mpr	DI	CIEMBRE
QUIPO:	CODIGO	Meses		RO					-				MAYO		JUNIO			ULIO			OSTO									MBRE		
RANSPORTADOR	THH1	Semanas	1 2	3 4	5 6	7	8 9	10 1	11 12	13 14	1 15 1	6 17	18 19	20 21	22 23	3 24 2	25 26	27 2	8 29	30 31	32 3	33 34	35 3	36 37	38 3	39 40	41 42	43 4	4 45	46 47	48 49	50 51
SISTEMA	COMPONENTE	ACTIVIDADES	<u> </u>																													
	Depósito de aceite	Limpiar el deposito																														Ш
0	Filtro	Limpiar el filtro																														Ш
ılic	Bomba	Revisar fugas																														
Hidráulico	Elemento de Regulación	Verificar el estado																														
Η̈́	Actuadores	Inspeccionar fugas de aceite																														
	Aceite Hidráulico	Controlar el nivel del aceite																														
	Sellos Poli pack	Remplazar los sellos																														
	Muelle de Retorno vertical	Chequear el estado del muelle																														
	Rueda Directrices	Inspeccionar o Cambiar la ruedas																													П	
	Leva de mecanismo de elevación	Limpiar antes de la utilización																														
	Barra de empuje de elevación	Chequear el estado de la barra																														
	Rueda sencilla delantera	Verificar el estado de ser necesario remplazar																														
	Perno de rueda delantera	Verificar el estado y el ajuste																														
00	Rodillos de entrada	Limpieza de los rodillo																														
Mecánico	Estructura o Chasis	Realizar el mantenimiento																														
√ ec	Barra de tracción	Controlar el estado de la barra de tracción																														
-	Mando de válvulas elevación y descenso	Cambiar cabes de mando																														
	Empuñadura	Limpiar de sedimentos de aceite																														
	Sellos hidráulicos	Cambiar si existe fugas																														
	Anillo seeger	Supervisar el estado de los anillos seeger																														
	Rodamientos	Limpiar y Lubricar de ser necesario remplazar																														
	Freno de mano	Inspeccionar el mecanismo																														

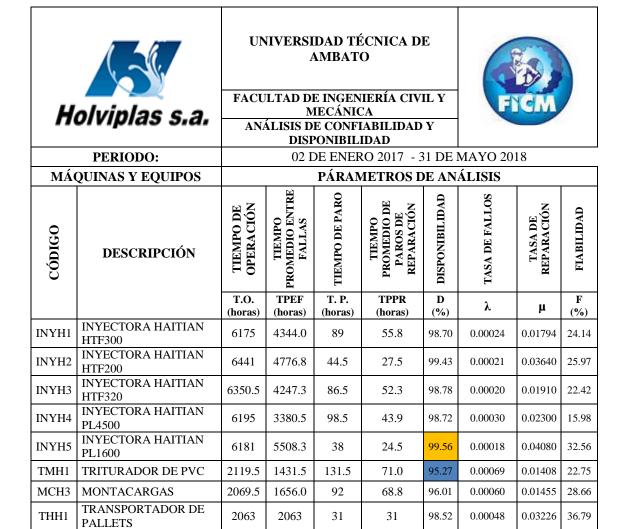
Tabla 4. 82 Matriz de Mantenimiento Triturador de PVC (Molino)

QUIPO:	CODIGO	Meses			ENER	0	FEBR	ERO	M	ARZO	AB	RIL	N	IAYO		JUNIO	0	JU	LIO		AGOS'	то	SEP	TIEM	BRE	oc	TUBRE	E N	OVIE	MBRF	Г	DICIEM	νB
RITURADOR	TMH1	Semanas	TIPO	MÁQ UINA -	1 2 3	4 5	6	7 8	9 1	0 11 12	13 14	15 16	17 1	8 19	20 21	22 23	24 25	5 26 2	7 28	29 30	31 32	2 33	34 35	36	37 38	39 40) 41 4	2 43	44 45	46 4	7 48	49 50) 5
ISTEMA	COMPONENTE	ACTIVIDADES	MANT.	MAQUINA																•													
	Motor Eléctrico	Medir voltaje y corriente antes del arranque	Predictivo	Encendido																							TI				\Box		Τ
	PLC	Chequear el funcionamiento del PLC	Preventivo	Encendido																								\Box				П	T
	Pulsador paro de emergencia	Limpiar la conexión del pulsador	Preventivo	Apagado																							П	П					T
	Bornes de cables eléctricos	Control del estado de bornes	Preventivo	Apagado																							Π	\Box				П	Τ
0	Toma corriente empotrable	Chequear el estado de conexión	Preventivo	Apagado																							T	\Box				П	Ī
Eléctrico	Cables eléctricos	Análisis Termografico para futuras fallas	Predictivo	Apagado																													
lléc	Relé térmico	Limpieza del relé térmico	Preventivo	Apagado																							Π		П			П	Т
Щ	Transistor	Verificar y cambiar dependiendo del estado	Preventivo	Apagado																							Π	\Box			\Box		Τ
	Breakers	Verificar conexión de ser necesario remplazar	Preventivo	Apagado																													T
	Contactor eléctrico	Limpiar y Verificar el estado de conexión	Preventivo	Apagado									П											П								\Box	Τ
	Amperímetro	Verificar el estado de funcionamiento	Preventivo	Apagado																							Π	\Box			П		Τ
	Fusible	Comprobar el voltaje necesario	Preventivo	Apagado																							TI	\Box			\Box		Τ
	Tolva de Alimentación	Revisar la tolva de alimentación	Preventivo	Apagado																													T
	Tolva de Descarga	Chequear la tolva descarga	Preventivo	Apagado																						П		П			П		T
	Criba	Limpiar la acumulación de material	Preventivo	Apagado																													Т
	Cámara de Molienda	Limpiar la cámara de molienda	Preventivo	Apagado																										П			Τ
	Eje Rotatorio	Limpieza y engrases del eje	Preventivo	Apagado																							Π	\Box				П	T
•	Rotor Porta cuchillas	Limpiar la acumulación de material	Preventivo	Apagado																													
nicc	Cuchillas	Verificar el estado del afilado	Preventivo	Apagado										П				П									П		П	Ш	П	П	T
Mecánico	Volante de Inercia	Inspeccionar la alineación	Preventivo	Apagado																								\Box			\Box	П	Ť
Ж	Bancada	Comprobar el nivel de la máquina	Preventivo	Apagado																							111	\Box	П		П	П	Ť
	Cobertores laterales	Limpiar el material acumulado	Preventivo	Apagado																													T
	Tapa frontal	Limpiar el material y cerrar	Preventivo	Apagado																	П						П	\blacksquare	П	П	\Box	П	T
	Pernos	Chequear el estado del pernos	Preventivo	Apagado		П							П															П			П		T
	Polea	Analisis de vibraciones para verificar el funcionamiento	Predictivo	Apagado		П	Ш		Ш		Ш	П	П				Ш				Ш			П			Ш	\Box	П	П	\Box	工	Ī
	Bandas	Verificar si no hay desgaste y rotura	Preventivo	Apagado		Ш			Ш		Ш		Ш														Ш	Ш	Ш	Ш	Ш	Ш	
	Chumaceras	Analisis de vibraciones para verificar el funcionamiento	Predictivo	Apagado																									ı				ſ

Limpieza Mantenimiento Inspección

Tabla 4. 83 Plan de Mantenimiento Anual de Máquinas y Equipos

SISTEMA FRECUENCIA													٦																													
MÁQUINA Y	CICTEMA	EDECLIENCIA	EN	ERO		FEBI	RERO		MAI	RZO		AB	RIL		MA	AYO	•	JU	UNIO		J	ULIC	О		AGC	STO	S	SEPT	TEM	BRF	E (OCT	UBR	E	NO	VIEV	ßВ	Е	DIC	IEM	BRE	1
EQUIPO	SISTEMA		1 2	3 4	4 5	6	7 8	9	10	11 1	2 13	3 14	15	16 1	7 18	19	20 2	1 22	2 23 2	24 2	5 26	27	28	29 30	31	32 3	3 34	35	36 3	37 3	8 39	40	41 4	2 4	3 44	45	46	47 4	8 49	50	51 52	2
				-	_					_	_			_	+			+		+			_			Н	_			+				+	_				_	#	_	4
	TT: 1 < P			++			_			_	_		\vdash	_		-		_	++	_			\rightarrow		_	-			-	_	_	_	\vdash	_	_	+	\vdash	_	_	+-'	-	\dashv
	Hidraulico			+							-		+ +	_				-	++	-		-	+		_	H		-	-	-	+	-	-	-	-	+	H	_	_	+'	-	\dashv
			-	++	+	+	-	+	+	-	+	+	+ +	+	-	+	H	+-	+	+			+	-	+-	H	+	+	+	+	+	1	-	+	+	+		+	+	+-'		
-								_			+	_			_			+	_	+				_	_		_			_	_			+	+			_	+	+		Н
				+							_	_		_	_					+	_			_			_				+			_	_				_	+-	_	-
	Eléctrico														_			_		_															_				-	_		-
	Electrico			+			-			-+	-		+ +		_	+		_	+	_			\dashv		_	\vdash		1	\vdash	+	_	-		_	_	+	1	_	_	+	_	
				+	+	+	-	+	+	-	-		1	+	+	+	H	+	+	+			\dashv	-	+	H	+	+	-	+		1		+	+	+		+	+	+		f
22				+									\vdash							+																						٢
0								+			_							-	++	+																				т	o	-
5	Invección	Mencual		1 1							_		1 1					_	+	_			-			H									_				_	+	-	-
Ĕ	my eccion			1 1	_			_						_				_	+	_			_		_	\vdash	_	1		+	_	-		_	_	+			_	+		
5						+		1						_				1	+	\neg					1		_	1		_				1	+					+		П
											1								11	T											1									+	-	٦
	Cierre			1																									\blacksquare											$\boldsymbol{\top}$	-	٦
		Trimestral																		T										7					1					T		
											Т									1															\top	1				T		П
																																										П
																																								T		٦
	Alimentación Automática																																							\Box	Т	٦
		Trimestral																																						T		
		Semestral																																								
		Semanal																																								
																																									டட	
	Hidráulico																																									
																																									Щ.	
_		Semestral																																								L
7.0				\perp	_		_	_			_		\sqcup	_				_	\perp	_			_							_		_		_	_			_	_	_	_	L
A S																				_																				_	_	L
22	Eléctrico																																									Ц
A.				\bot									1						44	_			_			1				_		_	<u> </u>			\perp				┷		_
Ŋ				1							_							4		_			_	_	4_		4	_		_				_	_			_		<u> </u>		Ц
I V				++							_							_		_											_			_						+-	_	4
Ž	M 41			++	_				\vdash	\vdash	_	_	\vdash	_	_	+	-	_	++	_		₩	\vdash		-	\vdash		\blacksquare	\vdash	+			₩	_	-	+	\vdash	_	_	+-'	\leftarrow	4
IC I	M ecanico			++	+		-	-	\vdash	\vdash	-		H	-		1	\vdash	4	++	-		\vdash	\vdash	_	-	\vdash	-		\vdash	+		-	₽₽	- #		+	\vdash	-	-	+-'	\leftarrow	4
				++		-		+	+	l l	+		\vdash	+	-	1	\vdash		++	+	_	\vdash	\vdash		-	\vdash	-		\vdash		-	1	⊦ ⊦		+	+	\vdash		-	+-'	_	
				+				+	H		_	+	\vdash	_	+			+	+	+	-			_			+				_			+	+			_	+	+-'		H
				$oldsymbol{+}$	+			┲	H	-	+	+	H	-	+		H	Ŧ	+	+	+	H		-		H	₽	H	H	4	╇	F	H	-	+	H	H	-	-	尸	$oldsymbol{+}$	4
	Transmisor			++	-			-	Н	⊢ ⊦	-	_	H	-			\vdash	-	+	+	-	H	\vdash	_		\vdash	-		\vdash	+	-		⊢ ⊦	-	-	+	\vdash	_	-	+	+	4
	1 Idiisiiiis0i			++	-				\vdash				+	_				-	+	+		\vdash	\dashv		_	\vdash			\vdash	+			++	-		+	\vdash		_	+-'		d
				++				+		H			H	+	+		H	+	+	+					+-		-1-		\vdash				H		+	+	H	-	+	+		
Page Hidráulico Mensual Trimestral Semestral Semestral													C																													


Continuación de la tabla 4.73

TECLE DE CADENA		Semanal				П																											П
NA N		Quincenal	\Box																								П		\top				П
E Z	Levantamiento de Carga	Mensual										П											Ħ						\top				\Box
EC Y		Trimestral	\blacksquare															++					1 1				\blacksquare		+				+
TO		Semestral	++		+	+			+		_	++						+		+	+		+	-	+		+		+	\vdash	+		
		Semanal	+			++												+			+				\vdash		+		+				
l BC -		Quincenal	+											_					_	++			H				$m{ o}$		十				+
<u>4</u> 8	Hidráulico	Mensual	+							H							\vdash	1					t		H		\blacksquare		+				+
LIC	Thursday.	Trimestral	\blacksquare			П				H													tt		1		\Box		+				\Box
%5		Semestral	\top																								\Box		\top				
TRANSPORTADOR HIDRÁULICO		Semanal																					П										П
		Quincenal	Ш																								\square						
\(\frac{1}{2} \) \(\text{H} \)	M ecánico	Mensual										Ш				Ш		\perp											┸╵				Ш
I E		Trimestral	$\bot \bot$						_														Ш				Ш		!				ш
,		Semestral	\bot			1			_				_	_			Щ	\bot	_		\bot	_	\sqcup	_	\sqcup	_	$\perp \downarrow$!				
E		Semanal	lacksquare			++		-	-			Н		-			-	_	_	-	-		H		Н		\blacksquare		#				_
	Eléctrico	Quincenal	+									H						+							H				4				4
l ii	Electrico	Mensual Trimestral	\blacksquare							H		\vdash					\vdash	+		+			+				\blacksquare	-	+				
		Semestral	++		+	+						+						++		+			+				+		+				
TRITURADOR DE PVC (Molino)		Semanal	+		\pm	t			1			H		<u>_</u>	+	t	H	+++	+	+			t	-	t		+		+				П
ľ.		Quincenal	\top																								\Box		\top				
P. P.	M ecánico	Mensual																															
E .		Trimestral	Ш																								\square						
		Semestral	Ш																								Ш		┸╜				
							Sema	nal					Qι	ince	nal]	Men	sual				Tr	imes	stral					Sei	mestr	al

4.3 Interpretación de Resultados

4.3.1 Resumen e Interpretación de la Disponibilidad y Confiabilidad

Tabla 4. 84 Resumen del Análisis de Disponibilidad y Confiabilidad de máquinas y equipos

Elaborado por: El Autor

23

23

98.95

0.00046

0.04348

36.79

2161.0

2161

• Interpretación

TECLE DE CADENA

TCH1

Realizado el siguiente análisis como se observa en la tabla 4.84, se puede determinar que la disponibilidad de las máquinas y equipos tiene un porcentaje alrededor del 97%. Una de las máquinas que posee un índice de disponibilidad mínimo es el triturador de PVC con un (95.27%) debido al golpeteo que está expuesto y el de mayor índice de disponibilidad es el (99.56%) correspondiente a la Inyectora Haitian PL1600 que es

utilizada para la fabricación de accesorios de diámetro menores a 50mm, además se debe tener en cuenta que esta diferencia es debido a los sistemas complejos de cada máquina ya que los tiempos de reparación del triturador de PVC son bajos con respecto a los tiempos de reparación de una inyectora.

4.3.2 Resumen e Interpretación de confiabilidad de Weibull para máquinas y equipos del área de inyección.

Tabla 4. 85 Resumen del Análisis de la Confiabilidad de Weibull

Cor	Parámetro de forma β						
MÁQUINA	MODELO MATEMÁTICO		MÉTODO GRÁFICO		MODELO MATEMÁTICO	MÉTODO GRÁFICO	
	Máx.	Min	Máx.	Min	MATEMATICO	GRAFICO	
INYECTORA HTF300	60.32	16.78	86.59	0.10	1.9178	1.6	
INYECTORA HTF200	48.16	33.61	90.41	2.63	3.4451	2.6	
INYECTORA HTF320	43.50	33.25	77.08	3.25	3.6840	2.5	
INYECTORA PL4500	74.54	29.58	99.15	6.20	1.7697	2.3	
INYECTORA PL1600	46.14	24.90	75.66	1.74	2.8809	2.5	
MONTACARGAS TOYOTA	50.99	28.57	82.74	1.60	2.6152	1.9	
TRITURADOR DE PVC	43.83	31.26	67.48	3.59	3.6571	1.7	
TECLE DE CADENA	46.68	32.16	78.61	14.71	3.1712	2.00	
TRANSPORTADOR HIDRÁULICO	45.27	32.67	67.12	11.07	3.4935	1.8	

Elaborado por: El Autor

Interpretación

Realizado el análisis de la confiabilidad de Weibull para máquinas y equipos de la empresa Holviplas S.A según la tabla 4.82, se puede determinar que, mediante la aplicación del modelo matemático, la máxima confiabilidad se encontró en la inyectora PL4500 con un 74.54% y un (β = 1.7696), el valor mínimo de confiabilidad es de la máquina inyectora HTF300 con porcentaje de 16.78% y un (β = 1.9178), así mismo realizando el procedimiento por el método gráfico de Weibull se encontró un confiabilidad máxima de 99.15% (β = 2.3) correspondiente a la inyectora PL4500 y un mínimo de la máquina inyectora HTF300 (β = 1.6).

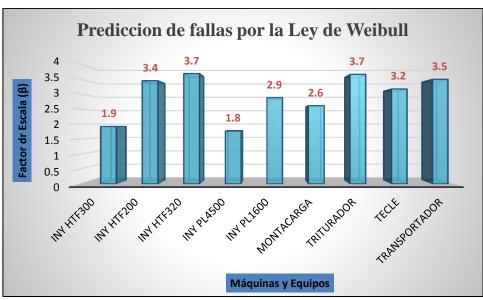


Fig 4. 57 Predicción de falla de máquinas y equipos por la ley de Weibull Elaborado por: Autor

Para conocer el estado actual de las máquinas y equipos del área de inyección, se verificó en cual de las tres etapas de vida útil de la curva de la bañera se encuentran, mediante la figura 4.57, se observa valores calculados de párametro de forma Weibull (β >1), donde las fallas se generan de forma aleatoria y de desgaste. Por ejemplo, entre la maquinas y equipos el factor de escala mayor es de la inyectora HTF320 y el triturador correspondientemente, donde las fallas aleatorias se producen por accidentes fortuitos, mala operación, condiciones inadecuadas y también por desgaste natural del equipo debido al transcurso del tiempo de uso.

Mediante este análisis se puede determinar en que etapa de vida útil se encuentra un equipo de igual manera se podrá generar un modelo para predecir el momento de una falla antes de producirse y poder intervenir en un mantenimiento que nos ayudará optimizar procesos de producción.

4.3.3 Resumen e Interpretación AMFE

Tabla 4. 86 Resumen del Análisis Modal de Fallos AMFE de las máquinas y equipos

MÁQUINA		SISTEMA	PROMEDIO (NPR)		
		Hidráulico			
	HTF300	Eléctrico			
INYECTORAS	HTF200 HTF320	Inyección	19		
INTECTORAS	PL4500	Cierre	19		
	PL1600	Enfriamiento			
		Alimentación			
		Hidráulico			
MONTACADOAS	MONTACARGAS TOYOTA Eléctri Mecán		15		
MONTACARGAS			13		
		Trasmisor			
TRITURADOR	DE DVC	Mecánico	17		
IRITURADOR	DE PVC	Eléctrico			
TECLE DE CA	DENA	Mecánico	10		
TD A NCDODTA DOD I	HDDÁIH ICO	Hidráulico	19		
TRANSPORTADOR HIDRÁULICO		Mecánico	19		

Elaborado por: El Autor

Realizado el estudio y análisis AMFE como se observa en las tablas 4.70 al 4.74, se puede determinar que los valores superiores al valor promedio de la prioridad de riesgo (NPR), son componentes que necesitan una atención minuciosa por parte de la persona encargada del Departamento de Mantenimiento y de acuerdo al criterio interpretado se determinó los fallos al momento de realizar actividades mencionadas.

En la tabla 4.83 se puede visualizar el (NPR) general del modo de fallo de cada máquina y equipos, con las estimaciones adecuadas, en donde se obtiene el rango de nivel de prioridad de los sistemas, como por ejemplo en la máquina inyectora se observa un valor de (NPR=19) que es el máximo valor de estudio, mientras que el sistema mecánico de un equipo denominado tecle de cadena tiene un valor de (NPR=10) los que nos indica que debemos tomar acciones a cada componentes del sistema con mayor prioridad de riego de falla.

4.4 Aprobación de la Hipótesis

4.4.1 Cálculo de la Confiabilidad y Probabilidad de fallo de Weibull

Para el siguiente cálculo se ha tomado en cuenta las variables a contrastar como son: la Confiabilidad y Probabilidad de Fallo como se observa a continuación:

Tabla 4. 87 Cálculo de Correlación de la Confiabilidad y Probabilidad de Fallo de Weibull

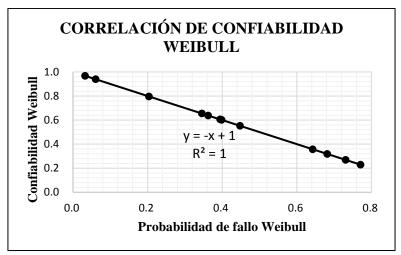
N°	Confiabilidad Weibull (x)	Probabilidad de fallo Weibull (y)	x-X	(x-X̄)²	у-Ў	(y-ÿ)2	(x- x)*(y- y)
1	0.77084	0.22916	0.34823	0.12127	-0.34823	0.12127	-0.12127
2	0.73107	0.26893	0.30846	0.09515	-0.30846	0.09515	-0.09515
3	0.68141	0.31859	0.25879	0.06697	-0.25879	0.06697	-0.06697
4	0.64271	0.35729	0.22010	0.04844	-0.22010	0.04844	-0.04844
5	0.44764	0.55236	0.02503	0.00063	-0.02503	0.00063	-0.00063
6	0.39838	0.60162	-0.02423	0.00059	0.02423	0.00059	-0.00059
7	0.39452	0.60548	-0.02809	0.00079	0.02809	0.00079	-0.00079
8	0.36227	0.63773	-0.06035	0.00364	0.06035	0.00364	-0.00364
9	0.34564	0.65436	-0.07697	0.00592	0.07697	0.00592	-0.00592
10	0.20374	0.79626	-0.21887	0.04790	0.21887	0.04790	-0.04790
11	0.06064	0.93936	-0.36197	0.13102	0.36197	0.13102	-0.13102
12	0.03248	0.96752	-0.39014	0.15221	0.39014	0.15221	-0.15221
13	0.03248	0.96752	-0.36012	0.12969	0.36012	0.12969	-0.12969
SUMATORIA	5.10381	0.60740		0.80422		0.80422	-0.80422

Elaborado por: Autor

Tabla 4. 88 Cálculo de valores de dispersión

Varianza de Muestras		Desviaci	Covarianza		
S^2X	S^2Y	$\mathbf{S}_{\mathbf{X}}$	$\mathbf{S}_{\mathbf{Y}}$	$\mathbf{S}_{\mathbf{XY}}$	
0.07311081	0.07311081	0.27039011	0.270390112	-0.07311081	

Elaborado por: Autor


Para determinar el coeficiente de correlación se procede mediante los valores obtenidos en la tabla 4.88 y según la ecuación 2.1 como se indica a continuación:

$$r = \frac{s_{xy}}{s_x s_y}$$

$$r = \frac{-0.07311081}{0.27039011 * 0.27039011}$$

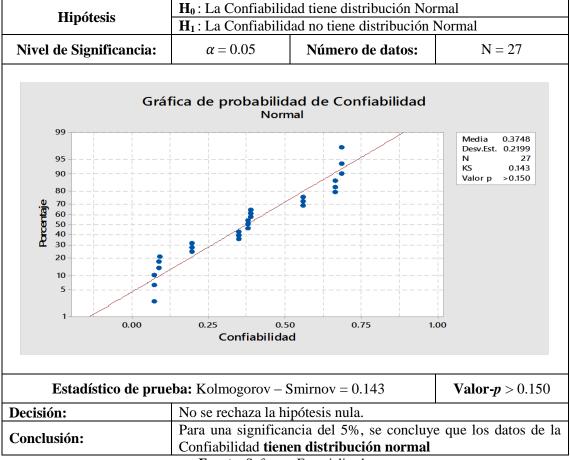
$$r = -1$$

$$R^2 = 1$$

Fig 4. 58 Correlación de Confiabilidad vs Probabilidad de fallo de Weibull **Elaborado por:** Autor

Según la figura 4.58 se obtiene una "relación inversa" debido a que una de la variable aumenta y la otra variable disminuye, de igual forma se observa un valor de r = -1 que representa a una correlación negativa perfecta, una covarianza en decrecimiento y una dependencia absoluta entre las dos variables.

4.4.2 Análisis de datos de la Confiabilidad de Weibull

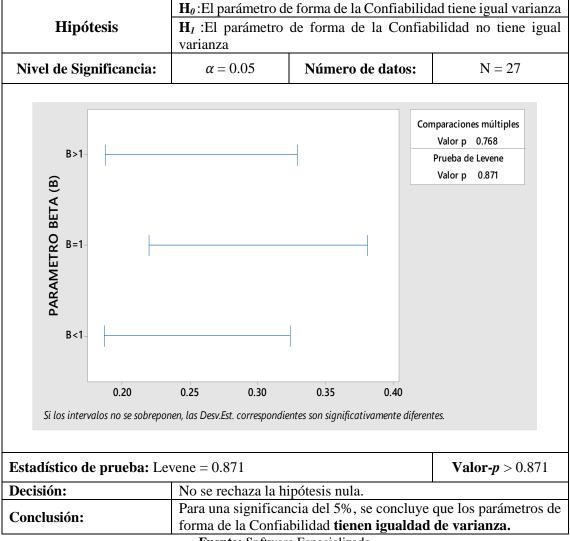

4.4.2.1 Verificación de Supuestos

Para contar con la veracidad de los resultados previo al análisis de la varianza es necesario asegurar que los datos cumplan con los supuestos paramétricos requerido como son: prueba de normalidad, igualdad de varianza en los tratamientos e independencia en las mediciones para la autenticidad de los resultados.

a) Prueba de Normalidad

Se utiliza la prueba de bondad de ajuste de Kolmogorov – Smirnov, para confirmar el supuesto de normalidad en los datos de Confiabilidad, en la que se coteja las significancias de la prueba con la preestablecida [38].

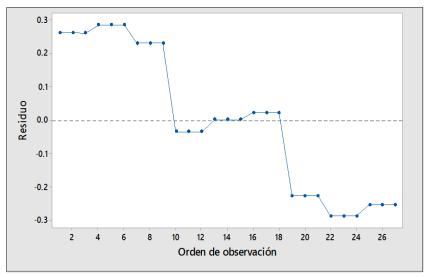
Tabla 4. 89 Verificación del supuesto normalidad de la Confiabilidad


Fuente: Software Especializado

Como se muestra en la tabla 4.89, el estadístico de prueba y la significancia calculada define que los datos cumplen con el supuesto de normalidad, donde el valor - p sea mayor o igual a 0.05 para no rechazar H_0 , siendo este el valor de 0.150.

b) Prueba de Igualdad de Varianzas

Para la verificación del supuesto prueba de varianza del parámetro de forma para la Confiabilidad, se utilizó la prueba de Levene al realizar el procedimiento necesario se muestra la varianza del parámetro [38].


Tabla 4. 90 Verificación del supuesto de igualdad de varianza de la Confiabilidad

Fuente: Software Especializado

Como se indica en la tabla 4.90, las varianzas de los parámetros de forma de la confiabilidad no tienen diferencia significativa por lo que no se puede rechazar H₀, se ratifica que la significancia calculada es mayor que la dada, los valores son de 0.871 y 0.05 respectivamente.

c) Verificación de independencia de residuos

Fig 4. 59 Gráfica de Orden de observación vs Residuo de Confiabilidad **Fuente:** Software Especializado

Según la figura 4.59, verifica que existe independencia en los residuos de Confiabilidad, e interpreta que no existe ninguna tendencia o patrón definido, por lo que se puede definir que existe independencia de los residuos de esta esta propiedad.

4.4.4 Aplicación del diseño Experimental

El diseño de experimentos consiste en determinar la forma eficaz de hacer pruebas para obtener información del proceso que analizada estadísticamente proporcionará una evidencia que permite responder la interrogante planteada.

Para determinar el diseño experimental se consideró un diseño factorial 3^x , en donde se asumió (x) factores con tres niveles denominados tratamientos. Este diseño requiere de un elevado número de veces de pruebas para obtener un ajuste del diseño como se indica a continuación: [38].

4.4.4.1 Diseño Factorial Completo

Al ejecutar el diseño experimental se requiere igual interés en los dos factores que se analizará como son: el parámetro de forma y localización, dentro del mismo se incluye el efecto asociado a la interacción de los factores anteriormente citados, dependiendo de los resultados del ANOVA se establece si este contribuye significativamente o no en el estado actual de maquinas y equipos por la ley de Weibull.

Tabla 4. 91 Diseño factorial completo del estado actual por la ley de Weibull (ANOVA)

Fuente de variabilidad	Suma de cuadrados	Grados de libertad	Cuadrado medio	F ₍₀₎	Valor-
Modelo	0.04143	8	0.005179	0.08	0.017
Factor de forma	0.00003	2	0.000002	0.00	1.000
Factor de localización	0.04143	2	0.020715	0.31	0.740
F. Forma * F. Localización	0.00012	4	0.000000	0.00	0.347
Error	1.21639	18	0.067577		
Total	1.25783	26			

Elaborado por: Autor

De acuerdo a la tabla 4.91 se puede entender que los efectos de los factores configuración, factor forma, localización y la interacción de estos, son significativamente importante, además se deduce que existen diferencias significativas en las combinaciones planteadas.

4. 5 Verificación de la hipótesis

La metodología que emplea el diseño de experimentos mediante el software especializado procede a la verificación de la hipótesis planteada al inicio de la investigación en donde consta en la comprobación si "El análisis del estado actual de máquinas y equipos del área de inyección de PVC de la empresa Holviplas S.A permitirá generar un modelo de predicción de fallas aplicando la ley de Weibull" para esto se utiliza el análisis de varianzas (ANOVA) como se representa en la tabla 4.91 y la figura 4.57.

Para aceptar o rechazar la hipótesis nula, el valor–p debe cumplir criterios de relación facultando que el nivel de significancia (α) es del 5%.

La hipótesis a probar es la siguiente:

Valor- $p \ge \alpha$ H_0 Aceptada

Valor- $p < \alpha$ **H**₁ Aceptada

H₀: "El análisis del estado actual de máquinas y equipos del área de inyección de PVC de la empresa Holviplas S.A no permitirá generar un modelo de predicción de fallas aplicando la ley de Weibull"

H₁: "El análisis del estado actual de máquinas y equipos del área de inyección de PVC de la empresa Holviplas S.A permitirá generar un modelo de predicción de fallas aplicando la ley de Weibull"

En conclusión, la tabla 4.92 indica un resumen, en donde se describe el valor p del modelo que contiene los factores de escala y localización que tiene un modelo de predicion de fallas aplicando la ley de Weibull. y se obtiene un resultado menor que el nivel de significancia de (0.05), por lo tanto, se acepta la hipótesis alternativa (\mathbf{H}_1) .

Tabla 4. 92 Valor P del estado actual de maquinas y equipos por la ley de Weibull

Fuente de variabilidad	Suma de cuadrados	Grados de libertad	Cuadrado medio	F ₍₀₎	Valor-
Modelo	0.04143	8	0.005179	0.08	0.017
Error	1.21639	18	0.067577		
Total	1.25783	26			

Elaborado por: Autor

CAPÍTULO V

5. Conclusiones y Recomendaciones

5.1 Conclusiones

- Las máquinas y equipos del área de inyección de PVC de la empresa Holviplas S.A., cuenta con una codificación que permitió identificar cada uno, de igual manera se obtuvo los registros de falla, los mismos que ayudaron para analizar el estado actual de funcionamiento y se determinó datos de confiabilidad basados en la curva de la bañera y se encuentran dentro del periodo de vida útil.
- Se realizó el inventario de maquinaria del área de inyección de PVC para determinar las fichas técnicas de cada máquina, indicando las características generales más relevantes como dimensiones, componentes y función, que son importantes para efectuar las actividades de mantenimiento y garantizar un funcionamiento aceptable como se observa en las tablas 4.1 al 4.9.
- Se determinó el estado actual mediante un análisis estadístico de registro de actividades diarias de mantenimiento y producción, en donde se generó el historial de fallas y mediante el estudio de tiempos de operación, reparación y tiempo de paro de todas las inyectoras y demás equipos en el periodo de un año y se obtuvo un porcentaje de confiabilidad del 32.56% correspondiente a la inyectora PL1600 y disponibilidad del 99.56%, como se puede observar en la tabla 4.81, se llegó a la conclusión que la mayor causa de fallas es el desgaste por el tiempo de uso y la constante operación de los elementos debido a que la empresa trabaja las 24 horas los 5 días de la semana.

- Según la norma NTP 331 se determinó parámetro para el análisis mediante la ley de Weibull como se observa para el caso del modelo matemático y el método gráfico como se muestra en las tablas 4.47 al 4.63; por ejemplo para la inyectora HTF300 según el modelo matemático se obtuvo los valores de β = 1.9178, α = 506.76 , γ = 0 según la tabla 4.29; así también aplicando el método grafico se encontraron los valores de β = 1.6, n = 460, μ = 550 según la tabla 4.47, estos valores encontrados y calculados cambian según el método que se vaya emplear, debido que el modelo matemático interviene el parámetro de localización y el método gráfico se encuentra en el papel Weibull.
- Se determinó la confiabilidad Weibull de las máquinas y equipos del área de inyección de PVC aplicando el modelo matemático y se obtuvo valores máximos y mínimos de confiabilidad, como se puede observar en las figuras 4.19 al 4.36, por ejemplo, para la inyectora PL4500 se tiene un porcentaje de confiabilidad máxima de 74.54% con un tiempo de operación (To = 69.5 h) y una confiabilidad mínima de 29.58% con un tiempo de operación de (To = 861 h).
- Para el método grafico de igual manera se encontró valores máximos y mínimos de confiabilidad como se describe en las figuras 4.38 al 4.54, como por ejemplo se obtuvo una confiabilidad máxima de 99.15% con un tiempo de operación de (To = 69.5 h) y una confiabilidad mínima de 6.20% con un tiempo de operación de (To = 858 h) y se concluye que depende del tiempo de operación en horas y los parámetros encontrados como se detalla en la tabla 4.78.
- Según la curva de la bañera (gráfico 2.5) y el método gráfico Weibull realizado se obtuvo el parámetro de forma β =2.6 correspondiente a la máquina inyectora HTF300 la cual indica que la que se encuentran en una zona de periodo de fallas aleatorias y se tendría que aplicar un mantenimiento preventivo. De igual forma mediante el modelo matemático se obtuvo un valor β = 1.91 correspondientes a la máquina inyectora HTF300 y se encuentran en la zona de mortalidad infantil. Esto quiere decir que habrá fallas tempranas debido a la tasa de fallo decreciente.

- En el análisis de Modal de Fallos y Efecto (AMFE) según la NTP 679, se realizó la matriz conforme a los criterios de gravedad, ocurrencia y detección aplicados a cada componente de las máquinas, se obtuvo un Nivel de Prioridad de Riesgo (NPR) < 125 y se considera aceptable. Dentro del análisis AMFE se puede observar el modo de fallo de cada máquina con una valoración adecuada como se puede apreciar en las tablas 4.64 al 4.68; donde se puede apreciar el (NPR) por cada componente y sus posibles fallas, así también para evitar contrariedades, estos datos servirán como base para realizar la matriz de Inspección y Limpieza para un plan de mantenimiento.</p>
- Para el objetivo cinco planteado el plan de mantenimiento se encuentra en función de la bitácora en donde se detalla las acciones predictivas, preventivas y correctivas, ya que se obtuvo del análisis de la confiabilidad de Weibull y el análisis AMFE, estos datos permitirán describir las recomendaciones en función de los valores estadísticos.

5.2 Recomendaciones

- Es importante realizar la programación mediante un software especializado el análisis de confiabilidad y disponibilidad aplicando la ley de weibull, que permita predecir el estado de las máquinas y equipos del área de inyección de PVC de la empresa, además de planear, ejecutar y controlar la gestión y operación del mantenimiento.
- Documentar detalladamente todas las actividades de reparaciones de máquinas y
 equipos para obtener datos confiables, las cuales son de suma importancia para la
 programación de actividades de mantenimiento previo a un análisis en un futuro.
- Se debe fomentar una cultura para la recopilación de datos, manejo e interpretación de tiempos de operación, reparación tiempos de paro que influyen para obtener valores los más reales posible.
- Se recomienda registrar información en un formato Excel al instante de originarse una falla, como son todos los tiempos que influye en las tareas que se ejecutaron para su funcionamiento y sea de gran ayuda para el análisis en un software.

CAPÍTULO VI

PROPUESTA

6.1 Datos Informativos

6.1.1 Título de la Propuesta

Desarrollo de la programación del mantenimiento centrado en la confiabilidad aplicando

la ley de Weibull para máquinas y equipos del área de inyección de la empresa Holviplas

S.A.

6.1.2 Institución Ejecutora

HOLVIPLAS S.A

6.1.3 Beneficiarios

La entidad beneficiada con la presente propuesta será la empresa HOLVIPLAS S.A.,

además del personal de mantenimiento y operarios del área de inyección de PVC.

6.1.4 Ubicación de la empresa

En la actualidad la empresa se encuentra ubicada en la entrada a la Parroquia Totoras Km

11 ½ vía a Baños parroquia Benítez antigua instalaciones de la Coca cola.

6.1.5 Tiempo estimado para su ejecución

Inicio: 08 de abril del 2019

Final: 31 de octubre del 2019

6.1.6 Equipo Técnico Responsable

Jefe de Departamento de Mantenimiento: Ing. Renato Noriega

Tutor FICM-UTA: Ing. Jorge Enrique López Velastegui, Mg.

Investigador: Ing. Nelson Rodrigo Poaquiza Rivera.

189

6.2 Antecedentes de la Propuesta

El mantenimiento centrado en la confiabilidad ha sido utilizado en miles de empresas de todo el mundo desde grandes petroquímicas hasta las pequeñas metal-mecánicas, la cual ha permitido determinar las tareas de mantenimiento adecuadas para cualquier máquina.

En el ecuador el mantenimiento centrado en la confiabilidad se aplica como un método estructurado para establecer la mejor estrategia de mantenimiento, con el objetivo de definir un proceso sistemático de análisis que garantice la confiabilidad y seguridad de la operación de la máquina o equipo con el menor costo posible.

En la empresa Holviplas S.A. con el análisis realizado se pudo determinar el estado actual que se encuentran, además de observar que existe un manejo deficiente de la información técnica y del historial de las actividades de mantenimiento que se realizaron a las máquinas y equipos del área de inyección de PVC y se llegó a la conclusión que es necesario el desarrollo de la programación del mantenimiento centrado en la confiabilidad aplicando la ley de Weibull que será de gran ayuda para predecir fallos y los posibles recurrencias de averías que podrían afectar en un futuro, de igual forma se contribuirá al departamento de mantenimiento de la empresa.

Existen trabajos realizados con respecto a la propuesta planteada los cuales sirvieron de gran apoyo para la elaboración de este trabajo y son los siguientes:

El Ingeniero Rodríguez F. [40], determinó el análisis de confiabilidad, mantenibilidad y disponibilidad mediante la aplicación de la distribución de weibull Estudio de caso separadores de aceite Westfalia de la empresa Agip Oil Ecuador.

Martínez M. [41], realizó el desarrollo de software para el cálculo de parámetros de weibull y aplicaciones en: análisis de fallas mecánicas y caracterización del potencial eólico.

6.3 Justificación

La empresa HOLVIPLAS S.A, requiere la exigencia de un software especializado, debido a los principales problemas que viene arrastrando la empresa como es el fallo continuo de las máquinas y equipos del área de inyección de PVC.

La empresa no cuenta con un modelo claro y conciso de las actividades de mantenimiento que deben ejecutarse, por lo cual carece de información técnica de las máquinas y equipos que serían de suma importancia al departamento de mantenimiento y operadores para solucionar con rapidez los problemas suscitados. Aplicado un software especializado ayudará a predecir fallos que va ocurrir a un futuro ya que el objetivo del mantenimiento es la optimización de la disponibilidad de las máquinas y confiabilidad de sus elementos, por ende, los gastos elevados de mantenimiento se reducirán.

Desarrollar el mantenimiento preventivo aplicando un software especializado es muy importante debido a que permitirá realizar trabajos de reparación establecidos y al igual poder registrar, como también manejar presupuestos acordes a la necesidad para que los gastos a realizar sean mínimos y que tener una disponibilidad alta de las máquinas y equipos que garantice un funcionamiento óptimo a un bajo costo.

Por ultimo las máquinas y equipos del área de inyección de la empresa HOLVIPLAS S.A. llevan años de operación y no se tienen ningún archivo que contenga los trabajos de reparación realizados debido a este problema es justificable la aplicación de la propuesta para mejorar el estado actual.

6.4 Objetivos

6.4.1 Objetivo General

 Desarrollar un software para el análisis del mantenimiento centrado en la confiabilidad aplicando la ley de Weibull para máquinas y equipos del área de inyección de la empresa Holviplas S.A.

6.4.1 Objetivo Específico

- Crear un documento de mantenimiento para recopilación de información (registro de actividades).
- Desarrollar interfaces gráficas independientes, tanto para el índice de confiabilidad aplicando weibull y el índice de disponibilidad, que permita la interacción entre el usuario y el software diseñado.
- Realizar la programación del índice de confiabilidad aplicando weibull y el índice de Disponibilidad.

- Elaborar un manual guía para el software de mantenimiento centrado en la confiabilidad.
- Realizar la matriz de mantenimiento preventivo y predictivo de las máquinas del área de inyección de PVC.

6.5 Análisis de Factibilidad

Debido que la empresa HOLVIPLAS S.A., poseen sellos de calidad INEN y se somete a auditorias establecidas, tiene la exigencia del desarrollo de un software especializado para el mantenimiento de máquinas y equipos del área de inyección de Policloruro de Vinilo (PVC), el proyecto es necesario para la optimización de recursos, a parte de la necesidad real que tiene el departamento de mantenimiento para que pueda cumplir las exigencias.

Este proyecto implementara un software especializado para el mantenimiento de máquinas y equipos debido que en la empresa se realizan frecuentemente el mantenimiento correctivo. El desarrollo de este proyecto minimizará el tiempo de paro de elementos productivos, mejorará el proceso de reparación, de igual manera se incrementará la disponibilidad de las máquinas y equipos del área de inyección de PVC garantizando el incremento de la productividad de la empresa.

6.6 Fundamentación

En la actualidad, existen una gran variedad de software de mantenimiento los objetivos de todas estas herramientas es ofrecer a las empresas una gestión del mantenimiento eficaz y flexible.

El presente proyecto se fundamentó en la necesidad de implementar un software especializado que determine el mantenimiento centrado en la confiabilidad de las máquinas y equipos del área de inyección de PVC, tomando en cuenta el tiempo de operación antes recopilado para el índice de confiabilidad y los tiempos de reparación para el índice de disponibilidad cumpliendo con los objetivos propuestos.

La información recopilada de las máquinas y equipos, además de la correcta aplicación de un software especializado en mantenimiento centrado en la confiabilidad, puede mejorar el estado actual de las actividades de reparación y mantenimiento en el área de

inyección de PVC y por consiguiente se obtendrá un incremento de la disponibilidad de la maquinaria.

6.6.1 Documentos de Mantenimiento

6.6.1.1 Registro de actividades

Es de gran importancia que en su totalidad las actividades de reparaciones y ajustes significativos sean registrados con el propósito de almacenar información para un análisis de mantenimiento centrado en la confiabilidad, pues conociendo los tiempos de operación y reparación se puede tomar medidas correctivas para mejorar la disponibilidad y reducir los costos de mantenimiento en el futuro [39].

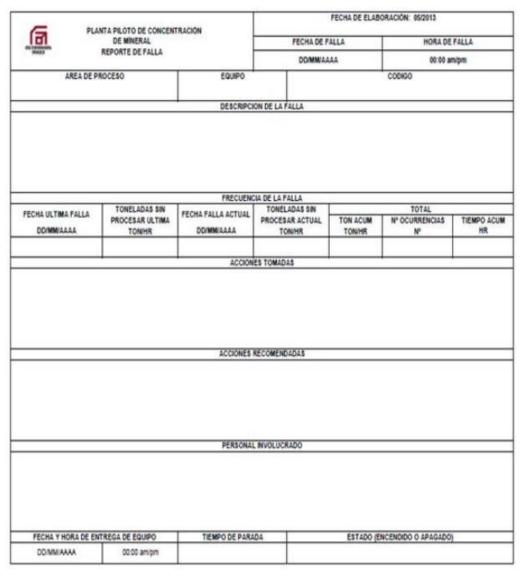
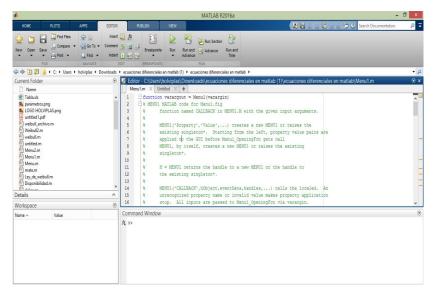


Fig. 6. 1 Formato de Registro de actividades [39].

6.6.2 Software Especializado

El desarrollo de la programación se realizará en un software potente capaz de realizar cálculos numéricos de vectores y matrices, además dispone de un lenguaje propio avanzado y varias librerías especializadas de genero matemático para cubrir todos los campos científicos [40].


Este software especializado contiene aplicaciones como: cálculo matemático de matrices, manipulación y figuración de datos y funciones, desarrollo de algoritmos, realización de interfaz de usuario (GUI´s), programación visual (Simulink) y la comunicación con programas en otro lenguaje y dispositivos hardware disponible para los sistemas operativos Windows, Unix y Apple Mac [41].

El software especializado dispone de dos aplicaciones adicionales que amplían las propiedades como: la plataforma de simulación (Simulink) y editor de interfaces de usuario (Guide), de igual forma se incrementa las características con las herramientas (toolboxes) y las aplicaciones de bloques (blocksets) [41].

Para el desarrollo del proyecto se ha profundizado en la capacidad de cálculo del entorno de programación grafico llamado Guide (Grafical User Interface), mediante el cual se ha generado una serie de ventanas sutil y simples para determinar el mantenimiento centrado en la confiabilidad [41].

6.6.3 Creación de Grafical User Interface (Interfaz Gráfica)

Al abrir el software se encuentra una ventana como se muestra en la figura 6.2 o similar ya que puede cambiar la configuración según la versión, se puede observar que es bastante simple y sutil facilitando así el uso.

Fig. 6. 2 Ventana principal Software Especializado **Fuente:** Elaboración propia de software

GUIDE es un entorno de programación visual disponible en el software especializado para realizar y ejecutar programas que necesitan ingreso continuo de datos, esto consiste en interactuar con el sistema operativo de una computadora. Esta aplicación está conformada por un conjunto de botones, campo de texto, menús fáciles de manejo para el usuario que a la hora de personalizar y crear nuevos controles se hará de forma rápida y sencilla.

La otra herramienta a destacar por parte de este software es Simulación y diseño basada en modelos de sistemas dinámicos que facilita un entorno grafico interactivo capaz de simular gran variedad de sistemas que dependen del tiempo, procesando señales junto a imagen y simulación dinámicas [41].

Una aplicación GUIDE consta de dos archivos: .m y. fig. El archivo .m es el que contiene el código con las correspondencias de los botones de control de la interfaz y el archivo. fig contiene los elementos gráficos. Las dos partes están enlazadas mediante las subrutinas Callback.

Para el inicio de un GUIDE se procederá de la siguiente manera:

1. Ejecutar mediante el teclado la palabra guide en la ventana Command Window

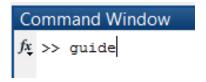


Fig. 6. 3 Acceso a GUI desde Command Window Fuente: Elaboración propia de software

2. También se puede ingresar haciendo click directamente en el icono como se indica en la figura 6.4.

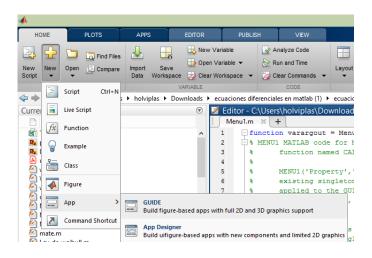


Fig. 6. 4 Acceso a GUI desde Menú Software Fuente: Elaboración propia de software

3. Para seleccionar un nuevo tipo de GUI acceder al icono Create New Gui en donde aparecerá el cuadro de dialogo en donde se deberá seleccionar una de las cuatro opciones como se detalla a continuación:

Black GUI (Default)

Esta opción de interfaz gráfica de usuario en blanco, presenta un formulario en donde se puede diseñar un nuevo programa.

• GUI with Uicontrols

En esta opción se presenta un ejemplo en donde se calcula la masa, la densidad y el volumen.

• GUI with Axes and Menú

Esta opción contiene el menú File con las opciones Open, Print, Close y en el formulario tiene un popup menú, un push button y un objeto Axes.

• Modal Question Dialog

Esta opción indica un cuadro de dialogo común, la cual consta de una pequeña imagen, una etiqueta y dos botones Yes y No [41].

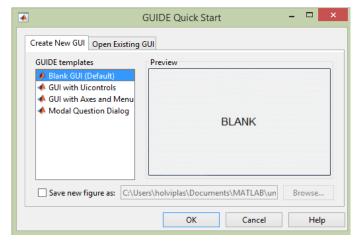
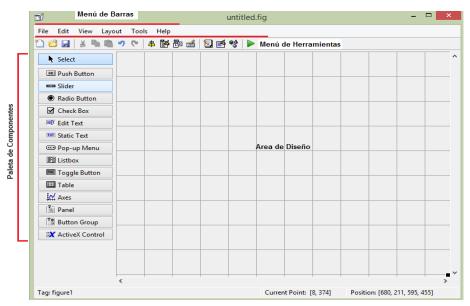



Fig. 6. 5 Menú para seleccionar el tipo de GUI inicial Fuente: Elaboración propia de software

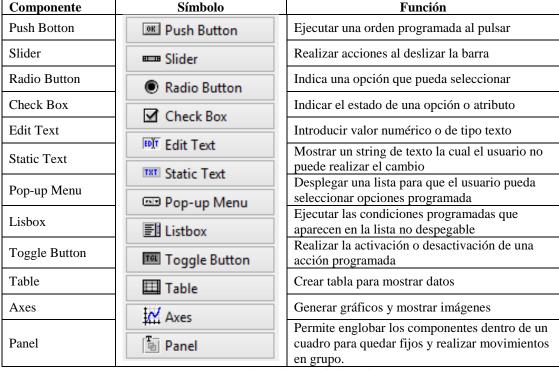

4. Para el nuevo diseño del programa elegir la primera opción, *Black GUI*, y se observa la ventana del diseño y herramientas GUI.

Fig. 6. 6 Plataforma de diseño GUI **Fuente:** Elaboración propia de software

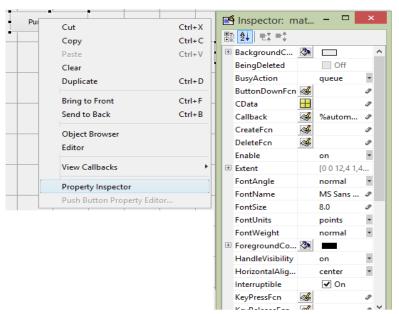
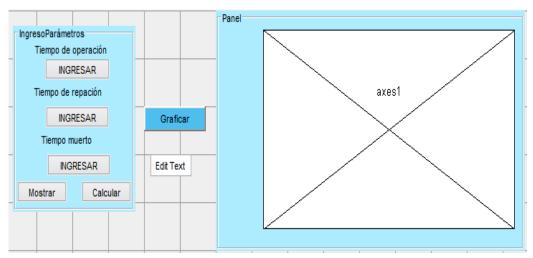

5. Para seleccionar la paleta de componentes ejecutar dando un click sobre cada uno de los componentes. La utilización de cada uno se realiza en función de sus características y aplicación, a continuación, detalla los componentes para el diseño del software [41]:

Tabla 6. 1 Lista de Componentes de GUIDE


Fuente: Elaboración propia de software

6. Cada uno de los elementos GUI, tiene un conjunto de opciones que se puede acceder con un click derecho y se pueden modificar las propiedades como se muestra en la siguiente figura 6.7.

Fig. 6. 7 Acceso a Property Inspector del componente **Fuente:** Elaboración propia de software

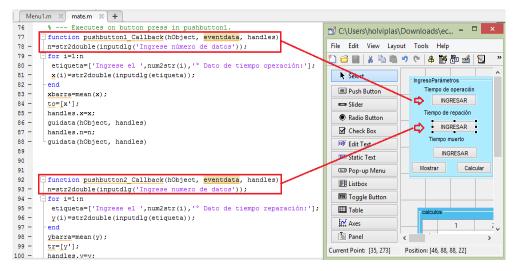

7. Seleccionar y colocar los componentes en un interfaz GUIDE para el diseño de la interface se puede utilizar los siguientes componentes como se observa en la figura 6.8 [41].

Fig. 6. 8 Diseño Interfaz gráfica con varios componentes **Fuente:** Elaboración propia de software

8. Programar en Menú File Editor

Al instante de terminar el diseño en la interface gráfica se procede a guardar el archivo y de manera automática se crea otro archivo .m y proporciona la parte inicial del programa como se indica en la figura 6.9. De esta manera permite la programación y visualización de cada uno de los componentes que se encuentren en la ventana interface de trabajo.

Fig. 6. 9 Menú M-File Editor de un GUI **Fuente:** Elaboración propia de software

9. Icono Run Guide

Al presionar el icono Run se ejecuta la ventana del interfaz Guide diseñado en el área, logrando así interactuar con el programa elaborado [41].

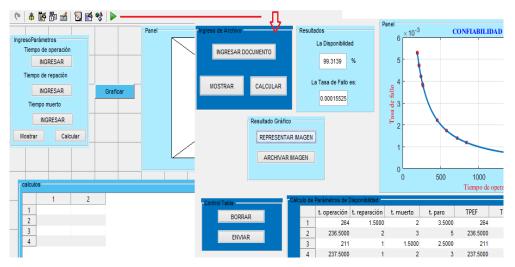


Fig. 6. 10 Interfaz gráfica de una GUI al presionar Run Guide Fuente: Elaboración propia de software

6.6.4 Confiabilidad

Es la probabilidad de que un equipo o sistema desempeñe satisfactoriamente las funciones para la cual está diseñando, durante un periodo de tiempo especificado y bajo condiciones de operación ambiental.

Medidas de Confiabilidad

La confiabilidad posee ciertos parámetros o medidas, que sirven para predecir en forma estadística el desempeño de un equipo, dichas medidas se encuentran en función del tiempo, la cual es aleatoria.

Las medidas de confiabilidad son las siguientes:

- Función confiabilidad o probabilidad de trabajo sin falla R(t).
- Función desconfiabilidad o probabilidad de falla F(t).
- Función de tasa de fallas λ (t).

6.6.4.1 Índice de Confiabilidad mediante distribución de Weibull

Densidad de probabilidad de falla f (t)

La función de densidad de probabilidad de falla, describe la forma de la distribución de fallas con respecto al tiempo.

$$f(t) = \frac{\beta}{\alpha^{\beta}} (t - \gamma)^{\beta - 1} \exp\left[-\left(\frac{t - \gamma^{\beta}}{\alpha}\right)\right] \text{ Siendo } t \ge \gamma$$
 Ecu. 6.1

Dónde:

 β = Parámetro de forma. β > 0

 η = Parámetro de escala o vida característica $\eta > 0$

t = Tiempo de estimación

 γ = Parámetro de localización o tiempo inicial

Tasa de falla λ (t)

La tasa de falla es otra función usada con frecuencia en confiabilidad, además de las funciones de probabilidad definidas anteriormente. Ésta nos proporciona una tasa de falla instantánea en un momento t.

$$\lambda(t) = \frac{(t-\gamma)^{\beta-1}}{\alpha^{\beta}}$$
 Ecu. 6.2

Probabilidad de trabajo con falla F (t)

Es la probabilidad de que un equipo falle antes de un tiempo t.

$$F(t) = 1 - R(t)$$

$$F(t) = 1 - \exp\left[-\left(\frac{t - \gamma}{\alpha}\right)^{\beta}\right]$$
 Ecu. 6.3

Probabilidad de trabajo sin falla R (t)

Es la probabilidad de trabajo sin falla hasta un tiempo t [40].

$$R(t) = \exp\left[-\left(\frac{t-\gamma}{\alpha}\right)^{\beta}\right]$$
 Ecu. 6.4

6.4.4.2 Índices de mantenibilidad (distribución de Weibull)

Hay mucha similitud entre los gráficos correspondientes a los índices de confiabilidad y mantenibilidad obtenidos mediante la distribución de Weibull. Es así que la función de no confiabilidad es similar a la mantenibilidad [40].

La mantenibilidad mediante la ley de Weibull se expresa como:

$$M(t) = 1 - e^{-\left(\frac{t}{\alpha}\right)^{\beta}}$$
 Ecu 6.5

Dónde:

M (t): Mantenibilidad

t: tiempo a evaluar

β: Parámetro de forma

η: Parámetro de escala

Función densidad de reparaciones

La función densidad de reparaciones mediante la ley de Weibull se expresa como [40]:

$$m(t) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta - 1} * e^{-\left(\frac{t}{\alpha}\right)^{\beta}}$$
 Ecu. 6.6

Dónde:

m (t): Densidad de reparaciones

β: Parámetro de forma

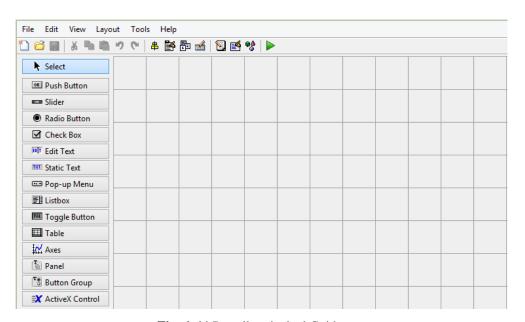
η: Parámetro de escala

6.6.5 Disponibilidad

Se define como la capacidad de un equipo de permanecer en un estado que le permita desempeñar las funciones requeridas en un instante o sobre un intervalo dado de tiempo, asumiendo que son provistos todos los recursos externos.

Los parámetros de la disponibilidad de manera general se pueden realizar a partir de los siguientes valores:

TPEF: Tiempo promedio entre fallos $((To_1+To_2+To_n)/\Sigma n)$ siendo n el número de datos **TPPR:** Tiempo promedio de reparación $((TR_1+TR_2+TR_n)/\Sigma n)$ siendo n el número de Datos [40].


$$D = \frac{TPEF}{TPEF + TPPR}$$
 Ecu. 6.7

6.7 Metodología

6.7.1 Desarrollo de la programación del índice de confiabilidad aplicando la Ley de Weibull en un software especializado.

A continuación, se explica los pasos seguidos para el desarrollo del programa.

1. Abrir la ventana del interfaz gráfico como se indica en la figura.

Fig. 6. 11 Pantalla principal Guide **Fuente:** Elaboración propia de software

2. Crear botones según el tipo de cálculo que se vaya a ejecutar, en la figura 6.12 se puede observar los botones creados en el escenario "CONFIABILIDAD POR LA LEY DE WEIBULL" como son:

- El botón "INGRESAR" la cual ayuda a digitar los datos de los registros de tiempo de operación, de la misma manera por rapidez se puede subir un archivo en formato .xlsx y se ejecutara sus correspondiente cálculos e interpretación.
- El botón "MOSTRAR" ayuda a visualizar en la tabla los datos ingresados ya sea de forma individual o por medio de carga de archivo .xlsx.
- El botón "CALCULAR" evalúa los parámetros de weibull.
- El botón "BORRAR" permite limpiar todo los ingresado para volver a realizar nueva carga de datos.
- El botón "GUARDAR" autoriza que el documento se convierta en xlsx.
- En panel Graficar se encuentra un menú despegable para la representación gráfica como la de Confiabilidad y desconfiabilidad, además se observa el botón "ARCHIVAR IMAGEN" que permite guardar el resultado de una imagen y el botón "BORRAR IMAGEN" por si se cargó nuevos datos al programa.
- Por último, se observa el panel de representación gráfica la cual nos permite observa la imagen de confiabilidad o desconfiabilidad de los datos analizados.

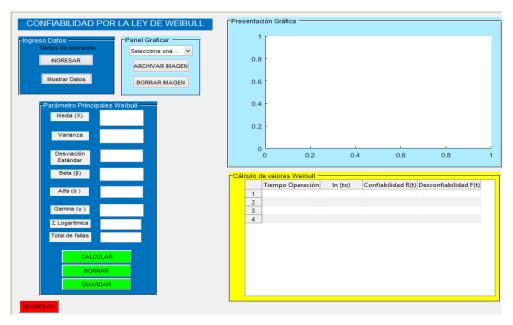


Fig. 6. 12 Escenario Interfaz gráfica de análisis de confiabilidad aplicando la ley de Weibull Fuente: Elaboración propia del software

3. El panel de ingreso de datos contiene los botones Ingresar y Mostrar, los códigos utilizados se pueden observar a continuación en la figura 6.14:

Fig. 6. 13 Panel Ingreso de Datos **Fuente:** Elaboración propia del software

```
function pushbutton1 Callback(hObject, eventdata, handles)
n=str2double(inputdlg('Ingrese el número de datos'));
for i=1:n
   etiqueta=['Ingrese el ',num2str(i),'° Dato de tiempo Operación:'];
   x(i)=str2double(inputdlg(etiqueta));
end
   xbarra=mean(x);
   to=[x'];
   handles.x=x;
   guidata(hObject, handles)
   handles.n=n;
   guidata(hObject, handles)

   * --- Executes on button press in mostrar.
   function mostrar Callback(hObject, eventdata, handles)
   to=handles.x;
Z=[to'];
```

Fig. 6. 14 Código de botones del panel de ingreso de Datos **Fuente:** Elaboración propia del software

También se puede realizar el ingreso de datos mediante un archivo Excel .xlsx que contiene registros de tiempos de operación mediante la búsqueda en la base de datos y la codificación como se indica a continuación:

Fig. 6. 15 Panel de Ingreso de Archivo **Fuente:** Elaboración propia del software

```
function abrir Callback(hObject, eventdata, handles)
% buscar y cargar datos
[FileName Path] = uigetfile({'*.xlsx'}, 'Abrir Documento');
% guardar datos
handles.archivo=xlsread(fullfile(Path, FileName));
guidata(hObject, handles);
```

Fig. 6. 16 Código para cargar un archivo **Fuente:** Elaboración propia del software

4. En el panel parámetros principales de Weibull se observa los diferentes botones y los cuadros de resultados que se obtiene al presionar el botón calcular, además se indica la codificación a continuación en la figura 6.18.

Fig. 6. 17 Panel de Parámetros Weibull **Fuente:** Elaboración propia del software

```
function calcular Callback(hObject, eventdata, handles)
 % Activar botones
 set(handles.popupmenu1, 'Enable', 'on');
 set(handles.pushbutton12,'Enable','on');
 set(handles.pushbutton15,'Enable','on');
 to=handles.x;
 a=handles.n;
for i=1:a
    nn=length(to);
 A=log(to);
 m=sum(A);
 Media=m/nn:
 R1=(A-Media).^2;
 o=sum(R1);
 Varianza=o/(nn-1);
 Desviasion=sqrt (Varianza);
 Beta=pi/(Desviasion*sqrt(6));
 Alfa=exp(Media+(0.5772/Beta));
 Gamma=0;
 R=exp(-(((to-Gamma)/Alfa).^(1/Beta)));
 rt=R*100;
 F = (1-R);
```

Fig. 6. 18 Código para calcular parámetros Weibull **Fuente:** Elaboración propia del software

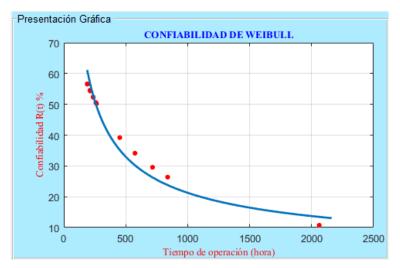

5. En el panel graficar se puede observar diferentes botones de igual manera un menú despegable que permite visualizar las gráficas de confiabilidad y desconfiabilidad, además de la codificación en la figura 6.19.

Fig. 6. 19 Panel despegable para graficar **Fuente:** Elaboración propia del software

```
axes(handles.axes1);
%GRAFICA CONFIABILIDAD
plot(To,A,'ro','markersize',4,'markerfacecolor','r')
hold on
grid on
plot(xx,yy,'LineWidth',2)
hold on title('CONFIABILIDAD DE WEIBULL','FontName','Times New Roman','FontSize', 10,'color','b') xlabel('Tiempo de operación (hora)','FontName','Times New Roman','FontSize', 10,'color','r') ylabel('Confiabilidad R(t) %','FontName','Times New Roman','FontSize', 10,'color','r')
hold off
        case 3
         axes(handles.axes1);
%GRAFICA DESCONFIABILIDAD
plot(To,B,'ro','markersize',4,'markerfacecolor','r')
hold or
grid or
plot(xx1,yy1,'LineWidth',2)
hold or
note on title('DESCONFIABILIDAD DE WEIBULL', 'FontName', 'Times New Roman', 'FontSize', 10,'color', 'b') xlabel('Tiempo de operación (hora)', 'FontName', 'Times New Roman', 'FontSize', 10,'color', 'r') ylabel('Desconfiabilidad F(t) %', 'FontName', 'Times New Roman', 'FontSize', 10,'color', 'r')
```

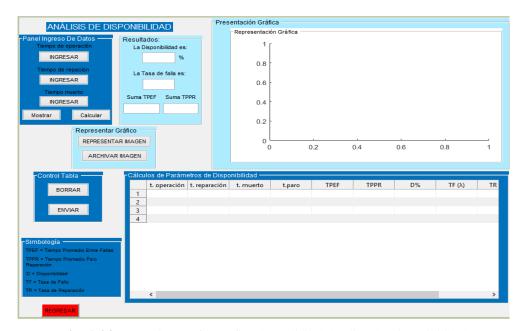
Fig. 6. 20 Código para el panel del menú despegable Fuente: Elaboración propia del software

Fig. 6. 21 Gráfica de Confiabilidad **Fuente:** Elaboración propia del software

6. En el panel cálculo de valores weibull, al presionar el botón "Calcular" se muestran en la tabla los valores de confiabilidad y desconfiabilidad.

Cálc	ulo d	e valores Weibull				
		Tiempo Operación	In (to)	Confiabilidad R(t)	Desconfiabilidad F(t)	
	1	264	5.5759	50.1999	49.8001	٨
	2	236.5000	5.4659	52.3525	47.6475	
	3	211	5.3519	54.5352	45.4648	
	4	237.5000	5.4702	52.2708	47.7292	
	5	213	5.3613	54.3568	45.6432	
	6	2.0615e+03	7.6312	10.7486	89.2514	
	7	452	6.1137	39.1774	60.8226	
	8	188.5000	5.2391	56.6382	43.3618	
	9	838	6.7310	26.3564	73.6436	
	10	716	6.5737	29.5585	70.4415	
	11	189.5000	5.2444	56.5408	43.4592	
	12	574.5000	6.3535	34.1399	65.8601	
	12	250	5 5568	50 5772	49 4228	~

Fig. 6. 22 Tabla de valores Weibull calculados Fuente: Elaboración propia del software


7. Por último, para poder regresar al menú principal o salir se debe presionar el botón "REGRESAR", además se adjunta la codificación como se muestra a continuación:

```
Function pushbutton11 Callback(hObject, eventdata, handles)
```

Fig. 6. 23 Código para el botón Regresar al menú principal Fuente: Elaboración propia del software

6.7.2 Desarrollo de la programación del índice de Disponibilidad en un software especializado.

1. Crear botones según el tipo de calculo que se vaya a ejecutar en la figura 6.24 se puede observar los botones creados en el escenario "ANÁLISIS DISPONIBILIDAD" como son: el botón "INGRESAR" la cual ayuda a digitar los datos de los registros de tiempo de operación, tiempo de reparación y tiempo muerto, de la misma manera por rapidez se puede subir un archivo en formato .xlsx y se ejecutara su correspondiente calculo y resultados.

Fig. 6. 24 Escenario Interfaz gráfica de análisis del índice de Disponibilidad **Fuente:** Elaboración propia del software

2. El panel de ingreso de datos contiene los botones "INGRESAR" que permite la digitación individual del tiempo de operación, reparación y tiempo muerto, además existe un botón para poder cargas archivos .xlsx que contenga los tres tiempos principales. El botón "MOSTRAR" visualiza en la tabla los datos ingresados y botón "CALCULAR" permite observar los valores calculados en la tabla de disponibilidad, también se adjunta la codificación utilizada cómo se detalla a continuación:

Fig. 6. 25 Panel de control del índice de Disponibilidad Fuente: Elaboración propia del software

```
function calcular Callback(hObject, eventdata, handles)
  to=handles.x:
 tr=handles.v;
 tm=handles.w;
  a=handles.n;
  tp=tr+tm;
 TPEF=to;
  TPPR=tp;
  dis=(TPEF./(TPEF+TPPR))*100;
  tasaf=1./TPEF;
  tasar=1./TPPR;
  R=(exp(-(to.*tasaf)))*100;
  K1=sum(to);
  K2=sum(tp);
  C4=(K1./(K1+K2))*100; %disponibilidad total
  K4=1./K1; %tasa de fallo total
 T5=(exp(-(K1.*K4)))*100;
Z=[to' tr' tm' tp' TPEF' TPPR' dis' tasaf' tasar' R'];
  set (handles.uitable1, 'Data', Z);
```

Fig. 6. 26 Código de botones del panel de ingreso **Fuente:** Elaboración propia del software

3. En el panel resultados se obtiene el valor de Disponibilidad al presionar el botón calcular, además se indica la codificación.

Fig. 6. 27 Panel resultados de Disponibilidad **Fuente:** Elaboración propia del software

```
function edit2 CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end

set(handles.edit2, 'String', C4);
set(handles.edit3, 'String', K4)
```

Fig. 6. 28 Código para visualizar el índice de disponibilidad Fuente: Elaboración propia del software

4. En este panel cálculo de valores de Disponibilidad, al presionar el botón "Calcular" se muestran en la tabla los siguientes:

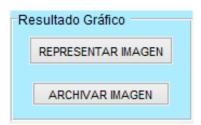

	t. operación	t. reparación	t. muerto	t. paro	TPEF	TPPR	D (%)	TF (λ)
1	264	1.5000	2	3.5000	264	3.5000	98.6916	0.00
2	236.5000	2	3	5	236.5000	5	97.9296	0.00
3	211	1	1.5000	2.5000	211	2.5000	98.8290	0.00
4	237.5000	1	2	3	237.5000	3	98.7526	0.00
5	213	1	1.5000	2.5000	213	2.5000	98.8399	0.00
6	2.0615e+03	1.5000	2.5000	4	2.0615e+03	4	99.8063	4.8508e-
7	452	1.5000	2	3.5000	452	3.5000	99.2316	0.00
8	188.5000	0.5000	1.5000	2	188.5000	2	98.9501	0.00
9	838	1.5000	2.5000	4	838	4	99.5249	0.00
10	716	1	1.5000	2.5000	716	2.5000	99.6521	0.00
11	189.5000	0.5000	1	1.5000	189.5000	1.5000	99.2147	0.00
	<							>

Fig. 6. 29 Tabla de valores del índice de Disponibilidad Fuente: Elaboración propia del software

Fig. 6. 30 Simbología de tabla de valores de Disponibilidad Fuente: Elaboración propia del software

5. En el panel de resultado gráfico se puede observar dos botones para representar y archivar la imagen, además se adjunta la codificación.

Fig. 6. 31 Panel para representar y guardar imagen **Fuente:** Elaboración propia del software

```
function pushbutton7 Callback(hObject, eventdata, handles)
figura=figure(2);
colormap('bone')
set(figura,'InvertHardcopy','off','Color','white');
objeto_2 = copyobj(handles.axes1,figura);
set(objeto_2,'Units','normalized','Position',[0.12 0.12 .8 .8])
```

Fig. 6. 32 Código para archivar imagen **Fuente:** Elaboración propia del software

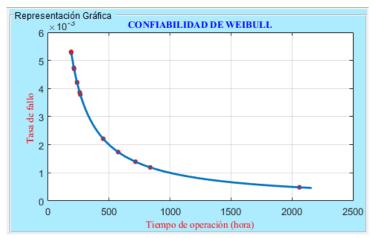


Fig. 6. 33 Gráfica de Tasa de Fallo del índice de Disponibilidad Fuente: Elaboración propia del software

6. Por último, para poder regresar al menú principal o salir se debe presionar el botón "REGRESAR", además se indica la codificación detallada.

```
Function pushbutton11 Callback(hObject, eventdata, handles)
```

Fig. 6. 34 Código para el botón Regresar al menú Principal Fuente: Elaboración propia del software

Fig. 6. 35 Retorno Pantalla del Menú Principal Fuente: Elaboración propia del software

6.8 Administración

Una vez ejecutado y concluido el proyecto se puede presentar los costos en su totalidad, que brindara una referencia útil y confiable para tomar decisiones administrativas futuras.

Se tomó en cuenta los costos directos e indirectos, además se incluye un 10% del valor calculado para improvistos de ser necesario y así conseguir un precio apropiado.

Tabla 6. 2 Detalle de Costos Totales

Ítem	Descripción	Cant.	Unidad	Precio Unitario (\$)	Precio Total (\$)
	Costos D	irectos			
1	Servicios de Internet	250	horas	0.4	100
2	Alquiler de Ordenador (laptop)	50	horas	0.5	25
3	Adquisición de Normas	2	u	35	70
4	Material de oficina	5	resmas	6	30
5	Remuneración del Autor	1	u	400	400
6	Bibliografía	1	u	200	200
7	Movilización	1	u	150	150
8	Fotocopias	1300	hojas	0.02	26
9	Anillados	8	u	7	56
10	Empastado	3	u	25	75
11	Desarrollo del programa	1	u	800	800
12	Impresiones	2500	hojas	0.1	250
	Subtota	al 1			2182
	Costos	Indire	ctos		
13	Asesor de Programación	1	u	200	200
	Subtota	al 2			200
	Coste	o Subto	tal		
			Costo	Subtotal	2382
			Improv	visto 10%	238.20
			Co	osto Total	2620.20

Elaborado por: El Autor

6.9 Previsión de la Evaluación

Esta investigación pretende ayudar al departamento de Mantenimiento dentro de la empresa de igual forma a empresas dedicadas a la producción, la cual desarrollando un software especializado para un análisis estadístico de datos se podrá predecir las posibles fallas que se puedan presentar en las máquinas y equipos del área de inyección de PVC, así se logrará alargar la vida útil de los componentes y sistemas, elevando el nivel de confiabilidad y disponibilidad de la maquinaria.

Todo el estudio generado estará a disposición en la empresa HOLVIPLAS S.A, tanto en forma física y digital para que se pueda utilizar toda la información de tablas y graficas adquiridas con los datos obtenidos de las máquinas y equipos del área de inyección de PVC.

Esta investigación será beneficiosa para nuevos proyectos, debido a que se describe el procedimiento adecuado para la determinación del mantenimiento centrado en la confiabilidad y será gran aporte en el área de mantenimiento.

A través de la implementación del software especializado la empresa podrá evaluar el índice de confiabilidad y disponibilidad y de igual forma el estado que se encuentra cada uno de las máquinas y equipos de toda el área de producción.

Mediante el software especializado aplicado para el mantenimiento tienen un gran alcance a futuro, debido que se podrá realizar una gestión de mantenimiento completo de toda el área de la empresa ya que el software está diseñado para ingresar por el usuario datos de tiempo de operación y reparación para obtener el índice de confiabilidad y disponibilidad generando información de gran ayuda.

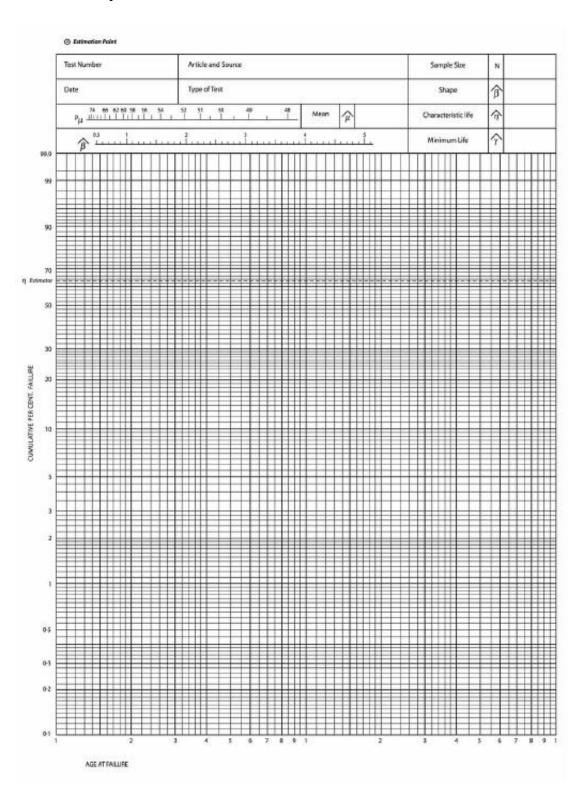
BIBLIOGRAFÍA

- [1] E. Neyra, «Mantenimiento Industrial,» Tesis Pregarado, Universidad Cesar Vallejo, Perú, 2014.
- [2] C. J. Zapata, «Confiabilidad en Ingeniería,» Tesis pregrado, Universidad Tecnológica de Pereira, Pereira Colombia, 2014.
- [3] A. S. Fernandez, «Mantenimiento en Latinoamerica,» *Revista para la Gestión de los activos*, vol. 11, nº 2, pp. 14 15, Marzo Abril 2019.
- [4] R. Moreno, A. Rojano, E. Figueroa y F. Pérez, «Aplicaciones de la distribución Weibull en Ingeniería de confiabilidad,» COLMEME UAN, Mexico, 2015.
- [5] S. Ramirez, «Análisis de Datos de Falla,» Tesis Doctoral, Departamento de Ingeniería Electrica, Electrónica y Computación, Colombia, 2014.
- [6] C. Zamora, «Análisis de Weibull en la Gestión de Mantenimiento de equipos Trackles (Minería subterránea),» Tesis Pregrado, Universidad Nacional de Callao, Perú, 2014.
- [7] J. Redondo, «Un modelo matemático óptimo de mantenimiento y fiabilidad aplicada a la aviación comercial,» Tesis Doctoral, Universidad Nacional de Eduacación a Distancia, 2014.
- [8] J. Serrano, «Comparación de métodos para determinar los parámetros Weibull para la generación de energía eólica,» Tesis Posgrado, Universidad Tecnológica de Pereira, Colombia, 2015.
- [9] P. Miño, «Análisis de Confiabilidad, Disponibilidad y Mantenibilidad (RAM) de un motor de combustión interna Wartsila 18V32LNGD,» Tesis Posgrado, Esculea Superior Politécnica del Chimborazo, Riobamba, 2015.
- [10] O. Saavedra, «Análisis de los factores que inciden en el envejecimiento prematuro de máquinas inyectoras para suelas de PVC que afectan la confiabilidad para el proceso de producción en la industria de plástico "Garcés",» Tesis Pregrado, Universidad Estatal de Milagro, Milagro, 2014.
- [11] P. Barrionuevo y J. Illicachi, «Análisis de la confiabilidad de los equipos de la central de hormigonado de la empresa pública cementera del ecuador,» Tesis Pregrado, Escuela Superior Politécnica del Chimborazo, Riobamba, 2017.

- [12] L. Espín, «Diseño de elementos de Máquina,» Revista Tecnológica, p. 4, 2017.
- [13] I. Manzano, «Diseño Mecánico,» Revista Tecnológica, 2017.
- [14] F. Díaz, «Diseño de Elementos de Máquinas,» de *Elementos de Máquinas*, Mexico, Facultad de Estudios Superiores Cuautitlán, 2015, pp. 5-6.
- [15] F. Chicaiza, «Análisis del estado actual de las máquinas de la empresa madearq s.a. del cantón ambato y su incidencia en la confiabilidad,» Universidad Tecnica de Ambato, Ecuador, 2016.
- [16] R. Pereira, «Terminología del Mantenimiento,» UNE EN 13306, 2018.
- [17] O. García, «Gestión del Mantenimiento,» Consultor Internacional en Gestión de activos y Excelencia Operacional, Colombia, 2016.
- [18] J. Ramirez y H. Moreno, «Tesis elaboración de un análisis de criticidad y disponibilidad para la atracción x-treme del parque mundo aventura, tomando como referencia las normas, sae ja1011 y sae ja1012,» Tesis Pregrado, Universidad Distrital Francisco Jose Caldas Ingeniería Eléctrica / Mecánica, Bogota, 2017.
- [19] J. Moubray, «Mantenimiento Centrado en Confiabilidad,» de *Mantenimiento Industrial*, 2014, pp. 45-47.
- [20] F. Gomez, «Tecnología del Mantenimiento Industrial,» Articulo de Revista, Universidad de Murcia, Murcia, 2015.
- [21] B. DILLON, Mantenimiento de Ingeniería un Enfoque Moderno, Washinton D.C: pag 55-73, 2015.
- [22] J. Ruiz, «Monitoreo de Condición y Diagnóstico de máquinas,» *Monitoreo de Condiciones*, pp. 2 3, 2016.
- [23] E. P. Espín, «"Plan de mantenimiento centrado en la confiabilidad para la inyectora de poliuretano de la empresa calzado Marcia Buffalo industrial".,» Universidad Técnica de Ambato, Ambato, 2016.
- [24] C. Parra, «Guia Practica,» de *Mantenimiento Centrado en la Confiabilidad*, España, 2018, pp. 18-20.
- [25] A. Mora, MANTENIMIENTO Planeación, Ejecución y Control, España, 2014.
- [26] F. Espinoza, Confiabilidad Operacional de Equipos Metodología y Herramientas, España, 2014.

- [27] C. Adriano, «Desarrollo de un modelo de análisis de fallas, jerarquización de activos críticos y riesgos para el mejoramiento de la eficiencia en la gestión del mantenimiento de la estación de bombeo amazonas de OCP Ecuador,» Escuela Superior Politécnica del Chimborazo, Ecuador, 2016.
- [28] J. Tamborero, «Fiabilidad: Fiabilidad distribución de Weibull,» NTP 331, 2016.
- [29] J. Tirado, «Elaboración de un plan de mantenimiento preventivo de la carrocería de los autobuses interprovinciales basado en el sistema de mantenimiento productivo total en la empresa Peres,» Universidad Tecnica de Ambato, Ambato, 2017.
- [30] E. López, «Estudio de mejora del mantenimiento mediante la aplicación de la distribución de Weibull a un histórico de fallos,» Fundación UNED, 2014.
- [31] M. Bestratén, «NTP 679 Análisis Modal y efectos de Fallo AMFE,» 2016.
- [32] R. Abernethy, Weibull Analysis Handbook, U.S.A, 2014.
- [33] J. Paredes, «Análisis del blindaje del acero AISI 1045 por proyección térmica de aleación micropulverizada Eutalloy 11496 y su influencia en la resistencia al desgaste superficial,» Tesis Posgrado, Universidad técnica de Ambato, Ambato, 2017.
- [34] G. Isacc, «La función de distribucción de Weibull,» *Ensayos de fiabilidad*, pp. 6-7, 2015.
- [35] F. Freire, «Desarrollo de un plan de mantenimiento preventivo y predictivo mediante la distribución de Weibull para las inyectoras horizontales de polímeros en la empresa Ingeniería diseño de suelas,» UTA, Ambato, 2019.
- [36] M. Ojeda, «La estructura de financiamiento y la rentabilidad en las cooperativas de ahorros y creditos reguladas por la superintendencia de economia popular y solidaria del canton Ambato,» Tesis Posgrado, Universidad Técnica de Ambato, Ambato, 2017.
- [37] C. Lagua, «Correlación y Regresión Lineal,» Instituto Aragonés de Ciencias de la Salud, España, 2015.
- [38] H. Erazo, «Análisis estadístico de las propiedades mecánicas a tracción, flexión e impacto del material híbrido con fibra de vidrio y abacá en matriz polimérica de resina poliéster, para determinar la mejor configuración,» Tesis Pregrado, Universidad Técnica de Ambato, Ambato, 2019.

- [39] J. Ninacuri, «Análisis de Mantenimiento de la maquinaria pesada del gobierno autónomo descentralizado municipal del cantón Pastaza y su incidencia en la disponibilidad,» Tesis Pregrado, Universidad Técnica de Ambato, Ambato, 2016.
- [40] F. Rodriguez, «Análisis de Confiabilidad, Mantenibilidad y Disponibilidad mediante la aplicación de la distribución de weibull Estudio de caso separadores de aceite westfalia de la empresa agip oil Ecuador,» Tesis Posgrado, Escuela Superior Politécnica de Riobamba, Riobamba, 2018.
- [41] M. Martínez, «Desarrollo de software para el cálculo de parámetros de Weibull y aplicaciones en: Análisis de fallas mecánicas y caracterización del potencial eólico,» Tesis Pregrado, Universidad Austral de Chile, 2014, 2014.


ANEXOS

ANEXO 1. Inventario de máquinas y equipos planta holviplas S.A.

	Holviplas s.a.	
N°	EQUIPO	CODIGO
	EXTRUSORAS	
	LINEA 100	
1	EXTRUSORA AMUT BA 105	H100
2	TINA DE VACIO OEM	H101
3	TINA DE EMFRIAMIENTO OEM	H102
4	CATERPILAR OEM	H103
5	CORTADORA OEM	H104
6	ACAMPANADORA OEM	H105
	LINEA 200	·
7	EXTRUSORA AMUT BA 86	H200
8	TINA DE VACIO AMUT	H201
9	CATERPILAR CORTADOR AMUT	H202
10	ACAMPANADORA OEM 500	H203
	LINEA 300	
11	EXTRUSORA AMUT BA 67	H300
12	TINA DE VACIO AMUT	H301
13	TINA DE EMFRIAMIENTO AMUT	H302
14	CATERPILAR CORTADOR AMUT	H303
15	ACAMPANADORA	H304
	LINEA 400	
16	EXTRUSORA CINCINNATI	H400
17	TINA DE EMFRIAMIENTO	H401
18	CATERPILAR CINCINNATI	H402
19	CORTADORE CINCINNATI	H403
	LINEA 500	
20	EXTRUSORA EUROVITTI	H500
21	TINA DE VACIO FANGLI	H501
22	CATERPILAR FANGLI	H502
	LINEA 600	
23	EXTRUSORA MIOTTO	H600
24	TINA DE VACIO MIOTTO	H601
25	CATERPILAR CORTADOR MIOTTO	H602
	LINEA 700	
26	EXTRUSORA AMUT BA 92	H700
27	TINA DE VACIO CONAIR	H701
28	CATERPILAR ROYAL	H702
29	CORTADORA ROYAL	H703
30	ACAMPANADOR	H704

	LINEA 800	
31	EXTRUSORA AMUT BA 94	H800
32	TINA DE VACIO	H801
33	CATERPILAR ROYAL	H802
34	CORTADORA ROYAL	H803
35	ACAMPANADOR	H804
36	EQUIPOS EXTRUSORAS	
37	MONTACARGAS CATERPILAR	MCH2
38	TRANSPORTADOR HIDRAULICO	THH3
	LINEA JWELL CORRUGADO	
39	EXTRUSORA JWELL	H900
40	CORRUGADOR JWELL	H901
41	CORTADOR JWELL	H902
42	ACAMPANADOR JWELL	H903
43	BOMBAS DE VACIO	H904
	MEZCLADORES	
44	MEZCLADOR CACCIA	TM2
45	MEZCLADOR VALTORTA	TM3
46	MEZCLADOR PMAYER	TM4
	EQUIPOS AREAS MEZCLADORES	
47	TRANSPORTADOR HIDRAULICO	THH2
	COMPRESORES	
48	COMPRESOR PISTON 40 HP	CH1
49	COMPRESOR TORNILLO SSR50	CH2
50	COMPRESOR TORNILLO SCR50	CH3
	INYECTORAS	
51	HAITIAN HTF300	INYH1
52	HAITIAN HTF200	INYH2
53	HAITIAN HTF320	INYH3
54	HAITIAN PL4500	INYH4
55	HAITIAN PL1600	INYH5
	EQUIPOS AREA INYECTORA	
56	TECLE DE CADENA 2 TN HAITIAN	TCH1
57	TRANSPORTADOR HIDRAULICO	THH1
58	MONTACARGAS TOYOTA	MCH3
	TRITURADORES	
59	TRITURADOR ACCESORIOS	MOL1
60	TRITURADOR TUBERIA PRESIÓN	MOL2
61	TRITURADOR TUBERIA CORRUGADA	MOL3
	EQUIPOS AREA TRITURADOR	
62	MONTACARGAS MITSUBISHI	MCH1

ANEXO 2. Papel de weibull

ANEXO 3. NTP 331 Fiabilidad distribución de weibull

Año: 1994

NTP 331. Fiabilidad: la distribución de Weibull

Fiabilité: la distribution de Weibull Reliability: the Weibull distribution

Las NTP son guías de buenas prácticas. Sus indicaciones no son obligatorias salvo que estén recogidas en una disposición normativa vigente. A efectos de valorar la pertinencia de las recomendaciones contenidas en una NTP concreta es conveniente tener en cuenta su fecha de edición.

Redactor:

José Mª Tamborero del Pino Ingeniero Industrial

CENTRO NACIONAL DE CONDICIONES DE TRABAJO

Objetivo

El objetivo de la presente NTP es exponer un tipo de distribución estadística aplicable al estudio de la fiabilidad en problemas relativos a la fatiga y vida de componentes y materiales. La distribución de Weibull, que recibe su nombre del investigador sueco que la desarrolló, se caracteriza por considerar la tasa de fallos variable, siendo utilizada por su gran flexibilidad, al poder ajustarse a una gran variedad de funciones de fiabilidad de dispositivos o sistemas.

Introducción

La prevención de pérdidas o seguridad industrial aplicada con rigor científico está basada, en gran parte, en la aplicación de los métodos probabilísticos a los problemas de fallos en los procesos industriales. Todo ello se ha llevado a cabo a través de una disciplina denominada ingeniería de fiabilidad, para la cual se disponen de las adecuadas técnicas de predicción, que han sido fundamentales para el aseguramiento de la calidad de productos y procesos. (Para recordar los conceptos básicos sobre fiabilidad se remite al lector a la NTP 316- Fiabilidad de componentes- la distribución exponencial).

La distribución de Weibull complementa a la distribución exponencial y a la normal, que son casos particulares de aquella, como veremos. A causa de su mayor complejidad sólo se usa cuando se sabe de antemano que una de ellas es la que mejor describe la distribución de fallos o cuando se han producido muchos fallos (al menos 10) y los tiempos correspondientes no se ajustan a una distribución más simple. En general es de gran aplicación en el campo de la mecánica.

Aunque existen dos tipos de soluciones analíticas de la distribución de Weibull (método de los momentos y método de máxima verosimilitud), ninguno de los dos se suele aplicar por su complejidad. En su lugar se utiliza la resolución gráfica a base de determinar un parámetro de origen (t₀). Un papel especial para gráficos, llamado papel de Weibull, hace esto posible. El procedimiento gráfico, aunque exige varios pasos y una o dos iteraciones, es relativamente directo y requiere, a lo sumo, álgebra sencilla.

La distribución de Weibull nos permite estudiar cuál es la distribución de fallos de un componente clave de seguridad que pretendemos controlar y que a través de nuestro registro de fallos observamos que éstos varian a lo largo del tiempo y dentro de lo que se considera tiempo normal de uso. El método no determina cuáles son las variables que influyen en la tasa de fallos, tarea que quedará en manos del analista, pero al menos la distribución de Weibull facilitará la identificación de aquellos y su consideración, aparte de disponer de una herramienta de predicción de comportamientos. Esta metodología es útil para aquellas empresas que desarrollan programas de mantenimiento preventivo de sus instalaciones.

Características generales

Sabemos que la tasa de fallos se puede escribir, en función de la fiabilidad, de la siguiente forma:

$$\lambda(t) = -\frac{d[R(t)]}{dt}$$

$$R(t)$$

 \dot{o} R (t) = exp [- $\int \lambda(t) dt$]

siendo

 $\lambda(t)$ - Tasa de fallos

R (t) - Fiabilidad

F (t) - Infiabilidad o Función acumulativa de fallos

t - Tiempo

En 1951 Weibull propuso que la expresión empírica más simple que podía representar una gran variedad de datos reales podía obtenerse escribiendo:

$$\int \lambda(t)dt = \left(\frac{t - t_0}{\eta}\right)^{\beta}$$

por lo que la fiabilidad será:

$$R(t) = \exp \left[-\left(\frac{t - t_0}{\eta}\right)^{\beta} \right]$$

siendo :

t₀ - parámetro inicial de localización

 $\boldsymbol{\eta}$ - parámetro de escala o vida característica

ß - parámetro de forma

Se ha podido demostrar que gran cantidad de representaciones de fiabilidades reales pueden ser obtenidas a través de ésta ecuación, que como se mostrará, es de muy fácil aplicación.

La distribución de Weibull se representa normalmente por la función acumulativa de distribución de fallos F (t):

$$F(t) = 1 - \exp\left[-\left(\frac{t - t_0}{\eta}\right)^{\beta}\right] \quad (1)$$

siendo la función densidad de probabilidad:

$$f(t) = \frac{\beta}{\eta} \left(\frac{t - t_0}{\eta} \right)^{\beta - 1} exp \left[-\left(\frac{t - t_0}{\eta} \right)^{\beta} \right] \tag{2}$$

La tasa de fallos para esta distribución es:

$$\lambda(t) = \frac{\beta}{\eta} \left(\frac{t - t_0}{\eta} \right)^{\beta - 1}$$
 (3)

Las ecuaciones (1), (2) y (3) sólo se aplican para valores de $(t - t_0) \ge 0$. Para valores de $(t - t_0) < 0$, las funciones de densidad y la tasa de fallos valen 0. Las constantes que aparecen en las expresiones anteriores tienen una interpretación física :

- t₀ es el parámetro de posición (unidad de tiempos) 0 vida mínima y define el punto de partida u origen de la distribución.
- η es el parámetro de escala, extensión de la distribución a lo largo, del eje de los tiempos. Cuando (t t₀) = η la fiabilidad viene dada por:
 R (t) = exp (1)⁶ = 1/exp 1⁶ = 1 / 2,718 = 0,368 (36,8%)
 Entonces la constante representa también el tiempo, medido a partir de t₀ = 0, según lo cual dado que F (t) = 1 0,368 = 0,632, el 63,2 % de la población se espera que falle, cualquiera que sea el valor de ß ya que como hemos visto su valor no influye en los cálculos realizados. Por esta razón también se le llama usualmente vida característica.
- ß es el parámetro de forma y representa la pendiente de la recta describiendo el grado de variación de la tasa de fallos.

Las variaciones de la densidad de probabilidad, tasa de fallos y función acumulativa de fallos en función del tiempo para los distintos valores de ß, están representados gráficamente en la Figura 1.

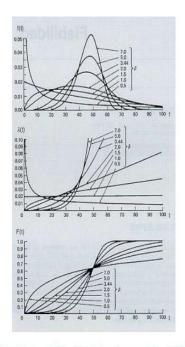


Fig. 1: Variación de la densidad de probabilidad f (t), tasa de fallos λ(t) y la función acumulativa de fallos F(t) en función del tiempo para distintos valores del parámetro de forma β

Representación de los modos de fallo mediante la distribución de weibull

En el estudio de la distribución se pueden dar las siguientes combinaciones de los parámetros de Weibull con mecanismos de fallo particulares:

- a. t₀ = 0: el mecanismo no tiene una duración de fiabilidad intrínseca, y:
 - si ß < 1 la tasa de fallos disminuye con la edad sin llegar a cero, por lo que podemos suponer que nos encontramos en la juventud del componente con un margen de seguridad bajo, dando lugar a fallos por tensión de rotura.
 - us i S = 1 la tasa de fallo se mantiene constante siempre lo que nos indica una característica de fallos aleatoria o pseudo-aleatoria. En este caso nos encontramos que la distribución de Weibull es igual a la exponencial.
 - si
 § > 1 la tasa de fallo se incrementa con la edad de forma continua lo que indica que los desgastes empiezan en el momento en que el mecanismo se pone en servicio.
 - o si ß = 3,44 se cumple que la media es igual a la mediana y la distribución de Weibull es sensiblemente igual a la normal.
- b. $t_0 > 0$: El mecanismo es intrínsecamente fiable desde el momento en que fue puesto en servicio hasta que $t = t_0$, y además:
 - υ si ß < 1 hay fatiga u otro tipo de desgaste en el que la tasa de fallo disminuye con el tiempo después de un súbito incremento hasta t₀; valores de ß bajos (~ 0,5) pueden asociarse con ciclos de fatigas bajos y los valores de b más elevados (~ 0,8) con ciclos más altos.
 - 5 si ß > 1 hay una erosión o desgaste similar en la que la constante de duración de carga disminuye continuamente con el incremento de la carga.
- c. $t_0 < 0$. Indica que el mecanismo fue utilizado o tuvo fallos antes de iniciar la toma de datos, de otro modo
 - o si ß < 1 podría tratarse de un fallo de juventud antes de su puesta en servicio, como resultado de un margen de seguridad bajo.
 - o si ß > 1 se trata de un desgaste por una disminución constante de la resistencia iniciado antes de su puesta en servicio, por ejemplo debido a una vida propia limitada que ha finalizado o era inadecuada.

Análisis de Weibull

Uno de los problemas fundamentales de la distribución de Weibull es la evaluación de los parámetros (t_0 , η , Ω) de esta distribución. Para ello se dispone de dos métodos: a través únicamente del cálculo mediante el método de los momentos o el de máxima verosimilitud, en el que intervienen ecuaciones diferenciales difficiles de resolver, por lo que se utilizan poco, y mediante la resolución gráfica, que utiliza un papel a escala funcional llamado papel de Weibull o gráfico de Allen Plait que es el que vamos a desarrollar.

Resolución gráfica

El papel de Weibull (fig. 2 y 3) está graduado a escala funcional de la siguiente forma:

En el eje de ordenadas se tiene: In In [1 / 1 - F (t)] (Doble logaritmo neperiano)

En el eje de abscisas, tenemos: In (t - t₀)

Existen tres casos posibles en función del valor de $t_{\rm 0}$

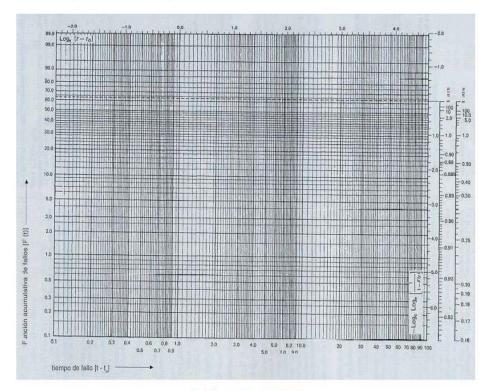
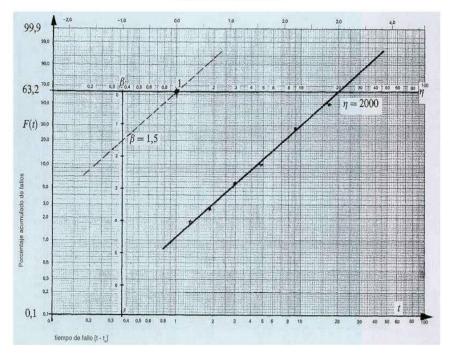



Fig. 2: Muestra del papel de Weibull

Caso de t₀ = 0

Demostramos que cualquier grupo de datos que sigan la distribución de Weibull se pueden representar por una línea recta en el papel de Weibull. Partimos de la hipótesis de que el origen es perfectamente conocido y que coincide con los datos experimentales. Desde el punto de vista matemático partimos de la fórmula que nos relaciona la fiabilidad con la infiabilidad y teniendo en cuenta la expresión (1):

```
R (t) = 1 - F (t) = exp - (t / \eta)^{\beta}
1 / [1 - F (t)] = exp (t / \eta)^{\beta}
```

Tomando logaritmos neperianos por dos veces:

```
In In 1 / [1 - F (t) ] = ß In t - ß In \eta
```

Si a esta igualdad le aplicamos

X = In t (variable función de t)

Y = In In 1 / [1 - F (t)] (función de t)

B = - ß In η (constante)

A = ß (coeficiente director)

de donde tenemos:

Y = AX + B (ecuación de una recta) (4)

Para determinar los parámetros ß y η se utiliza el papel de Weibull.

- Cálculo de ß: ß es el parámetro de forma y representa la pendiente de la recta. Para calcularlo, se hace pasar una recta paralela a la recta obtenida
 con la representación gráfica de los datos de partida por el punto 1 de abscisas y 63,2 de ordenadas pudiendo leer directamente el valor de ß en
 una escala tabulada de 0 a 7. Ver gráfico en fig. 3.
- Cálculo de η: η es el parámetro de escala y su valor viene dado por la intersección de la recta trazada con la linea paralela al eje de abscisas correspondiente al 63,2 % de fallos acumulados. En efecto se demuestra que para la ordenada t₀ = 0, F (t) = 63,2.

```
Y = In In 1 / [1 - F (t)] = 0
```

In 1 / [1 - F (t)] = 1; 1 / [1 - F (t)] = e; 1 - F (t) = 1/e;

de donde para t_0 = 0 tendremos que AX + B = 0; como según hemos visto anteriormente:

A = ß B = - ß In η

tendremos que se cumple:

 $\[\[\] \] X - \[\] \[\] \[\] \[\$

X = In η

Como X = In t, tenemos que t = η .

 η es el valor leído directamente en el gráfico de Allen Plait para la ordenada 63,2, ya que la escala de abcisas está como ya se ha indicado en In t.

• Tiempo medio entre fallos (MTBF) o media: el tiempo medio entre fallos o vida media se calcula con la ayuda de la tabla 1, que nos da los valores de gamma y vale:

 $E(t) = MTBF = \eta \gamma (1 + 1/B)$

 $\bullet\,$ Desviación estándar o variancia σ : se calcula también con la ayuda de la tabla 1 y vale:

 $(\sigma/\eta)^2 = \gamma(1+2/\beta) - [\Gamma(1+1/\beta)]^2$

Tabla 1: Fiabilidad

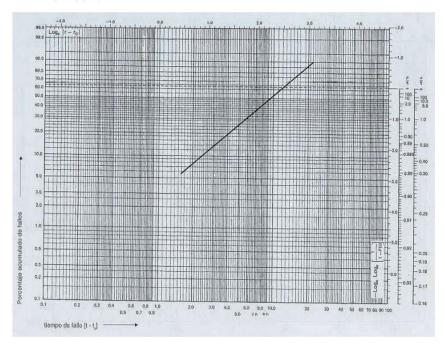
	A	$(t) = 1 - F(t) = \exp$	$\left[-\left(\frac{1}{\eta}\right)^{n}\right]$]		
ITBF =	$m = E(t) = \eta \Gamma \left(1 + \frac{1}{\beta}\right)$,)	$\sigma^2 = \eta^2 \left[\Gamma \left(1 + \frac{2}{\beta} \right) \cdot \Gamma^2 \left(1 + \frac{2}{\beta} \right) \right]$			
β	$m/\eta = \Gamma(1+1/\beta)$	σ/η ₁	3	$m/\eta = \Gamma(1+1/\beta)$	σ/η	
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,7 1,8	10! 120 9,2605 3,3234 2,0000 1,5046 1,2658 1,1330 1,0522 1,0000 0,0649 0,9407 0,9235 0,9114 0,9028 0,8966 0,8922 0,8893 0,8874	√20 (10)² 1901 47 10.43 4.472 2.645 1.851 1.428 1.171 1.000 0.878 0.785 0.716 0.659 0.613 0.594 0.530 0.512 0.486	2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,8 4,0	0,8862 0,8857 0,8856 0,8859 0,8865 0,8873 0,8882 0,8893 0,8905 0,8917 0,8938 0,8943 0,8957 0,8970 0,8984 0,8984 0,9011 0,9038 0,9064	0,463 0,444 0,42 0,411 0,39 0,38 0,37 0,36 0,34 0,33 0,32 0,315 0,31 0,29 0,28 0,27 0,26 0,25	

Ejemplo

La información disponible acerca de la duración de 10 sistemas mecánicos de detectores de presencia sometidos a funcionamiento continuo hasta que se produce un fallo, da los siguientes resultados, expresados por su duración en meses y ordenados : 1,7; 3,5; 5; 6; 8; 11; 13; 18 y 22.

Calcular las probabilidades acumuladas o valores medios clasificados, los parámetros de Weibull, tipo de fallo, la fiabilidad de forma general, fiabilidad para 12 meses, la duración media de vida y la desviación tipo.

Solución


Con la ayuda de la tabla 2, que nos da directamente los valores medios clasificados de los fallos o probabilidades acumuladas según el tamaño de la muestra que en este caso es n = 10, tendremos:

Tiempo	Valores medios clasificados
de fallo	[F (t)]
1,7	0,0670
3,5	0,0163
5	0,2594
6	0,3557
8	0,4519
9	0,5481
11	0,6443
13	0,7406
18	0,8368
22	0,9330

Tabla 2: Valores medios clasificados de fallos en función del tamaño de la muestra (columnas) y del número medio de fallos acumulados (filas)

	'	2	3	4	5	6	7	8	9	10	11	12	-13	14	15	
1	0,5000	0,2929	0,2063	0.1591	0,1294	0,1091	0,0943	0,0830	0.0741	0,0670	0,0611	0,0561	0,519	0,0483	0.0452	1
2		0,7071		0.3864	0,3147	0,2655	0,2295	0,2021		0,1632	0,1489	0,1368	0,1266	0,1178	0,1101	2
3			0,7937	0,6136	0,5000	0,4218	0,3648	0,3213	0,2871	0,2594	0,2366	0,2175	0,2013	0,1873	0,1751	3
4				0,8409	0,6853	0,5782	0.5000	0,4404	0,3935	0,3557	0,3244	0,2982	0,2760	0,2568	0,2401	- 4
5					0,8706		0,6352	0,5596	0,5000	0,4519		0,3789	0,3596	0,3263	0,3051	5
6						0,8909	0,7705	0,6787	0,6065	0,5481	0,5000	0,4596	0,4253	0,3958	0,3700	6
7							0,9057	0,7979	0,7129	0,6443		0,5404	0,5000	0,4653	0,4350	7
8 9								0,9170		0,7406		0,6211	0,5747	0,5347	0,5000	.8
10									0,9259	0,8368		0,7018	0,6494	0,6042	0,5650	9
11										0,9330	0,8511	0,7825	0,7240	0,6737	0,6300	10
12											0,9389	0,8632	0,7987	0,7432	0,6949	- 11
13												0,9439	0,8743	0,8127	0,7599	12
14													0,9481	0,8822	0,8249	13
15														0,9511	0,8899	15
100					1	00		- 0/_							0,7340	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
1	0,0424	0,0400	0.0378	0.0358	0.0341	0.0336	0,0315	0.0301	0.0288	0,0277	0.0266	0,0256	0.0247	0.0239	0.0231	
2	0,1034	0,09775		0,0874	0,0831	0,0797	0,0761	0,0728		0,0670	0,0645	0,0621	0.0599	0,0579	0.0559	2
3	0,1644	0,1550	0,1465	0,1390	0,1322	0,1264	0,1207	0,1155		0,1064	0,1023	0,0986	0,0951	0,0919	0,0888	3
4	0,2254		0,2009	0,1905	0,1812	0,1731	0,1653	0,1582	0,1517	0,1457	0,1402	0,1351	0,1303	0,1259	0,1217	4
5	0,2865	0,2700	0,2553	0,2421	0,2302	0,2198	0,2099	0,2009	0,1927	0,1851	0,1781	0,1716	0,1655	0,1599	0.1546	5
6	0,3475	0,3275	0,3097	0,2937	0,2793	0,2665	0,2545		0,2337	0,2245	0,2159	0,2081	0,2007	0,1939	0,1875	- 6
7		0,3850	0,3641	0,3453	0,3283	0,3132	0,2992		0,2746	0,2638		0,2445	0,2359	0,2279	0,2204	7
8			0,4184		0,3774	0,3599	0,3438	0,3291		0,3032		0,2810	0,2711	0.2619	0,2533	8
10	0,5305	0,5000	0,4728	0,4484	0,4264	0,4066	0,3884	0,3718		0,3425	0,3295	0,3175	0,3063	0,2959	0,2862	9
11	0,5915		0,5272	0,5000	0,4755	0,4533	0,4330	0,4145		0,3819	0,3674	0.3540	0,3415	0,3299	0,3191	10
12	0.7135	0,6725	0,6359	0,6032	0,5736	0,5466		0,5000		0,4606	0,4033	0,3905	0,3767	0,3639	0,3519	11
13	0,7746		0,6903	0,6547	0,6226	0,5933	0,5669	0.5427		0,5000	0,4431	0,4270	0,4119	0,3979	0,3848	12
14	0,8356		0.7447		0,6717	0,0400		0.5834		0,5393	0.5189	0,4033	0,4823	0,4659	8,4506	13
15	0,8966		0,7991	0,7579	0,7207	0,6867		0,6281		0,5787	0,5568	0,5364	0,5176	0,5000	0.4835	15
16		0,9025		0,8095	0,7698	0,7334	0,7007	0,6708		0,6180	0,5946	0,5729	0,5528	0,5340	0,5164	16
		0,9600	0,9078	0,8610	0,8188	0,7801	0,7454	0,7135		0,6574	0,6325	0,6094	0,5880	0,5680	0,5493	17
			0,9622		0,8678	0,8268	0,7900	0,7562	0,7253	0,6967	0.6704	0,6459	0,6232	0,6020	0,5822	18
18				0,9642	0,9169	0,8735	0,8346	6.7990		0,7361	0,7082	0,6824	0,6584	0,6360	0,6151	19
18 19					0,9659	0,9202	0,8792	0,8417		0,7754	0,7461	0,7189	0,6936	0,6700	0,6480	20
18 19 20						0,9669	0,9238		0,8482		0,7840	0,7554	0,7288	0,7040	0,6808	21
18 19 20 21							0,9684	0,9271	0,8891	0,8542	0,8218	0,7918	0,7640	0,7380	0,7137	22
18 19 20 21 22								0,9698	0,9301		0,8597	0,8283	0,7992	0,7720	0,7466	23
17 18 19 20 21 22 23									0.9711	0,9329	0.8976	0,8648				
18 19 20 21 22 23 24									0,5711					0,8060	0,7795	24
18 19 20 21 22 23 24 25										0,9722	0.9354	0,9013	0,8696	0,8400	0,8124	25
18 19 20 21 22 23 24												0,9013 0,9378	0,8696 0,9048	0,8400 0,8740	0,8124 0,8453	25 26
18 19 20 21 22 23 24 25 26											0.9354	0,9013 0,9378	0,8696 0,9048 0,9400	0,8400 0,8740 0,9080	0,8124 0,8453 0,8782	25 26 27
18 19 20 21 22 23 24 25 26 27											0.9354	0,9013 0,9378	0,8696 0,9048 0,9400	0,8400 0,8740	0,8124 0,8453	25 26

La representación de estos puntos en el gráfico de Weibull nos clá prácticamente una recta (fig. 4). La pendiente de esta recta es 1,5 valor que corresponde al parámetro ß; por otro lado se puede ver gráficamente que η es igual a 12, que es el valor de la abcisa en el punto donde la recta trazada con los datos corta a la horizontal para F (t) = 63,2.

El valor de ß nos indica que los tipos de fallo son debidos al desgaste. La fiabilidad será:

$$R(t) = \exp - (t/12)^{1.5}$$

La fiabilidad para 12 meses será:

R (t) =
$$\exp - (12/12)^{1.5} = \exp - 1 = 0.3679 (36,79\%)$$

Gráficamente vemos que para t = 12 la probabilidad acumulada de fallos F (t) = 63,2 por lo que R (12) = 1 - F (12) = 1 - 0,632 = 0,368 (36,8 %) valor sensiblemente igual al calculado.

La duración de vida media será :

$$E(t) = MTBF = \eta \gamma (1 + 1/\beta)$$

MTBF = 12
$$\gamma$$
 (1 + 1 / 1,5) = 12. 0,9028 = 10,83 meses

La desviación tipo será :

$$\sigma^2 = \eta^2 [\gamma (1 + 2/B) - \Gamma^2 (1 + 1/B)]$$

para β = 1,5 y según las tablas nos da el valor de σ / η = 0,613 que como η = 12 tenemos que: σ = 12, 0,613 = 7,356 meses.

Caso de t₀> 0

Para este caso los datos no se alinean adoptando la forma indicada en en el gráfico de la fig. 5. Los datos tienen forma de curva que admite una asíntota vertical; la intersección de la asíntota con la abcisa nos permite obtener una primera estimación de t₀. En efecto, tenemos que:

$$F(t) = 0 = 1 - \exp \left[-\left(\frac{t - t_0}{\eta}\right)^{\beta}\right]$$

$$de donde \quad 1 = \exp \left[-\left(\frac{t - t_0}{\eta}\right)^{\beta}\right]$$

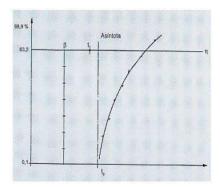


Fig. 5: Representación gráfica para el caso de $t_0 > 0$

sacando logaritmos neperianos:

$$\ln 1 = 0 = -\left(\frac{t - t_0}{\eta}\right)^{\beta}$$

y elevando a 1/ ß tendremos:

$$\left(\frac{t-t_0}{\eta}\right)^{\beta} = 0^{1/\beta} = 0$$
; $t-t_0 = 0$; $t-t_0$

de donde se obtiene la evaluación de t_0 . Cuando se ha evaluado t_0 , se lleva a cabo la corrección:

$$t' = t - t_0$$

t' = nuevo tiempo

t = antigua estimación

A continuación se trasladan los nuevos valores, debiéndose obtener algo parecido a una recta; si no es así, se comenzará de nuevo la operación y esto hasta un máximo de tres veces; si se sigue sin obtener una recta, podemos deducir que no se aplica la ley de Weibull o que podemos tener leyes de Weibull con diferentes orígenes, o mezcladas.

Caso de t₀ < 0

En este caso, se obtiene una curva que admite una asíntota inclinada u horizontal. Una manera de calcular t_o es mediante ensayos sucesivos, hasta que se pueda dibujar la curva.

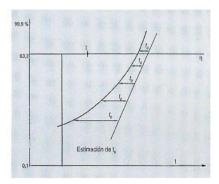


Fig. 6: Representación gráfica para el caso de t₀>0

Otro método de cálculo cuando $t_0 \neq 0$

Dada la complejidad que representa lo descrito con anterioridad existen otras formas más sencillas de calcular t₀ mediante la estimación.

Método de estimación o de los rangos medianos (Fig. 7): el método se inicia, una vez dibujada la curva, seleccionando un punto arbitrario Y_2 aproximadamente en la mitad de la curva, y otros dos puntos Y_1 e Y_3 equidistantes del primero una distancia d según el eje de las Y.

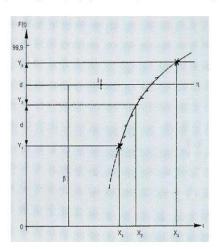


Fig. 7: Cálculo de t₀ por medio de transformaciones funcionales

Lógicamente se cumplirá la igualdad:

$$Y_2 - Y_1 = Y_3 - Y_2$$

De la ecuación anterior y silos tres puntos son colineales tendremos por otra parte:

$$X_2 - X_1 = X_3 - X_2$$

y como $X = In (t - t_0)$ tendremos:

In
$$(t_2$$
 - t_0) - In $(t_1$ - t_0) = In $(t_3$ - t_0) In $(t_2$ - t_0)

$$(\mathsf{t}_2-\mathsf{t}_0)^2=(\mathsf{t}_3-\mathsf{t}_0)\;(\mathsf{t}_1-\mathsf{t}_0)$$

de otra forma
$$t_0 = t_2 \frac{(t_3 - t_2) - (t_2 - t_1)}{(t_3 - t_2) - (t_2 - t_1)}$$

De esta forma el valor de t₀ puede ser calculado y los datos representados utilizando (t - t₀) como variable. Si los datos siguen la distribución de Weibuil los puntos deberán quedar alineados.

Como variante de lo anterior se puede proceder de la siguiente forma: asignar los puntos según el siguiente criterio:

Y_{máx} es el valor máximo al cual se asocia X_{máx}.

Y_{mín} es el valor mínimo al cual está asociado Y_{mín.}

 Y_{m} , es el punto medio (medido con una regla lineal) de Y_{max} e Y_{min}

 $X_{\text{m.}}$ es X medio asociado al $Y_{\text{m.}}$ obtenido.

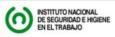
De esta forma el valor de t₀ será :

$$t_0 = X_m \frac{(X_{m\acute{a}x} - X_m)(X_m - X_{min})}{(X_{m\acute{a}x} - X_m) - (X_m - X_{min})}$$

Bibliografía

(1) BERTRAM L. AMSTADTER Matemáticas de la fiabilidad - Fundamentos - Prácticas Procedimientos Ed. Reverté, S.A. Barcelona (1976)

(2) ANTONIO CREUS SOLE Fiabilidad y Seguridad. Su aplicación en procesos industriales Marcombo Boixareu Editores. Barcelona (1992)


(3) J.MOTHES - J. TORRENS- IBERN Estadística aplicada a la ingeniería Ediciones Ariel. Esplugues de Llobregat (1970)

(4) PATRICK LYONNET Los métodos de la calidad total Ediciones Diaz de Santos, S.A. Madrid (1989)

(5) A.D.S. CARTER Mechanical Reliablilty Macmillan Education Ltd. London (1986)

Año: 2004

NTP 679: Análisis modal de fallos y efectos. AMFE

Analyse des modes de défauts et effets. AMDE Failure Mode and Effect Analysis. FMEA

Las NTP son guías de buenas prácticas. Sus indicaciones no son obligatorias salvo que estén recogidas en una disposición normativa vigente. A efectos de valorar la pertinencia de las recomendaciones contenidas en una NTP concreta es conveniente tener en cuenta su fecha de edición.

Redactores:

Manuel Bestratén Belloví Ingeniero Industrial Rosa Mª Orriols Ramos Licenciada en Ciencias Químicas CENTRO NACIONAL DE

CONDICIONES DE TRABAJO

Carles Mata París Ingeniero Técnico SEAT. S.A. La presente NTP tiene por objeto e xponer el método de análisis modal de fallos y efectos de elementos clave de procesos o productos. Esta herramienta es una de las tadicionales empleadas en el ámbito de la Calidad par a la identificación y análisis de potenciales desviaciones de funcionamiento o fallos, preferentemente en la fase de diseño. Se trata de un método cualitativo que por sus características, resulta de utilidad para la prevención integral de riesgos, incluidos los laborales.

1. INTRODUCCIÓN

El AMFE fue aplicado por v ez primera por la industr ia aerospacial en la década de los 60, e incluso recibió una específicación en la norma militar americana MIL-STD-16291 titulada "Procedimientos para la realización de análisis de modo de fallo, efectos y criticidad". En la década de los 70 lo empezó a utilizar Ford, extendiéndose más tarde al resto de fabricantes de automóviles. En la actualidad es un método básico de análisis en el sector del automóvil que se ha e xtrapolado satisfactoriamente a otros sectores. Este método también puede recogerse con la denominación de AMFEC (Análisis Modal de Fallos, Efectos y su Criticidad), al introducir de maner a remarcable y más precisa la especial g ravedad de las consecuencias de los fallos.

Aunque la técnica se aplica fundamentalmente paa analizar un producto o proceso en su f ase de diseño, este método es válido para cualquier tipo de proceso o situación, entendiendo que los procesos se encuentr an en todos los ámbitos de la empresa, desde el diseño y montaje hasta la fabricación, comercialización y la propia organización en todas las áreas funcionales de la empresa. Evidentemente, este método a pesar de su enor me sencillez es usualmente aplicado a elementos o procesos clave en donde los fallos que pueden acontecer, por sus consecuencias puedan tener repercusiones importantes en los resultados esper ados. El principal interés del AMFE es el de resaltar los puntos críticos con el fin de eliminarlos o establecer un sistema preventivo (medidas correctoras) para evitar su aparición o minimizar sus consecuencias, con lo que se puede con vertir en un riguroso procedimiento de detección de def ectos potenciales, si se aplica de manera sistemática.

La aplicación del AMFE por los grupos de trabajo implicados en las instalaciones o procesos productivos de los que son en parte conductores o en parte usuarios en sus diferentes aspectos, aporta un mayor conocimiento de los mismos y sobre todo de sus aspectos más débiles , con las consiguientes medidas preventivas a aplicar para su necesario control. Con ello se está facilitando la integración de la cultur a preventiva en la empresa, descubriéndose que mediante el trabajo en equipo es posible profundizar de manera ágil en el conocimiento y mejor a de la calidad de productos y procesos reduciendo costes.

En la medida que el propósito del AMFE consiste en sistematizar el estudio de un proceso/producto, identificar los puntos de fallo potenciales, y elaborar planes de ac-ción para combatir los r iesgos, el procedimiento, como se verá, es asimilable a otros métodos simplificados empleados en prevención de riesgos laborales. Este método emplea criterios de clasificación que también son pro pios de la Seguridad en el Trabajo, como la posibilidad de acontecimiento de los fallos o hechos indeseados y la severidad o gravedad de sus consecuencias. Ahora bien, el AMFE introduce un factor de especial interés no utili-zado normalmente en las evaluaciones simplificadas de riesgos de accidente, que es la capacidad de detección del fallo producido por el destinatario o usuario del equipo o proceso analizado, al que el método or iginario de-nomina cliente. Evidentemente tal cliente o usuar io podrá ser un trabajador o equipo de personas que recepcionan en un momento determinado un producto o parte del mismo en un proceso productiv o, para intervenir en el, o bien en último témino, el usuario final de tal producto cuando haya de utilizarlo en su lugar de aplicación. Es sabido que los f allos materiales suelen estar ma yoritariamente asociados en su origen a la fase de diseño y cuanto más se tarde en detectarlos más costosa será su solución. De ahí la importancia de realizar el análisis de potenciales problemas en instalaciones, equipos y pro-cesos desde el inicio de su concepción y pensando siempre en las diferentes fases de su funcionamiento previsto. A continuación se aportan una serie de definiciones sobre los conceptos asumidos por este método.

Este método no considera los errores humanos directamente, sino su correspondencia inmediata de mala operación en la situación de un componente o sistema. En definitiva, el AMFE es un método cualitativo que permite relacionar de manera sistemática una relación de fallos posibles, con sus consiguientes ef ectos, resultando de fácil aplicación para analizar cambios en el diseño o modificaciones en el proceso.

2. DEFINICIONES DE TÉRMINOS FUNDAMENTALES DEL AMFE

Como paso previo a la descripción del método y su aplicación es necesario sentar los términos y conceptos fundamentales, que a continuación se describen.

Cliente o usuario

Solemos asociar la palabra cliente al usuar io final del producto fabricado o el destinatario-usuario del resultado del proceso o parte del mismo que ha sido analizado. Por lo tanto, en el AMFE, el cliente dependerá de la fase del proceso o del ciclo de vida del producto en el que apliquemos el método. La situación más crítica se produce cuando un fallo generado en un proceso productivo que repercute decisoriamente en la calidad de un producto no es controlado a tiempo y llega en tales condiciones al último destinatario o cliente.

Si uno de los aspectos deter minantes del método es asegurar la satisfacción de las necesidades de los usuarios, evitando los fallos que generan problemas e insatisfacciones, para conocerlas es necesario tener herramientas que nos per mitan registrarlas. Para ello disponemos, entre otras, de dos herramientas: los cuestionarios de satisfacción de necesidades de clientes o usuarios y la dob le matriz de información para comprobar como los resultados esper ados de productos/procesos responden a las expectativas de sus usuarios.

El propósito del diseño, o sea lo que se espera se consiga o no del mismo, debe estar acorde con las necesidades y requisitos que pide el usuar io; con lo que al realizar el AMFE y aplicarlo en la fase de diseño siempre hay que pensar en el cliente-usuar io, ese "quien", es el que nos marca el objetivo final.

Es por eso que las funciones prioritarias al realizar el AMFE son las denominadas "funciones de servicio", este tipo de funciones nos pemitirán conocer el susodicho grado de satisfacción del cliente tanto de uso del producto como de estimación (complacencia). Las "funciones de servicio" son necesidades directas de los sistemas analizados y no dependen solo de la tecnología, es por eso que para determinarlas hay que analizar, como se ha dicho, dos aspectos: las necesidades que se tienen que satisfacer y el impacto que tienen sobre el cliente dichas necesidades. Esto nos per mitirá determinar y priorizar las funciones de servicio y a partir de ahí realizar el AMFE.

Producto

El producto puede ser una pieza, un conjunto de piezas, el producto final obtenido de un proceso o incluso el mismo proceso. Lo importante es poner el límite a lo que se pretende analizar y definir la función esencial a realizar, lo que se denomina identificación del elemento y determinar de que subconjuntos / subproductos está compuesto el producto

Por ejemplo: podemos analizar un v ehículo motorizado en su conjunto o el sistema de carb uración del mismo. Evidentemente, según el objetivo del AMFE, podrá ser suficiente revisar las funciones esenciales de un producto o profundizar en alguna de sus par tes críticas para analizar en detalle sus modos de fallo.

Seguridad de funcionamiento

Hablamos de seguridad de funcionamiento como concepto integrador, ya que además de la fiabilidad de respuesta a sus funciones básicas se incluye la conservación, la disponibilidad y la seguridad ante posibles riesgos de daños tanto en condiciones normales en el régimen de funcionamiento como ocasionales. Al analizar tal segur idad de funcionamiento de un producto/proceso, a parte de los mismos, se habrán de detectar los dif erentes modos o maneras de producirse los f allos previsibles con su detectabilidad (facilidad de detección), su frecuencia y g ravedad o severidad, y que a continuación se definen.

Detectabilidad

Este concepto es esencial en el AMFE, aunque como se ha dicho es novedoso en los sistemas simplificados de evaluación de riesgos de accidente.

Si durante el proceso se produce un f allo o cualquier "output" defectuoso, se trata de averiguar cuan probable es que no lo "detectemos", pasando a etapas poster iores, generando los consiguientes problemas y llegando en último término a afectar al cliente – usuario final.

Cuanto más difícil sea detectar el f allo existente y más se tarde en detectar lo más importantes pueden ser las consecuencias del mismo.

Frecuencia

Mide la repetitividad potencial u ocurrencia de un determinado fallo, es lo que en términos de fiabilidad o de prevención llamamos la probabilidad de aparición del fallo.

Gravedad

Mide el daño normalmente esperado que provoca el fallo en cuestión, según la percepción del cliente - usuario. También cabe considerar el daño máximo esper ado, el cual iría asociado también a su probabilidad de generación.

Índice de Prioridad de Riesgo (IPR)

Tal índice está basado en los mismos fundamentos que el método histórico de evaluación matemática de riesgos de FINE, William T., si bien el índice de pr ioridad del AMFE incorpora el factor detectabilidad. Por tanto, tal índice es el producto de la frecuencia por la gravedad y por la detectabilidad, siendo tales factores traducibles a un código numérico adimensional que permite priorizar la urgencia de la intervención, así como el orden de las acciones correctoras. Por tanto debe ser calculado para todas las causas de fallo.

Es de suma importancia determinar de buen inicio cuales son los puntos críticos del producto/proceso a analizar . Para ello hay que recurrir a la observación directa que se realiza por el propio grupo de trabajo, y a la aplicación de técnicas generales de análisis desde el "brainstorming" a los diagramas causa-efecto de Isikawa, entre otros, que por su sencillez son de conveniente utilización. La aplicación de dichas técnicas y el gado de profundización en el análisis depende de la composición del propio g rupo de trabajo y de su cualificación, del tipo de producto a analizar y como no, del tiempo hábil disponible.

3. DESCRIPCIÓN DEL MÉTODO

A continuación se indican de manera ordenada y esquemática los pasos necesar ios con los correspondientes informaciones a cumplimentar en la hoja de análisis paa la aplicación del método AMFE de firma genérica. El esquema de presentación de la información que se muestra en esta NTP tiene un v alor meramente orientativo, pudiendo adaptarse a las características é intereses de cada organización. No obstante, el orden de cumplimentación sigue el mismo en el que los datos deber ían ser recabados. Al final se adjunta una sencilla aplicación práctica, a modo de ejemplo. En primer lugar habría que definir si el AMFE a realizar es de proyecto o de producto/proceso. Cuando el AMFE se aplica a un proceso de-

terminado, hay que seleccionar los elementos cla ve del mismo asociados al resultado esper ado. Por ejemplo, supongamos que se trata de un proceso de intercambio térmico para enfriar un reactor químico, los elementos clave a aplicar entonces en el AMFE podrían ser el propio intercambiador y la bomba de suministro de fluido refrigerante. En todo caso, hablemos de producto o proceso, en el AMFE nos centr amos en el análisis de elementos materiales con unas características determinadas y con unos modos de fallo que se trata de conocer y

Denominación del componente e identificación

Debe identificarse el PR ODUCTO o parte del PROCE-SO incluyendo todos los subconjuntos y los componentes que forman parte del producto/proceso que se v aya a analizar, bien sea desde el punto de vista de diseño del producto/proyecto o del proceso propiamente dicho. Es útil complementar tal identificación con códigos n uméricos que eviten posibles confusiones al definir los componentes.

Parte del componente. Operación o función

Se completa con distinta información dependiendo de si se está realizando un AMFE de diseño o de proceso.

Para el AMFE de diseño se incluyen las partes del componente en que puede subdividirse y las funciones que realiza cada una de ellas, teniendo en cuenta las interconexiones existentes. Para el AMFE de proceso se describirán todas las operaciones que se realizan a lo largo del proceso o parte del proceso productivo considerado, incluyendo las operaciones de aprovisionamiento, de producción, de embalaje, de almacenado y de transporte.

Fallo o Modo de fallo

El "Modo de Fallo Potencial" se define como la forma en la que una pieza o conjunto pudiera fallar potencialmente a la hora de satisfacer el propósito de diseño/proceso, los requisitos de rendimiento y/o las e xpectativas del cliente.

Los modos de fallo potencial se deben describir en términos "físicos" o técnicos, no como síntoma detectab le por el cliente. El error humano de acción u omisión en principio no es un modo de f allo del componente analizado. Es recomendable numerarlos correlativamente.

Un fallo puede no ser detectab le inmediatamente, ello como se ha dicho es un aspecto importante a considerar y por tanto no debería nunca pasarse por alto.

Efecto/s del fallo

Normalmente es el síntoma detectado por el cliente/ usuario del modo de fallo, es decir si ocurre el fallo potencial como lo percibe el cliente , pero también como repercute en el sistema. Se trata de describir las consecuencias no deseadas del fallo que se puede observar o detectar, y siempre deber ían indicarse en tér minos de rendimiento o eficacia del producto/proceso. Es decir, hay que describir los síntomas tal como lo hafa el propio usuario.

Cuando se analiza solo una parte se tendrá en cuenta la repercusión negativa en el conjunto del sistema, paa así poder ofrecer una descripción más clara del efecto.

Si un modo de fallo potencial tiene muchos efectos, a la hora de evaluar, se elegirán los más graves.

Causas del modo de fallo

La causa o causas potenciales del modo de f allo están en el origen del mismo y constituy en el indicio de una debilidad del diseño cuy a consecuencia es el propio modo de fallo.

Es necesario relacionar con la ma yor amplitud posib le todas las causas de f allo concebibles que pueda asignarse a cada modo de fallo. Las causas deberán relacionarse de la forma más concisa y completa posib le para que los esfuerzos de corrección puedan dir igirse adecuadamente. Normalmente un modo de fallo puede ser provocado por dos o más causas encadenadas.

Ejemplo de AMFE de diseño:

Supongamos que estamos analizando el tubo de escape de gases de un automóvil en su proceso de fabricación.

 Modo de fallo: Agrietado del tubo de escape Efecto: Ruido no habitual

Causa: Vibración - Fatiga

Ejemplo AMFE de proceso:

Supongamos que estamos analizando la función de refrigeración de un reactor químico a través de un serpentín con aporte continuo de agua.

- · Modo de fallo 1: Ausencia de agua.
- Causas: fallo del suministro, fuga en conducción de suministro, fallo de la bomba de alimentación.
- Modo de fallo 2: Pérdida de capacidad refrigerante.
 Causas: Obstrucciones calcáreas en el ser pentín, perforación en el circuito de refrigeración.

Efecto en ambos modos de fallo: Incremento sustancial de temperatura. Descontrol de la reacción

Medidas de ensayo y control previstas

En muchos AMFE suele introducirse este apar tado de análisis para reflejar las medidas de control y verificación existentes para asegurar la calidad de respuesta del componente/producto/proceso. La fiabilidad de tales medidas de ensayo y control condicionará a su vez a la frecuencia de aparición de los modos de fallo. Las medidas de control deber ían corresponderse para cada una de las causas de los modos de fallo.

Gravedad

Determina la importancia o severidad del efecto del modo de fallo potencial para el cliente (no teniendo que ser este el usuar io final); valora el nivel de consecuencias, con lo que el v alor del índice aumenta en función de la insatisfacción del cliente, la degradación de las prestaciones esperadas y el coste de reparación.

Este índice sólo es posible mejorarlo mediante acciones en el diseño, y no deber ían afectarlo los controles derivados de la propia aplicación del AMFE o de re visiones periódicas de calidad.

El cuadro de clasificación de tal índice debería diseñarlo cada empresa en función del producto servicio, proceso en concreto. Generalmente el rango es con números enteros, en la tab la adjunta la puntuación v a del 1 al 10, aunque a veces se usan rangos menores (de 1 a 5), desde una pequeña insatisfacción, pasando por una degradación funcional en el uso, hasta el caso más g rave de no adaptación al uso, problemas de seguridad o infracción reglamentaria importante. Una clasificación tipo podría ser la representada en la tabla 1

TABLA 1. Clasificación de la gravedad del modo fallo según la repercusión en el cliente/usuario

GRAVEDAD	CRITERIO	VALOR
Muy Baja Repercusiones imperceptibles	No es razonable esperar que este fallo de pequeña importancia origine efecto real alguno sobre el rendimiento del sistema. Probablemente, el cliente ni se daría cuenta del fallo.	1
Baja Repercusiones irrelevantes apenas perceptibles	El tipo de fallo originaria un ligero inconveniente al cliente. Probablemente, éste observara un pequeño deterioro del rendimiento del sistema sin importancia. Es fácilmente subsanable	2-3
Moderada Defectos de relativa importancia	El fallo produce cierto disgusto e insatisfacción en el cliente . El cliente observará deterioro en el rendimiento del sistema	4-6
Alta	El fallo puede ser crítico y verse inutilizado el sistema. Produce un grado de insatisfacción elevado.	7-8
Muy Alta	Modalidad de fallo potencial muy crítico que afecta el funcionamiento de seguridad del producto o proceso y/o in volucra seriamente el incumplimiento de normas reglamentarias. Si tales incumplimientos son g raves corresponde un 10	9-10

Desde el punto de vista de la pre vención de riesgos laborales, la gravedad valora las consecuencias de la materialización del riesgo, entendiéndolas como el accidente o daño más probable/habitual. Ahora bien, en el AMFE se enriquece este concepto introduciendo junto a la importancia del daño del tipo que sea en el sistema, la percepción que el usuario-cliente tiene del mismo. Es decir, el nivel de gravedad del AMFE nos estar á dando también el grado de importancia del fallo desde el punto de vista de sus peores consecuencias, tanto materiales como personales u organizacionales.

Siempre que la gravedad esté en los niveles de rango de gravedad superior a 4 y la detectabilidad sea superior a 4, debe considerarse el fallo y las características que le corresponden como importantes. Aunque el IPR resultante sea menor al especificado como limite, conviene actuar sobre estos modos de fallo. De ahí que cuando al AMFE se incorpora tal atención especial a los aspectos críticos, el método se conozca como AMFEC, correspondiendo la última letra a tal aspecto cuantificable de la criticidad

Estas características de criticidad se podrían identificar con algún símbolo característico (por ej. Un triángulo de diferentes colores) en la hoja de registro del AMFE, en el plan de control y en el plano si corresponde.

Frecuencia

Es la Probabilidad de que una causa potencial deállo (causa específica) se produzca y dé lugar al modo de fallo.

Se trata de una evaluación subjetiva, con lo que se recomienda, si se dispone de información, utilizar datos históricos o estadísticos. Si en la empresa existe un Control Estadístico de Procesos es de g ran ayuda para poder objetivar el valor. No obstante, la experiencia es esencial. La frecuencia de los modos de fallo de un producto final con funciones cla ve de seguridad, adquirido a un proveedor, debería ser suministrada al usuario, como punto de partida, por dicho proveedor. Una posible clasificación se muestra en la tabla 2.

La única forma de reducir el índice de frecuencia es:

- Cambiar el diseño, para reducir la probabilidad de que el fallo pueda producirse.
- Incrementar o mejorar los sistemas de prevención y/o control que impiden que se produzca la causa de állo.

Controles actuales

En este apartado se deben reflejar todos los controles existentes actualmente para prevenir las causas del fallo y detectar el efecto resultante.

Detectabilidad

Tal como se definió anter iormente este índice indica la probabilidad de que la causa y/o modo de fallo, supuestamente aparecido, sea detectado con antelación suficiente para evitar daños, a través de los "controles actuales" existentes a tal fin. Es decir, la capacidad de de-

TABLA 2. Clasificación de la frecuencia/ probabilidad de ocurrencia del modo de fallo

FRECUENCIA	CRITERIO						
Muy Baja Improbable	Ningún fallo se asocia a procesos casi idénticos , ni se ha dado n unca en el pasado, pero es concebible.	1					
Baja	Fallos aislados en procesos similares o casi idénticos . Es razonablemente esperable en la vida del sistema, aunque es poco probable que suceda.	2-3					
Moderada	Defecto aparecido ocasionalmente en procesos similares o pre vios al actual. Probablemente aparecerá algunas veces en la vida del componente/sistema.	4-5					
Alta	El fallo se ha presentado con cierta frecuencia en el pasado en procesos simi- lares o previos procesos que han fallado.	6-8					
Muy Alta	Fallo casi inevitable. Es seguro que el fallo se producirá frecuentemente.	9-10					

TABLA 3. Clasificación de la facilidad de detección del modo de fallo

DETECTABILIDAD	CRITERIO					
Muy Alta	El defecto es obvio. Resulta muy improbable que no sea detectado por los controles existentes	1				
Alta	El defecto, aunque es obvio y fácilmente detectable, podría en alguna ocasión escapar a un primer control, aunque ser la detectado con toda segur idad a posteriori.	2-3				
Mediana	El defecto es detectable y posiblemente no llegue al cliente . Posiblemente se detecte en los últimos estadios de producción	4-6				
Pequeña	El defecto es de tal naturaleza que resulta difícil detectarlo con los procedimientos establecidos hasta el momento.	7-8				
Improbable	El defecto no puede detectarse. Casi seguro que lo percibirá el cliente final	9-10				

tectar el fallo antes de que llegue al cliente final. Inversamente a los otros índices, cuanto menor sea la capacidad de detección ma yor será el índice de detectabilidad y mayor el consiguiente Índice de Riesgo, determinante para priorizar la intervención. Ver la tabla 3.

Se hace necesario aquí puntualizar que la detección no significa control, pues puede haber controles muy eficaces pero si finalmente la pieza defectuosa llega al cliente, ya sea por un error, etc., la detección tendrá un valor alto. Aunque está claro que para reducir este índice sólo se tienen dos opciones:

- Aumentar los controles. Esto supone aumentar el coste con lo que es una regla no pioritaria en los métodos de Calidad ni de Prevención.
- · Cambiar el diseño para facilitar la detección.

Índice de Prioridad de Riesgo (IPR)

Es el producto de los tres f actores que lo deter minan. Dado que tal índice va asociado a la prioridad de intervención, suele llamarse índice de Pr ioridad del Riesgo. Debe ser calculado para todas las causas de fallo. No se establece un criterio de clasificación de tal índice. No obstante un IPR inferior a 100 no requeriría intervención salvo que la mejora fuera fácil de introducir y contribuyera a mejorar aspectos de calidad del producto proceso o trabajo. El ordenamiento numérico de las causas de modos de fallo por tal índice ofrece una primera aproximación de su importancia, pero es la reflexión detenida ante los factores que las determinan, lo que ha de facilitar la toma de decisiones para la acción preventiva. Como todo método cualitativo su principal aportación es precisamente el facilitar la reflexión.

Acción correctora

Se describirá en este apartado la acción correctora propuesta. Generalmente el tipo de acción corrector a que elegiremos seguirá los siguientes criterios, de ser posible:

- Cambio en el diseño del producto servicio o proceso general.
- Cambio en el proceso de fabricación.
- · Incremento del control o la inspección.

Siempre hay que mirar por la eficiencia del proceso y la minimización de costes de todo tipo , generalmente es más económico reducir la probabilidad de ocurrencia de fallo que dedicar recursos a la detección de f allos. No obstante, la gravedad de las consecuencias del modo de

fallo debería ser el factor determinante del índice de pioridad del riesgo. O sea, si se llegaa al caso de dos situaciones que tuvieran el mismo índice, la gravedad sería el factor diferencial que marcaría la prioridad.

Responsable y plazo

Como en cualquier planificación de acciones correctoas se deberá indicar quien es el responsab le de cada acción y las fechas previstas de implantación.

Acciones implantadas

Este apartado es opcional, no siempre lo contienen los métodos AMFE, pero puede ser de gan utilidad recogerio para facilitar el seguimiento y control de las soluciones adoptadas. Se deben reflejar las acciones realmente im-

TABLA 4. Proceso de actuación para la realización de un AMFE de proceso

- Disponer de un esquema gráfico del proceso productivo (lay-out).
- Seleccionar procesos/operaciones clave para el logro de los resultados esperados.
- Crear grupo de trabajo conocedor del proceso en sus diferentes aspectos. Los miembros del grupo deberían haber recibido previamente conocimientos de aplicación de técnicas básicas de análisis de fallos y del AMFE.
- Recabar información sobre las premisas gener ales del proceso, funciones de servicio requeridas, exigencias de seguridad y salud en el trabajo y datos históricos sobre incidentes y anomalías generadas.
- Disponer de información sobre prestaciones y fiabilidad de elementos clave del proceso.
- Planificar la realización del AMFE, conducido por persona conocedora de la metodología.
- Aplicar técnicas básicas de análisis de fallos. Es esencial el diagrama causa- efecto o diagrama de la espina de Isikawa
- Cumplimentar el formulario del AMFE, asegurando la fiabilidad de datos y respuestas por consenso.
- Reflexionar sobre los resultados obtenidos y emitir conclusiones sobre las intervenciones de mejora requeridas.
- 10. Planificar las correspondientes acciones de mejora

TABLA 5. Ejemplo de formulario de AMFE cumplimentado parcialmente para el análisis de operaciones de soldadura y marcado del proceso de prensas y chapistería

			MEJORA	₽.									
				0								(
				D D									
		S.	ND										
	Hoja:	FECHA INICIO: FECHA REVISIÓN:	SITUACIÓN DE MEJORA	ACCIONES IMPLANTADAS									
	1 DEL	CIÓN	VSINOGSEG	BLE / PLAZO	Proceso Chapa / Anteproyecto	Proyectos / Anteproyecto	Proceso Chapa / Anteproyecto	Proceso Chapa / Anteproyecto	Proceso Chapa / Anteproyecto	Proceso Chapa / Anteproyecto	Proceso Chapa / Anteproyecto	Proceso Chapa / Anteproyecto	Proceso Chapa / Anteproyecto
M.F.E.)	CÓDIGO DE IDENTIFICACIÓN DEL COMPONENTE	MODELO/SISTEMA/FABRICACIÓN		ACCION CORRECTORA	Previstos grupos y aprietes en zona MIG	Pestañas bien diseña- das para gar antizar geometría	Garantizar geometrías y acoplamientos	Acceso restringido a los parámetros de má- quina. Control periódi- co de los mismos.	Incorporar medios en la estación para elimi- nar suciedad.	Colocar pantallas de protección en zonas de soldadura MIG	Colocar puertas de protección para no deslumbrar	Colocar campanas de aspiración justo al lado de la fuente del humo.	Caja de latón que pro- tege chapa y la má- quina, todo ello en sus partes vistas.
4				PR	128	128	128	144	336	160	160	192	180
SO	/ PA			٥	2	7	2	00	7	2	2	4	9
C	ENTE	0;)	_	O	ω	∞	∞	6	∞	∞	∞	∞	5
H	NOM	/ Dpt	TUA	ш	∞	∞	00	2	9	10	10	9	9
ANÁLISIS MODAL DE FALLOS Y EFECTOS (A.M.F.E.	DENOMINACIÓN DEL COMPONENTE / PARTE DEL PROCESO	COORDINADOR: (Nombre / Dpto.)	ESTADO ACTUAL	MEDIDAS DE ENSAYO Y CONTROL PREVISTAS	Ninguna	Ninguna	Ninguna	Ninguna	Ninguna	Ninguna	Ninguna	Ninguna	Ninguna
ANÁLISIS MODA	Eso 🗆		S	CAUSAS DEL MODO DE FALLO	Defectos de acoplamiento	Pestañas fuera de geometría	Desacoplamiento chapas	Parámetros de soldadura incorrectos	Falta de gas. Malos parámetros	Ausencia de vallas oscuras	Ausencia de puertas oscuras	Campanas de humos ubicadas muy alejadas de la zona de emanación del humo.	No hay protec- ción
	AMFE DE PROCESO	EDOR:	WEEDOR: FALLOS POTENCIALES	EFECTOS	Retrabajos, ruidos falta de	rigidez	Agujeros en chapa	Retrabajos, ruidos, grietas	Óxido, suciedad en bajos en pinturas	Problemas de	operarios	Exposición a agentes químicos	Proyecciones
	сто 🗆	NOMBREY DPTO. DE LOS PARTICIPANTES Y/O PROVEEDOR:	E	MODOS DE FALLO	Ealta coldadura		Soldadura defectuosa	Mala calidad de soldadura	Proyecciones suciedad poros	- de la companya de l	Designification	Exceso de humos	Exceso de fuego
	PROYE	DE LOS PA		FALLO	1.1	12	1.3	1,4	1.5	1.6	1.7	1.8	1.9
	AMFE DE PROYECTO	NOMBREY DPTO. E		OPERACION O FUNCIÓN					Soldadura				

Notas Técnicas de Prevención

			4A	D IPR						
			EJOI	₀						
			DEN	ш						
	Hoja:	FECHA INICIO: FECHA REVISIÓN:	SITUACIÓN DE MEJORA	ACCIONES IMPLANTADAS						
	N DEL	CIÓN	VSINOGSEG	BLE / PLAZO	Proceso Chapa / Anteproyecto	Proceso Chapa / Anteproyecto	Proceso Chapa / Anteproyecto	Proceso Chapa / Anteproyecto		
M.F.E.)	CÓDIGO DE IDENTIFICACIÓN DEL COMPONENTE	MODELO/SISTEMA/FABRICACIÓN		ACCIÓN CORRECTORA	Modificar programas para sacar muestreo sin perder producción	Pokayoke utillaje para encontrar solución	Debe integrarse el marcador como un elemento automático más de la instalación	Debe integrarse el marcador como un elemento automático más de la instalación		
A.N	/ PARTE			PR	560	200	09	36		
So				٥	8	2	-	-		
	ENT	to.)	4L	Ö	7	10 10	9	9		
1	MPO	e / Dp	CTU	ш	10	10	10	9		
DE FALLOSY	DENOMINACIÓN DEL COMPONENTE / PARTE DEL PROCESO	COORDINADOR: (Nombre / Dpto.)	ESTADO ACTUAL	MEDIDAS DE ENSAYO Y CONTROL PREVISTAS	Ninguna	Ninguna	Control visual y pe- nalización en audi- toría intermedia	Control visual y pe- nalización en audi- toría intermedia		
ANÁLISIS MODAL DE FALLOSY EFECTOS (A.M.F.E.)	AMFE DE PROCESO □	EEDOR:	FALLOS POTENCIALES	EEDOR: ALLOS POTENCIALES	CAUSAS DEL MODO DE FALLO	Imposibilidad de control al no poder sacar de la linea piezas que lincuyen otras que después que después que después	Útil permite varias posiciones	Mal funciona- miento del marcador, rotura, falta de energía	Incorrecta orientación respecto a la pieza	
1					EFECTOS	Rechazo, reparaciones, retrabajos	Rechazos, retrabajos	Identificación y reclamación dificultosa, rechazos	Identificación y reclamación dificultosa, rechazos	
	AMFE DE PROYECTO	NOMBREY DPTO. DE LOS PARTICIPANTES Y/O PROVEEDOR:		MODOS DE FALLO	Dificultad de controlar puntos de soldadura ocultos	Piezas mal posicionadas o invertidas	El marcador no marca	Marcaje deficiente		
		ELOS PA		FALLO	2.1	2.2	3.1	3.2		
		NOMBREY DPTO. L		OPERACIÓN O FUNCIÓN	Estaciones de geometria y soldadura		Fechado y	conjuntos		

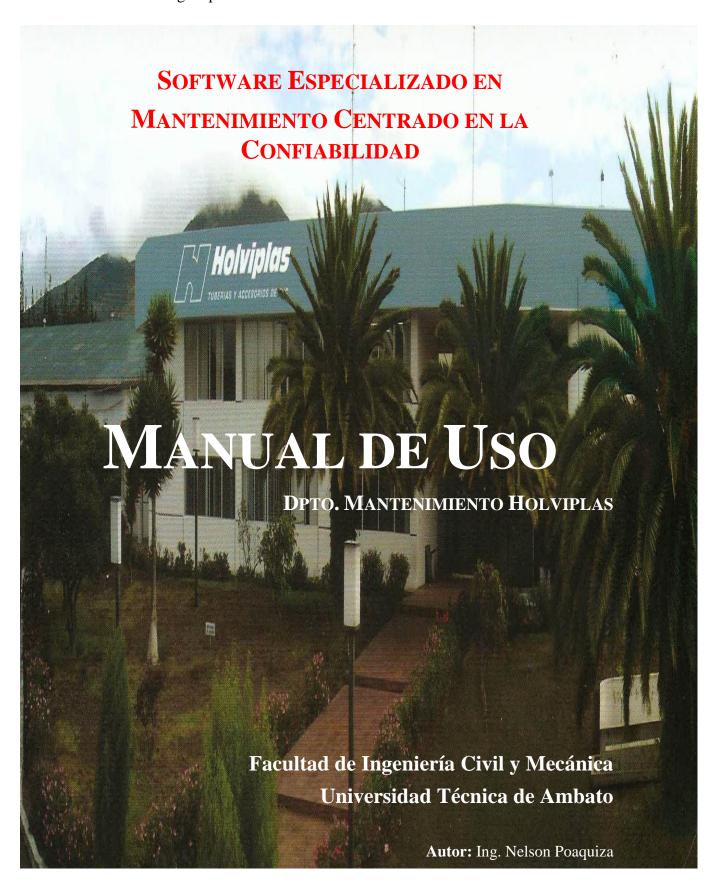
TABLA 5. Continuación

plantadas que a veces puede ser que no coincidan exactamente con las propuestas inicialmente. En tales situaciones habría que recalcular el nuevo IPR para comprobar que está por debajo del nivel de actuación exigido.

A modo de resumen los puntos más impor tantes para llevar a cabo el procedimiento de actuación de un AMFE son los descritos en la tabla 4.

A título de ejemplo se muestra en la tabla 5 una hoja para la recogida de informaciones y datos de un AMFE, de acuerdo al contenido de esta Nota Técnica de Prevención. Se ha cumplimentado para una hipotética situación de análisis de la operación de soldadura mix en el proceso de prensas y chapistería de una empresa de fabricación de automóviles.

BIBLIOGRAFÍA


- (1) PAUL JAMES.

 Gestión de la Calidad Total

 Prentice Hall, 1996
- (2) PATRICK LYONNET Los métodos de la Calidad Total Ediciones Diaz de Santos, 1989
- (3) DIRECCIÓN GENERAL DE PROTECCIÓN CIVIL Métodos cualitativos para el análisis de riesgos. Guía Técnica. Madrid, 1994

Nuestro agradecimiento a los Servicios de Prevención de Riesgos Laborales y de Calidad de la empresa SEAT, de Martorell (Barcelona), por su colaboración.

ANEXO 5. Manual guía para el software de mantenimiento centrado en la confiabilidad

Índice

- 1. Introducción
 - Acerca del Manual
 - Requisitos del Sistema
- 2. Guía Manual
 - Acceso al Software
 - Cálculo del índice de confiabilidad mediante la aplicación de la ley de weibull
 - Cálculo del índice de disponibilidad

INTRODUCCIÓN:

1. INTRODUCCIÓN

El Mantenimiento Centrado en Confiabilidad fue desarrollado en un principio por la industria de la aviación comercial de los Estados Unidos, en cooperación con entidades gubernamentales como la NASA y privadas como la Boeing (constructor de aviones). Desde 1974, el Departamento de Defensa de los Estados Unidos, ha usado el RCM, como la filosofía de mantenimiento de sus sistemas militares aéreos. El éxito del RCM en el sector de la aviación, ha permitido que otros sectores tales como el de generación de energía (plantas nucleares y centrales termoeléctricas), petroleras, químicas, gas, refinación y la industria de manufactura, se interesen en implantar esta filosofía de gestión del mantenimiento, adecuándola a sus necesidades de operaciones.

En la actualidad, existen una gran variedad de software de mantenimiento el objetivo de todas estas herramientas es ofrecer a las empresas una gestión del mantenimiento eficaz y flexible.

El software especializado desarrollado para medir el índice de confiabilidad y disponibilidad de máquinas y equipos del área de inyección de PVC de la empresa Holviplas S.A. es un software de gestión del mantenimiento de aplicación sencilla que aspira a ser útil para el usuario y pueda realizar el análisis estadístico de tiempos de operación de la maquinaria.

La información recopilada de las máquinas y equipos, además de la correcta aplicación de un software especializado en mantenimiento centrado en la confiabilidad, puede mejorar el estado actual de las actividades de reparación y mantenimiento en el área de inyección de PVC y por consiguiente se obtendrá un incremento de la disponibilidad de la maquinaria.

1.2 ACERCA DEL MANUAL

✓ Propósito

El presente manual tiene como finalidad ser una guía básica de operación del software; permitiendo al lector del mismo adquirir las destrezas y conocimientos indispensables para una operación adecuada, y ser una herramienta de consulta de primera mano a la cual puede recurrir el usuario en cualquier momento.

Se pretende dar una idea más detallada de los alcances y ventajas del software, que permite obtener el índice de confiabilidad mediante la aplicación de la ley de weibull y disponibilidad de máquinas y equipos; mediante la recopilación de datos como son el tiempo de operación, reparación, de igual manera para una mayor rapidez de obtención de resultados se pueda detallar en un formato .xlsx para cagar con facilidad en el software y adquirir resultados para su interpretación.

Cualquier comentario o sugerencia el desarrollador del software está dispuesto a recibirla con todo agrado y solventar en el menor tiempo posible; mediante correo electrónico a nrodrigoo_r10@hotmail.com; gracias por su confianza.

✓ Conocimientos necesarios.

- > Conocer previamente el funcionamiento de un computador.
- ➤ La situación o procesos inmersos en la actividad económica en la cual se desenvuelve la empresa.
- El sistema operativo o sistema básico con el cual se ejecuta el software.

1.3 REQUISITOS DEL SISTEMA

• Sistema operativo:

- Windows: Windows 7 SP1 en adelante, Windows Server 2008 SP2 en adelante.
- Mac: macOS 10.10 10.11
- Linux: Kernel 2.6 o superior, glibc 2.11 o superior.
- **Procesador:** <u>Intel</u> o <u>AMD</u> x86-64 con soporte de instrucciones <u>AVX2</u>.
- **Disco:** 2 GB solo para MATLAB, 4-6 GB para una instalación típica.
- RAM: 1GB mínimo, 4 GB recomendado.
- Tarjeta gráfica: Soporte para OpenGL 3.3 recomendado con 1 GB en GPU.

✓ Licencia

Este es un *software* propietario de <u>MathWorks</u>. De forma independiente, se ofrecen los *toolboxes*. Además, existen dos versiones para estudiantes. La primera incluye solo el software, y la segunda incluye Simulink y otros 10 módulos.

2. ACCESO AL SOFTWARE

El acceso al sistema luego del proceso de instalación y configuración básica del sistema es a través del siguiente icono como se muestra en la figura 1. Lo cual permite el ingreso directo del usuario al software en su pantalla principal, en donde se encuentra presente durante toda la ejecución del programa, la misma que se puede apreciar en la figura 2.

Fig. 1 Logo Software Especializado

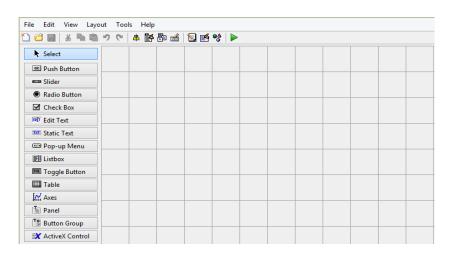


Fig. 2 Pantalla principal de software

2.1 CÁLCULO DEL ÍNDICE DE CONFIABILIDAD MEDIANTE LA APLICACIÓN DE LA LEY DE WEIBULL

1. Al presionar el icono Run se ejecuta la ventana diseñado de interfaz, logrando así interactuar con el programa elaborado HMI.



Fig. 3 Entorno Pantalla del Menú Principal

2. Hacer clic en la barra menú para que se desplegué y seleccione el tipo de análisis ya sea confiabilidad por weibull o disponibilidad.

Fig. 4 Menú despegable para seleccionar análisis de Confiabilidad Weibull

3. Menú de opción del análisis de la Confiabilidad Weibull, en donde se observa el escenario 1 que permite elegir el modelo de cálculo mediante la ley de Weibull como se indica en la figura 5.

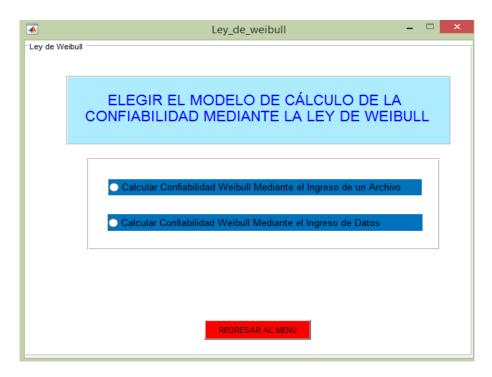


Fig. 5 Escenario 1 de Selección de la Ley de Weibull

4. Seleccionar la primera opción de cálculo de Confiabilidad Weibull mediante el ingreso de un archivo en Excel.

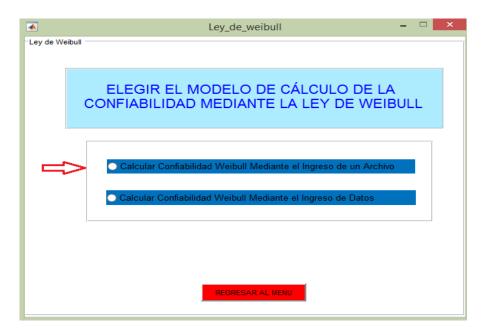


Fig. 6 Escenario 1 Selección de la primera opción

En la siguiente figura se observa la venta de interfaz gráfica para realizar los cálculos mediante el ingreso de un archivo que contenga los tiempos de operación en formato .xlsx.

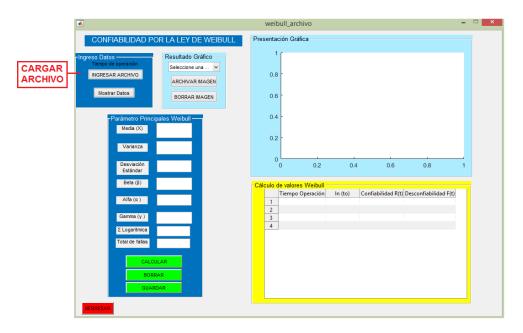


Fig. 7 Cargar archivo de datos

5. Ubicar el archivo guardado en la biblioteca del usuario, seleccionar el documento como se observa en la figura 8, además se puede observar la previa del formato .xlsx con datos de tiempo de operación y procedemos abrir para la carga del archivo.

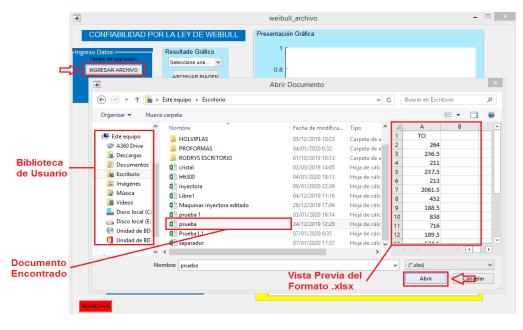


Fig. 8 Carga de tiempos de operación mediante archivo .xlsx

6. También se puede ingresar datos de tiempos de operación previamente recopilados mediante la digitación individual, en primer lugar, se tiene que especificar el número de datos como se muestra a continuación.

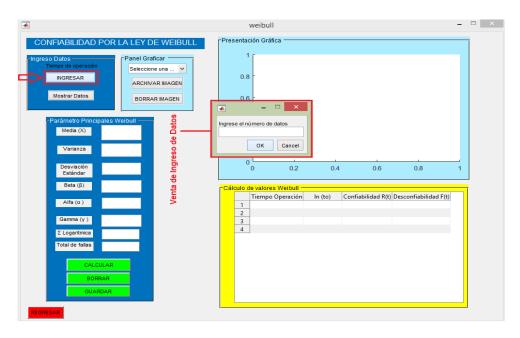


Fig. 9 Carga de tiempos de operación mediante digitación individual

7. Una vez realizado la carga del archivo .xlsx se procede a pulsar el botón "mostrar datos" y se presentan en la tabla valores de tiempo de operación como se observa en la figura 9.

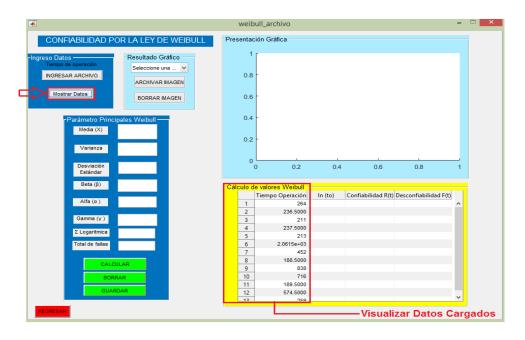


Fig. 10 Valores de tiempo de operación en la tabla

8. Al elegir el botón "calcular" se va obtener los parámetros principales de Weibull y automáticamente todo el valor calculado en la tabla como se indica a continuación.

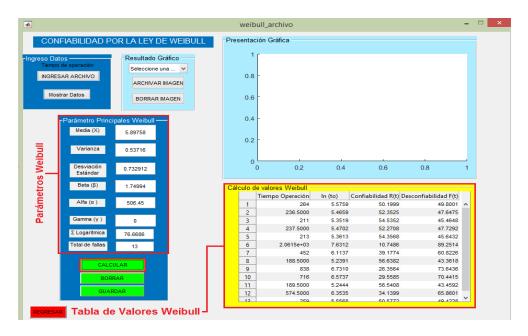


Fig. 11 Parámetros Weibull de Confiabilidad y Desconfiabilidad

9. Realizar la selección del tipo de gráfico de Confiabilidad o Desconfiabilidad mediante el despliegue del panel como se observa en la figura 11.

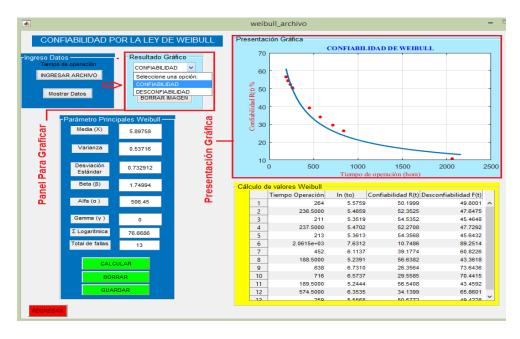


Fig. 12 Seleccionar del tipo de Gráfico

10. Una vez que se obtiene todo el parámetro weibull y sus respectivas gráficas procedemos a presionar el botón "archivar imagen" la cual permite guardar en la biblioteca en archivo que desee el usuario como se muestra a continuación.

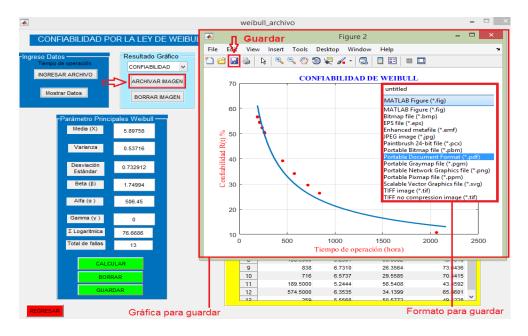


Fig. 13 Archivar imagen en la biblioteca del usuario

11. Al instante de presionar el botón "borrar" autoriza la limpieza del área de la gráfica y la tabla individualmente como se indica en la figura 13.

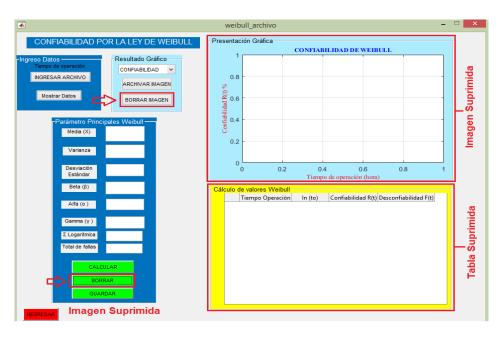


Fig. 14 Borrar datos de la tabla y gráfica

12. Por último, se puede ejecutar el botón "guardar" la cual autoriza al usuario archivar todos los resultados calculados en un formato .xlsx. como se muestra en la siguiente figura 14.

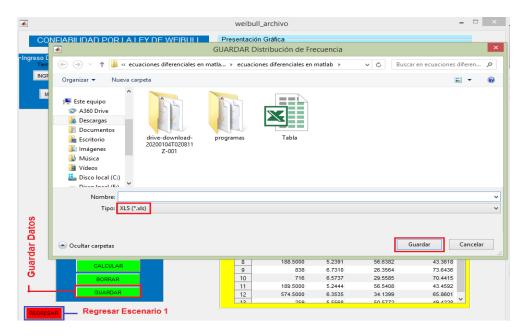


Fig. 15 Guardar el análisis realizado

CÁLCULO DEL ÍNDICE DE DISPONIBILIDAD

 En la ventana principal oprimir en la barra menú para desplegar y seleccionar el tipo de análisis ya sea Confiabilidad por weibull o Disponibilidad.

Fig. 16 Menú desplegable para seleccionar Análisis de Disponibilidad

2. Menú de opción del análisis de la Disponibilidad, en donde se observa el escenario 2 que permite seleccionar el tipo de cálculo como se indica en la figura 17.

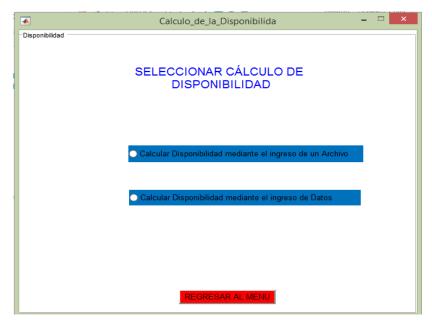


Fig. 17 Escenario 2 de selección de opciones

3. Seleccionar la primera opción de cálculo de la Disponibilidad a través del ingreso de un archivo en formato Excel.

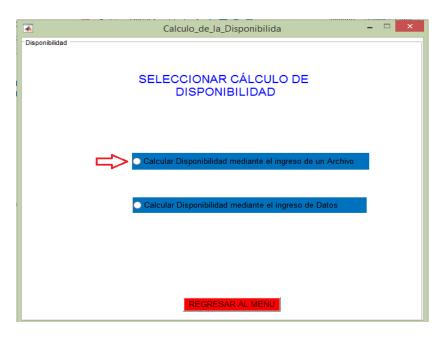


Fig. 18 Escenario 2 selección de la primera opción

4. A continuación, en la figura 19, se observa la venta de interfaz gráfica para realizar el análisis de disponibilidad mediante el ingreso de un archivo que contenga los tiempos de operación, tiempos de reparación y tiempos muertos en formato .xlsx.

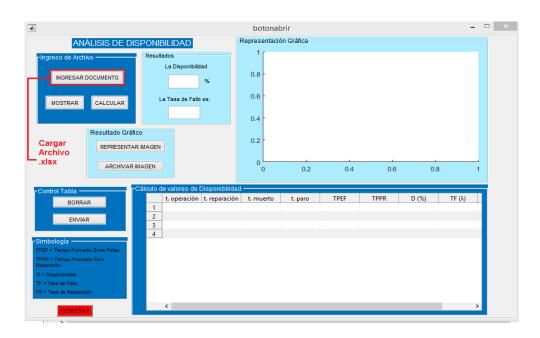


Fig. 19 Ingreso de archivo de datos de tiempos

5. Explorar el archivo guardado en la biblioteca del usuario, seleccionar el documento como se observa en la figura 20, además se puede mira una previa del formato .xlsx con datos de tiempos de operación, reparación y tiempos muertos, la cual procedemos abrir para la carga del archivo.

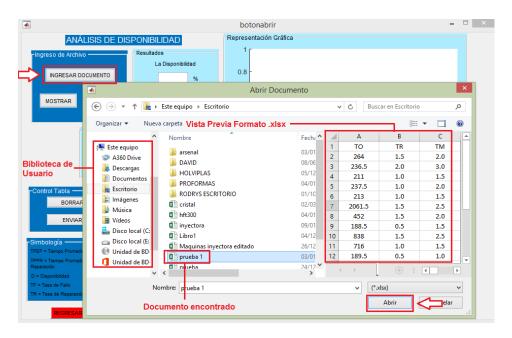


Fig. 20 Carga de archivo con datos anteriormente recopilados

6. De igual manera se puede ingresar datos de tiempos de operación, reparación y tiempos muertos previamente recopilados mediante la digitación individual, en primer lugar, se tiene que especificar el número de datos como se muestra a continuación.

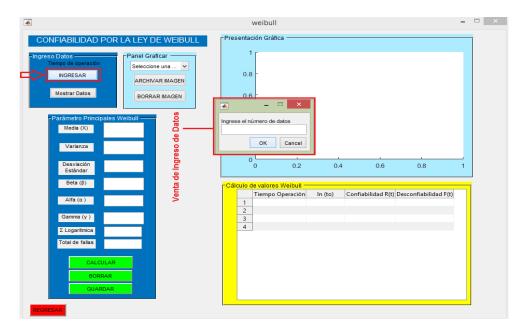


Fig. 21 Digitación individual de tiempos de operación, reparación y tiempos muertos

7. Una vez realizado la carga del archivo .xlsx o a su vez la digitación individual de los tiempos recopilados, se procede a pulsar el botón "mostrar datos" y se presentan en la tabla valores de tiempo de operación, reparación y tiempos muertos como se observa en la figura 22.

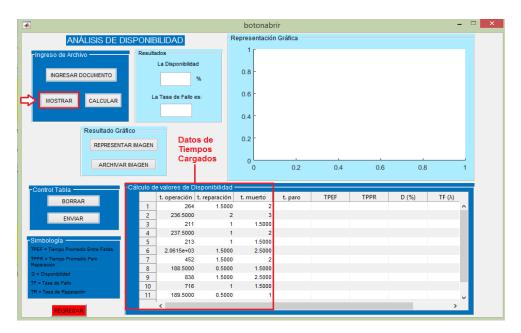


Fig. 22 Visualización de valores en la tabla

8. Al presionar el botón "calcular" se va obtener resultados de disponibilidad y tasa de fallo y automáticamente todos los valores calculados en la tabla como se indica a continuación.

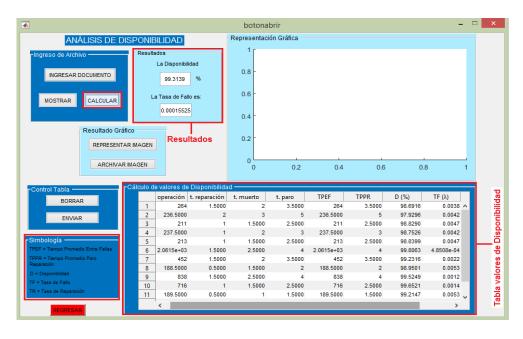


Fig. 23 Parámetros Calculados de Disponibilidad

9. Realizar la representación gráfica de la tasa de fallo mediante el panel como se observa en la figura 24.

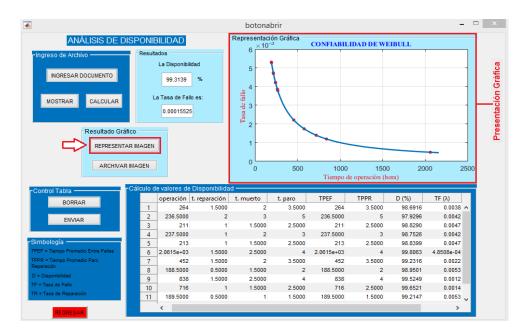


Fig. 24 Representación gráfica de tasa de fallo

10. Una vez que se obtiene todo los parámetros de disponibilidad y su respectiva gráfica de tasa de fallo, procedemos a dar clic el botón "archivar imagen" la cual permite guardar en la biblioteca en extensión que desee el usuario como se muestra a continuación.

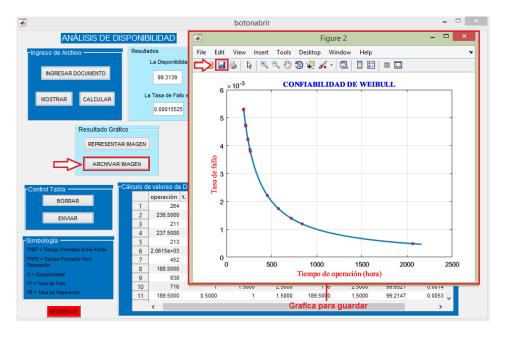


Fig. 25 Archivar gráfica en la biblioteca del usuario

11. Al ejecutar el botón "enviar" autoriza al usuario guardar todos los resultados calculados en un formato .xlsx. como se muestra en la siguiente figura 26.

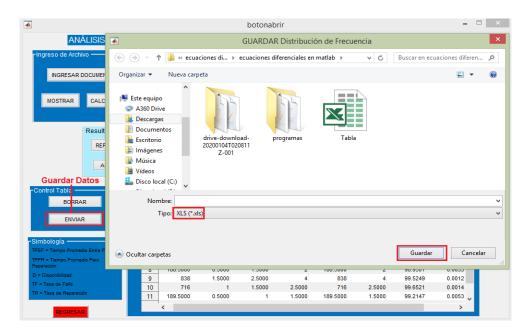


Fig. 26 Guardar el análisis realizado

12. Por último, se puede visualizar el botón regresar, la cual permite el retorno al escenario 1 o 2 del análisis que el usuario este ejecutando y de igual forma en la pantalla principal se observa la pestaña salir para terminar la ejecución del programa como se puede observar a continuación.

Fig. 27 Retorno al escenario 1 de análisis

ANEXO 6. Codificación software especializado

```
function varargout = Menul(varargin)
gui Singleton = 1;
                                mfilename, ...
gui State = struct('gui Name',
                  'qui Singleton', gui_Singleton, ...
                  'gui OpeningFcn', @Menul OpeningFcn, ...
                  'gui_OutputFcn', @Menu1_OutputFcn, ...
                  'gui LayoutFcn', [], ...
                  'qui Callback',
                                  []);
if nargin && ischar(varargin{1})
   gui State.gui Callback = str2func(varargin{1});
end
if nargout
   [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
   gui mainfcn(gui State, varargin{:});
end
% --- Executes just before Menul is made visible.
function Menul OpeningFcn(hObject, eventdata, handles, varargin)
axes('Units','Normalized',...
'Position',[0 0 1 1]);'Number';'off';
[x,map]=imread('holviplas1.jpg','jpg');
%Representamos imagen en figura, con su mapa de colores
image(x),colormap(map),axis off,hold on;
% Choose default command line output for Menul
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% --- Outputs from this function are returned to the command line.
function varargout = Menul OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;
8 -----
function menu Callback(hObject, eventdata, handles)
% -----
function salir Callback(hObject, eventdata, handles)
close()
§ -----
function Disp_Callback(hObject, eventdata, handles)
Calculo_de_la_Disponibilida
function weibull Callback(hObject, eventdata, handles)
Ley de weibull
Análisis de la Confiabilidad mediante la distribución de Weibull
function varargout = weibull(varargin)
gui Singleton = 1;
                  'gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @weibull_OpeningFcn, ...
qui State = struct('gui Name',
                  'gui_OutputFcn', @weibull_OutputFcn, ...
                  'gui_LayoutFcn', [] , ...
                  'gui_Callback',
                                   []);
if nargin && ischar(varargin{1})
   gui State.gui Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else
```

```
gui mainfcn(gui State, varargin{:});
end
% --- Executes just before weibull is made visible.
function weibull OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% --- Outputs from this function are returned to the command line.
function vararqout = weibull OutputFcn(hObject, eventdata, handles)
% --- Executes on button press in pushbutton1.
function pushbutton1 Callback(hObject, eventdata, handles)
n=str2double(inputdlg('Ingrese el número de datos'));
for i=1:n
etiqueta=['Ingrese el ',num2str(i),' Dato de tiempo Operación:'];
x(i)=str2double(inputdlg(etiqueta));
xbarra=mean(x);
to=[x'];
handles.x=x;
quidata(hObject, handles)
handles.n=n;
quidata(hObject, handles)
% --- Executes on button press in mostrar.
function mostrar Callback(hObject, eventdata, handles)
to=handles.x;
Z=[to'];
set(handles.uitable1, 'Data', Z);
function edit1_Callback(hObject, eventdata, handles)
function edit1 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit3 Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function edit3 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
function edit4 Callback (hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function edit4 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
function edit5_Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function edit5_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit6 Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
```

```
function edit6 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit8 Callback(hObject, eventdata, handles)
function edit8 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
% --- Executes on button press in calcular.
function calcular Callback(hObject, eventdata, handles)
% Activar botones
set (handles.popupmenu1, 'Enable', 'on');
set (handles.pushbutton12, 'Enable', 'on');
set (handles.pushbutton15, 'Enable', 'on');
to=handles.x;
a=handles.n;
for i=1:a
   nn=length(to);
A=log(to);
m=sum(A);
Media=m/nn;
R1=(A-Media).^2;
o=sum(R1);
Varianza=o/(nn-1);
Desviasion=sqrt(Varianza);
Beta=pi/(Desviasion*sqrt(6));
Alfa=exp(Media+(0.5772/Beta));
Gamma=0;
R=exp(-(((to-Gamma)/Alfa).^(1/Beta)));
rt=R*100;
F = (1-R);
ft=F*100;
D=[to' A' rt' ft'];
set(handles.uitable1, 'Data', D);
% AJUSTE DE CURVA CONFIABILIDAD
c = polyfit(log(to), log(rt), 1);
xs = linspace(min(to), max(to) + 100);
ys = \exp(c(2)) * xs.^(c(1));
% AJUSTE DE CURVA INFIABILIDAD
c1 = polyfit(log(to), log(ft), 1);
xs1 = linspace(min(to), max(to) + 100);
ys1 = exp(c1(2)) * xs.^(c1(1));
end
%Variables para graficar
handles.to=to;
guidata(hObject, handles)
handles.rt=rt;
guidata(hObject, handles)
handles.ft=ft;
guidata(hObject, handles)
handles.xs=xs;
guidata(hObject, handles)
handles.ys=ys;
```

```
guidata(hObject, handles)
handles.xs1=xs1;
guidata(hObject, handles)
handles.ys1=ys1;
guidata(hObject, handles)
handles.D=D;
guidata(hObject, handles)
set (handles.edit1, 'String', Media);
set(handles.edit3,'String', Varianza);
set(handles.edit4, 'String', Desviasion);
set(handles.edit5,'String',Beta);
set(handles.edit6, 'String', Alfa);
set(handles.edit8, 'String', Gamma);
set(handles.edit9,'String',m);
set(handles.edit10,'String',nn);
§_____
% --- Executes on button press in graficar.
function graficar Callback(hObject, eventdata, handles)
To=handles.to;
A=handles.rt;
xx=handles.xs;
yy=handles.ys;
axes (handles.axes1);
%GRAFICA CONFIABILIDAD
plot(To, A, 'ro', 'markersize', 4, 'markerfacecolor', 'r')
hold on
grid on
plot(xx,yy,'LineWidth',2)
hold on
title ('CONFIABILIDAD DE WEIBULL', 'FontName', 'Times New
Roman','FontSize', 10,'color','b')
xlabel('Tiempo de operación (hora)', 'FontName', 'Times New
Roman','FontSize', 10,'color','r')
ylabel('Confiabilidad R(t)%','FontName','Times New Roman','FontSize',
10, 'color', 'r')
grid on
hold off
% --- Executes on selection change in popupmenul.
function popupmenu1 Callback(hObject, eventdata, handles)
set(handles.pushbutton13, 'Enable', 'on');
set(handles.pushbutton16, 'Enable', 'on');
opcion=get(handles.popupmenu1, 'value');
To=handles.to;
A=handles.rt;
B=handles.ft;
xx=handles.xs;
yy=handles.ys;
xx1=handles.xs1;
yy1=handles.ys1;
switch opcion
    case 1
        %%Selecionar una opcion
  case 2
  axes(handles.axes1);
%GRAFICA CONFIABILIDAD
plot(To,A,'ro','markersize',4,'markerfacecolor','r')
hold on
grid on
```

```
plot(xx,yy,'LineWidth',2)
hold on
title('CONFIABILIDAD DE WEIBULL', 'FontName', 'Times New
Roman','FontSize', 10,'color','b')
xlabel('Tiempo de operación (hora)', 'FontName', 'Times New
Roman','FontSize', 10,'color','r')
ylabel('Confiabilidad R(t) %', 'FontName', 'Times New Roman', 'FontSize',
10, 'color', 'r')
grid on
hold off
    case 3
    axes(handles.axes1);
%GRAFICA DESCONFIABILIDAD
plot(To, B, 'ro', 'markersize', 4, 'markerfacecolor', 'r')
hold on
grid on
plot(xx1, yy1, 'LineWidth', 2)
hold on
title('DESCONFIABILIDAD DE WEIBULL', 'FontName', 'Times New
Roman', 'FontSize', 10, 'color', 'b')
xlabel ('Tiempo de operación (hora)', 'FontName', 'Times New
Roman','FontSize', 10,'color','r')
ylabel('Desconfiabilidad F(t) %','FontName','Times New
Roman','FontSize', 10,'color','r')
grid on
hold off
end
%-----
function edit9 Callback(hObject, eventdata, handles)
function edit9 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit10 Callback(hObject, eventdata, handles)
function edit10 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
% --- Executes on button press in pushbutton11.
function pushbutton11 Callback(hObject, eventdata, handles)
close(weibull);
% --- Executes on button press in pushbutton12.
function pushbutton12 Callback(hObject, eventdata, handles)
set(handles.uitable1, 'Data', {})
%Borrar textboxs
set(handles.edit1, 'String', '');
set(handles.edit3,'String','');
set(handles.edit4,'String','');
set(handles.edit5,'String','');
set(handles.edit6,'String','');
set(handles.edit8,'String','');
set(handles.edit9,'String','');
set(handles.edit10,'String','');
% --- Executes on button press in pushbutton13.
function pushbutton13 Callback(hObject, eventdata, handles)
figura=figure(2);
```

```
colormap('bone')
set(figura,'InvertHardcopy','off','Color','white');
objeto 2 = copyobj(handles.axes1, figura);
set(objeto 2, 'Units', 'normalized', 'Position', [0.12 0.12 .8 .8])
% --- Executes on button press in pushbutton16.
function pushbutton16 Callback(hObject, eventdata, handles)
% Borrar grafica
cla;
% --- Executes on button press in pushbutton15.
function pushbutton15 Callback(hObject, eventdata, handles)
Nmatriz=handles.D;
guidata(hObject, handles)
formatos = {'*.xls','XLS (*.xls)';'*.xls','XLSX (*.xlsx)'};
[nomb, ruta] = uiputfile(formatos, 'GUARDAR Distribución de
Frecuencia');
if or (and (isempty (nomb), isempty (nomb)), nomb==0)
    msqbox('No indico un nombre para quardar archivo',
'Aviso', 'warn');
Nmatriz=handles.D;
xlswrite([ruta nomb], Nmatriz)
end
catch
end
% --- Executes during object creation, after setting all properties.
function popupmenul CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
```

Confiabilidad de Weibull mediante el ingreso de un archivo .xlsx

```
function varargout = weibull archivo(varargin)
gui Singleton = 1;
gui State = struct('gui Name',
                                    mfilename, ...
                   'gui Singleton', gui Singleton, ...
                   'gui OpeningFcn', @weibull archivo OpeningFcn, ...
                   'gui OutputFcn', @weibull_archivo_OutputFcn, ...
                   'qui LayoutFcn',
                                     [],...
                   'qui Callback',
                                     []);
if nargin && ischar(varargin{1})
    gui State.gui Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else
    gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before weibull archivo is made visible.
function weibull archivo OpeningFcn(hObject, eventdata, handles,
varargin)
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% --- Outputs from this function are returned to the command line.
```

```
function varargout = weibull archivo OutputFcn(hObject, eventdata,
handles)
varargout{1} = handles.output;
% --- Executes on button press in pushbutton19.
function pushbutton19 Callback(hObject, eventdata, handles)
% buscar y cargar datos
[FileName Path] = uigetfile({'*.xlsx'}, 'Abrir Documento');
% guardar datos
handles.archivo=xlsread(fullfile(Path,FileName));
guidata(hObject, handles);
% --- Executes on button press in mostrar.
function mostrar Callback(hObject, eventdata, handles)
to=handles.archivo;
Z=[to];
set (handles.uitable1, 'Data', Z);
function edit1 Callback(hObject, eventdata, handles)
function edit1 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
function edit3 Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function edit3 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit4 Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function edit4 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit5 Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function edit5_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit6 Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function edit6 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
function edit8_Callback(hObject, eventdata, handles)
function edit8_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
% --- Executes on button press in calcular.
function calcular Callback(hObject, eventdata, handles)
% Activar botones
```

```
to=handles.archivo;
n=length(to);
A=log(to);
m=sum(A);
Media=m/length(to);
R1=(A-Media).^2;
G=sum(R1);
Varianza=G/(n-1);
Desviasion=sqrt(Varianza);
Beta=pi/(Desviasion*sqrt(6));
Alfa=exp(Media+(0.5772/Beta));
Gamma=0;
R=exp(-(((to-Gamma)/Alfa).^(1/Beta)));
rt=R*100;
F = (1 - R);
ft=F*100;
D=[to A rt ft];
set(handles.uitable1, 'Data', D);
% AJUSTE DE CURVA CONFIABILIDAD
c = polyfit(log(to), log(rt), 1);
xs = linspace(min(to), max(to) + 100);
ys = exp(c(2)) * xs.^(c(1));
% AJUSTE DE CURVA DESCONFIABILIDAD
c1 = polyfit(log(to), log(ft), 1);
xs1 = linspace(min(to), max(to) + 100);
ys1 = exp(c1(2)) * xs.^(c1(1));
%----
%Variables para graficar
handles.to=to;
guidata(hObject, handles)
handles.rt=rt;
guidata(hObject, handles)
handles.ft=ft;
guidata(hObject, handles)
handles.xs=xs;
guidata(hObject, handles)
handles.ys=ys;
guidata(hObject, handles)
handles.xs1=xs1;
guidata(hObject, handles)
handles.ys1=ys1;
guidata(hObject, handles)
handles.D=D;
guidata(hObject, handles)
%-----
set (handles.edit1, 'String', Media);
set(handles.edit3,'String', Varianza);
set(handles.edit4,'String',Desviasion);
set(handles.edit5,'String',Beta);
set(handles.edit6, 'String', Alfa);
set (handles.edit8, 'String', Gamma);
set(handles.edit9,'String',m);
set(handles.edit10,'String',n);
%----
% --- Executes on button press in graficar.
function graficar Callback(hObject, eventdata, handles)
To=handles.to;
A=handles.rt;
xx=handles.xs;
```

```
yy=handles.ys;
axes(handles.axes1);
%GRAFICA CONFIABILIDAD
plot(To,A,'ro','markersize',4,'markerfacecolor','r')
hold on
grid on
plot(xx,yy,'LineWidth',2)
hold on
title ('CONFIABILIDAD DE WEIBULL', 'FontName', 'Times New
Roman','FontSize', 10,'color','b')
xlabel('Tiempo de operación (hora)','FontName','Times New
Roman','FontSize', 10,'color','r')
ylabel('Confiabilidad R(t)%','FontName','Times New Roman','FontSize',
10, 'color', 'r')
grid on
hold off
% --- Executes on selection change in popupmenul.
function popupmenul Callback (hObject, eventdata, handles)
set(handles.pushbutton13, 'Enable', 'on');
set(handles.pushbutton16, 'Enable', 'on');
opcion=get(handles.popupmenu1, 'value');
To=handles.to;
A=handles.rt;
B=handles.ft;
xx=handles.xs;
yy=handles.ys;
xx1=handles.xs1;
yy1=handles.ys1;
switch opcion
    case 1
        %%Selecionar una opcion
  case 2
  axes(handles.axes1);
%GRAFICA CONFIABILIDAD
plot(To,A,'ro','markersize',4,'markerfacecolor','r')
hold on
grid on
plot(xx,yy,'LineWidth',2)
hold on
title('CONFIABILIDAD DE WEIBULL', 'FontName', 'Times New
Roman','FontSize', 10,'color','b')
xlabel('Tiempo de operación (hora)', 'FontName', 'Times New
Roman','FontSize', 10,'color','r')
ylabel('Confiabilidad R(t) %','FontName','Times New Roman','FontSize',
10, 'color', 'r')
grid on
hold off
    case 3
     axes(handles.axes1);
%GRAFICA DESCONFIABILIDAD
plot(To,B,'ro','markersize',4,'markerfacecolor','r')
hold on
grid on
plot(xx1,yy1,'LineWidth',2)
hold on
title('DESCONFIABILIDAD DE WEIBULL', 'FontName', 'Times New
Roman','FontSize', 10,'color','b')
xlabel('Tiempo de operación (hora)', 'FontName', 'Times New
Roman','FontSize', 10,'color','r')
```

```
ylabel('Desconfiabilidad F(t) %', 'FontName', 'Times New
Roman','FontSize', 10,'color','r')
grid on
hold off
end
function edit9 Callback(hObject, eventdata, handles)
function edit9 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit10 Callback(hObject, eventdata, handles)
function edit10 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
% --- Executes on button press in pushbutton11.
function pushbutton11 Callback(hObject, eventdata, handles)
close(weibull archivo);
% --- Executes on button press in pushbutton12.
function pushbutton12 Callback(hObject, eventdata, handles)
set (handles.uitable1, 'Data', {})
%Borrar textboxs
set(handles.edit1, 'String', '');
set(handles.edit3,'String','');
set(handles.edit4,'String','');
set(handles.edit5,'String','');
set(handles.edit6,'String','');
set(handles.edit8,'String','');
set(handles.edit9,'String','');
set (handles.edit10, 'String', '');
% --- Executes on button press in pushbutton13.
function pushbutton13 Callback(hObject, eventdata, handles)
figura=figure(2);
colormap('bone')
set(figura,'InvertHardcopy','off','Color','white');
objeto 2 = copyobj(handles.axes1, figura);
set(objeto 2, 'Units', 'normalized', 'Position', [0.12 0.12 .8 .8])
% --- Executes on button press in pushbutton16.
function pushbutton16 Callback(hObject, eventdata, handles)
% Borrar grafica
% --- Executes on button press in pushbutton15.
function pushbutton15 Callback(hObject, eventdata, handles)
Nmatriz=handles.D;
guidata(hObject, handles)
try
formatos = {'*.xls','XLS (*.xls)';'*.xls','XLSX (*.xlsx)'};
[nomb, ruta] = uiputfile(formatos, 'GUARDAR Distribución de
Frecuencia');
if or(and(isempty(nomb),isempty(nomb)),nomb==0)
    msgbox('No indico un nombre para guardar archivo',
'Aviso', 'warn');
else
Nmatriz=handles.D;
xlswrite([ruta nomb], Nmatriz)
end
```

```
catch
end
% --- Executes during object creation, after setting all properties.
function popupmenul CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
%-----
Análisis de Disponibilidad
function varargout = botonabrir(varargin)
gui Singleton = 1;
                    'gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
gui State = struct('gui Name',
                    'gui_OpeningFcn', @botonabrir_OpeningFcn, ...
                   'gui OutputFcn', @botonabrir OutputFcn, ...
                   'gui_LayoutFcn', [] , ...
                   'gui Callback',
                                     []);
if nargin && ischar(varargin{1})
    gui State.gui Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else
    gui mainfcn(gui State, varargin{:});
end
function botonabrir OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
function varargout = botonabrir OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;
% --- Executes when entered data in editable cell(s) in uitable1.
function uitable1 CellEditCallback(hObject, eventdata, handles)
function abrir Callback(hObject, eventdata, handles)
% buscar y cargar datos
[FileName Path] = uigetfile({'*.xlsx'}, 'Abrir Documento');
% quardar datos
handles.archivo=xlsread(fullfile(Path,FileName));
guidata(hObject, handles);
% --- Executes on button press in mostrar.
function mostrar Callback(hObject, eventdata, handles)
to=handles.archivo(:,1);
tr=handles.archivo(:,2);
tm=handles.archivo(:,3);
D=[to tr tm];
set(handles.uitable3, 'Data', D);
% --- Executes on button press in calcular.
function calcular Callback(hObject, eventdata, handles)
to=handles.archivo(:,1);
tr=handles.archivo(:,2);
tm=handles.archivo(:,3);
tp=handles.archivo(:,2) + handles.archivo(:,3);
TPEF=to;
```

TPPR=tp;

```
disp=(TPEF./(TPEF+TPPR))*100;
tasaf=1./TPEF;
tasar=1./TPPR;
R = (exp(-(to.*tasaf)))*100;
K1=sum(to);
K2=sum(tp);
C4=(K1./(K1+K2))*100; %disponibilidad total
K4=1./K1; %tasa de fallo total
T5 = (exp(-(K1.*K4)))*100;
Z=[to tr tm tp TPEF TPPR disp tasaf tasar];
set(handles.uitable3, 'Data', Z);
% AJUSTE DE CURVA FIABILIDAD
c = polyfit(log(to), log(tasaf), 1);
xs = linspace(min(to), max(to) + 100);
ys = exp(c(2)) * xs.^(c(1));
%Variables para graficar
handles.to=to;
guidata(hObject, handles)
handles.tasaf=tasaf;
guidata(hObject, handles)
handles.xs=xs;
quidata(hObject, handles)
handles.ys=ys;
guidata(hObject, handles)
handles.Z=Z;
guidata(hObject, handles)
set(handles.edit2, 'String', C4);
set(handles.edit3,'String',K4)
% --- Executes on button press in grafica.
function grafica Callback(hObject, eventdata, handles)
To=handles.to;
Rt=handles.tasaf;
xx=handles.xs;
yy=handles.ys;
%GRAFICA TASA DE FALLO
axes(handles.axes1);
plot(To,Rt,'ro','markersize',4,'markerfacecolor','r')
hold on
grid on
plot(xx,yy,'LineWidth',2)
hold on
title ('ANÁLISIS DE DISPONIBILIDAD', 'FontName', 'Times New
Roman','FontSize', 10,'color','b')
xlabel('Tiempo de operación (hora)', 'FontName', 'Times New
Roman','FontSize', 10,'color','r')
ylabel('Tasa de fallo ','FontName','Times New Roman','FontSize',
10, 'color', 'r')
grid on
hold off
% --- Executes when entered data in editable cell(s) in uitable3.
function uitable3_CellEditCallback(hObject, eventdata, handles)
function Regresar_Callback(hObject, eventdata, handles)
close(botonabrir);
function edit2 Callback(hObject, eventdata, handles)
function edit2 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
```

```
function edit3 Callback(hObject, eventdata, handles)
function edit3 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
% --- Executes on button press in pushbutton7.
function pushbutton7 Callback(hObject, eventdata, handles)
figura=figure(2);
colormap('bone')
set(figura,'InvertHardcopy','off','Color','white');
objeto 2 = copyobj(handles.axes1, figura);
set(objeto 2, 'Units', 'normalized', 'Position', [0.12 0.12 .8 .8])
% --- Executes on button press in borrar.
function borrar Callback(hObject, eventdata, handles)
set(handles.uitable3, 'Data', {})
%Borrar textboxs
set(handles.edit2, 'String', '');
set(handles.edit3,'String','');
% --- Executes on button press in enviar.
function enviar Callback(hObject, eventdata, handles)
Nmatriz=handles.Z;
guidata(hObject, handles)
try
formatos = {'*.xls','XLS (*.xls)';'*.xls','XLSX (*.xlsx)'};
[nomb, ruta] = uiputfile(formatos, 'GUARDAR Distribución de
Frecuencia');
if or(and(isempty(nomb),isempty(nomb)),nomb==0)
    msgbox('No indico un nombre para guardar archivo',
'Aviso', 'warn');
else
Nmatriz=handles.Z;
xlswrite([ruta nomb], Nmatriz)
end
catch
end
function varargout = untitled(varargin)
gui Singleton = 1;
gui_State = struct('gui Name',
                                     mfilename, ...
                    'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @untitled_OpeningFcn, ...
                    'gui OutputFcn', @untitled OutputFcn, ...
                    'gui LayoutFcn',
                                      [],...
                    'qui Callback',
                                       []);
if nargin && ischar(varargin{1})
    gui State.gui Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
else
    gui mainfcn(gui State, varargin{:});
end
% --- Executes just before untitled is made visible.
function untitled OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
% Update handles structure
```

```
guidata(hObject, handles);
function varargout = untitled OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;
function pushbutton1 Callback(hObject, eventdata, handles)
n=str2double(inputdlg('Ingrese la cantidad de datos'));
for i=1:n
etiqueta=['Ingrese el ',num2str(i),'° dato de tiempo operación:'];
x(i)=str2double(inputdlg(etiqueta));
end
xbarra=mean(x);
to=[x'];
handles.x=x;
guidata(hObject, handles)
handles.n=n;
guidata(hObject, handles)
function pushbutton2 Callback(hObject, eventdata, handles)
n=str2double(inputdlg('Ingrese la cantidad de datos'));
for i=1:n
etiqueta=['Ingrese el ',num2str(i),' dato de tiempo reparación:'];
y(i)=str2double(inputdlg(etiqueta));
ybarra=mean(y);
tr=[y'];
handles.y=y;
guidata(hObject, handles)
handles.n=n;
guidata(hObject, handles)
\mbox{\$} --- Executes on button press in pushbutton5.
function pushbutton5 Callback(hObject, eventdata, handles)
n=str2double(inputdlg('Ingrese la cantidad de datos'));
for i=1:n
 etiqueta=['Ingrese el ',num2str(i),'° dato de tiempo muerto:'];
w(i)=str2double(inputdlg(etiqueta));
end
wbarra=mean(w);
tm=[w'];
handles.w=w;
guidata(hObject, handles)
handles.n=n;
guidata(hObject, handles)
% --- Executes on button press in mostrar.
function mostrar Callback (hObject, eventdata, handles)
to=handles.x;
tr=handles.y;
tm=handles.w;
Z=[to' tr' tm'];
set(handles.uitable1, 'Data', Z);
% --- Executes on button press in calcular.
function calcular Callback(hObject, eventdata, handles)
to=handles.x;
tr=handles.y;
tm=handles.w;
a=handles.n;
tp=tr+tm;
TPEF=to;
TPPR=tp;
dis=(TPEF./(TPEF+TPPR))*100;
tasaf=1./TPEF;
```

```
tasar=1./TPPR;
R = (exp(-(to.*tasaf)))*100;
K1=sum(to);
K2=sum(tp);
C4=(K1./(K1+K2))*100; %disponibilidad total
K4=1./K1; %tasa de fallo total
T5 = (exp(-(K1.*K4)))*100;
Z=[to' tr' tm' tp' TPEF' TPPR' dis' tasaf' tasar' R'];
set (handles.uitable1, 'Data', Z);
% AJUSTE DE CURVA FIABILIDAD
c = polyfit(log(to),log(tasaf),1);
xs = linspace(min(to), max(to) + 100);
ys = exp(c(2)) * xs.^(c(1));
%Variables para graficar
handles.to=to;
guidata(hObject, handles)
handles.tasaf=tasaf;
guidata(hObject, handles)
handles.xs=xs;
guidata(hObject, handles)
handles.ys=ys;
guidata(hObject, handles)
handles.Z=Z;
guidata(hObject, handles)
%-----
set(handles.edit1, 'String', K1);
set(handles.edit2, 'String', K2);
set(handles.edit4,'String',C4);
set(handles.edit5,'String',K4);
\mbox{\ensuremath{\$}} --- Executes on button press in graficar.
function graficar Callback(hObject, eventdata, handles)
opcion=get(handles.graficar, 'value');
To=handles.to;
Rt=handles.tasaf;
xx=handles.xs;
yy=handles.ys;
   axes(handles.axes1);
%GRAFICA TASA DE FALLO
plot(To,Rt,'ro','markersize',4,'markerfacecolor','r')
hold on
grid on
plot(xx,yy,'LineWidth',2)
hold on
title('TASA DE FALLO', 'FontName', 'Times New Roman', 'FontSize',
10, 'color', 'k')
xlabel ('Tiempo de operación (hora)', 'FontName', 'Times New
Roman','FontSize', 10,'color','r')
ylabel('Tasa de Fallo', 'FontName', 'Times New Roman', 'FontSize',
10, 'color', 'r')
grid on
hold off
% --- Executes on button press in pushbutton8.
function pushbutton8 Callback(hObject, eventdata, handles)
figura=figure(2);
colormap('bone')
set(figura,'InvertHardcopy','off','Color','white');
objeto 2 = copyobj(handles.axes1, figura);
set(objeto_2,'Units','normalized','Position',[0.12 0.12 .8 .8])
function edit1 Callback(hObject, eventdata, handles)
```

```
% --- Executes during object creation, after setting all properties.
function edit1 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit2 Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function edit2 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
function edit4 Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function edit4 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
function edit5 Callback(hObject, eventdata, handles)
% --- Executes during object creation, after setting all properties.
function edit5 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject, 'BackgroundColor'),
get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
%CERRAR PROGRAMA%
% --- Executes on button press in Salir.
function Salir Callback(hObject, eventdata, handles)
close(untitled);
% --- Executes on button press in pushbutton9.
function pushbutton9 Callback(hObject, eventdata, handles)
set (handles.uitable1, 'Data', {})
%Borrar textboxs
set(handles.edit1, 'String', '');
set(handles.edit2,'String','');
set(handles.edit4,'String','');
set(handles.edit5,'String','');
% --- Executes on button press in pushbutton10.
function pushbutton10 Callback(hObject, eventdata, handles)
Nmatriz=handles.Z;
guidata(hObject, handles)
try
formatos = {'*.xls','XLS (*.xls)';'*.xls','XLSX (*.xlsx)'};
[nomb, ruta] = uiputfile(formatos, 'GUARDAR Distribución de Frecuencia')
if or(and(isempty(nomb), isempty(nomb)), nomb==0)
    msgbox('No indico un nombre para guardar archivo',
'Aviso', 'warn');
Nmatriz=handles.Z;
xlswrite([ruta nomb], Nmatriz)
end
catch
end
```