

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

TRABAJO EXPERIMENTAL PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

TEMA

"ESTUDIO DEL EFECTO DEL SISTEMA DE MÍNIMA CANTIDAD DE LUBRICANTE (MQL) CON ACEITE VEGETAL EN LA VIDA DE LAS HERRAMIENTAS DE CORTE DE METAL DURO EN EL PROCESO DE TORNEADO DEL ACERO INOXIDABLE AISI 304"

AUTOR: Luis Manuel Márquez Moya

TUTOR: Ing. Mg. Pablo Valle

AMBATO - ECUADOR

2016

APROBACIÓN DEL TUTOR

En mi calidad de tutor del proyecto experimental, previo a la obtención del título de Ingeniero Mecánico, con el tema "ESTUDIO DEL EFECTO DEL SISTEMA DE MÍNIMA CANTIDAD DE LUBRICANTE (MQL) CON ACEITE VEGETAL EN LA VIDA DE LAS HERRAMIENTAS DE CORTE DE METAL DURO EN EL PROCESO DE TORNEADO DEL ACERO INOXIDABLE AISI 304", elaborado por el Sr. Luis Manuel Márquez Moya, portador de la cédula de ciudadanía: 180431203-9, y egresado de la Facultad de Ingeniería Civil y Mecánica, Carrera de Ingeniería Mecánica.

Certifico:

- El presente proyecto de investigación es original de su autor
- Ha sido revisado cada uno de sus capítulos componentes.
- Está concluido en su totalidad.

Ing. Mg. Pablo Valle
TUTOR

AUTORÍA DE TRABAJO EXPERIMENTAL

Los criterios emitidos en este trabajo experimental con el tema "ESTUDIO DEL EFECTO DEL SISTEMA DE MÍNIMA CANTIDAD DE LUBRICANTE (MQL) CON ACEITE VEGETAL EN LA VIDA DE LAS HERRAMIENTAS DE CORTE DE METAL DURO EN EL PROCESO DE TORNEADO DEL ACERO INOXIDABLE AISI 304" como también las ideas, análisis, y conclusiones son de exclusiva responsabilidad de mi persona, como autor.

.....

Luis Manuel Márquez Moya

C.I.: 180431203-9

DEDICATORIA

Este trabajo lo dedico en primer lugar a Dios por brindarme una bendición tan grande como es la vida, una vida guiada por una madre ejemplar.

A mi madre que día a día me ha guiado y me ha apoyado con su fuerza y amor incondicional. A mi madre quien me ayudo a pesar de que en varios momentos del camino se han puesto difíciles ella nunca dio su brazo a torcer lo que me lo que me inspiro para no rendirme y seguir adelante durante esta trayectoria que es mi carrera.

Luis Márquez

AGRADECIMIENTO

Un profundo agradecimiento a Dios quien me ha llenado de bendiciones y a mi madre que es la bendición más grande que Dios me ha brindado.

A la Universidad Técnica de Ambato que me dio la oportunidad de formar parte de tan prestigiosa institución y que por medio de sus docentes forjo una carrera profesional en mi vida.

A Carrera de Ingeniería Mecánica de la cual me siento orgullosos de ser parte y a los docentes que en ella laboran los mismos que en las aulas nos supieron guiar a con su conocimiento y compartir sus vivencias profesionales que sé que en algún momento serán una gran enseñanza, de manera especial al Ingeniero Pablo valle quien con su tutoría he desempeñado este proyecto de mejor manera.

A mi familia que me ha brindado su apoyo a lo largo de este camino.

Y por último pero no menos importante a todos mi amigos y compañeros dentro y fuera de las aulas que de corazón puedo darles las gracias por su amistad.

Luis Márquez

PÁGINAS PRELIMINRES	PÁGINAS
APROBACIÓN DEL TUTOR	II
AUTORÍA DE TRABAJO EXPERIMENTAL	III
DEDICATORIA	IV
AGRADECIMIENTO	V
ÍNDICE DE FIGURAS	VIII
RESUMEN EJECUTIVO	XIII
CAPÍTULO I	1
ANTECEDENTES	1
1.1 TEMA DE TRABAJO EXPERIMENTAL	1
1.2 ANTECEDENTES	1
1.3 JUSTIFICACIÓN	2
1.4 OBJETIVOS	3
1.4.1. Objetivo General	3
1.4.2. Objetivos específicos	3
CAPÍTULO II	4
FUNDAMENTACIÓN	4
2.1 FUNDAMENTACIÓN TEÓRICA	4
2.1.1- El Torno	4
Es necesario definir que es una máquina herramienta para po	oder estudiar más a fondo el torno. 4
2.1.1.1 Tipos De Torno	5
2.1.1.3 Operaciones de Torneado	8
2.1.2 Herramientas de torneado	9
2.1.3 Insertos para torno	9
2.1.4Estandarización de insertos	10
2.1.4.1 NORMA ISO 1832	10
2.1.4.2Estandarización de porta-insertos	13
2.1.3 Movimientos de trabajo del torno	15
2.1.4 Parámetros De Maquinado	15
2 1 4 1 -Velocidad de corte	15

2.1.4.2Velocidad de avance	16
2.1.5 Fluidos De Corte	18
2.1.6Tipos De Fluidos De Corte	18
2.1.7Aceites De Corte	18
2.1.8Taladrinas	18
2.1.9Funciones de los fluidos de corte	19
2.1.10Elección de los fluidos de corte	19
2.1.11Inconvenientes del uso de los fluidos de corte	20
2.1.12Alternativas a la utilización de Fluido de corte convencional	20
2.1.13Mecanizado en seco	21
2.1.14 Mecanizado con Mínima Cantidad de Lubricante (MQL)	21
2.1.15Ventajas e inconvenientes del sistema MQL frente al fluido de corte convencional	22
2.1.16 Lubricantes para MQL	22
2.1.17 Vida útil de la herramienta de corte	23
2.1.18 Ecuación de Taylor	25
2.1.19Ecuación de Taylor para la vida de las herramientas	26
2.1.20 Criterios de desgaste de la herramienta de corte	27
2.1.21 Aceros Inoxidables	28
2.2 HIPÓTESIS	29
2.3 SEÑALAMIENTO DE VARIABLES DE LA HIPÓTESIS	29
2.3.1 Variable Independiente	29
2.3.2 Variable Dependiente	29
CAPÍTULO III	30
METODOLOGÍA	30
3.1 NIVEL O TIPO DE INVESTIGACIÓN	30
3.2 POBLACIÓN Y MUESTRA	30
3.2.1 POBLACIÓN	30
3.2.2 MUESTRA	31
3.3 OPERACIONALIZACIÓN DE VARIABLES	32
3.3.1Variable independiente	32
3.3.2Variable dependiente	33

3.4 PLAN DE RECOLECCIÓN DE INFORMACIÓN	34
3.5PLAN PROSESAMIENTO Y ANÁLISIS	34
3.5.1 PROCESO DE OBTENCIÓN Y ANÁLISIS DE RESULTADOS	34
3.5.2PROCEDIMIENTO	36
CAPÍTULO IV	49
ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	
4.1 RECOLECCIÓN DE DATOS	
4.2 ANÁLISIS DE RESULTADOS	240
4.3 VERIFICACIÓN DE LA HIPÓTESIS	263
4.3.1Verificación de hipótesis para 885 rpm y 4mm de profundidad	263
4.3.2 Verificación de hipótesis para 900 rpm y 4mm de profundidad	
4.3.3 Verificación de hipótesis a 885 rpm y 0.15mm de profundidad	
4.3.4 Verificación de hipótesis a 900 rpm y 0.15mm de profundidad	
CAPÍTULO V	
5.1 CONCLUSIONES	
MATERIALES DE REFERENCIA	282
BIBLIOGRAFIA	
ÍNDICE DE FIGURAS	
Figura 2. 1 Torno moderno	4
Figura 2. 2 Partes del torno paralelo	
Figura 2. 3 Delantal	
Figura 2. 4 Torreta Porta Herramientas	
Figura 2. 5 Caja de Norton	
Figura 2. 6 Bosquejo de las operaciones de torneado	
Figure 2. 7 Buril	
Figure 2. 8 Movimientos del torno	
Figura 2. 9 Desgastes en la cuchilla.	
Figura 2. 10 Zonas de desgaste en herramientas	25

flanco en función del tiempo de corte para diferentes velocidades de corte	
Para distribution del trempe de como para distribution (constituto) de constitution del trempe de constitution	0
Figura 3. 1 Diagrama de flujo para el estudio de la vida de la herramienta de corte	36
Figura 3. 2 a) Porta herramienta PSBNR 3225P 12 b) Diagrama simplificado de la	a
operación de maquinado del portaherramientas	37
Figura 3. 3 Inserto SNMG 12 04 04 QM	
Figura 3. 4 Datos técnicos del inserto de metal duro	39
Figura 3. 5 Introducción de la taladrina en el tanque de almacenamiento	40
Figura 3. 6 Taladrina usada para el maquinado	40
Figura 3. 7 Sistema de inundación por taladrina del torno	41
Figura 3. 8 Compresor	41
Figura 3. 9 Unidad de mantenimiento de aire	
Figura 3. 10 Fuente de energía de 24v	42
Figura 3. 11 Sistema MQL conectado y listo	42
Figura 3. 12 Aceite vegetal para el maquinado de acero inoxidable	43
Figura 3. 13 Equipamiento del sistema de mínima cantidad de lubricación con el to	
Eigyng 2 14 Defrants de del extreme del sie de come	
Figura 3. 14 Refrentado del extremo del eje de acero	
Figura 3. 15 Sujeción del eje en el contrapunto	
Figura 3. 16 Ajuste de parámetros de maquinado en el torno	
Figura 3. 17 Tabla de velocidades del husillo	
Figura 3. 18 Tabla de velocidades de avance.	
Figura 3. 19 Mecanizado del acero con taladrina y con sistema MQL	
Figura 3. 21 Microscopio Electrónico de Barrido	
Figura 3. 22 Colocación de las cuchillas en las mordazas del MEB	
Figura 3. 23 Colocación de las mordazas en el interior del MEB	
Figure 3, 25. Critario de la norma para la determinación de la vide útil de la horram	
Figura 3. 25 Criterio de la norma para la determinación de la vida útil de la herram	
	40
Figura 4. 1 Desgaste de flanco a 5 minutos	241
Figura 4. 2 Desgaste de flanco a 10 minutos	
Figura 4. 3 Desgaste de flanco a 15 minutos	
Figura 4. 4 Desgaste de flanco a 20 minutos	
Figura 4. 5 Desgaste de flanco a 25 minutos	
Figura 4. 6 Desgaste de flanco a 30 minutos	

Figura 4. 7 Desgaste de flanco a 5 minutos	247
Figura 4. 8 Desgaste de flanco a 10 minutos	248
Figura 4. 9 Desgaste de flanco a 15 minutos	249
Figura 4. 10 Desgaste de flanco a 20 minutos	250
Figura 4. 11 Desgaste de flanco a 25 minutos	251
Figura 4. 12 Desgaste de flanco a 30 minutos	252
Figura 4. 13 Desgaste de flanco a 5 minutos	252
Figura 4. 14 Desgaste de flanco a 10 minutos	2 53
Figura 4. 15 Desgaste de flanco a 15 minutos	254
Figura 4. 16 Desgaste de flanco a 20 minutos	254
Figura 4. 17 Desgaste de flanco a 25 minutos	255
Figura 4. 18 Desgaste de flanco a 30 minutos	255
Figura 4. 19 Desgaste de flanco a 5 minutos	256
Figura 4. 20 Desgaste de flanco a 5 minutos	257
Figura 4. 21 Desgaste de flanco a 10 minutos	257
Figura 4. 22 Desgaste de flanco a 15 minutos	258
Figura 4. 23 Desgaste de flanco a 20 minutos	259
Figura 4. 24 Desgaste de flanco a 25 minutos	259
Figura 4. 25 Desgaste de flanco a 30 minutos	260
Figura 4. 26 Analisis de Taylor	262
Figura 4. 27 Analisis de Taylor	263
Figura 4. 28 Distribución t	266
Figura 4. 29 Distribución t	270
Figura 4. 30 Distribución t	274
Figura 4. 31 Distribución t	277
ÍNDICE DE TABLAS	
Tabla 2. 1 Categorías de los insertos	11
Tabla 2. 2 Tipos de fijación principales	14
Tabla 2. 3 Límites de los valores de "n" para diversos materiales de corte	27
Tabla 2. 4 Recomendaciones generales empleadas en la práctica industrial para el lím	ite del
desgaste de flanco	28
Tabla 3. 1 Características del porta insertos	37
Tabla 3. 2 Características del inserto	38
Tabla 3. 3 Velocidades del torno y del inserto	39
Tabla 3. 4 Características del lubricante	40
Tabla 3. 5 Características del aceite vegetal	43

Tabla 3. 6 Parametros elegidos para el estudio	44
Tabla 4. 1 Valores de desgaste presentado en el flanco de las herramientas en los primeros 5	5
minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm	240
Tabla 4. 2Valores de desgaste presentado en el flanco de las herramientas en los primeros 1	.0
minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm	241
Tabla 4. 3 Valores de desgaste presentado en el flanco de las herramientas en los primeros 1	15
minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm	242
Tabla 4. 4 Valores de desgaste presentado en el flanco de las herramientas en los primeros 2	20
minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm	243
Tabla 4. 5 Valores de desgaste presentado en el flanco de las herramientas en los primeros 2	25
minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm	244
Tabla 4. 6 Valores de desgaste presentado en el flanco de las herramientas en los primeros 3	30
minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm	245
Tabla 4. 7 Valores de desgaste presentado en el flanco de las herramientas en los primeros 5	5
minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm	246
Tabla 4. 8 Valores de desgaste presentado en el flanco de las herramientas en los primeros 1	10
minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm	247
Tabla 4. 9 Valores de desgaste presentado en el flanco de las herramientas en los primeros 1	15
minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm	248
Tabla 4. 10 Valores de desgaste presentado en el flanco de las herramientas en los primeros	20
minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm	249
Tabla 4. 11 Valores de desgaste presentado en el flanco de las herramientas en los primeros	25
minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm	250
Tabla 4. 12 Valores de desgaste presentado en el flanco de las herramientas en los primeros	30
minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm	251
Tabla 4. 13 Valores de desgaste presentado en el flanco de las herramientas en los primeros	5 5
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm	252
Tabla 4. 14 Valores de desgaste presentado en el flanco de las herramientas en los primeros	10
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm	253
Tabla 4. 15 Valores de desgaste presentado en el flanco de las herramientas en los primeros	: 15
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm	253
Tabla 4. 16 Valores de desgaste presentado en el flanco de las herramientas en los primeros	20
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm	254
Tabla 4. 17 Valores de desgaste presentado en el flanco de las herramientas en los primeros	3 25
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm	254
Tabla 4. 18 Valores de desgaste presentado en el flanco de las herramientas en los primeros	30
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm	255
Tabla 4. 19 Valores de desgaste presentado en el flanco de las herramientas en los primeros	5 5
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm	256
Tabla 4. 20 Valores de desgaste presentado en el flanco de las herramientas en los primeros	5 5
minutos de maguinado a una profundidad de 0.15 mm con una Vc de 900 rpm	256

Tabla 4. 21 Valores de desgaste presentado en el flanco de las herramientas en los primeros 10
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm257
Tabla 4. 22 Valores de desgaste presentado en el flanco de las herramientas en los primeros 15
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm257
Tabla 4. 23 Valores de desgaste presentado en el flanco de las herramientas en los primeros 20
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm258
Tabla 4. 24 Valores de desgaste presentado en el flanco de las herramientas en los primeros
25minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm
Tabla 4. 25 Valores de desgaste presentado en el flanco de las herramientas en los primeros 30
minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm259
Tabla 4. 26 Valores del desgaste presentado en el flanco de las herramientas en los diferentes
intervalos de 5 minutos minutos de maquina a una profundidad de 4 mm con una Vc de 885 rpm.
Tabla 4. 27 Valores del desgaste presentado en el flanco de las herramientas en los diferentes
intervalos de 5 minutos minutos de maquina a una profundidad de 4 mm con una Vc de 900 rpm.
Tabla 4. 28 Media de los desgastes obtenidos a 885 rpm con una profundidad de 4mm con los
dos métodos de lubricación
Tabla 4. 29 Media de los desgastes obtenidos a 900 rpm con una profundidad de 4mm con los
dos métodos de lubricación
Tabla 4. 30 Media de los desgastes obtenidos a 885 rpm con una profundidad de 0.15mm con
los dos métodos de lubricación
Tabla 4. 31 Media de los desgastes obtenidos a 900 rpm con una profundidad de 0.15mm con
los dos métodos de lubricación

RESUMEN EJECUTIVO

El presente trabajo tiene como objetivo estudiar el efecto que causa el uso de un sistema de mínima cantidad de lubricación con aceite vegetal en el proceso de torneado de un acero AISI 304 con insertos de metal duro bajo diferentes condiciones de mecanizado, estos ensayos se repetirán bajo los mismos parámetros pero cambiando el sistema de lubricación por un método de inundación de taladrina.

El torno donde se llevó a cabo el mecanizado de las probetas es un torno convencional por lo cual se debió cotejar las velocidades a las que el inserto de metal duro funciona con las velocidades que nos brinda el torno.

El proceso que se lleva a cabo es un trabajo de nivel medio donde la profundidad máxima a ser analizada es de 4mm los insertos de metal duro son marca sandvik con lo cual estos se encuentran bien referenciados y fueron escogidos precisamente para el trabajo que se va a realizar.

El torno donde se realiza el estudio cuenta ya con un sistema integrado de lubricación y refrigeración por inundación de taladrina pero a este se le incorporara el sistema de mínima cantidad de lubricación el cual es un sistema independiente de lubricación por lo cual el torno no debe de ser sometido a ninguna modificación ya que este es de fácil incorporación siendo de la marca Miquel pro i de Dropsa

Por ultimo después del mecanizado las cuchillas con los diferentes parámetros serán observadas en un microscopio de barrido que se encuentra en los laboratorios de la carrera de ingeniería mecánica donde se pudo observar que el desgaste es disminuido con el uso del sistema de mínima cantidad de lubricación y un aceite vegetal.

CAPÍTULO I

ANTECEDENTES

1.1 TEMA DE TRABAJO EXPERIMENTAL

ESTUDIO DEL EFECTO DEL SISTEMA DE MÍNIMA CANTIDAD DE LUBRICANTE (MQL) CON ACEITE VEGETAL EN LA VIDA DE LAS HERRAMIENTAS DE CORTE DE METAL DURO EN EL PROCESO DE TORNEADO DEL ACERO INOXIDABLE AISI 304

1.2 ANTECEDENTES

Los autores **Nilesh C Ghuge, Dhatrak V.K., Dr. AM. Mahalle** realizaron un estudio con el tema: "**Minimum Quantity Lubrication**" publicado por el IOSR Diario de Ingeniería de la Organización Internacional de Investigación Científica (IOSR) con 12 números por año el cual consistía en estudiar el efecto de un sistema MQL en el tornado de aceros con alto contenido de carbono endurecido de 62 a 64 RHC con una herramienta de corte de metal duro de una sola punta con radio de 0.8 el mismo que arrojo la siguiente conclusión: Hay un aumento significativo de la vida de la herramienta - más del 30% - por la lubricación de cantidad mínima. Por lo tanto, se puede concluir que el uso de fluido de corte en pequeñas cantidades potencialmente puede proteger la herramienta [1]

Un estudio con el tema" Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel" realizado por N.R. Dhar, M. Kamruzzaman, Mahiuddin Ahmed en la Universidad de Bangladesh realizo un estudio del proceso de torneado del acero AISI 4340 con un tamaño de Ø125 × 760mm con una herramienta SNMM 120408 y los siguientes parámetros de proceso La velocidad de corte, Vc 110 m/min velocidad de avance, Así 0,16 mm/rev La profundidad del corte, 1.5mm, MQL de suministro de aire: 7,0 bar, lubricante : 60 ml/h además de realizar el mismo proceso pero con un método de lubricación por inundación. Este estudio arrojo la siguiente conclusión: MQL proporciona un menor desgaste de la herramienta , la mejora de vida de la herramienta y mejor acabado superficial en comparación con el mecanizado en seco y en húmedo de acero. [2]

En el instituto de Tecnología de Georgia en la Escuela de Ingeniería Mecánica, Ronan Autret con la tutoría Steven Liang realizo el estudio con el tema "Minimum Quantity Lubrication in Finish Hard Turning" el cual trata del uso de un sistema MQL en una acero endurecido a 64 HRC donde se busca medir la influencia del método MQL con el calor producido entre la herramienta y el material maquinado además de analizar las fuerzas de corte y la vida útil de la herramienta donde se puso a prueba una variedad de velocidades y profundidades de corte y a partir de estos experimentos se concluye lo siguiente:

En el contexto de la temperatura de corte en estado estacionario, se observa consistentemente una reducción de 10 a 30% cuando se aplica condición mínima de lubricación cantidad en lugar de completamente seco.

En el concurso de las fuerzas de corte, no hay ninguna diferencia significativa con o sin el uso de MQL

En el contexto de la vida de la herramienta, el estudio ha mostrado un aumento significativo de la vida de la herramienta - más del 30% - por la lubricación de cantidad mínima en un amplio rango de condiciones de corte. [3]

1.3 JUSTIFICACIÓN

El siguiente trabajo experimental se apoya para su desarrollo en los constantes e imprevistos cambios de la matriz industrial productiva de nuestro país la cual tiene como uno de sus objetivos incrementar la producción industrial además de que se exigirá altos estándares de calidad, lo que orientará a que el sector industrial implemente nuevas tecnologías en sus instalaciones.

Uno de los sectores industriales que sufrirán este inminente cambio es aquel que trabaja directamente con productos ferrosos en actividades tales como el mecanizado por arranque de viruta y entre los cuales, el torneado es una de las operaciones más sobresalientes y la que a continuación será la base del estudio a realizar.

El torneado utiliza un sistema de lubricación basado en un método de inundación que usa altas cantidades de taladrina este sistema es el más común en el sector industrial pero también es uno de los menos recomendados tomando en cuenta factores tales como que

su uso afecta en el costo directo de la producción, no evita el desgaste prematuro de la herramienta de corte, es perjudicial para el operario de la máquina herramienta y es altamente contaminante con el medio ambiente.

El presente trabajo experimental estudiará un nuevo sistema de lubricación en el proceso de torneado el cual se enfoca en aumentar la vida útil de la herramienta de corte con lo que se reducirá costos de producción y además de esto el sistema es amigable con el medio ambiente y el operario ya que el lubricante es de origen vegetal y se lo utiliza en mínimas cantidades evitando crear una nubosidades en el ambiente de trabajo.

1.4 OBJETIVOS

1.4.1. Objetivo General

Estudiar del efecto del sistema de mínima cantidad de lubricante (MQL) con aceite vegetal en la vida de las herramientas de corte de metal duro en el proceso de torneado del acero inoxidable AISI 304

1.4.2. Objetivos específicos

- Identificar los sistemas de lubricación para las herramientas de corte en el torneado del acero inoxidable AISI 304.
- Evaluar el desgaste de la herramienta de corte mediante la norma ANSI/ASME B94.55M1985 usando en método de lubricación por inundación de taladrina.
- Evaluar el desgaste de la herramienta de corte mediante la norma ANSI/ASME
 B94.55M1985 usando en método de lubricación MQL con aceite vegetal.
- Comparar los resultados del desgaste de la herramienta de corte en el proceso de torneado del acero inoxidable AISI 304 mediante la lubricación por inundación y el sistema de mínima cantidad de lubricante.
- Determinar el tiempo de vida útil de la herramienta de corte en el proceso de torneado por medio de la ecuación de Taylor.

CAPÍTULO II

FUNDAMENTACIÓN

2.1 FUNDAMENTACIÓN TEÓRICA

2.1.1- El Torno

Es necesario definir que es una máquina herramienta para poder estudiar más a fondo el torno.

Una máquina herramienta es una máquina que nos permite trabajar materiales rígidos y darles forma de piezas mecánicas. Estas se caracterizan por mecanismos complejos pero de una gran precisión además de que estas son máquinas estacionarias

Se denomina torno (del latín tornus, y este del griego giro, vuelta) Es una máquina herramienta que mecanizada sólidos en revolución (cilindros, conos, hélices). Estas máquinas-herramienta hacen girar la pieza a mecanizar mientras en esta intervienen una o varias herramientas de corte que dan la forma buscada y desprendiendo el material sobrante en forme de viruta [4]

Figura 2. 1.- Torno moderno [4]

2.1.1.1.- Tipos De Torno

- Torno paralelo
- Torno Vertical
- Torno Copiador
- Torno Revolver
- Torno CNC

2.1.1.2.- Partes Del Torno

En un torno paralelo se puede distinguir cuatro partes principales:

- La bancada
- El cabezal y cabezal móvil
- El contrapunto
- Los carros de movimiento de la herramienta
- La caja Norton de control de velocidades

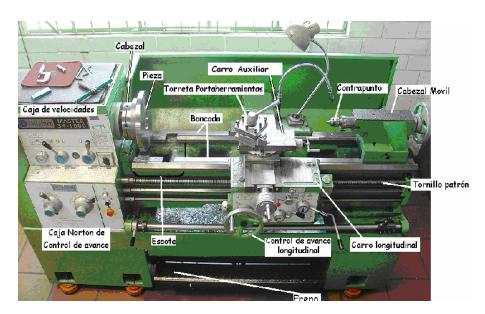


Figura 2. 2.- Partes del torno paralelo [5]

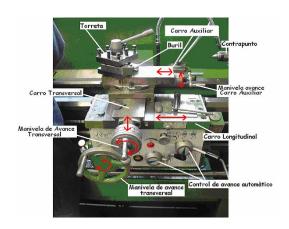
Bancada

Es una de las partes más importantes donde se asientan todos los componentes de la máquina y es la parte más robusta para evitar la vibración

Cabezal

Está fijo en el lado izquierdo de la bancada y en él se encuentran generalmente los elementos de transmisión de movimiento del motor al eje

El Contrapunto


Es una parte importante del torno ya que en este se puede fijar una parte del eje a maquinar para disminuir la vibración además de sostener diversas herramientas de corte, como brocas, escariadores y machuelos.

Carro Principal

Este se lo conoce también como carro longitudinal. Este se mueve sobre la parte superior de las guías que se encuentran en la bancada

El Delantal

Este es como el puente de mando del torno es donde se encuentran los embragues y demás palancas que ayudan a configurar las diferentes velocidades que se necesitan para el maquinado del material

Figura 2. 3.- Delantal **[5]**

El Carro Transversal

Este se mueve perpendicularmente al eje principal del torno en forma manual pero con un estricto control de precisión

Carro Auxiliar

Este es un carro que nos permite ayudar al maquinado de conos y es un complemento del carro transversal

La Torreta Portaherramientas

Esta se encuentra sobre el carro auxiliar y nos permite montar varias herramientas de corte.

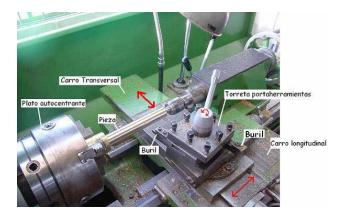


Figura 2. 4.- Torreta Porta Herramientas [5]

La Caja Norton

Es donde se encuentra las diferentes configuraciones de velocidades que se transmite desde el motor al eje de acción de la máquina.

Figura 2. 5.- Caja de Norton [5]

2.1.1.3.- Operaciones de Torneado

En el torno, los mecanizados que podemos conseguir son siempre de volúmenes de revolución. Cilindros, conos, perforados en el eje, ranuras laterales, roscas y torneados interiores los mismos que a continuación se describen de una manera simplificada en las siguientes figuras:

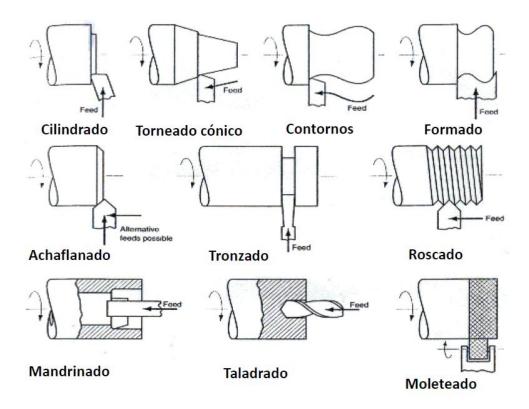


Figura 2. 6.- Bosquejo de las operaciones de torneado [5]

2.1.2.- Herramientas de torneado

Una herramienta de lo más común en el uso del torno son las de acero rápido (también conocida como buril) está formada principalmente de un cuerpo, mango o vástago, y de un cabezal donde se encuentra la herramienta de corte. A su vez, el cabezal se compone de diversas partes, tal como vemos en la figura de abajo.

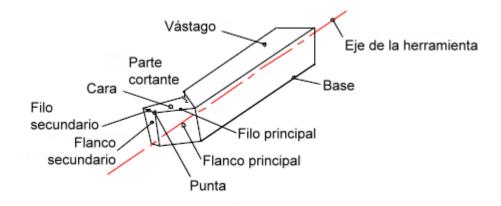


Figura 2. 7.- Buril [6]

Es requisito indispensable que la herramienta de corte mantenga una dureza alta , incluso a temperaturas elevadas, que no se desgaste rápidamente y gran ductilidad. Estas características dependen de los materiales con los que se fabrica la herramienta, los cuales se dividen en varios grupos:

- Acero al carbono
- Acero rápido
- Carburo cementado o metal duro
- Cerámica
- Nitruro de boro cúbico (CBN)
- Diamante policristalino (PCD) [6]

2.1.3.- Insertos para torno

Ante la aparición de nueva tecnología en lo que maquinaria de alta precisión en el medio del mecanizado de acero y otros elementos ferrosos y no ferrosos se refiere y que manejan controles CNC se ha vuelto obligatorio el uso de insertos de metal duro

Existe una variedad enorme de insertos y porta-insertos en el mercado por tanto se ha llevado a cabo su estandarización bajo normas ISO (o ANSI en Estados Unidos, que emplean medidas inglesas) a fin de facilitar la elección adecuada para cada aplicación.

2.1.4.-Estandarización de insertos

2.1.4.1.- NORMA ISO 1832

Esta norma agrupa los insertos de metal duro en 10 categorías diferentes que contemplan diversos parámetros.

La especificación de las categorías 1 a 7 que veremos a continuación es obligatoria en la secuencia de identificación de todo tipo de insertos, mientras que la de las categorías 8, 9 y 10 es optativa y depende de cada fabricante.

A continuación se detalla los 10 literales o categorías ISO, así como los símbolos que representan esas categorías.

Forma del inserto: es una letra que indica la forma de la cara superior del inserto. La norma categoriza 16 formas y las más comunes son: redonda, cuadrada, rómbica (de diversos ángulos), triangular y trigonal.

Ángulo de alivio frontal o ángulo de incidencia: es una letra que indica la diferencia de 90° medida en un plano normal al borde de corte generado por el ángulo entre el flanco y la superficie superior del inserto. Permite que el filo de corte trabaje libremente y que no se presente roce en la pieza a mecanizar.

Tolerancia en las dimensiones: es una letra que define las tolerancias máxima y mínima del tamaño del inserto, designado por el círculo más grande que puede inscribirse dentro del perímetro del mismo.

Sistema de sujeción y rompevirutas: es una letra que indica diferencias en el diseño no provistas específicamente en las otras categorías de la secuencia. Las diferencias más

comunes son la existencia de agujeros de sujeción, avellanado y características especiales de las superficies de ataque.

Longitud de la arista de filo: es un número de dos dígitos (con un cero adelante o no) que indica el tamaño del círculo inscrito (CI) para todos los insertos que tienen un CI verdadero (formas redonda, cuadrada, triangular, trigonal, rómbica, etc.). El símbolo de esta categoría se representa solamente con números enteros y no se consideran las cifras decimales; si el diámetro del CI es menor de 10 mm se antepone un cero. En el caso de los insertos de forma rectangular y de paralelogramo, que no tienen un CI verdadero, se usan las dimensiones de ancho y largo.

Espesor: es un número o letra + número que indica el espesor del inserto en milímetros. El símbolo de esta categoría se representa solamente con números enteros y no se consideran las cifras decimales.

Radio de la nariz (o punta): es un número o letra + número que indica el radio de la punta y varía generalmente de 0,03 mm a 3,2 mm. El símbolo de esta categoría se representa solamente con números enteros y no se consideran las cifras decimales.

Arista de corte: es una letra (o dos, según el fabricante) que define condiciones especiales, tales como el tratamiento de la arista y el acabado superficial.

Dirección de corte: es una letra que indica el sentido de corte que debe llevar el inserto durante el proceso. Puede ser R (derecho), L (izquierdo) o N (neutro o en ambos sentidos).

Personalización del producto: a criterio del fabricante.

En su catálogo de insertos, cada fabricante provee las tablas del código ISO que ayudan a identificar cada uno de sus productos.

Tabla 2. 1.- Categorías de los insertos [6]

Clasificación y color	Material del inserto	Material recomendado de la pieza	(*)	Aplicaciones y generalidades del material del inserto
			01	Torneado y mandrinado en procesos de acabado, altas velocidades de corte, sección de viruta pequeña, alta calidad superficial, tolerancia pequeña y libre de vibraciones.
			10	Torneado de copiado a altas velocidades de corte, sección de viruta de pequeña a mediana
		20	Torneado de copiado, velocidad de corte mediana, sección de viruta mediana, refrentados ligeros y condiciones medianamente desfavorables.	
P azul	carbono	30	Torneado a velocidades de corte entre mediana y baja, sección de viruta de mediana a grande, incluyendo operaciones en condiciones desfavorables.	
			40	Torneado, ranurado y tronzado a baja velocidad de corte, amplia sección de viruta, posibles ángulos de desprendimiento elevados y condiciones de trabajo muy desfavorables.
			50	Donde se requiera una gran tenacidad de la herramienta en torneado, ranurado, tronzado a baja velocidad de corte, sección de viruta grande, posibilidad de grandes ángulos de desprendimiento y condiciones de trabajo extremadamente desfavorables.
		 Acero inoxidable, ferrítico y martensítico 	10	Torneado a velocidades de corte medianas, sección de viruta de pequeña a mediana.
M inoxid	Acero inoxidable	Acero al	20	Torneado a velocidades de corte medianas, sección de viruta de pequeña a mediana.
amarillo	• Fundición aleada • Fundición maleable	30	Torneado a velocidades de corte medianas, sección de viruta de mediana a grande	
		 Acero de fácil mecanización 	40	Torneado, <u>ranurado</u> y tronzado en máquinas automáticas

				I =
			01	Torneado y <u>mandrinado</u> en procesos de acabado.
			10	Torneado, taladrado, mandrinado, etc.
				Torneado, mandrinado y brochado.
			20	Además de operaciones que
		 Fundición gris 		requieran de una herramienta muy
		 Fundición en coquilla 		tenaz.
K	Fundición			Torneado, tronzado y ranurado en
rojo		• Fundición		condiciones de trabajo desfavorables
		maleable de	30	y con posibilidades de grandes
		viruta corta		ángulos de desprendimiento.
				Torneado, ranurado y tronzado en
				condiciones de trabajo muy
			40	desfavorables y con posibilidades de
				ángulos de desprendimiento muy
				grandes.
		• Alessianes de		Son metales más blandos; se puede
N	Materiales	 Aleaciones de aluminio 	1 a 40	obtener alta velocidad de corte y
verde	no ferrosos	Cobre y sus		prolongada vida útil de la
verue		aleaciones		herramienta con insertos de filos
		aleaciones		agudos.
				Son pastosos, crean filo de
	Aleaciones	Titanio y sus aleaciones		aportación, se endurecen durante el
	termo-		1	mecanizado (endurecimiento
5	resistentes	Base de hierro, de	a	mecánico) y generan calor. Son
marrón	resistentes	níquel y de	40	similares a los del área ISO M, pero
		cobalto	70	mucho más difíciles de mecanizar y
		CODAILO		acortan la vida útil de la herramienta
				y del filo del inserto.
		Acero extraduro		La alta dureza hace que todos estos
н	Acero	Acero templado	1	materiales sean difíciles de
gris	endurecido	• Fundición en	а	mecanizar; generan bastante calor
6,13		coquilla	30	durante el mecanizado y resultan
		coquina		muy abrasivos para el filo.

^(*) Tendencia a tenacidad o dureza

2.1.4.2.-Estandarización de porta-insertos

Existe varios procesos que se pueden realizar en el torno y por lo tanto varios porta herramientas existentes pero se los a normalizado por ISO y, aunque hay varias, existen cuatro categorías principales, simbolizadas por letras:

P: el inserto es fijado por medio de una palanca que lo empuja sobre su asiento en la herramienta.

C: el inserto se sujetado por una brida a presión, que mantiene al inserto presionado sobre el asiento en el porta-herramientas.

S: el agujero del inserto tiene forma cónica y el inserto es fijado por tornillo.

M: el inserto es fijado por una cuña (o brida y tornillo) que sujeta simultáneamente la parte superior y lateral del mismo.

La tabla que sigue ejemplifica cada uno de los tipos de fijación principales, así como sus características y aplicaciones. [6]

Tabla 2. 2.- Tipos de fijación principales [6]

Tipo de fijación según ISO	Características	Aplicaciones	Esquema
Por palanca (P)	Excelente estabilidad Alta exactitud en posición Buena repetibilidad No dificulta la salida de viruta Cambio de inserto rápido y fácil	Torneado exterior, mandrinado de grandes agujeros y todo tipo de mecanizado de pasada ligera a profunda. No recomendado en cortes interrumpidos debido a su pobre sujeción en dirección vertical.	Propula Penador de la priyo pica de apriyo palanca
Por brida (C)	Para insertos sin agujero Exactitud del filo muy elevada Apta para mecanizado interrumpido	Operaciones de acabado exterior e interior y con diseños especiales en la brida y/o inserto, alta precisión en el mecanizado de copia.	Pisquila Pasador Placa de spoye Tornillo
Por tornillo (S)	Gran variedad de insertos Fijación segura Excelente repetibilidad La viruta sale con facilidad Requiere poco espacio	 Mecanizado interior de diámetros pequeños Desde el desbaste ligero exterior al acabado de piezas pequeñas. 	Tornillo Piaquita CD Tornillo de la piaca de apoyo Piaca de apoyo
Por brida-tornillo (M)	Gran rigidez Excelente estabilidad Alta exactitud en posición Buena repetibilidad	Más accesible en operaciones de copiado exterior.	Piaquita Piaquita Pasador centra Pica de sugreción

2.1.3.- Movimientos de trabajo del torno

En el torno, la pieza gira sobre su eje ejecutando un movimiento de rotación denominado **movimiento de Trabajo**, y es trabajado principalmente por una herramienta de corte con los siguientes desplazamientos.

De Avance, generalmente paralelo al eje de la pieza, es quien define el perfil de revolución a mecanizar.

De Penetración, perpendicular al anterior, es quien determina la sección o profundidad de viruta a extraer. [7]

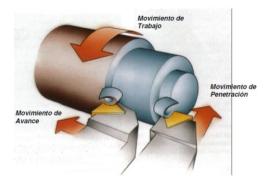


Figura 2. 8.- Movimientos del torno [7]

2.1.4.- Parámetros De Maquinado

2.1.4.1.-Velocidad de corte

La velocidad de corte es la velocidad lineal de la parte periférica de la pieza la misma que encontrara en contacto con la herramienta. Esta se expresa en metros por minuto (m/min), tiene que ser elegida antes de iniciar el mecanizado

Una vez elegida la velocidad de corte se puede determinar las revoluciones por minuto (rpm) que se lelegira en el torno, según la siguiente ecuacion:

$$V_c\left(\frac{\mathrm{m}}{\mathrm{min}}\right) = \frac{n \, (\mathrm{min}^{-1}) \, \times \, \pi \times \, \mathrm{D_c(mm)}}{1000 \, \left(\frac{mm}{m}\right)}$$
 ecu. 2.1

Donde Vc es la velocidad de corte, n es la velocidad de rotación de la herramienta y Dc es el diámetro de la pieza.

La velocidad de corte es la que determina la duración de la herramienta. Una alta velocidad de corte ayuda a obtener el mecanizado en menos tiempo sin embargo aumenta la velocidad de desgate de flanco de la herramienta

La velocidad de corte excesiva puede dar lugar a:

- Desgaste muy rápido del filo de corte de la herramienta.
- Deformación plástica del filo de corte además de cambiar las tolerancias en el acabado.
- Calidad del mecanizado ineficiente.

La velocidad de corte demasiado baja puede dar lugar a:

- Formación de filo de aportación en la herramienta.
- Dificultad en la evacuación de viruta.
- Baja productividad.
- Costo elevado en el proceso de mecanizado.

La velocidad de rotación del cabezal del torno se expresa en revoluciones por minuto (rpm).

La velocidad de rotación de la herramienta es directamente proporcional a la velocidad de corte e inversamente proporcional al diámetro de la pieza.

$$n\ (min^{-1}) = \frac{V_c\left(\frac{m}{min}\right)*1000\left(\frac{mm}{m}\right)}{\pi*D_c(mm)}$$
 ecu. 2.2

2.1.4.2.-Velocidad de avance

Esta es la velocidad relativa entre la pieza y la herramienta

La velocidad de avance es el producto del avance por revolución por la velocidad de rotación de la pieza.

$$F \text{ (mm/minuto)} = N \text{ (rpm)} \times F \text{ (mm/revolución)}$$
 ecu.2.3

Al igual que con la velocidad de rotación de la herramienta, en los tornos convencionales la velocidad de avance se selecciona de una gama de velocidades disponibles, sin embargoen los tornos de control numérico se puede trabajar con cualquier velocidad de avance hasta la máxima velocidad de avance de la máquina.

Efectos de la velocidad de avance

- Principal en la formación de viruta
- Se refleja en el consumo de potencia
- Contribuye a la tensión mecánica y térmica

La elevada velocidad de avance da lugar a:

- Buen control de viruta
- Minimo tiempo de corte
- Minimo desgaste de la herramienta
- Aumenta el riesgo de rotura de la herramienta
- Eleva la rugosidad superficial del mecanizado.

La velocidad de avance baja da lugar a:

- Viruta alargada
- Mejora de la calidad del mecanizado
 Acelera el desgaste de la herramienta
- Mayor duración del tiempo de mecanizado
- Mayor coste del mecanizado [8]

2.1.5.- Fluidos De Corte

Los fluidos de corte son productos industriales regulados por la norma ISO 6743/7-1986 (E), que los cataloga como productos industriales ISO-L-M (M: Familia "Metalworking"), (L: Clase "Lubricants"). La mencionada norma divide los fluidos en dos categorías: MH o Aceites íntegros y MA o Fluidos acuosos.

Los fluidos de corte se utilizan en la mayoría de las operaciones de mecanizado por arranque de viruta para lubricar y refrigerar, tanto la herramienta como la pieza. Estos fluidos son aceites, emulsiones y soluciones con aditivos que añaden ciertas propiedades necesarias para el mecanizado.

2.1.6.-Tipos De Fluidos De Corte

Los principales tipos de fluidos de corte utilizados para el mecanizado son:

- Los aceites íntegros.
- Las emulsiones oleosas.
- Las soluciones semisintéticas.
- Las soluciones sintéticas.

Los tres últimos tipos son soluciones acuosas diluidas al 3,5% como media, y reciben el nombre genérico de taladrinas. Los aceites íntegros también se conocen con el nombre de aceites de corte.

2.1.7.-Aceites De Corte

Estos son fluidos no acuosos compuestos de aceites minerales los cuales cuentan con aditivos que mejoran su desempeño se los utiliza en mecanizados severos en las que el maquinado genera cantidades enormes de viruta.

2.1.8.-Taladrinas

Con el nombre taladrina se hace una agrupación a diferentes tipos de soluciones acuosas que cuentan con aditivos de extrema, presión, emulsionantes, antioxidantes, bactericidas,

humectantes, inhibidores de corrosión, bactericidas, humectantes, antiespumantes, colorantes, etc. Los mismos que se dividen en tres tipos:

- a) Emulsiones de aceite: Una emulsión es una mezcla de dos líquidos inmiscibles, en este caso agua y aceite, adecuado para operaciones de mecanizado medio y ligero.
- **b)** Taladrinas semisintéticas: La mezcla se diluye al 4% como media (entre el 1,5% y 5%) y contiene como base cerca de 20% de aceite mineral , un 30% de emulgentes, un 40% de agua y un 10% de aditivos varios Son traslúcidas pero con el uso y el tiempo estas tienden a opacarse
- c) Taladrinas sintéticas: La mezcla se diluye al 2,5% (entre el 1,5 y el 12%) en agua y contiene 15% de de aditivos que impiden la corrosión, hasta un 25% de humectantes, un 10% de aditivos varios y un 50% de agua. A comparación con las semisintéticas no incluyen aceite. Forman disoluciones traslúcidas. Sus funciones principalmente son la refrigeración y la protección antioxidante.

2.1.9.-Funciones de los fluidos de corte

Las principales funciones de los fluidos de corte son las siguientes:

- Lubricación
- Refrigeración
- Evacuación de viruta
- Protección frente a la corrosión

2.1.10.-Elección de los fluidos de corte

Esta elección debe basarse en criterios que dependen de diversos factores:

- El tipo de operación de mecanizado que se realice, así como las condiciones de dicha operación, principalmente los parámetros de corte.
- El material a mecanizar.
- Tipo de herramienta de corte.

2.1.11.-Inconvenientes del uso de los fluidos de corte

Los principales inconvenientes de utilizar fluidos de corte son los siguientes:

- Son contaminantes al medio ambiente, debido fundamentalmente a la problemática que plantean las emisiones a la atmósfera de productos agresivos
- Son agresivos con el operario, ya que al estar en contacto de aceites y taladrinas causa afecciones cutáneas, respiratorias y cáncer.
- Bajo ciertas condiciones, estas pueden causar efectos negativos en la producción por que bajo ciertos parámetros de maquinado estas pueden cambiar su composición.
- Debido a que por su contaminación en el medio ambiente no se los pueden desechar fácilmente su tratamiento eleva los costos de producción.

2.1.12.-Alternativas a la utilización de Fluido de corte convencional

El desarrollo de nuevas técnicas de refrigeración y lubricación que disminuyen el consumo del fluido de corte, es un tema prioritario de investigación en varios países, cuyas industrias pagan grandes cantidades por el tratamiento de residuos así como la investigación de nuevos fluidos biodegradables que no ataquen el medio ambiente

Debido a los problemas ambientales y de salud para los operarios se viene planteando nuevas formas de lubricación y refrigeración incluso se a planteado la posibilidad de eleiminar el uso de los fluidos de corte de los procesos productivos, tendiendo a reemplazar sus componentes lubricantes y de refrigeración por otras biodegradables y respetuosas con el medio ambiente y el operario

Principalmente existen dos alternativas a la utilización de los fluidos de corte convencionales, que son:

- Mecanizado en seco
- Mecanizado con mínima cantidad de lubricante (MQL)

2.1.13.-Mecanizado en seco

El mecanizado en seco elimina completamente el uso del fluido de corte, presentando por ello numerosas ventajas frente al mecanizado en húmedo (con fluido de corte convencional). La ventaja consiste en un aspecto económico ya que no se debe lidiar con el tratamiento de desechos.

2.1.14.- Mecanizado con Mínima Cantidad de Lubricante (MQL)

En la lubricación tradicional se produce una inundación con taladrina en el mecanizado, los sistemas MQL (Minimum Quantity of Lubrication), lubrican estrictamente la zona de corte (herramienta-pieza-viruta) con muy poca cantidad de lubricante.donde sobresalen tres tipos de sistemas MQL en función del tipo de fluido de corte utilizado, caudal suministrado y tecnología empleada en el suministro:

- Pulverizado a baja presión, en los que el fluido de corte se introduce en una corriente de aire a baja presión, y se transmite a la zona de contacto entre herramienta y pieza en forma de mezcla.
- Inyección sin aire, que utilizan bombas dosificadoras, las cuales mediante pulsos, suministran una cantidad determinada de fluido de corte.
- Pulverizado a alta presión. El aire comprimido presuriza el depósito del lubricante, como consecuencia de lo cual se transporta aire y lubricante, bien por tubos separados hasta una boquilla donde se produce la mezcla, o bien a través de un único conducto.

Éste último MQL es el que presenta mayores ventajas, por tener el menor consumo de lubricante, asi mostrando un paso medio entre el mecanizado en seco y en método de inundación convencional. Además de utilizar aceites biodegradables.

En cuanto a la refrigeración, el sistema MQL suprime la aparición excesiva de calor que se produce en el maquinado, mediante convección gracias al aire a presión inyectado para pulverizar el aceite

Este además de refrigerar disminuye el rozamiento gracias a los lubricantes usados.

2.1.15.-Ventajas e inconvenientes del sistema MQL frente al fluido de corte convencional

Las principales ventajas de los sistemas de lubricación por cantidades mínimas son:

- Reducción de costes:
- Reducción del consumo del fluido de corte hasta en un 95%.
- Las piezas mecanizadas se encuentran prácticamente secas
- El contenido de aceite residual en la viruta es muy bajo
- El aceite utilizado en el sistema MQL no se recircula, por lo que no es necesaria la utilización de filtros para el aceite, ni de bombas, reduciéndose por tanto el consumo de electricidad.
- Reducción del impacto ambiental al usar aceites biodegradables.
- Mejora el ambiente de trabajo al no provocar nubosidades y no perjudica la salud de los operarios

Inconvenientes del MQL frente al sistema de lubricación convencional:

- El sistema MQL dota a la zona de corte de una buena lubricación, pero la refrigeración de la pieza-herramienta no es tan eficaz
- Al usar una mínima cantidad de lubricante se dificulta la circulación de la viruta.
- El sistema MQL es un sistema joven que aún sigue en estudio para las diferentes áreas de mecanizado que se necesitan en la industria

2.1.16.- Lubricantes para MQL

Los lubricantes usados presentan características físicas y químicas especialmente desarrolladas para un buen funcionamiento de este tipo de sistema. Por lo cual , el fabricante del sistema recomienda el uso de uno o varios lubricantes desarrollados por la misma empresa donde al ocurrir algún desperfecto por el uso de otro tipo de aceites la empresa no se responsabiliza por el daño

Una ventaja es que son biodegradables, con una elevada viscosidad, al igual que una alta resistencia a la oxidación, tomando en cuenta que debe adherirse a las superficies

de la pieza y la herramienta y soportar altas temperaturas durante todo el proceso de mecanizado

Por todos estos motivos, los lubricantes utilizados en los sistemas MQL suelen tener un precio varias veces superior a un aceite de corte convencional. [9]

2.1.17.- Vida útil de la herramienta de corte

Durante el maquinado la herramienta de corte sufre un desgate amplio en su filo de ataque principal y secundario tomando en cuenta que encuentra sometida a un ambiente agresivo por las altas temperaturas y los diferentes fluidos. Esto provoca pérdidas económicas al fallar en la exactitud de las piezas maquinadas por lo cual se a estudiado y determinado que a partir de estos parámetros la herramienta puede fallar de las siguientes formas

Falla por fractura: Este modo ocurre cuando la fuerza de corte se hace excesiva en la punta de la herramienta, causando una falla repentina por fractura.

Falla por temperatura: Esta falla ocurre cuando la temperatura de corte es demasiado alta para el material de la herramienta, causando ablandamiento en la punta, deformación plástica y pérdida del filo en el borde.

Desgaste gradual: El desgaste gradual del borde cortante ocasiona pérdida de la forma la herramienta, reducción en la eficiencia del corte, desgaste acelerado y falla final de la herramienta por fractura o temperatura.

En la figura se ilustran los diferentes tipos de desgaste, y las zonas donde estos ocurren, para una herramienta de corte sencilla de un solo filo.

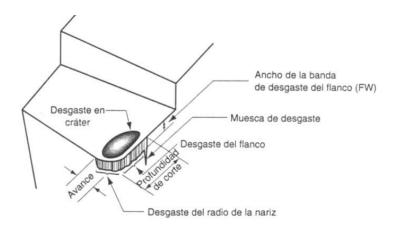


Figura 2. 9.- Desgastes en la cuchilla [10]

Desgaste de Cráter

El desgaste de cráter se inicia por el deslizamiento de la viruta sobre la superficie del inserto, está caracterizada por altos esfuerzos y temperaturas que contribuyen al desgaste.

Desgaste de Flanco

El desgaste de flanco se presenta en el filo principal de la herramienta de incidencia en los cuales el principal motivo es la fricción de la herramienta sobre la superficie mecanizada, que causa desgaste adhesivo y/o abrasivo, y a las altas temperaturas, que cambian las propiedades del material y de la herramienta además afecta en la superficie de la pieza.

El desgaste de flanco se mide por el ancho de la banda de desgaste, Vb. A esta banda se la llama frecuentemente banda de desgaste. El desgaste de flanco es comúnmente el método más empleado para el monitoreo del desgaste. De acuerdo con la norma ASME B94.55M, para mediciones del desgaste, se considera que el principal filo de corte está dividido en 3 regiones.

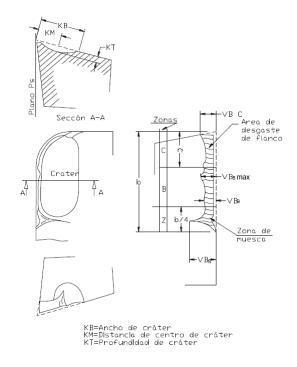


Figura 2. 10.- Zonas de desgaste en herramientas [10]

a. Zona C: Es la parte curva del filo de corte en la esquina de la herramienta.

b. Zona N: Representa la cuarta parte de la longitud del filo de corte b, es la zona más lejana de la esquina de la herramienta.

c. Zona B: Es la parte recta remanente que se encuentra entre la zona C y la zona N.

El ancho de la zona de desgaste de flanco debe de ser medido en la zona B perpendicular al principal filo de corte, el ancho debe de ser medido desde la ubicación original del principal filo de corte.

2.1.18.- Ecuación de Taylor

A medida que el inserto de metal duro está sometido al trabajo de remoción de material el desgaste aumenta y de mayor manera aumenta en cuanto a la velocidad de corte aumenta ya que es uno de los parámetros más importantes en la vida útil de la herramienta.

Generalmente se muestran tres regiones. La primera pertenece al período del rotura inicial en la que el flanco cortante se desgasta rápidamente al entrar en contacto con la pieza. A este periodo le sigue un desgaste a una velocidad aproximadamente uniforme y se le llama la región de desgaste de estado estable. En la figura, esta región se representa como una función lineal del tiempo, aunque en el maquinado real también hay desviaciones de la línea recta.

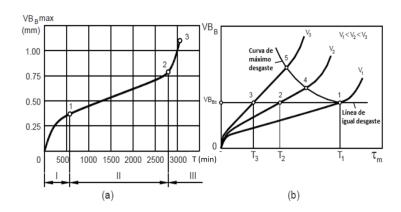


Figura 2. 11.- curvas de desgaste: (a) forma general de la curva de desgaste. (b) desgaste de flanco en función del tiempo de corte para diferentes velocidades de corte [10]

Finalmente, la velocidad de desgaste sufre una aceleración lo cual nos muestra que está llegando a la etapa 3 que inicia la región de falla, en la cual las temperaturas de corte son más altas y la eficiencia general del proceso de maquinado se reduce. Si esta herramienta sigue siendo usada llegara a su fallo que más común es el de fractura.

2.1.19.-Ecuación de Taylor para la vida de las herramientas

En un estudio clásico publicado por F.W. Taylor se demostró que la Vc (velocidad de corte) mantiene una relación exponencial con el tiempo de vida útil de la herramienta.

Esta relación se puede expresar, para un rango limitado de velocidades, en forma de ecuación de Taylor para la vida de una herramienta:

$$VT^n = C_{\text{ecu. } 2.3}$$

En donde V es la velocidad de corte en m/min, T es el tiempo de vida en minutos que tarda en cumplirse la vida útil de la herramienta, n es un exponente que depende de las condiciones de corte, así como de las propiedades de los materiales. C es la velocidad de corte que corresponde a un tiempo de vida de 1 minuto. Tanto como se determinan experimentalmente. Los límites de los valores de n, observados en la práctica, se encuentran en la tabla.

Tabla 2. 3.- Límites de los valores de "n" para diversos materiales de corte [12]

Aceros rápidos	0.08-0.02
Aleaciones fundidas	0.1-0.15
Carburos	0.2-0.5
Cerámicas	0.5-0.7

2.1.20.- Criterios de desgaste de la herramienta de corte

Como se había mencionado anteriormente, los criterios de desgaste nos permiten definir de manera cuantificable el tiempo de vida útil de una herramienta al establecer niveles de desgastes permisibles. La norma ANSI/ASME B94.5M recomienda como criterio de desgaste, para procesos de torneado en MQL, usando insertos de carburo (o metal duro) como herramientas de corte, los siguientes valores para desgaste de flancor.

La zona intermedia del flanco analizado se denomina zona VBB o en su defecto por otros autores también se la denomina VB_B, para un correcto análisis se debe tomar en cuenta los dos puntos a continuación:

1. VBB, promedio de desgaste = 0.3 mm

2. VBB, desgaste máximo. = 0.6 mm, si el desgaste es irregular.

Por lo general VBB se selecciona en el rango de 0.15 a 1.00 mm, dependiendo de la tipo de operación de mecanizado, la condición de la máquina herramienta y la calidad necesidades de la operación. En la siguiente tabla se presentan algunos valores referenciales de desgaste de flanco en función del tipo de operación y del material de la herramienta que son empleados comúnmente como criterios de desgaste. [10]

Tabla 2. 4.- Recomendaciones generales empleadas en la práctica industrial para el límite del desgaste de flanco [10]

Material de la Herramienta Operación	(mm)	Carburos Cementados	Carburos Recubiertos
Desbaste	VB _B	0.3-1.0	0.3-1.0
Acabado	VB _B	0.1-0.25	0.1-0.25

2.1.21.- Aceros Inoxidables

Los aceros inoxidables según su estructura cristalina se clasifican en:

- Aceros Martensíticos
- Aceros Ferríticos
- Aceros Austeníticos
- Aceros Austenoferríticos

Acero Inoxidable 304 (Uns S30400)

Descripción: éste es el más versátil y uno de los más usados de los aceros inoxidables de la serie 300. Tiene excelentes propiedades para el conformado y el soldado. Se puede usar para aplicaciones de embutición profunda, de rolado y de corte. Tiene buenas características para la soldadura, no requiere recocido tras la soldadura para que se desempeñe bien en una amplia gama de condiciones corrosivas.

Propiedades mecánicas:

- Resistencia a la fluencia 310 MPa (45 KSI)
- Resistencia máxima 620 MPa (90 KSI)
- Elongación 30 % (en 50mm)
- Reducción de área 40 %
- Módulo de elasticidad 200 GPa (29000 KSI)
- Propiedades físicas: Densidad 7.8 g/cm3 (0.28 lb/in3)
- Propiedades químicas: 0.08 % C mín- 2.00 % Mn 1.00 % Si 18.0 20.0 % Cr 8.0 10.5 % Ni- 0.045 % P- 0.03 % S

Usos: Electrodomésticos; finalidad estructural; equipos para la industria química y naval; industria farmacéutica, industria de tejidos y papel; refinería de petróleo; permutadores de calor; válvulas y piezas de tuberías; industria frigorífica; instalaciones criogénicas; almacenes de cerveza; tanques de almacenamiento de cerveza; equipos para perfeccionamiento de harina de maíz; equipos para lácteos; cúpula del reactor de usina atómica; tuberías de vapor; equipos y contenedores de fábricas nucleares; partes para almacenes de algunas bebidas carbonatadas; conductores descendientes del agua pluvial; coches de ferrocarril; canalones. [11]

2.2 HIPÓTESIS

¿Mejorara la vida útil de la herramienta de corte en el torneado del acero inoxidable AISI 304 utilizando el sistema de mínima cantidad de lubricante (MQL) con aceite vegetal?

2.3 SEÑALAMIENTO DE VARIABLES DE LA HIPÓTESIS

2.3.1 Variable Independiente

Estudio del efecto del sistema de mínima cantidad de lubricante (MQL) con aceite vegetal

2.3.2 Variable Dependiente

Vida de las herramientas de corte de metal duro en el proceso de torneado del acero inoxidable AISI 304

CAPÍTULO III

METODOLOGÍA

3.1 NIVEL O TIPO DE INVESTIGACIÓN

- **3.1.1. Exploratoria:** con este tipo de investigación podremos indagar de una manera profunda en lo que se trata de los dos sistemas de lubricación tanto el de inundación con taladrina además del sistema MQL y su incidencia en el desgate de flanco de las cuchillas de metal duro en el proceso de torneado
- **3.1.2. Descriptivo:** para observar todos los fenómenos físicos por los que atravesara la cuchilla de metal duro en los diferentes tiempos a utilizar.
- **3.1.3. Bibliográfica:** este es un cimiento fundamental en nuestro estudio mediante el cual nos podemos basar en libros, papers, normas, y otras fuentes de información para la obtención parámetros adecuados para la obtención de buenos resultados en el estudio.

3.2.- POBLACIÓN Y MUESTRA

3.2.1.- POBLACIÓN

Se utilizara un inserto de metal duro SNMG el cual posee 8 flancos que se someterán a dos tipos de velocidades (Min - Max) y dos profundidades (Min - Max) además este proceso se lo realizará por dos métodos de lubricación uno por inundación con taladrina y otro por el método de mínima cantidad de lubricación (MQL) con aceite vegetal

3.2.2.- MUESTRA

Para el estudio se someterá a tres cuchillas a un análisis de desgaste de flanco cada 5 minutos hasta cumplir un total de 30 minutos, estas mediciones serán realizadas en cada tipo de parámetro tomado en cuenta para este estudio como son velocidades y profundidades máximas y mínimas así mismo cambiando el sistema de mínima cantidad de lubricación por el método de inundación

3.3.- OPERACIONALIZACIÓN DE VARIABLES

3.3.1.-Variable independiente: Estudio del efecto del sistema de mínima cantidad de lubricante (MQL) con aceite vegetal

CONCEPTO	CATEGORÍA	INDICADOR	ÍTEMS	TÉCNICAS E INSTRUMENTOS
Un sistema de lubricación por cantidades mínimas tiene como función suministrar cantidades minúsculas de lubricante al punto activo entre la herramienta y la pieza de trabajo en operaciones con o sin corte. La lubricación se lleva a cabo por medio de un aerosol compuesto por pequeñas gotas de aceite finamente dispersas en una corriente de aire.	Parámetro de lubricación del sistema	 Caudal en el sistema Lubricante 	• (8cm³/min) (480ml/h) • Aceite vegetal	Bibliográfica Bibliográfica
		 Presión 	• 2Bar	Bibliográfica

Fuente: Autor

3.3.2.-Variable dependiente: En la vida de las herramientas de corte de metal duro en el proceso de torneado del acero inoxidable AISI 304

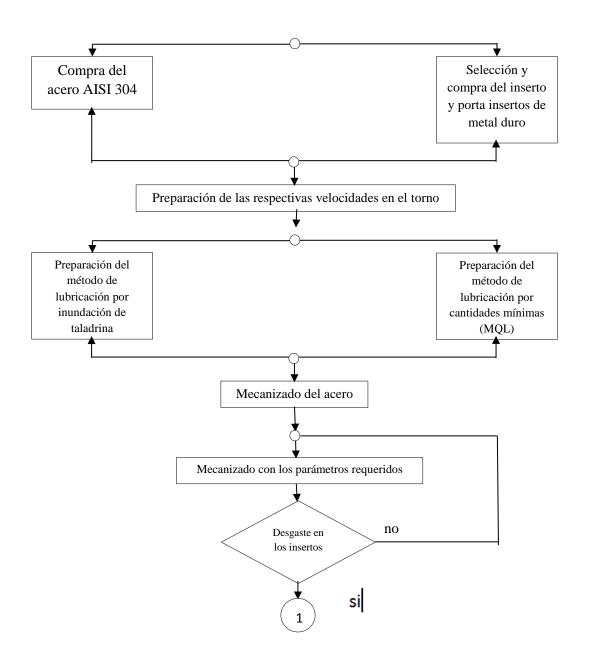
CONCEPTO	CATEGORÍA	INDICADOR	ÍTEMS	TÉCNICAS E INSTRUMENTOS
La vida útil de la herramienta Es el periodo durante el cual una herramienta de corte trabaja eficientemente. En otras palabras, es el tiempo de corte entre reafilados. Después del trabajo continuo, el desgaste		Desgaste de flanco	Criterio de desgaste bajo la norma ANSI/ASME B94.5M	• Bibliográfico
de la herramienta alcanza cierto valor y después ya no es capaz de seguir cortando, a menos que se afine nuevamente.	Parámetros de desgaste de la herramienta	Parámetros de mecanizado	Velocidad de corte Profundidad de corte	• Bibliográfico

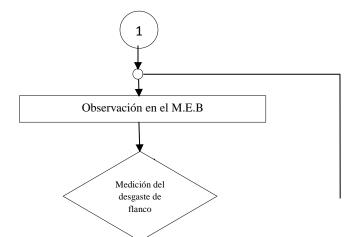
Fuente: Autor

3.4.- PLAN DE RECOLECCIÓN DE INFORMACIÓN

Para la recolección de datos se utilizara el medio de observación directa donde se llevara registro detallado de todos los ensayos a los que se someterá el inserto de metal duro para después ser sometidos a una observación más rigurosa y a detalle en el microscopio electrónico de barrido que se encuentra en los laboratorios de la facultad de Ingeniería Mecánica en el área específica de materiales de la Universidad Técnica de Ambato.

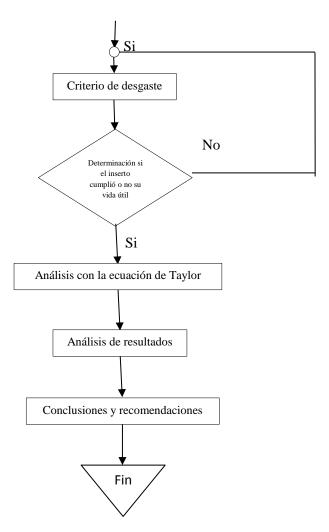
3.5.-PLAN PROSESAMIENTO Y ANÁLISIS

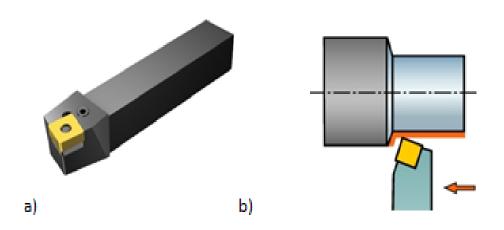

Una vez que se recolectase los datos arrojados se procederá a revisar la información para eliminar posibles errores y manejarla de una manera que facilite su tabulación usando el criterio de desgaste seleccionado se categorizaran las probetas mediante el análisis y medición de las imágenes mostradas por el microscopio de barrido llevadas a cabo en los flancos de las herramientas.


Se procesará los datos de los respectivos desgastes de flanco a diferentes velocidades y profundidades los mismos que serán analizados cada 5 minutos y se construirá graficas de desgaste versus tiempo y además de analizar con el criterio de desgaste escogido para determinar si la herramienta aún puede ser utilizada o a cumplido su tiempo de vida útil.

3.5.1.- PROCESO DE OBTENCIÓN Y ANÁLISIS DE RESULTADOS

En el siguiente diagrama de flujo indica el procedimiento para la obtención de resultados adaptando el análisis de desgaste de los flancos de los insertos de metal duro de acuerdo con la norma ASME B94.55M y así estudiar la incidencia del sistema de mínima cantidad de lubricación en este tipo de desgaste




Figura 3. 1.- Diagrama de flujo para el estudio de la vida de la herramienta de corte (Autor)

3.5.2.-PROCEDIMIENTO

3.5.2.1.-Compra del acero AISI 304.- se compró ejes de acero AISI 304 de un diámetro de una y media pulgada por 35 cm de largo para ser mecanizados con los parámetros elegidos.

3.5.2.2.-Selección y compra del inserto y porta insertos de metal duro.- para la compra del inserto y el porta inserto se debe tener en cuanta antes el trabajo que este va realizar y en qué tipo de material se va a trabajar:

3.5.2.3.-Selección del porta inserto.- para esta selección se tomó en cuenta que el porta inserto que se necesita debe realizar un trabajo medio por lo cual este debe ser robusto además de que la operación a realizar es cilindrado del eje así que se consultó los que se encuentran en el mercado y se decidió por el siguiente que cumple todas las características requeridas

Figura 3. 2.- a) porta herramienta PSBNR 3225P 12 b) diagrama simplificado de la operación de maquinado del portaherramientas [12]

Tabla 3. 1.- Características del porta insertos [12]

Coromant 3225P 12	ángulo de plomo Longitud total Altura vástago	15 Grados 170 mm 32 mm
225P 12	total Altura	
		32 mm
	vastago	
	Tipo de eje	Rectangular
	Ancho vástago	25 mm
	tamaño	SNMG 432
	Nombre de estilo	SNMG
echa	Sistema de	Métrico
le bloqueo	Medición	27112809
S	UNSPSC	2/112009
	e bloqueo	eje Ancho vástago tamaño Nombre de estilo echa Sistema de Medición Código

3.5.2.4.-Selección del inserto de metal duro.- una vez seleccionado el porta inserto procedemos a seleccionar el inserto con el que trabajaremos teniendo en cuenta que se maquinara acero inoxidable AISI 304 el cual es un acero austenitico además de que el porta inserto es para un inserto de tipo SNMG negativo y que el trabajo será de nivel medio así que se optó por el siguiente:

Figura 3. 3.- Inserto SNMG 12 04 04 QM [12]

Tabla 3. 2.- Características del inserto [12]

rtículo	Inserto para Torneado	Calidad	235
ompatibilidad con cero (P)	Sí	Formas de Insertos	Cuadrado
ompatibilidad con	Sí	Círculo inscrito	1/2"
cero Inoxidable (M)		Grosor del Inserto	0.1875"
Compatibilidad con Hierro Fundido (K)	No	Material del Inserto	Carburo
Compatibilidad con Metales No Ferrosos N)	No	Radio de Punta	0.016"
		Número ANSI	431 SNMG-QM 235
ompatibilidad con úper Aleación (S)	No	Recubrimiento	CVD
ompatibilidad con letal Endurecido (H)	No	Rastrillo	Negativo
plicación	Mediano	Número ISO	SNMG 12 04 04-QM 235
stilo	SNMG		
amaño del Inserto	431		
Rompevirutas	OM		

Revisando las características del inserto seleccionado se confirma que es adecuado para el porta insertos y para el mecanizado del acero AISI 304 por ser tipo M el mismo que es exclusivo para aceros inoxidables.

3.5.2.5.-Preparación de las respectivas velocidades en el torno.- para la realización de este paso tenemos que tomar en cuenta 2 factores importantes los cuales son las especificaciones del fabricante en cuanto respecta al inserto y las velocidades para las que este ha sido diseñado y el otro parámetro importante a tener en cuenta es la capacidad del torno donde se realizara el proceso de maquinado.

Figura 3. 4.- Datos técnicos del inserto de metal duro (Autor)

Tabla 3. 3.- Velocidades del torno y del inserto

		Velocidades de corte (Vc) m/min	Avance (fn) mm/rev	Profundidad (ap) mm
Parámetros inserto	del	108-115 900-950 rpm	0.2	0.15- 4.00
Parámetros torno	del	885-900 rpm	0.19	0.15- 4.00

Fuente: (Autor)

Una vez identificados estos valores ubicamos los mejores valores que se encuentren en un rango aceptable entre el torno y la herramienta los mismos que se muestran en la tabla anterior.

3.5.2.6.-Preparación del método de lubricación por inundación de taladrina.- el sistema de lubricación por taladrina o método de inundación ya se encuentra presente en el torno por lo cual su adaptación ya viene de fábrica y lo único que debe controlar es el caudal a utilizar en el mecanizado.

Lo que se debe preparar es la mezcla de la taladrina en las proporciones adecuadas para el maquinado de acero inoxidable y después depositarlo en el tanque de almacenamiento de taladrina de torno.

Figura 3. 5.- Introducción de la taladrina en el tanque de almacenamiento (Autor)

Características técnicas del lubricante.

Figura 3. 6.- Taladrina usada para el maquinado (Autor)

Tabla 3. 4.- Características del lubricante

Nombre del lubricante	Tricut 2000 w/s
Color de concentrado	Café claro
Color ya diluido	Blanco lechoso
Viscosidad Sus a 100° F	315
Relación de dilución para metales	10:1
ferrosos	
Relación de dilución para metales no	20:1
ferrosos	
Aplicación	Mecanizado de metales multiproposito

Fuente (Autor)

Como el sistema de taladrina ya viene equipado en el torno solo se lo pone a funcionar en el momento del mecanizado del acero

Figura 3. 7.- Sistema de inundación por taladrina del torno (Autor)

3.5.2.7.-Preparación del método de lubricación por cantidades mínimas - el sistema de cantidades mínimas es un sistema de funcionamiento individual que no está relacionado con el sistema del torno por lo cual su adaptación es simple y solo se debe acoplar al torno para que el punto de acción entre el material-herramienta sea óptimo.

Para este sistema necesitamos un compresor que nos ayude con aire comprimido con la presión de funcionamiento requerida.

Figura 3. 8.- Compresor (Autor)

A continuación del compresor debemos conectar una unidad de mantenimiento de aire que impida el paso de agua que se encuentra en el interior del tanque compresor a causa de la humedad del ambiente ya que si esta llegase a pasar podría causar daños al equipo MQL.

Figura 3. 9.- Unidad de mantenimiento de aire(Autor)

Después de haber conectado esto procedemos a conectar el sistema de mínima cantidad de lubricación el mismo que también necesita una fuente de energía de 24v para poder accionar una electroválvula que se encuentra interna mente en el sistema.

Figura 3. 10.- Fuente de energía de 24v (Autor)

Conectado todos estos elementos en el tanque del sistema de MQL lo llenamos con el aceite vegetal para el maquinado de elementos ferrosos hasta que el indicador nos muestre un cantidad adecuada del lubricante en su interior.

Figura 3. 11.- Sistema MQL conectado y listo (Autor)

Figura 3. 12.- Aceite vegetal para el maquinado de acero inoxidable

Tabla 3. 5.- Características del aceite vegetal

Nombre del lubricante	Coolube 2210 EP
Color	Amarillento
Materiales	Aceros ferrosos
Densidad (Kg/cm3)	890
Viscosidad cinemática (Cst) a 40° C	10
Tipo de maquinado	Para aplicaciones de mínima cantidad de
	lubricante

Una vez conectado y listo procedemos a colocar la manguera donde se encuentra la boquilla que atomiza el lubricante en una correcta posición para que esta ataque al material y a la herramienta y la lubricación se efectué de una manera correcta.

Figura 3. 13.- Equipamiento del sistema de mínima cantidad de lubricación con el torno (Autor)

3.5.2.8.-Mecanizado del acero.- para mecanizar el eje de acero previamente se realiza un refrentado en sus extremos además de preparar un extremo para que este se pueda apoyar en un contrapunto y mantener la estabilidad del material al momento de mecanizar dejando 5 cm disponibles para la sujeción en el mandril.

Figura 3. 14.- Refrentado del extremo del eje de acero (Autor)

Figura 3. 15.- Sujeción del eje en el contrapunto (Autor)

3.5.2.9.-Mecanizado con los parámetros requeridos.- una vez sujeto el eje en el torno seleccionamos los siguientes parámetros en diferentes condiciones que se presentan a continuación y manteniendo el avance constante de acuerdo a la recomendación del fabricante.

Tabla 3. 6.- Parámetros elegidos para el estudio

Proceso	Parámetro 1	Parámetro 2
1	Velocidad máxima	Profundidad máxima
2	Velocidad mínima	Profundidad mínima
3	Velocidad mínima	Profundidad máxima
4	Velocidad máxima	Profundidad mínima

Fuente: el autor

Para ajustarnos a los parámetros elegidos seleccionaremos los diferentes mandos que se encuentran en el sistema de velocidades del torno tanto en velocidad del husillo como en la velocidad del avance.

Figura 3. 16.- Ajuste de parámetros de maquinado en el torno(Autor)

Para estos ajustes nos debemos guiar en la placa de torno que nos muestra la configuración de los diferentes mecanismos que nos brinda las diferentes velocidades de avance y revoluciones.

Figura 3. 17.- Tabla de velocidades del husillo (Autor)

Figura 3. 18.- Tabla de velocidades de avance. (Autor)

Realizado todos estos ajustes en la máquina herramienta torno procedemos a mecanizar el material tanto con el sistema de inundación como con el de mínima cantidad de lubricación.

Figura 3. 19.- Mecanizado del acero con taladrina y con sistema MQL (Autor)

3.5.2.10.-Desgaste en los insertos: una vez maquinado con los diferentes parámetros seleccionados notaremos un pequeño desgaste a simple vista que se lo registrara para tener constancia del mismo.

Figura 3. 20.- Inserto desgastado y observado a simple vista (Autor)

3.5.2.11.-Observación en el M.E.B.- realizado el proceso de torneado y anotado los resultados a simple vista acudiremos al laboratorio de materiales de la facultad de ingeniería mecánica para observar de una manera más profunda y técnica el desgaste por medio del Microscopio Electrónico de Barrido (M.E.B) y determinar los parámetros necesarios para ver si la cuchilla sigue siendo eficiente o ya cumplió su tiempo de vida útil.

Figura 3. 21.- Microscopio Electrónico de Barrido (Autor)

Para el uso de este equipo las cuchillas deben estar limpias de impurezas tales como grasa y demás cosas que puedan afectar al momento de la medición, además de que

estas deben estar sujetas adecuadamente en las mordazas para evitar que estas se lleguen a mover o caerse en el momento de la medición en el interior de la cámara.

Figura 3. 22.- Colocación de las cuchillas en las mordazas del MEB (Autor)

Después de colocar las cuchillas seleccionadas debemos colocar las mordazas en el interior de la cámara del microscopio fijándonos de que estas no queden flojas en el mecanismo de rotación además de que se debe tener extremo cuidado de que nada entre en contacto con el lente que es muy delicado.

Figura 3. 23.- Colocación de las mordazas en el interior del MEB (Autor)

3.5.2.12.-Medición del desgaste de flanco.- en el microscopio de barrido contamos con el comando que puede establecer cotas de medición en la imagen proyectada en tiempo y escala real con lo cual podemos medir con exactitud los desgastes de flanco que se presentan en la cuchilla en los tramos observados.

Figura 3. 24.- Medicion del flanco principal desgastado(Autor)

3.5.2.13.-Criterio de desgaste.- para cumplir con lo estipulado con el criterio de desgaste de la norma ASME B94.55M se tomaran medidas de todo el flanco de la herramienta de corte donde la parte intermedia denominada zona Vb es la más importante y será analizada con especial detalle.

Para este análisis la parte media del flanco de la cuchilla será tomado muy en cuenta por lo cual se medirá en varias partes indispensables del tramo desgastado y se sacara un promedio para después comparar con la norma y determinar si aún es útil o no.

3.5.2.14.-Determinación si el inserto cumplió o no su vida útil.- según el criterio de la norma antes mencionada determina ciertos parámetros al momento de identificar si el inserto de metal duro aún puede ser usado o ya cumplió su tiempo de vida útil

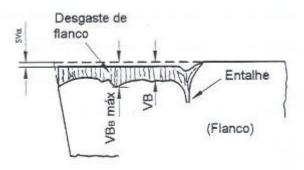
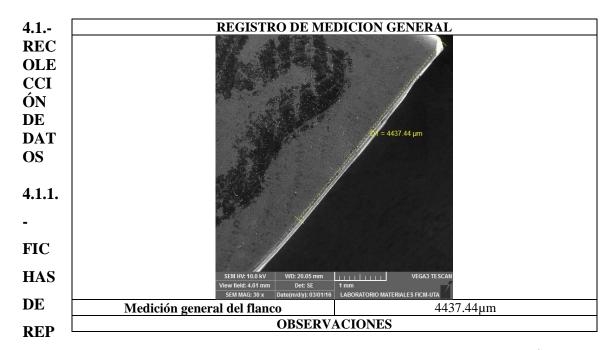


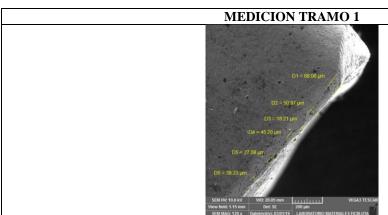
Figura 3. 25.- Criterio de la norma ASME B94.55M para la determinación de la vida útil de la herramienta

3.5.2.15.- Análisis con la ecuación de Taylor.- una vez obtenido las diferentes medidas de los flancos analizaremos los datos con la ecuación de Taylor para después analizar e interpretar los resultado

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

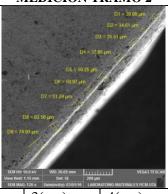


REPORTE DE DESGASTE DE FLANCO					
DATOS INFORMATIVOS					
Tipo de estudio	Experime	Experimental		Item	1
Fecha de ejecución				2016/0	03/23
Lug	ar de estudio		Uı	niversidad Téc	nica de Ambato
				Laborator	rio FICM
Realizado por:	Luis Már	Márquez Revis		sado por:	Ing. Pablo Valle
Parámetros de torneado y lubricación					
Material:		Acero Inoxidable AISI 304			
Sistema	de lubricación:		Inundación		ación
Flui	Fluido lubricante		Tricut 2000 ws		
Herrai	nienta de corte:			SNMG-12-	04-04-QM
Velocidad del	Velocidad de	Profunc	lidad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	o (lt/min)
(rpm)	(mm/rev)	(m	m)	(min)	
885	0.2	۷	4	5	10


CAPÍ TUL O IV

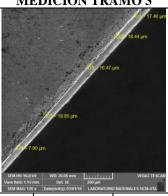
ANÁ LISI

S E INTERPRETACIÓN DE RESULTADOS


ORTE DE FLANCO A 885rpm y 4mm DE PROFUNDIDAD POR EL MÉTODO DE INUNDACIÓN

# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	272	50	18	45	27	82

Desgaste máximo en el tramo (μm) 272


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	39	50	51	63	74	55

Desgaste máximo en el tramo (μm) 74

MEDICION TRAMO 3

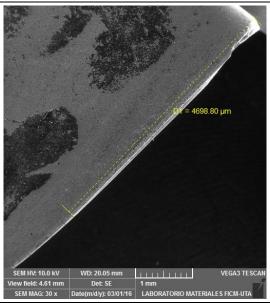
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	17	18	16	18	7	15

18.85

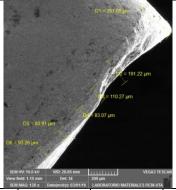
Desgaste máximo en el tramo (µm)

Conclusión:

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

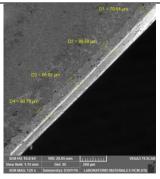


UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA


	REPORT	TE DE DESC	GASTE DI	E FLANCO		
DATOS INFORMA	ATIVOS					
Tipo de estudio	Experimental	1	Item		2	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM			
Realizado por: Luis Márquez			Revisado por: Ing. Pablo Valle			
Parámetros de torn	eado y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubricac	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-1	2-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
885	0.2	4		5	10	

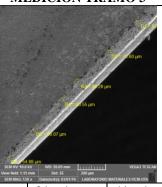
REGISTRO DE MEDICION GENERAL

Medición general del flanco4698.80μmOBSERVACIONES4698.80μm


MEDICION TRAMO 1

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	261	191	110	83	93	147

Desgaste máximo en el tramo (µm) 261


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	79	89	86	90	85	85

Desgaste máximo en el tramo (μm) 90

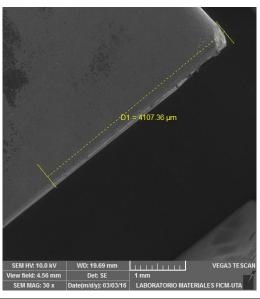
MEDICION TRAMO 3

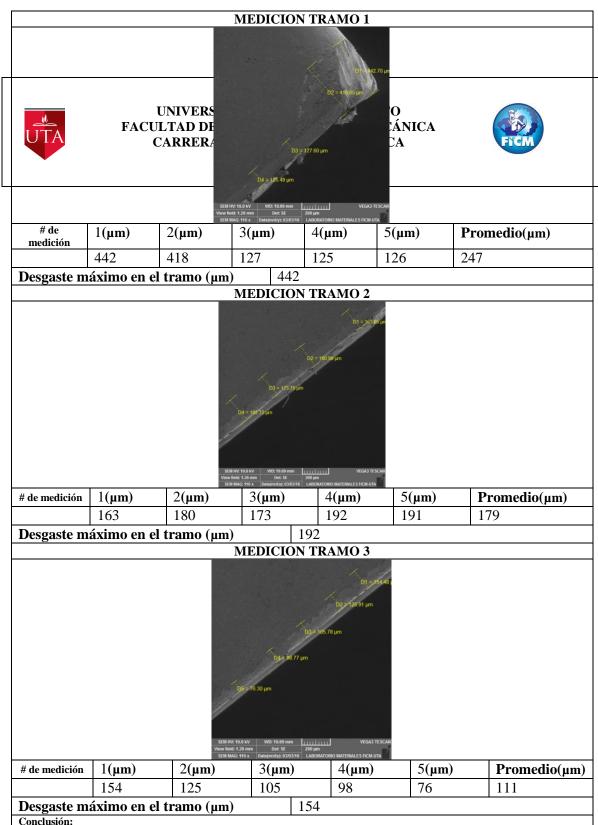


# de medición 1	1(μ m)	2(µm)	3(µm)	4(μm)	5(µm)	Promedio(µm)
	87	75	98	80	66	81

Desgaste máximo en el tramo (µm) 98

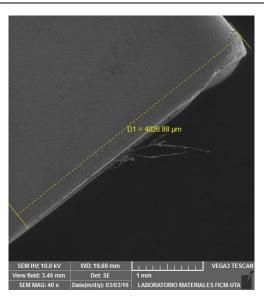
Conclusión:


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular



	REPORT	E DE DESC	GASTE DE	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental	1	Item		2	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio				Universidad Técnica de Ambato Laboratorio FICM		
Realizado por:	Luis Márque	Z	Revisado	por:	Ing. Pablo Valle	
Parámetros de torno	eado y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubricaci	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-1	2-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
885	0.2	4		10	10	

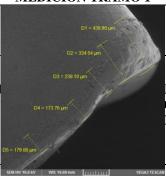
REGISTRO DE MEDICION GENERAL


Medición general del flanco	4107μm
OBSERVACIONES	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

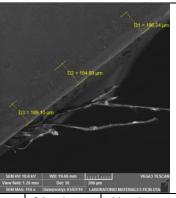
		REPORTI	E DE DESC	GASTE D	E FLANCO		
DATOS INFORM	IATIVOS	S					
Tipo de estudio]	Experimental		Item		3	
Fecha de ejecució	n			2016/03/	/23		
Lugar de estudio				Universi	idad Técnica de	Ambato Laboratorio	
				FICM			
Realizado por: Luis Márquez			Revisado por: Ing. Pablo Valle				
Parámetros de tor	rneado y l	lubricación					
Material:				Acero Inoxidable AISI 304			
Sistema de lubric	ación:			Inundación			
Fluido lubricante				Tricut 2000 ws			
Herramienta de c	orte:			SNMG-	12-04-04-QM		
Velocidad del	Veloc	idad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avanc	ee	corte		mecanizado	(lt/min)	
(rpm)	(mm/	rev)	(mm)		(min)		
885	0.2		4		10	10	
Ì							

REGISTRO DE MEDICION GENERAL



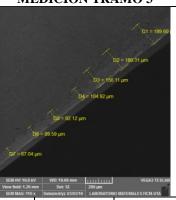
Medición general del flanco	4026μm
OBSERVACIONES	

UNIVERSI FACULTAD DE **CARRERA**


ΓΟ CÁNICA

			field: 1.26 mm Det: SE M MAG: 110 x Date(m/d/y): 03/03/16	200 µm LABORATORIO MATERIALES FICM-UTA	Ź	
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	439	334	239	173	179	272

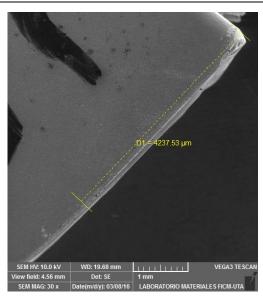
Desgaste máximo en el tramo (µm) 439


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	196	194	189	192	191	192

Desgaste máximo en el tramo (µm) 196

MEDICION TRAMO 3

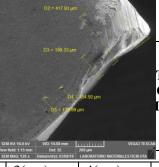


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	189	180	156	82	67	134

Desgaste máximo en el tramo (μm) Conclusión: 189

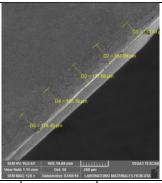
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

	REPORTE DE DESGASTE DE FLANCO							
DATOS INFORMA	TIVOS							
Tipo de estudio	Experimental	l	Item		1			
Fecha de ejecución			2016/03/2	23				
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM					
Realizado por:	Luis Márquez	Z	Revisado	por:	Ing. Pablo Valle			
Parámetros de torno	eado y lubricación							
Material:			Acero Inoxidable AISI 304					
Sistema de lubricaci	ión:		Inundación					
Fluido lubricante			Tricut 2000 ws					
Herramienta de cor	te:		SNMG-12-04-04-QM					
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal			
husillo	avance	corte		mecanizado	(lt/min)			
(rpm)	(mm/rev)	(mm)		(min)				
885	0.2	4		15	10			



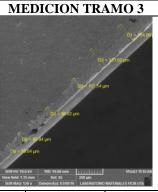
Medición general del flanco	4237μm
OBSERVACIONES	

UNIVERSI FACULTAD DE **CARRERA**


TO CÁNICA **ICA**

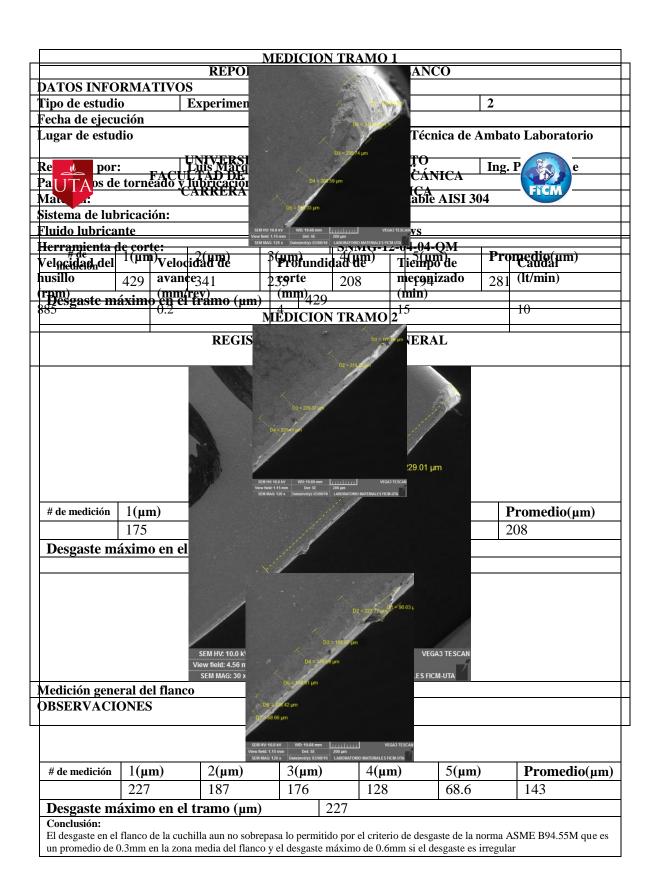
# de medición	1(µm)	2(μm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	465	417	199	154	179	282

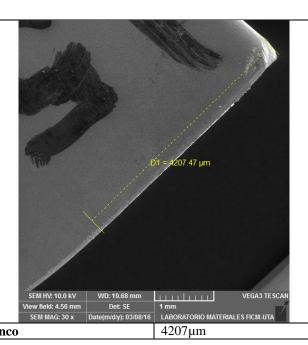
Desgaste máximo en el tramo (µm) 439


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	133	163	177	185	178	167

Desgaste máximo en el tramo (µm)

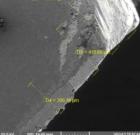

185


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	154	173	107	86	79	119

173

Desgaste máximo en el tramo (µm)

	REPORTE DE DESGASTE DE FLANCO							
DATOS INFORMA	TIVOS							
Tipo de estudio	Experimental	l	Item		3			
Fecha de ejecución	· =		2016/03/2	23				
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM					
Realizado por:	Luis Márquez	Z	Revisado	por:	Ing. Pablo Valle			
Parámetros de torno	eado y lubricación							
Material:			Acero Inoxidable AISI 304					
Sistema de lubricaci	ión:		Inundación					
Fluido lubricante			Tricut 2000 ws					
Herramienta de cor	te:		SNMG-12-04-04-QM					
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal			
husillo	avance	corte		mecanizado	(lt/min)			
(rpm)	(mm/rev)	(mm)		(min)				
885	0.2	4		15	10			



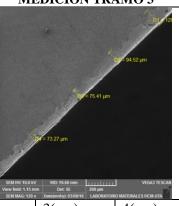
Medición general del flanco OBSERVACIONES

UNIVERSI FACULTAD DE I CARRERA


FO CÁNICA CA

		SE	M MAG: 120 x Date(m/d/y): 03/08/16	LABORATORIO MATERIALES FICM-UTA		
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	503	463	416	300	310	398

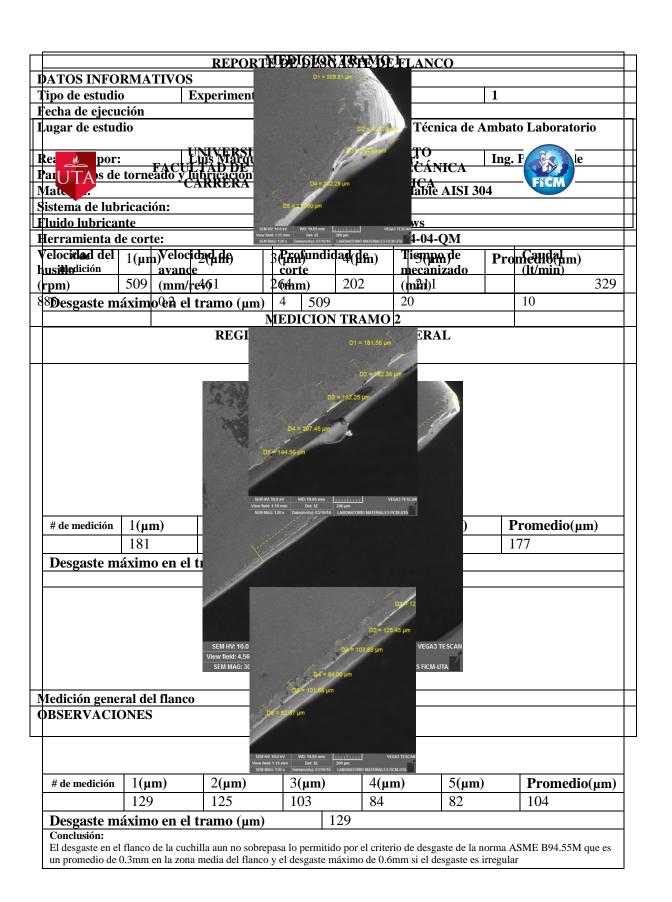
Desgaste máximo en el tramo (µm) 503


MEDICION TRAMO 2

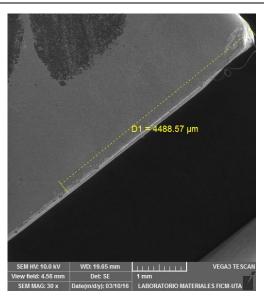
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	189	221	234	225	220	217

Desgaste máximo en el tramo (µm)

225 MEDICION TRAMO 3



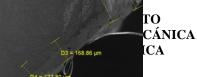
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	129	94	87	75	73	91


Desgaste máximo en el tramo (µm)

129

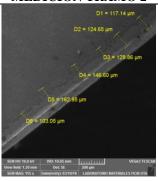
Conclusión:

	REPORTE DE DESGASTE DE FLANCO							
DATOS INFORMA	TIVOS							
Tipo de estudio	Experimental	l	Item		2			
Fecha de ejecución			2016/03/2	23				
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM					
Realizado por:	Luis Márquez	z	Revisado	por:	Ing. Pablo Valle			
Parámetros de torno	eado y lubricación							
Material:			Acero Inoxidable AISI 304					
Sistema de lubricaci	ión:		Inundación					
Fluido lubricante			Tricut 2000 ws					
Herramienta de cor	te:		SNMG-12-04-04-QM					
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal			
husillo	avance	corte		mecanizado	(lt/min)			
(rpm)	(mm/rev)	(mm)		(min)				
885	0.2	4		20	10			



Medición general del flanco	4488µm
OBSERVACIONES	

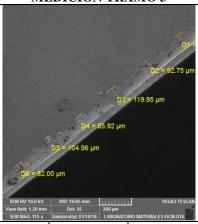
UNIVERSI FACULTAD DE CARRERA



 ** de medición
 1 (μm)
 2 (μm)
 3 (μm)
 4 (μm)
 5 (μm)
 Promedio(μm)

 539
 488
 238
 168
 172
 321

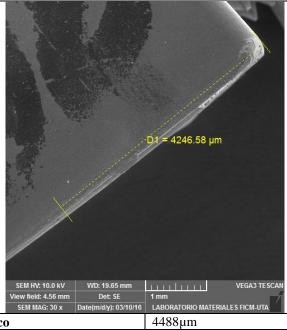
Desgaste máximo en el tramo (μm) 539


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(µm)	Promedio(µm)
	117	124	129	146	162	135

Desgaste máximo en el tramo (µm)

129 MEDICION TRAMO 3

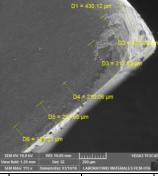


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	114	92	119	104	82	102

Desgaste máximo en el tramo (µm) 119

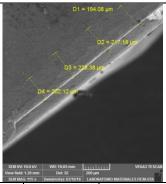
Conclusión:

	REPORT	TE DE DESC	GASTE D	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimenta	ıl	Item		3	
Fecha de ejecución			2016/03/	23		
Lugar de estudio				Universidad Técnica de Ambato Laboratorio FICM		
Realizado por:	Luis Márquez		Revisado por: Ing		Ing. Pablo Valle	
Parámetros de torn	eado y lubricación					
Material:		Acero Inoxidable AISI 304				
Sistema de lubricac	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	ice corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
885	0.2	4		20	10	



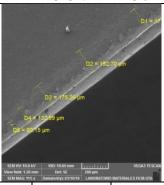
Medición general del flanco OBSERVACIONES

UNIVERSI FACULTAD DE **CARRERA**


ТО CÁNICA

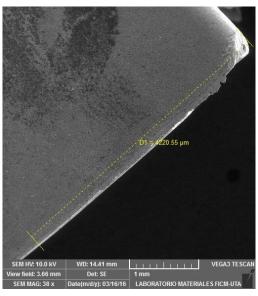
430 313 210 207 189 269	

Desgaste máximo en el tramo (µm) 430


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	194	217	225	202	220	211

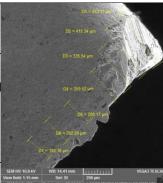
Desgaste máximo en el tramo (µm)


225 **MEDICION TRAMO 3**

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	175	192	175	132	92	153

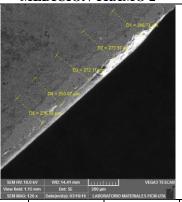
192 Desgaste máximo en el tramo (µm)

REPORTE DE DESGASTE DE FLANCO							
DATOS INFORMA	TIVOS						
Tipo de estudio	Experimental	1	Item		1		
Fecha de ejecución			2016/03/2	23			
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM					
Realizado por:	r: Luis Márquez			Revisado por: Ing. Pablo Valle			
Parámetros de torn	eado y lubricación						
Material:		Acero Inoxidable AISI 304					
Sistema de lubricac	ión:		Inundación				
Fluido lubricante			Tricut 2000 ws				
Herramienta de cor	te:		SNMG-12-04-04-QM				
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal		
husillo	avance	corte		mecanizado	(lt/min)		
(rpm)	(mm/rev)	(mm)		(min)			
885	0.2	4		25	10		



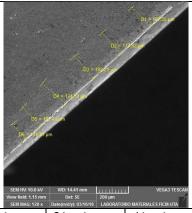
Medición general del flanco	4220μm
OBSERVACIONES	

UNIVERSI FACULTAD DE **CARRERA**


ΓΟ CÁNICA

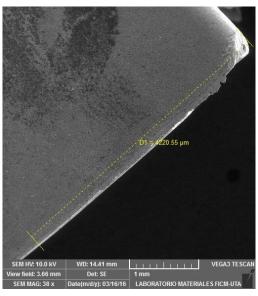
				200 µm LABORATORIO MATERIALES FICM-UTA	7	
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	443	415	259	200	192	301

Desgaste máximo en el tramo (µm) 443


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	246	273	272	250	236	255

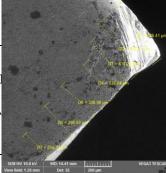
Desgaste máximo en el tramo (µm)


273 MEDICION TRAMO 3

# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	177	182	194		161	131	169
Desgaste máximo en el tramo (µm)				194			

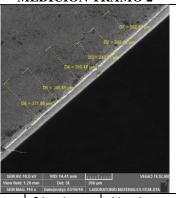
Conclusión:

		REPORT	TE DE DESC	GASTE D	E FLANCO		
DATOS INFORM	AATIVO	OS					
Tipo de estudio		Experimenta	1	Item		2	
Fecha de ejecució	n			2016/03/	/23		
Lugar de estudio				Univers	idad Técnica de	Ambato Laboratorio	
				FICM			
Realizado por:		Luis Márquez			o por:	Ing. Pablo Valle	
Parámetros de to	rneado y	lubricación					
Material:				Acero Inoxidable AISI 304			
Sistema de lubric	ación:			Inundación			
Fluido lubricante	!			Tricut 2000 ws			
Herramienta de c	orte:			SNMG-	12-04-04-QM		
Velocidad del	Velo	cidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avar	ice	corte		mecanizado	(lt/min)	
(rpm)	(mm	/rev)	(mm)		(min)		
885	0.2		4		25	10	



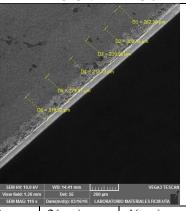
Medición general del flanco	4495μm
OBSERVACIONES	

UNIVERS FACULTAD DE CARRERA


ΓΟ CÁNICA

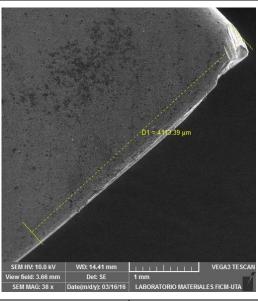
		SEA	1 MAG: 110 x Date(m/d/y): 03/16/16	LABORATORIO MATERIALES FICM-UTA		
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	526	416	338	336	256	374

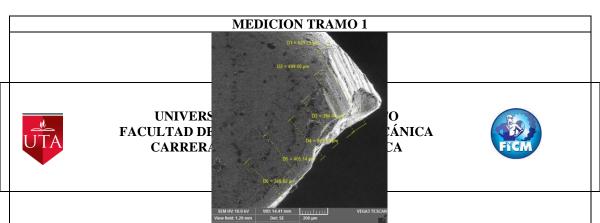
Desgaste máximo en el tramo (µm) 526


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	262	242	360	345	371	316

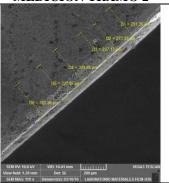
Desgaste máximo en el tramo (µm) 371


MEDICION TRAMO 3


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	262	209	230	229	219	229

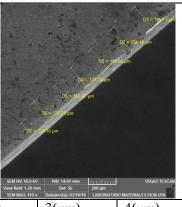
230 Desgaste máximo en el tramo (µm)

	REPOI	RTE DE DESC	GASTE D	E FLANCO		
DATOS INFORM	IATIVOS					
Tipo de estudio Experimental			Item		3	
Fecha de ejecució		2016/03	/23			
Lugar de estudio				Universidad Técnica de Ambato Laboratorio FICM		
Realizado por: Luis Márquez			Revisad	Revisado por: Ing. Pablo Valle		
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubric	ación:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de c	orte:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
885	0.2	4		25	10	


Medición general del flanco	4495μm	
OBSERVACIONES		

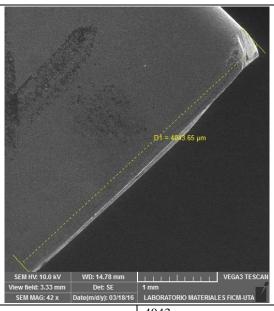
de 1(**µm**) $2(\mu m)$ $3(\mu m)$ 4(µm) $5(\mu m)$ Promedio(µm) medición 453 621 499 394 405 349

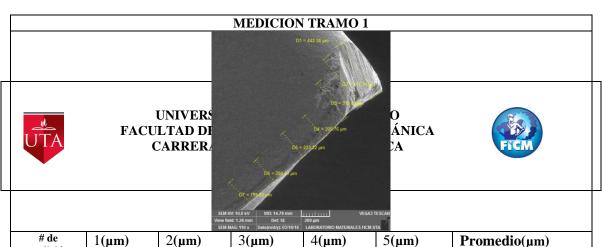
Desgaste máximo en el tramo (µm) 621


MEDICION TRAMO 2

# de medición	1(μm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	291	273	329	327	323	308

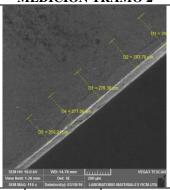
Desgaste máximo en el tramo (µm) 329


MEDICION TRAMO 3


# de medición	1(µm)	2(µm)	3(µm)		4(µm)	5(µm)	Promedio(µm)
	204	184	176		162	120	169
Desgaste máximo en el tramo (µm)							

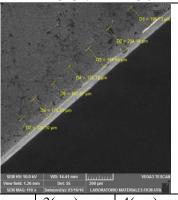
Desgaste máximo en el tramo (µm)

	REPORT	E DE DESC	GASTE DE	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental	l	Item		1	
Fecha de ejecución		2016/03/2	23			
Lugar de estudio		Universion FICM	dad Técnica de A	Ambato Laboratorio		
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubricaci	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
885	0.2	4		30	10	

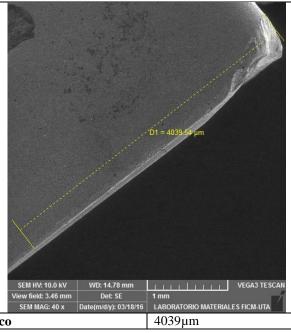

Medición general del flanco
OBSERVACIONES 4043µm

Promedio(µm) medición 199 442 417 318 205 316

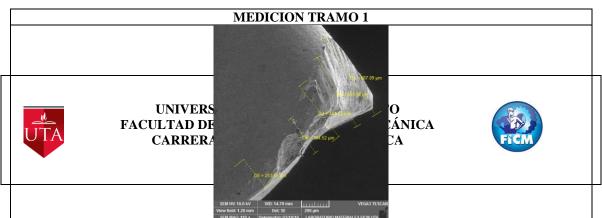
Desgaste máximo en el tramo (µm) 442


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	289	283	276	271	250	273

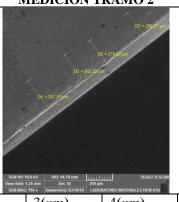

Desgaste máximo en el tramo (µm) 289

MEDICION TRAMO 3



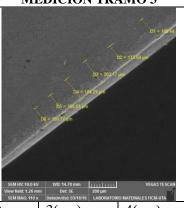
# de medición	1(µm)	2(µm)	3(µm))	4(µm)	5(μm)	Promedio(µm)
	187	199	195		189	191	192
Desgaste máximo en el tramo (µm)							

	REPORT	TE DE DESC	GASTE D	E FLANCO		
DATOS INFORMA	ATIVOS					
Tipo de estudio Experimental		ıl	Item		2	
Fecha de ejecución		2016/03/	/23			
Lugar de estudio		Universi FICM	idad Técnica de	Ambato Laboratorio		
Realizado por: Luis Márquez			Revisad	o por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubricac	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del husillo (rpm)	Velocidad de avance (mm/rev)	Profundi corte (mm)	dad de	Tiempo de mecanizado (min)	Caudal (lt/min)	
885	0.2	4		30	10	


Medición general del flanco OBSERVACIONES

de medición 1(μm) 2(μm) 3(μm) 4(μm) 5(μm) Promedio(μm) 667 461 304 253 199 376

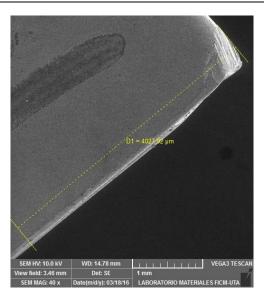
Desgaste máximo en el tramo (µm) 667


MEDICION TRAMO 2

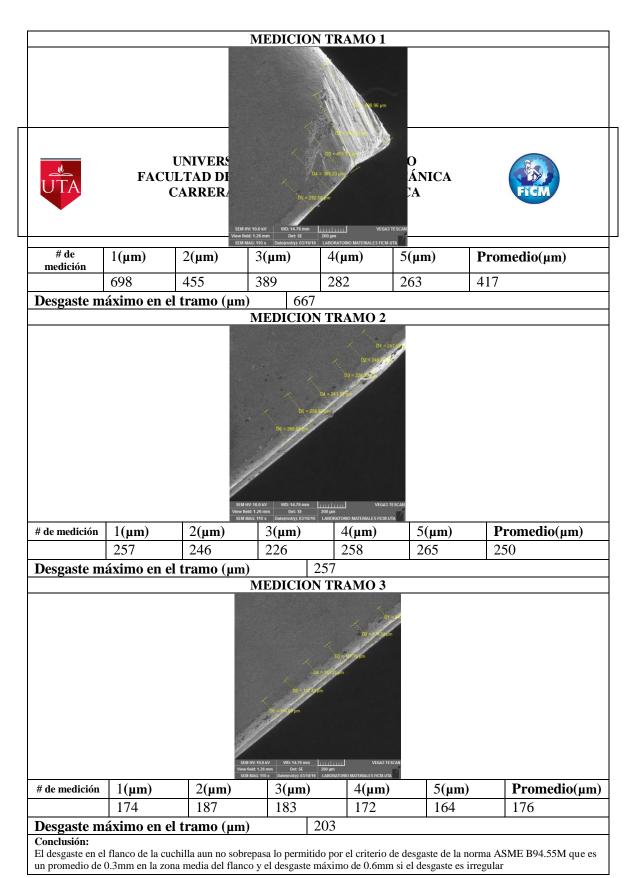
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	206	219	242	257	250	234

Desgaste máximo en el tramo (μm) 257

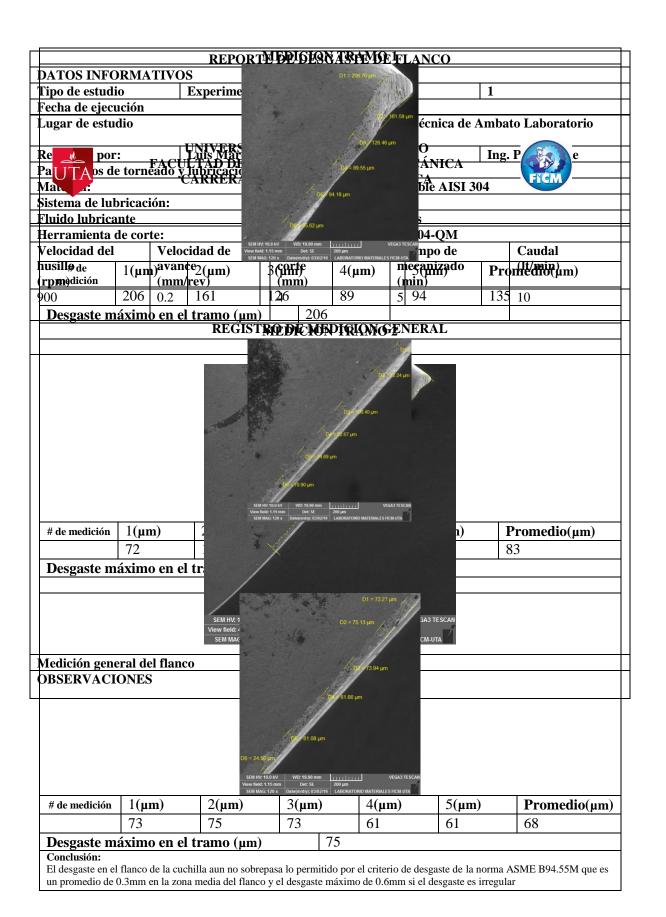
MEDICION TRAMO 3

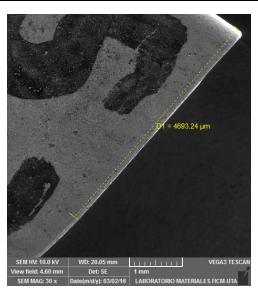


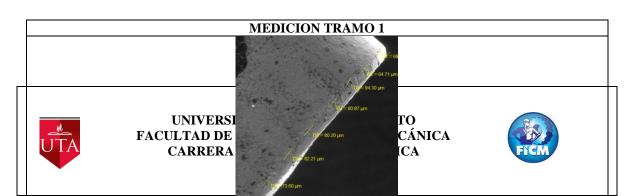
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	188	173	203	160	150	174


Desgaste máximo en el tramo (μm) 203

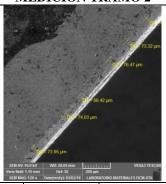
Conclusión:


		REPOR	TE DE DESC	GASTE D	E FLANCO		
DATOS INFORM	AATIVO	OS					
Tipo de estudio		Experimenta	al	Item		3	
Fecha de ejecució	n			2016/03	/23		
Lugar de estudio				Univers	idad Técnica de	Ambato Laboratorio	
				FICM			
Realizado por:		Luis Márqu	ez	Revisad	o por:	Ing. Pablo Valle	
Parámetros de to	rneado y	y lubricación					
Material:				Acero Inoxidable AISI 304			
Sistema de lubric	ación:			Inundación			
Fluido lubricante	!			Tricut 2000 ws			
Herramienta de c	orte:			SNMG-12-04-04-QM			
Velocidad del	Velo	cidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avar	ıce	corte		mecanizado	(lt/min)	
(rpm)	(mm	ı/rev)	(mm)		(min)		
885	0.2		4		30	10	
Ì							


Medición general del flanco	4027μm
OBSERVACIONES	

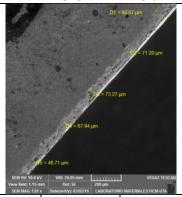

4.1.2.- FICHAS DE REPORTE DE FLANCO A 900rpm y 4mm DE PROFUNDIDAD POR EL MÉTODO DE INUNDACIÓN

	REPORT	E DE DESC	GASTE DE	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental	l	Item		2	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio		Universion FICM	dad Técnica de A	mbato Laboratorio		
Realizado por:	Luis Márque	Z	Revisado	por:	Ing. Pablo Valle	
Parámetros de torne	eado y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubricac	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		5	10	



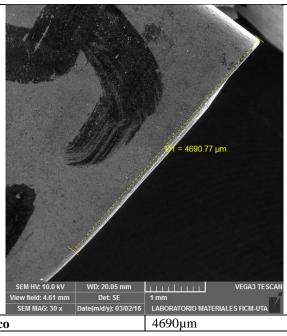
Medición general del flanco	4693μm
OBSERVACIONES	

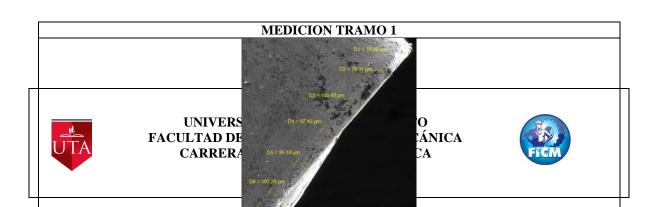
1(**µm**) 2(µm) $3(\mu m)$ 5(µm) Promedio(µm) 4(µm) medición 69 64 94 80 73 76 Desgaste máximo en el tramo (µm) 94


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(µm)	Promedio(µm)
	73	76	66	74	73	72

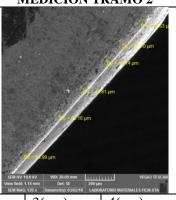
Desgaste máximo en el tramo (µm) 76


MEDICION TRAMO 3


# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	80	71	73	67	48	67

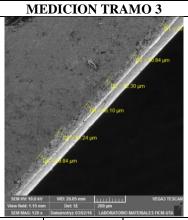
Desgaste máximo en el tramo (μm) Conclusión: 80

	REPORT	TE DE DESC	GASTE DE	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimenta	ıl	Item		3	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM				
Realizado por:	Luis Márque	ez	Revisado	por:	Ing. Pablo Valle	
Parámetros de torne	eado y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubricac	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		5	10	


Medición general del flanco OBSERVACIONES

de 2(µm) Promedio(µm) 1(µm) $3(\mu m)$ 4(µm) $5(\mu m)$ medición 91 75 78 100 97 107

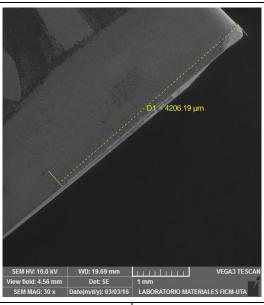
107 Desgaste máximo en el tramo (µm)


MEDICION TRAMO 2

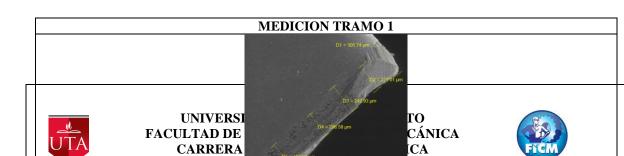
2(µm) 5(µm) Promedio(µm) # de medición 1(µm) $3(\mu m)$ 4(µm) 54 48 58 48 54 52

Desgaste máximo en el tramo (µm)

58


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	50	72	66	81	69	57

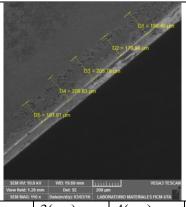
81


Desgaste máximo en el tramo (µm)

Conclusión:

	REPORT	E DE DESC	GASTE DE	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental	1	Item		1	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio		Universion FICM	dad Técnica de A	Ambato Laboratorio		
Realizado por:	Luis Márque	Z	Revisado	por:	Ing. Pablo Valle	
Parámetros de torne	eado y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubricac	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		10	10	

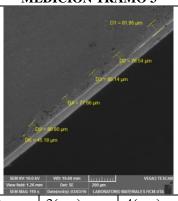
Medición general del flanco 4206μm
OBSERVACIONES



SEMINY 10.0 kV WIX: 19.69 mm VEGAS TESCAN
View field: 1.26 mm Det. SE 200 jrm
SEM MAG: 110 x Date(midy: 03/03/16 LABORATORIO MATERIALES FICM-UTA

		SE	M MAG: 110 x Date(m/d/y): 03/03/16	LABORATORIO MATERIALES FICM-UTA		
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	305	221	242	206	195	233

Desgaste máximo en el tramo (µm) 305

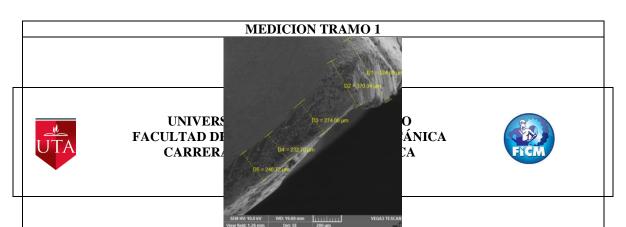

MEDICION TRAMO 2

# de medición	1(µm)	2(μm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	198	178	205	209	181	194

Desgaste máximo en el tramo (µm) 209

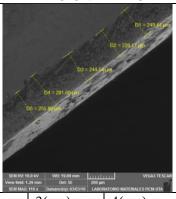
MEDICION TRAMO 3

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	81	76	85	77	80	79


Desgaste máximo en el tramo (µm) 85

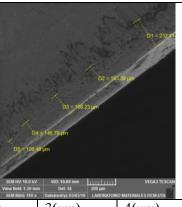
Conclusión:

REPORTE DE DESGASTE DE FLANCO						
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental	1	Item		2	
Fecha de ejecución	. =		2016/03/2	23		
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM				
Realizado por:	Luis Márque	Z	Revisado	por:	Ing. Pablo Valle	
Parámetros de torno	eado y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubricaci	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	avance corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		10	10	


Medición general del flanco OBSERVACIONES

		SEM M	IAG: 110 x Date(m/d/y): 03/03/16	LABORATORIO MATERIALES FICM-U	TA	
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	524	330	274	232	246	321

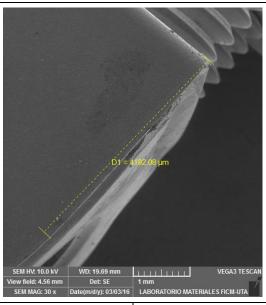
Desgaste máximo en el tramo (µm) 524


MEDICION TRAMO 2

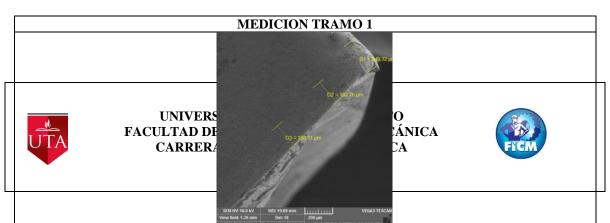
# de medici	ón 1(μm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	249	228	244	281	255	251

Desgaste máximo en el tramo (μm) 281

MEDICION TRAMO 3

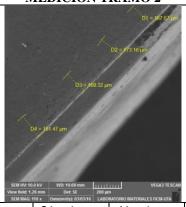


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(µm)	Promedio(µm)
	232	183	168	146	108	167


Desgaste máximo en el tramo (µm) 232

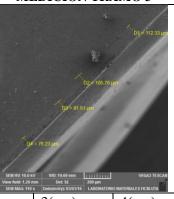
Conclusión:

REPORTE DE DESGASTE DE FLANCO						
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental	l	Item		3	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio				dad Técnica de	Ambato Laboratorio	
Realizado por:	Luis Márque	Z	Revisado	por:	Ing. Pablo Valle	
Parámetros de torno	eado y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubricaci	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	vance corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		10	10	


Medición general del flanco 4192μm
OBSERVACIONES

de medición 248 182 180 180 180 182 194

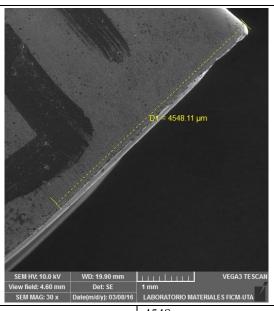
Desgaste máximo en el tramo (µm) 248


MEDICION TRAMO 2

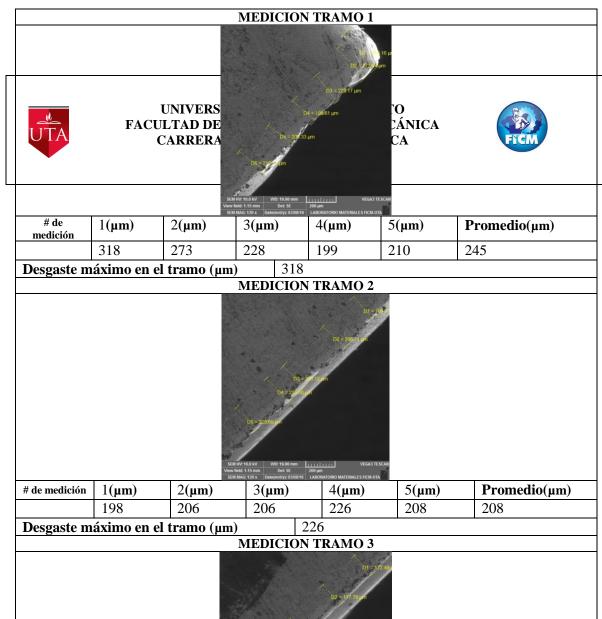
de medición 1(μm) 2(μm) 3(μm) 4(μm) 5(μm) **Promedio**(μm)
187 173 169 181 170 176

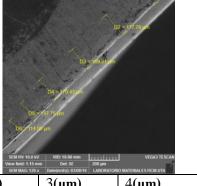
Desgaste máximo en el tramo (μm) 181

MEDICION TRAMO 3


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	112	105	81	76	70	88

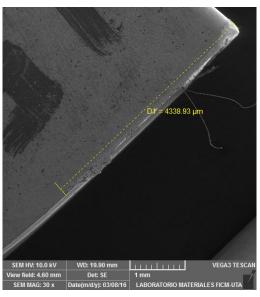
112


Desgaste máximo en el tramo (µm)


Conclusión:

REPORTE DE DESGASTE DE FLANCO						
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental	l	Item		1	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM				
Realizado por:	Luis Márque	Z	Revisado	por:	Ing. Pablo Valle	
Parámetros de torno	eado y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubricaci	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del husillo	Velocidad de avance (mm/rev)	Profundi corte (mm)	dad de	Tiempo de mecanizado (min)	Caudal (lt/min)	
(rpm) 900	0.2	4		15	10	

Medición general del flanco OBSERVACIONES 4548µm

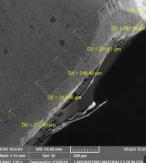

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	172	177	169	170	114	160

Desgaste máximo en el tramo (µm)

112

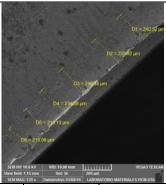
Conclusión:

REPORTE DE DESGASTE DE FLANCO						
DATOS INFORM	ATIVOS					
Tipo de estudio	Experin	nental	Item		2	
Fecha de ejecución	n		2016/03/	23		
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM			
Realizado por:	Luis Ma	árquez	Revisado	o por:	Ing. Pablo Valle	
Parámetros de tor	neado y lubrica	ción				
Material:			Acero Inoxidable AISI 304			
Sistema de lubrica	ción:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de co	orte:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	110141141	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		15	10	
1						



Medición general del flanco	4338µm
OBSERVACIONES	

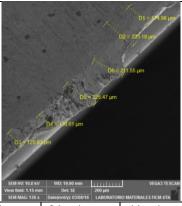
UNIVERSI FACULTAD DE **CARRERA**


ΓΟ CÁNICA

# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	348	281	289	248	237	280

348 Desgaste máximo en el tramo (µm)

MEDICION TRAMO 2

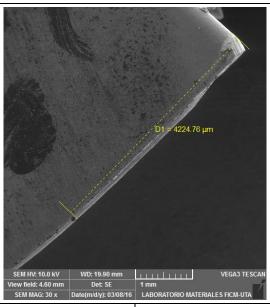


# de medición	1 (μ m)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	240	238	234	218	210	228

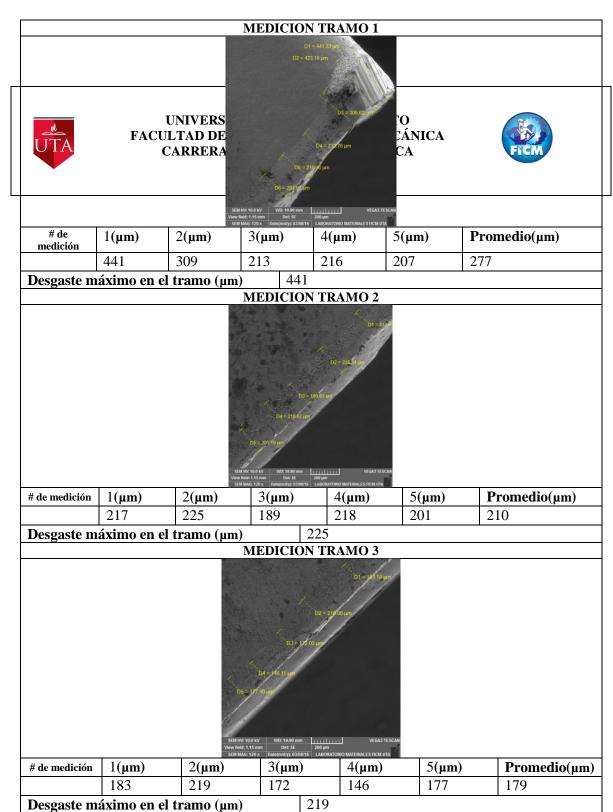
Desgaste máximo en el tramo (µm)

240

MEDICION TRAMO 3

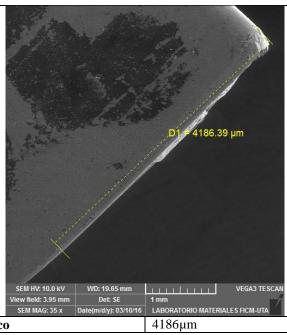


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	174	223	211	225	130	192

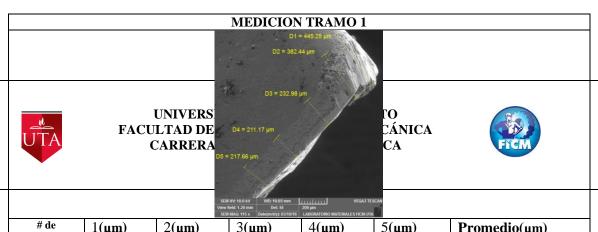

Desgaste máximo en el tramo (µm)

225

	REPORT	TE DE DESC	GASTE DE	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimenta	1	Item		3	
Fecha de ejecución		2016/03/2	23			
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM				
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubricac	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev) (mm)			(min)		
900	0.2	4		15	10	

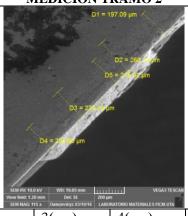


Medición general del flanco4224μmOBSERVACIONES4224μm



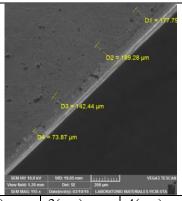
Conclusión:

	REPORT	TE DE DESC	GASTE DI	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimenta	al	Item		1	
Fecha de ejecución		2016/03/2	23			
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM				
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubricaci	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		20	10	


Medición general del flanco OBSERVACIONES

de medición 1 (μm) 2 (μm) 3 (μm) 4 (μm) 5 (μm) Promedio (μm) 445 382 232 211 217 297

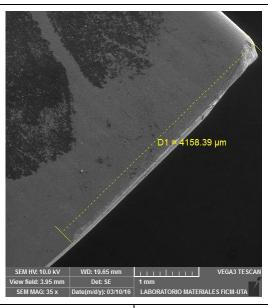
Desgaste máximo en el tramo (µm) 445


MEDICION TRAMO 2

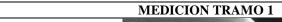
de medición 1(μm) 2(μm) 3(μm) 4(μm) 5(μm) **Promedio**(μm) 197 260 215 233 200 221

Desgaste máximo en el tramo (µm) 225

MEDICION TRAMO 3

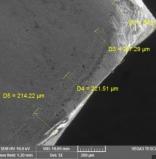


# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	177	189	142	100	73	136


Desgaste máximo en el tramo (μm) 189

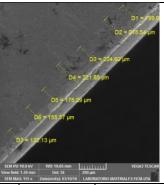
Conclusión:

	REPORT	E DE DESC	GASTE DE	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental	1	Item		2	
Fecha de ejecución		2016/03/2	23			
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM				
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubricaci	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		20	10	



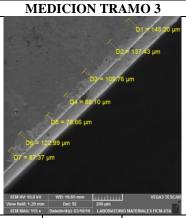
Medición general del flanco 4158μm
OBSERVACIONES

UNIVERSI FACULTAD DE CARRERA



				LABORATORIO MATERIALES FICM-UTA	7	
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	348	343	297	221	214	284

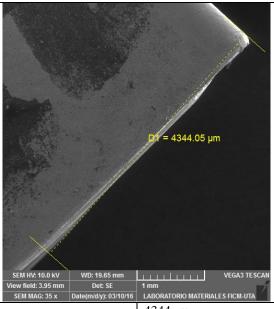
Desgaste máximo en el tramo (µm) 348


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	199	215	204	221	132	194

Desgaste máximo en el tramo (µm)

215

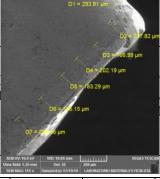

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	145	137	109	88	87	113

Desgaste máximo en el tramo (µm)

145

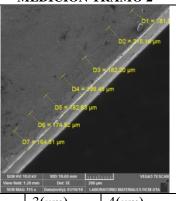
Conclusión:

	REPORT	E DE DESC	GASTE DE	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio Experimental			Item		3	
Fecha de ejecución		2016/03/2	23	•		
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM				
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubricaci	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		20	10	



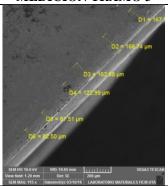
Medición general del flanco OBSERVACIONES $4344 \mu m$

UNIVERSI FACULTAD DE **CARRERA**



	SEM MAIC: 115.X DAMINIMUTE DAMINIMUTE CARDINO MATERIALES FICIALUTA							
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)		
	293	237	202	183	208	224		
T	<i>,</i> , ,		202					

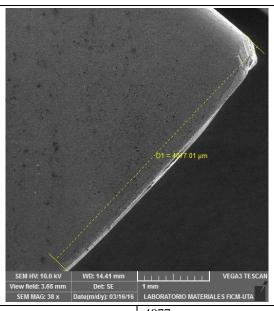
Desgaste máximo en el tramo (µm) 293


MEDICION TRAMO 2

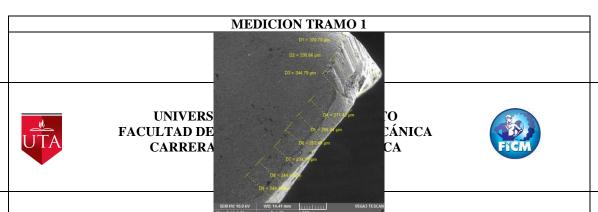
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	181	215	182	199	164	188

Desgaste máximo en el tramo (µm) 215

MEDICION TRAMO 3

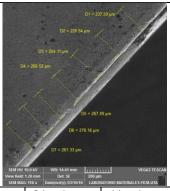


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	167	168	162	122	82	140


168

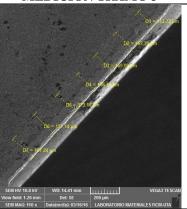
Desgaste máximo en el tramo (µm)

	REPORT	E DE DESC	GASTE DE	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental	1	Item		1	
Fecha de ejecución		2016/03/2	23	•		
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM				
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle	
Parámetros de torne	eado y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubricac	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		25	10	


Medición general del flanco OBSERVACIONES 4077µm

				LABORATORIO MATERIALES FICM-UTZ		
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	370	338	344	271	248	314

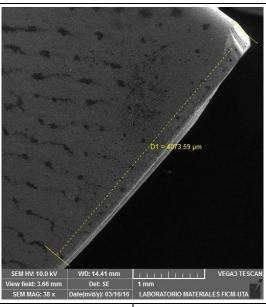
Desgaste máximo en el tramo (µm) 370


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	237	226	254	276	261	250

Desgaste máximo en el tramo (μm) 237

MEDICION TRAMO 3



# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	143	163	169	173	187	167

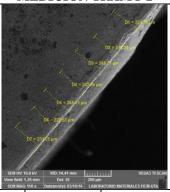
Desgaste máximo en el tramo (μm) 187

Conclusión:

	REPOR'	TE DE DESC	GASTE D	E FLANCO		
DATOS INFORMAT	IVOS					
Tipo de estudio	Experimenta	al	Item 2			
Fecha de ejecución			2016/03/	/23		
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM			
Realizado por: Luis Márquez			Revisado por: Ing		Ing. Pablo Valle	
Parámetros de tornea	do y lubricación					
Material:		Acero Inoxidable AISI 304				
Sistema de lubricació	n:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de corte	:		SNMG-	12-04-04-QM		
	Velocidad de avance	Profundi corte	dad de	Tiempo de mecanizado	Caudal (lt/min)	
	(mm/rev)	(mm)		(min)	(20, 22111)	
900	0.2	4		25	10	

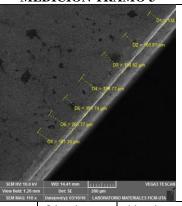
Medición general del flanco4073 μmOBSERVACIONES4073 μm

UNIVERS FACULTAD DE CARRERA


ΓΟ CÁNICA

# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	418	360	252	243	232	301

Desgaste máximo en el tramo (µm) 418


MEDICION TRAMO 2

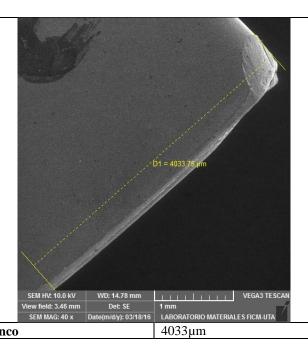
I	# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
ĺ		224	214	248	242	246	234

Desgaste máximo en el tramo (µm) 248

MEDICION TRAMO 3

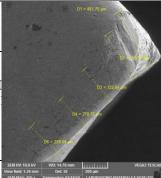
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	134	166	194	203	181	175

Desgaste máximo en el tramo (µm)


203

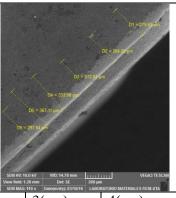
un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

	REPORT	E DE DESC	GASTE DE	E FLANCO			
DATOS INFORMA	TIVOS						
Tipo de estudio	Experimental	1	Item		2		
Fecha de ejecución		2016/03/2	23	•			
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM					
Realizado por: Luis Márquez			Revisado por: Ing		Ing. Pablo Valle		
Parámetros de torno	eado y lubricación						
Material:	Material:				Acero Inoxidable AISI 304		
Sistema de lubricaci	ión:		Inundación				
Fluido lubricante			Tricut 2000 ws				
Herramienta de cor	te:		SNMG-12-04-04-QM				
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal		
husillo	avance	corte		mecanizado	(lt/min)		
(rpm)	(mm/rev)	(mm)		(min)			
900	0.2	4		30	10		



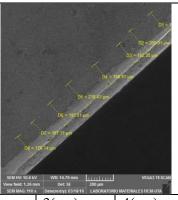
Medición general del flanco OBSERVACIONES

UNIVERSI FACULTAD DE **CARRERA**


TO CÁNICA

# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	481	399	322	278	289	353

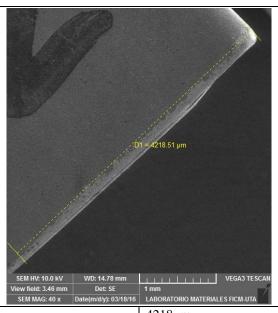
Desgaste máximo en el tramo (µm)


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	279	264	272	333	367	303

Desgaste máximo en el tramo (µm) 367

MEDICION TRAMO 3

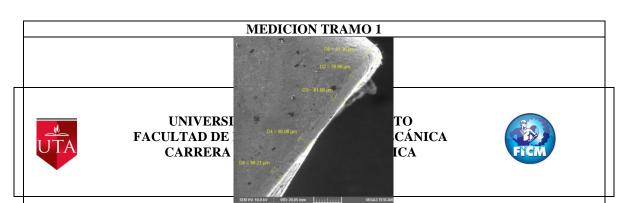


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	261	278	266	263	240	261


278 Desgaste máximo en el tramo (µm)

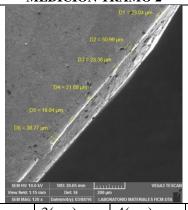
Conclusión:

	REPORT	E DE DESC	GASTE DI	E FLANCO			
DATOS INFORMA	TIVOS						
Tipo de estudio	Experimental		Item		3		
Fecha de ejecución			2016/03/2	23			
Lugar de estudio		Universion FICM	dad Técnica de	Ambato Laboratorio			
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle		
Parámetros de torneado y lubricación							
Material:			Acero Inoxidable AISI 304				
Sistema de lubricaci	ón:		Inundación				
Fluido lubricante			Tricut 2000 ws				
Herramienta de cort	te:		SNMG-12-04-04-QM				
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal		
husillo	avance	corte		mecanizado	(lt/min)		
(rpm)	(mm/rev)	(mm)		(min)			
900	0.2	4		30	10		



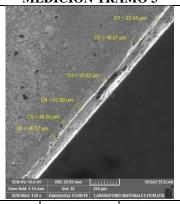
Medición general del flanco OBSERVACIONES 4218µm

4.1.3.- FICHAS DE REPORTE DE FLANCO A 885rpm y 4mm DE PROFUNDIDAD POR EL MÉTODO MQL

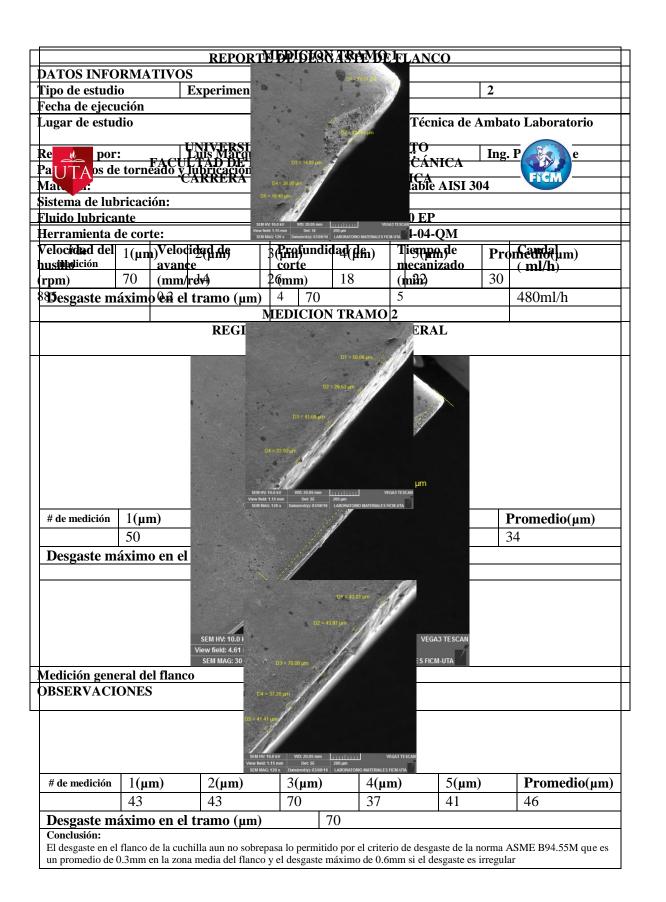

	DEDADTI	DE DEC	A CTE D	E FLANCO	
DATOS INFORM		L DE DESC	JASIE D	E FLANCO	
Tipo de estudio	Experiment	al	Item		1
Fecha de ejecució		aı	2016/03	/22	1
Lugar de estudio	Ш				le Ambato Laboratorio
			FICM		
Realizado por:	Luis Márqu		Revisad	o por:	Ing. Pablo Valle
	rneado y lubricació	n	1		
Material:				noxidable AIS	I 304
Sistema de lubrica	ación:		MQL		
Fluido lubricante				e 2210 EP	
Herramienta de c		_		12-04-04-QM	
Velocidad del	Velocidad de	Profund	idad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
885	0.2	4		5	480ml/h
	REGISTE	RO DE ME	DICION	GENERAL	
	SEM HV: 10.0 kV View field: 4.60 mm	WD: 20.05 mm Det: SE	1mm	4432.01 μm VEGA3 TESCA	AN
Madiaián con1		ite(m/d/y): 03/08/16		MATERIALES FICM-UTA	
Medición general			4432µm	l .	
OBSERVACION	L)				

# de medición	1(µm)	2(µm)	3(µm		4(µm)	5(μm)	Promedio(µm)		
	81	79	81		90	98	85		
D 4	Degranto mánimo en el tramo (m)								

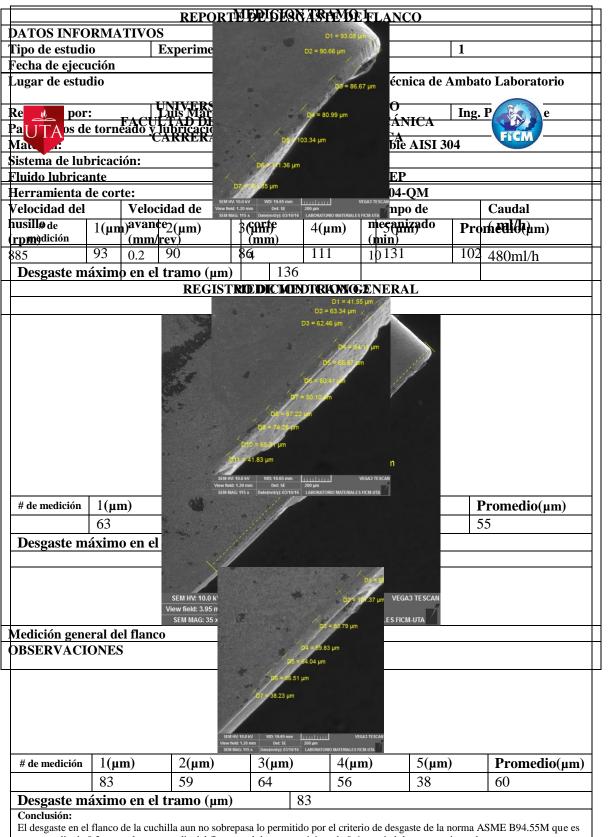
Desgaste máximo en el tramo (µm)


98 MEDICION TRAMO 2

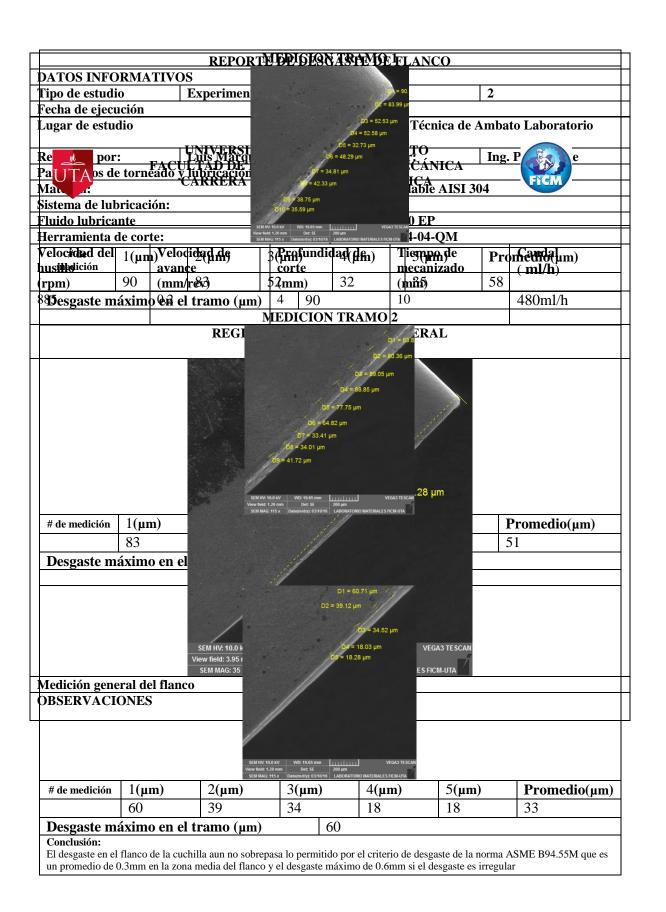
# de medición	1(μm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	23	50	23	21	19	27

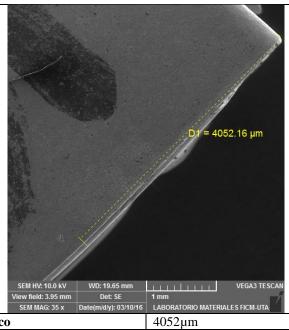

Desgaste máximo en el tramo (µm) 50

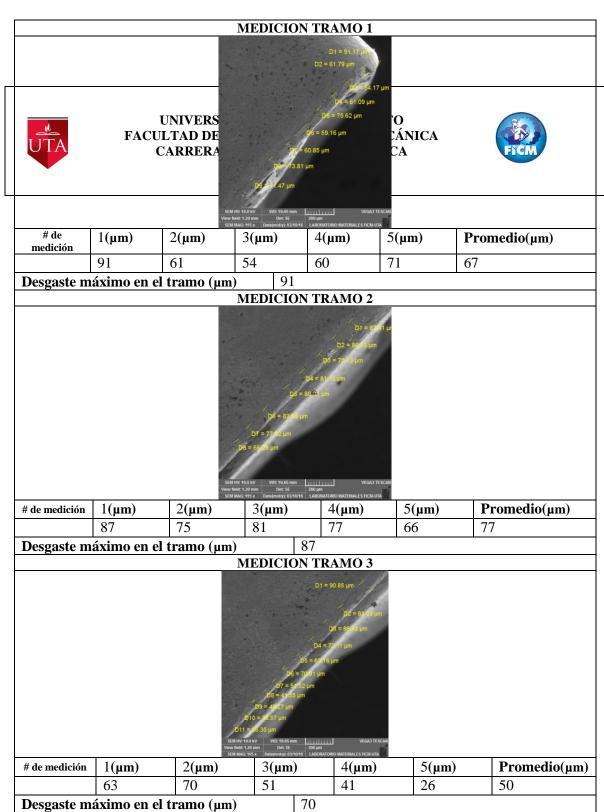
MEDICION TRAMO 3



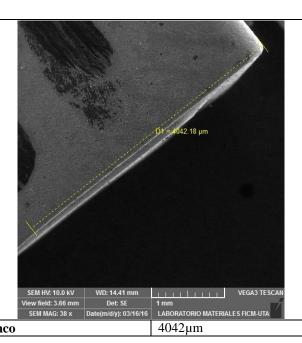
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	23	46	22	52	48	38
Desgaste máximo en el tramo (µm)						


Conclusión:




un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

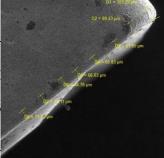
	REPORTE DE DESGASTE DE FLANCO								
DATOS INFORMAT	TIVOS								
Tipo de estudio Experimental			Item		3				
Fecha de ejecución	. =		2016/03/	23					
Lugar de estudio				dad Técnica de A	Ambato Laboratorio				
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle				
Parámetros de torneado y lubricación									
Material:			Acero Inoxidable AISI 304						
Sistema de lubricació	ón:		MQL						
Fluido lubricante			Coolube 2210 EP						
Herramienta de cort	e:		SNMG-12-04-04-QM						
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal				
husillo	avance	corte		mecanizado	(ml/h)				
(rpm)	(mm/rev)	n/rev) (mm)		(min)					
885	0.2	4		10	480ml/h				



Medición general del flanco OBSERVACIONES

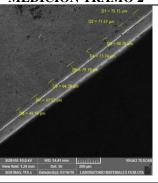
Conclusión

	REPOR	TE DE DESC	GASTE DE	E FLANCO			
DATOS INFORMA	ATIVOS						
Tipo de estudio Experimental			Item		1		
Fecha de ejecución			2016/03/2	23			
Lugar de estudio	Universion FICM	dad Técnica de A	Ambato Laboratorio				
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle		
Parámetros de torneado y lubricación							
Material:			Acero Inoxidable AISI 304				
Sistema de lubricac	ción:		MQL				
Fluido lubricante			Coolube 2210 EP				
Herramienta de con	rte:		SNMG-12-04-04-QM				
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal		
husillo	avance	corte		mecanizado	(ml/h)		
(rpm)	(mm/rev)	mm/rev) (mm)		(min)	, ,		
885	0.2	4		15	480ml/h		



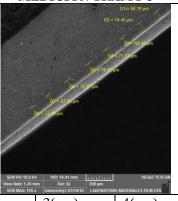
Medición general del flanco OBSERVACIONES

UNIVERS FACULTAD DE CARRERA


TO CÁNICA CA

# de medición	1(µm)	2(μm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	103	89	51	66	71	76

Desgaste máximo en el tramo (µm) 103

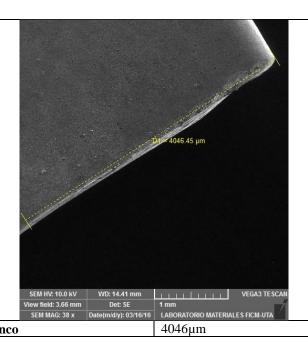

MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	75	71	68	64	47	65

Desgaste máximo en el tramo (μm) 75

MEDICION TRAMO 3

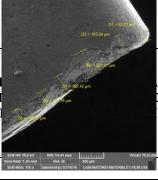
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	64	74	66	67	77	69


77

Desgaste máximo en el tramo (µm)

Conclusión:

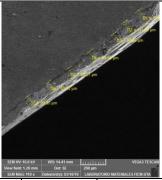
	REPOR	TE DE DESC	GASTE DI	E FLANCO			
DATOS INFORMA	ATIVOS						
Tipo de estudio	Experiment	al	Item 3		3		
Fecha de ejecución			2016/03/23				
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM				
Realizado por: Luis Márquez			Revisado por: Ing.		Ing. Pablo Valle		
Parámetros de torneado y lubricación							
Material:		Acero Inoxidable AISI 304					
Sistema de lubricac		MQL					
Fluido lubricante		Coolube 2210 EP					
Herramienta de co	Herramienta de corte:				SNMG-12-04-04-QM		
Velocidad del Velocidad de Profundi			dad de	Tiempo de	Caudal		
husillo	avance corte			mecanizado	(ml/h)		
(rpm)	(mm/rev)	(mm)		(min)			
885	0.2	4		15	480ml/h		



Medición general del flanco OBSERVACIONES

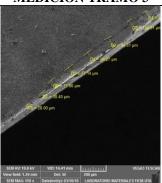
MEDICION TRAMO 1

UNIVERSI FACULTAD DE I **CARRERA**

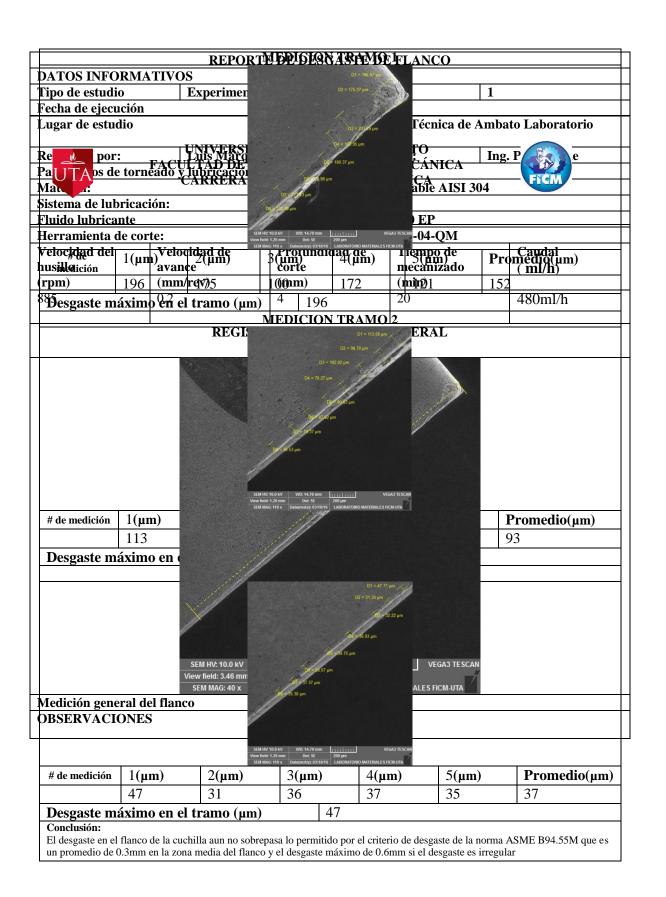


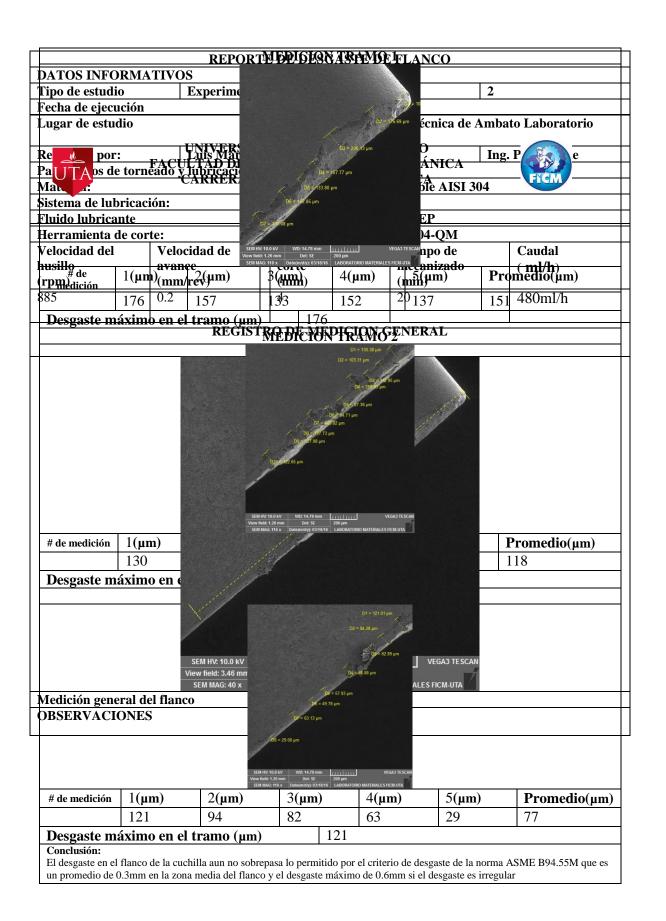
OT CÁNICA ICA

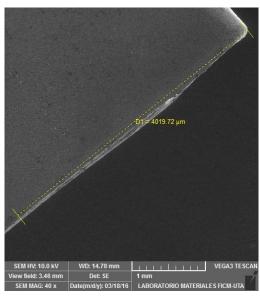
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	92	163	162		121	110	129
Desgaste máximo en el tramo (µm)				162			


MEDICION TRAMO 2

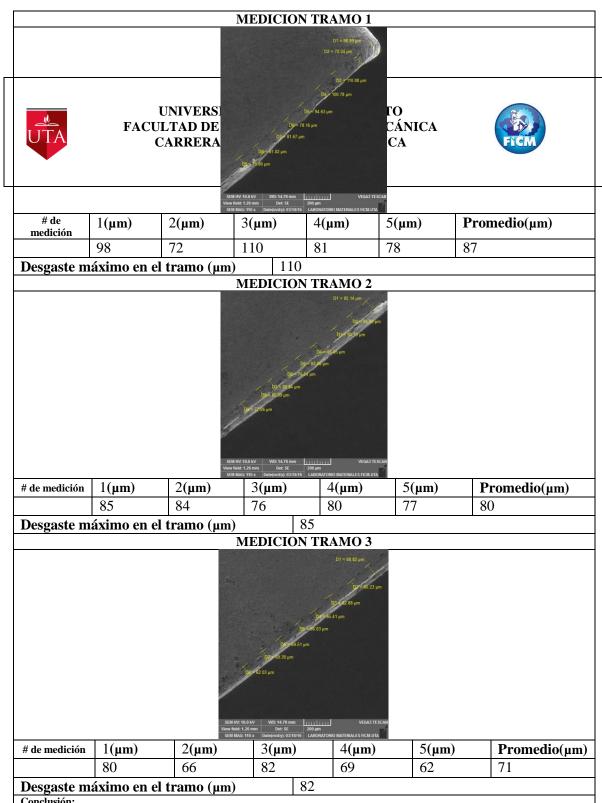
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(µm)	Promedio(µm)
	111	90	84	81	90	91

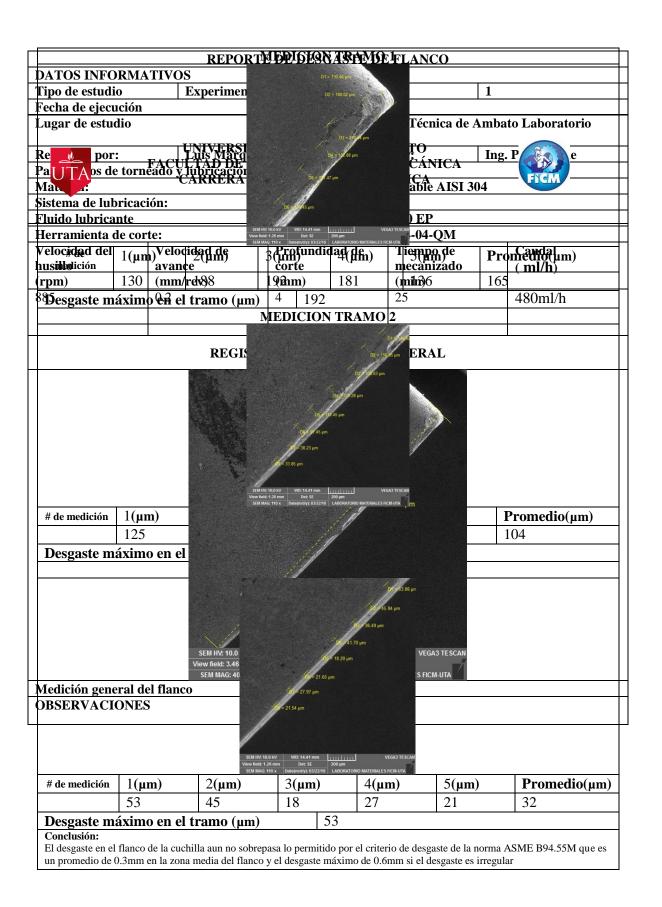

Desgaste máximo en el tramo (µm) 111

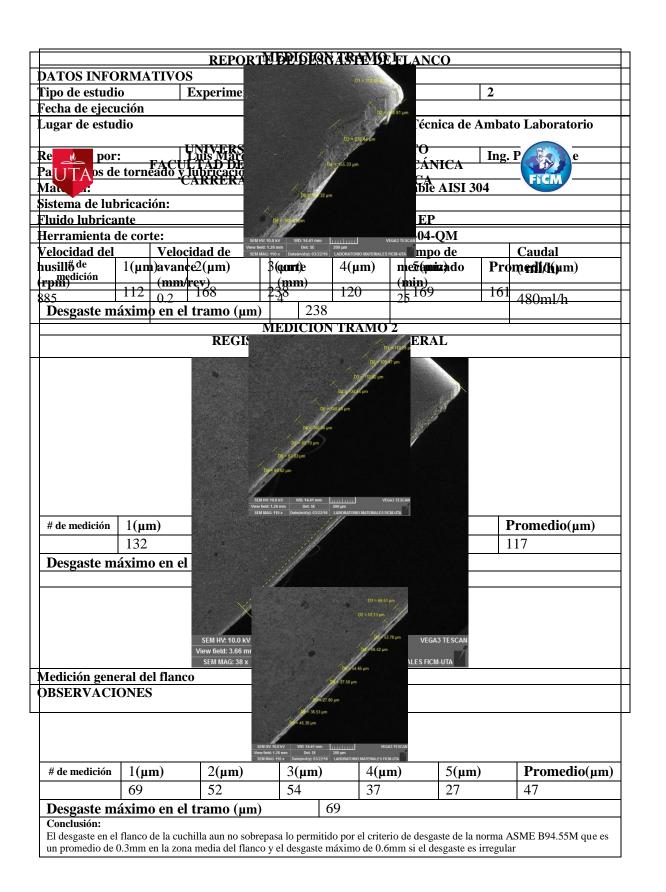

MEDICION TRAMO 3


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	102	94	77	71	28	74

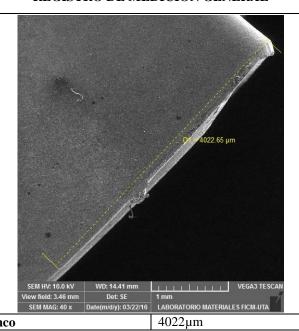
Desgaste máximo en el tramo (µm) 102




	REPOR'	TE DE DESC	GASTE DI	E FLANCO		
DATOS INFORMA	ATIVOS					
Tipo de estudio Experimental			Item	tem 3		
Fecha de ejecución			2016/03/23			
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM			
Realizado por: Luis Márquez			Revisado por: Ing.		Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:		Acero Inoxidable AISI 304				
Sistema de lubricac		MQL				
Fluido lubricante		Coolube 2210 EP				
Herramienta de con		SNMG-12-04-04-QM				
Velocidad del Velocidad de Profundi			dad de	Tiempo de	Caudal	
husillo	avance corte			mecanizado	(ml/h)	
(rpm)	(mm/rev)	(mm)		(min)		
885	0.2	4		20	480ml/h	

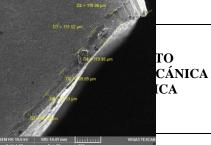


Medición general del flanco 4019μm OBSERVACIONES



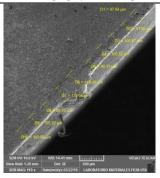
Conclusión:

	REPOR	TE DE DESC	GASTE DI	E FLANCO		
DATOS INFORMA	ATIVOS					
Tipo de estudio	Experiment	al	Item		3	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM			
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubricac	ción:		MQL			
Fluido lubricante			Coolube 2210 EP			
Herramienta de con	rte:		SNMG-1	2-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(ml/h)	
(rpm)	(mm/rev)	(mm)		(min)		
885	0.2	4		25	480ml/h	



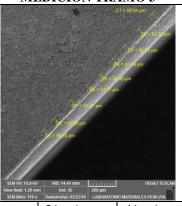
Medición general del flanco OBSERVACIONES

UNIVERSI FACULTAD DE CARRERA



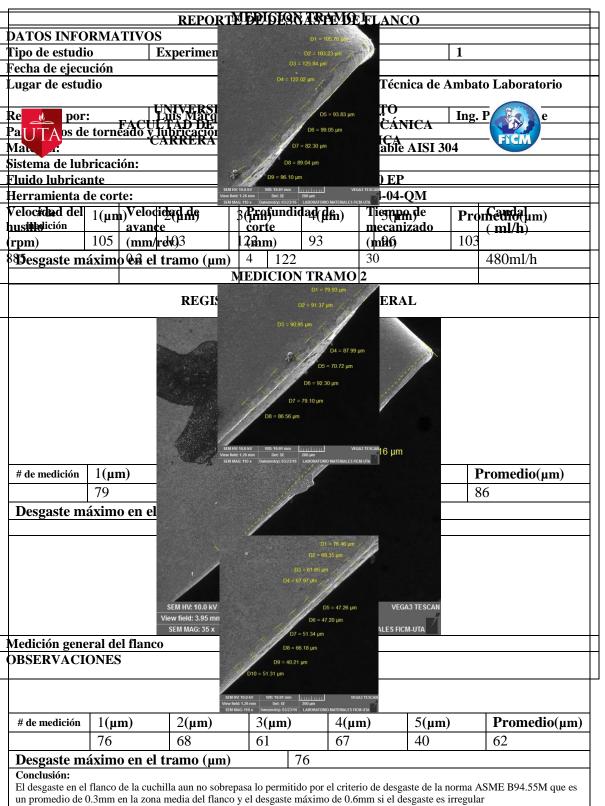
				LABORATORIO MATERIALES FICM-UTA	/1	
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	202	119	131	109	96	131

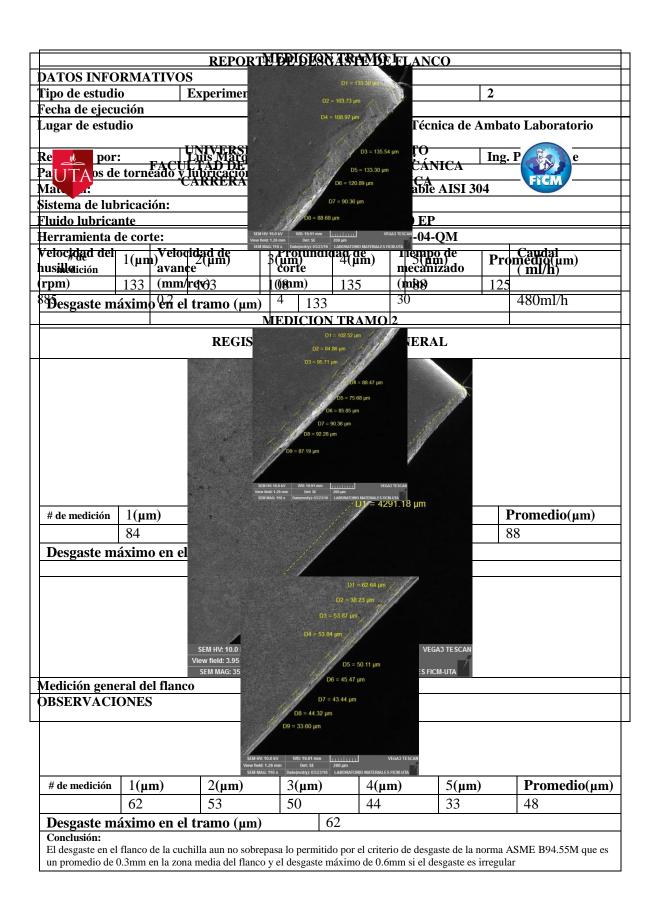
Desgaste máximo en el tramo (µm) 238


MEDICION TRAMO 2

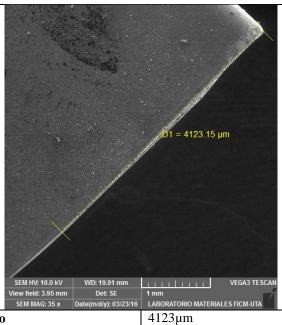
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(µm)	Promedio(µm)
	97	100	149	105	103	110

Desgaste máximo en el tramo (µm)

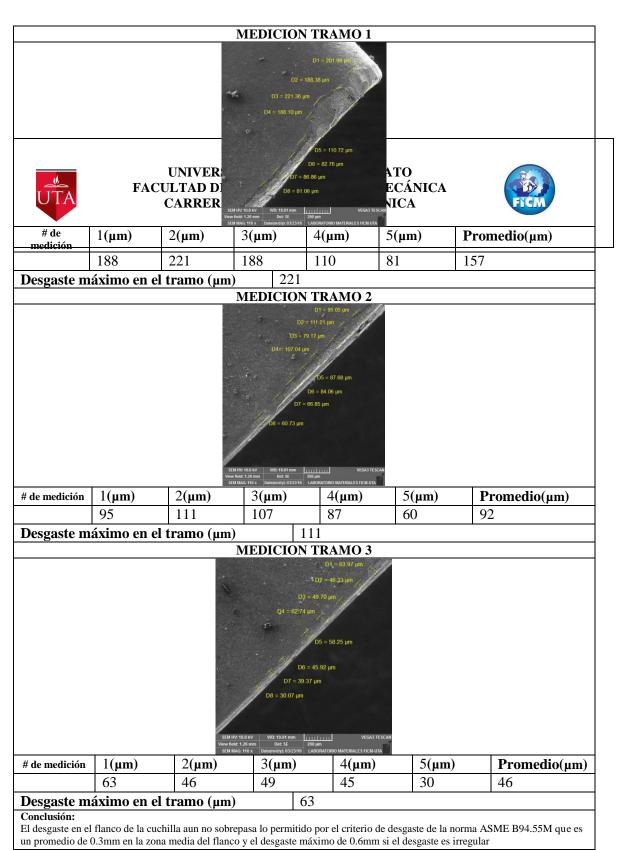

149 MEDICION TRAMO 3



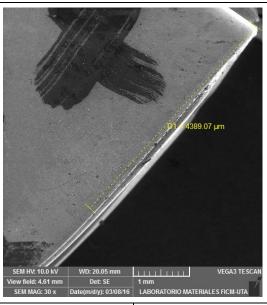
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	68	62	54	44	34	52


Desgaste máximo en el tramo (μm) 68

Conclusión:



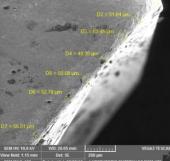
	REPORT	TE DE DESC	GASTE DE	E FLANCO	-	
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimenta	ıl	Item	em 3		
Fecha de ejecución		2016/03/2	23			
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM			
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:		Acero Inoxidable AISI 304				
Sistema de lubricaci	ón:		MQL			
Fluido lubricante			Coolube 2210 EP			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(ml/h)	
(rpm)	(mm/rev)	(mm)		(min)		
885	0.2	4		30	480ml/h	



Medición general del flanco OBSERVACIONES

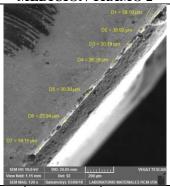
4.1.4.- FICHAS DE REPORTE DE FLANCO A 900rpm y 4mm DE PROFUNDIDAD POR EL MÉTODO MQL

	REPORT	E DE DESC	GASTE DE	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental		Item 1			
Fecha de ejecución		2016/03/2	23			
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM			
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:		Acero Inoxidable AISI 304				
Sistema de lubricac	ión:		MQL			
Fluido lubricante			Coolube 2210 EP			
Herramienta de cor	te:		SNMG-1	2-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(ml/h)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		5	480ml/h	



Medición general del flanco 4389μm
OBSERVACIONES

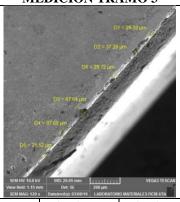
UNIVERS FACULTAD DE CARRERA



O CÁNICA

			MAG: 120 x Date(m/d/y): 03/08/16	LABORATORIO MATERIALES FICM-UT	TA	
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	78	51	63	50	55	59

Desgaste máximo en el tramo (µm) 78


MEDICION TRAMO 2

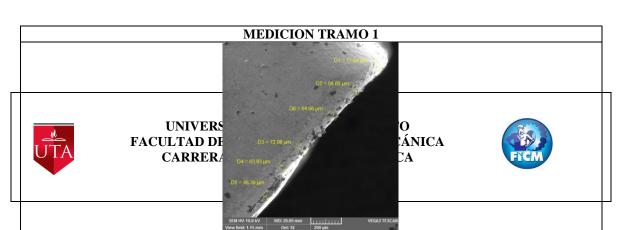
# de medición	1(μm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	58	30	26	23	19	31

Desgaste máximo en el tramo (µm)

58 MEDICION TRAMO 3

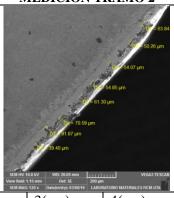
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	29	37	28	37	21	30

Desgaste máximo en el tramo (µm)


37

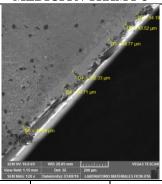
Conclusión:

	REPORT	E DE DESC	GASTE DE	FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimental		Item 2			
Fecha de ejecución		2016/03/2	23			
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM			
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:		Acero Inoxidable AISI 304				
Sistema de lubricaci	ión:		MQL			
Fluido lubricante			Coolube 2210 EP			
Herramienta de cor	te:		SNMG-1	2-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(ml/h)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		5	480ml/h	


Medición general del flanco OBSERVACIONES 4158µm

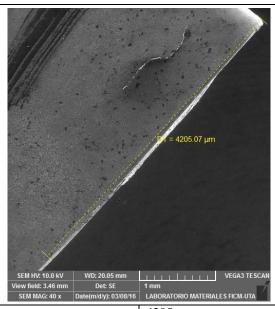
	SEM MAG: 120 x. Date(midly): 03:08:16 LABORATORIO MATERIALES FIX.M-UTA							
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)		
	77	58	64	63	48	62		

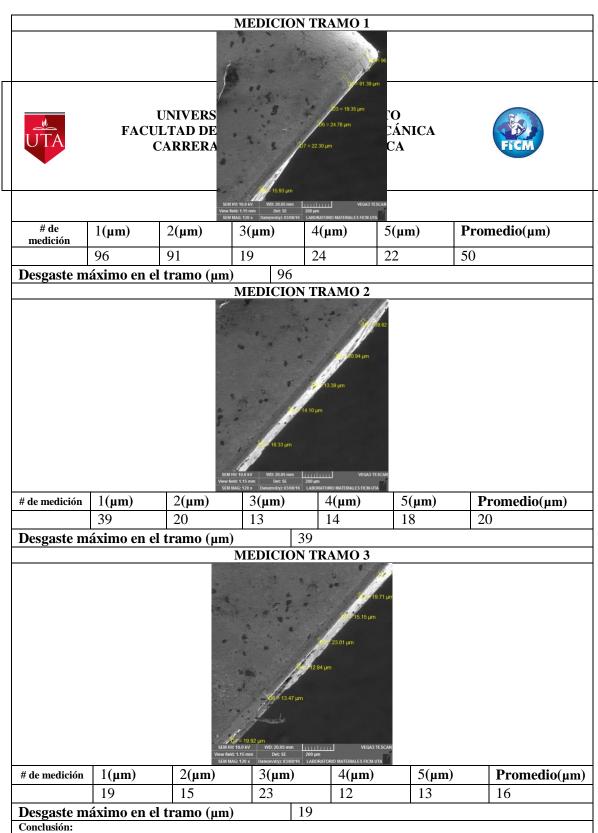
Desgaste máximo en el tramo (µm)


MEDICION TRAMO 2

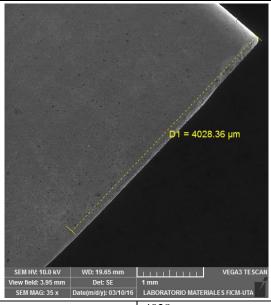
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	50	54	61	54	39	51

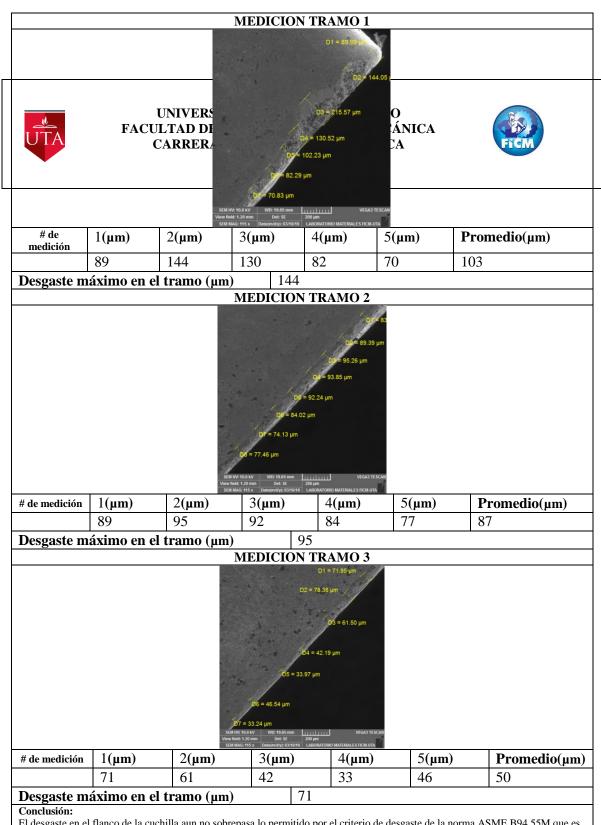
Desgaste máximo en el tramo (µm) 61

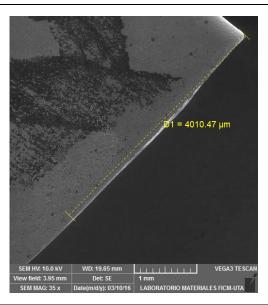

MEDICION TRAMO 3

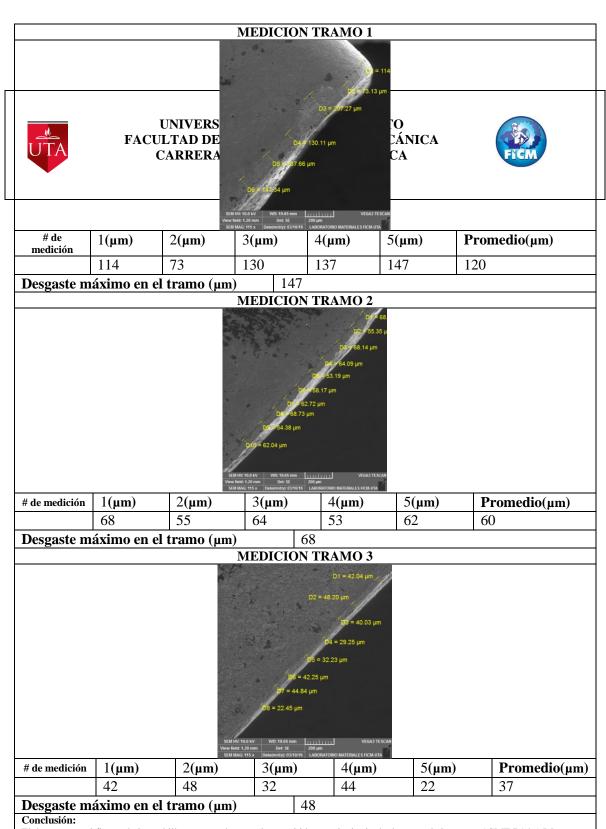

# de medición	1(µm)	2(µm)	3(µm))	4(µm)	5(μm)	Promedio(µm)
	34	43	49		63	49	47
Desgaste ma	áximo en el ti	ramo (µm)		49			

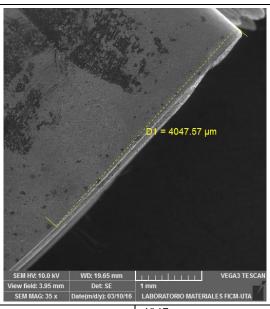
Conclusión:

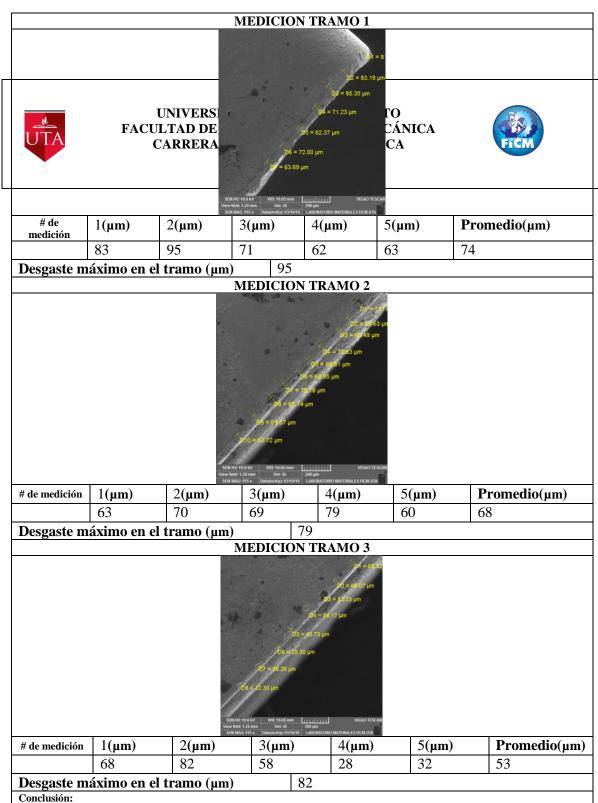

	REPORT	E DE DESC	GASTE DE	E FLANCO	
DATOS INFORMA	TIVOS				
Tipo de estudio	Experimental	l	Item		3
Fecha de ejecución			2016/03/2	23	
Lugar de estudio			Universion FICM	dad Técnica de A	Ambato Laboratorio
Realizado por:	do por: Luis Márquez			por:	Ing. Pablo Valle
Parámetros de torno	eado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubricaci	ión:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de cor	te:		SNMG-1	2-04-04-QM	
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	4		5	480ml/h

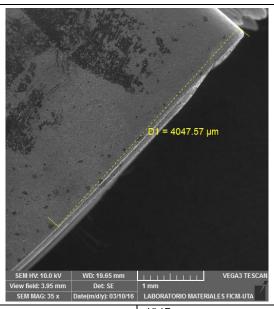

Medición general del flanco OBSERVACIONES 4205µm


	REPOR	RTE DE DESC	GASTE D	E FLANCO	
DATOS INFORM	ATIVOS				
Tipo de estudio	Experimen	tal	Item		1
Fecha de ejecución	1		2016/03/	/23	
Lugar de estudio			Universi FICM	idad Técnica de	Ambato Laboratorio
Realizado por:	Luis Márqu	Revisad	o por:	Ing. Pablo Valle	
Parámetros de tor	neado y lubricación	ı			
Material:			Acero Inoxidable AISI 304		
Sistema de lubrica	ción:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de co	orte:		SNMG-	12-04-04-QM	
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	4		10	480ml/h


Medición general del flanco OBSERVACIONES 4028µm

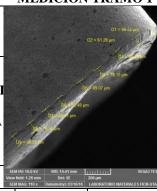

	REPORT	E DE DESC	GASTE DE	FLANCO	
DATOS INFORMA	TIVOS				
Tipo de estudio	Experimental		Item 2		2
Fecha de ejecución			2016/03/2	23	
Lugar de estudio			Universion FICM	lad Técnica de .	Ambato Laboratorio
Realizado por:	Realizado por: Luis Márquez			por:	Ing. Pablo Valle
Parámetros de torne	eado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubricac	ión:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de cor	te:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	4		10	480ml/h


Medición general del flanco4010μmOBSERVACIONES4010μm


	REPORT	E DE DESC	GASTE DE	E FLANCO	
DATOS INFORMA	TIVOS				
Tipo de estudio	Experimental	l	Item		3
Fecha de ejecución			2016/03/2	23	
Lugar de estudio			Universion FICM	dad Técnica de A	Ambato Laboratorio
Realizado por:	por: Luis Márquez			por:	Ing. Pablo Valle
Parámetros de torne	eado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubricaci	ión:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de cor	te:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	4		10	480ml/h

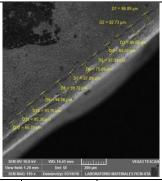
Medición general del flanco OBSERVACIONES 4047µm

	REPORT	E DE DESC	GASTE DE	E FLANCO	
DATOS INFORMAT	ΓIVOS				
Tipo de estudio	Experimental		Item 1		
Fecha de ejecución			2016/03/2	23	
Lugar de estudio			Universion FICM	dad Técnica de A	Ambato Laboratorio
Realizado por:	Luis Márquez	Z	Revisado	por:	Ing. Pablo Valle
Parámetros de tornes	ado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubricació	ón:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de corte	e:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	,
900	0.2	4		15	480ml/h



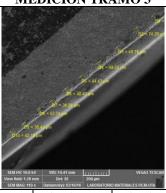
Medición general del flanco OBSERVACIONES 4047µm

UNIVERSI FACULTAD DE **CARRERA**


TO CÁNICA

		SE	M MAG: 110 x Date(m/d/y): 03/16/16	LABORATORIO MATERIALES FICM-UTA		
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	66	61	78	92	86	76

Desgaste máximo en el tramo (μm) 92

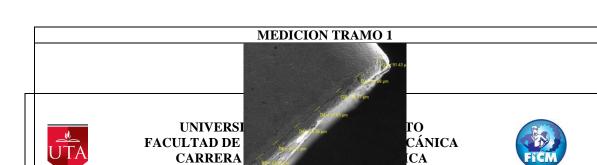

MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	86	82	75	94	66	80

Desgaste máximo en el tramo (µm)

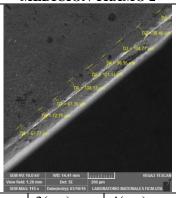
MEDICION TRAMO 3

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	74	49	48	38	30	47


82 Desgaste máximo en el tramo (µm)

	REPORT	E DE DESC	GASTE DI	E FLANCO	
DATOS INFORMAT	ΓIVOS				
Tipo de estudio	Experimental	l	Item 2		2
Fecha de ejecución			2016/03/2	23	
Lugar de estudio			Universion FICM	dad Técnica de A	Ambato Laboratorio
Realizado por:	Luis Márque	Luis Márquez Revisa			Ing. Pablo Valle
Parámetros de tornes	ado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubricació	ón:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de corto	e:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	4		15	480ml/h

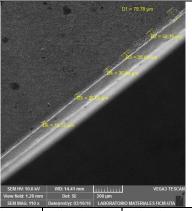
Medición general del flanco OBSERVACIONES



SEM HV: 10.0 kV W/D: 14.41 mm VEGA3 TE SCAI View field: 1.26 mm Det SE 20 g/m

				200 µm LABORATORIO MATERIALES FICM-UTA	7	
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	91	84	81	76	82	82

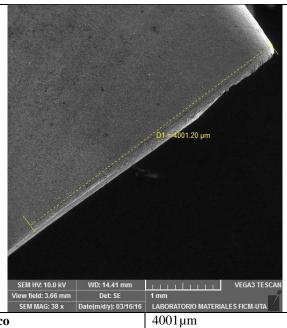
Desgaste máximo en el tramo (µm) 91


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	98	90	101	72	67	85

Desgaste máximo en el tramo (μm) 101

MEDICION TRAMO 3

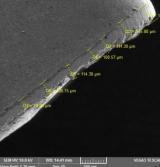


# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	79	50	39	26	18	42

Desgaste máximo en el tramo (μm) 79

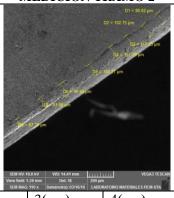
Conclusión:

	REPORT	TE DE DESC	GASTE DI	E FLANCO		
DATOS INFORMAT	ΓIVOS					
Tipo de estudio	Experimenta	1	Item	n 3		
Fecha de ejecución			2016/03/23			
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM				
Realizado por:	Luis Márque	ez Revisado por: Ing. Pal			Ing. Pablo Valle	
Parámetros de tornes	ado y lubricación					
Material:		Acero Inoxidable AISI 304				
Sistema de lubricació	ón:		MQL			
Fluido lubricante			Coolube	2210 EP		
Herramienta de corte	e:		SNMG-1	2-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(ml/h)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		15	480ml/h	



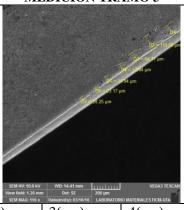
Medición general del flanco OBSERVACIONES

UNIVERSI FACULTAD DE **CARRERA**



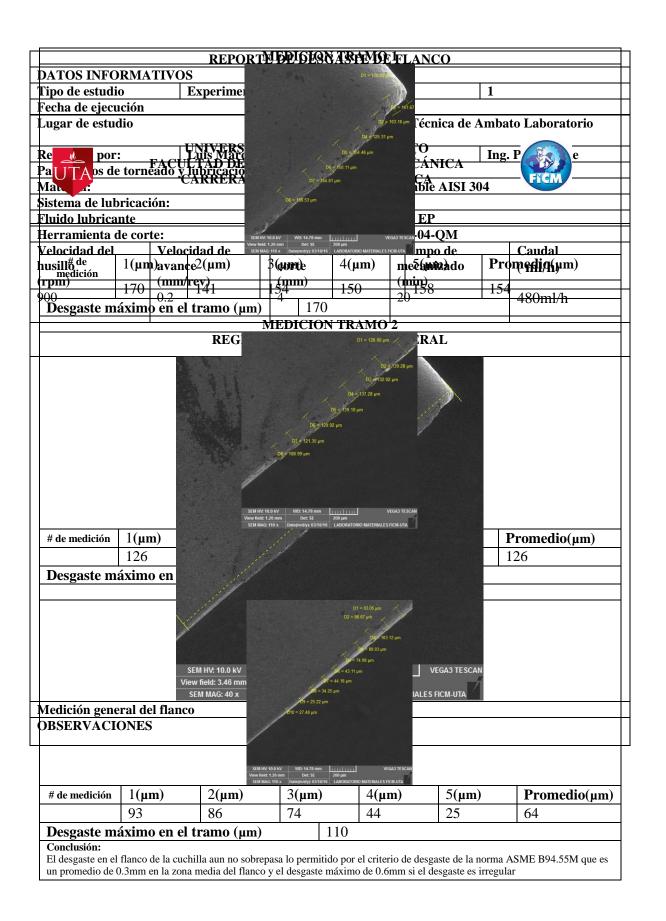
		SEI	M MAG: 110 x Date(m/d/y): 03/16/16	LABORATORIO MATERIALES FICM-UTA	44	
# de medición	1(µm)	2(µm)	3(µm)	4(μ m)	5(μm)	Promedio(µm)
	145	111	108	106	78	109

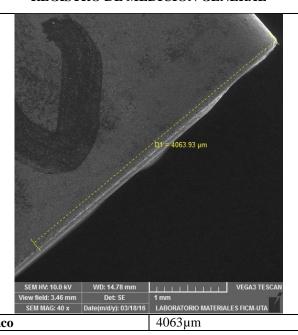
Desgaste máximo en el tramo (µm) 145


MEDICION TRAMO 2

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	88	102	107	96	63	91

Desgaste máximo en el tramo (µm) 107


MEDICION TRAMO 3

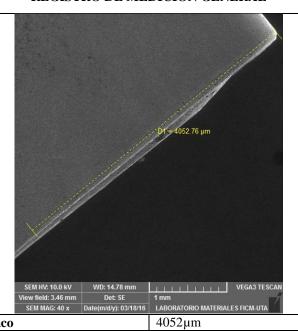

# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	110	64	57	37	23	58

Desgaste máximo en el tramo (µm)

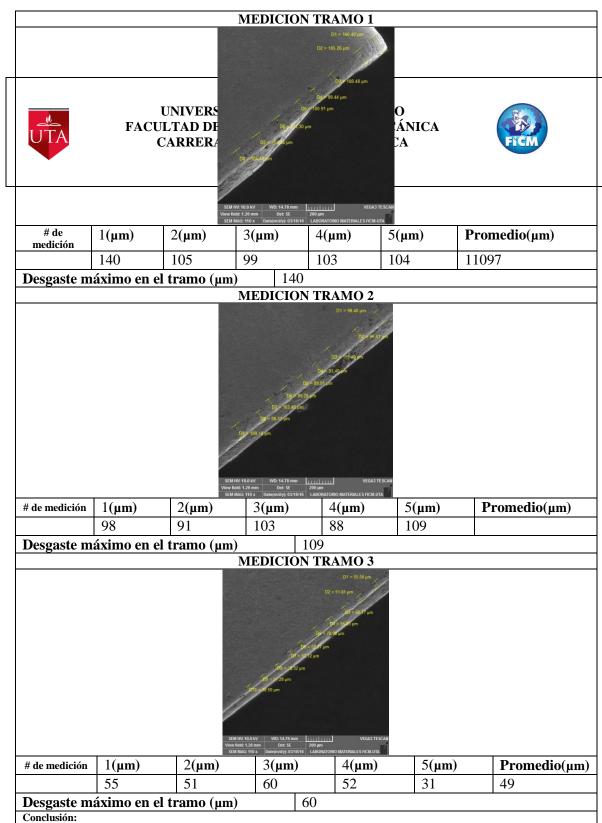
110

	REPOR	TE DE DESC	GASTE D	E FLANCO		
DATOS INFORM	IATIVOS					
Tipo de estudio	Experiment	al	Item		2	
Fecha de ejecució	n		2016/03/23			
Lugar de estudio			Universi FICM	idad Técnica de	Ambato Laboratorio	
Realizado por:	Luis Márqu	ıez	Revisado por: Ing. Pablo Valle			
Parámetros de tor	rneado y lubricación			·		
Material:			Acero Inoxidable AISI 304			
Sistema de lubrica	ación:		MQL			
Fluido lubricante			Coolube	2210 EP		
Herramienta de c	orte:		SNMG-	12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(ml/h)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		20	480ml/h	

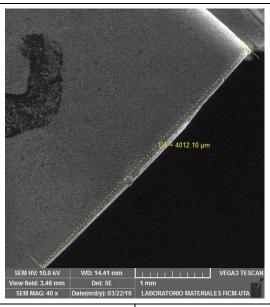
Medición general del flanco OBSERVACIONES



# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	68	58	76	53	49	60

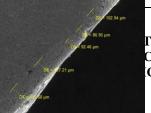

Desgaste máximo en el tramo (μm) 110

Conclusión:


	REPOR'	TE DE DESC	GASTE D	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimenta	al	Item		3	
Fecha de ejecución			2016/03/23			
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM				
Realizado por:	Luis Márqu	ez	Revisado por: Ing. Pa			
Parámetros de torn	eado y lubricación					
Material:		Acero Inoxidable AISI 304				
Sistema de lubricac	ión:		MQL			
Fluido lubricante			Coolube	2210 EP		
Herramienta de cor	te:		SNMG-1	12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(ml/h)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	4		20	480ml/h	

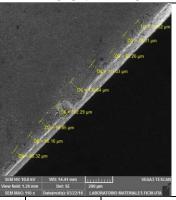
Medición general del flanco OBSERVACIONES

	REPO	RTE DE DESC	GASTE DI	E FLANCO		
DATOS INFORMA	ATIVOS					
Tipo de estudio	Experimen	ntal	Item		1	
Fecha de ejecución			2016/03/23			
Lugar de estudio	gar de estudio Universidad Técnica de Ambato La FICM				Ambato Laboratorio	
Realizado por:	alizado por: Luis Márquez			por:	Ing. Pablo Valle	
Parámetros de torn	neado y lubricación	n				
Material:			Acero Inoxidable AISI 304			
Sistema de lubrica	ción:		MQL			
Fluido lubricante			Coolube	2210 EP		
Herramienta de co	rte:		SNMG-1	2-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(ml/h)	
(rpm)	(mm/rev)	(mm)		(min)	, ,	
900	0.2	4		25	480ml/h	



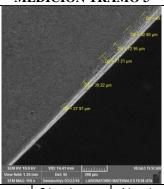
Medición general del flanco OBSERVACIONES 4012µm

UNIVERSI FACULTAD DE CARRERA


ΓΟ CÁNICA ICA

				LABORATORIO MATERIALES FICM-UTA		
# de medición	1(µm)	2(µm)	3(µm)	4(μm)	5(μm)	Promedio(µm)
	141	108	102	92	86	105

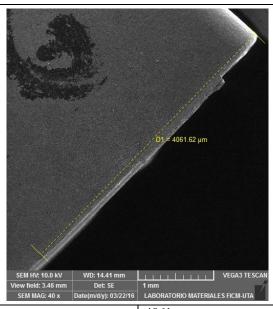
Desgaste máximo en el tramo (µm) 141


MEDICION TRAMO 2

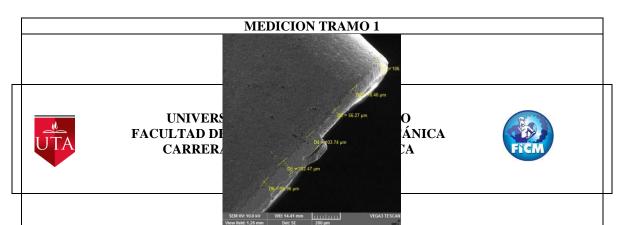
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	79	65	111	102	86	88

Desgaste máximo en el tramo (µm) 111

MEDICION TRAMO 3



# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	69	72	77	39	27	56


Desgaste máximo en el tramo (µm) 77

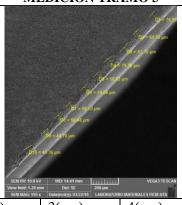
Conclusión:

	REPO	RTE DE DESC	GASTE DI	E FLANCO	
DATOS INFORMA	ATIVOS				
Tipo de estudio Experimental		ntal	Item 2		2
Fecha de ejecución		2016/03/23			
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM			
Realizado por: Luis Márquez		uez	Revisado por:		Ing. Pablo Valle
Parámetros de tori	neado y lubricació	n			
Material:		Acero Inoxidable AISI 304			
Sistema de lubrica		MQL			
Fluido lubricante		Coolube 2210 EP			
Herramienta de co	rte:		SNMG-1	2-04-04-QM	
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	, ,
900	0.2	4		25	480ml/h


Medición general del flanco OBSERVACIONES 4061µm

# de	1(um)	2(μm)	2()	4(um)	5(Promedio(µm)
medición	1 (μπ)	2(μπ)	3(μ m)	4(μπ)	5(μm)	1 Tomeuro(µm)
	106	76	56	103	95	87

Desgaste máximo en el tramo (µm) 106

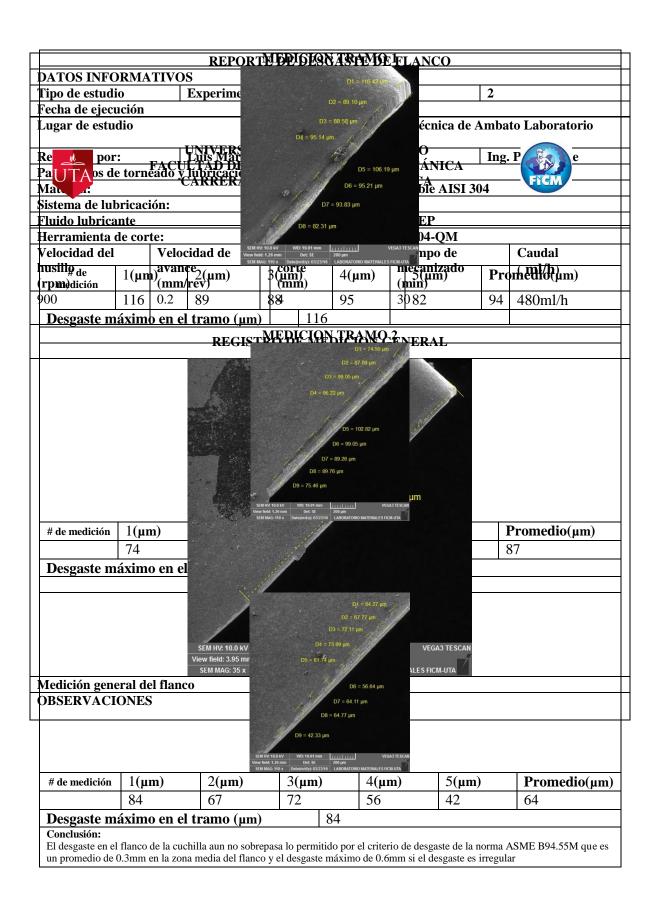

MEDICION TRAMO 2

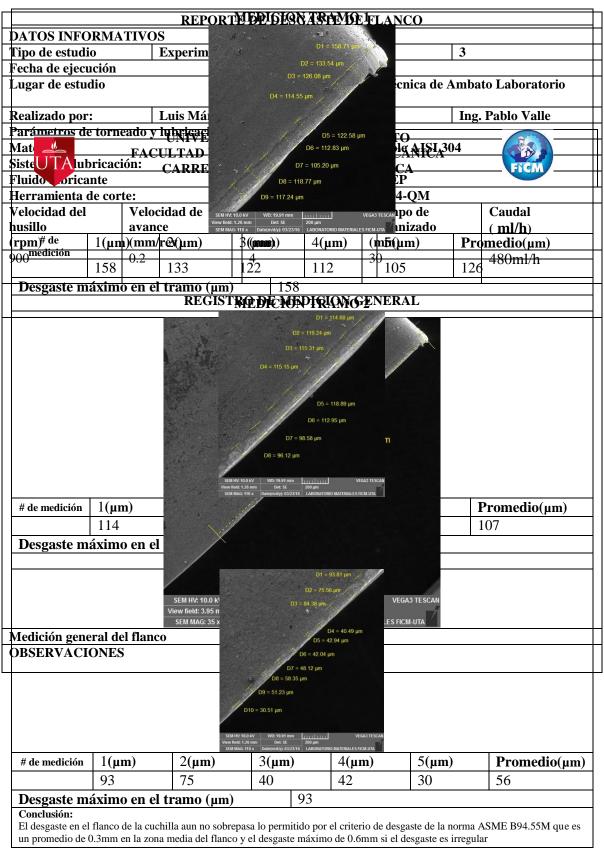
# de medición	1(µm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	109	125	93	81	65	94

Desgaste máximo en el tramo (μm) 125

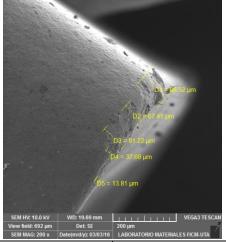
MEDICION TRAMO 3


# de medición	1(μm)	2(µm)	3(µm)	4(µm)	5(μm)	Promedio(µm)
	74	69	58	44	45	58


Desgaste máximo en el tramo (µm)

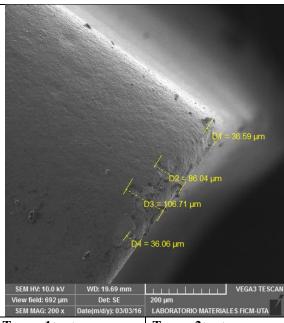

74

Conclusión:



4.1.5.- FICHAS DE REPORTE DE FLANCO A 885rpm y 0.15mm DE PROFUNDIDAD POR EL MÉTODO MQL

REPORTE DE DESGASTE DE FLANCO						
DATOS INFORMATIVOS						
Tipo de estudio	Experimental		Item		1	
Fecha de ejecución	UNIVERSIDA CULTAD DE IN	AD TÉCNI	2016/03/	NBATO.		
Lu estudio FAC	CAPPERA DE	GENIERÍ E INCENT	A CHIVETSI EBIGMTE	PANECANICA CÁNICA	Ambato I	
Real do por:	CARRERA DI Luis Márquez	INGENE	Revisado	por:	Ing. Pal.	
Parámetros de torneado						
Material informativ	OS		Acero Inoxidable AISI 304			
Sistema de lubricación:	Experimental		Inundaci	lón	2	
Fluido dubricanten			Tzicut/23) <u>9</u> 9 ws		
Herramienta de corte:			SNMG-1	2194-94-QM de	Ambato Laboratorio	
Velocidad del Vel	ocidad de	Profundi	da c ree _M	Tiempo de	Caudal	
kealizado por:	nce Luis Márquez	corte	Revisad	mecanizado o por	Ing ^(lt/min) Valle	
(rpm) Parametros de torneado	n/rev) v lubricación	(mm)	•	(min)		
Material: 0.2	V	0.15	Acero I	noxidable AISI	304 10	
Sistema de lubricación: REGISTRO DE MEDILIDIO AGIÓNERAL						
Fluido lubricante	_			2000 w/s		



Medició	n del tramo # (µm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
		96	74	13
Desgaste máximo zona media(µm)		81		

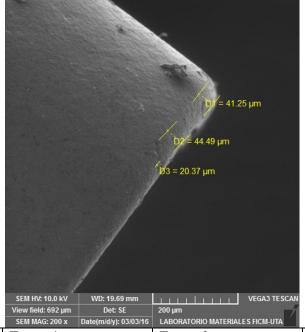
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

Herramienta de co	orte:	SNMG-	SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundidad de	Tiempo de	Caudal	
husillo	avance	corte	mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)	(min)		
885	0.2	0.15	5	10	

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	38	96	36
Desgaste máximo zona media(μm)		106	

Conclusión:

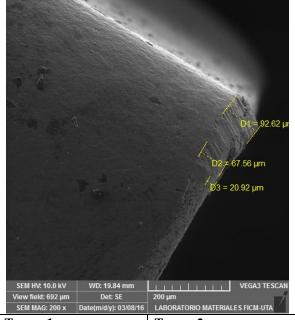

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO							
DATOS INFORMATIVOS							
Tipo de estudio	E	Experimental		Item		3	
Fecha de ejecución	1			2016/03/2	23		
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM				
Realizado por:	I	Luis Márquez		Revisado	por:	Ing.	Pablo Valle
Parámetros de tori	neado y l	ubricación					
Material:				Acero Inoxidable AISI 304			
Sistema de lubrica	ción:			Inundación			
Fluido lubricante				Tricut 2000 ws			
Herramienta de co	rte:			SNMG-12-04-04-QM			
Velocidad del	Veloci	dad de	Profundi	dad de	Tiempo de		Caudal
husillo	avance	e	corte		mecanizado		(lt/min)
(rpm)	(mm/r	ev)	(mm)		(min)		
885	0.2		0.15		5		10

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	41	44	20
Desgaste máximo zona media(um)		44	_

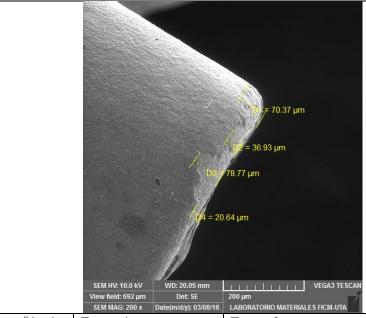
Conclusión:


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

	REPOR	TE DE DESC	GASTE D	E FLANCO	
DATOS INFORM		-			
Tipo de estudio	Experimenta	al	Item		1
Fecha de ejecución	n		2016/03/	/23	
Lugar de estudio			Univers	idad Técnica de	Ambato Laboratorio
			FICM		
Realizado por:	Luis Márqu	ez	Revisad	o por:	Ing. Pablo Valle
Parámetros de tor	neado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubrica	ación:		Inundación		
Fluido lubricante			Tricut 2000 w/s		
Herramienta de c	orte:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(lt/min)
(rpm)	(mm/rev)	(mm)		(min)	
885	0.2	0.15	•	10	10
	REGIS	TRO DE ME	DICION	GENERAL	

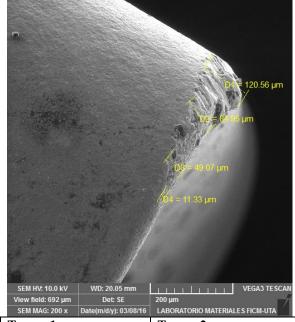
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)	
	92	67	20	
Desgaste máximo zona media(µm)		67		


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO						
DATOS INFORMATIVOS						
Tipo de estudio	adio Experimental				2	
Fecha de ejecució	ón .		2016/03	/23		
Lugar de estudio			Univers	idad Técnica de	Ambato Laboratorio	
			FICM			
Realizado por:	Luis Márqu	ez	Revisad	o por:	Ing. Pablo Valle	
Parámetros de to	rneado y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubric	ación:		Inundación			
Fluido lubricante	;		Tricut 2000 ws			
Herramienta de o	corte:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
885	0.2	0.15		10	10	
REGISTRO DE MEDICION GENERAL						

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	70	57	20
Desgaste máximo zona media(μm)		78	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO						
DATOS INFORMATIVOS						
Tipo de estudio		Experimental		Item		3
Fecha de ejecución				2016/03/2	23	
Lugar de estudio				Universion	dad Técnica de A	Ambato Laboratorio
				FICM		
Realizado por:		Luis Márquez		Revisado	por:	Ing. Pablo Valle
Parámetros de torne	eado y	lubricación				
Material:				Acero Inoxidable AISI 304		
Sistema de lubricaci	ón:			Inundación		
Fluido lubricante				Tricut 2000 w/s		
Herramienta de cort	te:			SNMG-12-04-04-QM		
Velocidad del	Velo	cidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avar	ice	corte		mecanizado	(lt/min)
(rpm)	(mm	/rev)	(mm)		(min)	
885	0.2		0.15		10	10
REGISTRO DE MEDICION GENERAL						

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)	
	120	66	11	
Desgaste máximo zona media(µm)		84		

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

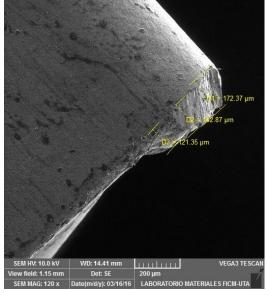

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** Tipo de estudio **Experimental Item** 1 Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: Inundación Fluido lubricante Tricut 2000 ws Herramienta de corte: SNMG-12-04-04-QM Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance corte mecanizado (lt/min) (mm/rev) (rpm) (mm) (min) 10 2835 0.2 0.15 15 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	96	92	55
Desgaste máximo zona media(µm)		92	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

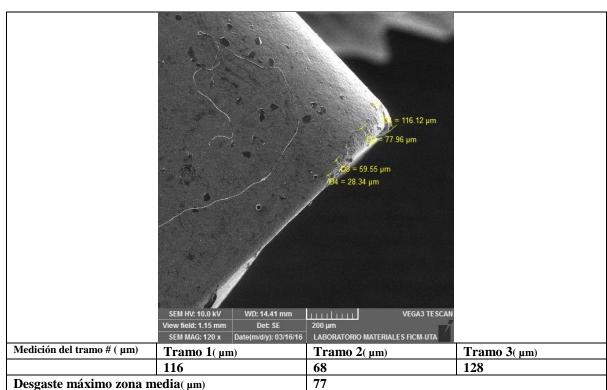

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Experimental 2 Tipo de estudio Item Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: Inundación Tricut 2000 w/s Fluido lubricante SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Caudal Tiempo de husillo mecanizado (lt/min) avance corte (min) (mm/rev) (rpm) (mm) 885 0.2 0.15 15 10 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	172	142	121
Desgaste máximo zona media(µm)		142	

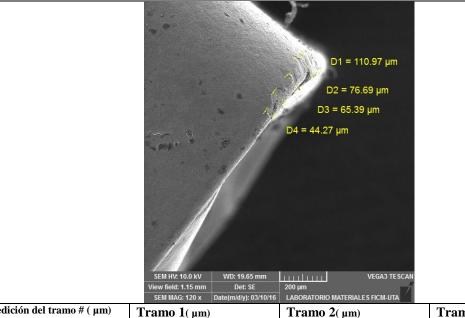
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio 3 **Experimental Item** 2016/03/23 Fecha de ejecución Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Ing. Pablo Valle Revisado por: Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: Inundación Tricut 2000 ws Fluido lubricante Herramienta de corte: SNMG-12-04-04-QM Caudal Velocidad del Velocidad de Profundidad de Tiempo de mecanizado husillo avance corte (lt/min) (rpm) (mm/rev) (mm) (min) 885 15 10 0.2 0.15 REGISTRO DE MEDICION GENERAL

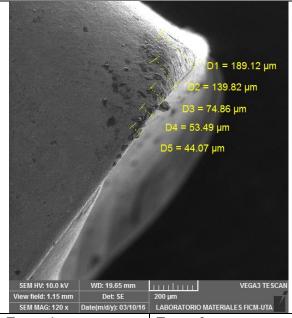
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** Tipo de estudio **Experimental** Item Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: Inundación Tricut 2000 w/s Fluido lubricante Herramienta de corte: SNMG-12-04-04-QM Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo mecanizado (lt/min) avance corte (mm/rev) (rpm) (mm) (min) 885 0.2 0.15 20 10 REGISTRO DE MEDICION GENERAL

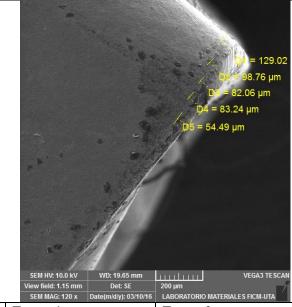
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	110	70	44
Desgaste máximo zona m	edia(µm)	76	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO						
DATOS INFORMA	DATOS INFORMATIVOS					
Tipo de estudio		Experimental		Item		2
Fecha de ejecución				2016/03/2	23	
Lugar de estudio		Universion FICM	dad Técnica de A	Ambato Laboratorio		
Realizado por:		Luis Márque	Z	Revisado	por:	Ing. Pablo Valle
Parámetros de torneado y lubricación						
Material:				Acero Inoxidable AISI 304		
Sistema de lubricaci	ión:			Inundación		
Fluido lubricante				Tricut 2000 ws		
Herramienta de cor	te:			SNMG-12-04-04-QM		
Velocidad del	Velo	cidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avan	ice	corte		mecanizado	(lt/min)
(rpm)	pm) (mm/rev) (mm)		(mm)		(min)	
885	0.2		0.15		20	10
REGISTRO DE MEDICION GENERAL						

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	189	88	44
Desgaste máximo zona media(µm)		139	

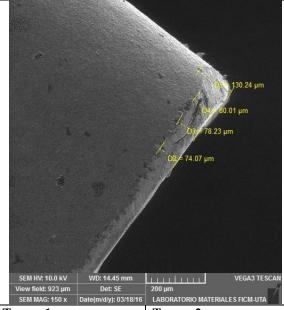

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO						
		REPORTE	DE DESC	JASTE DE	EFLANCO	
DATOS INFORMA	TIVOS					
Tipo de estudio	Ex	perimental		Item		3
Fecha de ejecución	•			2016/03/2	23	
Lugar de estudio				Universion	dad Técnica de A	Ambato Laboratorio
				FICM		
Realizado por:	Lu	is Márquez		Revisado	por:	Ing. Pablo Valle
Parámetros de torneado y lubricación						
Material:				Acero Inoxidable AISI 304		
Sistema de lubricaci	ión:			Inundación		
Fluido lubricante				Tricut 2000 w/s		
Herramienta de cor	te:			SNMG-12-04-04-QM		
Velocidad del	Velocida	ad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance		corte		mecanizado	(lt/min)
(rpm)	(mm/rev	v)	(mm)		(min)	
885	0.2		0.15		20	10
REGISTRO DE MEDICION GENERAL						

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	129	87	54
Desgaste máximo zona media(µm)		98	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

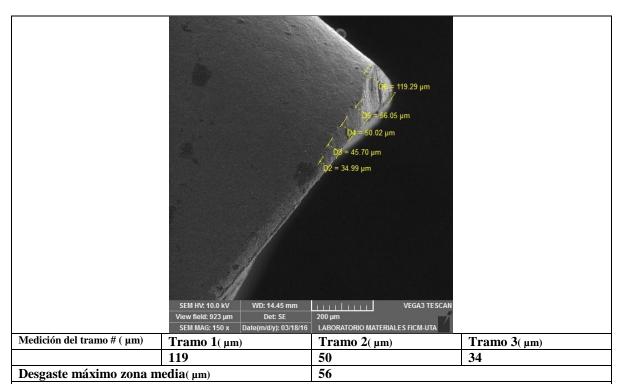

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** Tipo de estudio Experimental Item 1 Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio Realizado por: Luis Márquez Ing. Pablo Valle Revisado por: Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: Inundación Tricut 2000 w/s Fluido lubricante SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance mecanizado (lt/min) corte (rpm) (mm/rev) (mm) (min) 10 885 0.2 0.15 25 REGISTRO DE MEDICION GENERAL

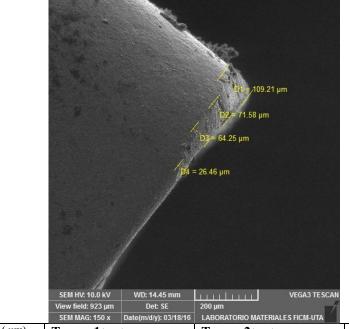
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	130	79	74
Desgaste máximo zona m	edia(µm)	80	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** Tipo de estudio **Experimental Item** 2 Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Luis Márquez Realizado por: Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: Inundación Fluido lubricante Tricut 2000 w/s Herramienta de corte: SNMG-12-04-04-QM Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance corte mecanizado (lt/min) (mm/rev) (min) (rpm) (mm) 885 0.2 0.15 25 10 REGISTRO DE MEDICION GENERAL

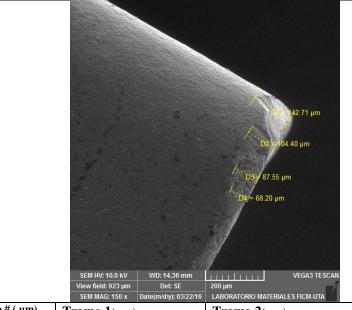

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

	REPOR	TE DE DESC	GASTE D	E FLANCO	
DATOS INFORM	MATIVOS				
Tipo de estudio Experimental		Item		3	
Fecha de ejecució	on		2016/03/23		
Lugar de estudio			Universi	idad Técnica de A	Ambato Laboratorio
G			FICM		
Realizado por: Luis Márquez			Revisad	o por:	Ing. Pablo Valle
Parámetros de torneado y lubricación					
Material:			Acero Inoxidable AISI 304		
Sistema de lubric	ación:		Inundación		
Fluido lubricante	}		Tricut 2000 ws		
Herramienta de c	corte:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(lt/min)
(rpm)	(mm/rev)	(mm)		(min)	
885	0.2	0.15		25	10
REGISTRO DE MEDICION GENERAL					

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	109	67	26
Desgaste máximo zona media(µm)		71	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

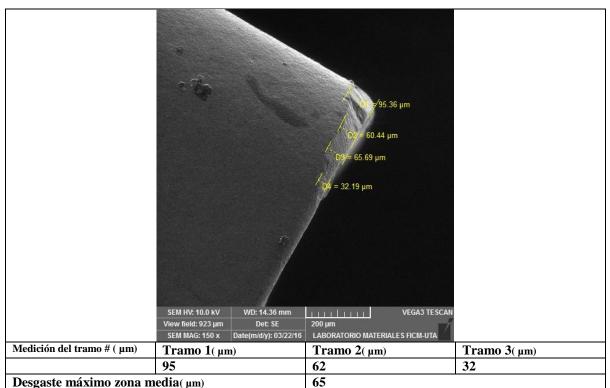

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio **Experimental** 1 **Item** Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Ing. Pablo Valle Realizado por: Luis Márquez Revisado por: Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: Inundación Fluido lubricante Tricut 2000 w/s SNMG-12-04-04-QM Herramienta de corte: Profundidad de Caudal Velocidad del Velocidad de Tiempo de husillo avance mecanizado (lt/min) corte (mm/rev) (min) (rpm) (mm) 885 0.2 0.15 30 10 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	142	94	68
Desgaste máximo zona media(µm)		104	

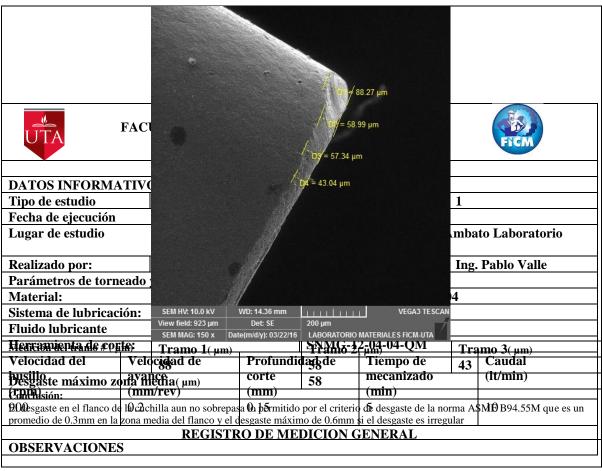
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

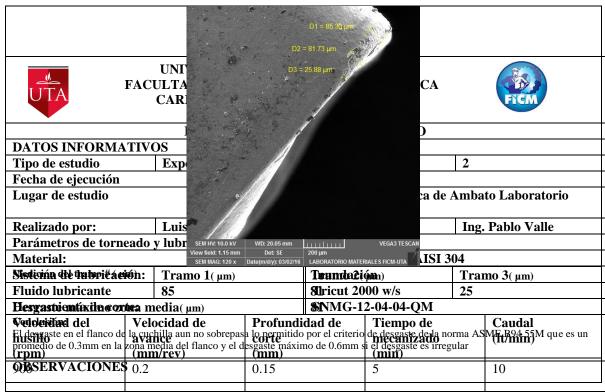

OBSERVACIONES

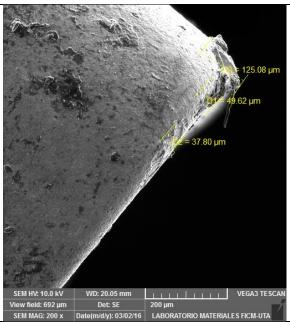
UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** Item Tipo de estudio **Experimental** 2 Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Ing. Pablo Valle Revisado por: Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: Inundación Tricut 2000 ws Fluido lubricante SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance mecanizado (lt/min) corte (rpm) (mm/rev) (mm) (min) 10 885 0.2 0.15 30 REGISTRO DE MEDICION GENERAL

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES


UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA



REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** Tipo de estudio **Experimental** Item 3 Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Ing. Pablo Valle Revisado por: Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: Inundación Tricut 2000 w/s Fluido lubricante SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance mecanizado (lt/min) corte (mm/rev) (rpm) (mm) (min) 0.15 10 885 0.2 30 REGISTRO DE MEDICION GENERAL

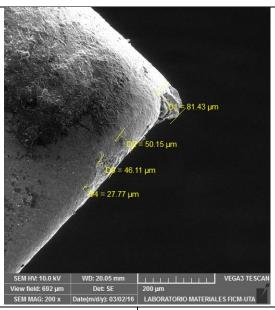
4.1.6.- FICHAS DE REPORTE DE FLANCO A 900rpm y 0.15mm DE PROFUNDIDAD POR EL METODO DE INUNDACIÓN

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	125	49	37
Desgaste máximo zona media(µm)		49	

Conclusión:

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES


UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO

DATOS INFORMATIVO	OS 1	89		
Tipo de estudio	Experimental	Item	3	

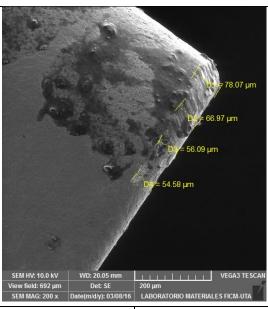
Fecha de ejecución 2016/03/23					
Lugar de estudio			Universion	dad Técnica de	Ambato Laboratorio
			FICM		
Realizado por:	Luis Márque	Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación					
Material:	·	•	Acero Inoxidable AISI 304		
Sistema de lubricación:			Inundación		
Fluido lubricante			Tricut 2000 ws		
Herramienta de co	rte:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(lt/min)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	0.15		5	10
1					

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	81	48	27
Desgaste máximo zona m	edia(µm)	48	

Conclusión:

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES



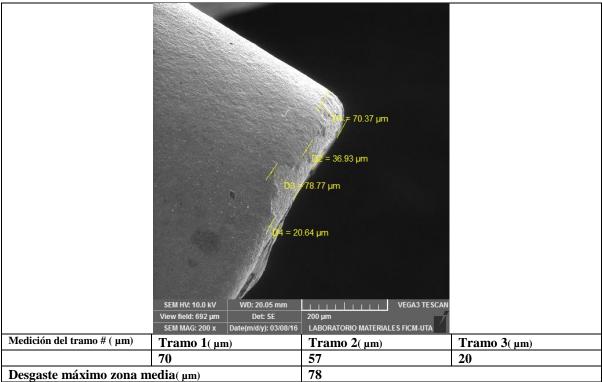
UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio **Experimental** Item 2016/03/23 Fecha de ejecución Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación **Material:** Acero Inoxidable AISI 304 Sistema de lubricación: Inundación Fluido lubricante Tricut 2000 w/s

Herramienta de con	rte:	SNMG-1	SNMG-12-04-04-QM			
Velocidad del	el Velocidad de Profundid		Tiempo de	Caudal		
husillo	avance	corte	mecanizado	(lt/min)		
(rpm)	(mm/rev)	(mm)	(min)			
900	0.2	0.15	10	10		

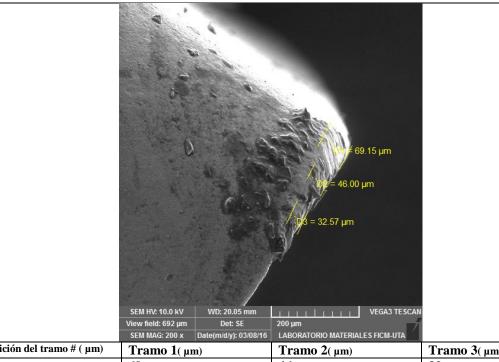
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	78	61	54
Desgaste máximo zona media(µm)		66	

Conclusión:


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO						
DATOS INFORMA	TIVOS					
Tipo de estudio Experimental			Item		2	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM			
Realizado por:	Luis Márque	ez	Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubricaci	ión:		Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	0.15		10	10	
	RECISTRO DE MEDICION CENERAL					

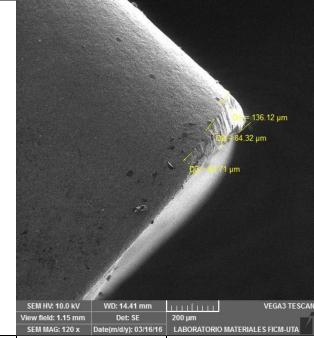

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

- 	REP	ORTE DE DES	GASTE D	E FLANCO		
DATOS INFORM	MATIVOS					
Tipo de estudio Experimental		Item		3		
Fecha de ejecución			2016/03	/23		
Lugar de estudio				Universidad Técnica de Ambato Laboratorio		
<u></u>			FICM		1	
Realizado por:	Luis Má	rquez	Revisad	o por:	Ing. Pablo Valle	
Parámetros de to	rneado y lubricac	ión				
Material:			Acero Inoxidable AISI 304			
Sistema de lubric	ación:		Inundación			
Fluido lubricante	:		Tricut 2000 w/s			
Herramienta de o	corte:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(lt/min)	
(rpm)	(mm/rev)	(mm)		(min)		
900	0.2	0.15		10	10	
	REC	GISTRO DE ME	DICION	GENERAL		

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	69	46	32
Desgaste máximo zona media(um)		46	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

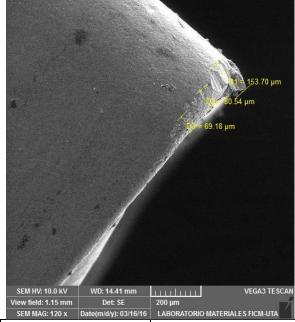

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Experimental Tipo de estudio Item 1 Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Acero Inoxidable AISI 304 **Material:** Sistema de lubricación: Inundación Fluido lubricante Tricut 2000 ws Herramienta de corte: SNMG-12-04-04-QM Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo mecanizado (lt/min) avance corte (rpm) (mm/rev) (mm) (min) 900 0.2 0.15 15 10 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)	
	136	84	63	
Desgaste máximo zona media(µm)		84		

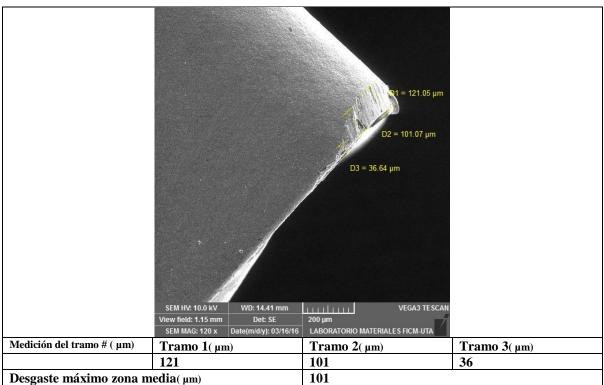
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

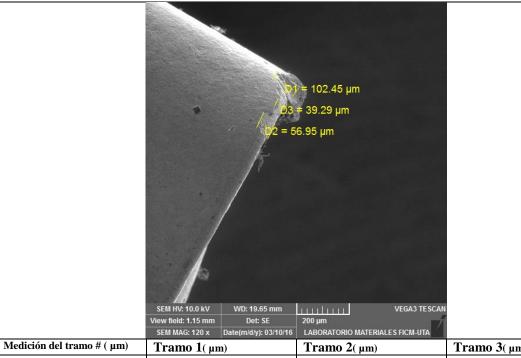
REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** Tipo de estudio Experimental Item 2 Fecha de ejecución 2016/03/23 Universidad Técnica de Ambato Laboratorio Lugar de estudio **FICM** Realizado por: Luis Márquez Ing. Pablo Valle Revisado por: Parámetros de torneado y lubricación Acero Inoxidable AISI 304 **Material:** Sistema de lubricación: Inundación Fluido lubricante Tricut 2000 w/s SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance corte mecanizado (lt/min) (rpm) (mm/rev) (mm) (min) 900 0.15 10 0.2 15 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	153	80	69
Desgaste máximo zona media(µm)		80	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

	REPOI	RTE DE DESC	GASTE D	E FLANCO	
DATOS INFORM	IATIVOS				
Tipo de estudio Experimental		Item		3	
Fecha de ejecució	n		2016/03/	/23	
Lugar de estudio			Universi FICM	idad Técnica de A	Ambato Laboratorio
Realizado por:	Luis Márq	uez	Revisad	o por:	Ing. Pablo Valle
Parámetros de torneado y lubricación					
Material:			Acero Inoxidable AISI 304		
Sistema de lubric	ación:		Inundación		
Fluido lubricante			Tricut 2000 ws		
Herramienta de c	orte:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo (rpm)	avance (mm/rev)	corte (mm)		mecanizado (min)	(lt/min)
900	0.2	0.15		15	10
REGISTRO DE MEDICION GENERAL					

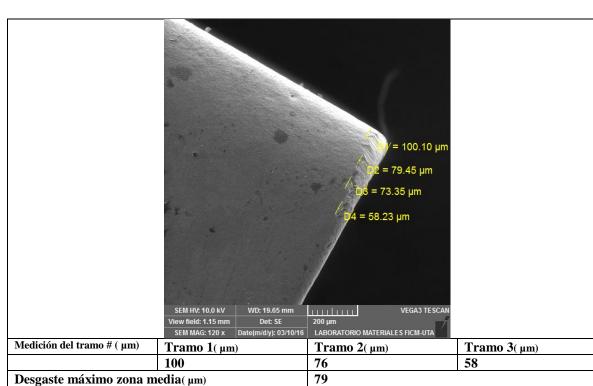

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

•	REPORT	E DE DESC	GASTE DI	E FLANCO		
DATOS INFORMAT	IVOS					
Tipo de estudio	Experimental		Item		1	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio			Universion FICM	dad Técnica de A	Ambato Laboratorio	
Realizado por:	Luis Márquez	Z	Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubricación	ı:		Inundación			
Fluido lubricante			Tricut 2000 w/s			
Herramienta de corte:	}		SNMG-1	2-04-04-QM		
Velocidad del V	elocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo a	vance	corte		mecanizado	(lt/min)	
(rpm) (1	mm/rev)	(mm)		(min)		
900 0	0.2	0.15	•	20	10	
	REGISTRO DE MEDICION GENERAL					

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)	
	102	39	56	
Desgaste máximo zona media(um)		39		

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** Tipo de estudio 2 **Experimental** Item Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Luis Márquez Revisado por: Ing. Pablo Valle Realizado por: Parámetros de torneado y lubricación **Material:** Acero Inoxidable AISI 304 Sistema de lubricación: Inundación Fluido lubricante Tricut 2000 ws SNMG-12-04-04-QM Herramienta de corte: Profundidad de Caudal Velocidad del Velocidad de Tiempo de husillo mecanizado (lt/min) avance corte (rpm) (mm/rev) (mm) (min) 900 0.2 0.15 20 10 REGISTRO DE MEDICION GENERAL

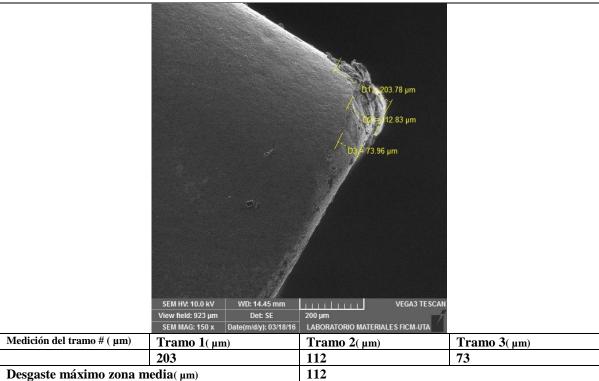
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

•	REPOR'	TE DE DESC	GASTE D	E FLANCO		
DATOS INFORMAT						
Tipo de estudio	Experimenta	al	Item		3	
Fecha de ejecución			2016/03/23			
Lugar de estudio			Univers	Universidad Técnica de Ambato Laboratorio		
				FICM		
Realizado por:	Luis Márque	Luis Márquez Revisado por: Ing. Pablo Vall			Ing. Pablo Valle	
Parámetros de tornea	do y lubricación					
Material:			Acero Inoxidable AISI 304			
Sistema de lubricación:			Inundación			
Fluido lubricante			Tricut 2000 w/s			
Herramienta de corte:			SNMG-12-04-04-QM			
Velocidad del V	elocidad de	cidad de Profundidad de		Tiempo de	Caudal	
husillo a	vance	corte		mecanizado	(lt/min)	
(rpm)	mm/rev)	(mm)		(min)		
900 0	.2	0.15		20	10	
	DECIS	EDO DE ME	DICION	CENEDAL		
	REGIST	FRO DE ME	DICION	GENEKAL		

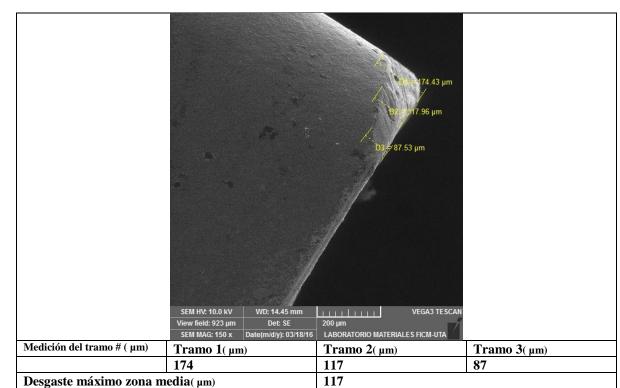
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)	
	100	67.5	20	
Desgaste máximo zona media(um)		75		

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

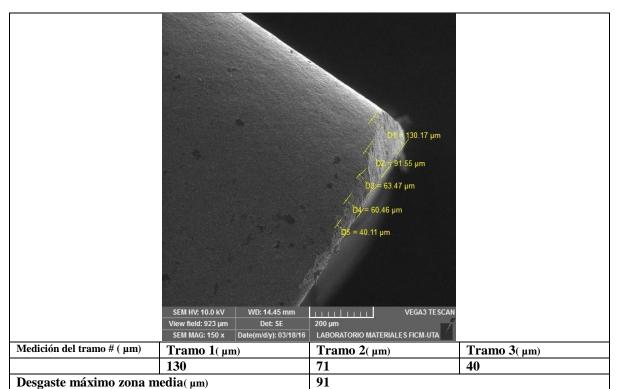
UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** Tipo de estudio Experimental Item 1 Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Luis Márquez Ing. Pablo Valle Realizado por: Revisado por: Parámetros de torneado y lubricación **Material:** Acero Inoxidable AISI 304 Sistema de lubricación: Inundación Fluido lubricante Tricut 2000 ws SNMG-12-04-04-QM Herramienta de corte: Caudal Velocidad del Velocidad de Profundidad de Tiempo de husillo mecanizado (lt/min) avance corte (rpm) (mm/rev) (mm) (min) 900 0.2 0.15 25 10 REGISTRO DE MEDICION GENERAL


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

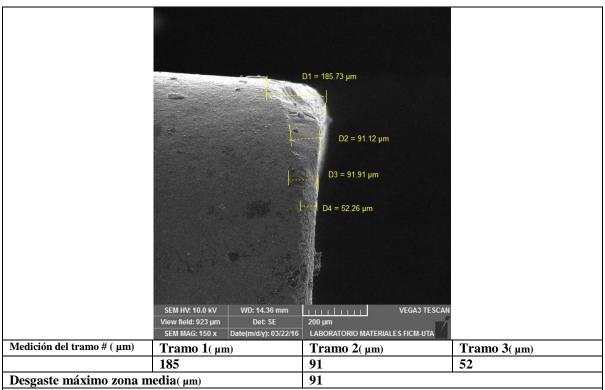
	DEBOR	TE DE DECA	O A CORD D	E EL ANGO	
		TE DE DESC	JASTE D	E FLANCO	
DATOS INFORMA	ATIVOS				
Tipo de estudio	Experiment	Experimental			2
Fecha de ejecución			2016/03/23		
Lugar de estudio			Universi	dad Técnica de	Ambato Laboratorio
			FICM		
Realizado por:	Luis Márqu	iez	Revisado	o por:	Ing. Pablo Valle
Parámetros de torr	eado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubricación:			Inundación		
Fluido lubricante			Tricut 2000 w/s		
Herramienta de co	rte:		SNMG-1	12-04-04-QM	
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(lt/min)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	0.15		25	10
	REGIS	TRO DE ME	DICION	GENERAL	•


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

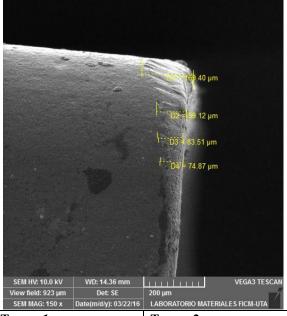
	REPOR'	TE DE DESC	GASTE D	E FLANCO	
DATOS INFORM	IATIVOS				
Tipo de estudio	Experimenta	Experimental			3
Fecha de ejecución			2016/03/23		
Lugar de estudio			Universidad Técnica de Ambato Laboratorio		
			FICM		
Realizado por:	Luis Márque	Luis Márquez Revisado por: Ing. Pablo V			Ing. Pablo Valle
Parámetros de tor	rneado y lubricación				-
Material:			Acero Inoxidable AISI 304		
Sistema de lubricación:			Inundación		
Fluido lubricante			Tricut 2000 ws		
Herramienta de c	orte:		SNMG-	12-04-04-QM	
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(lt/min)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	0.15		25	10
	REGIST	 FRO DE ME	DICION	 GENERAL	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio Experimental 1 Item Fecha de ejecución 2016/03/23 Universidad Técnica de Ambato Laboratorio Lugar de estudio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación **Material:** Acero Inoxidable AISI 304 Sistema de lubricación: Inundación Fluido lubricante Tricut 2000 w/s Herramienta de corte: SNMG-12-04-04-QM Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance corte mecanizado (lt/min) (rpm) (mm/rev) (min) (mm) 900 0.2 0.15 10 REGISTRO DE MEDICION GENERAL


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

¥						
REPORTE DE DESGASTE DE FLANCO						
DATOS INFORMATIVOS						
Tipo de estudio	e estudio Experimental			Item		2
Fecha de ejecución				2016/03/23		
Lugar de estudio				Universidad Técnica de Ambato Laboratorio		
				FICM		
Realizado por:		Luis Márque	Z	Revisad	o por:	Ing. Pablo Valle
Parámetros de torn	eado y	lubricación				
Material:				Acero Inoxidable AISI 304		
Sistema de lubricación:			Inundación			
Fluido lubricante			Tricut 2000 ws			
Herramienta de corte:				SNMG-12-04-04-QM		
Velocidad del	Velo	cidad de Profundidad de			Tiempo de	Caudal
husillo	avan	nce	corte		mecanizado	(lt/min)
(rpm)	(mm	/rev)	(mm)		(min)	
900	0.2		0.15		30	10
REGISTRO DE MEDICION GENERAL						

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	169	91	74
Desgaste máximo zona media(µm)		99	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** 3 Tipo de estudio Experimental **Item** 2016/03/23 Fecha de ejecución Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: Inundación Fluido lubricante Tricut 2000 w/s SNMG-12-04-04-QM Herramienta de corte: Velocidad de Profundidad de Velocidad del Tiempo de Caudal mecanizado husillo (lt/min) avance corte (mm/rev) (rpm) (mm) (min) 900 30 10 0.2 0.15 REGISTRO DE MEDICION GENERAL

4.1.7.- FICHAS DE REPORTE DE FLANCO A 885rpm y 0.15mm DE PROFUNDIDAD POR EL MÉTODO MQL

UNI **FACULTA**

CAR

DATOS INFORMATIVOS

Tipo de estudio Exp

Fecha de ejecución

Lugar de estudio

Gusilbsión:

Realizado por: Luis

Parámetros de torneado y lubi

Material: Sistema de lubricación:

Flaticiód **del tricanté** (µm) Tramo 1(µm) Herramienta de corte: 123

Delgaista drafelimo zon Velocalita drafe

ISI 304

Canhobe 2210 EP

\$4NMG-12-04-04-QM Profundidad de

Tiempo de mecanizado Fi desgaste en el flanco de la cuchilla ann no sobrepasa lo permitido por el criterio por el desgaste ináximo de 0.6mm s

(ml/h) de descaste de la norma ASME B94.55M que es un ef desgaste es irregular

2

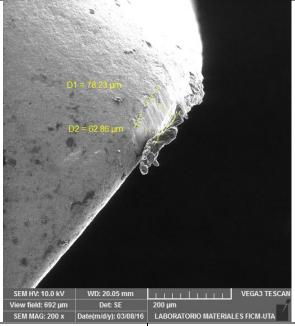
45

de Ambato Laboratorio

Ing. Pablo Valle

Tramo 3(µm)

Caudal


480

OBSERVACIONES

avance

REGISTRO DE MEDICION GENERAL

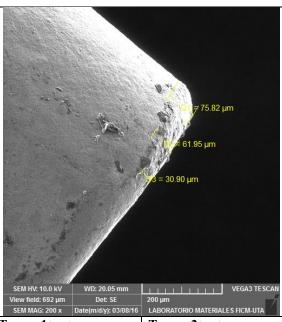
corte

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	78	70	62
Desgaste máximo zona m	edia(µm)	70	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA



REPORTE DE DESGASTE DE FLANCO

DATOS INFORMATIVOS

Tipo de estudio	Experimenta	Experimental			3
Fecha de ejecución			2016/03/2	23	
Lugar de estudio			Universi	dad Técnica de A	Ambato Laboratorio
			FICM		
Realizado por: Luis Márquez			Revisado	por:	Ing. Pablo Valle
Parámetros de torn	eado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubricación:			MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de cor	te:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
885	0.2	0.15	·	5	480

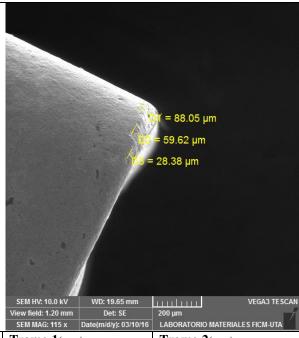
REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	75	61	30
Desgaste máximo zona m	edia(µm)	61	

Conclusión:

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES



REPORTE DE DESGASTE DE FLANCO					
DATOS INFORMA	TIVOS				
Tipo de estudio	Experimental	Item	1		
Fecha de ejecución		2016/03/23			
Lugar de estudio		Universidad Técnic FICM	Universidad Técnica de Ambato Laboratorio FICM		
Realizado por:	Luis Márquez	Revisado por:	Ing. Pablo Valle		
Parámetros de torneado y lubricación					
Material:		Acero Inoxidable A	Acero Inoxidable AISI 304		

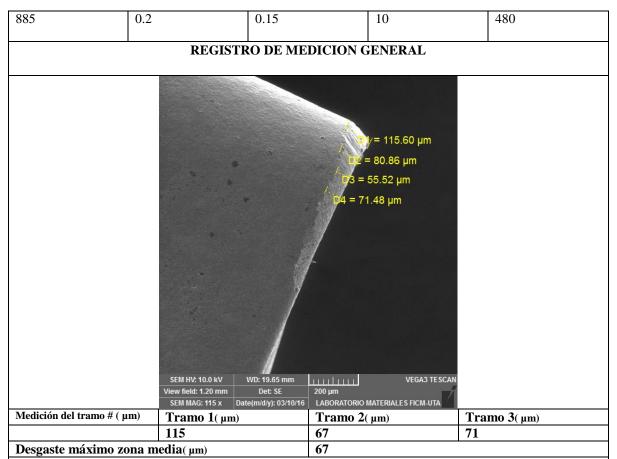
Sistema de lubrica	ción:		MQL		
Fluido lubricante (Coolube 2210 EP			
Herramienta de co	mienta de corte: SNMG-12-04-QM				
Velocidad del husillo (rpm)	Velocidad de avance (mm/rev)	Profundidad de corte (mm)		Tiempo de mecanizado (min)	Caudal (ml/h)
885	0.2	0.15		10	480

REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	88	59	28
Desgaste máximo zona m	edia(µm)	59	

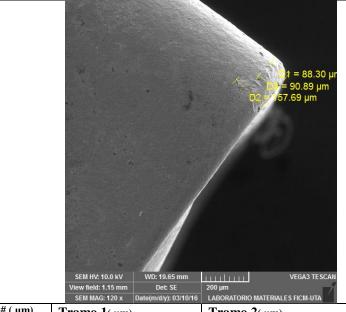
Conclusión:

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

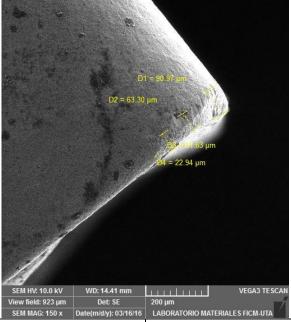
REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio Experimental 2 **Item** 2016/03/23 Fecha de ejecución Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: MQL Fluido lubricante Coolube 2210 EP Herramienta de corte: SNMG-12-04-04-QM Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo mecanizado (ml/h) avance corte (rpm) (mm/rev) (mm) (min)


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

·					
	REPORT	TE DE DESC	GASTE DI	E FLANCO	
DATOS INFORMA	TIVOS				
Tipo de estudio	Experimenta	Experimental			3
Fecha de ejecución			2016/03/2	23	
Lugar de estudio			Universion	dad Técnica de A	Ambato Laboratorio
		FICM			
Realizado por:	Luis Márque	Luis Márquez		por:	Ing. Pablo Valle
Parámetros de torne	eado y lubricación				-
Material:			Acero Inoxidable AISI 304		
Sistema de lubricaci	ión:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de cor	te:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
885	0.2	0.15		10	480
REGISTRO DE MEDICION GENERAL					

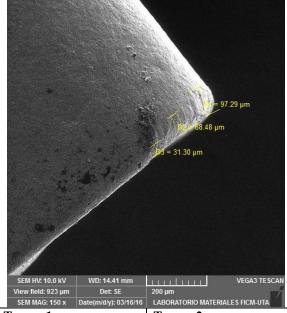
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	88	90	157
Desgaste máximo zona media(µm)		90	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

	REPORT	TE DE DESC	GASTE D	E FLANCO	
DATOS INFORMA	TIVOS				
Tipo de estudio Experimental		Item		1	
1			2016/03/	/23	
		Universi	idad Técnica de .	Ambato Laboratorio	
			FICM		
Realizado por: Luis Márquez		Revisad	o por:	Ing. Pablo Valle	
Parámetros de torn	eado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubricac	ión:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de cor	te:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
885	0.2	0.15		15	480
	REGIST	TRO DE ME	DICION	GENERAL	

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	90	76	22
Desgaste máximo zona m	edia(µm)	81	

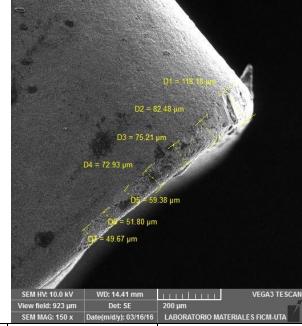

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

	REPORT	TE DE DES	GASTE D	E FLANCO	
DATOS INFORM	IATIVOS				
Tipo de estudio Experimental		Item		2	
Fecha de ejecució				•	
Lugar de estudio				idad Técnica de .	Ambato Laboratorio
			FICM		
Realizado por:	Luis Márque	Luis Márquez		o por:	Ing. Pablo Valle
Parámetros de to	rneado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubric	ación:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de c	orte:		SNMG-	12-04-04-QM	
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
885	0.2	0.15		15	480
	REGIST	TRO DE ME	DICION	 GENERAL	

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	97	68	31
Desgaste máximo zona media(µm)		68	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

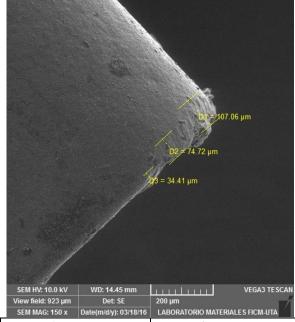

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO **DATOS INFORMATIVOS** Tipo de estudio Experimental 3 Item 2016/03/23 Fecha de ejecución Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: MQL Fluido lubricante Coolube 2210 EP SNMG-12-04-04-QM Herramienta de corte: Velocidad de Velocidad del Profundidad de Tiempo de Caudal husillo mecanizado (ml/h) avance corte (rpm) (mm/rev) (mm) (min) 885 0.2 0.15 15 480 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	118	67	49
Desgaste máximo zona media(µm)		82	

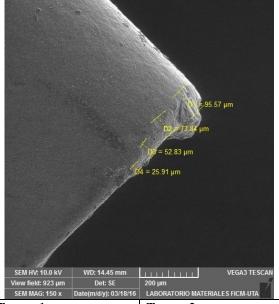
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio **Experimental Item** 1 Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Ing. Pablo Valle Revisado por: Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: MQL Fluido lubricante Coolube 2210 EP SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Caudal Tiempo de husillo avance mecanizado (ml/h) corte (rpm) (mm/rev) (min) (mm) 885 0.2 0.15 20 480 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm) Tramo 1(μm)		Tramo 2(µm)	Tramo 3(µm)
	107	74	34
Desgaste máximo zona media(µm)		74	

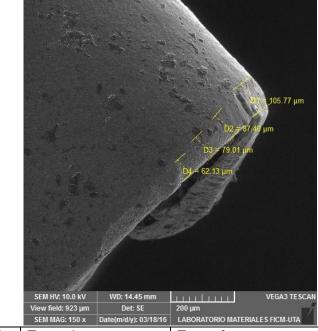

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

DATOS INFORM		TE DE DES	GASIE D	E FLANCO	
Tipo de estudio Experimental		Item	Item 2		
Fecha de ejecució			2016/03/23		
Lugar de estudio				Ambato Laboratorio	
Realizado por: Luis Márquez Revisado por: Ing. Pablo Va			Ing. Pablo Valle		
Parámetros de torneado y lubricación					
Material: Acero Inoxidable AISI 304					
Sistema de lubric	ación:	n: MQL			
Fluido lubricante	!		Coolub	e 2210 EP	
Herramienta de o	eorte:		SNMG-	12-04-04-QM	
Velocidad del	Velocidad de	Profund	idad de	Tiempo de	Caudal
husillo (rpm)	avance (mm/rev)	corte (mm)		mecanizado (min)	(ml/h)
885	0.2	0.15		20	480
	REGIS	TRO DE ME	EDICION	GENERAL	

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	95	62	25
Desgaste máximo zona media(µm)		73	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

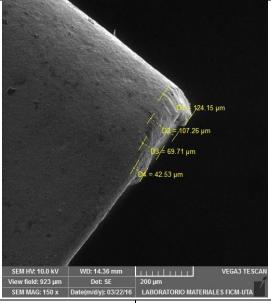

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Experimental Tipo de estudio 3 Item Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: MOL Fluido lubricante Coolube 2210 EP SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo mecanizado avance corte (ml/h) (rpm) (mm/rev) (mm) (min) 480 885 0.2 0.15 20 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	105	83	62
Desgaste máximo zona media(µm)		87	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

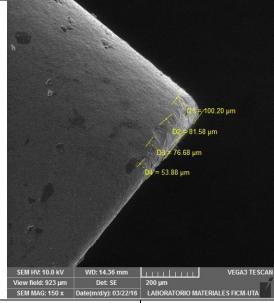

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio Experimental 1 Item 2016/03/23 Fecha de ejecución Universidad Técnica de Ambato Laboratorio Lugar de estudio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación **Material:** Acero Inoxidable AISI 304 Sistema de lubricación: MQL Fluido lubricante Coolube 2210 EP Herramienta de corte: SNMG-12-04-04-QM Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo mecanizado (ml/h) avance corte (mm/rev) (min) (rpm) (mm) 885 0.2 0.15 25 480 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	124	88	42
Desgaste máximo zona media(µm)		107	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

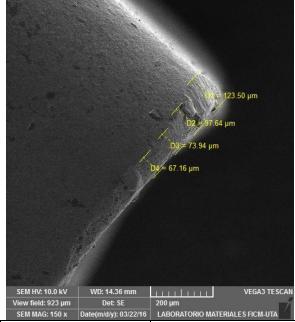

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio **Experimental** 2 **Item** 2016/03/23 Fecha de ejecución Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Ing. Pablo Valle Revisado por: Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: **MQL** Fluido lubricante Coolube 2210 EP SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance corte mecanizado (ml/h) (rpm) (mm/rev) (mm) (min) 885 480 0.2 0.15 25 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	100	78	53
Desgaste máximo zona media(µm)		81	

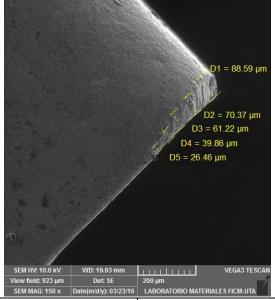
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio 3 **Experimental Item** 2016/03/23 Fecha de ejecución Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Luis Márquez Ing. Pablo Valle Realizado por: Revisado por: Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: **MQL** Fluido lubricante Coolube 2210 EP SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance corte mecanizado (ml/h) (rpm) (mm/rev) (mm) (min) 885 480 0.2 0.15 25 REGISTRO DE MEDICION GENERAL

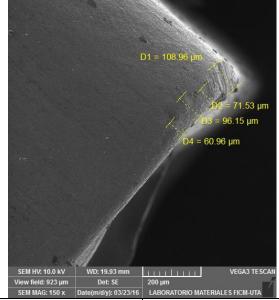
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	123	80	67
Desgaste máximo zona media(µm)		97	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO					
DATOS INFORMATIVOS					
Tipo de estudio	Experimenta	al	Item		1
Fecha de ejecución			2016/03/2	23	•
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM		
Realizado por: Luis Márquez Revisado por: Ing. Pablo V			Ing. Pablo Valle		
Parámetros de torneado y lubricación					
Material: Acero Inoxidable AISI 304				04	
Sistema de lubricaci	ión:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de cor	te:		SNMG-1	2-04-04-QM	
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
885	0.2	0.15		30	480
REGISTRO DE MEDICION GENERAL					

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	88	56	26
Desgaste máximo zona media(µm)		70	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

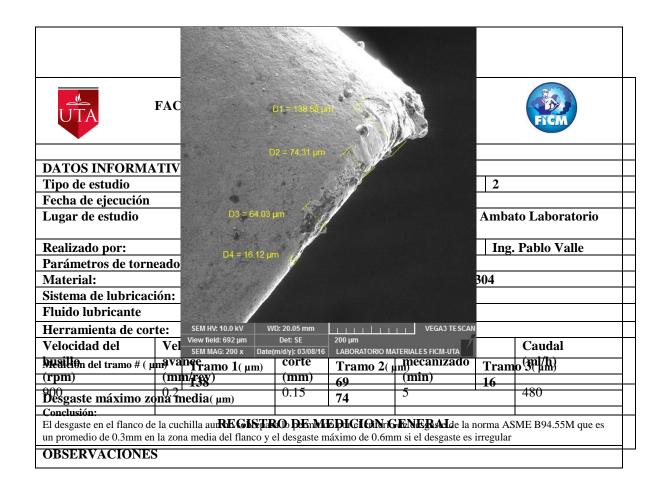
OBSERVACIONES

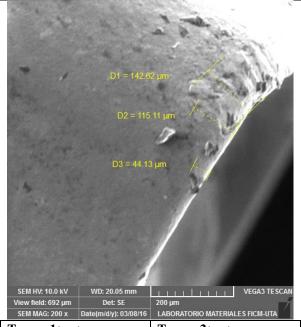
REPORTE DE DESGASTE DE FLANCO						
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimenta	ıl	Item		2	
Fecha de ejecución			2016/03/2	23		
Lugar de estudio			Universion	dad Técnica de A	Ambato Laboratorio	
			FICM			
Realizado por:	Luis Márque	ez	Revisado	por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material: Acero Inoxidable AISI 304			04			
Sistema de lubricac	ión:		MQL	MQL		
Fluido lubricante			Coolube 2210 EP			
Herramienta de cor	te:		SNMG-1	2-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(ml/h)	
(rpm)	(mm/rev)	(mm)		(min)		
885	0.2	0.15		30	480	
REGISTRO DE MEDICION GENERAL						

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	108	83	60
Desgaste máximo zona media(µm)		96	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

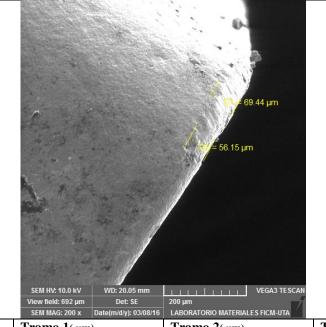

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA



REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS 3 Tipo de estudio Experimental **Item** Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: MQL Fluido lubricante Coolube 2210 EP SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance corte mecanizado (ml/h) (mm/rev) (min) (rpm) (mm) 480 885 0.2 0.15 30 REGISTRO DE MEDICION GENERAL

4.1.8.- FICHAS DE REPORTE DE FLANCO A 900rpm y 0.15mm DE PROFUNDIDAD POR EL MÉTODO MQL

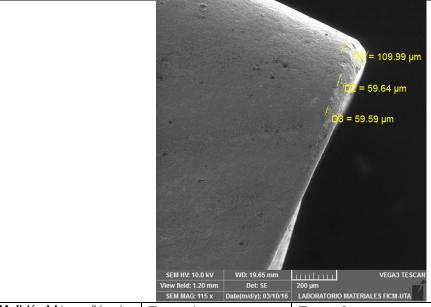
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	142	115	44
Desgaste máximo zona media(µm)		115	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO					
DATOS INFORMA	TIVOS				
Tipo de estudio	Experimental	l	Item		3
Fecha de ejecución			2016/03/	23	
Lugar de estudio			Universi	dad Técnica de A	Ambato Laboratorio
			FICM		
Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle			Ing. Pablo Valle		
Parámetros de torneado y lubricación					
Material:			Acero Inoxidable AISI 304		
Sistema de lubricaci	ón:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de cort	te:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	0.15		5	480
REGISTRO DE MEDICION GENERAL					

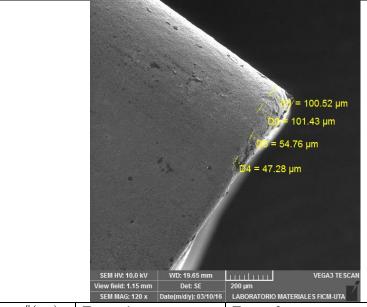
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	69	62	56
Desgaste máximo zona media(µm)		62	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO							
DATOS INFORM	DATOS INFORMATIVOS						
Tipo de estudio	Ex	perimental		Item		1	
Fecha de ejecución				2016/03/	/23		
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM				
Realizado por:	Lu	is Márquez		Revisado por: Ing. Pablo Valle			
Parámetros de torneado y lubricación							
Material:			Acero Inoxidable AISI 304				
Sistema de lubrica	ción:			MQL			
Fluido lubricante				Coolube 2210 EP			
Herramienta de co	rte:			SNMG-12-04-04-QM			
Velocidad del husillo (rpm)	Velocida avance (mm/rev		Profundic corte (mm)	dad de	Tiempo de mecanizado (min)	Caudal (ml/h)	
900	0.2		0.15		10	480	
REGISTRO DE MEDICION GENERAL							

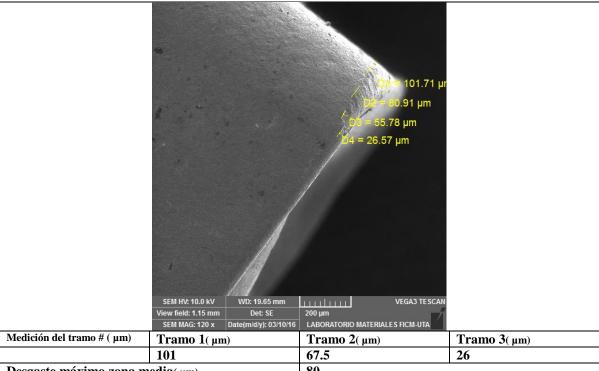
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	109	59	59
Desgaste máximo zona media(µm)		59	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO							
DATOS INFORMA	DATOS INFORMATIVOS						
Tipo de estudio	Experimenta	al	Item		2		
Fecha de ejecución			2016/03/	/23			
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM				
Realizado por:	Luis Márque	ez	Revisado por: Ing. Pablo Valle				
Parámetros de torneado y lubricación							
Material:			Acero Inoxidable AISI 304				
Sistema de lubricac	ión:		MQL				
Fluido lubricante			Coolube 2210 EP				
Herramienta de cor	te:		SNMG-12-04-04-QM				
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal		
husillo	avance	corte		mecanizado	(ml/h)		
(rpm)	(mm/rev)	(mm)		(min)			
900	0.2	0.15		10	480		
REGISTRO DE MEDICION GENERAL							

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	100	52	47
Desgaste máximo zona media(µm)		101	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

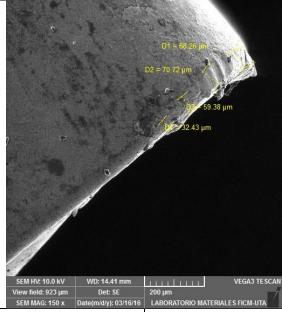
OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO							
DATOS INFORMA	DATOS INFORMATIVOS						
Tipo de estudio	Experimenta	al	Item		3		
Fecha de ejecución			2016/03/	/23			
Lugar de estudio			Universidad Técnica de Ambato Laboratorio FICM				
Realizado por:	Luis Márque	ez	Revisado por: Ing. Pablo Valle				
Parámetros de torneado y lubricación							
Material:			Acero Inoxidable AISI 304				
Sistema de lubricac	ión:		MQL				
Fluido lubricante			Coolube 2210 EP				
Herramienta de cor	te:		SNMG-12-04-04-QM				
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal		
husillo	avance	corte		mecanizado	(ml/h)		
(rpm)	(mm/rev)	(mm)		(min)			
900	0.2	0.15		10	480		
REGISTRO DE MEDICION GENERAL							

Desgaste máximo zona media(µm) 80

Conclusión:

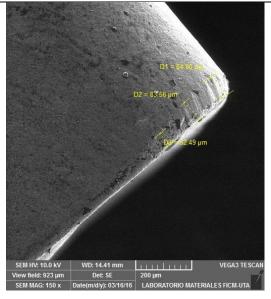
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS 1 Tipo de estudio **Experimental** Item 2016/03/23 Fecha de ejecución Universidad Técnica de Ambato Laboratorio Lugar de estudio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación **Material:** Acero Inoxidable AISI 304 Sistema de lubricación: MOL Fluido lubricante Coolube 2210 EP Herramienta de corte: SNMG-12-04-04-QM Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo mecanizado (ml/h) avance corte (mm/rev) (min) (rpm) (mm) 900 0.2 0.15 15 480 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	68	64	32
Desgaste máximo zona media(um)		70	

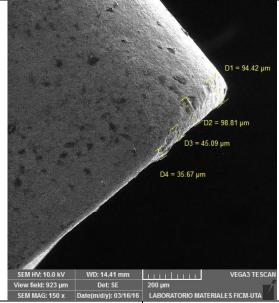

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

	REPOR	TE DE DESG	ASTE D	E FLANCO	
DATOS INFORM	MATIVOS				
Tipo de estudio	Experiment	al	Item		2
Fecha de ejecució	n		2016/03/	/23	
Lugar de estudio			Universi	idad Técnica de	Ambato Laboratorio
			FICM		
Realizado por:	Luis Márqu	iez	Revisado	o por:	Ing. Pablo Valle
Parámetros de to	rneado y lubricación				
Material:	-		Acero In	noxidable AISI 3	04
Sistema de lubric	ación:		MQL		
Fluido lubricante	!		Coolube 2210 EP		
Herramienta de o	orte:		SNMG-1	12-04-04-QM	
Velocidad del	Velocidad de	Profundid	ad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	0.15		15	480
	REGIS'	TRO DE MED	ICION (GENERAL	

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	84	83	52
Desgaste máximo zona media(µm)		83	

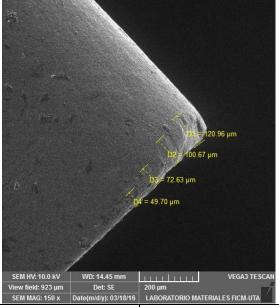
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio 3 **Experimental** Item 2016/03/23 Fecha de ejecución Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Ing. Pablo Valle Revisado por: Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: **MQL** Fluido lubricante Coolube 2210 EP SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance corte mecanizado (ml/h) (rpm) (mm/rev) (mm) (min) 900 480 0.2 0.15 15 REGISTRO DE MEDICION GENERAL

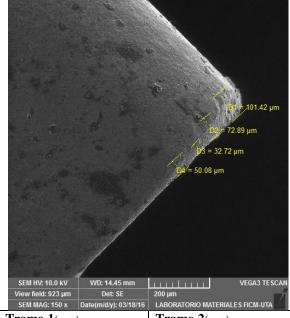
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	94	71	35
Desgaste máximo zona media(µm)		98	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

		TE DE DESC	JASTE DI	E FLANCO		
DATOS INFORMA	TIVOS					
Tipo de estudio	Experimenta	al	Item		1	
Fecha de ejecución			2016/03/	23		
Lugar de estudio			Universi	dad Técnica de	Ambato Laboratorio	
			FICM			
Realizado por:	Luis Márqu	ez	Revisado	o por:	Ing. Pablo Valle	
Parámetros de torneado y lubricación						
Material:			Acero Inoxidable AISI 304			
Sistema de lubricac	ión:		MQL			
Fluido lubricante			Coolube 2210 EP			
Herramienta de cor	te:		SNMG-12-04-04-QM			
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal	
husillo	avance	corte		mecanizado	(ml/h)	
(rpm)	(mm/rev)	n/rev) (mm)		(min)		
900	0.2	0.15		20	480	
REGISTRO DE MEDICION GENERAL						

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	120	86	49
Desgaste máximo zona media(µm)		100	

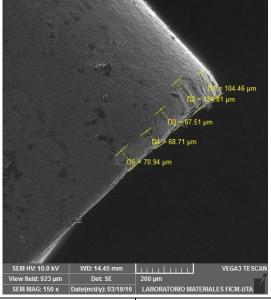

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

•	REPOR	TE DE DESC	GASTE D	E FLANCO	
DATOS INFORMA					
Tipo de estudio	Experimenta	al	Item		2
Fecha de ejecución	<u>-</u>		2016/03/	23	
Lugar de estudio		Universi FICM	dad Técnica de	Ambato Laboratorio	
Realizado por:	Luis Márqu	ez	Revisado	o por:	Ing. Pablo Valle
Parámetros de torneado y lubricación					
Material:			Acero Inoxidable AISI 304		
Sistema de lubricac	ión:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de cor	te:		SNMG-12-04-04-QM		
Velocidad del husillo (rpm)	Velocidad de avance (mm/rev)	corte		Tiempo de mecanizado (min)	Caudal (ml/h)
900	0.2	0.15		20	480
REGISTRO DE MEDICION GENERAL					

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	101	52	50
Desgaste máximo zona m	edia(µm)	72	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

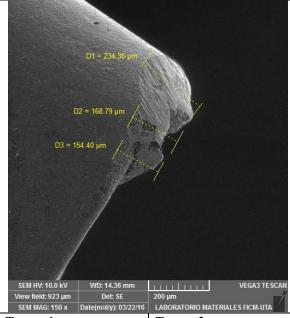

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio Experimental Item 3 2016/03/23 Fecha de ejecución Universidad Técnica de Ambato Laboratorio Lugar de estudio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: **MQL** Fluido lubricante Coolube 2210 EP Herramienta de corte: SNMG-12-04-04-QM Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo mecanizado (ml/h)avance corte (mm/rev) (rpm) (mm) (min) 900 0.2 0.15 20 480 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	104	93	70
Desgaste máximo zona media(µm)		124	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

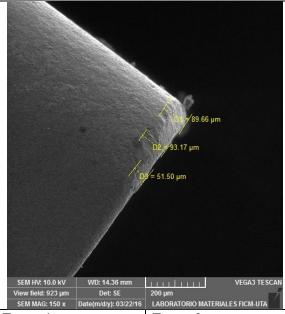

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio **Experimental** 1 Item 2016/03/23 Fecha de ejecución Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Ing. Pablo Valle Revisado por: Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: **MQL** Fluido lubricante Coolube 2210 EP SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo avance corte mecanizado (ml/h) (rpm) (mm/rev) (mm) (min) 900 480 0.2 0.15 25 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	234	168	154
Desgaste máximo zona media(um)		168	

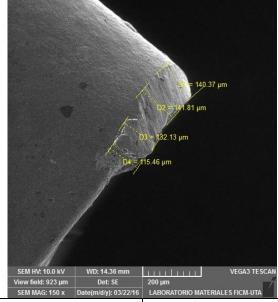
El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio **Experimental** Item 2 2016/03/23 Fecha de ejecución Universidad Técnica de Ambato Laboratorio Lugar de estudio **FICM** Realizado por: Luis Márquez Ing. Pablo Valle Revisado por: Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: **MQL** Fluido lubricante Coolube 2210 EP Herramienta de corte: SNMG-12-04-04-QM Velocidad de Profundidad de Velocidad del Tiempo de Caudal husillo mecanizado (ml/h) avance corte (mm/rev) (rpm) (min) (mm) 900 25 480 0.2 0.15 REGISTRO DE MEDICION GENERAL

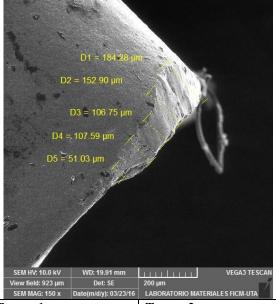
Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	89	93	51
Desgaste máximo zona m	edia(um)	93	


El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

	REPOR'	TE DE DES	GASTE D	E FLANCO	
DATOS INFORM	IATIVOS				
Tipo de estudio	Experimenta	al	Item		3
Fecha de ejecució					
Lugar de estudio			Universi	idad Técnica de A	Ambato Laboratorio
			FICM		
Realizado por:	Luis Márque	Luis Márquez		o por:	Ing. Pablo Valle
Parámetros de to	rneado y lubricación				
Material:			Acero Inoxidable AISI 304		
Sistema de lubric	ación:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de c	orte:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	0.15		25	480
	REGIST	 TRO DE ME	DICION	 GENERAL	

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	140	136	115
Desgaste máximo zona media(µm)		141	

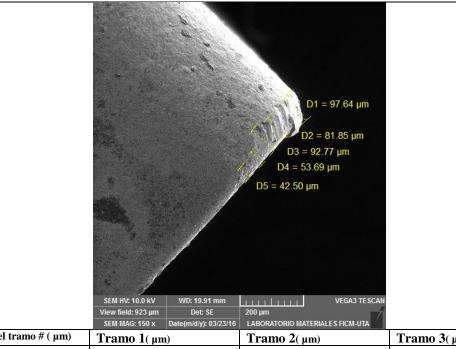

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

OBSERVACIONES

REPORTE DE DESGASTE DE FLANCO					
DATOS INFORMA	TIVOS				
Tipo de estudio	Experimenta	ıl	Item		1
Fecha de ejecución			2016/03/2	23	
Lugar de estudio		Universidad Técnica de Ambato Laboratorio FICM			
Realizado por:	Luis Márque	Luis Márquez Revisado por: Ing. Pablo Valle		Ing. Pablo Valle	
Parámetros de torneado y lubricación					
Material:			Acero Inoxidable AISI 304		
Sistema de lubricaci	ión:		MQL		
Fluido lubricante			Coolube 2210 EP		
Herramienta de cor	te:		SNMG-12-04-04-QM		
Velocidad del	Velocidad de	Profundi	dad de	Tiempo de	Caudal
husillo	avance	corte		mecanizado	(ml/h)
(rpm)	(mm/rev)	(mm)		(min)	
900	0.2	0.15		30	480
REGISTRO DE MEDICION GENERAL					

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	184	121	51
Desgaste máximo zona media(µm)		152	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular

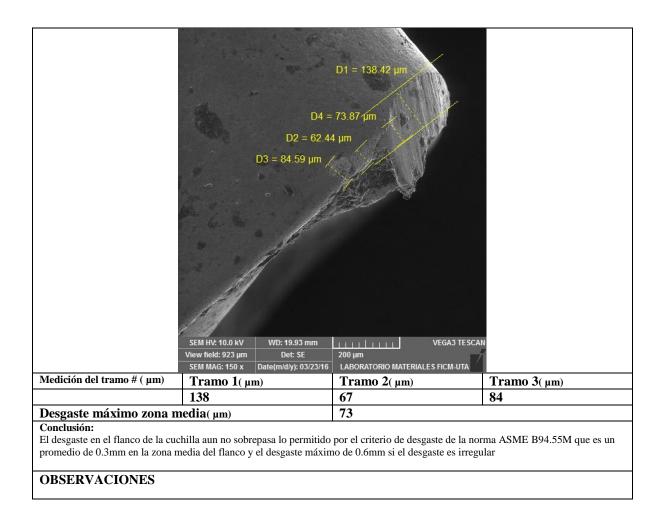

OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

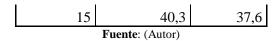
REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio 2 **Experimental** Item Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Acero Inoxidable AISI 304 Material: Sistema de lubricación: MOL Fluido lubricante Coolube 2210 EP SNMG-12-04-04-QM Herramienta de corte: Velocidad del Velocidad de Profundidad de Tiempo de Caudal husillo mecanizado avance corte (ml/h) (rpm) (mm/rev) (mm) (min) 900 480 0.2 0.15 30 REGISTRO DE MEDICION GENERAL

Medición del tramo # (μm)	Tramo 1(µm)	Tramo 2(µm)	Tramo 3(µm)
	97	75	42
Desgaste máximo zona media(µm)		92	

El desgaste en el flanco de la cuchilla aun no sobrepasa lo permitido por el criterio de desgaste de la norma ASME B94.55M que es un promedio de 0.3mm en la zona media del flanco y el desgaste máximo de 0.6mm si el desgaste es irregular


OBSERVACIONES

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA


REPORTE DE DESGASTE DE FLANCO DATOS INFORMATIVOS Tipo de estudio Experimental **Item** 3 Fecha de ejecución 2016/03/23 Lugar de estudio Universidad Técnica de Ambato Laboratorio **FICM** Realizado por: Luis Márquez Revisado por: Ing. Pablo Valle Parámetros de torneado y lubricación Material: Acero Inoxidable AISI 304 Sistema de lubricación: **MQL** Fluido lubricante Coolube 2210 EP SNMG-12-04-04-QM Herramienta de corte: Velocidad de Caudal Velocidad del Profundidad de Tiempo de husillo mecanizado avance corte (ml/h)(rpm) (mm/rev) (min) (mm) 900 30 480 0.2 0.15 REGISTRO DE MEDICION GENERAL

4.2.- ANÁLISIS DE RESULTADOS

Tabla 4. 1.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 5 minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm.

	DESGASTE	DESGASTE
MEDIDAS	TALADRINA (μm)	MQL (µm)
0	0	0
1	212,3	82,6
2	109,6	76,3
3	66,6	48,6
4	62,3	65,3
5	59,3	67
6	66	47
7	72	45
8	79	44,6
9	86,6	30,3
10	86	25
11	61	32
12	64,6	43
13	68	47
14	52,6	46

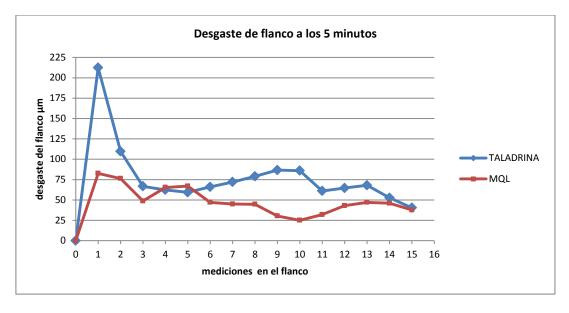


Figura 4. 1.-Desgaste de flanco a 5 minutos (Autor)

Tabla 4. 2.-Valores de desgaste presentado en el flanco de las herramientas en los primeros 10 minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm.

	T	
MEDIDAS	DESGASTE TALADRINA (µm)	DESGASTE MQL (µm)
0	0	0
1	412	91,3
2	318,6	78
3	181	64
4	153,3	67,6
5	152	79
6	170,6	77,6
7	184,6	67
8	192,3	58
9	193,6	53,6
10	191	49,3
11	163,3	68,6
12	157,3	56
13	156,3	49,6
14	113	38,3
15	74	27,3

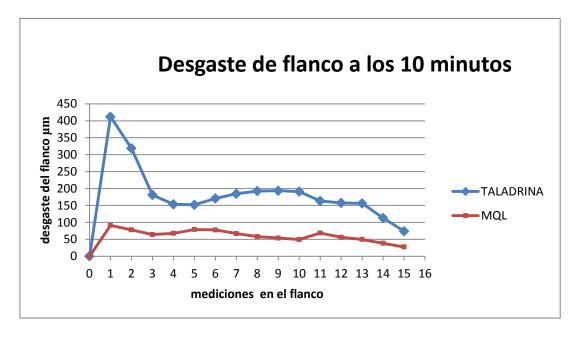


Figura 4. 2.- Desgaste de flanco a 10 minutos (Autor)

Tabla 4. 3.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 15 minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm.

MEDIDAS	DESGASTE TALADRINA (µm)	DESGASTE MQL (µm)
0	0	0
1	465,6	101,3
2	407	106,6
3	283,3	95
4	220,6	78,6
5	227,6	74
6	165,6	83
7	200,6	75,6
8	202	74,6
9	213	73,3
10	207,6	67
11	170	75,6
12	151,3	73,6
13	123,3	67,6
14	96,3	69
15	50,6	51,6

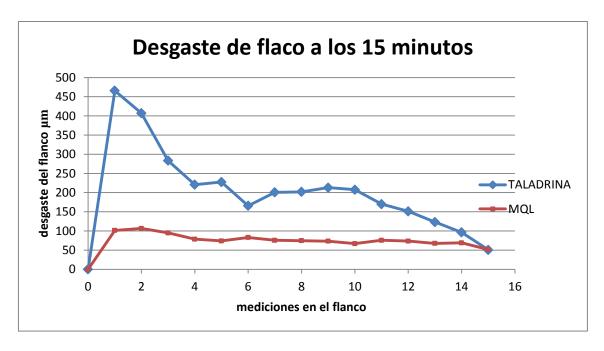


Figura 4. 3.- Desgaste de flanco a 15 minutos (Autor)

Tabla 4. 4.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 20 minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm.

MEDIDAS	DESGASTE TALADRINA (μm)	DESGASTE MQL (µm)
0	0	0
1	492,6	156,6
2	420,6	134,6
3	237,3	114,3
4	192,3	135
5	190,6	112
6	164	109,3
7	167,6	95
8	182	96,6
9	185	95
10	175,3	91,6
11	139,3	82,6
12	136,3	63,6
13	132,3	66,6
14	106,6	56,3
15	85,3	42

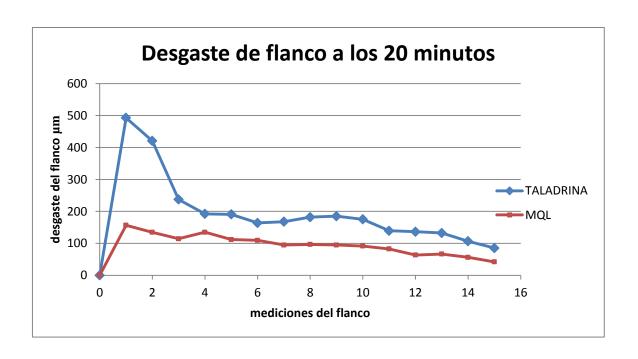


Figura 4. 4.- Desgaste de flanco a 20 minutos (Autor)

Tabla 4. 5.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 25 minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm.

	DESGASTE	DESGASTE
MEDIDAS	TALADRINA (µm)	MQL (µm)
0	0	0
1	530	148
2	443,3	158,3
3	330,3	187
4	313,6	136,6
5	265,6	133,6
6	266,3	118
7	262,6	130
8	320,3	132,3
9	307,3	97
10	310	78
11	214,3	63,3
12	191,6	53
13	200	42
14	184	36
15	156,6	27,3333333

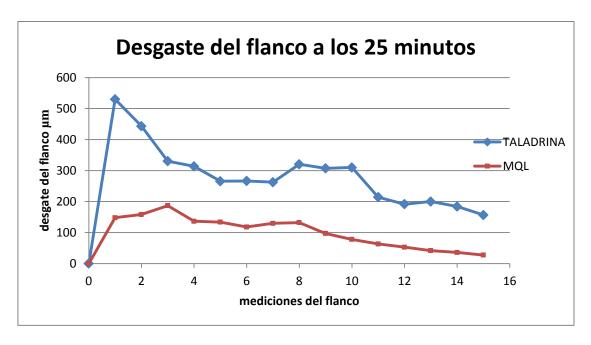


Figura 4. 5.- Desgaste de flanco a 25 minutos (Autor)

Tabla 4. 6.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 30 minutos de maquinado a una profundidad de 4 mm con una Vc de 885 rpm.

MEDIDAS	DESGASTE TALADRINA (µm)	DESGASTE MQL (µm)
0	0	0
1	602,3	142
2	444,3	162,3
3	337	139,3
4	246,6	112,6
5	220,3	88,3
6	250,6	86
7	249,3	99
8	248	95
9	262	89,6
10	255	75,3
11	183	67
12	186,3	55,6
13	193,6	53,3
14	173,6	52
15	168,3	34,3

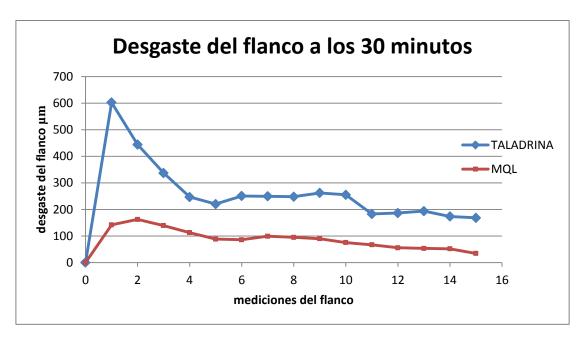


Figura 4. 6.- Desgaste de flanco a 30 minutos (Autor)

Tabla 4.7.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 5 minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm.

	DESGASTE	DESGASTE
MEDIDAS	TALADRINA (µm)	MQL (µm)
0	0	0
1	116,6	83,6
2	101	66,6
3	106,6	48,6
4	88,6	45,6
5	91,3	41,6
6	64,3	49
7	78	34,6
8	65,3	33,3
9	74	30,3
10	65,6	25,3
11	67,6	27,3
12	72,6	31,6
13	70,6	33,3
14	69,6	37,3
15	59,3	27,6

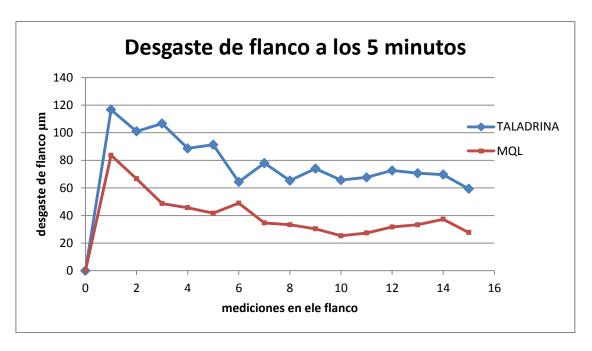


Figura 4. 7.- Desgaste de flanco a 5 minutos (Autor)

Tabla 4. 8.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 10 minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm.

MEDIDAS	DESGASTE TALADRINA (µm)	DESGASTE MQL (µm)
0	0	0
1	359	95,3
2	244,3	104
3	232	110,3
4	206	93,6
5	207,6	93,3
6	211,3	73,3
7	193	73,3
8	206	75
9	223,6	72
10	202	66,3
11	141,6	60,3
12	121,3	63,6
13	111,3	44
14	99,6	35
15	86	33,3

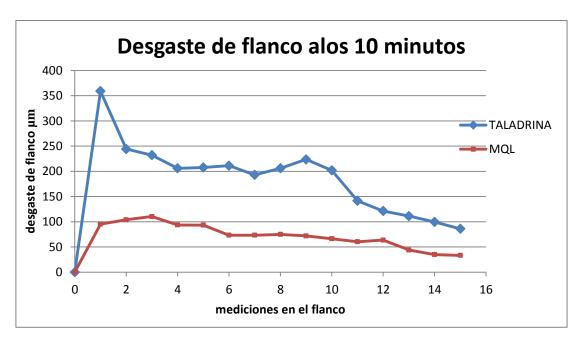


Figura 4. 8.- Desgaste de flanco a 10 minutos (Autor)

Tabla 4. 9.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 15 minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm.

MEDIDAS	DESGASTE TALADRINA (μm)	DESGASTE MQL (µm)
0	0	0
1	369	100,6
2	287,6	85,3
3	243,3	89
4	221	91,3
5	218	82
6	218,3	90,6
7	223	91,3
8	209,6	94,3
9	220,6	87,3
10	206,3	65,3
11	176,3	87,6
12	206,3	54,3
13	184	48
14	180,3	33,6
15	140,3	23,6

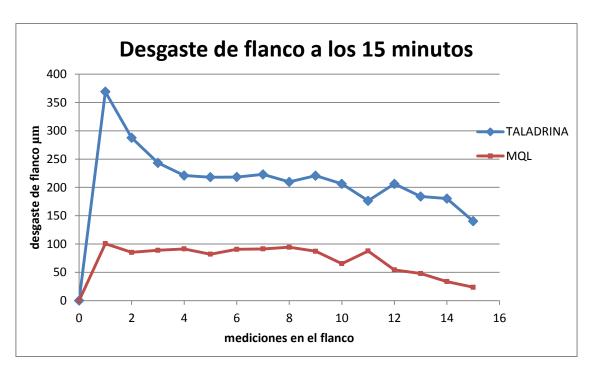


Figura 4. 9.- Desgaste de flanco a 15 minutos (Autor)

Tabla 4. 10.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 20 minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm.

MEDIDAS	DESGASTE TALADRINA (μm)	DESGASTE MQL (µm)
0	0	0
1	362	137
2	320,6	105,6
3	243,6	108,6
4	205	105,6
5	213	103,3
6	192,3	100,6
7	230	95,3
8	200,3	100
9	217,6	96
10	165,3	96,3
11	163	72
12	164,6	65
13	137,6	70
14	103,3	49,6
15	80,6	35

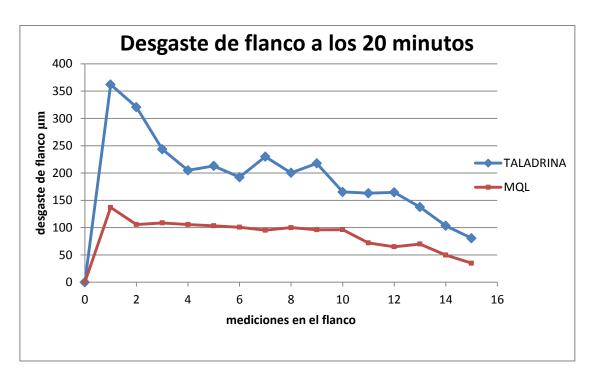


Figura 4. 10.- Desgaste de flanco a 20 minutos (Autor)

Tabla 4. 11.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 25 minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm.

MEDIDAS	DESGASTE TALADRINA (μm)	DESGASTE MQL (µm)
0	0	0
1	355	131,6
2	298,3	97
3	275,6	86,6
4	258	97
5	253,3	86,6
6	231	89
7	222,6	97,6
8	249	97
9	260,6	71
10	262	65
11	145	71
12	169,3	70
13	177,6	66,6
14	187	33,6
15	180,3	32,3

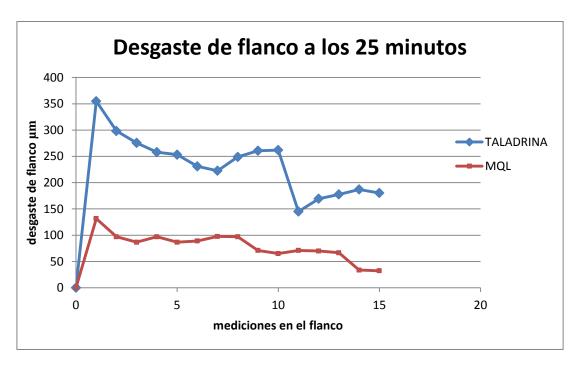


Figura 4. 11.- Desgaste de flanco a 25 minutos (Autor)

Tabla 4. 12.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 30 minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm.

MEDIDAS (μm)	DESGASTE TALADRINA	DESGASTE MQL
0	0	0
1	502	142,6
2	439,6	123
3	360	112
4	289,6	113,6
5	279,6	105,3
6	222,6	96,6
7	256,3	99,6
8	270,6	100,3
9	275,6	95,6
10	264,6	87,3
11	221,6	86,3
12	210	72
13	211,6	61,3
14	218,6	51,3
15	195,3	40,6

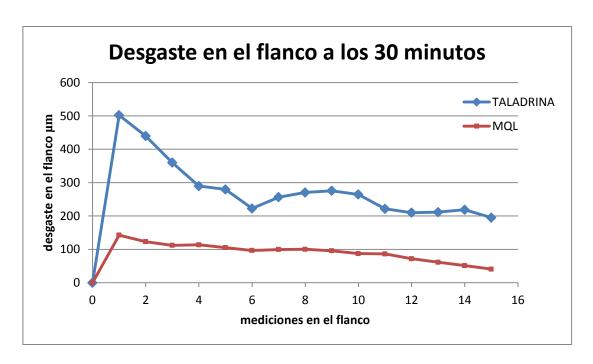


Figura 4. 12.- Desgaste de flanco a 30 minutos (Autor)

Tabla 4. 13.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 5 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm.

MEDIDAS DE DESGASTE (μm)	0	1	2	3
TALADRINA	0	58,3	71,3	23
MQL	0	92	68,3	45,6

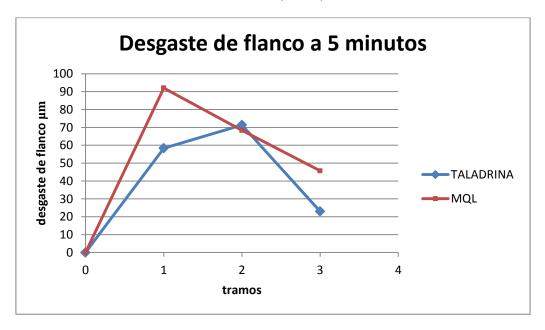


Figura 4. 13.- Desgaste de flanco a 5 minutos (Autor)

Tabla 4. 14.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 10 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm.

MEDIDAS DE DESGASTE (μm)	0	1	2	3
TALADRINA	0	94	63,3	17
MQL	0	97	72	85,3

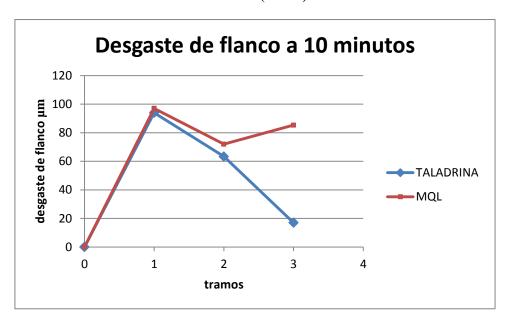


Figura 4. 14.- Desgaste de flanco a 10 minutos (Autor)

Tabla 4. 15.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 15 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm.

MEDIDAS DE DESGASTE (μm)	0	1	2	3
TALADRINA	0	128	100,6	101,3
MQL	0	101,6	70,3	34

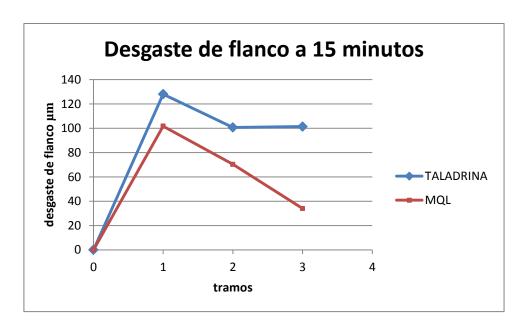


Figura 4. 15.- Desgaste de flanco a 15 minutos (Autor)

Tabla 4. 16.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 20 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm.

MEDIDAS DE DESGASTE (μm)	0	1	2	3
TALADRINA	0	142,6	81,6	47,3
MQL	0	102,3	73	40,3

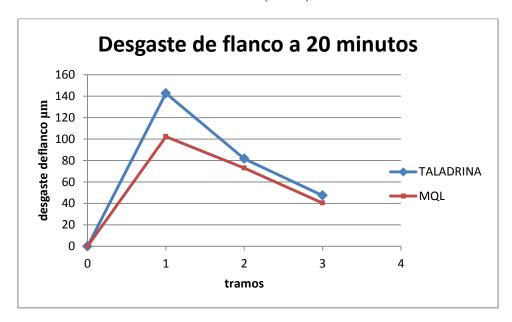


Figura 4. 16.- Desgaste de flanco a 20 minutos (Autor)

Tabla 4. 17.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 25 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm.

MEDIDAS DE	0		_	_
DESGASTE (µm)	U	1	2	3

TALADRINA	0	119,3	65,3	44,6
MQL	0	115,6	82	54

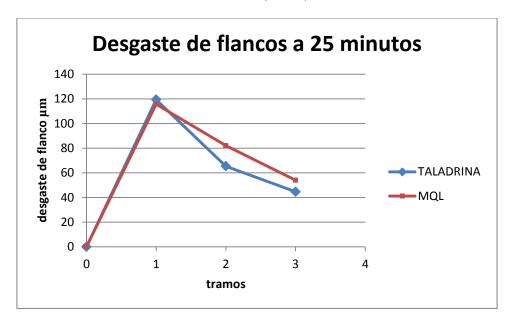


Figura 4. 17.- Desgaste de flanco a 25 minutos (Autor)

Tabla 4. 18.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 30 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 885 rpm.

MEDIDAS DE DESGASTE (μm)	0	1	2	3
TALADRINA	0	108,3	71,3	47,6
MQL	0	105,6	71	51

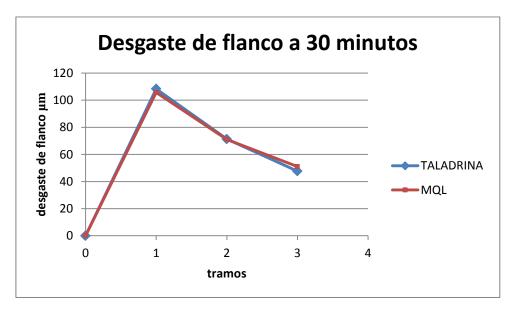


Figura 4. 18.- Desgaste de flanco a 30 minutos (Autor)

Tabla 4. 19.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 5 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm.

MEDIDAS DE DESGASTE (µm)	0	1	2	3
TALADRINA	0	97	59,3	29,6
MQL	0	116,3	82	38,6

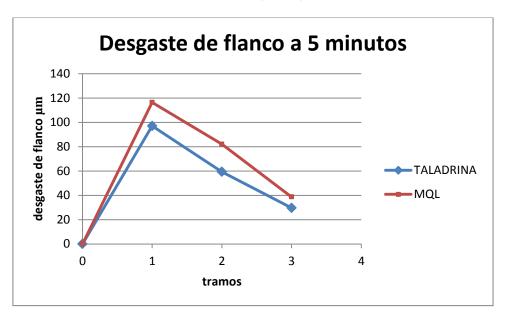


Figura 4. 19.- Desgaste de flanco a 5 minutos (Autor)

Tabla 4. 20.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 5 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm.

MEDIDAS DE DESGASTE (μm)	0	1	2	3
TALADRINA	0	97	59,3	29,6
MQL	0	116,3	82	38,6

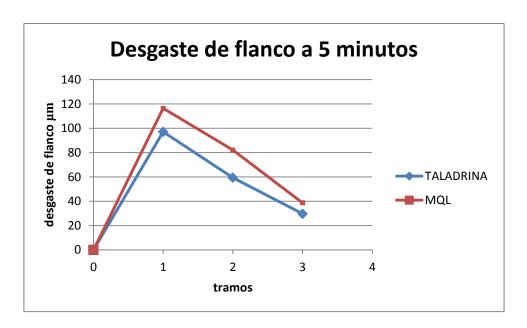


Figura 4. 20.- Desgaste de flanco a 5 minutos (Autor)

Tabla 4. 21.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 10 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm.

MEDIDAS DE DESGASTE (μm)	0	1	2	3
TALADRINA	0	72,3	54,6	35,3
MQL	0	103,3	37	44

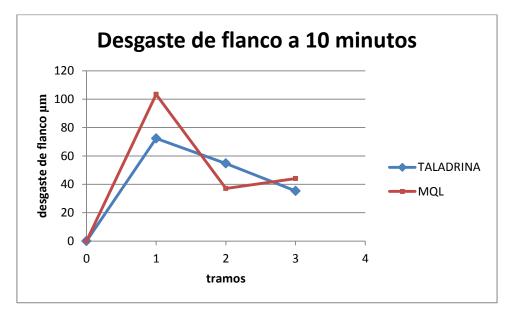


Figura 4. 21.- Desgaste de flanco a 10 minutos (Autor)

Tabla 4. 22.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 15 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm.

MEDIDAS DE	0	,		
DESGASTE (µm)	U	1	2	3

TALADRINA	0	136,6	88,3	56
MQL	0	82	72,6	39,6

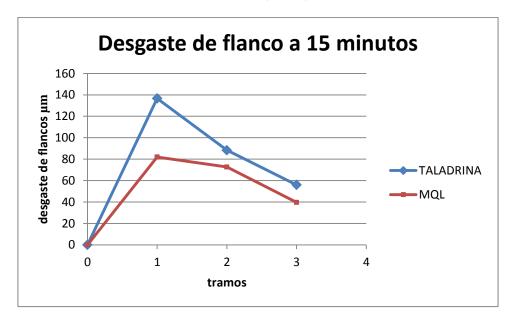


Figura 4. 22.- Desgaste de flanco a 15 minutos (Autor)

Tabla 4. 23.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 20 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm.

MEDIDAS DE DESGASTE (μm)	0	1	2	3
TALADRINA	0	100,6	38,3	44,6
MQL	0	108,3	77	56,3

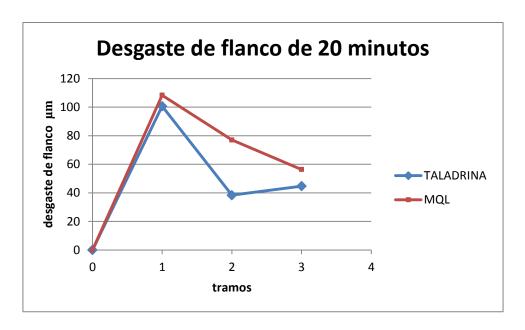


Figura 4. 23.- Desgaste de flanco a 20 minutos (Autor)

Tabla 4. 24.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 25minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm.

MEDIDAS DE DESGASTE (μm)	0	1	2	3
TALADRINA	0	169	100	66,6
MQL	0	154,3	132,3	106,6

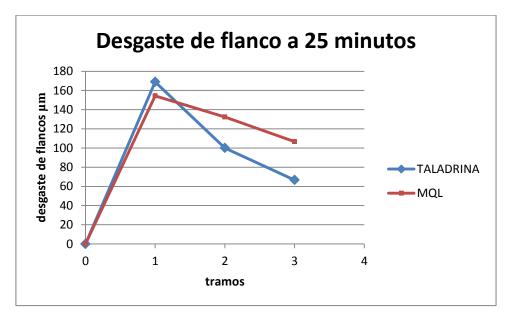


Figura 4. 24.- Desgaste de flanco a 25 minutos (Autor)

Tabla 4. 25.- Valores de desgaste presentado en el flanco de las herramientas en los primeros 30 minutos de maquinado a una profundidad de 0.15 mm con una Vc de 900 rpm.

MEDIDAS DE	0			
DESGASTE (µm)	U	1	2	3

TALADRINA	0	147,3	79,6	56,3
MQL	0	139,6	87,6	59

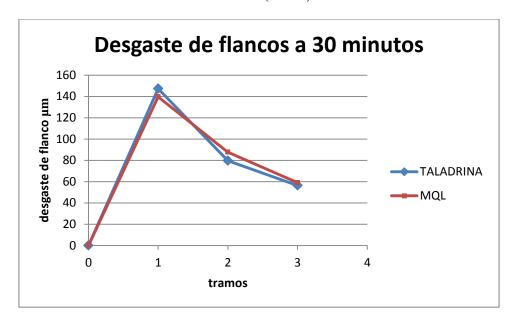


Figura 4. 25.- Desgaste de flanco a 30 minutos (Autor)

En las gráficas 4.1 hasta la gráfica 4.6 nos muestra una comparación del comportamiento del maquinado a diferentes periodos de tiempos y con los dos tipos de lubricación y refrigeración a una velocidad de husillo de 885 rpm y una profundidad de corte de 4mm donde claramente se presenta un cambio evidente en el desgaste de la cuchilla siendo esta trabajada con el sistema de mínima cantidad de lubricación (MQL) el cual es más amigable con la herramienta disminuyendo el deterioro del flanco usado en el proceso a diferencia del maquinado que se lleva a cabo con el método de inundación el cual muestra un desgaste de flanco considerable.

El siguiente análisis se presenta en las gráficas 4.7 hasta la gráfica 4.12 donde una vez más se muestra una comparación del comportamiento del maquinado a diferentes periodos de tiempos y con los dos tipos de lubricación y refrigeración a una velocidad de husillo de 900 rpm donde nuevamente se presenta un cambio evidente en el desgaste de la cuchilla siendo el trabajado con el sistema MQL más amigable con la herramienta disminuyendo el deterioro del flanco usado en el proceso.

En las gráficas 4.13 hasta la gráfica 4.18 nos muestra un comportamiento comparativo del desgaste de flanco cada 5 minutos con una velocidad de 885 rpm y una profundidad

de corte de 0.15mm, en estas graficas podemos notar que el comportamiento de los flanco con el sistema de inundación y el sistema MQL no presentan grandes diferencias en su desgaste además que las siguientes graficas desde la 4.19 hasta la 4.24 muestra nuevamente el comportamiento de otros flancos trabajados bajo las mismas condiciones exceptuando que la velocidad de corte que cambia a 900 rpm, esta al igual que las anteriores no presentan un cabio significativo en su desgaste de flanco.

ECUACIÓN DE TAYLOR

Para este paso contamos con los datos de velocidad y tiempo además de que el exponente n para herramientas de metal duro es entre 0.2 a 0.5 por lo cual se usó un promedio de 3.5 para este exponente.

$$Vc x T^n = C$$

Donde

Vc = velocidad de corte

T = tiempo de maquinado

n = exponente de Taylor

C = constante de Taylor

Tabla 4. 26.- Valores del desgaste presentado en el flanco de las herramientas en los diferentes intervalos de 5 minutos minutos de maquina a una profundidad de 4 mm con una Vc de 885 rpm.

		DESGASTE	DESGASTE
TIEMPO	CONSTANTE C	INUNDACION (µm)	MQL (µm)
0	0	0	0
5	189,6	79	49
10	241,7	187	61
15	278,6	203	80
20	308,1	200	96
25	333,1	286	102
30	355,1	268	90

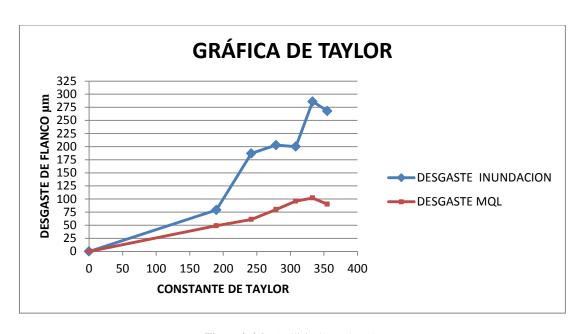
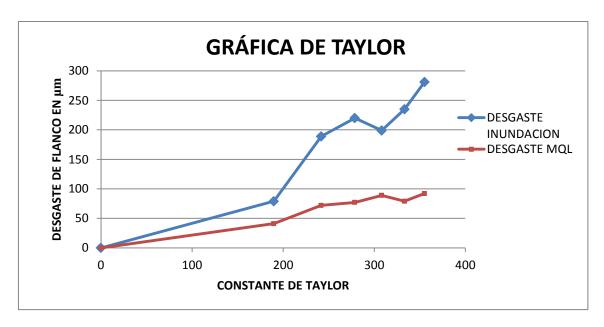



Figura4. 26.- Análisis de Taylor (Autor)

La gráfica de Taylor es comparativa ya que se mantienen los valores de la constante de Taylor pero esta se aplica para los desgastes propios de las herramientas con los diferentes métodos de lubricación y a una velocidad de corte de 885 rpm donde se puede apreciar que a los 30 minutos el desgaste con el método de inundación es 268 micras a diferencia con el método de mínima cantidad que presenta un desgaste de 90 micras En esta gráfica nos podemos dar cuenta que el alargue de la vida de la herramienta se da por parte del sistema de MQL.

Tabla 4. 27.- Valores del desgaste presentado en el flanco de las herramientas en los diferentes intervalos de 5 minutos de maquinado a una profundidad de 4 mm con una Vc de 900 rpm.

		DESGASTE	DESGASTE
TIEMPO	CONSTANTE C	INUNDACION (µm)	MQL (µm)
0	0	0	0
5	189,6	79	41
10	241,7	189	72
15	278,6	220	77
20	308,1	199	89
25	333,1	235	79
30	355,1	281	92

Figura4. 27.- Análisis de Taylor (Autor)

La gráfica de Taylor es comparativa ya que se mantienen los valores de la constante de Taylor pero esta se aplica para los desgastes propios de las herramientas con los diferentes métodos de lubricación y a una velocidad de corte de 900 rpm donde se puede apreciar que a los 30 minutos el desgaste con el método de inundación es 281 micras a diferencia con el método de mínima cantidad que presenta un desgaste de 92 micras En esta grafica nos podemos dar cuenta que el alargue de la vida de la herramienta se da por parte del sistema de MQL.

4.3.- VERIFICACIÓN DE LA HIPÓTESIS

4.3.1.-Verificación de hipótesis para 885 rpm y 4mm de profundidad

Para la verificación de la hipótesis se ha establecido el método "T Student con Distribución de diferencia entre dos medias, Para lo cual se establece la siguiente hipótesis:

"Mejora la vida útil de las herramientas de metal duro en el proceso de torneado de acero AISI 304 utilizar el sistema de mínima cantidad de lubricación (MQL) con aceite vegetal"

Las variables que intervienen en la hipótesis son:

Variable independiente

Sistema de mínima cantidad de lubricante (MQL) con aceite vegetal.

Variable dependiente

Vida útil de las herramientas de metal duro

Simbología

Ho = hipótesis nula

Ha = hipótesis alternativa

 α = Margen de error

X = media de desgaste de flanco con el sistema de inundación

Y = media de desgaste de flanco con el sistema MQL

n1 = población 1

n2 = población 1

Modelo lógico

Hipótesis nula Ho

Ho: El uso del sistema de mínima cantidad de lubricación (MQL) en el proceso de torneado del acero AISI 304 no mejora la vida útil de las herramientas de corte de

metal duro, se mantiene igual a las condiciones con el método de inundación de

taladrina.

Hipótesis alternativa Ha

Ha El uso del sistema de mínima cantidad de lubricación (MQL) en el proceso de

torneado del acero AISI 304 mejora la vida útil de las herramientas de corte de metal

duro, no es igual a las condiciones con el método de inundación de taladrina.

Modelo Matemático

Ho= Ux = Uy; **Ha=** $Ux \neq Uy$

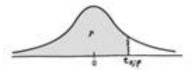
Determinación del nivel de significancia

264

Para este tipo de experimento se trabajara con un nivel de confianza del 95%, con un nivel de significancia del 5%

Nivel de Significancia

$$\alpha / 2 = 0.05/2 = 0.025$$


Grados de Libertad

$$v = n1+n2-2$$

$$v = 15 + 15 - 2$$

$$v=28$$

Distribución t de Student

La tabla A.4 da distintos valores de la función de distribución en relación con el número de grados de libertad; concretamente, relaciona los valores p y $f_{n,p}$ que satisfacen

 $P(t_n \le t_{np}) = p$.

n	to,55	£0,60	£0,70	£0,80	£0,90	£0,95	foers	fo,99	£0,995
1	0,1584	0,3249	0,7265	1,3764	3,0777	6,3138	12, 062	31,8205	63,6567
2	0,1421	0,2887	0,6172	1,0607	1,8856	2,9200	4, 2027	6,9646	9,9248
3	0,1366	0,2767	0,5844	0,9785	1,6377	2,3534	3, 824	4,5407	5,8409
4	0,1338	0,2707	0,5686	0,9410	1,5332	2,1318	2, 764	3,7469	4,6041
5	0,1322	0,2672	0,5594	0,9195	1,4759	2,0150	2,1706	3,3649	4,0321
6	0,1311	0,2648	0,5534	0,9057	1,4398	1,9432	2,469	3,1427	3,7074
7	0,1303	0,2632	0,5491	0,8960	1,4149	1,8946	2,3546	2,9980	3,4995
8	0,1297	0,2619	0,5459	0,8889	1,3968	1,8595	2,3060	2,8965	3,3554
9	0,1293	0,2610	0,5435	0,8834	1,3830	1,8331	2,3322	2,8214	3,2498
10	0,1289	0,2602	0,5415	0,8791	1,3722	1,8125	2,3881	2,7638	3,1693
11	0,1286	0,2596	0,5399	0,8755	1,3634	1,7959	2,3010	2,7181	3,1058
12	0,1283	0,2590	0,5386	0,8726	1,3562	1,7823	2,3788	2,6810	3,0545
13	0,1281	0,2586	0,5375	0,8702	1,3502	1,7709	2,1804	2,6503	3,0123
14	0,1280	0,2582	0,5366	0,8681	1,3450	1,7613	2,1348	2,6245	2,9768
15	0,1278	0,2579	0,5357	0,8662	1,3406	1,7531	2, 314	2,6025	2,9467
16	0,1277	0,2576	0,5350	0,8647	1,3368	1,7459	2,1 99	2,5835	2,9208
17	0,1276	0,2573	0,5344	0,8633	1,3334	1,7396	2,1998	2,5669	2,8982
18	0,1274	0,2571	0,5338	0,8620	1,3304	1,7341	2,1009	2,5524	2,8784
19	0,1274	0,2569	0,5333	0,8610	1,3277	1,7291	2,0 30	2,5395	2,8609
20	0,1273	0,2567	0,5329	0,8600	1,3253	1,7247	2,0060	2,5280	2,8453
21	0,1272	0,2566	0,5325	0,8591	1,3232	1,7207	2,0 96	2,5176	2,8314
22	0,1271	0,2564	0,5321	0,8583	1,3212	1,7171	2,0 39	2,5083	2,8188
23	0,1271	0,2563	0,5317	0,8575	1,3195	1,7139	2,087	2,4999	2,8073
24	0,1270	0,2562	0,5314	0,8569	1,3178	1,7109	2,0 39	2,4922	2,7969
25	0,1269	0,2561	0,5312	0,8562	1,3163	1,7081	2,0 95	2,4851	2,7874
26	0,1269	0,2560	0,5309	0,8557	1,3150	1,7056	2,0 55	2,4786	2,7787
27	0,1268	0,2559	0,5306	0,8551	1,3137	1,7033	Service .	2,4727	2,7707
28	1,0010	4,000	4,000	*****			2,0484	2,4571	2,7633
29	0,1268	0,2557	0,5302	0,8542	1,3114	1,6991	The same of	2,4620	2,7564
30	0,1267	0,2556	0,5300	0,8538	1,3104	1,6973	2,0423	2,4573	2,7500
40	0,1265	0,2550	0,5286	0,8507	1,3031	1,6839	2,0211	2,4233	2,7045
50	0,1263	0,2547	0,5278	0,8489	1,2987	1,6759	2,0086	2,4033	2,6778
60	0,1262	0,2545	0,5272	0,8477	1,2958	1,6706	2,0003	2,3901	2,6603
80	0,1261	0,2542	0,5265	0,8461	1,2922	1,6641	1,9901	2,3739	2,6387
100	0,1260	0,2540	0,5261	0,8452	1,2901	1,6602	1,9840	2,3642	2,6259
120	0,1259	0,2539	0,5258	0,8446	1,2886	1,6577	1,9799	2,3578	2,6174
00	0,126	0,253	0,524	0,842	1,282	1,645	1,960	2,327	2,576

Tabla A.4: Tabla de la distribución t de Student.

Figura4. 28.- Distribución t [12]

t tabulado = 2.0484

Cálculo de la distribución t

Tabla 4. 28.- Media de los desgastes obtenidos a 885 rpm con una profundidad de 4mm con los dos métodos de lubricación

MEDIDAS (μm)	TALADRINA	MQL
--------------	-----------	-----

0	0	0
1	602,3	142
2	444,3	162,3
3	337	139,3
4	246,6	112,6
5	220,3	88,3
6	250,6	86
7	249,3	99
8	248	95
9	262	89,6
10	255	75,3
11	183	67
12	186,3	55,6
13	193,6	53,3
14	173,6	52
15	168,3	34,3
Media	268	90,1

Fuente.- (Autor)

$$S^{2} \frac{\Sigma(Xi - X)^{2} + \Sigma(Xi - X)^{2}}{n1 + n2 - 2}$$
$$S^{2} \frac{189866 + 18818}{28}$$
$$S^{2} = 7453$$

Se sustituye los siguientes valores en la fórmula que a continuación se muestra para obtener la distribución t

$$t = \frac{X - Y}{\sqrt{\frac{S^2}{n1} + \frac{S^2}{n2}}}$$
$$t = \frac{268,04 - 90,13}{\sqrt{\frac{7453}{15} + \frac{7453}{15}}}$$
$$t = 5.64$$

t calculado = 5.64 > t tabulado = 2.0484

Por ser la t calculado mayor que la t tabulada se rechaza la hipótesis nula y se acepta la hipótesis alterna que dice:

Ha El uso del sistema de mínima cantidad de lubricación (**MQL**) en el proceso de torneado del acero AISI 304 mejora la vida útil de las herramientas de corte de metal duro, **no es igual** a las condiciones con el método de inundación de taladrina.

4.3.2.- Verificación de hipótesis para 900 rpm y 4mm de profundidad

Para la verificación de la hipótesis se ha establecido el método "T Student con Distribución de diferencia entre dos medias, Para lo cual se establece la siguiente hipótesis:

"Mejora la vida útil de las herramientas de metal duro en el proceso de torneado de acero AISI 304 utilizar el sistema de mínima cantidad de lubricación (MQL) con aceite vegetal"

Las variables que intervienen en la hipótesis son:

Variable independiente

Sistema de mínima cantidad de lubricante (MQL) con aceite vegetal.

Variable dependiente

Vida útil de las herramientas de metal duro

Simbología

Ho = hipótesis nula

Ha = hipótesis alternativa

 α = Margen de error

X = media de desgaste de flanco con el sistema de inundación

Y = media de desgaste de flanco con el sistema MQL

 $\mathbf{n1}$ = población 1

n2 = población 1

Modelo lógico

Hipótesis nula Ho

Ho: El uso del sistema de mínima cantidad de lubricación (MQL) en el proceso de

torneado del acero AISI 304 no mejora la vida útil de las herramientas de corte de

metal duro, se mantiene igual a las condiciones con el método de inundación de

taladrina.

Hipótesis alternativa Ha

Ha El uso del sistema de mínima cantidad de lubricación (MQL) en el proceso de

torneado del acero AISI 304 mejora la vida útil de las herramientas de corte de metal

duro, no es igual a las condiciones con el método de inundación de taladrina.

Modelo Matemático

Ho= Ux = Uy; **Ha=** $Ux \neq Uy$

Determinación del nivel de significancia

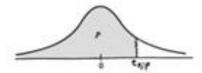
Para este tipo de experimento se trabajara con un nivel de confianza del 95%, con un

nivel de significancia del 5%

Nivel de Significancia

 $\alpha / 2 = 0.05/2 = 0.025$

Grados de Libertad


v = n1 + n2 - 2

v = 15 + 15 - 2

v = 28

269

Distribución t de Student

La tabla A.4 da distintos valores de la función de distribución en relación con el número de grados de libertad; concretamente, relaciona los valores p y $t_{\alpha p}$ que satisfacen

 $P(t_n \le t_{np}) = p$.

n	to,55	£0,60	£0,70	£0,80	£0,90	£0,95	foors	£0,99	£0,995
1	0,1584	0,3249	0,7265	1,3764	3,0777	6,3138	12, 062	31,8205	63,6567
2	0,1421	0,2887	0,6172	1,0607	1,8856	2,9200	4,3027	6,9646	9,9248
3	0,1366	0,2767	0,5844	0,9785	1,6377	2,3534	3, 824	4,5407	5,8409
4	0,1338	0,2707	0,5686	0,9410	1,5332	2,1318	2, 3764	3,7469	4,6041
5	0,1322	0,2672	0,5594	0,9195	1,4759	2,0150	2,1706	3,3649	4,0321
6	0,1311	0,2648	0,5534	0,9057	1,4398	1,9432	2,4169	3,1427	3,7074
7	0,1303	0,2632	0,5491	0,8960	1,4149	1,8946	2,3546	2,9980	3,4995
8	0,1297	0,2619	0,5459	0,8889	1,3968	1,8595	2,3060	2,8965	3,3554
9	0,1293	0,2610	0,5435	0,8834	1,3830	1,8331	2,3322	2,8214	3,2498
10	0,1289	0,2602	0,5415	0,8791	1,3722	1,8125	2,3881	2,7638	3,1693
11	0,1286	0,2596	0,5399	0,8755	1,3634	1,7959	2,3010	2,7181	3,1058
12	0,1283	0,2590	0,5386	0,8726	1,3562	1,7823	2,3788	2,6810	3,0545
13	0,1281	0,2586	0,5375	0,8702	1,3502	1,7709	2,1804	2,6503	3,0123
14	0,1280	0,2582	0,5366	0,8681	1,3450	1,7613	2,1348	2,6245	2,9768
15	0,1278	0,2579	0,5357	0,8662	1,3406	1,7531	2, 314	2,6025	2,9467
16	0,1277	0,2576	0,5350	0,8647	1,3368	1,7459	2,1199	2,5835	2,9208
17	0,1276	0,2573	0,5344	0,8633	1,3334	1,7396	2,1998	2,5669	2,8982
18	0,1274	0,2571	0,5338	0,8620	1,3304	1,7341	2,1009	2,5524	2,8784
19	0,1274	0,2569	0,5333	0,8610	1,3277	1,7291	2,0030	2,5395	2,8609
20	0,1273	0,2567	0,5329	0,8600	1,3253	1,7247	2,0060	2,5280	2,8453
21	0,1272	0,2566	0,5325	0,8591	1,3232	1,7207	2,0 96	2,5176	2,8314
22	0,1271	0,2564	0,5321	0,8583	1,3212	1,7171	2,039	2,5083	2,8188
23	0,1271	0,2563	0,5317	0,8575	1,3195	1,7139	2,087	2,4999	2,8073
24	0,1270	0,2562	0,5314	0,8569	1,3178	1,7109	2,0 39	2,4922	2,7969
25	0,1269	0,2561	0,5312	0,8562	1,3163	1,7081	2,0 95	2,4851	2,7874
26	0,1269	0,2560	0,5309	0,8557	1,3150	1,7056	2,0 55	2,4786	2,7787
27	0,1268	0,2559	0,5306	0,8551	1,3137	1,7033	ALC: U	2,4727	2,7707
28	-	0,0100	2,000	1,000	1,0100	-	2,0484	2,4571	2,7633
29	0,1268	0,2557	0,5302	0,8542	1,3114	1,6991	The same of	2,4620	2,7564
30	0,1267	0,2556	0,5300	0,8538	1,3104	1,6973	2,0423	2,4573	2,7500
40	0,1265	0,2550	0,5286	0,8507	1,3031	1,6839	2,0211	2,4233	2,7045
50	0,1263	0,2547	0,5278	0,8489	1,2987	1,6759	2,0086	2,4033	2,6778
60	0,1262	0,2545	0,5272	0,8477	1,2958	1,6706	2,0003	2,3901	2,6603
80	0,1261	0,2542	0,5265	0,8461	1,2922	1,6641	1,9901	2,3739	2,6387
100	0,1260	0,2540	0,5261	0,8452	1,2901	1,6602	1,9840	2,3642	2,6259
120	0,1259	0,2539	0,5258	0,8446	1,2886	1,6577	1,9799	2,3578	2,6174
00	0,126	0,253	0,524	0,842	1,282	1,645	1,960	2,327	2,576

Tabla A.4: Tabla de la distribución t de Student.

Figura4. 29.- Distribución t [13]

t tabulado = 2.0484

Cálculo de la distribución t

Tabla 4. 29.- Media de los desgastes obtenidos a 900 rpm con una profundidad de 4mm con los dos métodos de lubricación

MEDIDAS (μm)	TALADRINA	MQL
0	0	0
1	502	142,6
2	439,6	123
3	360	112
4	289,6	113,6
5	279,6	105,3
6	222,6	96,6
7	256,3	99,6
8	270,6	100,3
9	275,6	95,6
10	264,6	87,3
11	221,6	86,3
12	210	72
13	211,6	61,3
14	218,6	51,3
15	195,3	40,6
medias	281,2	92,5

$$S^{2} \frac{\Sigma(Xi - X)^{2} + \Sigma(Xi - X)^{2}}{n1 + n2 - 2}$$
$$S^{2} \frac{109339 + 10417}{28}$$
$$S^{2} = 4277$$

Se sustituye los siguientes valores en la fórmula que a continuación se muestra para obtener la distribución t

$$t = \frac{X - Y}{\sqrt{\frac{S^2}{n1} + \frac{S^2}{n2}}}$$

$$t = \frac{281.22 - 92,53}{\sqrt{\frac{4277}{15} + \frac{4277}{15}}}$$

$$t = 7.90$$

t calculado = 7.90 > t tabulado = 2.0484

Por ser la t calculado mayor que la t tabulada se rechaza la hipótesis nula y se acepta la hipótesis alterna que dice:

Hipótesis alternativa Ha

Ha El uso del sistema de mínima cantidad de lubricación (**MQL**) en el proceso de torneado del acero AISI 304 mejora la vida útil de las herramientas de corte de metal duro, **no es igual** a las condiciones con el método de inundación de taladrina.

4.3.3.- Verificación de hipótesis a 885 rpm y 0.15mm de profundidad

Para la verificación de la hipótesis se ha establecido el método "T Student con Distribución de diferencia entre dos medias, Para lo cual se establece la siguiente hipótesis:

"Mejora la vida útil de las herramientas de metal duro en el proceso de torneado de acero AISI 304 utilizar el sistema de mínima cantidad de lubricación (MQL) con aceite vegetal"

Las variables que intervienen en la hipótesis son:

Variable independiente

Sistema de mínima cantidad de lubricante (MQL) con aceite vegetal.

Variable dependiente

Vida útil de las herramientas de metal duro

Simbología

Ho = hipótesis nula

Ha = hipótesis alternativa

 α = Margen de error

X = media de desgaste de flanco con el sistema de inundación

Y = media de desgaste de flanco con el sistema MQL

n1 = población 1

n2 = población 1

Modelo lógico

Hipótesis nula Ho

Ho: El uso del sistema de mínima cantidad de lubricación (MQL) en el proceso de

torneado del acero AISI 304 no mejora la vida útil de las herramientas de corte de

metal duro, se mantiene igual a las condiciones con el método de inundación de

taladrina.

Hipótesis alternativa Ha

Ha El uso del sistema de mínima cantidad de lubricación (MQL) en el proceso de

torneado del acero AISI 304 mejora la vida útil de las herramientas de corte de metal

duro, no es igual a las condiciones con el método de inundación de taladrina.

Modelo Matemático

Ho= Ux = Uy; **Ha=** $Ux \neq Uy$

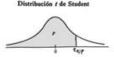
Determinación del nivel de significancia

Para este tipo de experimento se trabajara con un nivel de confianza del 95%, con un

nivel de significancia del 5%

Nivel de Significancia

 α / 2= 0,05/2 = 0,025


Grados de Libertad

v = n1 + n2 - 2

v = 3 + 3 - 2

v=4

273

La tabla A.4 da distintos valores de la función de distribución en relación con el número de grados de libertad; concretamente, relaciona los valores p

 $P(t_n \le t_{n:p}) = p.$

n	£0,55	£0,60	\$0,70	£0,80	\$0,90	£0,95	to 25	fo,99	\$0,995
1	0,1584	0,3249	0,7265	1,3764	3,0777	6,3138	12, 062	31,8205	63,6567
2	0,1421	0,2887	0,6172	1,0607	1,8856	2,9200	4,3 27	6,9646	9,9248
3	0,1366	0,2767	0,5844	0,9785	1,6377	2,3534	3-004	4,5407	5,8409
4	0,0000	1,000	0,0000	-	1,0100	-	2,7764	3,7469	4,6041
5	0,1322	0,2672	0,5594	0,9195	1,4759	2,0150	2,0100	3,3649	4,0321
6	0,1311	0,2648	0,5534	0,9057	1,4398	1,9432	2,4469	3,1427	3,7074
7	0,1303	0,2632	0,5491	0,8960	1,4149	1,8946	2,3646	2,9980	3,4995
8	0,1297	0,2619	0,5459	0,8889	1,3968	1,8595	2,3060	2,8965	3,3554
9	0,1293	0,2610	0,5435	0,8834	1,3830	1,8331	2,2622	2,8214	3,2498
10	0,1289	0,2602	0,5415	0,8791	1,3722	1,8125	2,2281	2,7638	3,1693
11	0,1286	0,2596	0,5399	0,8755	1,3634	1,7959	2,2010	2,7181	3,1058
12	0,1283	0,2590	0,5386	0,8726	1,3562	1,7823	2,1788	2,6810	3,0545
13	0,1281	0,2586	0,5375	0,8702	1,3502	1,7709	2,1604	2,6503	3,0123
14	0,1280	0,2582	0,5366	0,8681	1,3450	1,7613	2,1448	2,6245	2,9768
15	0,1278	0,2579	0,5357	0,8662	1,3406	1,7531	2,1314	2,6025	2,9467
16	0,1277	0,2576	0,5350	0,8647	1,3368	1,7459	2,1199	2,5835	2,9208
17	0,1276	0,2573	0,5344	0,8633	1,3334	1,7396	2,1098	2,5669	2.8982
18	0,1274	0,2571	0,5338	0,8620	1,3304	1,7341	2,1009	2,5524	2,8784
19	0,1274	0,2569	0,5333	0,8610	1,3277	1,7291	2,0930	2,5395	2,8609
20	0,1273	0,2567	0,5329	0,8600	1,3253	1,7247	2,0860	2,5280	2,8453
21	0,1272	0,2566	0,5325	0,8591	1,3232	1,7207	2,0796	2,5176	2,8314
22	0,1271	0,2564	0,5321	0,8583	1,3212	1,7171	2,0739	2,5083	2,8188
23	0,1271	0,2563	0,5317	0,8575	1,3195	1,7139	2,0687	2,4999	2,8073
24	0,1270	0,2562	0,5314	0,8569	1,3178	1,7109	2,0639	2,4922	2,7969
25	0,1269	0,2561	0,5312	0,8562	1,3163	1,7081	2,0595	2,4851	2,7874
26	0,1269	0,2560	0,5309	0,8557	1,3150	1,7056	2,0555	2,4786	2,7787
27	0,1268	0,2559	0,5306	0,8551	1,3137	1,7033	2,0518	2,4727	2,7707
28	0,1268	0,2558	0,5304	0,8546	1,3125	1,7011	2,0484	2,4671	2,7633
29	0,1268	0,2557	0,5302	0,8542	1,3114	1,6991	2,0452	2,4620	2,7564
30	0,1267	0,2556	0,5300	0,8538	1,3104	1,6973	2,0423	2,4573	2,7500
40	0,1265	0,2550	0,5286	0,8507	1,3031	1,6839	2,0211	2,4233	2,7045
50	0,1263	0,2547	0,5278	0,8489	1,2987	1,6759	2,0086	2,4033	2,6778
60	0,1262	0,2545	0,5272	0,8477	1,2958	1,6706	2,0003	2,3901	2,6603
80	0,1261	0,2542	0,5265	0,8461	1,2922	1,6641	1,9901	2,3739	2,6387
100	0,1260	0,2540	0,5261	0,8452	1,2901	1,6602	1,9840	2,3642	2,6259
120	0,1259	0,2539	0,5258	0,8446	1,2886	1,6577	1,9799	2,3578	2,6174
00	0,126	0,253	0,524	0,842	1,282	1,645	1,960	2,327	2,576

Tabla A.4: Tabla de la distribución t de Student.

Figura4. 30.-Distribución t

t tabulado = 2.7764

Cálculo de la distribución t

Tabla 4. 30.- Media de los desgastes obtenidos a 885 rpm con una profundidad de 0.15mm con los dos métodos de lubricación

MEDIDAS (μm)	TALADRINA	MQL
0	0	0
1	108,3	105,6
2	71,3	71
3	47,6	51
Media	75,7	75,8

$$S^{2} \frac{\Sigma(Xi - X)^{2} + \Sigma(Xi - X)^{2}}{n1 + n2 - 2}$$

$$S^2 \frac{1869.85 + 1530.07}{4}$$

$$S^2 = 849.98$$

Se sustituye los siguientes valores en la fórmula que a continuación se muestra para obtener la distribución t

$$t = \frac{X - Y}{\sqrt{\frac{S^2}{n1} + \frac{S^2}{n2}}}$$

$$t = \frac{75.77 - 75,88}{\sqrt{\frac{849.98}{3} + \frac{849.98}{3}}}$$

$$t = -4.62xE-3$$

t calculado = -4.62xE-3 < t tabulado = 2.7764

Por ser la t calculado menor que la t tabulada se acepta la hipótesis nula y se rechaza la hipótesis alterna.

Hipótesis nula Ho

Ho: El uso del sistema de mínima cantidad de lubricación (**MQL**) en el proceso de torneado del acero AISI 304 no mejora la vida útil de las herramientas de corte de metal duro, se **mantiene igual** a las condiciones con el método de inundación de taladrina.

4.3.4.- Verificación de hipótesis a 900 rpm y 0.15mm de profundidad

Para la verificación de la hipótesis se ha establecido el método "T Student con Distribución de diferencia entre dos medias, Para lo cual se establece la siguiente hipótesis:

"Mejora la vida útil de las herramientas de metal duro en el proceso de torneado de acero AISI 304 utilizar el sistema de mínima cantidad de lubricación (MQL) con aceite vegetal"

Las variables que intervienen en la hipótesis son:

Variable independiente

Sistema de mínima cantidad de lubricante (MQL) con aceite vegetal.

Variable dependiente

Vida útil de las herramientas de metal duro

Simbología

Ho = hipótesis nula

Ha = hipótesis alternativa

 α = Margen de error

X = media de desgaste de flanco con el sistema de inundación

Y = media de desgaste de flanco con el sistema MQL

 $\mathbf{n1}$ = población 1

n2 = población 1

Modelo lógico

Hipótesis nula Ho

Ho: El uso del sistema de mínima cantidad de lubricación (MQL) en el proceso de

torneado del acero AISI 304 no mejora la vida útil de las herramientas de corte de

metal duro, se mantiene igual a las condiciones con el método de inundación de

taladrina.

Hipótesis alternativa Ha

Ha El uso del sistema de mínima cantidad de lubricación (MQL) en el proceso de

torneado del acero AISI 304 mejora la vida útil de las herramientas de corte de metal

duro, no es igual a las condiciones con el método de inundación de taladrina.

Modelo Matemático

Ho= Ux = Uy; **Ha=** $Ux \neq Uy$

Determinación del nivel de significancia

276

Para este tipo de experimento se trabajara con un nivel de confianza del 95%, con un nivel de significancia del 5%

Nivel de Significancia

 $\alpha / 2 = 0.05/2 = 0.025$

Grados de Libertad

v = n1+n2-2

v = 3 + 3 - 2

v=4

La tabla A.4 da distintos valores de la función de distribución en relación con el número de grados de libertad; concretamente, relaciona los valores p

 $P(t_n \leq t_{n,p}) = p.$

n	£0,55	£0,60	£0,70	£0,80	\$0,90	£0,95	to es	fo,99	\$0,995
1	0,1584	0,3249	0,7265	1,3764	3,0777	6,3138	12, 062	31,8205	63,6567
2	0,1421	0,2887	0,6172	1,0607	1,8856	2,9200	4,3 27	6,9646	9,9248
3	0,1366	0,2767	0,5844	0,9785	1,6377	2,3534	2.001	4,5407	5,8409
4	0,000	1,000	0,0000	-	-	-	2,7764	3,7469	4,6041
5	0,1322	0,2672	0,5594	0,9195	1,4759	2,0150	2,0108	3,3649	4,0321
6	0,1311	0,2648	0,5534	0,9057	1,4398	1,9432	2,4469	3,1427	3,7074
7	0,1303	0,2632	0,5491	0,8960	1,4149	1,8946	2,3646	2,9980	3,4995
8	0,1297	0,2619	0,5459	0,8889	1,3968	1,8595	2,3060	2,8965	3,3554
9	0,1293	0,2610	0,5435	0,8834	1,3830	1,8331	2,2622	2,8214	3,2498
10	0,1289	0,2602	0,5415	0,8791	1,3722	1,8125	2,2281	2,7638	3,1693
11	0,1286	0,2596	0,5399	0,8755	1,3634	1,7959	2,2010	2,7181	3,1058
12	0,1283	0,2590	0,5386	0,8726	1,3562	1,7823	2,1788	2,6810	3,0545
13	0,1281	0,2586	0,5375	0,8702	1,3502	1,7709	2,1604	2,6503	3,0123
14	0,1280	0,2582	0,5366	0,8681	1,3450	1,7613	2,1448	2,6245	2,9768
15	0,1278	0,2579	0,5357	0,8662	1,3406	1,7531	2,1314	2,6025	2,9467
16	0,1277	0,2576	0,5350	0,8647	1,3368	1,7459	2,1199	2,5835	2,9208
17	0,1276	0,2573	0,5344	0,8633	1,3334	1,7396	2,1098	2,5669	2,8982
18	0,1274	0,2571	0,5338	0,8620	1,3304	1,7341	2,1009	2,5524	2,8784
19	0,1274	0,2569	0,5333	0,8610	1,3277	1,7291	2,0930	2,5395	2,8609
20	0,1273	0,2567	0,5329	0,8600	1,3253	1,7247	2,0860	2,5280	2,8453
21	0,1272	0,2566	0,5325	0,8591	1,3232	1,7207	2,0796	2,5176	2,8314
22	0,1271	0,2564	0,5321	0,8583	1,3212	1,7171	2,0739	2,5083	2,8188
23	0,1271	0,2563	0,5317	0,8575	1,3195	1,7139	2,0687	2,4999	2,8073
24	0,1270	0,2562	0,5314	0,8569	1,3178	1,7109	2,0639	2,4922	2,7969
25	0,1269	0,2561	0,5312	0,8562	1,3163	1,7081	2,0595	2,4851	2,7874
26	0,1269	0,2560	0,5309	0,8557	1,3150	1,7056	2,0555	2,4786	2,7787
27	0,1268	0,2559	0,5306	0,8551	1,3137	1,7033	2,0518	2,4727	2,7707
28	0,1268	0,2558	0,5304	0,8546	1,3125	1,7011	2,0484	2,4671	2,7633
29	0,1268	0,2557	0,5302	0,8542	1,3114	1,6991	2,0452	2,4620	2,7564
30	0,1267	0,2556	0,5300	0,8538	1,3104	1,6973	2,0423	2,4573	2,7500
40	0,1265	0,2550	0,5286	0,8507	1,3031	1,6839	2,0211	2,4233	2,7045
50	0,1263	0,2547	0,5278	0,8489	1,2987	1,6759	2,0086	2,4033	2,6778
60	0,1262	0,2545	0,5272	0,8477	1,2958	1,6706	2,0003	2,3901	2,6603
80	0,1261	0,2542	0,5265	0,8461	1,2922	1,6641	1,9901	2,3739	2,6387
100	0,1260	0,2540	0,5261	0,8452	1,2901	1,6602	1,9840	2,3642	2,6259
20	0,1259	0,2539	0,5258	0,8446	1,2886	1,6577	1,9799	2,3578	2,6174
00	0,126	0,253	0,524	0,842	1,282	1,645	1,960	2,327	2,576

Tabla A.4: Tabla de la distribución t de Student.

Figura 4. 31.- Distribución t [13]

t tabulado = 2.7764

Cálculo de la distribución t

Tabla 4. 31.- Media de los desgastes obtenidos a 900 rpm con una profundidad de 0.15mm con los dos métodos de lubricación

MEDIDAS (μm)	TALADRINA	MQL
0	0	0
1	147,3	139,6
2	79,6	87,6
3	56,3	59
Media	94,4	95,4

Fuente- (Autor)

$$S^{2} \frac{\Sigma(Xi - X)^{2} + \Sigma(Xi - X)^{2}}{n1 + n2 - 2}$$
$$S^{2} \frac{4468.07 + 3344.29}{4}$$
$$S^{2} = 1953.09$$

Se sustituye los siguientes valores en la fórmula que a continuación se muestra para obtener la distribución t

$$t = \frac{X - Y}{\sqrt{\frac{S^2}{n1} + \frac{S^2}{n2}}}$$

$$t = \frac{94.44 - 95.44}{\sqrt{\frac{1953.09}{3} + \frac{1953.09}{3}}}$$

$$t = -0.02$$

t calculado =--0.02<t tabulado = 2.7764

Por ser la t calculado menor que la t tabulada se acepta la hipótesis nula y se rechaza la hipótesis alterna.

Hipótesis nula Ho

Ho: El uso del sistema de mínima cantidad de lubricación (MQL) en el proceso de torneado del acero AISI 304 no mejora la vida útil de las herramientas de corte de

metal duro, se **mantiene igual** a las condiciones con el método de inundación de taladrina.

CAPÍTULO V

5.1.- CONCLUSIONES

- Se identificó que para el proceso de torneado del Acero Inoxidable AISI 304 se utiliza comúnmente en el Ecuador el método de lubricación y refrigeración por inundación de aceite soluble en agua (Taladrina), en este estudio también se pudo confirmar la factibilidad que presenta el sistema de mínima cantidad de lubricación (MQL) con aceite vegetal para el torneado del Acero AISI 304.
- Mediante la norma ANSI /ASME B94.55 M1985 se evaluó el desgaste en el flanco de la herramienta de corte de metal duro con el método de lubricación y refrigeración de inundación con taladrina, el mismo que en su zona intermedia la cual es el objeto de análisis mostró características de desgaste irregular, bajo el criterio de desgaste de la norma se calculó un promedio de desgaste de 0.257 mm a los 30 minutos en la zona antes mencionada, el mismo que no debe exceder de 0.3 mm además se evaluó el desgaste máximo de 0.275 mm a los 30 minutos en esta zona el cual no debe exceder de 0.6 mm.
- Mediante la norma ANSI /ASME B94.55 M1985 se evaluó el desgaste en el flanco de la herramienta de corte de metal duro con el método de mínima cantidad lubricación (MQL) con aceite vegetal, el mismo que en su zona intermedia la cual es el objeto de análisis mostró características de desgaste uniforme, bajo el criterio de desgaste de la norma se calculó un promedio de desgaste de 0.095mm a los 30 minutos en la zona antes mencionada, el mismo

que no debe exceder de 0.3 mm además se evaluó el desgaste máximo de 0.1mm a los 30 minutos en esta zona el cual no debe exceder de 0.6 mm .

- Una vez analizado los datos obtenidos mediante las mediciones en el microscopio electrónico de barrido (MEB) de los respectivos flancos los resultados mostraron que a las velocidades de corte de 885rpm y 900rpm en intervalos de cinco minutos con una profundidad de 4 mm el sistema de mínima cantidad de lubricación disminuyó el desgaste del flanco en un 63% en la zona intermedia de los insertos de metal duro a diferencia de los flancos maquinados con taladrina. Sin embargo manteniendo las velocidades pero a una profundidad de 0.15 mm el desgaste del flanco del inserto presenta las mismas características con ambos métodos de lubricación.
- Aplicando la ecuación de Taylor a los datos obtenidos se pudo determinar que el sistema MQL prolonga la vida útil de la herramienta de corte de metal duro a diferencia del método de inundación, mostrando que el desgaste a 30 minutos con el método de mínima cantidad de lubricación es menor en un 64.33% a diferencia del método de inundación
- El método de elementos finitos no se lo realizo debido a que ciertos parámetros que influyen en el proceso de mecanizado no se pueden determinar además de que ya se cuenta con un estudio practico del fenómeno donde se la información recolectada ayuda al cumplimiento de los objetivos antes mencionados en el presente trabajo.

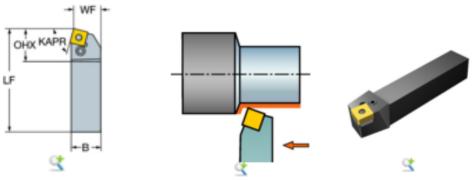
5.2.- RECOMENDACIONES

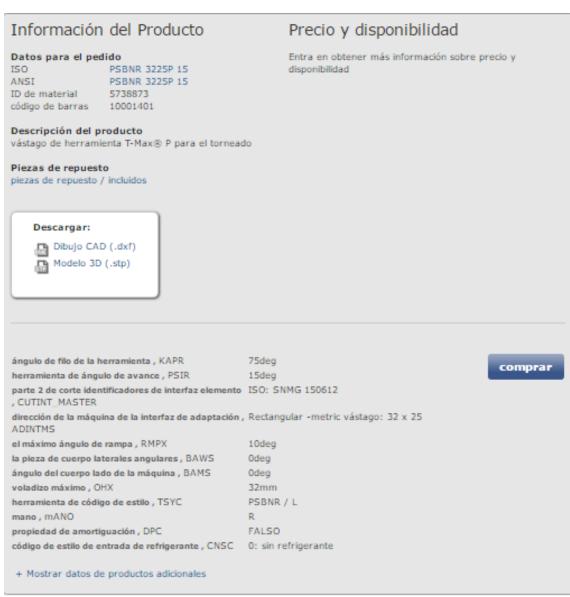
• Es de vital importancia el uso de gafas industriales para prevenir las lesiones en el momento de maquinado tomando en cuenta que la forma de desprendimiento de la viruta del acero inoxidable se presenta en forma de escamas de metal que salen disparadas a altas velocidades y temperaturas las mismas que pueden causar severos daños si estas llegan a estar en contacto con los ojos

- Para el maquinado del eje se recomienda un mecanizado previo donde se pueda refrentar sus extremos para después hacer una perforación adecuada que permita ajustarse al contrapunto y obtener mayor sujeción del eje evitando las vibraciones propias de la maquina las cuales pueden afectar a los resultados de estudio.
- Antes de poner en marcha la máquina herramienta debemos confirmar que todos los mecanismos se encuentren en las posiciones adecuadas además de que el porta herramientas se encuentre sujeto y bien ubicado para el mecanizado además de que como la cuchilla es un inserto esta debe estar bien sujeta para evitar algún inconveniente en el maquinado el cual podría causar pérdidas económicas de material y herramienta o incluso lesiones al operario
- Cuando se use el sistema de Mínima cantidad de lubricación tener especial cuidado con el suministro de aire, que el mismo antes de ser conectado se debe purgar la unidad de mantenimiento para evitar el ingreso de partículas de agua al sistema, que la presión no exceda la recomendada ya podría causar daños a los componentes internos del sistema de mínima cantidad de lubricación, que todas las tomas de aire se encuentren bien ajustadas para evitar posibles fugas que puedan causar inconvenientes en su funcionamiento
- Cuando se esté usando el sistema de mínima cantidad de lubricación se debe tener siempre presente que el punto de acción entre el material y la herramienta este siempre atacado de manera directa por el lubricante.
- Es necesario usar una mascarilla en el momento de trabajar con el sistema de MQL ya que se puede inhalar las pequeñas partículas que este forma en su funcionamiento las mismas que pueden causar molestias la operario.
- Para el análisis de los insertos de metal duro se los debe limpiar adecuadamente para evitar que se pueda contaminar la cámara de vacío del mismo y esta a su vez pueda presentar algún desperfecto

 Para la medición en el microscopio se recomienda que los insertos que fueron sometidos a una profundidad de 4mm se los analice por tramos para que las mediciones sean más objetivas.

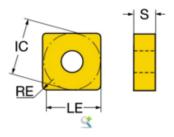
MATERIALES DE REFERENCIA


BIBLIOGRAFIA


- [1] N. C. Ghuge, D. V.K y D. Mahalle, «Minimum Quantity Lubrication,» *Publication mensual IORSJEN*, vol. I, pp. 55-60, 2016.
- [2] N. Dhar, M. Kamruzzaman y M. Ahmed, «Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel",» *ELSEVIER*, vol. I, n° 172, pp. 299-304, 2006.
- [3] R. Autret y S. Liang, «Minimum Quantity Lubrication in Finish Hard Turning,»

- Publicacion de Georgia Institute of Technology, vol. I, pp. 1-9, 2012.
- [4] J. A. Correa, «Principios de torneado,» Guia de torneado, vol. I, nº 1, p. 1, 2008.
- [5] J. A. Correa, «Principios de Torneado,» Guia de torneado, vol. I, nº 1, pp. 16-23, 2008.
- [6] De maquinas y Herramientas, «De maquinas y Herramientas,» De maquinas y Herramientas, 1 Enero 2014. [En línea]. Available: http://www.demaquinasyherramientas.com/mecanizado/insertos-para-torno-clasificacioniso-y-aplicaciones. [Último acceso: 18 Febrero 2016].
- [7] J. A. Correa, «Principios de Torneado,» *Principios de Torneado*, vol. I, nº 1, pp. 1-2, 2008.
- [8] L. M. BARRENO, «Tercero Mecanizado,» 1 Octubre 2012. [En línea]. Available: http://jjc3mecanizadonocturno.blogspot.com/p/velocidad-de-corte.html. [Último acceso: 18 Febrero 2016].
- [9] C. G. MARTÍNEZ, OPTIMIZACIÓN DEL PROCESO DE TALLADO, Leganes, 2010.
- [10] L. A. S. Gonzales y F. d. R. M. Aguirre, Metodologia de ensayospara detrminar la vida de una herramienta de corte bajo el criterio de desgaste por medio de la ecuacion de Taylo en un proceso de mecanizado para el acero AISI 01 en un torno CNC, Guayaquil, 2012.
- [11] SUMITEC, «sumitec,» 1 1 2016. [En línea]. Available: http://www.sumiteccr.com/Aplicaciones/Articulos/pdfs/AISI%20304.pdf. [Último acceso: 22 02 2016].
- [12] S. COROMANT, Herramientas de torneado, SANDVIK COROMANT, 2012.
- [13] s. share, «slide share,» slide share, 1 enro 2015. [En línea]. Available: http://image.slidesharecdn.com/tablat-student-120318105418-phpapp02/95/tabla-t-student-1-728.jpg?cb=1332068091. [Último acceso: 25 marzo 2016].
- [14] Escuela Colombiana de Ingeniería "Julio Garavito", «Torno Protocolo Procesos de Manufactura,» *Laboratorio de Produccion*, vol. I, pp. 9-21, 2007.
- [15] De Maquinas y Herramientas, «De Maquinas y Herramientas,» De Maquinas y Herramientas, 1 Enero 2014. [En línea]. Available: http://www.demaquinasyherramientas.com/mecanizado/herramientas-de-corte-para-torno-tipos-y-usos. [Último acceso: 18 Febrero 2016].

ANEXOS


Ficha técnica de la porta herramienta

Ficha técnica del inserto de metal duro

Información del Producto

Datos para el pedido

ISO SNMG 12 04 04 QM-235 ANSI SNMG 431 QM-235

ID de material 5750237 código de barras 10233171

Descripción del producto

T-Max® P inserto para torneado

Precio y disponibilidad

Entra en obtener más información sobre precio y disponibilidad

comprar

designación de chips del fabricante interruptor ,

CBMD

Tipo de operación , CTPT medio inserte tamaño y forma , CUTINT_SIZESHAPE ISO: SN1204 diámetro del círculo inscrito , IC 12.7mm

insertar código forma , SC S

vanguardia longitud efectiva , LE 12.3mm

Radio de esquina , RE 0.3969mm

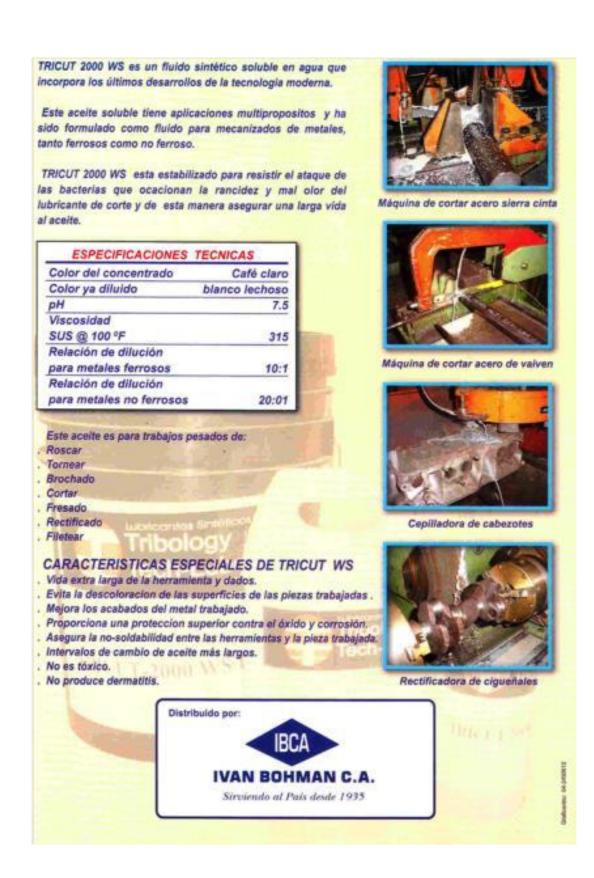
borde limpiador propiedad , WEP FALSO
herramienta de código de estilo , TSYC SNMG-QM

 mano , mANO
 norte

 grado , gRADO
 235

 sustrato , sUSTRATO
 HM

+ Mostrar datos de productos adicionales


P PA: 3 mm (1-6) fn: 0,25 mm / r (0,18-0,3) VC: 130 m / min (125-145)

METRO AP: 1,5 mm (0,15-4) fn: 0,2 mm / r (0,08-0,3) VC: 115 m / min (110-115)

Haga clic aquí para personalizar los datos de corte

Ficha técnica del lubricante para el sistema de inundación

Ficha técnica del lubricante MQL Coolube 2210 EP

Material Safety Data Sheet - Coolube® 2210EP

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical state: Low viscous oil Viscosity (40°C): 10 mm²/s (cSt) Color: Yellowish fluid

Odor: Vegetable oil related (Slight sulphur smell)

pH value: Not applicable

Flash point (Open Cup): >200 °C, >400F(COC)
Pourability: -12 to -20 °C

Pourability: -12 to -20 °C
Auto ignition temperature: Not applicable
Explosion range: Not applicable

Vapor pressure: Negligible under normal conditions

Density (20°C): Approx. 890 kg/m Solubility in water: Insoluble Solubility in organic solvents: Soluble

10. STABILITY AND REACTIVITY

Stability: Stable product under ordinary conditions.

Hazardous reactions: None known.

Conditions to be avoided: Elevated temperatures (>>100°C), acids and strong oxidizing agents.

Hazardous decomposition: Thermal decomposition (>>200°C) may give flammable and toxic gases such as

hydrogen sulphide, sulphur oxides and carbon oxides may be formed.

11. TOXICOLOGICAL INFORMATION

Acute oral toxicity

(OECD 401): LD50 rat >2000 mg/kg, i.e. not toxic

Skin irritation (OECD 404): Not tested.

12. ECOLOGICAL INFORMATION

Biodegradability: The product is readily biodegradable according to CEC L-33-A-93

(>80 % in 21 days).

13. DISPOSAL CONSIDERATIONS

Used product: As per existing regulations.
Used packaging: As per existing regulations.

3

Material Safety Data Sheet - Coolube® 2210EP

14. TRANSPORT INFORMATION

The product is not classified as dangerous goods.

15. REGULATORY INFORMATION

EPA SARA 311/312: Not Hazardous

EPA SARA 313: This Product Contains the Following Chemicals Subject to Annual Release

Reporting Requirements Under SARA Title III, Section 313 (40 CFR 372):

None

EPA SARA 302/304: No listed chemicals are present.

Symbols: None Risk phrases: None Safety phrases: None

No labelling required according to EU Regulations.

Superfund Ammendments and Reauthorization At of 1986(SARA) Title III requires submission of annual reports of toxic chemicals that appear in 40 CFR 372(for SARA 313). This information must be included in all MSDSs that are copied and distributed for this material. Components present in the product at a level which could require reporting under the statute are: None

16. OTHER INFORMATION

Coolube® 2210EP is a neat metalworking oil with superior lubricating properties. The product is based on vegetable oils and natural esters and should be used undiluted in, for example, minimal lubrication applicators. This product (or components, if a mixture) has not been found to be a carcinogen or potential carcinogen by IARC; is not listed in the NTP Third Annual Report; nor is it regulated by OSHA as a carcinogen.

The information presented herein has been compiled from sources considered by the company, in good faith, to be dependable and is accurate and reliable to the best of our knowledge and belief. However, the company cannot make any warranty or representation respecting the accuracy or completeness of the data and assumes no responsibility for any liability or damages relating thereto or for advising you regarding the protection of your employees, customers, or others. Users should make their own tests to determine the applicability or such information or suitability of any products for specific use.

 HMIS Rating (USA): Health:
 0
 0=Minimal

 Flammability:
 1
 1=Slight

 Physical Hazard:
 0
 2=Moderate

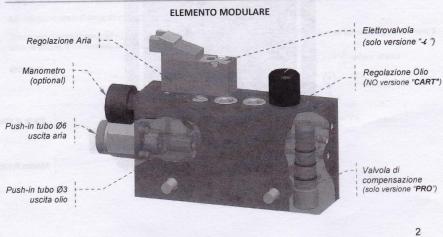
 3=Serious

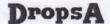
4=Severe

*=Chronic Health Hazard

4

Ficha técnica del sistema de mínima cantidad de lubricación


3. IDENTIFICAZIONE DELLA MACCHINA


Sul fianco dell'unità è posta una targhetta su cui è riportato il codice del prodotto, le tensioni di alimentazione e le caratteristiche di base.

4. CARATTERISTICHE TECNICHE

	CARATTERISTICHE	TECNICHE	
Capacità serbatoio		1/t - 3/t	
Numero massimo moduli		8	
Pressione ingresso aria		4bar ÷ 7bar	
Consumo massimo aria in uscita		~50NI/min (per modulo)	
Tubo ingresso aria		Ø10mm	
Tubo uscita aria		Ø6mm	
Tubo uscita olio		Ø3mm	
	PRO	0 ÷ 8cc/min (olio 10cSt ÷ 32 cSt) 0 ÷ 2cc/min (olio 32cSt ÷ 100 cSt)	
Portata olio per elemento	BASE	0 ÷ 15cc/min (olio 10cSt ÷ 32 cSt) 0 ÷ 5cc/min (olio 32cSt ÷ 100 cSt)	
	CART	cc/min = (P x 8,16)/V P = pressione di funzionamento in [bar] V = viscosità [Engler] alla temp. di funzionamen	
Olio lubrificante		10cSt ÷ 100cSt	
	standard	IP 00	
Grado di protezione elemento "4"	su richiesta (speciale)	IP 65	
Grado di protezione serbatoio		IP 65	
Taratura pressostato		6bar	
Carico massimo pressostato		Contatto pulito massima tensione 250V Massima potenza 100W	
Carico massimo minimo livello		0,2A @ 30V	
Alimentazione elettrovalvola eleme	ento	24Vdc	
Temperatura di esercizio		+5°C ÷ +50°C	
Temperatura di stoccaggio		-10°C ÷ +80°C	
Umidità relativa max. senza conde	nsa di esercizio	90%	
Livello di pressione sonora		< 70 db (A)	
Peso netto		~5Kg (mod. 1lt) - ~7Kg (mod. 3lt)	

5. COMPONENTI DELLA MACCHINA

Dropsa Spa Via Benedetto Croce, 1 20090 Vimodrone (MI) Tel.: Fax Sales: E-mail: Web site: (+39) 02. 250.79.1 (+39) 02. 250.79.767 sales@dropsa.it http://www.dropsa.com

Original copy

DICHIARAZIONE C € DI CONFORMITÁ/DECLARATION OF COMPLIANCE WITH STANDARDS/ DECLARATION DE CONFORMITE/ KONFORMITÄTSERKLÄRUNG DES STANDARDS / DECLARACIÓN DE CONFORMIDAD/ DECLARAÇÃO DE CONFORMIDADE

La società Dropsa S.p.A., con sede legale in Milano, Via Besana, 5 /Dropsa S.p.A., registered office in Milan, Via Besana, 5 /Dropsa S.p.A. au Siège Social à Milan, Via Besana, 5 /Dropsa S.p.A., Sitz in Milano, Via Besana 5 /La sociedad Dropsa S.p.A., con sede legal en Milán, Via Besana, 5 /A Dropsa S.p.A, com sede em Milão, via Besana, nº 5

DICHIARA /CERTIFIES / CERTIFIE/ ZERTIFIZIERT/ DECLARA/ CERTIFICA:

che il prodotto denominato/that the product called/ le produit appelé/ dass das Produkt mit dem Namen/ que el producto que se llama/ que o produto chamado:

"MiQueL"	
Description/ Description/ Beschreibung/ Descripción/ Descrição:	Air/oil modular lubricator
Versioni/ Versions/ Versionen/ Versiones/ Versões:	PRO - PRO i -BASE - BASE i - CART - CART i
Codici/ Part Number/ Teile Nummer / Códigos/:	3135

(IT) è conforme alle condizioni previste dalle Direttive CEE

(EN) has been constructed in conformity with the Directives of the Council of the European Community on the standardization of the legislations of member states

(FR) a été construit en conformité des Directives du Conseil des Communautés Européennes

(DE) entsprechend den Richtlinien des Rates der Europäischen Union, für die Standardisierung der Legislative der Mitgliederstaaten, konstruiert wurde

(SP) cumple con las condiciones establecidas por las directivas comunitarias

(PT) foi construído em conformidade com as diretivas do Conselho das Comunidades Europeias:

2006/95 CE Bassa tensione/ Low voltage directive/ Directive basse tension/ Niedrigspannungsrichtlinien/ Directiva de baja tensión/ Directiva de baixa tensão

2004/108 CE Compatibilità elettromagnetica/ Electromagnetic compatibility/Compatibilité électromagnétique/ Automotive Elektromagnetische verträglichkeit/Compatibilidad electromagnética/Compatibilidade eletromagnética/

CE

C2159DM

Vimodrone (MI), June 2014

La persona autorizzata a costituire il Fascicolo Tecnico c/presso Dropsa S.P.A.

The person authorized to compile the Technical File care of Dropsa S.P.A.

Technical Director: Walter Divisi

292

"ESTUDIO DEL EFECTO DEL SISTEMA DE MÍNIMA CANTIDAD DE LUBRICANTE (MQL) CON ACEITE VEGETAL EN LA VIDA DE LAS HERRAMIENTAS DE CORTE DE METAL DURO EN EL PROCESO DE TORNEADO DEL ACERO INOXIDABLE AISI 304"

Luis Manuel Márquez Moya

Facultad de ingeniería Civil y Mecánica, Universidad técnica de Ambato Av. Los Chasquis y Río Payamino - Ciudadela Universitaria, Tel. 032841144-032841062, Ambato Ecuador

luismarquez.27@hotmail.com

ABSTRACT

This paper has objetive to study the effect that causes the use of a system of minimum quantity lubrication with vegetable oil in the turning process of AISI 304 steel with carbide inserts under different machining conditions, these tests are repeated under the same parameters but changing the lubrication system by a method of flood coolant.

The lathe where carried out the machining of the specimens is a conventional lathe which was due collating the speeds at which the insert carbide works with speeds that gives us the lathe.

The process is carried out is a part-level where the maximum depth to be analyzed is 4mm the carbide inserts are sandvik brand with which these are well referenced and were chosen precisely for the work to be perform.

The lathe where the study was done already has an integrated lubrication

and cooling flood coolant system but this will incorporate the system of minimum quantity lubrication which is an independent lubrication system which the winch should not be subjected to any modification as this is easily incorporated brand being pro i Miquel DropsA

Finally after machining the blades with the various parameters are observed in a scanning microscope found in laboratories race mechanical engineering where it was observed that the wear is decreased with the use of system minimum amount of lubrication and a vegetable oil

RESUMEN

El presente trabajo tiene como objetivo estudiar el efecto que causa el uso de un sistema de mínima cantidad de lubricación con aceite vegetal en el proceso de torneado de un acero AISI

304 con insertos de metal duro bajo diferentes condiciones de mecanizado, estos ensayos se repetirán bajo los mismos parámetros pero cambiando el sistema de lubricación por un método de inundación de taladrina.

El torno donde se llevó a cabo el mecanizado de las probetas es un torno convencional por lo cual se debió cotejar las velocidades a las que el inserto de metal duro funciona con las velocidades que nos brinda el torno.

El proceso que se lleva a cabo es un trabajo de nivel medio donde la profundidad máxima a ser analizada es de 4mm los insertos de metal duro son marca sandvik con lo cual estos se encuentran bien referenciados y fueron escogidos precisamente para el trabajo que se va a realizar.

El torno donde se realiza el estudio cuenta ya con un sistema integrado de lubricación y refrigeración por inundación de taladrina pero a este se le incorporara el sistema de mínima cantidad de lubricación el cual es un sistema independiente de lubricación por lo cual el torno no debe de ser sometido a ninguna modificación ya que este es de fácil incorporación siendo de la marca Miquel pro i de Dropsa

Por ultimo después del mecanizado las cuchillas con los diferentes parámetros serán observadas en un microscopio de barrido que se encuentra en los laboratorios de la carrera de ingeniería mecánica donde se pudo observar que el desgaste es disminuido con el uso del sistema de mínima cantidad de lubricación y un aceite vegetal.

1 INTRODUCCION

El torneado utiliza un sistema de lubricación basado en un método de inundación que usa altas cantidades de taladrina este sistema es el más común en el sector industrial pero también es uno de los menos recomendados tomando en cuenta factores tales como que su uso afecta en el costo directo de la producción, no evita el desgaste prematuro de la herramienta de corte, es perjudicial para el operario de la máquina herramienta y es altamente contaminante con el medio ambiente.

Elpresente trabajo experimental estudiará nuevo sistema de un lubricación en el proceso de torneado el cual se enfoca en aumentar la vida útil de la herramienta de corte con lo que se reducirá costos de producción y además de esto el sistema es amigable con el medio ambiente y el operario ya que el lubricante es de origen vegetal y se lo

utiliza en mínimas cantidades evitando crear una nubosidades en el ambiente de trabajo.

1. DESARROLLO

1.1 El TORNO

Es necesario definir que es una máquina herramienta para poder estudiar más a fondo la máquina herramienta que es el torno.

Una máquina herramienta es una máquina que nos permite trabajar materiales rígidos y darles forma de piezas mecánicas. Estas se caracterizan por mecanismos complejos pero de una gran precisión además de que estas son máquinas estacionarias [1]

1.2 INSERTOS DE METAL DURO

Ante la expansión de la maquinaria para torneado de alta performance y con control CNC desde hace varios años, el consumo de insertos de metal duro intercambiables fue notorio, al punto de convertirlos actualmente en la herramienta exigida para los proceso de mecanización de alta velocidad en CNC

Existe una variedad enorme de insertos y porta-insertos en el mercado por tanto se ha llevado a cabo su estandarización bajo normas ISO (o ANSI en Estados Unidos, que emplean medidas inglesas) a fin de facilitar la elección adecuada para cada aplicación. [2]

Figura 1.1.- Inserto SNMG 12 04 04 QM

1.3 MECANIZADO CON MÍNIMA CANTIDAD DE LUBRICANTE (MQL)

En la lubricación tradicional se produce una inundación con taladrina en el mecanizado, los sistemas MQL (Minimum Quantity of Lubrication), lubrican estrictamente la zona de corte (herramienta-pieza-viruta) con muy cantidad de lubricante. poca Principalmente existen tres tipos de sistemas MQL en función del tipo de fluido de corte utilizado, caudal suministrado y tecnología empleada en el suministro:

- Pulverizado a alta presión. El aire comprimido presuriza el depósito del lubricante, como consecuencia de lo cual se transporta aire y lubricante, bien por tubos separados hasta una boquilla donde se produce la mezcla, o bien a través de un único conducto. [3]

1.4 VIDA ÚTIL DE LA HERRAMIENTA DE CORTE

Durante el maquinado la herramienta de corte sufre varios fenómenos físicos y químicos en su estructura que deterioran el filo de ataque principal y secundario además de que se encuentra sometida a un ambiente agresivo por las temperaturas y los diferentes fluidos que en los diversos procesos se utilizan lo que incide de una manera negativa provocando perdida económicas fallar en al exactitud de las piezas maquinadas por lo cual a partir de estos parámetros la herramienta puede fallar de las siguientes formas [4]

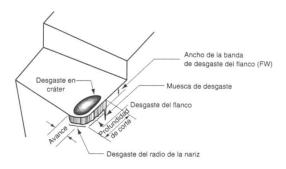


Figura 1.2.- desgastes en la cuchilla [4]

1.5 ECUACIÓN DE TAYLOR PARA LA VIDA DE LAS HERRAMIENTAS.

En un estudio clásico publicado por F.W. Taylor se demostró que la VC mantiene una relación exponencial con el tiempo de vida útil de la herramienta.

Esta relación se puede expresar, para un rango limitado de velocidades, en forma de ecuación de Taylor para la vida de una herramienta:

$$VT^n = C$$

En donde V es la velocidad de corte en m/min, T es el tiempo de vida en minutos que tarda en cumplirse la vida útil de la herramienta, n es un exponente que depende de las condiciones de corte, así como de las propiedades de los materiales. C es la velocidad de corte que corresponde a un tiempo de vida de 1 minuto. [5]

2 Procedimiento experimental

procederá a la investigación bibliográfica de libros. artículos técnicos, manuales, referentes al tema, éstas nos proporcionara la información para la selección de los necesaria parámetros de maquinado que necesita para el desarrollo del estudio.

Una vez obtenido estos datos y con la información de la herramienta de corte seleccionaremos las velocidades necesarias para el proceso

Figura 1.3.- datos técnicos del inserto de metal duro (Autor)

Tabla 1. 1.-Velocidades del torno y del inserto

	Velocidades	Avance	Profundidad
	de corte (Vc)	(fn)	(ap) mm
	m/min	mm/rev	
Parámetros	108-115	0.2	0.15- 4.00
del inserto	900-950 rpm	0.2	
Parámetros	995 000	0.19	0.15- 4.00
del torno	885-900 rpm	0.19	

Fuente: (Autor)

Una vez identificados estos valores ubicamos los mejores valores que se encuentren en un rango aceptable entre el torno y la herramienta los mismos que se muestran en la tabla anterior.

Preparación del método de lubricación por inundación de taladrina.- El sistema de lubricación por taladrina o método de inundación ya se encuentra presente en el torno por lo cual su adaptación ya viene de fábrica y lo único que debe controlar es el caudal a utilizar en el mecanizado.

Preparación del método de lubricación por cantidades mínimas - el sistema de cantidades mínimas es un sistema de funcionamiento individual

que no está relacionado con el sistema del torno por lo cual su adaptación es simple y solo se debe acoplar al torno para que el punto de acción entre el material-herramienta sea óptimo

Mecanizado del acero.- para mecanizar el eje de acero previamente se realiza un refrentado en sus extremos además de preparar un extremo para que este se pueda apoyar en un contrapunto y mantener la estabilidad del material al momento de mecanizar dejando 5 cm disponibles para la sujeción en el mandril.

Figura 1.4.- Sujeción del eje en el contrapunto (Autor)

Desgaste en los insertos: una vez maquinado con los diferentes parámetros seleccionados notaremos un pequeño desgaste a simple vista que se lo registrara para tener constancia del mismo.

Figura 1.5.- inserto desgastado y observado a simple vista (Autor)

Observación en el M.E.B.- realizado el proceso de torneado y anotado los resultados a simple vista acudiremos al laboratorio de materiales de la facultad de ingeniería mecánica para observar de una manera más profunda y técnica el desgaste por medio del Microscopio Electrónico de Barrido (M.E.B) y determinar los parámetros necesarios para ver si la cuchilla sigue siendo eficiente o ya cumplió su tiempo de vida útil.

Figura 1.6.- Microscopio Electrónico de Barrido (Autor)

Medición del desgaste de flanco.- en el microscopio de barrido contamos con el comando que puede establecer cotas de medición en la imagen proyectada en tiempo y escala real con lo cual podemos medir con exactitud los desgastes de flanco que se presentan en la cuchilla en los tramos observados.

Figura 1.7.- Medición del flanco principal desgastado (Autor)

Criterio de desgaste.- para cumplir con lo estipulado con el criterio de desgaste de la norma ASME B94.55M se tomaran medidas de todo el flanco de la herramienta de corte donde la parte intermedia denominada zona Vb es la más importante y será analizada con especial detalle.

Analizando los resultados de las mediciones se muestra que al final del proceso el sistema MQL es más amigable con la herramienta

Se analizó los desgastes de la cuchilla con diferentes parámetros de maquinado

Tabla 1,2.- parámetros de maquinado

Proceso	Parámetro 1	Parámetro 2
1	Velocidad máxima	Profundidad máxima
2	Velocidad mínima	Profundidad mínima
3	Velocidad mínima	Profundidad máxima
4	Velocidad máxima	Profundidad mínima

Tabla 1.3.- Valores de del desgaste presentado en el flanco de las herramientas en los primeros 30 minutos de maquina a una profundidad de 4 mm con una Vc de 885 rpm.

MEDIDAS (μm)	TALADRINA	MQL
0	0	0
1	602,3	142
2	444,3	162,3
3	337	139,3
4	246,6	112,6
5	220,3	88,3
6	250,6	86
7	249,3	99
8	248	95
9	262	89,6
10	255	75,3
11	183	67
12	186,3	55,6
13	193,6	53,3
14	173,6	52
15	168,3	34,3

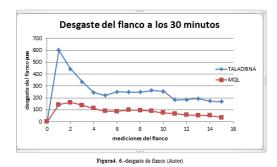


Figura 1.8.- Desgaste de flanco a 4mm (Autor)

Tabla 1.4.- Valores de del desgaste presentado en el flanco de las herramientas en los primeros 30 minutos de maquina a una profundidad de 0.15 mm con una Vc de 900 rpm.

MEDIDAS (μm)	0	1	2	3
TALADRINA	0	147,3	79,67	56,33
MQL	0	139,6	87,6	59

Fuente: (Autor)

Figura 1.9.- Desgaste de flanco (Autor)

Después se analizan con la ecuación de Taylor los diferentes datos obtenidos y nuevamente se muestra que el sistema MQL muestra una ayuda alargando la vida de la herramienta

Tabla 1.5. Valores de del desgaste presentado en el flanco de las herramientas en los diferentes intervalos de 5 minutos de maquina a una profundidad de 4 mm con una Vc de 900 rpm.

TIEMPO	CONSTANTE C	DESGASTE INUNDACION (μm)	DESGASTE MQL (µm)
0	0	0	0
5	189,6	79	41
10	241,7	189	72
15	278,6	220	77
20	308,1	199	89
25	333,1	235	79
30	355,1	281	92

Figura 1.10.- Análisis de Taylor (Autor)

2. CONCLUSIONES

- Se identificó que para el proceso de torneado del Acero Inoxidable AISI 304 se utiliza comúnmente en el Ecuador el método de lubricación refrigeración por el método de inundación de aceite soluble en agua (Taladrina), en este estudio también se pudo confirmar la factibilidad que presenta el sistema de mínima cantidad de lubricación (MQL) con aceite vegetal para el torneado del Acero AISI 304.
- Mediante la norma ANSI B94.55 M1985 /ASME evaluó el desgaste en el flanco de la herramienta de corte de metal duro con el método de lubricación y refrigeración de inundación con taladrina, el mismo que en su zona intermedia la cual es el objeto de análisis mostró características de desgaste irregular, bajo criterio de desgaste de la norma se calculó un promedio de desgaste de 0.257 mm a los 30 minutos en la zona antes

- mencionada, el mismo que no debe exceder de 0.3 mm además se evaluó el desgaste máximo de 0.275 mm a los 30 minutos en esta zona el cual no debe exceder de 0.6 mm.
- Mediante la norma **ANSI** B94.55 M1985 /ASME evaluó el desgaste en el flanco de la herramienta de corte de metal duro con el método de mínima cantidad lubricación (MQL) con aceite vegetal, el mismo en su zona que intermedia la cual es el objeto de análisis mostró características de bajo desgaste uniforme, criterio de desgaste de la norma se calculó un promediode desgaste de 0.095mm a los 30 minutos en la zona antes mencionada, el mismo que no debe exceder de 0.3 mm además se evaluó el desgaste máximo de 0.1mm a los 30 minutos en esta zona el cual no debe exceder de 0.6 mm.
- Una vez analizado los datos obtenidos mediante las mediciones en el microscopio electrónico de barrido (MEB) de los respectivos flancos los

resultados mostraron que a las velocidades de corte de 885rpm y 900rpm en intervalos de cinco minutos con una profundidad de 4 mm el sistema de mínima de lubricación cantidad disminuyó el desgaste del flanco en un 63% en la zona intermedia de los insertos de metal duro a diferencia de los flancos maquinados con taladrina. Sin embargo manteniendo velocidades pero una profundidad de 0.15 mm el desgaste del flanco del inserto mismas presenta las características ambos con métodos de lubricación.

Aplicando la ecuación de Taylor a los datos obtenidos se pudo determinar que el sistema MQL prolonga la vida útil de la herramienta de corte de metal duro a diferencia del método de inundación, mostrando que el desgaste a 30 minutos con el método de mínima cantidad de lubricación es menor en un 64.33% a diferencia del método de inundación

3. RECOMENDACIONES

- Es de vital importancia el uso de gafas industriales para prevenir las lesiones en el momento de maquinado tomando en cuenta que la forma de desprendimiento de la viruta del acero inoxidable se presenta en forma de escamas de metal que salen disparadas a altas velocidades y temperaturas las mismas que pueden causar severos daños si estas llegan a estar en contacto con los ojos
- Para el maquinado del eje se recomienda un maquinado previo donde se pueda refrentar sus extremos para después hacer una perforación adecuada que permita ajustarse al contrapunto y obtener mayor sujeción del eje evitando las vibraciones propias de la maquina las cuales pueden afectar a los resultados de estudio.
 - Antes de poner en marcha la máquina herramienta debemos confirmar que todos los mecanismos se encuentren en las posiciones adecuadas además de que el porta herramientas se encuentre sujeto y bien ubicado para el mecanizado además de que como la cuchilla es un

inserto esta debe estar bien sujeta para evitar algún inconveniente en el maquinado el cual podría causar pérdidas económicas de material y herramienta o incluso lesiones al operario

- Cuando se use el sistema de Mínima cantidad de lubricación tener especial cuidado con el suministro de aire, que el mismo antes de ser conectado se debe unidad de purgar la mantenimiento para evitar el ingreso de partículas de agua al sistema, que la presión exceda la recomendada ya causar daños podría los componentes internos del sistema de mínima cantidad de lubricación, que todas las tomas de aire se encuentren bien ajustadas para evitar posibles fugas que puedan causar inconvenientes en su funcionamiento
- Cuando se esté usando el sistema de mínima cantidad de lubricación se debe tener siempre presente que el punto de acción entre el material y la herramienta este siempre

atacado de manera directa por el lubricante.

- Es necesario usar una mascarilla en el momento de trabajar con el sistema de MQL ya que se puede inhalar las pequeñas partículas que este forma en su funcionamiento las mismas que pueden causar molestias la operario.
- Para el análisis de los insertos de metal duro se los debe limpiar adecuadamente para evitar que se pueda contaminar la cámara de vacío del mismo y esta a su vez pueda presentar algún desperfecto
- Para la medición en el microscopio se recomienda que los insertos que fueron sometidos a una profundidad de 4mm se los analice por tramos para que las mediciones sean más objetivas.

BIBLIOGRAFÍA

[1]

- J. A. Correa, «Principios de torneado,» Guia de torneado, vol. I, nº 1, p. 1, 2008.
- [2] De maquinas y Herramientas, «De maquinas y Herramientas,» De maquinas y Herramientas, 1 Enero 2014. [En línea]. Available: http://www.demaquinasyherramientas.com/mecanizado/insertos-para-torno-clasificacioniso-y-aplicaciones. [Último acceso: 18 Febrero 2016].
- [3] C. G. MARTÍNEZ, OPTIMIZACIÓN DEL PROCESO DE TALLADO, Leganes, 2010.
- [4] L. A. S. Gonzales y F. d. R. M. Aguirre, Metodologia de ensayospara detrminar la vida de una herramienta de corte bajo el criterio de desgaste por medio de la ecuacion de Taylo en un proceso de mecanizado para el acero AISI 01 en un torno CNC, Guayaquil, 2012.
- [5] s. share, «slide share,» slide share, 1 enro 2015. [En línea]. Available: http://image.slidesharecdn.com/tablat-student-120318105418-phpapp02/95/tabla-t-student-1-728.jpg?cb=1332068091. [Último acceso: 25 marzo 2016].