UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

Trabajo Estructurado de Manera Independiente Previo a la Obtención del Título de Ingeniero Mecánico

TEMA:

"ESTUDIO DEL PROCESO DE PINTURA BAJO LA UTILIZACIÓN DE DIFERENTES MARCAS DE RECUBRIMIENTOS SOBRE MATERIAL GALVANIZADO Y FIBRA DE VIDRIO Y SU INCIDENCIA EN LA CALIDAD DEL ACABADO SUPERFICIAL DE LOS BUSES FABRICADOS EN LA EMPRESA IMPEDSA"

AUTOR: Wellington Vinicio Santos Cueva

TUTOR: Ing. Juan Paredes, Mg.

AMBATO -ECUADOR

2015

CERTIFICACIÓN

En mi calidad de tutor del trabajo de investigación, con el tema "ESTUDIO DEL PROCESO DE PINTURA BAJO LA UTILIZACIÓN DE DIFERENTES MARCAS DE RECUBRIMIENTOS SOBRE MATERIAL GALVANIZADO Y FIBRA DE VIDRIO Y SU INCIDENCIA EN LA CALIDAD DEL ACABADO SUPERFICIAL DE LOS BUSES FABRICADOS EN LA EMPRESA IMPEDSA", desarrollado por el estudiante Wellington Vinicio Santos Cueva, egresado de la Facultad de Ingeniería Civil y Mecánica de la Universidad Técnica de Ambato, me permito informar que este ha sido concluido en su totalidad, y por tanto puede continuar con el respectivo tramite de graduación.

Ambato, Abril 2015

.....

Ing. Juan Paredes, Mg.

DOCENTE INGENIERÍA MECÁNICA

AUTORÍA DE TRABAJO

Declaro que los criterios expresados en la investigación denominada "ESTUDIO DEL PROCESO DE PINTURA BAJO LA UTILIZACIÓN DE DIFERENTES MARCAS DE RECUBRIMIENTOS SOBRE MATERIAL GALVANIZADO Y FIBRA DE VIDRIO Y SU INCIDENCIA EN LA CALIDAD DEL ACABADO SUPERFICIAL DE LOS BUSES FABRICADOS EN LA EMPRESA IMPEDSA", así como también las ideas, análisis, conclusiones y propuesta original es auténtica y de exclusiva responsabilidad de mi persona como autor de la presente investigación de grado.

Ambato, Abril 2015

EL AUTOR

.....

Egdo. Wellington Vinicio Santos Cueva

CI: 180472257-5

DEDICATORIA

Al concluir mis estudios universitarios quiero dedicar este proyecto a mis padres por proveerme siempre las fuerzas y el cariño para seguir adelante, a mi madre Elvira, que sin duda alguna en el trayecto de mi vida me ha demostrado su amor, corrigiendo mis faltas y celebrando mis triunfos, a mis hermanos Stalin y Romina por impartirme ánimo y darme esa voz fuerte de aliento cuando más lo necesité, a mis tíos quienes han sido personas importantes en mi vida, y en especial a mi padre Pedro, gracias por siempre orientarme en todo lo que se y ayudarme a salir adelante a pesar de los inconvenientes. Este triunfo también es suyo Padre.

Vinicio

AGRADECIMIENTO

Agradezco en primer lugar a Dios por brindarme la oportunidad de estudiar y crecer profesionalmente durante estos años.

Papá y Mamá,

Por su amor, trabajo y sacrificios en todos estos años, gracias por todo el apoyo en esta tesis y en mi vida . Sin su ayuda no hubiera sido posible culminar este proyecto.

Mauricio y Romina,

Gracias por ser los sigilosos guardianes y amigos de mi vida. Son los mejores hermanos que alguien puede tener.

De manera especial agradezco a la UNIVERSIDAD TÉCNICA DE AMBATO, principalmente a las autoridades, trabajadores y servidores de la FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA. A mis maestros por la enseñanza impartida en los años universitarios.

Por último son muchas personas a las que quisiera agradecerles por su apoyo, amistad y ánimo. Pero en particular a mis compañeros y amigos con los cuales siempre pude contar en buenos y malos momentos, quienes con su alegría formaron los recuerdos más inolvidables de mi vida universitaria.

Vinicio

ÍNDICE DE PÁGINAS PRELIMINARES

CERTIFICACIÓN	I
AUTORÍA DE TRABAJO	II
DEDICATORIA	III
AGRADECIMIENTO	IV
ÍNDICE DE PÁGINAS PRELIMINARES	V
ÍNDICE DE CONTENIDOS	VI
ÍNDICE DE GRÁFICOS	XIII
ÍNDICE DE TABLAS	XIII
ÍNDICE DE FICHAS	XIII
RESUMEN EJECUTIVO	XXI

ÍNDICE DE CONTENIDOS

CAPÍTULO I PROBLEMA DE INVESTIGACIÓN

1.1 TEMA:	. 1
1.2 PLANTEAMIENTO DEL PROBLEMA	. 1
1.2.1 Contextualización	. 1
1.2.2 Análisis Crítico	4
1.2.3 Prognosis	4
1.2.4 Formulación del Problema	. 5
1.2.5 Preguntas Directrices	. 5
1.2.6 Delimitación del Problema	. 5
1.2.6.1 De Contenido	. 5
1.2.6.2 Espacial	6
1.2.6.3 Temporal	6
1.3 JUSTIFICACIÓN	6
1.4 OBJETIVOS	. 7
1.4.1 Objetivo General	. 7
1.4.2 Objetivos Específicos	. 7
CAPÍTULO II MARCO TEÓRICO	
2.1 ANTECEDENTES INVESTIGATIVOS	8
2.2 FUNDAMENTACIÓN FILOSÓFICA	9
2.3 FUNDAMENTACIÓN LEGAL	9

2.4 CATEGORÍAS FUNDAMENTALES	. 10
2.4.1 Ingeniería de Materiales	. 10
2.4.2 Recubrimientos Automotrices	. 11
2.4.2.1 Tipos y Mezclas	. 14
2.4.2.2 Propiedad más importante	. 15
2.4.2.3 Brillo de la Película	. 17
2.4.3 Procesos de Aplicación de Pintura	. 18
2.4.3.1 Pintado en Fabricación	. 19
2.4.3.2 Pulido	. 23
2.4.4 Gestión de Calidad	. 24
2.4.4.1 Desarrollo histórico de la Gestión de la Calidad	. 24
2.4.4.2 La Inspección de la Calidad	. 24
2.4.4.3 El Control de la Calidad	. 25
2.4.5 Indicadores de Calidad	. 26
2.4.5.1 Preparación de las Superficies a Pintar	. 26
2.4.5.2 Espesor de Película	. 30
2.4.5.3 Medidor de Película Húmeda	. 31
2.4.5.4 Medidor de Película Seca	. 34
2.4.5.5 Pruebas de Adherencia	. 38
2.4.5.6 Ensayos de Durabilidad	. 39
2.4.6 Calidad del Acabado Superficial	. 42
2.4.6.1 Propiedades Visuales	. 42
2.5 HIPÓTESIS	. 46
2.6 SEÑALAMIENTO DE VARIABLES	. 46
2.6.1 Variable Independiente	. 46
2.6.2 Variable Dependiente	46

2.6.3 Término de Relación	46
CAPÍTULO III METODOLOGÍA	
3.1 ENFOQUE	47
3.2 MODALIDAD BÁSICA DE LA INVESTIGACIÓN	48
3.2.1 De Campo	48
3.2.2 Bibliográfico	48
3.3 NIVEL O TIPO DE INVESTIGACIÓN	48
3.3.1 Exploratorio	48
3.3.2 Descriptivo	49
3.3.3 Experimental	49
3.4 POBLACIÓN Y MUESTRA	49
3.4.1 Población	49
3.4.2 Muestra	52
3.5 OPERACIONALIZACIÓN DE VARIABLES	56
3.6 RECOLECCIÓN DE LA INFORMACIÓN	58
3.7 PLAN DE RECOLECCIÓN DE LA INFORMACIÓN	58
3.8 ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	58
CAPÍTULO IV ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	
4.1 ANÁLISIS DE LOS RESULTADOS	
4.1.1 Obtención y Determinación del Tipo de Material	62

4.1.1.2 Material Compuesto (Fibra de Vidrio + Resina Poliester)	64
4.1.2 Tipo de Proceso, Aplicación y sus Parámetros	64
4.1.2.1 Determinación del Tipo de Proceso y Aplicación	64
4.1.2.2 Determinación de los Parámetros	66
4.1.3 Preparación y Aplicación de Pintura mediante los diferentes Procesos 6	67
4.1.3.1 Proceso de Aplicación de Pintura PPG (Pittsburgh Plate Glass)	70
4.1.3.2 Proceso de Aplicación de Pintura GLASURIT	72
4.1.3.3 Proceso de Aplicación de Pintura SHERWIN WILLIAMS	7 4
4.1.4 Parámetros Físicos.	77
4.1.4.1 Medición Espesor de Película Húmeda	77
4.1.4.2 Medición Espesor de Película Seca	05
4.1.5 Superficie	36
4.1.5.1 Medición de Adherencia de Pintura	36
4.1.5.2 Medición de Rugosidad Superficial.	49
4.1.6 Durabilidad 16	62
4.1.6.1 Envejecimiento Acelerado	62
4.2 INTERPRETACIÓN DE RESULTADOS	66
4.2.1 Interpretación de los resultados de Espesor de Película Húmeda	66
4.2.1.1 Resultados que se obtuvieron de la medición del Espesor de Película Húmeda16	66
4.2.2 Interpretación de los resultados de Espesor de Película Seca	71
4.2.2.1 Resultados que se obtuvieron de la medición del Espesor de Película Seca 17	71
4.2.3 Interpretación de los resultados de Adherencia de Pintura por Cinta 17	76
4.2.3.1 Resultados que se obtuvieron en el Estudio de Adherencia de Pintura por Cinta 17	76
4.2.4 Interpretación de los resultados de Rugosidad Superficial	81
4.2.4.1 Resultados que se obtuvieron en el Estudio de Rugosidad de Superficies Pintadas 18	81
4.2.5 Interpretación de los resultados de Envejecimiento Acelerado	86

4.2.5.1 Resultados que se obtuvieron en el Estudio de Envejecimiento Acelerado
de Superficies Pintadas
4.3 VERIFICACIÓN DE LA HIPÓTESIS
4.3.1 Verificación de la hipótesis Espesor de Película Seca para el procedimiento (PPG, GLASURIT,SHERWIN WILLIAMS)
4.3.1.1 Verificación de la hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Galvanizado
4.3.1.2 Verificación de la hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Galvanizado + Masilla
4.3.1.3 Verificación de la hipótesis por selección estadístico para el procedimiento (PPG,GLASURIT Y SHERWIN WILLIAMS) sobre material Fibra de vidrio
4.3.1.4 Verificación de la hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Fibra de vidrio + Masilla
4.3.2 Verificación de hipótesis para Adherencia por Cinta procedimiento (PPG, GLASURIT, SHERWIN WILLIAMS)
4.3.2.1 Verificación de hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Galvanizado 200
4.3.2.2 Verificación de hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Galvanizado + Masilla
4.3.2.3 Verificación de hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Fibra de Vidrio
4.3.2.4 Verificación de hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Fibra de Vidrio + Masilla 205
4.3.3 Verificación de hipótesis para Rugosidad Superficial procedimiento (PPG, GLASURIT, SHERWIN WILLIAMS) sobre los diferentes sustratos

4.3.4 Verificación de hipótesis para Envejecimiento Ace	elerado procedimiento
(PPG, GLASURIT, SHERWIN WILLIAMS) sobre los difer	rentes sustratos 209
CAPÍTULO V	
CONCLUSIONES Y RECOMENDAC	CIONES
5.1 CONCLUSIONES	212
5.2 RECOMENDACIONES	214
CAPÍTULO VI	
PROPUESTA	
6.1 DATOS INFORMATIVOS	216
6.2 ANTECEDENTES DE LA PROPUESTA	216
6.3 JUSTIFICACIÓN	217
6.4 OBJETIVOS	218
6.4.1 Objetivo General	218
6.4.2 Objetivos Específicos	218
6.5 ANÁLISIS DE FACTIBILIDAD	219
6.5.1 Económico	219
6.5.2 Análisis Tecnológico del Equipo	219
6.5.3 Análisis Ambiental	219
6.6 FUNDAMENTACIÓN	220
6.6.1 Tipos de Superficie	220
6.6.2 Calidad Superficial	221

6.6.4.1 Características del SJ-210	225
6.6.4.2 Funciones de Operación	225
6.6.5 Procedimiento de uso del Rugosímetro SJ-210	227
6.6.5.1 Preparación del SJ-2102	227
6.6.5.2 Montaje y Desmontaje del Detector	227
6.6.5.3 Montaje y Desmontaje de la Unidad Conductora	230
6.6.5.4 Uso de la Extensión Unidad de Accionamiento	232
6.6.5.5 Alimentación de Energía2	233
6.6.5.6 Ajustes Iniciales	234
6.7 METODOLOGÍA2	235
6.7.1 Procedimiento por medio de Ensayo no Destructivo con el Rugosímetro SJ-2102	236
6.8 ADMINISTRATIVO2	276
6.8.1 Análisis económico del Ensayo no Destructivo de Rugosidad Superficial 2	276
6.9 PREVISIÓN DE LA EVALUACIÓN2	277
BIBLIOGRAFÍA2	278
ANEXOS	280

ÍNDICE DE GRÁFICOS

Gráfico 1- 1: Producción Nacional de Carrocerías para Buses en el Ecuador	3
Gráfico 2- 1: Red de categorías fundamentales	10
Gráfico 2- 2: Productos de limpieza PPG	28
Gráfico 2- 3: Rugosidad del Sustrato	30
Gráfico 2- 4: Peine Hexagonal Elcometer	31
Gráfico 2- 5: Peine de Arista Larga Elcometer	32
Gráfico 2- 6: Peine Elcometer 115	32
Gráfico 2-7: Determinación del espesor de película húmeda a través de la rueda	33
Gráfico 2- 8: Determinación del espesor de película húmeda : Rueda	34
Gráfico 2- 9: Medidor de espesor de película seca: Aguja deflectora	34
Gráfico 2- 10: Medidor de espesor de película seca	35
Gráfico 2- 11: Medidor de espesor de película seca: Efecto magnético-inductivo	37
Gráfico 2- 12: Medidor de adherencia por arranque.	38
Gráfico 2- 13: Medidor de adherencia por trama cruzada.	39
Gráfico 2- 14: Cámara de Niebla Salina	41
Gráfico 2- 15: Opacidad	43
Gráfico 2- 16: Diferencia entre color y brillo	43
Gráfico 2- 17: Medida de reflexión especular	44
Gráfico 2- 18: Brillo: ángulos de iluminación	45
Gráfico 2- 19: Influencia del acabado superficial sobre el brillo	45
Gráfico 3- 1: Vista lateral derecha	50
Gráfico 3- 2: Vista lateral izquierda	50
Gráfico 3- 3: Vista superior	50
Gráfico 3- 4: Vista frontal	51
Gráfico 3- 5: Vista posterior	51
Gráfico 3- 6: Probeta Ensayo	55
Gráfico 4- 1: Compresor de aire uso industrial de 10 HP	68
Gráfico 4- 2: Equipo de tratamiento de aire	68
Gráfico 4- 3: Victoria Pistola de Gravedad Sistema HVLP	69
Gráfico 4- 4: Manómetro de Presión.	69

Gráfico 4- 5: Representación gráfica de los resultados de Espesores de Películas Húmeda,
comparación de espesores Recomendados vs Promedio
Gráfico 4- 6: Representación gráfica de los resultados de Espesores de Películas Húmeda,
comparación de espesores Recomendados vs Promedio
Gráfico 4-7: Representación gráfica de los resultados de Espesores de Películas Húmeda,
comparación de espesores Recomendados vs Promedio
Gráfico 4- 8: Representación gráfica de los resultados de Espesores de Películas Húmeda,
comparación de espesores Recomendados vs Promedio
Gráfico 4- 9: Representación gráfica de los resultados de Espesores de Películas Seca,
comparación de espesores Recomendados vs Promedio
Gráfico 4- 10: Representación gráfica de los resultados de Espesores de Películas Seca,
comparación de espesores Recomendados vs Promedio
Gráfico 4- 11: Representación gráfica de los resultados de Espesores de Películas Seca,
comparación de espesores Recomendados vs Promedio
Gráfico 4- 12: Representación gráfica de los resultados de Espesores de Películas Seca,
comparación de espesores Recomendados vs Promedio
Gráfico 4- 13: Representación gráfica de los resultados de Adherencia por Cinta,
Granco 4-13. Representación granca de los resultados de 7 diferencia por Cinta,
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado
comparación de carga normal Optima vs Resultado

ÍNDICE DE TABLAS

Tabla 1- 1: Producción aproximadas de Carrocerías en la zona 3 (chimborazo - cotopaxi -
tungurahua – pastaza)
Tabla 3- 1: Población o Universo Área pintada (Frente y Respaldo) Fibra de Vidrio 52
Tabla 3- 2: Población o Universo Área pintada (L. Derecha; L. Izquierda y Techo)
Galvanizado
Tabla 3- 3: Nivel de Confianza
Tabla 3- 4: Número de Probetas
Tabla 3- 5: Número de Probetas Aleatorio
Tabla 3- 6: Tamaño de la Probeta
Tabla 3- 7: Variable Independiente
Tabla 3- 8: Variable Dependiente
Tabla 4- 1: Materiales utilizados en el forrado de la Carrocería
Tabla 4- 2: Especificaciones Plancha Galvanizada
Tabla 4- 3: Protección por años según espesor de capa de zinc y tipo de atmósfera 63
Tabla 4- 4: Procedimiento de aplicación de pintura de Carrocerías IMPEDSA 65
Tabla 4- 5: Guía de aplicación de pintura automotriz
Tabla 4- 6: Guía de aplicación de pintura automotriz de Carrocerías IMPEDSA 67
Tabla 4- 7: Proceso de aplicación de pintura PPG
Tabla 4- 8: Proceso de aplicación de pintura GLASURIT
Tabla 4- 9: Proceso de aplicación de pintura SHERWIN WILLIAMS
Tabla 4- 10: Codificación de las Probetas en Estudio
Tabla 4- 11: Codificación de las Probetas en Estudio
Tabla 4- 12: Codificación de las Probetas en Estudio
Tabla 4- 13: Codificación de las Probetas en Estudio
Tabla 4- 14:: Codificación de las Probetas en Estudio
Tabla 4- 15: Resultado de los Ensayos de Espesor de Película Húmeda con los Procesos de
Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado 166
Tabla 4- 16: Resultado de los Ensayos de Espesor de Película Húmeda con los Procesos
de Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado
+ Masilla

Tabla 4- 17: Resultado de los Ensayos de Espesor de Película Húmeda con los Procesos
de Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de
Vidrio
Tabla 4- 18: Resultado de los Ensayos de Espesor de Película Húmeda con los Procesos
de Aplicación (PPG, GLASURITY SHERWIN WILLIAMS)sobre material Fibra de
Vidrio + Masilla
Tabla 4- 19: Resultado de los Ensayos de Espesor de Película Seca con los Procesos de
Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado 171
Tabla 4- 20: Resultado de los Ensayos de Espesor de Película Seca con los Procesos de
Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado +
Masilla. 172
Tabla 4- 21: Resultado de los Ensayos de Espesor de Película Seca con los Procesos de
Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de Vidrio 173
Tabla 4- 22: Resultado de los Ensayos de Espesor de Película Seca con los Procesos de
Aplicación (PPG, GLASURITy SHERWIN WILLIAMS)sobre material Fibra de Vidrio +
Masilla
Tabla 4- 23: Resultado de los Ensayos de Adherencia por Cinta en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre materia
Galvanizado
Tabla 4- 24: Resultado de los Ensayos de Adherencia por Cinta en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado
+ Masilla
Tabla 4- 25: Resultado de los Ensayos de Adherencia por Cinta en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de
Vidrio
Tabla 4- 26: Resultado de los Ensayos de Adherencia por Cinta en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de
Vidrio + Masilla
Tabla 4- 27: Resultado de los Ensayos de Rugosidad Superficial en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre materia
Galvanizado. 181
Tabla 4- 28: Resultado de los Ensayos de Rugosidad Superficial en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material
Galvanizado Masilla 190

Tabla 4- 29: Resultado de los Ensayos de Rugosidad Superficial en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de
Vidrio
Tabla 4- 30: Resultado de los Ensayos de Rugosidad Superficial en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material F.V. +
Masilla
Tabla 4- 31: Resultado de los Ensayos de Envejecimiento Acelerado en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre materia
Galvanizado. 186
Tabla 4- 32: Resultado de los Ensayos de Envejecimiento Acelerado en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre materia
Galvanizado+Masilla. 187
Tabla 4- 33: Resultado de los Ensayos de Envejecimiento Acelerado en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de
Vidrio
Tabla 4- 34: Resultado de los Ensayos de Envejecimiento Acelerado en las probetas de
recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material F.V. +
Masilla
Tabla 4- 35: Resultados obtenidos del Espesor de Película Seca con el recubrimiento
PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Galvanizado
Tabla 4- 36: Contraste de medias, desconocida la varianza poblacional de las diferencias
estadístico Z
Tabla 4- 37: Prueba Z para medias de dos muestras espesor de película seca
Tabla 4- 38: Resultados obtenidos del Espesor de Película Seca con el recubrimiento
PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Galvanizado + Masilla 194
Tabla 4- 39: Prueba T para medias de dos muestras emparejadas espesor de película seca 195
Tabla 4- 40: Resultados obtenidos del Espesor de Película Seca con el recubrimiento
PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Fibra de Vidrio
Tabla 4- 41: Prueba T para medias de dos muestras emparejadas espesor de película seca 197
Tabla 4- 42: Resultados obtenidos del Espesor de Película Seca con el recubrimiento
PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Fibra de Vidrio .+ Masilla 198
Tabla 4- 43: Prueba T para medias de dos muestras emparejadas espesor de película seca 198
Tabla 4- 44: Calificación Resultados de Verificación de Hipótesis Espesor de Película
Soco 100

Tabla 4- 45: Resultados obtenidos de Adherencia por Cinta con el recubrimiento PPG,
GLASURIT, SHERWIN WILLIAMS sobre Material Galvanizado
Tabla 4- 46: Prueba T para medias de dos muestras emparejadas adherencia por cinta. 200
Tabla 4- 47: Resultados obtenidos de Adherencia por Cinta con el recubrimiento PPG,
GLASURIT, SHERWIN WILLIAMS sobre Material Galvanizado + Masilla 201
Tabla 4- 48: Prueba T para medias de dos muestras emparejadas adherencia por cinta. 202
Tabla 4- 49: Resultados obtenidos de Adherencia por Cinta con el recubrimiento PPG,
GLASURIT, SHERWIN WILLIAMS sobre Material Fibra de Vidrio
Tabla 4- 50: Prueba T para medias de dos muestras emparejadas adherencia por cinta. 203
Tabla 4- 51: Resultados obtenidos de Adherencia por Cinta con el recubrimiento PPG,
GLASURIT, SHERWIN WILLIAMS sobre material Fibra de Vidrio + Masilla 204
Tabla 4- 52: Prueba T para medias de dos muestras emparejadas adherencia por cinta. 205
Tabla 4- 53: Calificación Resultados de Verificación de Hipótesis Adherencia por Cinta 206
Tabla 4- 54: Prueba Comparativa Verificación de Hipótesis de Rugosidad Superficial.207
Tabla 4- 55: Calificación Resultados de Verificación de Hipótesis Rugosidad Superficial 208
Tabla 4- 56: Prueba Comparativa Verificación de Hipótesis de Envejecimiento
Acelerado
Tabla 4- 57: Calificación Resultados de Verificación de Hipótesis Envejecimiento
Acelerado
Tabla 4- 58: Resultado de Verificación de Hipótesis
Tabla 6- 1: Costos para el Desarrollo del Ensayo no destructivo con el SJ-210 219
Tabla 6- 2: Costos de Evaluación de Rugosidad Superficial 276

ÍNDICE DE FICHAS

Ficha 4- 1: Reporte de Ensayo Espesor de Película Húmeda PPG
Ficha 4- 2: Reporte de Ensayo Espesor de Película Húmeda GLASURIT 87
Ficha 4- 3: Reporte de Ensayo Espesor de Película Húmeda SHERWIN WILLIAMS 96
Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG
Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT
Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS 126
Ficha 4- 7: Reporte del Ensayo de Adherencia por Cinta PPG
Ficha 4- 8: Reporte del Ensayo de Adherencia por Cinta GLASURIT
Ficha 4- 9: Reporte del Ensayo de Adherencia por Cinta SHERWIN WILLIAMS 145
Ficha 4- 10: Reporte de Ensayo Rugosidad Superficial PPG
Ficha 4- 11: Reporte de Ensayo Rugosidad Superficial GLASURIT
Ficha 4- 12: Reporte de Ensayo Rugosidad Superficial SHERWIN WILLIAMS 158
Ficha 4- 13: Reporte de Ensayo de Envejecimiento Acelerado PPG
Ficha 4- 14: Reporte de Ensayo de Envejecimiento Acelerado GLASURIT 164
Ficha 4- 15: Reporte de Ensavo de Enveiecimiento Acelerado SHERWIN WILLIAMS 165

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

Autor: Wellington Vinicio Santos Cueva

Tutor: Ing. Juan Paredes, Mg.

RESUMEN EJECUTIVO

En la actualidad el control de calidad en la Industria Carrocera resulta de gran

importancia, por lo que el siguiente estudio estuvo enfocado a determinar la

Calidad del Acabado de Superficies Pintadas para lo cual se realizaron estudios

sobre los recubrimientos de Pintura PPG, GLASURIT Y SHERWIN WILLIAMS.

Para el desarrollo de la investigación se realizaron distintas disposiciones de

materiales, con un total de cuatro configuraciones: Galvanizado, Fibra de Vidrio,

Galvanizado + Masilla y Fibra de Vidrio + Masilla, analizando factores de calidad

como son: Espesores de Película, Adherencia, Rugosidad y Envejecimiento

Acelerado, sometidas a estudio mediante equipos de ultrasonido, microscopio de

barrido, cámara de envejecimiento acelerado y cortador de trama cruzada los

cuales fueron necesarios para el desarrollo de la investigación.

El estudio fue desarrollado bajo la fundamentación de normas internacionales

como: ASTM D4414, ASTM D3359, ASTM G155 y SSPC - PA 2, las mismas

que permitieron un proceso adecuado de obtención de datos y recapitulación de

información que servirá como aporte experimental para futuras investigaciones.

Concluido el proceso investigativo, se encontró que las probetas a las cuales se

aplicó el recubrimiento PPG, presentan mejores características de calidad en

acabado de superficies pintadas de Autobuses en comparación con los otros

recubrimientos, respondiendo a las diversas necesidades con alta tecnología en

recubrimientos.

XXI

CAPÍTULO I

PROBLEMA DE INVESTIGACIÓN

1.1 **TEMA**:

"ESTUDIO DEL PROCESO DE PINTURA BAJO LA UTILIZACIÓN DE DIFERENTES MARCAS DE RECUBRIMIENTOS SOBRE MATERIAL GALVANIZADO Y FIBRA DE VIDRIO Y SU INCIDENCIA EN LA CALIDAD DEL ACABADO SUPERFICIAL DE LOS BUSES FABRICADOS EN LA EMPRESA IMPEDSA"

1.2 PLANTEAMIENTO DEL PROBLEMA

1.2.1 Contextualización

La pintura automotriz es un trabajo que se realiza en todo el mundo, tanto en las fábricas automotrices como en los talleres de reparación.

"La aplicación de pintura en un vehículo cumple una doble función: por un lado, lo protege frente a la corrosión y, por otro, proporciona el aspecto estético final, aportando el color y el brillo y que hacen que el vehículo sea más atractivo. Durante la fabricación del automóvil se aplican en la carrocería diversos productos de pintura que aseguran el cumplimiento de estas dos funciones". (CESVIMAP, pág. 1)

En Ecuador, la aplicación de recubrimientos automotrices en los autobuses no se le ha dado la importancia que merece. Es común encontrar autobuses repintados o deteriorados ya después de varios años ya sea por daños o por efecto del tiempo. Se podría indicar que una de las principales causas es la aplicación incorrecta del recubrimiento automotriz y en numerosos casos se trata del proveedor de la materia prima con la que se pintan los autobuses donde la eficacia de la pintura que se utiliza tiene mucho que ver en la calidad de la pintura del autobús y también con el acabado superficial de la misma. Hasta la actualidad esto se está tratando de mejorar en forma incesante, para lo cual las empresas distribuidoras del producto dan un servicio adicional a sus clientes, envían una persona que posea conocimientos técnicos sobre la aplicación de recubrimientos automotrices capaz de fiscalizar la correcta preparación y aplicación del producto.

Este aporte que brindan los distribuidores de recubrimientos automotrices es un aspecto positivo para la empresa, lo que les ha costado mucho a los proveedores de estos servicios, que estaban acostumbrados a prestar un servicio mediocre con un gran margen de ganancia, éstos ahora deben y están mejorando sus controles de calidad para brindar un mejor servicio.

En el tiempo que se ha llevado esta etapa de evolución se han visto varios casos en que los clientes han exigido reparaciones sumamente costosas a los proveedores, no con el fin de perjudicarlos, sino con el fin de exigir un producto de calidad por el que han cancelado cierta suma de dinero.

En la ciudad de Ambato, es difícil establecer un número o porcentaje de autobuses que han sido reparados por las empresas carroceras de Ambato, ya que esa es información que las empresas no exponen para no perjudicar su imagen, pese a esto no es difícil escuchar comentarios que se han escapado de antiguos trabajadores o de amistades que comentan acerca de los problemas que se les han presentado en dichas empresas. Las medidas de corrección que están tomando las empresas es certificar como inspectores de recubrimientos a uno de sus elementos para poder brindar al cliente una persona capacitada técnicamente, este problema se ha tratado dentro del mismo contexto, ya que es aquí donde se producen y pintan la mayoría autobuses.

Tabla 1- 1: Producción aproximadas de Carrocerías en la zona 3 (chimborazo - cotopaxi – tungurahua – pastaza)

PROVINCIA	COSTO DE CARROCERÍAS.	PROD. 2010	%	VALOR	PAGO DE IVA
Chimborazo	45.000,00	300	21,3	13.500.000,00	1.620.00,00
Cotopaxi	45.000,00	24	1,7	.080.000,00	129.600,00
Pastaza	45.000,00	6	0,4	70.000,0	2.400,00
Tungurahua	45.000,00	1080	76,6	48.600.000,00	5.832.000,00
TOTAL		1.410	100	63.450.000,00	7.614.000,00

(Fuente: Paredes, 2012)

Gráfico 1- 1: Producción Nacional de Carrocerías para Buses en el Ecuador. (**Fuente**: Paredes, 2012)

Carrocerías IMPEDSA, empresa fabricante de carrocerías para servicio público, cuenta con un Sistema de Control de Calidad, pero este no es capaz de detectar a tiempo los defectos que se producen en el proceso de pintura del autobús, sea este Interprovincial, Urbano, Escolar etc, esto se da por varios factores como son: la calidad del producto que se utiliza en el recubrimiento automotriz, como sabemos hay diferentes empresas encargadas de brindar sus productos, el desconocimiento del personal, la falta de capacitación, la falta de conciencia por parte de los trabajadores sobre la correcta utilización de los materiales, la falta de los recursos económicos, ocasiona deficiencia en el procesos de producción, perdiendo participación en el mercado, lo cual facilita ventajas a los competidores.

Todos estos factores, hacen que la empresa tenga dificultades, provocando problemas en la entrega final de los buses fabricados en la empresa.

1.2.2 Análisis Crítico

Nunca es fácil definir cuáles son las razones que hacen que un producto, especialmente un autobús, resulte aceptado masivamente por el público. Generalmente se trata de un conjunto de factores que dispersos entre los otros competidores, coinciden mayoritariamente en aquel que finalmente es elegido como el mejor.

En la empresa Carrocera IMPEDSA no existe un estudio sobre los factores que influyen en la calidad de la pintura del autobús.

El estudio de los diferentes procesos de pintura y su incidencia en la calidad del producto de la empresa Carrocera IMPEDSA, aportará en la mejora de la calidad de pintura que realiza mencionada empresa, brindando un considerable aporte en el sistema de mejora continua y en el crecimiento de la misma.

Procurará disminuir los índices de pérdida económica por reparaciones en la pintura (Perdida de brillo, piel de naranja, Adherencia y demás) que se presentan eventualmente dentro de la empresa.

Servirá como soporte bibliográfico para la empresa y así mejorar sus controles de calidad para brindar un mejor servicio y una garantía del producto.

1.2.3 Prognosis

Al no efectuar este estudio los problemas dentro de la empresa persistirán, los índices de reparación de autobuses no disminuirán, lo que generaría una pérdida económica considerable dentro de la empresa que podría desembocar en un desequilibrio financiero de la misma. También generaría en los clientes una

considerable desconfianza, lo que les impulsara a buscar nuevas empresas Carroceras.

1.2.4 Formulación del Problema

¿ El estudio de los diferentes procesos de pintura permitirá mejorar la calidad del acabado superficial en los buses fabricados por la empresa Carrocera IMPEDSA?

1.2.5 Preguntas Directrices

¿Cuáles son los procesos que se deben seguir para una correcta aplicación de la pintura para autobuses ?

¿Qué parámetros y procedimientos se deberá cumplir para la aprobación de un proceso de aplicación de pintura ?

¿Qué ensayos destructivos y no destructivos se deberán realizar en los procesos de pintura utilizados en el Bus ?

¿El método comparativo permitirá seleccionar el proceso correcto de aplicación de pintura que garantice la calidad del producto ?

¿Cuál será la marca de recubrimiento más adecuada para ser usada en el proceso de pintura de buses fabricados en la empresa Carrocera IMPEDSA.?

1.2.6 Delimitación del Problema

1.2.6.1 De Contenido

El presente estudio se fundamenta en el campo de Ingeniería Mecánica en el área de ensayos no destructivos, gestión de calidad, ingeniería de materiales y termodinámica.

1.2.6.2 Espacial

El tema propuesto se realizará en:

- La planta de producción de la empresa IMPEDSA ubicada en el cantón Tisaleo- Santa Lucia en la provincia de Tungurahua en la Región sierra, Ecuador.
- Además se complementará en la Biblioteca de la Facultad de Ingeniería
 Civil y Mecánica mediante el contenido de libros que se relacionan con este estudio

1.2.6.3 Temporal

El presente estudio se desarrollara en los meses comprendidos entre Mayo de 2014 a Abril de 2015.

1.3 JUSTIFICACIÓN

Con este estudio se pretende aportar al desarrollo de la empresa Carrocera IMPEDSA mediante el conocimiento del mejor proceso para recubrimiento de pintura industrial, brindando mejoras para la producción.

La importancia de este estudio, es disminuir la cantidad de buses que presenten defectos en la aplicación de pintura realizados por la empresa Carrocera IMPEDSA, para reducir considerablemente o eliminar por completo las pérdidas económicas de la empresa por este motivo, para lograr este objetivo se realizara un estudio rigurosa acerca de los diferentes procesos de aplicación de pintura para con esto definir el mejor proceso de aplicación de pintura y calidad de la misma, dando como resultado un incremento en la calidad del producto final. La mejora se verá reflejada directamente en el grado de confianza por parte de los clientes,

ya que estos podrán notar un trabajo bien realizado y con altos estándares de calidad.

Los beneficiados en particular serán: los estudiantes de la Carrera de Ingeniería Mecánica al disponer de información actualizada del proceso de Pintura en los diferentes sustratos para verificar el acabado superficial y tomar decisiones adecuadas, cubriendo las falencias de los procesos de pintura en autobuses y lograr la satisfacción del cliente.

1.4 OBJETIVOS

1.4.1 Objetivo General

Realizar el estudio de los procesos de aplicación de pintura PPG,
 SHERWIN WILLIAMS y GLASURIT para alcanzar calidad del acabado superficial en los buses fabricados por la empresa Carrocera IMPEDSA.

1.4.2 Objetivos Específicos

- Analizar el proceso de pintura que se debe seguir en la empresa Carrocera IMPEDSA.
- Establecer los parametros de ensayo que se van a ejecutar en el estudio de los procesos de pintura PPG, SHERWIN WILLIAMS y GLASURIT.
- Realizar los ensayos destructivos y no destructivos en las probetas obtenidas de los procesos de pintura para los diferentes materiales utilizados en la fabricación de buses de la empresa Carrocera IMPEDSA.
- Comparar los diferentes procesos de aplicación de pintura en los diferentes materiales utilizados en las carrocerias para determinar el de mejor calidad que aporte con el desarrollo de la empresa.
- Determinar la marca de recubrimiento más adecuada para ser usada en el proceso de pintura de buses fabricados en la empresa Carrocera IMPEDSA.

CAPÍTULO II

MARCO TEÓRICO

2.1 ANTECEDENTES INVESTIGATIVOS

Para el presente estudio se ha tomado como referencia investigaciones realizadas con anterioridad, las mismas que se detallan a continuación:

En la Escuela Politécnica Del Ejército Sede Latacunga de la Facultad de Ingeniería Automotriz en el 2006 el Señor Franklin Carrera Montoya realizó la "Reestructuración De Un Vehículo Renault 12 De 1980"

El cual nos dice "que la mayoría de los defectos que pueden observarse en el pintado de una carrocería están provocados por los defectos del uso de la pistola."

Es conveniente realizar algunas verificaciones en la pistola para estar seguros de que vamos a pintar sin problemas. Por una parte conviene que se verifique que el orificio de aireación se encuentre libre de cualquier obstrucción.

Este es un defecto que puede pasar inadvertido y ocasionar en el transcurso del trabajo de pintado problemas de densidad de la capa de pintura obteniendo tonos más claros que los deseables a medida que el depósito se va vaciando.

En la Universidad Técnica de Ambato de la Facultad de Ciencias Administrativas en el 2010 la Señora Edilma Soledad Cáceres Ulpo realizó "El Sistema de control de Calidad y su incidencia en la producción de Carrocerías Jácome"

En su investigación concluye "que las empresas carroceras medianas no cuentan con un sistema de control de calidad en la Producción, por lo que se presenta muchas inconformidades por parte de los clientes. No cumple los parámetros de

Calidad Total en los Procesos de Producción, motivo por el cual los productos y /o servicios son considerados de buena calidad, cuando deberían ser considerados de excelente calidad."

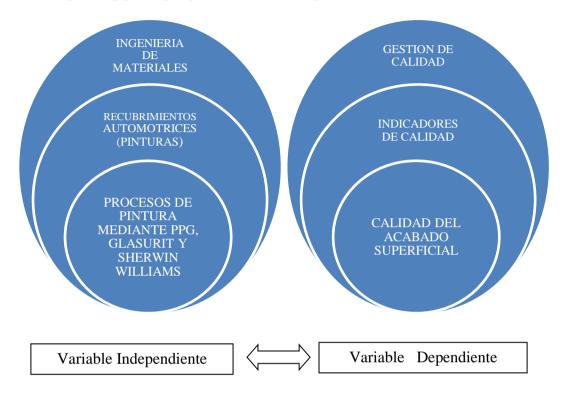
2.2 FUNDAMENTACIÓN FILOSÓFICA.

La presente investigación se ubica en el paradigma crítico propositivo, ya que la investigación parte de problemas reales en nuestro medio, involucrados en la producción autobuses, con el objeto de buscar nuevas alternativas para que las personas implicadas en el proceso cuenten con una guía práctica del mejor proceso de aplicación de recubrimiento automotriz, a la vez que se pretende determinar todos los ensayos que deben ser realizados para evaluar de la manera correcta un recubrimiento con su respectivo respaldo de las normas, que sirvan de gran aporte para lograr ser competitivos en el gran mercado a más de eso obtener un producto de buena calidad.

2.3 FUNDAMENTACIÓN LEGAL

Todos los materiales y los trabajos a ser ejecutados se ajustarán a las normas que se detallan a continuación. Estas normas regirán las presentes especificaciones técnicas aun cuando no estuvieren directamente expresadas.

A continuación se detalla una lista de las normas que se deberán tener en cuenta en la ejecución del proyecto:


ASTM D4414 "Standard Practice for Measurement of Wet Film Thickness by Notch Gages"

SSPC - PA 2 - La medición del espesor de pintura seca con indicadores magnéticos.

ASTM D3359 - Métodos de prueba estándar para medir el Adhesión por Prueba de Cinta.

ASTM G155 "Standard Practice for Operating Xenon Arc Light Apparatus For Exposure of Non-Metallic Materials"

2.4 CATEGORÍAS FUNDAMENTALES

Gráfico 2- 1: Red de categorías fundamentales (**Fuente**: Elaborado por Wellington Santos)

2.4.1 Ingeniería de Materiales

La ingeniería de materiales se considera como la base de los avances tecnológicos que han transformado el adelanto de la sociedad, además se evidencia como una de las ingenierías más demandadas en el mundo, empleada para el desarrollo y la innovación en la industria.

"La Ingeniería de Materiales es una rama de la ingeniería que se fundamenta en las relaciones propiedades-estructura y diseña o proyecta la estructura de un material para conseguir un conjunto predeterminado de propiedades. Esta ingeniería está muy relacionada con la mecánica y la fabricación" (Smith, 2004)

Una de las principales utilidades de la ingeniería de materiales es el establecimiento de ciertos procesos que se pueden emplear en sustratos metálicos, con el objetivo de minimizar su deterioro por motivos de corrosión, lo cual se puede referenciar de manera directa con el actual tema de estudio.

2.4.2 Recubrimientos Automotrices

Los recubrimientos automotrices profesionales, tienen la capacidad de suministrar el toque final para el mejoramiento de la apariencia y estética de un auto ya sea nuevo o reparado. De modo que es evidente la importancia que tiene para la industria automotriz, puesto que puede proporcionar una protección duradera para cualquier tipo de vehículo.

Las pinturas, desde un punto de vista técnico-económico, constituyen el método más adecuado para la protección de los materiales empleados en la construcción y en la industria.

Una pintura líquida, considerada desde un punto de vista fisicoquímico, es un sistema disperso. Está constituida generalmente por sólidos finamente particulados y dispersados en un medio fluido denominado vehículo. Este último está basado en una sustancia filmógena o aglutinante, también llamada formadora de película o ligante, dispuesta en un solvente o mezcla solvente al cual se le incorporan aditivos y eventualmente plastificantes. (Giudice & Pereyra, 2009, pág. 2)

Por lo tanto se considera que, la pintura se aplica directamente sobre el imprimador de modo que suministre una base de color al vehículo.

Cabe recalcar que algunas pinturas líquidas están exentas de solventes ya que el propio material formador de película es líquido (bajo peso molecular). Los pigmentos se dispersan en ese medio fluido altamente viscoso.

Por ende es necesario plantear la función principal de la pintura, ya que el más significativo de todas es la prevención de corrosión (oxidación) al metal. De

modo que en todo vehículo encontramos tres capas distintas, la cuales cumplen funciones distintas, que son las siguientes:

a) Wash Primer

Wash primer se utiliza generalmente para mejorar la adherencia en superficies no ferrosas.

Los wash primers vinílicos se deben aplicar sólo sobre superficies metálicas granalladas o arenadas, en una sola capa (5/8 µm de espesor de película seca); se emplean usualmente sobre hierro y aceros pero son también recomendables para favorecer la adhesión sobre superficies de aluminio y chapas cincadas de alto brillo, es decir sustratos no envejecidos aún en el medio ambiente. (Giudice & Pereyra, 2009, pág. 16)

En referencia a lo expuesto anteriormente, se puede enunciar que el wash primer no es una pintura sino un acondicionador de superficies metálicas. El cual tienen por objetivo primordial, proporcionar una base que brinde buena adherencia a la capa de pintura que se va a aplicar.

Con respecto a su uso, se precisa que es de exclusivo empleo para superficies metálicas de cualquier tipo, tales como hierro, acero, aleaciones, aluminio, bronce, cobre, zinc, entre otros.

b) Primer

"También llamado como pintura base, aparejo o imprimante. Ayuda a prevenir el óxido y da un tono mate, la cual ayuda al chapista a encontrar posibles imperfecciones en la superficie para corregirlas. El color básico que se usa es el gris, pero existen otros como el amarillo, azul y blanco." (Giudice & Pereyra, 2009, pág. 18)

Cabe recalcar que algunas marcas de pintura manejan el valor de la sombra en el primer, lo cual se logra con una escala de grises, que va desde un tono blanco hasta el tono negro, pasando obviamente por la escala de grises completa. Por otra parte existen primers entintables, las cuales se les puede agregar tinta para conseguir el tono de pintura de color que se requiere aplicar.

c) Pintura de Color

"Este da el color deseado por el fabricante o por el cliente, dándole un aspecto completamente distinto. Normalmente las pinturas de colores sólidos dan una terminación semibrillo y las pinturas perladas dan una terminación opaca." (Giudice & Pereyra, 2009, pág. 18)

Es pertinente mencionar, que existen dos tipos de tecnologías de la pintura de color:

- Base solvente
- Base agua

La base solvente tiene como parte de su formulación derivados del petróleo, mientras que la base agua tiene por componente principal agua DI desionizada, de modo que se reconoce como menos perjudicial para el medio ambiente.

d) Barniz o Laca Acrílica

Nombrado como pintura protectora. Sirve para dar un acabado más brillante y también cumple la función de proteger la pintura ante las condiciones climáticas, como el smog, lluvia, nieve, etc.

"El barniz es un producto no pigmentado (o bien con pigmentos extendedores en su composición), que extendido en forma de película delgada, permite observar el sustrato de base; se comporta ópticamente como un sistema homogéneo." (Giudice & Pereyra, 2009, pág. 126)

2.4.2.1 Tipos y Mezclas

a) Acrílicas (AC)

Pintura de secado rápido, fácil manipulación, que otorga un acabado semibrillo. Se diluye con diluyente acrílico para su uso. El tiempo de secado para manipularlo puede tardar entre 30 min a 1 hr y el secado completo 1 día.

b) Poliuretano (PU)

Pintura que se seca en presencia de un catalizador, la cual según su composición y recomendación del fabricante la proporción del catalizador puede variar (4:1, 3:1 y 2:1).

Este otorga un acabado brillante (pintura sólida) y mate (pintura perlada). Se necesita diluyente poliuretano y catalizador para su uso. El secado puede variar según la cantidad de catalizador agregado. Para manipularlo tarda entre 1 a 2 horas y el secado completo entre 1 a 2 días.

c) Poliéster (base)

Pintura poliéster, conocido también como "base" es derivado del poliuretano. Su rápido secado hace que el trabajo sea más fácil, la cual otorga un acabado opaco, tanto en las pinturas solidas como perlados. Esto implica un uso de barniz para dar brillo. Solo requiere diluyente poliuretano para su uso. El tiempo de secado para su manipulación es de 10 a 30 min y el secado final 12 h.

2.4.2.2 Propiedad más importante

a) Shop-primers o pinturas de protección temporaria.

Las pinturas de protección temporaria se considera como un producto basado en resinas modificadas y pigmentos anticorrosivos no tóxicos, además se caracteriza por su secado rápido y buena adhesión sobre acero, acero galvanizado y/o aleaciones ligeras.

Las formulaciones comerciales incluyen ligantes de diferente naturaleza química y pigmentación diversa. Se aplican con soplete, generalmente tienen un secado rápido y no interfieren en la eficiencia de los procesos de soldadura y oxicorte; además no liberan humos ni vapores tóxicos durante el calentamiento ni frente a la acción del fuego. (Giudice & Pereyra, 2009, pág. 16)

El principal campo de acción de las pinturas de protección temporaria, se fundamenta en la imprimación para protección temporal del acero. Es de uso universal, como promotor de adherencia en superficies de acero, acero galvanizado y/o aleaciones ligeras.

b) Wash-primers o imprimaciones de lavado.

Las imprimaciones de lavado hacen referencia al conjunto de recubrimientos que se aplican como primera capa del sistema de pintura y tiene por objetivos los siguientes enunciados:

- Proteger la superficie de la corrosión.
- Facilitar la adherencia a las siguientes capas de pintura.

Se comercializan en doble envase; la mezcla, en las relaciones estequiométricas calculadas por el formulador, se prepara en forma previa a su aplicación. Generalmente se indica un tiempo de inducción (reacciones de

neutralización) y el tiempo de vida útil de la mezcla ("pot life"). Se deben aplicar en una sola capa; los espesores de película seca son muy reducidos (aproximadamente 5/8 μm). Estas imprimaciones de lavado sirven de base para la aplicación del fondo anticorrosivo, el que eventualmente puede no incluirlos. (Giudice & Pereyra, 2009, pág. 17)

c) Pinturas anticorrosivas.

Las pinturas anticorrosivas están compuestas por componentes químicos básicos tales como el silicato de sodio puesto que inhabilita la corrosión, y tiene por principal objetivo proteger el acero y otros materiales como el hierro.

Estas composiciones tienen como función fundamental controlar el fenómeno de corrosión para prolongar la vida útil del sustrato. Una propiedad esencial es la adhesión al metal, la cual es función del material formador de película; su naturaleza depende de la pintura intermedia o de terminación seleccionada según las exigencias del medio ambiente. (Giudice & Pereyra, 2009, pág. 17)

En base a lo expuesto por el autor antes citado, cabe mencionar que las pinturas anticorrosivas son una base o primera capa de imprimación de pintura que se ha de dar a una superficie, que se aplica directamente al acero u otros metales. Para lo cual puede usarse un proceso de inmersión o de aspersión. Éste tiene el propósito primordial de inhibir la oxidación del material, y por consiguiente el de proporcionar una superficie que ofrezca las condiciones propicias para ser pintada con otros acabados.

d) Pinturas intermedias.

"Las pinturas intermedias en sistemas heterogéneos son generalmente de tipo convencional (espesor de película seca de 25/30 µm por capa) mientras que las selladoras (tipo alto espesor o "high build", 100/150 µm por capa) están basadas

en pigmentos laminares (mica, óxido de hierro micáceo, etc.)." (Giudice & Pereyra, 2009, pág. 17).

De acuerdo con el aporte del autor antes citado se determina que las pinturas intermedias se incluyen en un sistema protector para mejorar la adhesión de la pintura de terminación (sistemas heterogéneos).

Además se emplea para minimizar sensiblemente la permeabilidad de la película seca (controlar el acceso del medio electrolítico y sustancias agresivas a la interfase sustrato / recubrimiento). Lo cual es un procedimiento usual empleado en la pintura automotriz.

e) Pinturas de terminación.

"La película de esta pintura protege las capas del primer, de la anticorrosiva o de la intermedia del medio externo; se pueden diseñar con materiales formadores de película de diferente naturaleza química." (Giudice & Pereyra, 2009, pág. 17)

Por lo cual se sustenta que las pinturas de terminación, se formulan en general con bajos niveles de pigmentos y cargas o extendedores con el propósito de generar una película brillante para facilitar su limpieza y de mínima permeabilidad para evitar el acceso de sustancias agresivas.

2.4.2.3 Brillo de la Película

El brillo es una impresión sensorial causada por la reflexión de la luz sobre una superficie. El método más frecuente para comparar el brillo de superficies pintadas es el visual, generalmente contrastando con paneles estandarizados de brillo decreciente; sin embargo, observaciones realizadas por otra persona pueden conducir a conclusiones muy disímiles. En consecuencia, se emplean dispositivos llamados usualmente "glossmeters", que miden fotoeléctricamente la intensidad de un rayo de luz reflejado por la

superficie en examen, en condiciones tales que el ángulo de medida es siempre igual al de incidencia. (Giudice & Pereyra, 2009, pág. 18)

En efecto, el brillo de la película se determina como una propiedad particularmente significativa.

Cabe mencionar que en pinturas de terminación para exteriores por lo general se requieren películas brillantes para facilitar la limpieza e incrementar la intensidad de la luz reflejada.

2.4.3 Procesos de Aplicación de Pintura

El proceso de aplicación de pintura vehicular cumple una doble función:

- Protege frente a la corrosión.
- Proporciona el aspecto estético final.

Durante la fabricación del automóvil se aplican en la carrocería diversos productos de pintura que aseguran el cumplimiento de estas dos funciones. Cuando es reparado, ya sea porque ha sufrido daños o por el efecto del tiempo, deben reponerse esas capas de pintura, garantizando el máximo nivel de protección y de belleza exterior. Dentro de los trabajos de pintado en reparación, se pueden distinguir dos fases: preparación y acabado. La primera de ellas, en la que se centra este libro, tiene por objeto preparar las superficies de las piezas reparadas, de las piezas sustituidas o de cualquier zona que precise la aplicación de pintura, para la siguiente fase, la de aplicación de la pintura de acabado. (Navarro, 2013)

Referente a lo expresado textualmente por el autor antes citado, se puede evidenciar que durante el proceso de pintura, se destacan el entorno productivo y previo la definición y selección del sistema de pintura, definimos el proceso de pintura o pintado como el conjunto de operaciones necesarias para la aplicación

de una pintura con el propósito satisfacer y cumplir con los requisitos de calidad, costos, tiempo y seguridad fijados con antelación.

El proceso de pintado se puede sintetizar en tres pasos de relevancia generalizada como, la preparación de superficies, aplicación de la pintura, curado de la pintura.

El proceso de pintado en fabricación, se aplican sucesivamente distintos productos de pintura, cada uno de ellos con una misión específica. Por ello, durante la reparación, deben aplicarse productos que, siendo compatibles con los que originalmente tenía el vehículo, cumplan las mismas funciones que los eliminados como consecuencia del impacto o en la propia reparación.

2.4.3.1 Pintado en Fabricación

El pintado de la carrocería durante la fabricación de los automóviles se desarrolla después del ensamblaje y antes de comenzar el montaje de los accesorios y del equipamiento. En ese momento, la carrocería, aún desnuda, resulta ser una superficie generalmente de acero, que se someterá a diferentes tratamientos y recibirá productos protectores y embellecedores. Los pasos de este proceso son los siguientes: limpieza y desengrasado, fosfatado, pasivado, secado, cataforesis, aplicación de otras protecciones, aparejado y acabado. (CESVIMAP, pág. 2)

Referente a lo anteriormente expuesto, cabe recalcar que durante el proceso de pintado en fabricación, se aplican sucesivamente distintos productos de pintura, cada uno de ellos con una misión específica. Por ello, durante la reparación, deben aplicarse productos que, siendo compatibles con los que originalmente tenía el vehículo, cumplan las mismas funciones que los eliminados como consecuencia del impacto o en la propia reparación.

a) Limpieza y Desengrasado

"Durante el proceso de ensamblaje de la carrocería, las superficies pueden acumular grasas, polvo y otras impurezas, que deben eliminarse antes de pasar a la zona de pintura. Además, se preparan las superficies para garantizar la perfecta adherencia de los productos que se van a depositar sobre ellas." (CESVIMAP, pág. 3)

Este proceso se determina necesario puesto que se procede al lavado y desengrasado para conseguir una superficie libre de impurezas o con la asepxia convenida para que se continúe con el proceso, lo cual garantiza la adherencia de los diferentes productos y la calidad del proceso en sí.

b) Enmasillado

La masilla se considera un material de relleno que se emplea para dotar a la superficie de una correcta y perfecta planitud, así como para rellenar concavidades, cráteres, grietas, fisuras, abolladuras e imperfecciones que una superficie del vehículo pueda contener.

"Para nivelar las superficies reparadas, se aplican las masillas de relleno. Estos productos cubren las irregularidades del sustrato. Para asegurar la calidad del proceso, no se admiten, ni son recomendables, reparaciones que requieran espesores de masilla de más de 500 micras. En general, se aplican capas mucho más finas." (CESVIMAP, pág. 7)

En efecto, el enmasillado se fundamenta en un compuesto cuya principal y particular función es rellenar y reparar la superficie dañada del vehículo, lo cual tras su posterior lijado se consiga una superficie plana y estética ante la vista del ser humano; sin embargo se puede determinar que el enmasillado no posee características de protección que mejore las propiedades de la superficie aplicada, de modo que su empleo se centra en nivelar y restaurar pequeñas superficies.

c) Lijado

La lija del grano apropiado para la superficie que se está alisando dependerá de si está lijando relleno de carrocería, pintura de color o capas intermedias. Tenga siempre presente en que parte del proceso se encuentra cuando tome un pedazo de papel abrasivo para evitar dejar estrías en una superficie que ya está lista para un trabajo más fino. (Parks, 2009, pág. 160)

d) Imprimado

El imprimado se enfoca en proteger la chapa de oxidación en el caso de los substratos metálicos y en las superficies plásticas, promover de adherencia las fases del pintado.

"La imprimación actúa como protección anticorrosiva. Se aplica sobre aquellas zonas en las que, tras el lijado de la masilla, haya aparecido metal. También es posible aplicar imprimaciones antes del enmasillado, para incrementar la protección." (CESVIMAP, pág. 7)

De tal modo que, se considera que la pintura de reparación de coches necesita de una base que proteja las superficies metálicas de los agentes corrosivos que se producen al entrar en contacto el metal con el ambiente de humedad.

Cabe recalcar que es necesario determinar qué tipo de imprimación es la óptima a cada substrato y la correcta para la siguiente fase de la reparación que se trataría de enmasillar la superficie averiada.

e) Aparejado

"Antes de aplicar el aparejo, en algunos casos, se realiza un suave lijado de las superficies, eliminando pequeños defectos, como partículas de suciedad, restos de productos, etc. Después, es necesario limpiar la carrocería para dejarla libre del polvo del lijado." (CESVIMAP, pág. 5)

De tal manera que se determina que el aparejado se emplea con el propósito de conseguir una superficie equivalente, que garantice, además, la adherencia de las pinturas de acabado. Generalmente el espesor de la capa suele ser de unas 30 micras.

f) Aplicación del Acabado

"Las pinturas de acabado se aplican especialmente para embellecer el vehículo, dándoles dándoles un aspecto estético definitivo de color, brillo, efecto y dureza. Aunque también tienen la misión de mejorar la protección de la carrocería por medio del sellado". (Garcia, 2009, pág. 46)

Por lo cual se determina que la aplicación del recubrimiento final se sustenta en los sistemas de acabado que suelen ser los denominados monocapa y bicapa, caracterizados por el número de productos que se aplican.

- En el acabado monocapa, se pulveriza un único producto, que proporciona el color y el brillo.
- El acabado bicapa se utilizan dos productos: el color y el barniz transparente, el cual dará el brillo.

g) Otras Protecciones

Como complemento a los tratamientos anteriores, la carrocería recibe otros productos que refuerzan la protección anticorrosiva. Mediante el sellado y la hermetización, se evita la filtración de agua en las zonas de unión de las distintas piezas que conforman la carrocería. También se emplean paneles insonorizantes, que disminuyen las vibraciones, reduciendo los riesgos de aparición de corrosión por fatiga, a la vez que decrece el ruido de la carrocería por vibraciones de los paneles más grandes. (CESVIMAP, pág. 4)

Cabe recalcar que otra protección consiste en la pulverización de protectores de bajos y antigravillas sobre las zonas expuestas: piso del vehículo, estribos, pase de rueda, etc.

Los productos empleados, por su composición plástica, resisten el impacto de pequeñas piedras y gravillas, impidiendo que se dañe la carrocería.

2.4.3.2 Pulido

El pulido es el proceso final del trabajo de pintura. Este ayuda a quitar las imperfecciones de la pintura (pelusas, ojos de pescado, entre otros) y los deja con una terminación espejo.

Cuando se pinta un automóvil, las capas nunca quedan lisas, ya que al aplicar capas de pinturas, quedan mezclados con pequeñas partículas de aire. Esta terminación es nombrada como "piel de naranja". El pulido ayuda a corregir esto, ya que desgasta la piel de naranja dejándolo lo más parejo posible.

Para que el trabajo de pulido sea bueno y seguro depende de algunos factores:

- Las capas de pintura y barniz deben ser bien aplicadas, ni muy gruesas ni muy delgadas (primer = 12 18 μm, poliéster = 18 30 μm, barniz = 30 40 μm), de lo contrario el pulido gastaría por completo el barniz dejando solo la capa de pintura, la cual no duraría mucho en las condiciones ambientales. Además dependiendo de los resultados que se quieran obtener, serán las capas de pintura y dedicación que se le aplique al área que se quiera pintar.
- La pintura tiene que estar muy bien seca, ya que de lo contrario este perderá notoriamente el brillo al pulirlo.

2.4.4 Gestión de Calidad

2.4.4.1 Desarrollo histórico de la Gestión de la Calidad

"El interés de la sociedad por la calidad es tan antiguo como el origen de las sociedades humanas, por lo que tanto el concepto como las formas de gestionar la calidad han ido evolucionando progresivamente.

Esta evolución está basada en la forma de conseguir la mejor calidad de los productos y servicios y, en ella, pueden ser identificados cuatro estudios, cada uno de los cuales integra al anterior de una forma armónica." (Arias, 2008, pág. 4)

Referente a lo expuesto, se determina que la gestión de calidad se plantea como el conjunto de normas correspondientes a una organización, vinculadas entre sí y a partir de las cuales es que la empresa u organización en cuestión podrá administrar de manera organizada la calidad de la misma.

Por ende, un buen sistema de gestión de calidad, siempre el garantizará a la entidad u organización la satisfacción de los requerimientos de sus clientes, tanto en lo que respecta a la prestación del servicio o a lo que ofrece el producto en sí.

2.4.4.2 La Inspección de la Calidad

Constituye el primer estudio en el desarrollo científico de la gestión de la calidad y se inicia para algunos autores en 1910 en la organización Ford, la cual utilizaba equipos de inspectores para comparar los productos de su cadena de producción con los estándares establecidos en el proyecto. Esta metodología se amplió posteriormente, no solo para el producto final, sino para todo el proceso de proceso de producción y entrega. El propósito de la inspección era encontrar los productos de baja calidad y separarlos de los de calidad aceptable, antes de su colocación en el mercado. (Arias, 2008, pág. 4)

Cabe mencionar que la inspección de la calidad consiste en examinar y medir las características de un producto, así como sus componentes y materiales de que está elaborado, o de un servicio o proceso concluyente.

De modo que los sistemas de inspección sirven para confirmar que el sistema de calidad funciona según lo pronosticado, por lo general la inspección se realiza por muestreo y solo se usa el control cien por ciento para características relevantes de seguridad, funcionalidad o normas.

2.4.4.3 El Control de la Calidad

El control de la calidad se podría definir como las técnicas más usadas para estandarizar un proceso o actividad particular. La función del control de calidad existe fundamentalmente como una organización de servicio, para conocer las especificaciones establecidas por la ingeniería del producto.

El desarrollo de la producción en masa, la especialización, el incremento en la complejidad de los procesos de producción y la introducción de la economía de mercado centrada en la competencia y en la necesidad de reducir los precios, hecho que implica reducir costes de materiales y de proceso, determinó la puesta en marcha de métodos para mejorar la eficiencia de las líneas de producción. (Arias, 2008, pág. 5)

Por lo establecido anteriormente, se define que el control de calidad, son todos los mecanismos, acciones, herramientas realizadas para detectar la presencia de falencias o inconveniencias.

Es importante mencionar que la principal función del control de calidad existe principalmente como una organización de servicio, para conocer las especificaciones establecidas por la elaboración o producción del producto o servicio y proporcionar asistencia al departamento de fabricación.

2.4.5 Indicadores de Calidad

Con respecto a los indicadores de calidad, se puede señalar que son una medida cuantitativa que refleja la cantidad que posee dicha actividad. Por tanto, sirve no sólo para evaluar un determinado aspecto de la calidad del servicio o producto, sino para realizar un seguimiento de dicha medida a lo largo del tiempo y poder comparar la calidad asistencial en un mismo centro en diferentes periodos de tiempo.

La medición que permite obtener el indicador de calidad puede ser directa o indirecta.

Si se ha dado por terminada la aplicación del recubrimiento, se procede realizar los ensayos destructivos en las probetas correspondientes a cada equipo o los ensayos no destructivos en el sustrato de los equipos. No hay que olvidar que los testigos debieron haber sido aplicados en el mismo tiempo y en las mismas condiciones que el equipo o equipos que se están pintando, en este deben intervenir la misma persona que intervino en el equipo para aplicar el recubrimiento tal cual si fuese el equipo para obtener los resultados sin alteraciones o cambios significativos de la inspección. (Pereyra A., 2013)

De modo que se plantea que los indicadores de calidad son medidas estadísticas basadas en cifras o ratios que se emplean como criterios de juzgamiento y evaluación del desempeño de una actividad, proceso o procedimiento.

2.4.5.1 Preparación de las Superficies a Pintar

Después de que se compruebe las condiciones ambientales, las cuales deben estar dentro de los parámetros operacionales, procedemos a realizar la limpieza de la superficie.

a) La Limpieza: El primer paso para la garantía del repintado

Cuando el vehículo o piezas a repintar llegan a la sección de pintura del taller, la primera operación a realizar de forma inexcusable es la limpieza de las superficies a pintar.

"Lo mismo debe hacerse con otras piezas o partes del vehículo que, aunque no se tengan que repintar, pudieran desprender partículas de suciedad que quedaran incluidas en las diferentes capas, al removerse dichas partículas en el momento de realizar las aplicaciones aerográficas." (EVOLUCION-@, 2011, pág. 1)

Con este primer paso, del proceso mencionado se plantea como relevante al polvo o barro que pudiera llevar el vehículo, por lo que siempre que sea posible, antes de iniciar la reparación del mismo tanto de pintura como de carrocería, se provendrá a su lavado

b) Pre tratamiento de las Chapas: La eliminación del oxido

Actualmente la gran mayoría de las piezas de la carrocería de los automóviles están construidas con chapas de acero, cuando son reparadas y se eliminan las capas protectoras de pintura, existe el riesgo de aparición de oxidaciones, sobre todo si transcurre mucho tiempo desde la reparación hasta el repintado. También puede suceder que el vehículo a repintar presente uno o varios focos de oxidación, en cuyo caso es necesario eliminarlos antes de comenzar el repintado. (EVOLUCION-@, 2011, pág. 2)

Este proceso se puede ejecutar a través de un proceso de lijado, en el que la lija a emplear sea lo adecuadamente abrasiva como para arrancar o eliminar el óxido, pero sin que pueda llegar a deteriorar la chapa mermando excesivamente su espesor.

c) El desengrasado de las superficies a repintar

Para conseguir el resultado óptimo con niveles de calidad aceptables se debe empezar por determinar una pintura diseñada para su aplicación sobre un soporte determinado pueda adherirse de forma óptima.

Por lo general una de las inconveniencias detectadas se generan con el polvo y las grasas, ceras o aceites depositados sobre las piezas a repintar constituyen, por lo que se consideran como la principal barrera para conseguir la adhesión de las pinturas.

"Por ello, es esencial el soplado y desengrasado de las superficies sobre las cuales se va a trabajar. El desengrasado se realiza mediante la aplicación de un disolvente desengrasante, que se extiende, realizando una ligera fricción sobre la superficie a tratar, mediante un trapo empapado en él". (EVOLUCION-@, 2011, pág. 4)

La composición química del disolvente desengrasante ha de ser tal que sea capaz de disolver los contaminantes, pero sin deteriorar el soporte a pintar. Además, debe tener un tiempo de evaporación lo suficientemente lento para permitir el proceso de desengrasado tal y como se ha descrito anteriormente. Si se aplica un desengrasante y se le deja secar sobre la superficie tratada, sólo se consigue mover los contaminantes de lugar, pero no eliminarlos. (EVOLUCION-@, 2011, pág. 4)

Gráfico 2- 2: Productos de limpieza PPG (**Fuente:** EVOLUCION-@, 2011)

El desengrasado de superficies no sólo ha de realizarse antes de la aplicación de las pinturas, sino incluso antes de comenzar cualquier operación de lijado, por dos razones:

- Lijar una superficie con grasas provoca la creación de grumos con los polvos del lijado, que pueden crear surcos indeseados además de deteriorar la lija.
- 2. Los granos de abrasivo hacen que los aceites y grasas penetren hacia el interior del material, donde luego será muy difícil eliminarlos.

d) Lijado de preparación de las superficies a pintar

Además de la condición expuesta en el apartado anterior, acerca del desengrasado de la superficie a pintar, es necesario que la rugosidad de la superficie sea la adecuada al tipo de pintura, lo cual se consigue con un proceso de lijado con el abrasivo del grano correspondiente. Pero ambas operaciones, desengrasado y lijado, no se pueden realizar directamente en las chapas que hayan sido reparadas por los chapistas, donde habrán quedado líneas de transición bruscas entre las superficies con pintura y las zonas de chapa descubierta. (EVOLUCION-@, 2011, pág. 5)

Cabe mencionar que el éxito de trabajo de pintado no sólo depende de una buena elección de los productos, sino también de los trabajos previos que se realicen en la superficie antes de pintarla.

De modo que la preparación de superficie se entiende a la limpieza que se efectúa antes de aplicar la pintura con el objeto de eliminar todo agente contaminante, como partículas sueltas o mal adheridas, de modo que quede lista y adecuada para recibir el proceso de pintado.

2.4.5.2 Espesor de Película

El espesor de película y el valor medio óptimo son variables a controlar con el fin de asegurar la calidad del sistema.

Por lo general, la rugosidad del sustrato establece una significativa dificultad para su determinación; el espesor de película resulta un valor medio y depende, además de la rugosidad, del método de medida.

La naturaleza del sustrato y las características del medio agresivo definen un espesor óptimo para cada sistema de pinturas. Altos espesores aseguran buenas propiedades de flujo, satisfactorio poder cubriente y reducida permeabilidad al vapor de agua, gases, etc. Sin embargo, espesores elevados generalmente conducen al deterioro de las propiedades fisicomecánicas y consecuentemente a un desempeño en servicio menos eficiente. (Pereyra & Giudice, pág. 2)

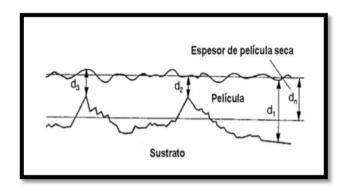


Gráfico 2-3: Rugosidad del Sustrato

(Fuente: Pereyra & Giudice)

"En muchos casos resulta de interés evaluar el espesor húmedo con el fin de realizar la corrección durante la aplicación para alcanzar un definido valor de película seca; para ello, el contenido de sólidos en volumen del producto es fundamental." (Pereyra & Giudice, pág. 2)

2.4.5.3 Medidor de Película Húmeda

I. Método del Peine

Este dispositivo posee dientes o agujas de diferente longitud; se lo presiona sobre la película fresca en ángulo recto hasta alcanzar el contacto con la superficie de base. La aguja de mayor longitud que no entró en contacto con la pintura indica el espesor de película húmeda. (Pereyra & Giudice, pág. 2)

El espesor de película húmeda se puede medir con diferentes peines detallados a continuación:

a) Peines hexagonales para película húmeda Elcometer

"Estos peines hexagonales de acero inoxidable para película húmeda fabricados con precisión son muy duraderos y reutilizables, suministrándose en un rango de espesores que miden hasta 3000 μm (120 mil)." (Elcometer, 2013, pág. 172)

Los antes mencionados peines hexagonales varían de tamaño, con 24 ó 36 pasos de medición, según el peine, para obtener una mayor precisión.

Gráfico 2- 4: Peine Hexagonal Elcometer (**Fuente**: Elcometer, 2013)

b) Peines para película húmeda de arista larga Elcometer

"Estos peines de acero inoxidable están sometidos a abrasión con alambre para proporcionar una precisión de ±2.5 μm (0.01 mil) y se suministran con medidas métricas o británicas. Cada peine tiene 24 etapas (dientes) de medida para obtener un valor de espesor de película húmeda más preciso." (Elcometer, 2013, pág. 174)

Gráfico 2- 5: Peine de Arista Larga Elcometer (**Fuente**: Elcometer, 2013)

c) Peines para película húmeda Elcometer 115

Estos peines de acero inoxidable de alta precisión y reutilizables se hacen para que duren mucho tiempo y se suministran con medidas métricas o británicas.

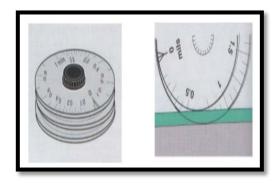
Disponibles en unidades métricas o imperiales peines con rangos de espesor de un máximo de 1270µm o 50mils, son fabricados con una precisión del 5% o 2.5µm (0.01mil). Cada peine tiene 10 pasos (dientes) de medición. (Elcometer, 2013, pág 173)

Gráfico 2- 6: Peine Elcometer 115 (**Fuente**: Elcometer, 2013)

Uso de un peine para película húmeda

Coloque un peine perpendicularmente al sustrato y en contacto con el mismo. Mantenga el peine en esta posición y espere unos pocos segundos hasta que se humedezcan los dientes. Retire el peine de la película húmeda. El espesor de la película húmeda está entre el mayor valor del diente 'revestido' o 'húmedo' y el menor valor del diente 'no revestido' o 'seco'. (Elcometer, 2013, pág. 171)

II. Método de la Rueda


El desarrollo del método de la rueda necesita la aplicación de un modelo científico, que incluya como elementos centrales del proceso que sirvan de aporte técnico y profesional, de modo que coadyuve al mecanismo determinado.

"Está basado en el mismo principio que el peine. Posee tres superficies paralelas: dos de ellas (las externas) están centradas y permiten su desplazamiento de rotación mientras que la restante está ubicada entre las dos primeras, tiene menos diámetro y está dispuesta en forma excéntrica." (Pereyra & Giudice, pág. 3)

En efecto, la rueda es presionada sobre la pintura húmeda; la superficie central presenta distancias variables hasta el sustrato, dependiendo de la posición.

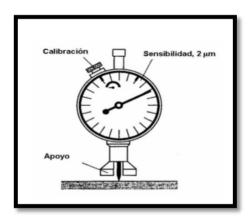

Gráfico 2- 7: Determinación del espesor de película húmeda a través de la rueda (**Fuente**: Pereyra & Giudice)

Gráfico 2- 8: Determinación del espesor de película húmeda : Rueda (**Fuente**: Pereyra & Giudice)

III. MÉTODO DE LA AGUJA

La aguja deflectora determina sólo el espesor total; tiene dos apoyos que se fijan sobre el sustrato pintado y una punta central conectada a un sistema de transmisión que permite defleccionar una aguja sobre una escala circular graduada, en proporción al espesor de la película seca (Gráfico 2-13). Se emplea sobre superficies metálicas y no metálicas. (Pereyra & Giudice, pág. 3)

Gráfico 2- 9: Medidor de espesor de película seca: Aguja deflectora (**Fuente**: Pereyra & Giudice)

2.4.5.4 Medidor de Película Seca

En la industria de los revestimientos, medida más crítica es probablemente la del espesor de la película seca. Ofrece información vital en cuanto a la vida

prevista del sustrato, la idoneidad del producto a los fines que se pretende y su aspecto, además de asegurar el cumplimiento de una gran cantidad de Normas Internacionales (Elcometer, 2013, pág. 181)

A continuación se enuncia algunos medidores de espesores de película seca:

I. Medidores Digitales de Espesor de Revestimiento

"La gama Elcometer de medidores digitales de espesor de revestimiento se ha diseñado específicamente para ofrecer mediciones de espesor de revestimientos precisas, fiables y repetibles prácticamente en cualquier sustrato, ya sea ferroso o no ferroso." (Elcometer, 2013, pág. 181)

Por ende, el espesor de película seca puede medirse bien sobre:

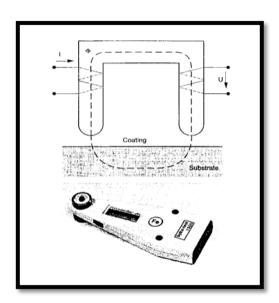
- Superficies magnéticas de acero
- Superficies metálicas no magnéticas como el acero inoxidable y el aluminio empleando un medidor digital de espesor de revestimiento.

El principio de inducción electromagnética se emplea para revestimientos no magnéticos sobre sustratos magnéticos como el acero.

Gráfico 2- 10: Medidor de espesor de película seca (**Fuente**: Elcometer, 2013)

II. Medidores de Espesor de Revestimiento de Imán Permanente

Se monta un imán permanente sobre un brazo en equilibrio. La fuerza requerida para retirar este imán de la superficie del revestimiento es una medida del espesor del revestimiento. La fuerza se aplica a través de un muelle helicoidal sujeto al brazo en equilibrio por un extremo y una rueda graduada. Conforme la rueda graduada gira, la fuerza aumenta progresivamente hasta que el imán se levanta de la superficie. (Elcometer, 2013)


La escala de la graduación se expresa en unidades de grosor en lugar de en unidades de fuerza, por lo que es posible leer el espesor del revestimiento a través del indicador que presenta la carcasa del instrumento.

III. Medidores de Espesor de Revestimiento por Inducción Electromagnética

Los medidores de espesor de revestimiento electrónicos para la medición de materiales con sustratos magnéticos utilizan el principio de inducción electromagnética. Se emplea un sistema de sonda de tres bobinas en el que la bobina central recibe alimentación del instrumento y las otras dos bobinas, situadas a ambos lados de la bobina central, detectan el campo magnético resultante. La señal generada por el instrumento es sinusoidal y, por consiguiente, se establece un campo magnético alterno alrededor de la bobina central. (Elcometer, 2013)

Por lo tanto, cuando no hay materiales magnéticos que influyan en la sonda, el campo magnético se corta a través de las otras dos bobinas de igual forma. Conforme la sonda se aproxima al sustrato no revestido, el campo se va desequilibrando, con más corte del campo en la bobina más próxima y menos corte en la bobina más lejana.

Interpreta la dependencia de la fuerza de atracción ejercida por el magneto permanente en función del espesor de la capa de pintura. La fuerza máxima para despegar el dispositivo de la superficie es una medida del espesor de la película.

Gráfico 2- 11: Medidor de espesor de película seca: Efecto magnético-inductivo (**Fuente**: Pereyra & Giudice)

Los espesores de películas también pueden cuantificarse por efecto inductivo- magnético. El dispositivo está basado en la influencia inductiva de un sustrato magnético sobre un campo alternativamente electromagnético; son los más usados por su elevada sensibilidad y precisión de los resultados. El dispositivo inductivo-magnético genera por el pasaje de la corriente un flujo magnético en el arrollamiento primario de un electro magneto y éste a su vez genera un voltaje inducido por aquél. (Pereyra & Giudice, pág. 3)

De modo que en la medida del espesor, la película interviene sobre la magnitud del flujo magnético y en consecuencia en el valor del voltaje inducido.

"Debemos familiarizarnos completamente con las hojas técnicas del producto, ya que es ahí en donde constan los tiempos de secado y repinte de cada pintura y en base a esto saber cuánto tiempo tomará el curado de nuestro recubrimiento." (Pereyra & Giudice, pág. 3)

2.4.5.5 Pruebas de Adherencia

Las pruebas de adherencia después de la aplicación del revestimiento,

cuantifica la resistencia de la unión entre el sustrato y el revestimiento, o

entre diferentes capas de revestimiento o bien la fuerza cohesiva de algunos

sustratos. Desde las estructuras más grandes hasta los electrodomésticos más

pequeños, la mayor parte de los productos manufacturados tienen un

revestimiento protector o embellecedor. (Elcometer, 2013, pág. 207)

Estos ensayos tendrán un valor fundamental que será la fuerza que se ejerce para

separar ambos elementos bien sea en una unidad de fuerza partida por la

superficie de contacto, o bien como unidad de fuerza única en aquellos elementos

que la superficie es desprendible.

Métodos de Adherencia

I. Prueba de Adherencia por Arranque

Una prueba de adherencia por arranque determina la adherencia del

revestimiento mediante la medición de la fuerza de arranque necesaria para

retirar la sufridera del revestimiento. La gama Elcometer de medidores de

adherencia por arranque ha sido diseñada para medir la adherencia de

revestimientos sobre una gran variedad de sustratos, como acero, aluminio,

hormigón, madera y plástico, entre otros. (Elcometer, 2013, pág. 207)

Gráfico 2- 12: Medidor de adherencia por arranque.

(Fuente: Elcometer, 2013)

38

II. Prueba de Adherencia por corte cruzado/trama cruzada

La prueba de adherencia por corte cruzado/trama cruzada es un método sencillo aunque muy efectivo para determinar la adherencia de revestimientos. Para comprobar la adherencia, el revestimiento se corta en pequeños cuadrados, lo que reduce la cohesión lateral, y el revestimiento se evalúa con arreglo a normas ISO, ASTM o corporativas. (Elcometer, 2013, pág. 207)

Cabe mencionar que la prueba de adherencia por corte cruzado suministra un método de comparación rápida, asequible y visual de revestimientos de pintura y polvo de un espesor de hasta 250 µm (10 mils). La prueba de cortador de trama cruzada es competente para revestimientos delgados, gruesos o duros en todo tipo de superficies.

Gráfico 2- 13: Medidor de adherencia por trama cruzada.

(Fuente: Elcometer, 2013)

2.4.5.6 Ensayos de Durabilidad

La degradación de una película por los agentes atmosféricos resulta de la combinación de diversos factores, muchos de los cuales presentan variaciones cíclicas altamente destructivas. Algunos ejemplos surgen al considerar la luz solar, la temperatura, la humedad relativa, la lluvia, etc. Las diferentes atmósferas (rural, urbana industrial y marina) generan condiciones de distinta agresividad. Para determinar el efecto de la exposición a la

intemperie, generalmente los laboratorios de control de calidad e institutos de investigación disponen de estaciones en las que las pinturas y los recubrimientos se exponen a la intemperie. (Pereyra & Giudice, pág. 10)

En efecto, los ensayos de durabilidad se inspeccionan regularmente, a lapsos predeterminados con el objetivo de establecer las propiedades de la película y las posibles fallas.

Por ende, se utilizan normas y especificaciones para la interpretación cualitativa o cuantitativa de las propiedad o falla considerada.

A su vez es importante registrar las condiciones ambientales (particularmente la temperatura, la humedad, el agua de lluvia y los días de sol) durante el ciclo de envejecimiento.

Se precisa a continuación, en lo referente a los equipos de envejecimiento acelerado, se pueden citar los siguientes:

I. Intemperiómetros

"Los equipos usualmente empleados son relativamente complejos; ellos generan las condiciones necesarias para producir un deterioro o cambio de propiedad en lapsos más reducidos que los involucrados en la intemperie." (Pereyra & Giudice, pág. 11)

Los intemperiómetros poseen las características operativas de los equipos, los cuales intentan correlacionar los resultados de laboratorio con los correspondientes a la exposición en servicio.

II. Cámara de UV

"Los ensayos de resistencia a la luz se llevan a cabo sobre paneles de

características preestablecidas en lo relativo a su naturaleza y composición

(metal, madera, hormigón, plásticos, etc.)." (Pereyra & Giudice, pág. 11)

Referente a lo expuesto se puede mencionar, que la cámara UV se trata de un

filtro óptico que se acopla en la parte frontal del objetivo.

El filtro puede tratarse de un cristal cuadrado que se acopla al objetivo mediante

un accesorio.

Por otra parte, para establecer la resistencia a la corrosión de los materiales

desnudos o protegidos se emplean los siguientes equipos:

III. Cámara de Niebla Salina

"Paneles metálicos desnudos o bien protegidos con un sistema de pinturas se

somete a la acción de una solución atomizada de cloruro de sodio en condiciones

de concentración y temperatura definidas. Esta cámara se emplea para el ensayo

de revestimientos anticorrosivos y reproduce las condiciones de un medio

marino." (Pereyra & Giudice, pág. 11)

Gráfico 2- 14: Cámara de Niebla Salina

(Fuente: Pereyra & Giudice)

41

En efecto la cámara de niebla salina es un dispositivo empleado para detectar partículas de radiación ionizante.

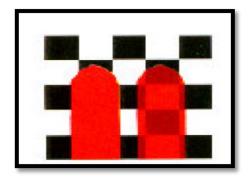
En su forma más sencilla, una cámara de niebla es un entorno cerrado que contiene vapor de agua súper enfriado y súper saturado.

IV. Cámara de Humedad y Temperatura controladas

Consta de un gabinete aislado térmicamente y está provista de un tanque con agua destilada la cual es calefaccionada eléctricamente. La circulación de vapor se implementa con un ventilador. Las probetas se disponen en posición vertical. Fundamentalmente se determina la resistencia a la formación de ampollas de las películas de pintura ya que el fenómeno osmótico es significativo. (Pereyra & Giudice, pág. 11)

La cámara de humedad y temperatura controlada, se emplea en ensayos más exigentes pueden diseñarse variando programadamente las temperaturas del ciclo y la extensión del mismo, según se requiera.

2.4.6 Calidad del Acabado Superficial


2.4.6.1 Propiedades Visuales

"La opacidad, el color y el brillo de las superficies son percepciones subjetivas por la interacción de la luz con la película de las pinturas. Estas propiedades, en conjunción con la forma de la superficie pintada, combinan aspectos estéticos y funcionales." (Pereyra & Giudice, pág. 4)

I. Opacidad

"La opacidad refiere a la capacidad de ocultación del sustrato, depende de la diferencia de los índices de refracción del pigmento considerado y el material

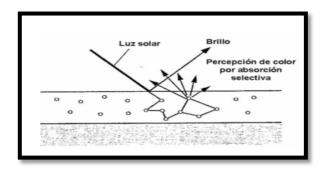

formador de película. Se emplean diversos métodos para determinarla:" (Pereyra & Giudice, pág. 5)

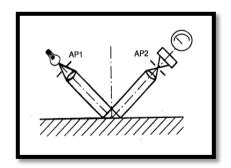
Gráfico 2- 15: Opacidad (**Fuente**: Pereyra & Giudice)

II. Color

Un factor importante en el aspecto decorativo de una película de pintura es el color y la retención del mismo durante la vida útil (envejecimiento). La determinación se puede realizar por comparación visual con una carta de colores. Este método presenta falta de precisión por las características particulares del operador y las condiciones de iluminación y de observación. (Pereyra & Giudice, pág. 5)

Gráfico 2- 16: Diferencia entre color y brillo (**Fuente**: Pereyra & Giudice)

En efecto, los colores de la pintura automotriz son de vital importancia ya que la satisfacción del cliente es el principal objetivo, de modo que existen una gran


gama de colores, la cual tiene las características como: colores sólidos, colores mate, colores perlados, colores metalizados, colores tornasol, entre otros.

III. Brillo

El brillo es una impresión sensorial causada por la reflexión de la luz sobre una superficie; es una propiedad particularmente importante en pinturas de terminación para exteriores (generalmente se requieren películas brillantes para facilitar la limpieza e incrementar la intensidad de la luz reflejada) como también para interiores (usualmente se especifican productos de poco brillo o bien mates para evitar las molestias causadas por la reflexión de los rayos de luz concatenados en los ojos). (Pereyra & Giudice, pág. 8)

En cuanto al brillo se puede mencionar que el método de mayor utilización para comparar el brillo de superficies pintadas es el visual, por la sensibilidad del ojo humano, generalmente contrastado con paneles estandarizados de brillo decreciente. Sin embargo el resultado puede variar de acuerdo a los ángulos de incidencia de la luz sea similar y que ésta sea de las mismas características.

A pesar de definir las condiciones de la observación, persisten en general las dispersiones de opiniones de las diferentes personas. Los medidores de brillo son llamados usualmente "glossmeters", y cuantifican fotoeléctricamente la intensidad de un rayo de luz reflejado por la superficie en examen, en condiciones tales que el ángulo de medida es siempre igual al de incidencia. (Pereyra & Giudice, pág. 9)

Gráfico 2- 17: Medida de reflexión especular (**Fuente**: Pereyra & Giudice)

Gráfico 2- 18: Brillo: ángulos de iluminación

(Fuente: Pereyra & Giudice)

"Las medidas de brillo se realizan con respecto a patrones; generalmente se calibra el instrumento con un vidrio negro estándar en el extremo superior (la lectura se ajusta a 96 de la escala) y con un bloque de carbonato de magnesio en el inferior (la lectura se ajusta a 2,5)." (Pereyra & Giudice, pág. 9)

Los defectos de la película, provenientes del sustrato o de la aplicación, afectan el valor del brillo.

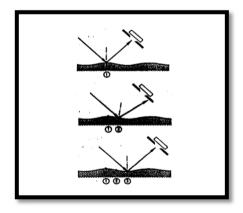


Gráfico 2- 19: Influencia del acabado superficial sobre el brillo

(Fuente: Pereyra & Giudice)

2.5 HIPÓTESIS

Al realizar el estudio de los diferentes procesos de pintura se garantizará la calidad del acabado superficial de la pintura de los buses en la empresa Carrocera IMPEDSA.

2.6 SEÑALAMIENTO DE VARIABLES

2.6.1 Variable Independiente

Procesos de aplicación de pintura

2.6.2 Variable Dependiente

Calidad del Acabado Superficial

2.6.3 Término de Relación

Garantizará

CAPÍTULO III

METODOLOGÍA

3.1 ENFOQUE

El enfoque que predominará en la presente investigación será de tipo cualitativo, por las siguientes razones:

Se podrá aplicar técnicas para mejorar la calidad del producto logrando una mejora continua que permitirá a la empresa optimizar la producción y sobre todo a la selección correcta del material en este caso el recubrimiento automotriz disminuyendo el tiempo en cada uno de los procesos y evitando los re-trabajos producidos por la falta de investigación por la empresa carrocera.

- En el desarrollo de nuestra investigación utilizará los siguientes datos que están relacionados con el proceso adecuado de ejecución:
- Investigar los parámetros que serán necesarios previa la aplicación de un recubrimiento y durante la misma
- Identificar las normas que se deben emplear para la correcta evaluación de un recubrimiento.
- Demostrar la correcta realización de los ensayos destructivos y no destructivos en los procesos de pintura automotriz.
- Demostrar mediante el estudio el recubrimiento automotriz que garantizará la calidad del acabado superficial de los buses.

3.2 MODALIDAD BÁSICA DE LA INVESTIGACIÓN

3.2.1 De Campo

La modalidad de este proyecto es de campo, debido a que se mantiene una relación directa con el objeto en estudio por formar parte de la organización, motivo por el cual se facilidad de obtención de información primaria del problema que se está presentando, se realizaran distintas probetas, a las cuales se las evaluará para determinar si el proceso que se ejecutó, nos brinda resultados satisfactorios y así lograr obtener una investigación sustentada.

3.2.2 Bibliográfico

La información para la realización del estudio proviene tanto de fuentes primarias las cuales nos proporcionan información importante, la misma que será recolectada en fuentes como libros, tesis, normas, hojas técnicas, procedimientos, reglamentos internos, documentales e internet, mientras que la información secundaria son los resúmenes y listados de referencias que estén vigentes, así como personas entendidas en el tema que puedan servir de ayuda con su experiencia.

3.3 NIVEL O TIPO DE INVESTIGACIÓN

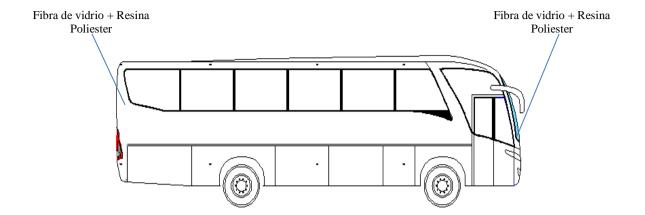
3.3.1 Exploratorio

A través de la investigación exploratoria nos permitirá identificar el objeto en estudio, identificando el problema, formular hipótesis para poder solucionarlos mediante la selección de metodologías adecuadas.

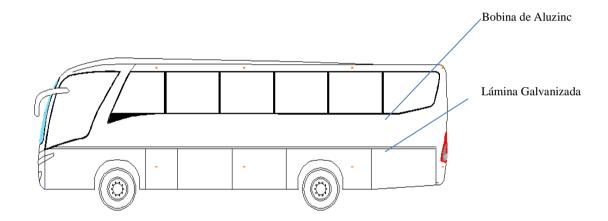
3.3.2 Descriptivo

Nuestra investigación requiere de un conocimiento previo acerca del comportamiento de los recubrimientos y sus características, mediante la investigación descriptiva nos permitirá especificar las características más destacadas del problema aplicando métodos y técnicas de investigación para recolectar información que se utilizará para la comprobación de la hipótesis planteada, mediante la estadística descriptiva dando a conocer resultados.

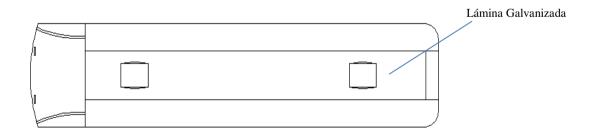
3.3.3 Experimental

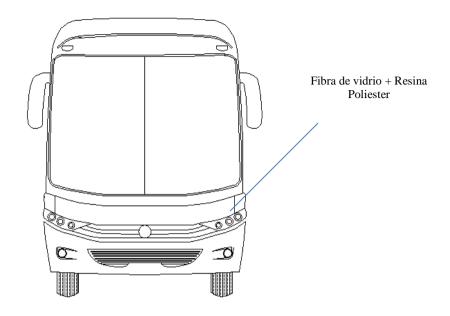

La investigación será de modalidad experimental, debido a que los resultados de los ensayos obtenidos luego de las pruebas realizadas permitirán generar un estándar experimental para su futura aplicación en la industria carrocera.

3.4 POBLACIÓN Y MUESTRA


3.4.1 Población

El universo para este estudio está comprendido de los Autobuses Fabricados en Carrocerías IMPEDSA, como el universo es bastante variado, se ha tomado la decisión de limitar nuestra población a la superficie pintada de los Autobuses Interprovinciales, por ser el de mayor cobertura de área en la producción.


A continuación se detallará el área externa pintada con las diferentes marcas de recubrimientos:


Gráfico 3- 1: Vista lateral derecha (**Fuente**: Carrocerías IMPEDSA)

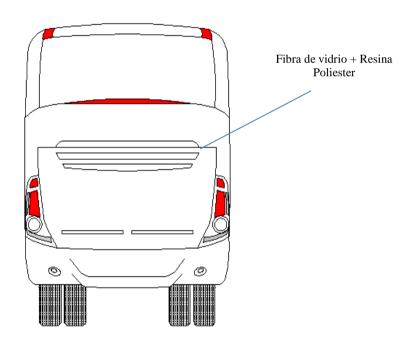

Gráfico 3- 2: Vista lateral izquierda (**Fuente**: Carrocerías IMPEDSA)

Gráfico 3- 3: Vista superior (**Fuente**: Carrocerías IMPEDSA)

Gráfico 3- 4: Vista frontal (**Fuente**: Carrocerías IMPEDSA)

Gráfico 3- 5: Vista posterior (**Fuente**: Carrocerías IMPEDSA)

Tabla 3-1: Población o Universo Área pintada (Frente y Respaldo) Fibra de Vidrio

PPG -	SHERWIN WILLIAMS - GLASURIT
PARTES	ÁREA PINTADA FIBRA DE VIDRIO
FRENTE	2032400.235mm ²
RESPALDO	5100136.019mm ²
TOTAL	7132536.255mm ²

(Fuente: Elaborado por Wellington Santos)

Tabla 3-2: Población o Universo Área pintada (L. Derecha; L. Izquierda y Techo) Galvanizado

PPG - SHERWIN WILLIAMS - GLASURIT							
PARTES	ÁREA PINTADA GALVANIZADO						
LATERAL DERECHA	19906863.11mm ²						
LATERAL IZQUIERDA	21201705.42mm ²						
ТЕСНО	25863962.17mm ²						
TOTAL	66972530.53mm ²						

(Fuente: Elaborado por Wellington Santos)

3.4.2 Muestra

Las probetas a considerar dentro del desarrollo de esta investigación serán de galvanizado y fibra de vidrio las cuales a continuación se determina la cantidad como se muestra en la siguiente ecuación.

$$n = \frac{N * (\alpha_c * 0.5)^2}{1 + (e^2 * (N - 1))}$$
 Ec. (1)

Esta ecuación depende de tres factores que permitirá determinar el tamaño de la muestra los cuales son:

 El nivel de confianza, (α_c), seguridad o probabilidad con la que el método dará una respuesta correcta, esto niveles de confianza tienen un intervalo entre el 95% al 99% donde el coeficiente Zα está en función de α (tabla 3-3).

- La letra (e) nos define el error que deseamos obtener de nuestro estudio.
- La letra (*N*) nos define el tamaño de la población en este caso el área pintada del Autobús.

Tabla 3- 3: Nivel de Confianza

Nivel de confianza	99.73%	99%	98%	96%	95.45%	95%	90%	80%	68.27%	50%
Zc	3.00	2.58	2.33	2.05	2.00	1.96	1.645	1.28	1.00	0.6745

(Fuente: Spiegel, 1997)

Muestra de Material Galvanizado.

$$n = \frac{66.9725 * (2.58 * 0.5)^2}{1 + [(0.01^2)(66.9725 - 1)]}$$

$$n = 165.83 \text{ cm}^2$$

Muestra de Material Fibra de vidrio.

$$n = \frac{7.1325 * (2.58 * 0.5)^2}{1 + [(0.01^2)(7.1325 - 1)]}$$

$$n = 165.49 \text{ cm}^2$$

Lo que significa que el tamaño de la muestra para material galvanizado es de 165,83 cm² y para Fibra de Vidrio es de 165,49 cm²

Lo cual que por cada caso se realizaran 7 probetas de Galvanizado y 7 probetas de Fibra de Vidrio para nuestro estudio.

Tabla 3-4: Número de Probetas

NÚMERO DE PROBETAS							
	ESTUDIOS A REALIZAR						
PINTURA + MATERIAL	ESPESOR DE PELÍCULA HÚMEDO PESSOR DE RUGOSIDAD ADHERENCI.	A ENVEJECIMIENTO					
PPG+Galvanizado	7	7					
PPG+Galvanizado+Masilla	7	7					
PPG+Fibra de Vidrio	7	7					
PPG+Fibra de Vidrio+Masilla	7	7					
Sherwin Williams+Galvanizado	7	7					
Sherwin Williams+Galvanizado+ Masilla	7	7					
Sherwin Williams+Fibra de vidrio	7	7					
Sherwin Williams+Fibra de vidrio+Masilla	7	7					
Glasurit+Galvanizado	7	7					
Glasurit+Galvanizado+Masilla	7	7					
Glasurit+Fibra de Vidrio	7	7					
Glasurit+Fibra de Vidrio+Masilla	7	7					
TOTAL DE PROBETAS	84	84					

(Fuente: Elaborado por Wellington Santos)

"Para las pruebas de Espesor de película Seca, Rugosidad y Envejecimiento, se utilizó un muestreo aleatorio, siendo un "muestreo a juicio intencional, en el cual la muestra (número de probetas) fue seleccionada a juicio del investigador, considerando tiempos y costos de la investigación." (Vivanco, 2005).

Utilizando el siguiente número de muestras:

Tabla 3-5: Número de Probetas Aleatorio

ESTUDIO	MATERIAL	# DE PROBETAS
ESPESOR DE	Galvanizado+Masilla	9
PELÍCULA	Fibra de Vidrio	9
SECA	Fibra de Vidrio+Masilla	9
TOT	27	
	Galvanizado	3
RUGOSIDAD	Galvanizado+ Masilla	3
	Fibra de vidrio	3
	Fibra de Vidrio+masilla	3
TOT	TAL DE PROBETAS	12
	Galvanizado	9
ENVETECIMIENTO	Galvanizado+Masilla	9
ENVEJECIMIENTO	Fibra de Vidrio	9
	Fibra de Vidrio+Masilla	9
TOT	TAL DE PROBETAS	36

(Fuente: Elaborado por Wellington Santos)

Tabla 3- 6: Tamaño de la Probeta

ZONA A PINTAR	PROBETA
Zona de Galvanizado	A Desired
Zona de Fibra de Vidrio	c c
Zona de Galvanizado + Masilla	2
Zona de Fibra de Vidrio + Masilla	13 cm
	$\mathbf{AREA} = 169 \text{ cm}^2$

(Fuente: Elaborado por Wellington Santos)

Por procedimiento de ensayo y condiciones se requiere una probeta de (20x30)cm

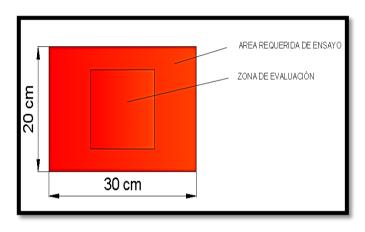


Gráfico 3-6: Probeta Ensayo

(Fuente: Elaborado por Wellington Santos)

3.5 OPERACIONALIZACIÓN DE VARIABLES

 Tabla 3- 7: Variable Independiente

PROCESOS DE 1	PROCESOS DE PINTURA MEDIANTE PPG, SHERWIN WILLIAMS Y GLASURIT									
Contextualización	Dimensiones	Indicadores	Ítems	Técnicas e instrumentos						
El estudio de los procesos utilizados para pintar un bus que influyen en la calidad del acabado superficial de una carrocería se centra netamente en la parte final (Proceso de pintado del bus), en donde es indispensable controlar la correcta preparación del bus a ser pintado, cumpliendo las	Aplicación de Pintura	Tipo de Proceso	SherwinWilliams PPG Glasurit	Observación directa. Bibliográfica. Fichas técnicas. Reportes.						
especificaciones técnicas del proveedor del recubrimiento automotriz.	Materiales	Tipo de Material	Galvanizado Fibra de Vidrio Galvanizado + Masilla Fibra de Vidrio + Masilla	Observación directa. Fichas técnicas. Reportes. Registros.						

(Fuente: Elaborado por Wellington Santos)

Tabla 3- 8: Variable Dependiente

CALIDAD DEL ACABADO SUPERFICIAL									
Contextualización	Dimensiones	Indicadores	Ítems	Técnicas e instrumentos					
El control de calidad son todos los mecanismos, acciones, herramientas que realizamos para controlar el acabado superficial del	Parámetros Físicos.	Espesores de Película húmeda. Espesores de Película seca.	(2 - 9) mils (50.8 – 250) μm	Observación directa. Observación de laboratorio. Reportes. Fichas técnicas.					
Dentro de los ensayos destructivos y no destructivos que se ejecutan a un recubrimiento para evaluar su calidad están. Condiciones	Superficie.	Adherencia Rugosidad	Porcentaje (10 - 100) % ¿Cuál será el valor de la rugosidad media?	Observación directa. Observación de laboratorio. Reportes. Informes.					
Ambientales, Control de Equipos, Limpieza, pruebas de espesor de película, discontinuidades y ensayos de durabilidad.		Envejecimiento	¿Cómo puede afectar la temperatura, humedad y la luz en los diferentes tipos de recubrimientos?	Observación directa.					

(Fuente: Elaborado por Wellington Santos)

3.6 RECOLECCIÓN DE LA INFORMACIÓN

A través del plan de recolección de información se contempla estrategias metodológicas requeridas para el cumplimiento de los objetivos e hipótesis que coincidan en el enfoque cualitativo que se propone.

La recolección de información también se lo hará a los clientes internos y clientes externos de Carrocerías IMPEDSA, este cuestionario contendrá información sobre control de calidad y producción, la recolección de esta información es responsabilidad del investigador cuando lo amerite la empresa durante el cronograma establecido, el mismo que se realizará en las instalaciones de la misma, serán aplicadas las veces necesarias, mediante las encuestas, entrevistas y la observación de los hechos, se aplicará al proceso de producción en relación directa con los obreros de la planta.

De igual forma, para poder comprobar que los ensayos de pintura sean los más adecuados, es necesario realizar algunas observaciones de laboratorio, cumpliendo con todas las especificaciones que las normas establecen.

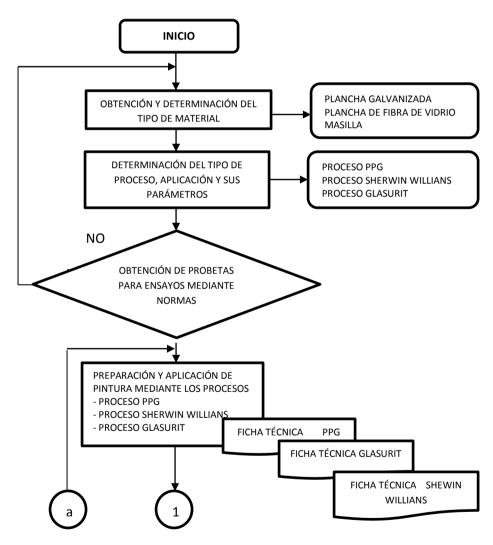
3.7 PLAN DE RECOLECCIÓN DE LA INFORMACIÓN

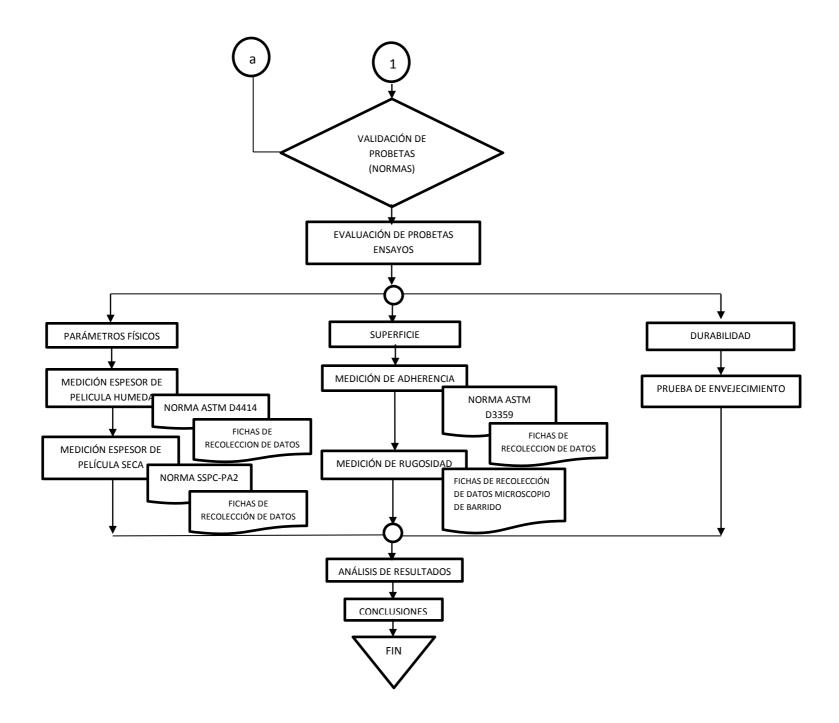
Siendo la interpretación de resultados una de las partes más relevantes, es menester referirse de manera clara y concisa sobre los resultados que se van a obtener luego de realizar el presente estudio esto se obtendrá de ensayos, procesos, registros, experimentaciones, controles etc.

3.8 ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

- Revisión de la información de fichas Técnicas entregadas por el proveedor de la pintura
- Análisis de los resultados de ensayos con ayuda del laboratorio (informes).

.


- Analizar la hipótesis en relación con los resultados obtenidos para verificarla o rechazarla
- Interpretación de los resultados obtenidos en el estudio realizado con ayuda del marco teórico.
- Establecimiento de conclusiones y recomendaciones.


CAPÍTULO IV

ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.1 ANÁLISIS DE LOS RESULTADOS

En el presente trabajo de investigación se ha determinado el siguiente flujo grama de procesos para el desarrollo y análisis de resultados.

4.1.1 Obtención y Determinación del Tipo de Material

El punto de partida para el presente estudio es la obtención del material base, ya que las exigencias en el mercado son cada vez mayores se utilizan materiales con altos estándares de calidad, los más materiales utilizados para el forrado exterior de una carrocería son los especificados a continuación:

- Plancha Galvanizada
- Material Compuesto (Fibra de Vidrio + Resina Poliéster)

Tabla 4-1: Materiales utilizados en el forrado de la Carrocería.

MATERIALES								
ÁREAS	TIPO 1	TIPO 2						
FRENTE		MATERIAL COMPUESTO						
RESPALDO		MATERIAL COMPUESTO						
LATERALES	PLANCHA GALVANIZADA							
TECHO	PLANCHA GALVANIZADA							
INTERIOR		MATERIAL COMPUESTO						

(Fuente: Elaborado por Wellington Santos)

4.1.1.1 Plancha Galvanizada o Chapa Galvanizada

El tipo de chapa más utilizada por las empresas carroceras en acabados exteriores, son las chapas de zinc o galvanizadas, siendo uno de los tipos más vendidos a nivel mundial. Se produce a partir de chapas de acero, que son revestidas en ambas caras, con una delgada capa de zinc. Se utiliza zinc, porque es un elemento químico que resista de manera excelente la corrosión; además de ser un buen aislante térmico, por poseer reflectividad al calor.

Este material se adquiere de las empresas proveedoras de materia prima que trabajan con Carrocerías IMPEDSA.

Tabla 4- 2: Especificaciones Plancha Galvanizada

ESPECIFICACIONES										
PROVEEDOR	DIMENSIÓN (mm)	ESPESOR (mm)	NORMA DE FABRICACIÓN	FLOR						
IPAC	1.220 X 2440	0.4 - 1.50	ASTM A 653 CS - ASTM A 653 FS	Regular Mínima						
DIPAC	1.220 X 2440	0.3 - 2.90	ASTM A 653	Zero						

(Fuente: Carrocerias IMPEDSA)

Frente a la protección que pueda ofrecer una aplicación de pintura sobre una pieza de acero, donde se tiene el inconveniente que si se rompe en algún punto la película de pintura aparecerá en ese punto un proceso de corrosión del acero que continuará por debajo, para el caso que se trate de una pieza galvanizada esto no ocurre, ya que si la capa de galvanizado se daña, raya o presenta discontinuidades, el zinc adyacente al acero formará inmediatamente una sal insoluble de zinc sobre el trozo de acero que queda expuesto a la intemperie. Esto va a resanar la ruptura y hace que continúe protegiendo la superficie contra cualquier corrosión.

A modo informativo, y si se prefiere, en esta otra tabla que se adjunta, se indican directamente la duración de la protección aplicada, según el tipo de ambiente:

Tabla 4- 3: Protección por años según espesor de capa de zinc y tipo de atmósfera

Protección por años												
		Espesor de la capa de zinc en micras (µm)										
	10	20	33	43	53	66	76	86	96	106	119	129
Tipo de Atmósfera	Año	s de j	prote	cción	hast	a el 5	% de	oxida	ción	de la	super	ficie
Rural	7	12	19	25	31	38	43	50	57	62	68	74
Marino Tropical	5	10	15	20	24	29	33	39	43	48	53	58
Marino Templado	4	9	13	17	21	26	30	35	39	43	48	51
Sub-Urbano	3	6	10	14	18	21	24	29	32	36	40	42
Industrial Moderado	2	4	8	11	14	18	21	24	28	31	34	38
Industrial Pesado	1	2	4	7	9	11	13	15	15	19	21	22

(**Fuente**: Parks, 2009, pág. 55)

4.1.1.2 Material Compuesto (Fibra de Vidrio + Resina Poliester)

El material compuesto (Fibra de vidrio + resina poliéster) es uno de los materiales más utilizados en las empresas carroceras utilizado en el forrado del frente, respaldo e interior del bus.

Los materiales compuestos están siendo utilizados cada vez en mayor medida en multitud de aplicaciones industriales, especialmente en el sector del automóvil y en la industria aeronáutica.

El material compuesto ha mostrado unas muy buenas propiedades mecánicas tanto a tracción como a flexión. Además se han conseguido unos valores de conductividad suficientes para que se pueda plantear la utilización del material compuesto en aplicaciones de disipación de carga o pintado electrostático.

4.1.2 Tipo de Proceso, Aplicación y sus Parámetros

4.1.2.1 Determinación del Tipo de Proceso y Aplicación

Una vez obtenido el material base a utilizarse se procede a la determinación del tipo de proceso, en la industria carrocera se utilizan diferentes tipos de proceso para la aplicación de pintura para nuestro caso utilizaremos el proceso aplicado en las Industria Carrocera IMPEDSA.

Hoja No. 1 CARROCERÍAS IMPEDSA PROCEDIMIENTO DE APLICACIÓN DE PINTURA REALIZADO POR: Ing. Stalin Santos APROBÓ : Tec. Pedro Santos SUJETO DEL DIAGRAMA PINTORES FECHA: INICIO PREPARACIÓN DE LA SUPERFICIE LIMPIAR Y LIJAR LA SUPERFICIAL A (GALVANIZADA Y FIBRA DE VIDRIO) **PINTAR** MASILLAR Y LIJAR LAS SUPERFICIES IRREGULARES LIMPIAR Y PREPARAR LA SUPERFICIE LIMPIEZA Y DESENGRASE DE LA PREVIO A LA APLICACIÓN DE LOS SUPERFICIE RECUBRIMIENTOS INSPECCIÓN GENERAL DE LA SUPERFICIE PREPARACIÓN DE EQUIPOS Y PINTURA LIJAR DESPUÉS DEL TIEMPO DE APLICACIÓN DE WASH PRIMER SECADO APLICACIÓN DE FONDO DE LIJAR DESPUÉS DEL TIEMPO DE RELLENO SECADO INSPECCIÓN Y CORRECCIÓN DE FALLAS APLICACIÓN DE LA PINTURA DE ACABADO FIN

Tabla 4-1: Procedimiento de aplicación de pintura de Carrocerías IMPEDSA.

(Fuente: Carrocerías IMPEDSA)

La aplicación de la pintura se la realizará según las especificaciones establecidas por los proveedores de la pintura (PPG, SHERWIN WILLIAMS y GLASURIT)

4.1.2.2 Determinación de los Parámetros

Los parámetros de aplicación de pintura se determinaran según el proceso de pintado que se vaya a realizar (PPG, GLASURIT, SHERWIN WILLIAMS), para nuestro caso utilizaremos los 3 diferentes tipos de proceso. Entre las principales tenemos, la presión de aplicación, el número de manos de aplicación y el tiempo de secado

Tabla 4- 5: Guía de aplicación de pintura automotriz.

GUÍA DE APLICACIÓN DE PINTURA AUTOMOTRIZ								
		PPG		GLASURIT	-	SHERWIN WILLIAMS		
PRODUCTO	GUÍA DE APLICACIÓN		PRODUCTO		PRODUCTO			
	PRESIÓN DE APLICACIÓN	30 - 40 lb/plg ² 2		25 - 30 lb/plg ²		30 - 40 lb/plg ²		
FOSFATIZANTE WASH PRIMER	NÚMERO DE MANOS	2 pasadas simples	FOSFATIZANTE	1 a 2	CONDORTHANE WASH PRIMER	1 a 2		
WASH PRIMER	EVAPORACIÓN ENTRE MANOS	5 minutos	SALCOMIX	3 a 5 minutos	WASH PRIMER	5 minutos		
	TIEMPO DE SECADO	15 - 20 minutos		15 - 20 minutos		10 a 15 minutos		
	PRESIÓN DE APLICACIÓN	50 - 55 lb/plg ²		25 - 30 lb/plg ²		45 - 50 lb/plg ²		
PRIMA IMPRESIÓN DE	NÚMERO DE MANOS	4	PRIMER PU	2 a 3	SPECTRA	2 a 3		
2 COMPONENTES	EVAPORACIÓN ENTRE MANOS	5 - 8 minutos	0022	5 - 10 minutos	PRIMER	5 a 10 minutos		
	TIEMPO DE SECADO	5 horas		4 horas		1 1/2 horas		
	PRESIÓN DE APLICACIÓN	45 - 50 lb/plg ²		30 - 45 lb/plg ²		45 - 50 lb/plg ²		
POLIURETANO ACRÍLICO DE	NÚMERO DE MANOS	1normal- 1cargada	POLIURETANO ACRÍLICO DE	2 manos	POLIURETANO	3 a 4 manos		
BRILLO DIRECTO	EVAPORACIÓN ENTRE MANOS	10 minutos	BRILLO DIRECTO	10 minutos	BASE	5 a 10 minutos		
	TIEMPO DE SECADO	4 horas mínimo		18 a 24 horas		24 horas		

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 6: Guía de aplicación de pintura automotriz de Carrocerías IMPEDSA.

Hoja No. 2	CARROCERÍAS IMP	PEDSA	Garrigeras, Sillipideras	
GUÍA DE A	PLICACIÓN DE PINTURA AUTOMOTRIZ DE (CARROCERÍAS IMPE	DSA	
REALIZADO POR:	Ing. Stalin Santos	APROBÓ:	Tec. Pedro Santos	
SUJETO DEL DIAGRAMA:	PINTORES	FECHA:	22/07/2013	
PRODUCTO	GUÍA DE APLICACIÓN		PARÁMETROS	
	PRESIÓN DE APLICACIÓN	,	45 - 50 lb/plg ²	
WASH PRIMER	NÚMERO DE MANOS		1 a 2	
	EVAPORACIÓN ENTRE MANOS		5 minutos	
	TIEMPO DE SECADO	1	15 - 20 minutos	
	PRESIÓN DE APLICACIÓN		45 - 50 lb/plg ²	
FONDO	NÚMERO DE MANOS		2 a 3	
DE RELLENO	EVAPORACIÓN ENTRE MANOS	Į.	5 - 10 minutos	
	TIEMPO DE SECADO		5 horas	
	PRESIÓN DE APLICACIÓN	,	45 - 50 lb/plg ²	
POLIURETANO	NÚMERO DE MANOS		1normal-1cargada	
(PINTURA ACABADO)	EVAPORACIÓN ENTRE MANOS		10 minutos	
	TIEMPO DE SECADO		24 horas	

(Fuente: Carrocerías IMPEDSA)

4.1.3 Preparación y Aplicación de Pintura mediante los diferentes Procesos

Para una buena aplicación de pinturas dependen básicamente de tres aspectos.

- Un buen equipo de aplicación.
- Técnicas correctas de aplicación.
- Adecuada preparación del producto

El equipo que se va utilizar para la aplicación de la pintura sobre autobús debe ser seleccionado adecuadamente.

Para la aplicación de los diferentes recubrimientos se utilizó el siguiente equipo.

a) Compresor de aire para uso industrial de media y alta exigencia, su función es tomar el aire del ambiente, comprimirlo y elevarlo a la presión requerida.

Gráfico 4- 1: Compresor de aire uso industrial de 10 HP.

(Fuente: Wellington Santos)

b) **Equipo de tratamiento de aire**, "consta de un manómetro regulador para ajustar la presión de aplicación a la recomendada por el fabricante y un filtro diseñado para la retención de partículas de polvo, humedad del aire que forma gotas de agua, partículas de aceite y todo tipo de agentes perjudiciales para la calidad del aire." (Garcia, 2009, pág. 88)

Gráfico 4- 2: Equipo de tratamiento de aire.

(Fuente: Wellington Santos)

c) Pistola de Gravedad con el sistema HVLP, su función es tomar la pintura en su forma líquida, pulverizarla o atomizarla y proyectarla sobre la superficie a pintar.

Gráfico 4- 3: Victoria Pistola de Gravedad Sistema HVLP (**Fuente**: Wellington Santos)

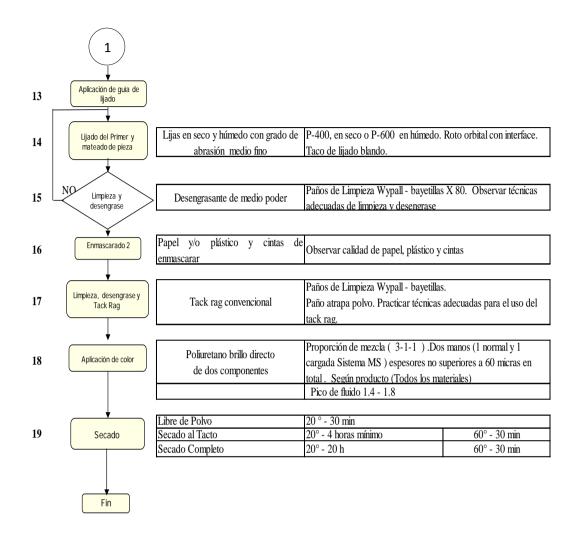
d) **Manómetro de Presión,** su función es controlar el flujo de salida del aire hacia la pistola, este equipo es necesario para obtener la presión requerida por la ficha técnica del proveedor. "El equipo se conecta a la toma del circuito donde se desea verificar la calidad del aire suministrado, a ser posible, sin que existan mangueras intermediarias." (Garcia, 2009, pág. 90)

Gráfico 4- 4: Manómetro de Presión. (**Fuente**: Wellington Santos)

4.1.3.1 Proceso de Aplicación de Pintura PPG (Pittsburgh Plate Glass)

Por más de 80 años, PPG ha estado en la vanguardia de la innovación automotriz de recubrimientos. PPG combina su extenso conocimiento en recubrimientos y tecnologías de efectos especiales con el análisis de las tendencias de la industria y ayudan a los fabricantes de coches en todo el mundo para aumentar su imagen e identidad de sus marcas.

PPG ha estado siempre en la vanguardia de la innovación de recubrimientos automotrices desde nuestros principios en 1924. Si el problema es protección contra la corrosión, preocupaciones ambientales de uso o mejora en el funcionamiento al término del vehículo, PPG ha sido responsable de este liderazgo.


El fabricante y el consumidor automotrices de hoy son cada vez más y más sofisticados sobre el ajuste de la aplicación y acabamiento en sus vehículos. La capacidad de PPG de cumplir esos requisitos cada vez mayores es un sello de nuestros empleados por todo el mundo.

La aplicación de la pintura PPG se realizó en la Planta de producción de Carrocerías IMPEDSA en el área de pintura de la planta.

Para realizar la aplicación de pintura PPG, se utilizó los parámetros que se indican en la Ficha Técnica de PPG **ANEXO 4,** la aplicación del recubrimiento se detalla a continuación.

Tabla 4-7: Proceso de aplicación de pintura PPG

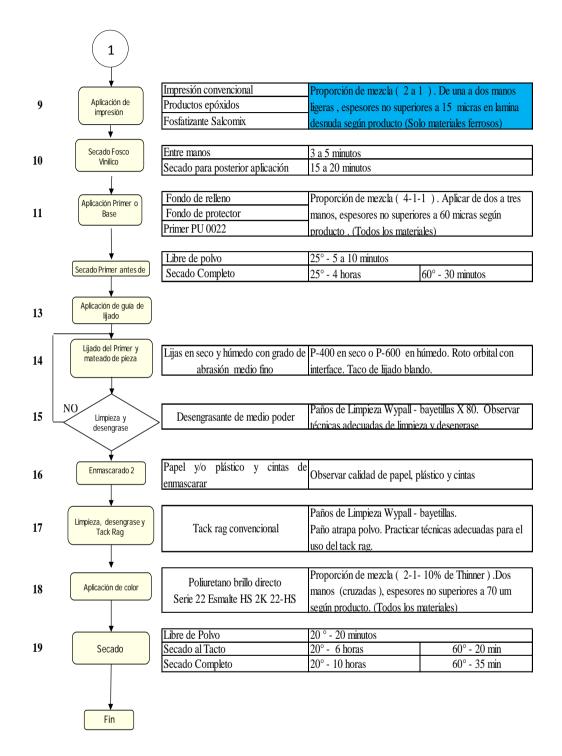
PROCESO DE APLICACIÓN DE PINTURA PPG Inicio MATERIALES OBSERVACIONES Desengrasante de alto poder D837 Paños de Limpieza Wypall X 80 - bayetillas. 1 Limpieza y desengrase Lijas en seco con grado de abrasión P80 a P180 para llevar a cabo desbaste. 2 Lijado de bordes alto NO Limpieza y Desengrasante de alto poder Paños de Limpieza Wypall X 80 - bayetillas. 3 desengrase Convencional Aplicación masilla Especializada Catalizador 1% - 3% (Aplicación en imperfecciones superficiales) poliéster Multipropósito Secado masilla a 20°C --> 20 a 25 min. 5 No forzar secado poliéster Lijas en seco con grado de P150 a P240 6 Lijado de masilla Roto orbital, escofina o taco de lijado duro abrasión medio y grueso poliéster Limpieza y Desengrasante de medio poder D837 Paños de Limpieza Wypall X 80 - bayetillas. 7 Cintas + Papel o plástico para Enmascarado 1 8 Observar calidad de papel, plástico y cintas enmascarar Impresión convencional Proporción de mezcla (3 a 1). Dos manos simples, espesores Aplicación de Productos epóxidos no superiores a 15 micras en lamina desnuda. Según producto impresión Petro Fosco Vinílico (Solo materiales ferrosos) Secado Fosco 5 minutos entre pasadas 10 No forzar secado Vinílico 15 a 20 minutos secado total Fondo de relleno Proporción de mezcla (5-1-1). Cuatro manos, espesores no Aplicación Primer o 11 Fondo de protector superiores a 250 micras en total . Según producto (Todos los Prima impresión de 2 componentes materiales) 20° - 5 minutos Libre de polvo Secado Primer antes de 12 Secado completo (Fondo de relleno) 20° - 5 horas No lámparas IR No forzar secado color Secado completo (Fondo de protector) 20° - 3 horas 60° - 30 min. Lámparas IR 20 min. 1

(Fuente: Elaborado por Wellington Santos – Fichas Técnicas PPG)

4.1.3.2 Proceso de Aplicación de Pintura GLASURIT

GLASURIT es una empresa que ofrece productos de pintura y servicios innovadores para conseguir resultados excelentes, herramientas que no dejamos de mejorar para realizar un ajuste de color rápido y fiable, un amplio abanico de servicios de consultoría que ayudan a detectar el potencial de ahorro y desarrollo, y en último lugar pero no por ello menos importante, un completo programa de formación distribuido por una red de formación a nivel mundial.

Como resultado de la fiabilidad y la alta calidad de Glasurit en todas las áreas, los productos de repintado de automóviles de Glasurit han recibido la aprobación para su uso por prácticamente todos los principales fabricantes de vehículos de todo el


mundo. Este es otro de los motivos por los que cada vez más talleres de todo el mundo se están pasando a Glasurit.

La aplicación de la pintura GLASURIT se realizó en la Planta de producción de Carrocerías IMPEDSA en el área de pintura de la planta.

Para realizar la aplicación de pintura GLASURIT, se utilizó los parámetros que se indican en la Ficha Técnica de GLASURIT **ANEXO 5**, la aplicación del recubrimiento se detalla a continuación.

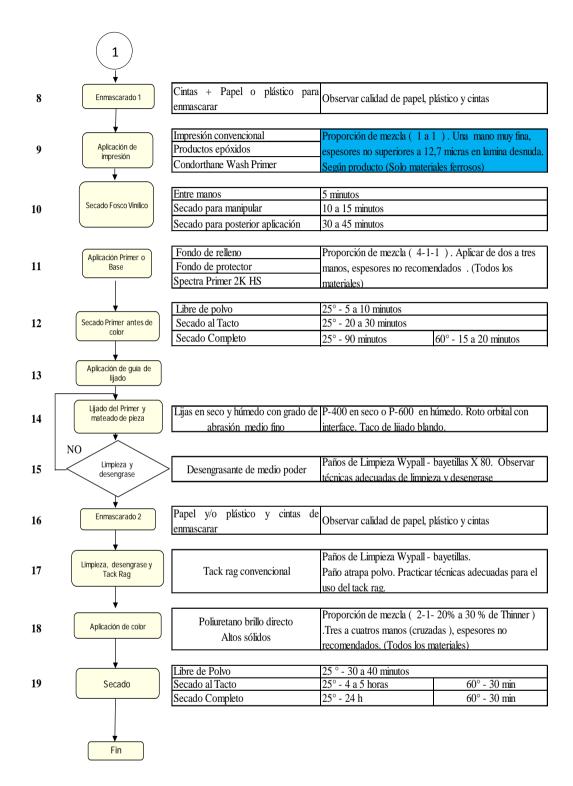
PROCESO DE APLICACION DE PINTURA GLASURIT MATERIALES **OBSERVACIONES** Limpieza y Desengrasante de alto poder Paños de Limpieza Wypall X 80 - bayetillas. 1 desengrase Lijas en seco con grado de abrasión 2 Lijado de bordes P80 a P180 para llevar a cabo desbaste. alto Limpieza y Paños de Limpieza Wypall X 80 - bayetillas. 3 Desengrasante de alto poder Convencional Catalizador 1% - 3% (Aplicación en imperfecciones Aplicación masilla Especializada 4 poliéster superficiales) Multipropósito Secado masilla 5 a 20°C --> 20 a 25 min. No forzar secado poliéster P150 a P240 Lijas en seco con grado de Lijado de masilla 6 poliéster abrasión medio y grueso Roto orbital, escofina o taco de lijado duro NO Limpieza y Desengrasante de alto poder Paños de Limpieza Wypall X 80 - bayetillas. 7 desengrase Cintas + Papel o plástico para 8 Enmascarado 1 Observar calidad de papel, plástico y cintas enmascarar 1

Tabla 4-8: Proceso de aplicación de pintura GLASURIT.

(Fuente: Elaborado por Wellington Santos - Fichas Técnicas Glasurit)

4.1.3.3 Proceso de Aplicación de Pintura SHERWIN WILLIAMS

SHERWIN WILLIAMS le ofrece la más amplia gama de acabados automotrices para cubrir cualquier necesidad de reparación o mantenimiento de su vehículo.


La alta gama de acabados automotrices cubre cualquier segmento, desde las lacas tradicionales hasta los poliuretanos de más alto nivel desempeño, para que usted puede igualar las características originales de fábrica en aspectos de color, textura, brillo y duración de la pintura de su auto.

La aplicación de la pintura SHERWIN WILLIAMS se realizó en la Planta de producción de Carrocerías IMPEDSA en el área de pintura de la planta.

Para realizar la aplicación de pintura SHERWIN WILLIAMS, se utilizó los parámetros que se indican en la Ficha Técnica de SHERWIN WILLIAMS ANEXO 6, la aplicación del recubrimiento se detalla a continuación.

PROCESO DE APLICACION DE PINTURA SHERWIN WILLIAMS Inicio MATERIALES OBSERVACIONES Limpieza y Desengrasante de alto poder Mustang Paños de Limpieza Wypall X 80 - bayetillas. 1 desengrase Lijas en seco con grado de abrasion Lijado de bordes 2 P80 a P180 para llevar a cabo desvaste. alto NO Limpieza y Paños de Limpieza Wypall X 80 - bayetillas. Desengrasante de alto poder 3 Convencional Catalizador 1% - 3% (Aplicación en imperfecciones Aplicación masilla Especializada superficiales) poliéster Multipropósito Secado masilla a 20°C --> 20 a 25 min. 5 No forzar secado poliéster P150 a P240 Lijas en seco con grado de Lijado de masilla poliéster Roto orbital, escofina o taco de lijado duro abrasión medio y grueso NO Limpieza y Desengrasante de alto poder Mustang Paños de Limpieza Wypall X 80 - bayetillas.

Tabla 4- 9: Proceso de aplicación de pintura SHERWIN WILLIAMS.

(Fuente: Elaborado por Wellington Santos – Fichas Técnicas Sherwin Willians)

4.1.4 Parámetros Físicos

4.1.4.1 Medición Espesor de Película Húmeda

Las lecturas de espesor de película húmeda se usan como una ayuda para el pintor y el inspector para el control de la cantidad de pintura depositada de forma que se alcance el espesor requerido en seco. Este tipo de medición es considerada un guía para el espesor mientras que la lectura de película seca será para el registro del trabajo.

Para obtener la lectura de espesor de película húmeda se realizó la prueba en la Planta de Producción de Carrocerías IMPEDSA en el área de pintura.

Para esta fase del proyecto de tesis se construyeron probetas en diferentes materiales como Galvanizado, Galvanizado + Masilla, Fibra de Vidrio y Fibra de Vidrio + Masilla a las cuales se les aplico tres procesos de pintura (PPG, GLASURIT y SHERWIN WILLIAMS), cada probeta tiene un código el cual se detalla en la siguiente tabla.

Tabla 4- 10: Codificación de las Probetas en Estudio.

PROBETAS PARA ENSAYOS					
DENOMINACIÓN	PINTURA	DENOMINACIÓN	MATERIAL	CÓDIGO	
		a	Galvanizado	ax	
X	PPG	b	Galvanizado+Masilla	bx	
Λ	rrG	С	Fibra de Vidrio	cx	
		d	Fibra de Vidrio+Masilla	dx	
		a	Galvanizado	ay	
Y	GLASURIT	b	Galvanizado+Masilla	by	
1	GLASUKII	С	Fibra de Vidrio	cy	
		d	Fibra de Vidrio+Masilla	dy	
		a	Galvanizado	az	
Z	SHERWIN	b	Galvanizado+Masilla	bz	
	WILLIAMS	С	Fibra de Vidrio	cz	
		d	Fibra de Vidrio+Masilla	dz	

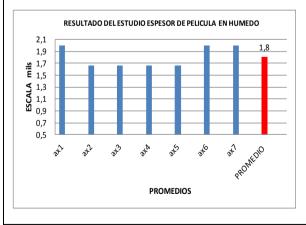
(Fuente: Elaborado por Wellington Santos)

Ficha 4-1: Reporte de Ensayo Espesor de Película Húmeda PPG.

REPORTE DE MEDICIÓN DE ESPESOR DE PELÍCULA EN HUMEDO DATOS GENERALES Item a Inspeccionar: Probetas Galvanizadas Identificación: Fecha de Ejecución: 21/10/2014 Reporte N°: CARROCERIAS IMPEDSA CARROCERIAS IMPEDSA Lugar de Ejecución: Solicitado por: Elaborado por: Wellington Vinicio Santos Cueva Revisado por: Ing. Mg. Juan Paredes PARÁMETROS PRINCIPALES

Instrumento Utilizado: Rectangular Notched Gage Normas de Referencia: ASTM - D 4414

Escala del calibre De 1 a 80 mils


Recubrimiento Evaluado Wash Primer Proveedor: PPG

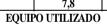
Calibre tomado	De (1 a 6) mils

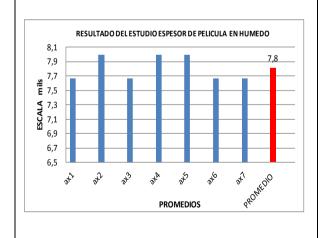
REGISTRO DE MEDICIO	NES		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
ax1	2	2	2	2,0	50,8
ax2	2	1	2	1,7	42,3
ax3	2	2	1	1,7	42,3
ax4	1	2	2	1,7	42,3
ax5	2	1	2	1,7	42,3
ax6	2	2	2	2,0	50,8
ax7	2	2	2	2,0	50,8
PF	OMEDIO TOTAL D	E LA MEDICIÓN		1,8	46,0

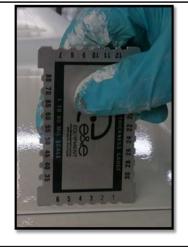
RESULTADOS

EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4-1: Reporte de Ensayo Espesor de Película Húmeda PPG.

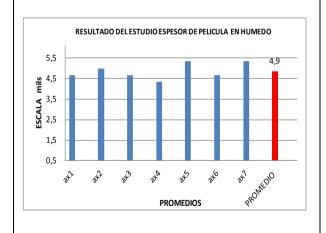




REPOR	TE DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Galvanizadas		Identificación:	ax	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMI	PEDSA	Solicitado por:	CARROCERIA	S IMPEDSA
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCI	PALES				
Instrumento Utilizado:	Rectangular Notched (Jage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Fondo de Relleno		Proveedor:	PPG	
Calibre tomado	De (7 a 12) mils				
REGISTRO DE MEDICI	IONES		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
ax1	8	7	8	7,7	194,7
ax2	7	8	9	8,0	203,2
ax3	8	7	8	7,7	194,7
ax4	9	8	7	8,0	203,2
ax5	8	8	8	8,0	203,2
ax6	7	8	8	7,7	194,7
ax7	8	8	7	7,7	194,73
	PROMEDIO TOTAL D	E LA MEDICIÓN	ļ	7,8	198,4

RESULTADOS

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4- 1: Reporte de Ensayo Espesor de Película Húmeda PPG.

	CARREN	A DE II (GENTERIA	MECAINCA	UT.A	
REPOR	TE DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO	
		DATOS GENERAL	ES		
Item a Inspeccionar:	Probetas Galvanizadas	1	Identificación:	ax	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMI	PEDSA	Solicitado por:	CARROCERIA	S IMPEDSA
Elaborado por:	Wellington Vinicio Sar	itos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCI	PALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	PPG	
Calibre tomado	De (1 a 6) mils				
REGISTRO DE MEDICI	ONES		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
ax1	5	5	4	4,7	118,5
ax2	5	5	5	5,0	127,0
ax3	5	4	5	4,7	118,5
ax4	4	4	5	4,3	110,1
ax5	6	5	5	5,3	135,5
ax6	5	4	5	4,7	118,5
ax7	5	5	6	5,3	135,47

RESULTADOS EQUIPO UTILIZADO

PROMEDIO TOTAL DE LA MEDICIÓN

4,9

123,4

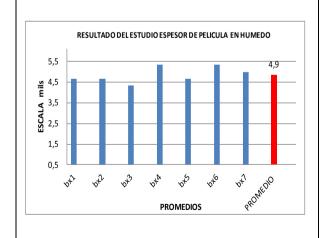
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

Ficha 4-1: Reporte de Ensayo Espesor de Película Húmeda PPG.

				12 To A	
REPORT	E DE MEDICIÓN	N DE ESPESOR I	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Galvanizadas	+ Masilla	Identificación:	bx	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMP	PEDSA	Solicitado por:	CARROCERIAS	S IMPEDSA
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCIP.	ALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Fondo de Relleno		Proveedor:	PPG	
Calibre tomado	De (7 a 12) mils		,		
REGISTRO DE MEDICIO	NES		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
bx1	7	8	8	7,7	194,7
bx2	9	8	8	8,3	211,7
bx3	9	8	8	8,3	211,7
bx4	9	7	7	7,7	194,7
bx5	9	8	8	8,3	211,7
bx6	7	8	8	7,7	194,7
bx7	8	8	7	7,7	194,73
Pl	ROMEDIO TOTAL D	E LA MEDICIÓN		8,0	202,0

RESULTADOS EQUIPO UTILIZADO

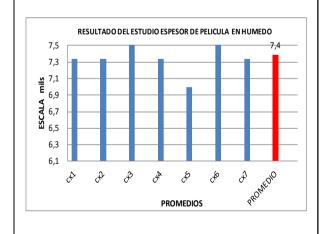
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4-1: Reporte de Ensayo Espesor de Película Húmeda PPG.

				4.00	
REPOR'	TE DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Galvanizadas	+ Masilla	Identificación:	bx	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMF	PEDSA	Solicitado por:	CARROCERIA	S IMPEDSA
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCIF	PALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	PPG	
Calibre tomado	De (1 a 6) mils				
REGISTRO DE MEDICIO	ONES		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
bx1	4	5	5	4,7	118,5
bx2	5	5	4	4,7	118,5
bx3	4	5	4	4,3	110,1
bx4	6	5	5	5,3	135,5
bx5	4	5	5	4,7	118,5
bx6	6	5	5	5,3	135,5
bx7	5	4	6	5,0	127,00
P	ROMEDIO TOTAL D	E LA MEDICIÓN	!	4,9	123,4

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4-1: Reporte de Ensayo Espesor de Película Húmeda PPG.

				NT.A		
REPORTE DE MEDICIÓN DE ESPESOR DE PELÍCULA EN HUMEDO						
		DATOS GENERALI	ES			
Item a Inspeccionar:	Probetas Fibra de Vida	rio	Identificación:	cx		
Fecha de Ejecución:	21/10/2014		Reporte N°:	N°:		
Lugar de Ejecución:	CARROCERIAS IMP	PEDSA	Solicitado por:	CARROCERIAS IMPEDSA		
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Paredes		
PARÁMETROS PRINCIPA	ALES					
Instrumento Utilizado:	Rectangular Notched (Gage				
Normas de Referencia:	ASTM - D 4414					
Escala del calibre	De 1 a 80 mils					
Recubrimiento Evaluado	Fondo de Relleno		Proveedor:	PPG		
Calibre tomado De (7 a 12) mils						
REGISTRO DE MEDICIONES			Unidades:	mils	um	
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO	
cx1	7	8	7	7,3	186,3	
cx2	7	7	8	7,3	186,3	
cx3	7	8	8	7,7	194,7	
cx4	8	7	7	7,3	186,3	
cx5	7	7	7	7,0	177,8	
cx6	8	7	8	7,7	194,7	
ex7	7	8	7	7,3	186,27	

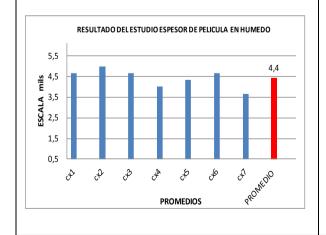
RESULTADOS EQUIPO UTILIZADO

PROMEDIO TOTAL DE LA MEDICIÓN

187,5

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

Ficha 4-1: Reporte de Ensayo Espesor de Película Húmeda PPG.



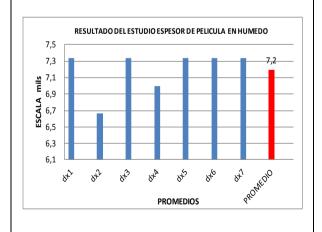
•					9
REPORT	TE DE MEDICIÓ	N DE ESPESOR I	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Fibra de Vida	rio	Identificación:	cx	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMF	PEDSA	Solicitado por:	CARROCERIAS IMPEDSA	
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Paredes	
PARÁMETROS PRINCIP.	ALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	PPG	
Calibre tomado	De (1 a 6) mils				
REGISTRO DE MEDICIONES Unidades: mils um					um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
cx1	5	5	4	4,7	118,5
cx2	5	5	5	5,0	127,0
cx3	4	5	5	4,7	118,5
cx4	3	4	5	4,0	101,6
cx5	4	5	4	4,3	110,1
cx6	5	5	4	4,7	118,5
cx7	4	4	3	3,7	93,13
Pl	ROMEDIO TOTAL D	E LA MEDICIÓN	1	4,4	112,5

RESULTADOS

EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

Ficha 4-1: Reporte de Ensayo Espesor de Película Húmeda PPG.



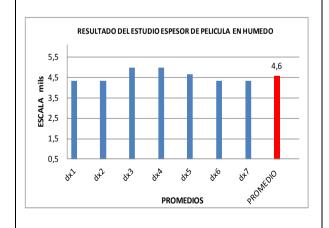
REPOR	TE DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Fibra de Vid	rio + Masilla	Identificación:	dx	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMI	PEDSA	Solicitado por:	CARROCERIAS IMPEDSA	
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Paredes	
PARÁMETROS PRINCI	PALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Fondo de Relleno		Proveedor:	PPG	
Calibre tomado	De (7 a 12) mils				
REGISTRO DE MEDIC	IONES	ONES Unidades:			um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
dx1	7	8	7	7,3	186,3
dx2	7	7	6	6,7	169,3
dx3	7	8	7	7,3	186,3
dx4	7	7	7	7,0	177,8
dx5	8	7	7	7,3	186,3
dx6	7	7	8	7,3	186,3
dx7	7	7	8	7,3	186,27
	PROMEDIO TOTAL D	E LA MEDICIÓN	1	7,2	182.6

RESULTADOS

EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

Ficha 4-1: Reporte de Ensayo Espesor de Película Húmeda PPG.



REPORT	E DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO				
		DATOS GENERALI	ES					
Item a Inspeccionar:	Probetas Fibra de Vida	rio + Masilla	Identificación:	dx				
Fecha de Ejecución:	21/10/2014		Reporte N°:					
Lugar de Ejecución:	CARROCERIAS IMP	PEDSA	Solicitado por:	CARROCERIAS IMPEDSA				
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Paredes				
PARÁMETROS PRINCIPA	ALES							
Instrumento Utilizado:	Rectangular Notched (Gage						
Normas de Referencia:	ASTM - D 4414							
Escala del calibre	De 1 a 80 mils							
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	PPG				
Calibre tomado	De (1 a 6) mils							
REGISTRO DE MEDICIO	MEDICIONES Unidades: mils um				um			
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO			
dx1	5	4	4	4,3	110,1			
dx2	4	4	5	4,3	110,1			
dx3	5	5	5	5,0	127,0			
dx4	6	4	5	5,0	127,0			
dx5	5	5	4	4,7	118,5			
dx6	4	5	4	4,3	110,1			
dx7	4	4	5	4,3	110,07			
PI	PROMEDIO TOTAL DE LA MEDICIÓN 4,6 116,1							

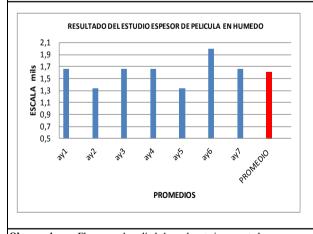
RESULTADOS

EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

Ficha 4- 2: Reporte de Ensayo Espesor de Película Húmeda GLASURIT.

•					
REPOR	TE DE MEDICIÓ	N DE ESPESOR I	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Galvanizadas		Identificación:	ay	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMI	PEDSA	Solicitado por:	CARROCERIA	S IMPEDSA
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCI	PALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils		•		
Recubrimiento Evaluado	Wash Primer		Proveedor:	GLASURIT	
Calibre tomado	De (1 a 6) mils		T.		
REGISTRO DE MEDICI	ONES		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
ay1	2	1	2	1,7	42,3
ay2	2	1	1	1,3	33,9
ay3	2	2	1	1,7	42,3
ay4	2	1	2	1,7	42,3
ay5	1	1	2	1,3	33,9
ay6	2	2	2	2,0	50,8
ay7	2	1	2	1,7	42,3
1	-	·	!	 	


RESULTADOS

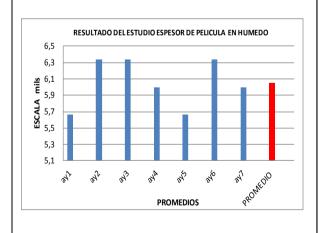
PROMEDIO TOTAL DE LA MEDICIÓN

EQUIPO UTILIZADO

1,6

41,1

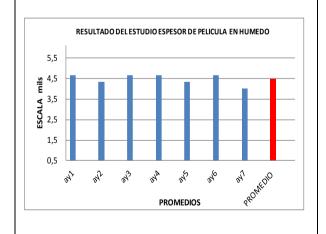
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4- 2: Reporte de Ensayo Espesor de Película Húmeda GLASURIT.

REPORTE DE MEDICIÓN DE ESPESOR DE PELÍCULA EN HUMEDO					
	DATOS GENERALI	ES			
Probetas Galvanizadas		Identificación:	ay		
21/10/2014		Reporte N°:			
CARROCERIAS IMP	PEDSA	Solicitado por:	CARROCERIAS	S IMPEDSA	
	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes	
LES					
Rectangular Notched C	Gage				
ASTM - D 4414					
De 1 a 80 mils					
Fondo de Relleno		Proveedor:	GLASURIT		
Calibre tomado De (7 a 12) mils					
NES		Unidades:	mils	um	
LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO	
5	6	6	5,7	143,9	
6	6	7	6,3	160,9	
6	7	6	6,3	160,9	
6	5	7	6,0	152,4	
5	6	6	5,7	143,9	
6	7	6	6,3	160,9	
6	6	6	6,0	152,40	
OMEDIO TOTAL D	E LA MEDICIÓN		6,0	153,6	
	Probetas Galvanizadas 21/10/2014 CARROCERIAS IMP Wellington Vinicio Sant LES Rectangular Notched C ASTM - D 4414 De 1 a 80 mils Fondo de Relleno De (7 a 12) mils NES LECTURA 1 (mils) 5 6 6 6 6 6 6 6	Probetas Galvanizadas	DATOS GENERALES Probetas Galvanizadas Identificación: 21/10/2014 Reporte N°: CARROCERIAS IMPEDSA Solicitado por: Wellington Vinicio Santos Cueva Revisado por : LES Rectangular Notched Gage ASTM - D 4414 De 1 a 80 mils Fondo de Relleno Proveedor: De (7 a 12) mils Unidades: LECTURA 1 (mils) LECTURA 2 (mils) LECTURA 3 (mils) 5 6 6 6 7 6 6 7 6 5 6 6 6 7 6 6 5 7 5 6 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 6 6	DATOS GENERALES Probetas Galvanizadas Identificación: ay 21/10/2014 Reporte N°: CARROCERIAS CARROCERIAS IMPEDSA Solicitado por: CARROCERIAS Wellington Vinicio Santos Cueva Revisado por: Ing. Mg. Juan Pa LES Rectangular Notched Gage ASTM - D 4414 De 1 a 80 mils Fondo de Relleno Proveedor: GLASURIT De (7 a 12) mils NES Unidades: mils LECTURA 1 (mils) LECTURA 2 (mils) LECTURA 3 (mils) PROMEDIO 5 6 6 5,7 6 7 6,3 6 7 6,3 6 5 7 6,0 5 6 6 5,7 6 7 6 6,3 6 7 6 6,3 6 7 6 6,3 6 7 6 6,3 6 6 6 6,0 </td	

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4- 2: Reporte de Ensayo Espesor de Película Húmeda GLASURIT.

OTHER DE INCIDENTALISMENT OF THE PROPERTY OF T					
REPORT	E DE MEDICIÓ	N DE ESPESOR I	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Galvanizadas		Identificación:	ay	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMP	PEDSA	Solicitado por:	CARROCERIAS	S IMPEDSA
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCIPA	ALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils		1	1	
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	GLASURIT	
Calibre tomado De (1 a 6) mils					
REGISTRO DE MEDICIO	1		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
ay1	5	5	4	4,7	118,5
ay2	4	4	5	4,3	110,1
ay3	5	4	5	4,7	118,5
ay4	5	4	5	4,7	118,5
ay5	4	5	4	4,3	110,1
ay6	4	5	5	4,7	118,5
ay7	4	4	4	4,0	101,60
PF	ROMEDIO TOTAL D	E LA MEDICIÓN		4,5	113,7

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

Ficha 4- 2: Reporte de Ensayo Espesor de Película Húmeda GLASURIT.

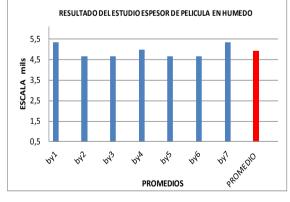
				NEW A		
REPOR	TE DE MEDICIÓ	N DE ESPESOR I	DE PELÍCULA E	N HUMEDO		
DATOS GENERALES						
Item a Inspeccionar:	Probetas Galvanizadas	+ Masilla	Identificación:	by		
Fecha de Ejecución:	21/10/2014		Reporte N°:			
Lugar de Ejecución:	CARROCERIAS IMI	PEDSA	Solicitado por:	CARROCERIA	S IMPEDSA	
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes	
PARÁMETROS PRINCI	PALES					
Instrumento Utilizado:	Rectangular Notched (Gage				
Normas de Referencia:	ASTM - D 4414					
Escala del calibre	De 1 a 80 mils					
Recubrimiento Evaluado	Fondo de Relleno		Proveedor:	GLASURIT		
Calibre tomado	De (7 a 12) mils					
REGISTRO DE MEDICI	IONES		Unidades:	mils	um	
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO	
by1	9	8	8	8,3	211,7	
by2	8	7	7	7,3	186,3	
by3	8	7	8	7,7	194,7	
by4	8	8	7	7,7	194,7	
by5	7	9	8	8,0	203,2	
by6	7	8	8	7,7	194,7	
by7	8	8	8	8,0	203,20	
]	PROMEDIO TOTAL D	E LA MEDICIÓN		7,8	198,4	
	DEGLE ELD OG	•	FOUR	00 1 1011 1010		

8,5 8,3 8,1 9 7,9 E 7,7 4 7,5 7,1 6,9 6,7 6,5

PROMEDIOS

RESULTADOS

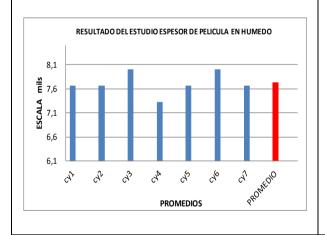
EQUIPO UTILIZADO


ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

Ficha 4- 2: Reporte de Ensayo Espesor de Película Húmeda GLASURIT.

				ATTA	
REPORTE DE MEDICIÓN DE ESPESOR DE PELÍCULA EN HUMEDO					
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Galvanizadas	+ Masilla	Identificación:	by	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMF	PEDSA	Solicitado por:	CARROCERIA	S IMPEDSA
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCI	PALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	GLASURIT	
Calibre tomado	De (1 a 6) mils				
REGISTRO DE MEDIC	IONES		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
by1	6	5	5	5,3	135,5
by2	5	4	5	4,7	118,5
by3	5	4	5	4,7	118,5
by4	5	4	6	5,0	127,0
by5	5	4	5	4,7	118,5
by6	5	5	4	4,7	118,5
by7	5	5	6	5,3	135,47
	PROMEDIO TOTAL D	E LA MEDICIÓN		4,9	124,6
	RESULTADOS		EQUI	PO UTILIZADO	

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4- 2: Reporte de Ensayo Espesor de Película Húmeda GLASURIT.

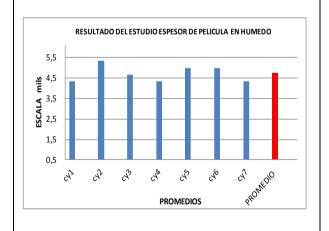
				UTA	
REPOR	TE DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Fibra de Vid	rio	Identificación:	су	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMI	PEDSA	Solicitado por:	CARROCERIAS	S IMPEDSA
Elaborado por:	Wellington Vinicio San	itos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCI	PALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Fondo de Relleno		Proveedor:	GLASURIT	
Calibre tomado De (7 a 12) mils					
REGISTRO DE MEDICIONES Unidades: um				um	
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
cy1	8	8	7	7,7	194,7
cy2	8	8	7	7,7	194,7
cy3	9	7	8	8,0	203,2
cy4	7	8	7	7,3	186,3
cy5	8	8	7	7,7	194,7
суб	8	8	8	8,0	203,2
cy7	9	7	7	7,7	194,73

PROMEDIO TOTAL DE LA MEDICIÓN RESULTADOS EQUIPO UTILIZADO

7,7

195,9

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

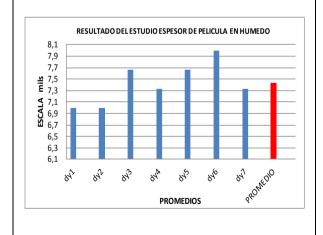

Ficha 4- 2: Reporte de Ensayo Espesor de Película Húmeda GLASURIT.

REPOR	RTE DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Fibra de Vid	rio	Identificación:	су	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMP	PEDSA	Solicitado por:	CARROCERIAS	S IMPEDSA
Elaborado por:	Wellington Vinicio San	ntos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCI	PALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	GLASURIT	
Calibre tomado	De (1 a 6) mils				
REGISTRO DE MEDIC	IONES		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
cy1	5	4	4	4,3	110,1
cy2	6	5	5	5,3	135,5
cy3	5	5	4	4,7	118,5
cy4	4	4	5	4,3	110,1
cy5	6	5	4	5,0	127,0
cy6	5	5	5	5,0	127,0
cy7	5	4	4	4,3	110,07
	PROMEDIO TOTAL D	E LA MEDICIÓN		4.7	119,7

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

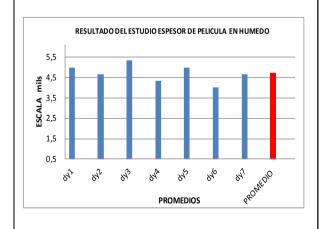
Ficha 4- 2: Reporte de Ensayo Espesor de Película Húmeda GLASURIT.



•					8	
REPOR	TE DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO		
		DATOS GENERALI	ES			
Item a Inspeccionar:	Probetas Fibra de Vida	rio + Masilla	Identificación:	dy		
Fecha de Ejecución:	21/10/2014		Reporte N°:			
Lugar de Ejecución:	CARROCERIAS IMF	PEDSA	Solicitado por:	CARROCERIA:	S IMPEDSA	
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes	
PARÁMETROS PRINCI	PALES					
Instrumento Utilizado:	Rectangular Notched (Gage				
Normas de Referencia:	ASTM - D 4414					
Escala del calibre	De 1 a 80 mils					
Recubrimiento Evaluado	Fondo de Relleno		Proveedor:	GLASURIT		
Calibre tomado De (7 a 12) mils						
REGISTRO DE MEDIC	MEDICIONES Unidades:			mils	um	
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO	
dy1	7	7	7	7,0	177,8	
dy2	8	7	6	7,0	177,8	
dy3	8	8	7	7,7	194,7	
dy4	8	7	7	7,3	186,3	
dy5	8	7	8	7,7	194,7	
dy6	8	8	8	8,0	203,2	
dy7	7	7	8	7,3	186,27	
	PROMEDIO TOTAL D	E LA MEDICIÓN	Į.	7,4	188,7	

RESULTADOS

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

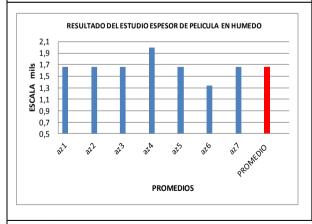

Ficha 4- 2: Reporte de Ensayo Espesor de Película Húmeda GLASURIT.

REPORT	E DE MEDICIÓ	N DE ESPESOR I	DE PELÍCULA E	N HUMEDO		
		DATOS GENERALI	ES			
Item a Inspeccionar:	Probetas Fibra de Vida	rio + Masilla	Identificación:	dy		
Fecha de Ejecución:	21/10/2014		Reporte N°:			
Lugar de Ejecución:	CARROCERIAS IMI	PEDSA	Solicitado por:	CARROCERIA:	S IMPEDSA	
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes	
PARÁMETROS PRINCIP.	ALES					
Instrumento Utilizado:	Rectangular Notched (Gage				
Normas de Referencia:	ASTM - D 4414					
Escala del calibre	De 1 a 80 mils					
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	GLASURIT		
Calibre tomado	De (1 a 6) mils					
REGISTRO DE MEDICIO	NES	VES Unidades: n			um	
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO	
dy1	5	4	6	5,0	127,0	
dy2	5	4	5	4,7	118,5	
dy3	5	6	5	5,3	135,5	
dy4	5	4	4	4,3	110,1	
dy5	5	5	5	5,0	127,0	
dy6	4	4	4	4,0	101,6	
dy7	4	5	5	4,7	118,53	
Pl	PROMEDIO TOTAL DE LA MEDICIÓN 4,7 119,7					

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

Ficha 4- 3: Reporte de Ensayo Espesor de Película Húmeda SHERWIN WILLIAMS.


REPORTE DE MEDICIÓN DE ESPESOR DE PELÍCULA EN HUMEDO DATOS GENERALES Probetas Galvanizadas Item a Inspeccionar: Identificación: 21/10/2014 Reporte N°: Fecha de Ejecución: CARROCERIAS IMPEDSA Solicitado por: CARROCERIAS IMPEDSA Lugar de Ejecución: Wellington Vinicio Santos Cueva Revisado por : Ing. Mg. Juan Paredes Elaborado por: PARÁMETROS PRINCIPALES Instrumento Utilizado: Rectangular Notched Gage Normas de Referencia: ASTM - D 4414 Escala del calibre De 1 a 80 mils Recubrimiento Evaluado Wash Primer SHERWIN WILLIAMS Proveedor: De (1 a 6) mils Calibre tomado REGISTRO DE MEDICIONES Unidades: mils ıım PROMEDIO **PROBETA** LECTURA 1 (mils) LECTURA 2 (mils) LECTURA 3 (mils) **PROMEDIO** 2 az1 2 42,3 17 az2 2 2 1 1,7 42,3 2 az3 1 2 1,7 42,3 2 2 2 2,0 50,8 az4 az5 2 1 2 1,7 42,3 2 1 az6 1 1,3 33,9 2 az7 1 1,7 42,3

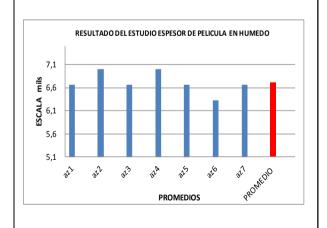
RESULTADOS

PROMEDIO TOTAL DE LA MEDICIÓN

EQUIPO UTILIZADO

42.3

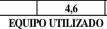
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

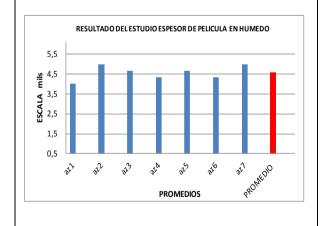

Ficha 4- 3: Reporte de Ensayo Espesor de Película Húmeda SHERWIN WILLIAMS.

				UTA	43
REPORT	E DE MEDICIÓN	N DE ESPESOR I	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Galvanizadas		Identificación:	az	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMP	PEDSA	Solicitado por:	CARROCERIAS	S IMPEDSA
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCIPA	ALES				
Instrumento Utilizado:	Rectangular Notched C	Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Fondo de Relleno		Proveedor:	SHERWIN WI	LLIAMS
Calibre tomado	De (7 a 12) mils				
REGISTRO DE MEDICIO	DNES Unidades:			mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
az1	7	6	7	6,7	169,3
az2	7	7	7	7,0	177,8
az3	6	7	7	6,7	169,3
az4	7	7	7	7,0	177,8
az5	7	7	6	6,7	169,3
az6	7	6	6	6,3	160,9
az7	7	6	7	6,7	169,33
PR	OMEDIO TOTAL D	E LA MEDICIÓN	•	6,7	170,5

6,7 RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4-3: Reporte de Ensayo Espesor de Película Húmeda SHERWIN WILLIAMS.

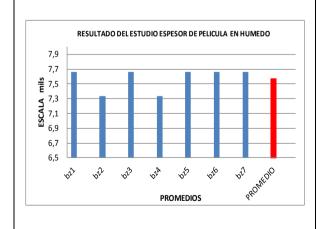


REPORTE DE MEDICIÓN DE ESPESOR DE PELÍCULA EN HUMEDO DATOS GENERALES Probetas Galvanizadas Item a Inspeccionar: Identificación: az 21/10/2014 Fecha de Ejecución: Reporte N°: CARROCERIAS IMPEDSA Lugar de Ejecución: CARROCERIAS IMPEDSA Solicitado por: Wellington Vinicio Santos Cueva Revisado por: Elaborado por: Ing. Mg. Juan Paredes PARÁMETROS PRINCIPALES Instrumento Utilizado: Rectangular Notched Gage Normas de Referencia: ASTM - D 4414 Escala del calibre De 1 a 80 mils Recubrimiento Evaluado Pintura Poliuretano SHERWIN WILLIAMS Proveedor: Calibre tomado De (1 a 6) mils Unidades: REGISTRO DE MEDICIONES mils um PROBETA LECTURA 1 (mils) LECTURA 2 (mils) PROMEDIO PROMEDIO LECTURA 3 (mils) az1 101,6 az2 5 5 5 5,0 127,0 az3 4 5 5 4,7 118,5 5 4 4 4,3 110,1 az4 az5 4 5 5 4,7 118,5 az6 4 5 4 4,3 110,1 5 5 5 127,00 az7 5,0 PROMEDIO TOTAL DE LA MEDICIÓN

RESULTADOS

116,1

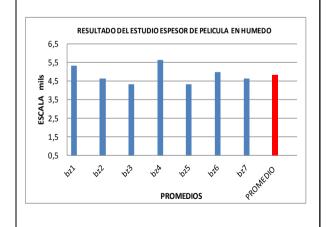
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4- 3: Reporte de Ensayo Espesor de Película Húmeda SHERWIN WILLIAMS.

CHRIEFI DE HVIE (EMETIVECH VECH					
REPOR	TE DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Galvanizadas	+ Masilla	Identificación:	bz	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMI	PEDSA	Solicitado por:	CARROCERIAS	S IMPEDSA
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCI	PALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Fondo de Relleno		Proveedor:	SHERWIN WI	LLIAMS
Calibre tomado	De (7 a 12) mils				
REGISTRO DE MEDICIONES Unidades: mils un					um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
bz1	8	7	8	7,7	194,7
bz2	7	7	8	7,3	186,3
bz3	7	8	8	7,7	194,7
bz4	7	8	7	7,3	186,3
bz5	7	8	8	7,7	194,7
bz6	7	8	8	7,7	194,7
bz7	8	7	8	7,7	194,73
	PROMEDIO TOTAL D	E LA MEDICIÓN		7,6	192,3

RESULTADOS EQUIPO UTILIZADO

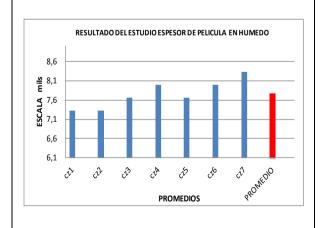
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4- 3: Reporte de Ensayo Espesor de Película Húmeda SHERWIN WILLIAMS.

	CARRER	A DE INGENIERIA	WIECANICA	DEA			
REPOR	TE DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO			
		DATOS GENERALI	ES				
Item a Inspeccionar:	Probetas Galvanizadas	+ Masilla	Identificación:	bz			
Fecha de Ejecución:	21/10/2014		Reporte N°:				
Lugar de Ejecución:	CARROCERIAS IMI	PEDSA	Solicitado por:	CARROCERIAS	S IMPEDSA		
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes		
PARÁMETROS PRINCI	PALES						
Instrumento Utilizado:	Rectangular Notched (Gage					
Normas de Referencia:	ASTM - D 4414						
Escala del calibre	De 1 a 80 mils		1				
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	SHERWIN WI	LLIAMS		
Calibre tomado	De (1 a 6) mils		Lance	T			
REGISTRO DE MEDICIONES Unidades:				mils	um		
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO		
bz1	5	5	6	5,3	135,5		
bz2	5	5	4	4,7	118,5		
bz3	4	4	5	4,3	110,1		
bz4	6	5	6	5,7	143,9		
bz5	5	4	4	4,3	110,1		
bz6	6	5	4	5,0	127,0		
bz7	4	4 5 5 4,7 118,53					
	PROMEDIO TOTAL D	E LA MEDICIÓN	•	4,9	123,4		

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4- 3: Reporte de Ensayo Espesor de Película Húmeda SHERWIN WILLIAMS.

REPORTE DE MEDICIÓN DE ESPESOR DE PELÍCULA EN HUMEDO DATOS GENERALES Probetas Fibra de Vidrio Identificación: Item a Inspeccionar: cz Fecha de Ejecución: 21/10/2014 Reporte N°: Lugar de Ejecución: CARROCERIAS IMPEDSA CARROCERIAS IMPEDSA Solicitado por: Elaborado por: Ing. Mg. Juan Paredes Wellington Vinicio Santos Cueva Revisado por: PARÁMETROS PRINCIPALES Rectangular Notched Gage Instrumento Utilizado: Normas de Referencia: ASTM - D 4414 De 1 a 80 mils Escala del calibre SHERWIN WILLIAMS Fondo de Relleno Recubrimiento Evaluado Proveedor: De (7 a 12) mils Calibre tomado REGISTRO DE MEDICIONES Unidades: mils PROBETA LECTURA 1 (mils) LECTURA 2 (mils) LECTURA 3 (mils) PROMEDIO PROMEDIO cz2 8 7 7 7,3 186,3 cz3 7 8 8 194,7 7,7 8 7 9 cz4 8,0 203,2 7 cz5 8 8 7,7 194,7 7 9 8 cz6 8,0 203,2 cz7 9 8,3 211,67

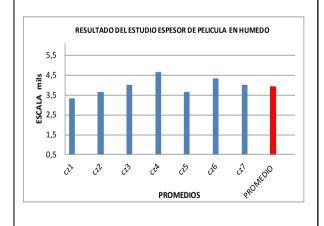
RESULTADOS EQUIPO UTILIZADO

PROMEDIO TOTAL DE LA MEDICIÓN

7,8

197.2

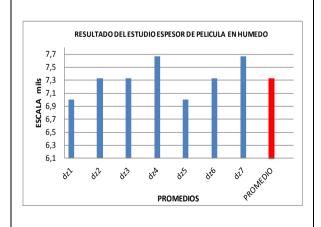
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4- 3: Reporte de Ensayo Espesor de Película Húmeda SHERWIN WILLIAMS.

				UTA			
REPORT	E DE MEDICIÓN	N DE ESPESOR I	DE PELÍCULA E	N HUMEDO			
		DATOS GENERALI	ES				
Item a Inspeccionar:	Probetas Fibra de Vida	rio	Identificación:	cz			
Fecha de Ejecución:	21/10/2014		Reporte N°:				
Lugar de Ejecución:	CARROCERIAS IMP	PEDSA	Solicitado por:	CARROCERIAS	SIMPEDSA		
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes		
PARÁMETROS PRINCIPA	ALES						
Instrumento Utilizado:	Rectangular Notched C	Gage					
Normas de Referencia:	ASTM - D 4414						
Escala del calibre	De 1 a 80 mils						
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	SHERWIN WI	LLIAMS		
Calibre tomado	Calibre tomado De (1 a 6) mils						
REGISTRO DE MEDICIO	NES		Unidades:	mils	um		
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO		
cz1	3	4	3	3,3	84,7		
cz2	3	4	4	3,7	93,1		
cz3	4	3	5	4,0	101,6		
cz4	4	5	5	4,7	118,5		
cz5	3	4	4	3,7	93,1		
cz6	5	4	4	4,3	110,1		
cz7	5	5 4 3 4,0 101,60					
PR	OMEDIO TOTAL D	E LA MEDICIÓN		4,0	100,4		

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4- 3: Reporte de Ensayo Espesor de Película Húmeda SHERWIN WILLIAMS.

				27.8	
REPOR	TE DE MEDICIÓ	N DE ESPESOR	DE PELÍCULA E	N HUMEDO	
		DATOS GENERAL	ES		
Item a Inspeccionar:	Probetas Fibra de Vid	rio + masilla	Identificación:	dz	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMI	PEDSA	Solicitado por:	CARROCERIA	S IMPEDSA
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCI	PALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Fondo de Relleno		Proveedor:	SHERWIN WI	LLIAMS
Calibre tomado	De (7 a 12) mils				
REGISTRO DE MEDICI	IONES		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
dz1	8	7	6	7,0	177,8
dz2	8	7	7	7,3	186,3
dz3	7	8	7	7,3	186,3
dz4	8	8	7	7,7	194,7
dz5	7	7	7	7,0	177,8
dz6	8	7	7	7,3	186,3
dz7	7	8	8	7,7	194,73

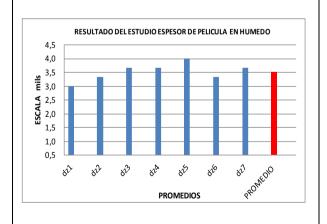
RESULTADOS EQUIPO UTILIZADO

PROMEDIO TOTAL DE LA MEDICIÓN

7,3

186,3

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014


Ficha 4- 3: Reporte de Ensayo Espesor de Película Húmeda SHERWIN WILLIAMS.

•					
REPORT	TE DE MEDICIÓ	N DE ESPESOR I	DE PELÍCULA E	N HUMEDO	
		DATOS GENERALI	ES		
Item a Inspeccionar:	Probetas Fibra de Vida	rio + masilla	Identificación:	dz	
Fecha de Ejecución:	21/10/2014		Reporte N°:		
Lugar de Ejecución:	CARROCERIAS IMP	PEDSA	Solicitado por:	CARROCERIAS	S IMPEDSA
Elaborado por:	Wellington Vinicio San	tos Cueva	Revisado por :	Ing. Mg. Juan Pa	redes
PARÁMETROS PRINCIP	ALES				
Instrumento Utilizado:	Rectangular Notched (Gage			
Normas de Referencia:	ASTM - D 4414				
Escala del calibre	De 1 a 80 mils				
Recubrimiento Evaluado	Pintura Poliuretano		Proveedor:	SHERWIN WI	LLIAMS
Calibre tomado	De (1 a 6) mils		·		
REGISTRO DE MEDICIO	ONES		Unidades:	mils	um
PROBETA	LECTURA 1 (mils)	LECTURA 2 (mils)	LECTURA 3 (mils)	PROMEDIO	PROMEDIO
dz1	3	3	3	3,0	76,2
dz2	3	4	3	3,3	84,7
dz3	4	4	3	3,7	93,1
dz4	3	4	4	3,7	93,1
dz5	4	4	4	4,0	101,6
dz6	3	4	3	3,3	84,7
dz7	4	3	4	3,7	93,13
Pl	ROMEDIO TOTAL D	E LA MEDICIÓN		3,5	89,5

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	05/11/2014

4.1.4.2 Medición Espesor de Película Seca

Para la medición de espesores de película seca sobre substratos ferrosos se utilizan generalmente instrumentos magnéticos. Las lecturas son tomadas para suministrar, con una razonable precisión, datos para determinar si el espesor de película seca deseado o especificado ha sido alcanzado.

Para obtener la lectura de espesor de película seca se realizó el estudio en el Laboratorio de Metrología de la Carrera de Ingeniería Mecánica de la Universidad Técnica de Ambato.

Para esta fase del proyecto de tesis se construyeron probetas en diferentes materiales como Galvanizado, Galvanizado + Masilla, Fibra de Vidrio y Fibra de Vidrio + Masilla a las cuales se les aplico tres procesos de pintura (PPG, GLASURIT y SHERWIN WILLIAMS), cada probeta tiene un código el cual se detalla en la siguiente tabla.

Tabla 4-11: Codificación de las Probetas en Estudio.

PROBETAS PARA ENSAYOS					
DENOMINACIÓN	PINTURA	DENOMINACIÓN	MATERIAL	CÓDIGO	
		a	Galvanizado	ax	
X	PPG	b	Galvanizado+Masilla	bx	
Λ	rrG	С	Fibra de Vidrio	cx	
		d	Fibra de Vidrio+Masilla	dx	
		a	Galvanizado	ay	
Y	GLASURIT	b	Galvanizado+Masilla	by	
ĭ	GLASUKII	С	Fibra de Vidrio	cy	
		d	Fibra de Vidrio+Masilla	dy	
		a	Galvanizado	az	
Z	SHERWIN	b	Galvanizado+Masilla	bz	
L	WILLIAMS	С	Fibra de Vidrio	cz	
		d	Fibra de Vidrio+Masilla	dz	

(Fuente: Elaborado por Wellington Santos)

Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG.

DEL	ODTE DE MEDICIA	ÓN DE EGDEGOD F	NE DELÍCULA EN	GEGO
	PORTE DE MEDICIO	ON DE ESPESOR L	DE PELICULA EN	SECO
DATOS GENERALES	0.1		T1 .'C .'.	
Item a Inspeccionar:	Galvanizado		Identificación:	ax1
Fecha de Ejecución:	10/11/2014		Reporte N°:	TIEV DICK
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por: PARÁMETROS PRINC	Wellington Vinicio Santos	s Cueva	Revisado por :	Ing. Mg. Juan Paredes
		M. 1.1 CM 60000		
nstrumento Utilizado:	Coating Thickness Meter	Model: CM8822		
Normas de Referencia:	SSPC - PA 2	N. H. /D. P D.	In 1	DDC.
Recubrimiento Evaluado		Relleno/Poliuretano Blanco	Proveedor:	PPG (70, 60)
Espesor Solicitado:		5)um, Fondo de Relleno 25	1	, , , , , , , , , , , , , , , , , , ,
REGISTRO DE MEDIC		I ECTION A	Unidades:	DD O MED IO
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	216	212	218	215,3
PUNTO 2	223	221	227	223,7
PUNTO 3	211	213	212	212,0
PUNTO 4	204	210	207	207,0
PUNTO 5	207	217	210	211,3
PUNTO 6	209	215	217	213,7
	PROMEDIO TOTAL	DE LA MEDICIÓN	-!	213,8
	RESULTADOS		EQUIPO) UTILIZADO
RESULTADO DEL 250 200 150 150 150 150 150 150 150 150 150 1	ESTUDIO ESPESOR DE PELICUL	A EN SECO 213,8		

Observaciones: Los espesores están dentro del rango aceptable, de acuerdo al proceso de pintura PPG.

PROMEDIOS

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG.

RTE DE MEDICIÓ	ÓN DE ESPESOR I	DE PELÍCULA EN 1	SECO		
Galvanizado		Identificación:	ax2		
10/11/2014		Reporte N°:			
UTA - FICM		Solicitado por:	UTA - FICM		
	Cueva	Revisado por :	Ing. Mg. Juan Paredes		
ALES					
Coating Thickness Meter	Model: CM8822				
SSPC - PA 2					
Espesor Solicitado: Wash Primer entre (10-15)um, Fondo de Relleno 250 um maximo, Poliuretano Blanco entre (50-60)um					
NES		Unidades:	um		
LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO		
226	231	228	228,3		
273	275	274	274,0		
217	225	222	221,3		
257	260	262	259,7		
222	220	231	224,3		
266	269	270	268,3		
PROMEDIO TOTAL I	DE LA MEDICIÓN		246,0		
	Galvanizado 10/11/2014 UTA - FICM Wellington Vinicio Santos LES Coating Thickness Meter SSPC - PA 2 Wash Primer/Fondo de R Wash Primer entre (10-1: NES LECTURA 1 226 273 217 257 222 266	Galvanizado 10/11/2014 UTA - FICM Wellington Vinicio Santos Cueva LES Coating Thickness Meter Model: CM8822 SSPC - PA 2 Wash Primer/Fondo de Relleno/Poliuretano Blanco Wash Primer entre (10-15)um, Fondo de Relleno 25 NES LECTURA 1 LECTURA 2 226 231 273 275 217 225 257 260 222 220	10/11/2014 Reporte N°: UTA - FICM Solicitado por: Wellington Vinicio Santos Cueva Revisado por : LES		

RESULTADO DEL ESTUDIO ESPESOR DE PELICULA EN SECO

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

246,0

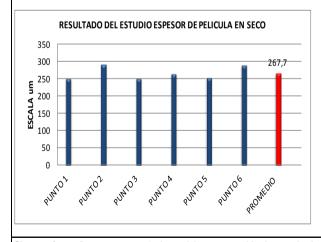
246,0

246,0

246,0

RESULTADOS

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014


Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG.

		,	,	
REPO	ORTE DE MEDICIÓ	ON DE ESPESOR I	DE PELÍCULA EN	SECO
DATOS GENERALES				
Item a Inspeccionar:	Galvanizado		Identificación:	ax3
Fecha de Ejecución:	10/11/2014		Reporte N°:	
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por:	Wellington Vinicio Santos	Cueva	Revisado por :	Ing. Mg. Juan Paredes
PARÁMETROS PRINCIP	ALES			· · · · · · · · · · · · · · · · · · ·
Instrumento Utilizado:	Coating Thickness Meter	Model: CM8822		
Normas de Referencia:	SSPC - PA 2			
Recubrimiento Evaluado		telleno/Poliuretano Blanco	Proveedor:	PPG
Espesor Solicitado:		5)um, Fondo de Relleno 25	50 um maximo, Poliuretano	Blanco entre (50-60)um
REGISTRO DE MEDICIO	EDICIONES Unidades:			um
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	249	246	258	251,0
PUNTO 2	295	296	291	294,0
PUNTO 3	249	253	257	253,0
PUNTO 4	269	264	261	264,7
PUNTO 5	250	254	258	254,0
PUNTO 6	284	289	296	289,7
	PROMEDIO TOTAL I	DE LA MEDICIÓN		267,7

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG.

REVISO: Wellington Santos

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

15/12/2014

	· · · · · · · · · · · · · · · · · · ·			95.7
REP	ORTE DE MEDICIO	ÓN DE ESPESOR D	E PELÍCULA EN	SECO
DATOS GENERALES				
Item a Inspeccionar:	Galvanizado		Identificación:	ax4
Fecha de Ejecución:	10/11/2014		Reporte N°:	
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por:	Wellington Vinicio Santos	Cueva	Revisado por :	Ing. Mg. Juan Paredes
PARÁMETROS PRINCI				100
Instrumento Utilizado:	Coating Thickness Meter	Model: CM8822		
Normas de Referencia:	SSPC - PA 2			
Recubrimiento Evaluado	Wash Primer/Fondo de F	Relleno/Poliuretano Blanco	Proveedor:	PPG
Espesor Solicitado:	Wash Primer entre (10-1	5)um, Fondo de Relleno 250	0 um maximo, Poliuretan	o Blanco entre (50-60)um
REGISTRO DE MEDICI			Unidades:	um
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	219	217	226	220,7
PUNTO 2	217	214	218	216,3
PUNTO 3	207	206	203	205,3
PUNTO 4	204	205	207	205,3
PUNTO 5	213	217	220	216,7
PUNTO 6	220	223	224	222,3
	PROMEDIO TOTAL	DE LA MEDICIÓN		214,4
	RESULTADOS		EQUIPO) UTILIZADO
250 200 8 150 100 50	ESTUDIO ESPESOR DE PELICUL	214,4		
Observaciones: Los espeso	ores están dentro del rango ad	veptable, de acuerdo al proc	•	FECHA DE REVISIÓN
ELIDORIDO I OR . WC	migron Danios	TEATHER OF HIS. IVIS. Juan	11 110000	LECILI DE REVISION

VALIDO: Ing. Mg. Juan Paredes

Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG.

REVISO: Wellington Santos

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

15/12/2014

	CARREA	A DE INGENIERIA ME	CAITICA	UTA
REP	ORTE DE MEDICIO	ÓN DE ESPESOR I	DE PELÍCULA EN	SECO
DATOS GENERALES				
tem a Inspeccionar:	Galvanizado		Identificación:	ax5
Fecha de Ejecución:	10/11/2014		Reporte N°:	
ugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por:	Wellington Vinicio Santos	s Cueva	Revisado por :	Ing. Mg. Juan Paredes
PARÁMETROS PRINCI			1	
nstrumento Utilizado:	Coating Thickness Meter	Model: CM8822		
Tormas de Referencia:	SSPC - PA 2			
Recubrimiento Evaluado	Wash Primer/Fondo de F	Relleno/Poliuretano Blanco	Proveedor:	PPG
Espesor Solicitado:		5)um, Fondo de Relleno 25	50 um maximo, Poliuretano	Blanco entre (50-60)um
REGISTRO DE MEDIC		, ,	Unidades:	um
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	174	200	177	183,7
PUNTO 2	159	166	161	162,0
PUNTO 3	152	157	165	158,0
PUNTO 4	158	161	166	161,7
PUNTO 5	165	163	170	166,0
PUNTO 6	156	153	161	156,7
	PROMEDIO TOTAL	DE LA MEDICIÓN	!	164,7
	RESULTADOS		EQUIPO) UTILIZADO
200 180 160 W 120 Y 120 80 60 40 20	ESTUDIO ESPESOR DE PELICUL ANGUA PORTO PO	164,7		
	ores están dentro del rango a	,	ceso de pintura PPG.	
ELABORADO POR : We	llington Cantos	VERIFICO: Ing. Mg. Jua	an Daradas	FECHA DE REVISIÓ
DENIGO HUE	migwii Sailios	VERTICO: IIIg. Mg. Ju	m i alcucs	TECHA DE REVISIO

VALIDO: Ing. Mg. Juan Paredes

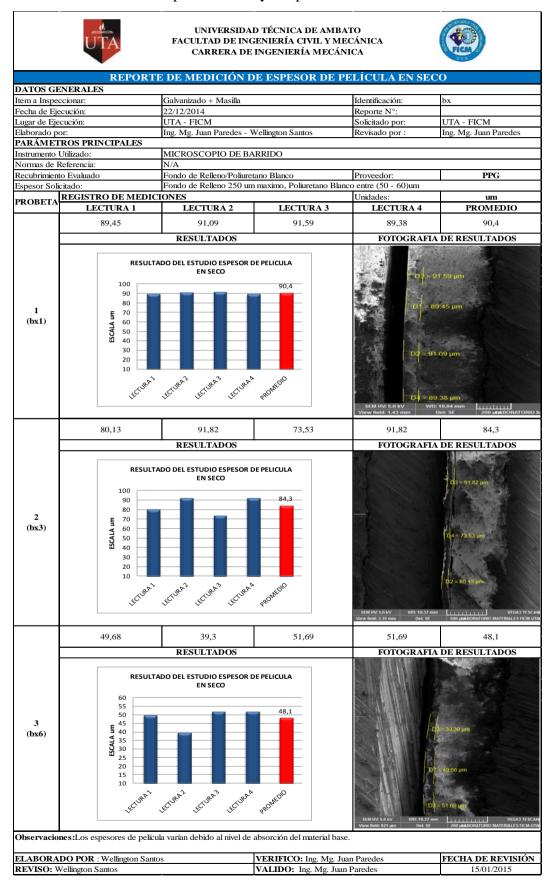
Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG.

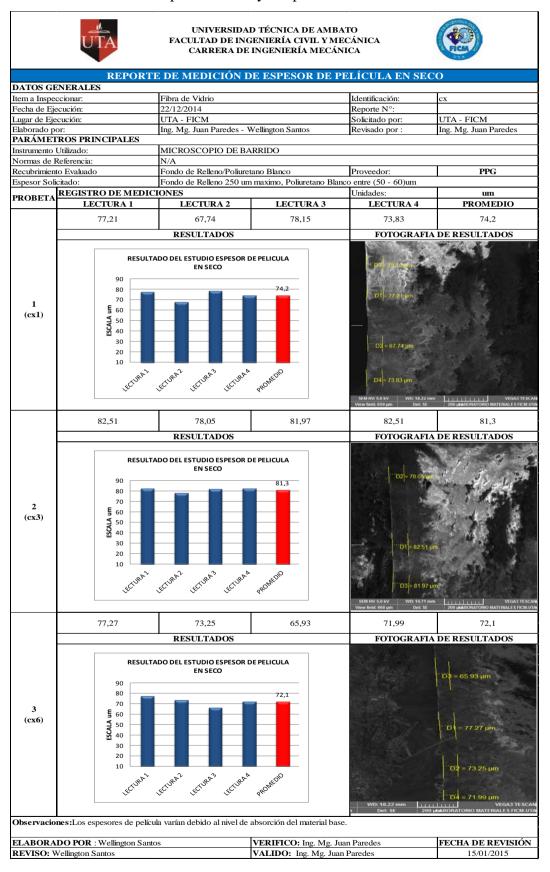
REF	PORTE DE MEDICIÓ	ÓN DE ESPESOR D	E PELÍCULA EN	SECO
DATOS GENERALES				
Item a Inspeccionar:	Galvanizado		Identificación:	ax6
Fecha de Ejecución:	10/11/2014		Reporte N°:	
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por:	Wellington Vinicio Santos	Cueva	Revisado por :	Ing. Mg. Juan Paredes
PARÁMETROS PRINCI	PALES			
Instrumento Utilizado:	Coating Thickness Meter	Model: CM8822		
Normas de Referencia:	SSPC - PA 2		_	
Recubrimiento Evaluado		telleno/Poliuretano Blanco	Proveedor:	PPG
Espesor Solicitado:	,	5)um, Fondo de Relleno 25	1	o Blanco entre (50-60)um
REGISTRO DE MEDICIONES Unidades:				um
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	228	235	232	231,7
PUNTO 2	215	220	218	217,7
PUNTO 3	225	220	219	221,3
PUNTO 4	215	213	219	215,7
PUNTO 5	241	246	243	243,3
PUNTO 6	218	226	222	222,0
	PROMEDIO TOTAL	DE LA MEDICIÓN		225,3
	RESULTADOS		EQUIPO	O UTILIZADO
RESULTADO DEL	ESTUDIO ESPESOR DE PELICUL	A EN SECO		

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

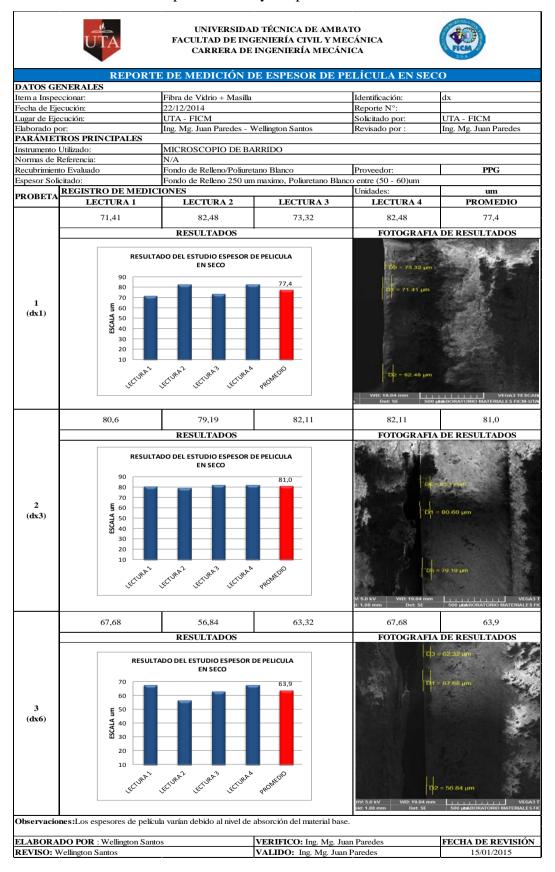
Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG.

		,	,	
REP	ORTE DE MEDICIÓ	ON DE ESPESOR D	E PELÍCULA EN S	ECO
DATOS GENERALES				
Item a Inspeccionar:	Galvanizado		Identificación:	ax7
Fecha de Ejecución:	10/11/2014		Reporte N°:	
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por:	Wellington Vinicio Santos	Cueva	Revisado por :	Ing. Mg. Juan Paredes
PARÁMETROS PRINCI	PALES			
Instrumento Utilizado:	Coating Thickness Meter	Model: CM8822		
Normas de Referencia:	SSPC - PA 2			
Recubrimiento Evaluado		telleno/Poliuretano Blanco	Proveedor:	PPG
Espesor Solicitado:	Wash Primer entre (10-1:	5)um, Fondo de Relleno 25	0 um maximo, Poliuretano 1	Blanco entre (50-60)um
REGISTRO DE MEDIC	REGISTRO DE MEDICIONES Unidades:			
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	207	209	211	209,0
PUNTO 2	224	227	231	227,3
PUNTO 3	194	193	191	192,7
PUNTO 4	227	221	225	224,3
PUNTO 5	194	198	199	197,0
PUNTO 6	220	221	223	221,3
	PROMEDIO TOTAL	DE LA MEDICIÓN		211,9


RESULTADOS EQUIPO UTILIZADO



ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014


Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG.

Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG.

Ficha 4- 4: Reporte de Ensayo Espesor de Película Seca PPG.

Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT.

REF	PORTE DE MEDICIÓ	N DE ESPESOR DI	E PELÍCULA EN :	SECO
DATOS GENERALES				
Item a Inspeccionar:	Galvanizado		Identificación:	ay1
Fecha de Ejecución:	10/11/2014		Reporte N°:	
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por:	Wellington Vinicio Santos	Cueva	Revisado por :	Ing. Mg. Juan Paredes
PARÁMETROS PRINCI	IPALES			
Instrumento Utilizado:	Coating Thickness Meter I	Model: CM8822		
Normas de Referencia:	SSPC - PA 2			
Recubrimiento Evaluado	Wash Primer/Fondo de Re	elleno/Poliuretano Blanco	Proveedor:	GLASURIT
Espesor Solicitado:	Wash Primer entre (5-15)	um, Fondo de Relleno entre	(50-60) um, Poliuretano	Blanco entre (50-70)um
REGISTRO DE MEDICIONES			Unidades:	um
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	146	150	152	149,3
PUNTO 2	138	140	142	140,0
PUNTO 3	145	147	148	146,7
PUNTO 4	135	136	138	136,3
PUNTO 5	140	144	146	143,3
PUNTO 6	133	138	136	135,7
	PROMEDIO TOTAL D	E LA MEDICIÓN	,	141.9

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT.

REP	ORTE DE MEDICIÓ	N DE ESPESOR D	E PELÍCULA EN	SECO	
DATOS GENERALES					
Item a Inspeccionar:	Galvanizado		Identificación:	ay2	
Fecha de Ejecución:	10/11/2014		Reporte N°:		
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM	
Elaborado por:	Wellington Vinicio Santos	Cueva	Revisado por :	Ing. Mg. Juan Paredes	
PARÁMETROS PRINCI	PALES				
Instrumento Utilizado:	Coating Thickness Meter I	Model: CM8822			
Normas de Referencia:	SSPC - PA 2				
Recubrimiento Evaluado	Wash Primer/Fondo de Re	Wash Primer/Fondo de Relleno/Poliuretano Blanco Proveedor:			
Espesor Solicitado:	Wash Primer entre (5-15)	um, Fondo de Relleno entre	(50-60) um, Poliuretano	Blanco entre (50-70)um	
REGISTRO DE MEDIC	EGISTRO DE MEDICIONES			um	
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO	
PUNTO 1	133	137	139	136,3	
PUNTO 2	138	139	144	140,3	
PUNTO 3	123	119	116	119,3	
PUNTO 4	136	137	141	138,0	
PUNTO 5	131	135	136	134,0	
PUNTO 6	140	139	142	140,3	
	PROMEDIO TOTAL D	E LA MEDICIÓN		134,7	

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT.

REP	ORTE DE MEDICIÓ	N DE ESPESOR DI	E PELÍCULA EN	SECO		
DATOS GENERALES						
Item a Inspeccionar:	Galvanizado		Identificación:	ay3		
Fecha de Ejecución:	10/11/2014		Reporte N°:			
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM		
Elaborado por:	Wellington Vinicio Santos	Cueva	Revisado por :	Ing. Mg. Juan Paredes		
PARÁMETROS PRINCI	PALES					
Instrumento Utilizado:	Coating Thickness Meter	Model: CM8822				
Normas de Referencia:	SSPC - PA 2					
Recubrimiento Evaluado	Wash Primer/Fondo de Re		Proveedor:	GLASURIT		
Espesor Solicitado: Wash Primer entre (5-15)um, Fondo de Relleno entre (50-60) um, Poliuretano Blanco entre (50-70)um						
REGISTRO DE MEDICIONES UI			Unidades:	um		
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO		
PUNTO 1	138	135	140	137,7		
PUNTO 2	134	140	141	138,3		
PUNTO 3	141	144	142	142,3		
PUNTO 4	136	139	138	137,7		
PUNTO 5	146	143	145	144,7		
PUNTO 6	147	149	150	148,7		
	PROMEDIO TOTAL D	DE LA MEDICIÓN	<u> </u>	141,6		

160 140						14	1,6
120 120 100 80 80 60 40 20							
0 PUN	TO PUNTO	PUNTO3	PUNTO A	PUNIOS	PUNIOS	PROMEDIO PROMEDIO	

RESULTADOS

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT.

			, r		
	PORTE DE MEDICIÓ	N DE ESPESOR I	DE PELÍCULA EN	I SECO	
DATOS GENERALES					
Item a Inspeccionar:	Galvanizado		Identificación:	ay4	
Fecha de Ejecución:	10/11/2014		Reporte N°:		
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM	
Elaborado por:	Wellington Vinicio Santos (Cueva	Revisado por :	Ing. Mg. Juan Paredes	
PARÁMETROS PRINCI	IPALES				
Instrumento Utilizado:	Coating Thickness Meter N	Model: CM8822			
Normas de Referencia:	SSPC - PA 2				
Recubrimiento Evaluado	Wash Primer/Fondo de Re	elleno/Poliuretano Blanco	Proveedor:	GLASURIT	
Espesor Solicitado:	Wash Primer entre (5-15)	um, Fondo de Relleno ent	tre (50-60) um, Poliuretan	no Blanco entre (50-70)um	
REGISTRO DE MEDICIONES Unidades: um					
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO	
PUNTO 1	139	143	142	141,3	
PUNTO 2	162	163	165	163,3	
PUNTO 3	133	135	131	133,0	
PUNTO 4	139	136	140	138,3	
PUNTO 5	131	138	139	136,0	
PUNTO 6	139	141	136	138,7	
	PROMEDIO TOTAL D	E LA MEDICIÓN		141,8	
	OO LITTLIZADO				

RESULTADOS EQUIPO UTILIZADO

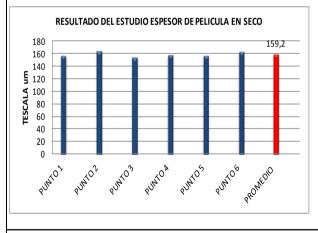
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT.

ORTE DE MEDICIÓ	N DE ESPESOR D	E PELÍCULA EN	SECO
Galvanizado		Identificación:	ay5
10/11/2014		Reporte N°:	
UTA - FICM		Solicitado por:	UTA - FICM
	Cueva	Revisado por :	Ing. Mg. Juan Paredes
PALES			
Coating Thickness Meter I	Model: CM8822		
SSPC - PA 2			
		Proveedor:	GLASURIT
	um, Fondo de Relleno entr	e (50-60) um, Poliuretan	o Blanco entre (50-70)um
ONES		Unidades:	um
LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
157	159	155	157,0
169	170	177	172,0
154	150	151	151,7
157	153	159	156,3
155	159	162	158,7
157	155	162	158,0
PROMEDIO TOTAL D	E LA MEDICIÓN		158,9
RESULTADOS		EQUIP	O UTILIZADO
	158,9		
	Galvanizado 10/11/2014 UTA - FICM Wellington Vinicio Santos PALES Coating Thickness Meter Part SSPC - PA 2 Wash Primer/Fondo de Rewash Primer entre (5-15) Part 157 169 154 157 155 157 PROMEDIO TOTAL DRESULTADOS ESTUDIO ESPESOR DE PELICULA	Galvanizado 10/11/2014 UTA - FICM Wellington Vinicio Santos Cueva PALES Coating Thickness Meter Model: CM8822 SSPC - PA 2 Wash Primer/Fondo de Relleno/Poliuretano Blanco Wash Primer entre (5-15)um, Fondo de Relleno entr ONES LECTURA 1 LECTURA 2 157 159 169 170 154 155 159 157 155 PROMEDIO TOTAL DE LA MEDICIÓN RESULTADOS ESTUDIO ESPESOR DE PELICULA EN SECO	10/11/2014 Reporte N°: UTA - FICM Solicitado por: Wellington Vinicio Santos Cueva Revisado por : PALES Coating Thickness Meter Model: CM8822 SSPC - PA 2 Wash Primer/Fondo de Relleno/Poliuretano Blanco Proveedor: Wash Primer entre (5-15)um, Fondo de Relleno entre (50-60) um, Poliuretan ONES

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT.



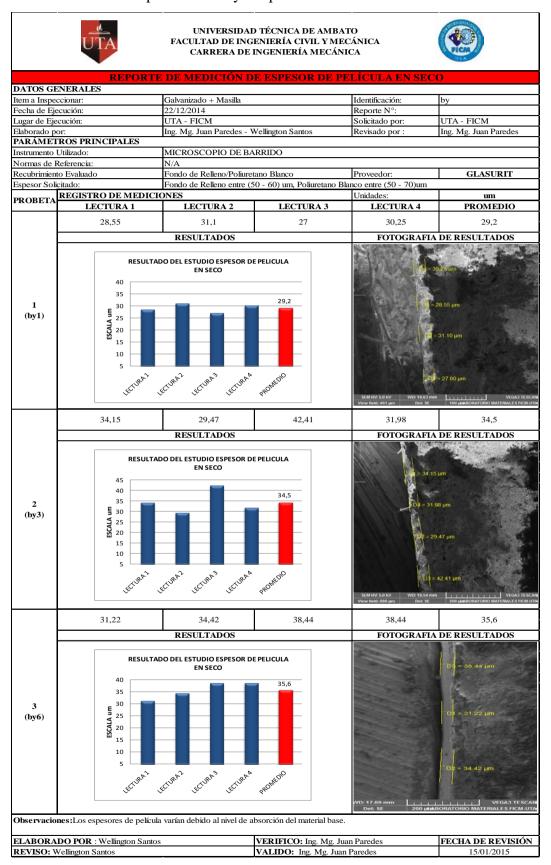
REP	PORTE DE MEDICIÓ	N DE ESPESOR D	E PELÍCULA EN	SECO			
DATOS GENERALES							
Item a Inspeccionar:	Galvanizado		Identificación:	ay6			
Fecha de Ejecución:	10/11/2014		Reporte N°:				
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM			
Elaborado por:	Wellington Vinicio Santos	Cueva	Revisado por :	Ing. Mg. Juan Paredes			
PARÁMETROS PRINCI	IPALES						
Instrumento Utilizado:	Coating Thickness Meter	Model: CM8822					
Normas de Referencia:	SSPC - PA 2						
Recubrimiento Evaluado	Wash Primer/Fondo de Re	elleno/Poliuretano Blanco	Proveedor:	GLASURIT			
Espesor Solicitado: Wash Primer entre (5-15)um, Fondo de Relleno entre (50-60) um, Poliuretano Blanco entre (50-70)um							
REGISTRO DE MEDICIONES Unidades:				um			
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO			
PUNTO 1	160	153	157	156,7			
PUNTO 2	161	165	167	164,3			
PUNTO 3	153	156	157	155,3			
PUNTO 4	156	160	159	158,3			
PUNTO 5	154	157	162	157,7			
PUNTO 6	163	165	161	163,0			
	PROMEDIO TOTAL D	DE LA MEDICIÓN		159,2			
	RESULTADOS FOUIDO						

RESULTADOS

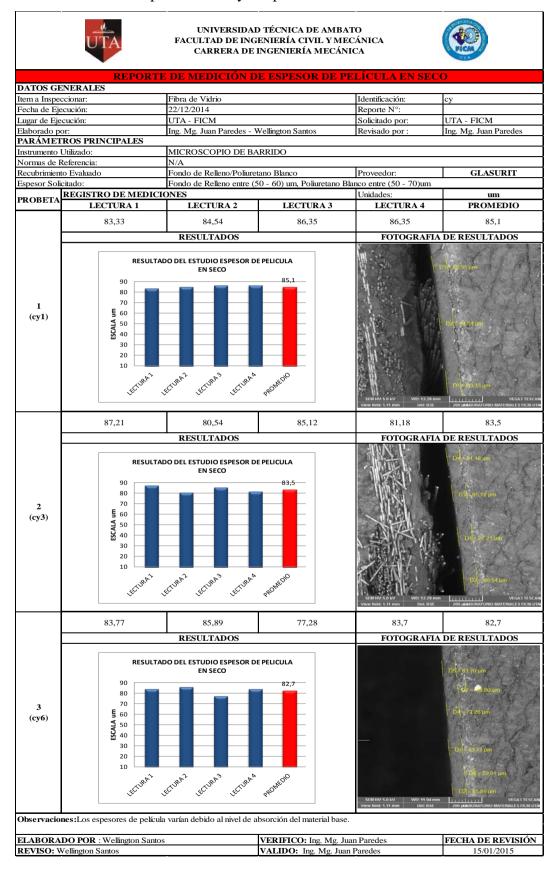
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT.

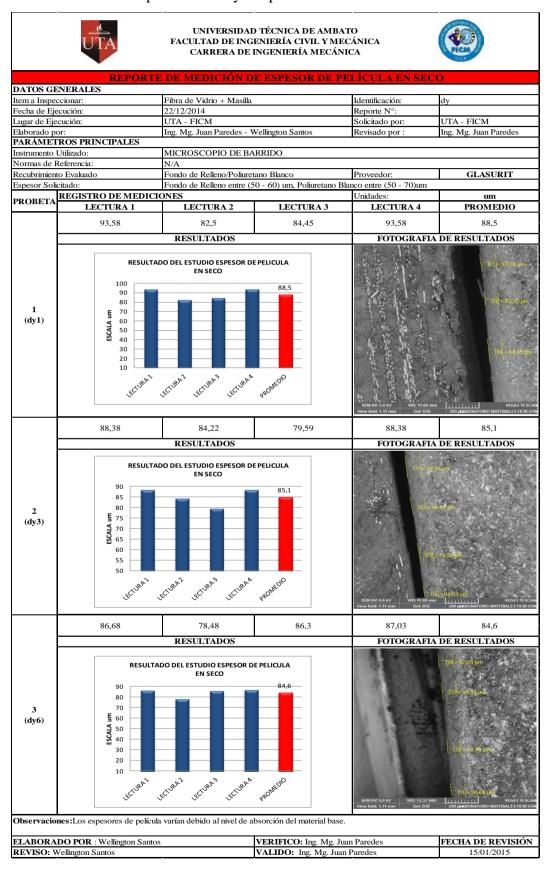
RTE DE MEDICIÓ	N DE ESPESOR DI	E PELÍCULA EN S	SECO
Galvanizado		Identificación:	ay7
10/11/2014		Reporte N°:	
UTA - FICM		Solicitado por:	UTA - FICM
	Cueva	Revisado por :	Ing. Mg. Juan Paredes
LES			
Coating Thickness Meter I	Model: CM8822		
SSPC - PA 2			
		Proveedor:	GLASURIT
	um, Fondo de Relleno entre		Blanco entre (50-70)um
REGISTRO DE MEDICIONES			um
LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
153	161	155	156,3
157	163	161	160,3
162	156	158	158,7
146	145	148	146,3
167	159	164	163,3
158	155	162	158,3
PROMEDIO TOTAL D	E LA MEDICIÓN	•	157,2
RESULTADOS		EQUIPO	UTILIZADO
	Galvanizado 10/11/2014 UTA - FICM Wellington Vinicio Santos LES Coating Thickness Meter I SSPC - PA 2 Wash Primer/Fondo de Re Wash Primer entre (5-15) NES LECTURA 1 153 157 162 146 167 158 PROMEDIO TOTAL D	Galvanizado 10/11/2014 UTA - FICM Wellington Vinicio Santos Cueva LES Coating Thickness Meter Model: CM8822 SSPC - PA 2 Wash Primer/Fondo de Relleno/Poliuretano Blanco Wash Primer entre (5-15)um, Fondo de Relleno entre NES LECTURA 1 LECTURA 2 153 161 157 163 162 156 146 145 167 159 158 155 PROMEDIO TOTAL DE LA MEDICIÓN	10/11/2014 Reporte N°: UTA - FICM Solicitado por: Wellington Vinicio Santos Cueva Revisado por : LES


RESULTADO DEL ESTUDIO ESPESOR DE PELICULA EN SECO

180
160
140
120
80
60
40
20
0
PUNTO² PUN

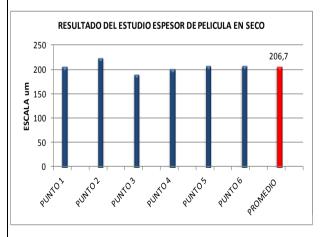


ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISION
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014


Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT.

Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT.

Ficha 4- 5: Reporte de Ensayo Espesor de Película Seca GLASURIT.


Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS.

REPO	RTE DE MEDICIÓ	N DE ESPESOR D	E PELÍCULA EN	SECO		
DATOS GENERALES						
Item a Inspeccionar:	Galvanizado		Identificación:	az1		
Fecha de Ejecución:	10/11/2014		Reporte N°:			
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM		
Elaborado por:	Wellington Vinicio Santos (Cueva	Revisado por :	Ing. Mg. Juan Paredes		
PARÁMETROS PRINCIPA	LES					
Instrumento Utilizado:	Coating Thickness Meter N	Model: CM8822				
Normas de Referencia:	SSPC - PA 2					
Recubrimiento Evaluado	Wash Primer/Fondo de Re	lleno/Poliuretano Blanco	Proveedor:	SHERWIN WILLIAMS		
Espesor Solicitado: No especifica en la ficha técnica						
REGISTRO DE MEDICIO	um					
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO		
PUNTO 1	200	207	212	206,3		
PUNTO 2	225	226	222	224,3		
PUNTO 3	186	192	195	191,0		
PUNTO 4	202	206	199	202,3		
PUNTO 5	208	205	210	207,7		
PUNTO 6	209	209 212 204				
	PROMEDIO TOTAL D	E LA MEDICIÓN		206,7		

RESULTADOS EQUIPO UTILIZADO

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS.

	CARRERA	DE INGENIERÍA ME	CÁNICA	PICA 29
RE	PORTE DE MEDICIÓ	N DE ESPESOR D	E PELÍCULA EN	SECO
DATOS GENERALES				
Item a Inspeccionar:	Galvanizado		Identificación:	az2
Fecha de Ejecución:	10/11/2014		Reporte N°:	
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por:	Wellington Vinicio Santos	Cueva	Revisado por :	Ing. Mg. Juan Paredes
PARÁMETROS PRIN	CIPALES		,	
Instrumento Utilizado:	Coating Thickness Meter I	Model: CM8822		
Normas de Referencia:	SSPC - PA 2			
Recubrimiento Evaluado	Wash Primer/Fondo de Re	elleno/Poliuretano Blanco	Proveedor:	SHERWIN WILLIAMS
Espesor Solicitado:	No especifica en la ficha té	écnica		
REGISTRO DE MEDI	CIONES		Unidades:	um
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	199	202	204	201,7
PUNTO 2 228		223	229	226,7
PUNTO 3 187		181	192	186,7
PUNTO 4 223		227	222	224,0
PUNTO 5	PUNTO 5 187		189	190,3
PUNTO 6	233	231	235 233,0	
	PROMEDIO TOTAL D	E LA MEDICIÓN		210,4
	RESULTADOS		EOUIP	O UTILIZADO
250 200 9 150 150 50	DEL ESTUDIO ESPESOR DE PELICULA	210,4 210,4 210,6 210,6		

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS.

REF	PORTE DE MEDICIÓN	DE ESPESOR D	E PELÍCULA EN	SECO
DATOS GENERALES				
Item a Inspeccionar:	Galvanizado		Identificación:	az3
Fecha de Ejecución:	10/11/2014		Reporte N°:	
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por:	Wellington Vinicio Santos Cu	eva	Revisado por :	Ing. Mg. Juan Paredes
PARÁMETROS PRINC	IPALES			
Instrumento Utilizado:	Coating Thickness Meter Mo	del: CM8822		
Normas de Referencia:	SSPC - PA 2			
Recubrimiento Evaluado	Wash Primer/Fondo de Rellei	no/Poliuretano Blanco	Proveedor:	SHERWIN WILLIAMS
Espesor Solicitado:	No especifica en la ficha técni	ca		
REGISTRO DE MEDIC	IONES		Unidades:	um
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	199	201	202	200,7
PUNTO 2	200	199	204	201,0
PUNTO 3	208	205	206	206,3
PUNTO 4	198	197	193	196,0
PUNTO 5	199	205	201	201,7
PUNTO 6	198	190	189	192,3
	PROMEDIO TOTAL DE I	LA MEDICIÓN		199.7

RESULTADOS EQUIPO UTILIZADO

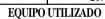
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS.

REPO	RTE DE MEDICIÓ	N DE ESPESOR D	E PELÍCULA EN	SECO
DATOS GENERALES				
Item a Inspeccionar:	Galvanizado		Identificación:	az4
Fecha de Ejecución:	10/11/2014		Reporte N°:	
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por:	Wellington Vinicio Santos (Cueva	Revisado por :	Ing. Mg. Juan Paredes
PARÁMETROS PRINCIPA	LES			
Instrumento Utilizado:	Coating Thickness Meter M	Model: CM8822		
Normas de Referencia:	SSPC - PA 2			
Recubrimiento Evaluado	Wash Primer/Fondo de Re		Proveedor:	SHERWIN WILLIAMS
Espesor Solicitado:	No especifica en la ficha téc	enica		
REGISTRO DE MEDICION	NES		Unidades:	um
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	223	226	219	222,7
PUNTO 2	203	206	208	205,7
PUNTO 3	201	208	205	204,7
PUNTO 4	206	201	207	204,7
PUNTO 5	222	225	229	225,3
PUNTO 6	205	210	212	209,0
	PROMEDIO TOTAL D	E LA MEDICIÓN	•	212,0
	RESULTADOS		EQUIPO	UTILIZADO

250	RE	SULTADO	DEL ESTU	DIO ESPES	OR DE PEI	LICULA EN		
200	~						217	2,0
	4		Н	Н	Н	Н	\vdash	L
ESCALA um 100	Н		Н	Н	Н	Н	\vdash	H
50	Н		Н	Н	Н	\vdash	\vdash	Н
0				Ш				
PUN	10,	PUNTO2	PUNTO3	PUNTOA	PUNTOS	PUNTO6	PROMEDIO	

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014


Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS.

REP	ORTE DE MEDICIÓ	N DE ESPESOR D	E PELÍCULA EN	SECO			
DATOS GENERALES							
Item a Inspeccionar:	Galvanizado		Identificación:	az5			
Fecha de Ejecución:	10/11/2014		Reporte N°:				
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM			
Elaborado por:	Wellington Vinicio Santos (Cueva	Revisado por :	Ing. Mg. Juan Paredes			
PARÁMETROS PRINCI	PALES						
Instrumento Utilizado:	Coating Thickness Meter N	Model: CM8822					
Normas de Referencia:	SSPC - PA 2						
Recubrimiento Evaluado	Wash Primer/Fondo de Re		Proveedor:	SHERWIN WILLIAMS			
Espesor Solicitado: No especifica en la ficha técnica							
REGISTRO DE MEDICIONES			Unidades:	um			
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO			
PUNTO 1	223	227	229	226,3			
PUNTO 2	207	210	215	210,7			
PUNTO 3	202	203	206	203,7			
PUNTO 4	192	198	193	194,3			
PUNTO 5	212	217	219	216,0			
PUNTO 6	192	192 197 198					
	PROMEDIO TOTAL DE LA MEDICIÓN						

RESULTADOS

ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS.

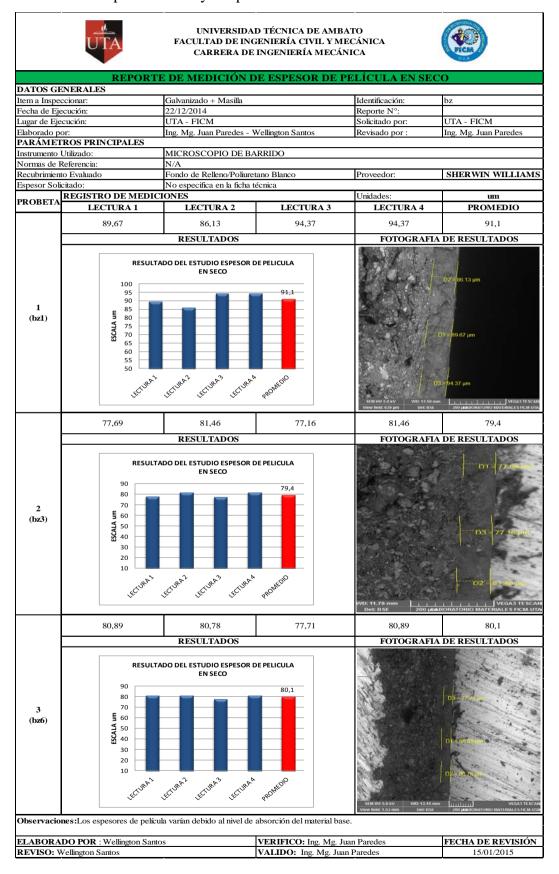
•				
RE	PORTE DE MEDICIÓ	N DE ESPESOR D	E PELÍCULA EN	SECO
DATOS GENERALES				
Item a Inspeccionar:	Galvanizado		Identificación:	az6
Fecha de Ejecución:	10/11/2014		Reporte N°:	
Lugar de Ejecución:	UTA - FICM		Solicitado por:	UTA - FICM
Elaborado por:	Wellington Vinicio Santos	Cueva	Revisado por :	Ing. Mg. Juan Paredes
PARÁMETROS PRINC	CIPALES		-	
Instrumento Utilizado:	Coating Thickness Meter I	Model: CM8822		
Normas de Referencia:	SSPC - PA 2			
Recubrimiento Evaluado	Wash Primer/Fondo de Re	elleno/Poliuretano Blanco	Proveedor:	SHERWIN WILLIAMS
Espesor Solicitado:	No especifica en la ficha té	Scnica Scnica	•	
REGISTRO DE MEDIO	CIONES		Unidades:	um
	LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
PUNTO 1	192	201	207	200,0
PUNTO 2	PUNTO 2 220		227	222,0
PUNTO 3	199	206	208	204,3
PUNTO 4	O 4 207 209		211	209,0
PUNTO 5	PUNTO 5 203		205	204,7
PUNTO 6	NTO 6 220 227		228	225,0
	PROMEDIO TOTAL D	E LA MEDICIÓN	-	210,8
	RESULTADOS		EQUIP	O UTILIZADO
250 200 8 150 150 50	EL ESTUDIO ESPESOR DE PELICUL	210,8		

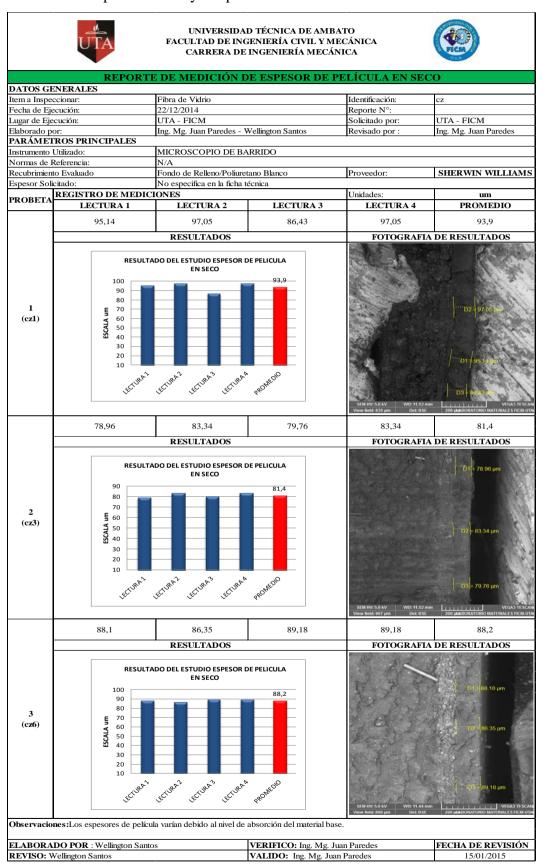
ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014

Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS.

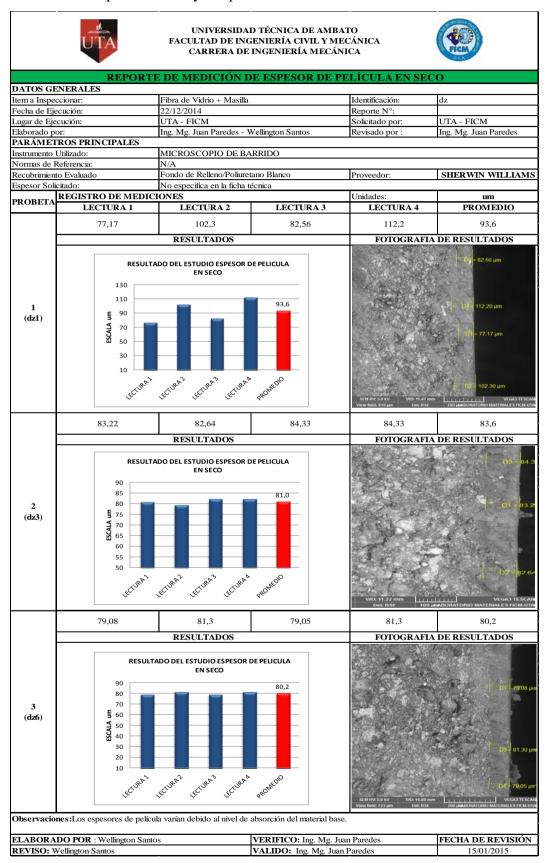
RTE DE MEDICIÓ	N DE ESPESOR D	E PELÍCULA EN	SECO
Galvanizado		Identificación:	az7
10/11/2014		Reporte N°:	
UTA - FICM		Solicitado por:	UTA - FICM
	Cueva	Revisado por :	Ing. Mg. Juan Paredes
LES			
Coating Thickness Meter M	Model: CM8822		
SSPC - PA 2			
Wash Primer/Fondo de Re	lleno/Poliuretano Blanco	Proveedor:	SHERWIN WILLIAMS
	enica		
NES		Unidades:	um
LECTURA 1	LECTURA 2	LECTURA 3	PROMEDIO
212	221	217	216,7
223	229	232	228,0
194	192	198	194,7
200	198	202	200,0
215	214	219	216,0
217	214	213	214,7
PROMEDIO TOTAL D	E LA MEDICIÓN		211,7
	Galvanizado 10/11/2014 UTA - FICM Wellington Vinicio Santos O LES Coating Thickness Meter M SSPC - PA 2 Wash Primer/Fondo de Re No especifica en la ficha té NES LECTURA 1 212 223 194 200 215 217	Galvanizado 10/11/2014 UTA - FICM Wellington Vinicio Santos Cueva LES Coating Thickness Meter Model: CM8822 SSPC - PA 2 Wash Primer/Fondo de Relleno/Poliuretano Blanco No especifica en la ficha técnica NES LECTURA 1 212 221 223 229 194 192 200 198 215 214	10/11/2014 Reporte N°:

RESULTADOS


EQUIPO UTILIZADO



ELABORADO POR: Wellington Santos	VERIFICO: Ing. Mg. Juan Paredes	FECHA DE REVISIÓN
REVISO: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/12/2014


Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS

Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS.

Ficha 4- 6: Reporte de Ensayo Espesor de Película Seca SHERWIN WILLIAMS.

4.1.5 Superficie

4.1.5.1 Medición de Adherencia de Pintura

La ejecución de una prueba de adherencia tras el proceso de revestimiento indica la fuerza con la que el revestimiento está afianzado en la superficie o en otra capa de revestimiento, o la fuerza de cohesión de algunos sustratos.

Para el método de arranque se procede como de la siguiente manera, se pega una sufridera de tensión con adhesivo al revestimiento y, cuando éste se ha secado, se mide la fuerza necesaria para despegar la sufridera de la superficie.

Para obtener los resultados de Adherencia de pintura se realizó el estudio en el Laboratorio de Desgaste y Falla de la Carrera de Ingeniería Mecánica de la Universidad Politécnica Nacional.

Para esta fase del proyecto de tesis se construyeron probetas en diferentes materiales como Galvanizado, Galvanizado + Masilla, Fibra de Vidrio y Fibra de Vidrio + Masilla a las cuales se les aplico tres procesos de pintura (PPG, GLASURIT y SHERWIN WILLIAMS), cada probeta tiene un código el cual se detalla en la siguiente tabla.

Tabla 4- 12: Codificación de las Probetas en Estudio.

PROBETAS PARA ENSAYOS					
DENOMINACIÓN	PINTURA	DENOMINACIÓN	MATERIAL	CÓDIGO	
		a	Galvanizado	ax	
X	PPG	b	Galvanizado+Masilla	bx	
A	rrG	С	Fibra de Vidrio	cx	
		d	Fibra de Vidrio+Masilla	dx	
		a	Galvanizado	ay	
Y	GLASURIT	b	Galvanizado+Masilla	by	
1	GLASUKII	С	Fibra de Vidrio	cy	
		d	Fibra de Vidrio+Masilla	dy	
		a	Galvanizado	az	
Z	SHERWIN	b	Galvanizado+Masilla	bz	
L	WILLIAMS	С	Fibra de Vidrio	cz	
		d	Fibra de Vidrio+Masilla	dz	

(Fuente: Elaborado por Wellington Santos)

Ficha 4-7: Reporte del Ensayo de Adherencia por Cinta PPG.

	REPORTE D	E MEDICIÓN DE A	DHERENCIA 1	POR CINTA
DATOS GENERALES				
Item a Inspeccionar:	Galvanizado		Identificación:	ax
Fecha de Ejecución:	15/12/2015		Reporte N °:	
Lugar de Ejecución:	E.P.N		Solictado por:	Wellington Vinicio Santos Cueva
Elaborado por:	Wellington Vinicio Sar	ntos Cueva	Revisado Por:	Ing. Mg. Juan Paredes
PARÁMETROS PRIN	·			
Instrumento Utilizado:	Cortador de Trama C	ruzada Elcometer 107		
Normas de Refencia:	ASTM D3359		Método Ejecutad	юВ
Recubrimiento Evaluado:	Wash Primer/Fondo d	le Relleno/Poliuretano	Proveedor:	PPG
RESULTADOS ENSA'				•
PROBETA	CARGA NORMAI	CLASIFICACION		EQUIPO UTILIZADO
ax1	100	5B		
ax2	100	5B		(
ax3	100	5B		
ax4	100	5B	64-	
ax5	100	5B		
ax6	100	5B		
ax7	100	5B		
FOTOGRAFIAS DEL		υD		
	KESULTADO	ax2		ov2
ax1		ax2	2	ax3
axi				
ax4		ax5		ax6
ахч	1		QX5	ax 6
ax7		Observaciones:		
ax	7	ax1: No se encontro despren	dimiento alguno.	
an		ax2: No se encontro despren		
200000		ax3: No se encontro despren		
		ax4: No se encontro despren		
		ax5: No se encontro despren		
		ax6: No se encontro despren		
			-	
		ax /: No se encontro despren		
Observaciones: De las la	·	ax7: No se encontro despren 4 tienen un comportamiento		sido afectada).
Observaciones: De las la ELABORADO POR : V	as probetas analizadas	-	5B (0% del area ha s	sido afectada). FECHA DE REVISIÓN

Ficha 4-7: Reporte del Ensayo de Adherencia por Cinta PPG.

	REPORTE D	E MEDICIÓN DE A	DHERENCIA	POR CINTA
DATOS GENERALES				1
	Probetas Galvanizadas	+ Masilla	Identificación:	bx
Fecha de Ejecución:	15/12/2015		Reporte N °:	
Zagar de Zjeedelom	E.P.N		Solictado por:	Wellington Vinicio Santos Cueva
	Wellington Vinicio San	tos Cueva	Revisado Por:	Ing. Mg. Juan Paredes
PARÁMETROS PRIN				
	Cortador de Trama Cr	uzada Elcometer 107		1
	ASTM D3359		Método Ejecutad	
Recubrimiento Evaluado:			Proveedor:	PPG
RESULTADOS ENSAY			_	
	CARGA NORMAI	CLASIFICACION		EQUIPO UTILIZADO
bx1	100	5B	1	1
bx2	100	5B		
bx3	100	5B		
bx4	100	5B		
bx5	100	5B		
bx6	100	5B		
bx7	100	5B		
FOTOGRAFIAS DEL I	RESULTADO			1
bx1		bx2		bx3
bx1		bx2		bx3
bx4		bx5		bx6
<i>b</i> x4		bx5	11	bx6
bx7	(Observaciones:		
bx	7 b	x1: No se encontro despren	dimiento alguno.	
	1	x2: No se encontro despren	dimiento alguno.	
	To the last	x3: No se encontro despren	dimiento alguno.	
		x4: No se encontro despren	dimiento alguno.	
	b	x5: No se encontro despren	dimiento alguno.	
	la l	x6: No se encontro despren	dimiento alguno.	
		x7: No se encontro despren	dimiento alguno.	
Observaciones: De las la	•	tienen un comportamiento :		sido afectada).
ELABORADO POR : V	Vellington Santos	ERIFICO: Ing. Mg. Juan l	Paredes	FECHA DE REVISIÓN
REVISO: Wellington Sar		ALIDO: Ing. Mg. Juan Pa		14/01/2015

Ficha 4-7: Reporte del Ensayo de Adherencia por Cinta PPG.

				位工人
	REPORTE I	DE MEDICIÓN DE A	DHERENCIA	POR CINTA
DATOS GENERALES				
Item a Inspeccionar:	Probetas Galvanizada	s + Masilla	Identificación:	cx
Fecha de Ejecución:	15/12/2015		Reporte N °:	
Lugar de Ejecución:	E.P.N		Solictado por:	Wellington Vinicio Santos Cueva
Elaborado por:	Wellington Vinicio Santos Cueva		Revisado Por:	Ing. Mg. Juan Paredes
PARÁMETROS PRI			10 1200 1 011	6 6
Instrumento Utilizado:		'ruzada Elcometer 107		
Normas de Refencia:	ASTM D3359		Método Ejecutad	lo B
Recubrimiento Evaluado	· Wash Primer/Fondo	le Relleno/Poliuretano	Proveedor:	PPG
RESULTADOS ENSA				ļ
PROBETA	CARGA NORMAI	CLASIFICACION		EQUIPO UTILIZADO
cx1	100	5B	7/10	Even o crimina o
cx2	85-95	3B		
cx3	95-100	4B		
cx4	95-100	4B		200
cx5	95-100	4B		
схб	100	5B		
cx7	95-100	4B		
FOTOGRAFIAS DEL		·		
CX		cx2		cx3
CX1	13	CX2	No.	CX3
CX	4	cx5		схб
CX4		CXE		CX6
cx	7	Observaciones:		
C	FX	cx1: No se encontro despren	dimiento alguno .	
LIMIN -				mayor al 5% pero menor al 15%.
		cx3: Pequeñas escamas del r	ecubrimiento estan se	eparadas en las intersecciones.
	A140 A140 A140 A140 A140 A140 A140 A140			eparadas en las intersecciones.
	A STATE OF THE PARTY OF	cx5: Pequeñas escamas del r	ecubrimiento estan se	eparadas en las intersecciones.
	1	cx6: No se encontro despren	dimiento alguno .	
			-	eparadas en las intersecciones.
	las probetas analizadas	-	5B (0% del area ha s	sido afectada), 4 probeta tiene un
FI ARORADO DOD.	Wallington Contos	VERIFICO: Ing. Mg. Juan	Paradas	FECHA DE REVISIÓN
ELABORADO POR:	ŭ	<u> </u>		
REVISO: Wellington S	ainus	VALIDO: Ing. Mg. Juan Pa	nedes	14/01/2015

Ficha 4-7: Reporte del Ensayo de Adherencia por Cinta PPG.

	REPORTE D	DE MEDICIÓN DE A	DHERENCIA I	POR CINTA	
DATOS GENERALES	S				
Item a Inspeccionar:	Probetas Galvanizada:	s + Masilla	Identificación:	dx	
Fecha de Ejecución:	15/12/2015		Reporte N °:		
Lugar de Ejecución:	E.P.N		Solictado por:	Wellington Vinicio Santos Cueva	
Elaborado por:	Wellington Vinicio Sar	ntos Cueva	Revisado Por:	Ing. Mg. Juan Paredes	
PARÁMETROS PRI				,	
Instrumento Utilizado:	Cortador de Trama C	ruzada Elcometer 107			
Normas de Refencia:	ASTM D3359		Método Ejecutado	0 B	
Recubrimiento Evaluado	: Wash Primer/Fondo d	le Relleno/Poliuretano	Proveedor:	PPG	
RESULTADOS ENSA	YO DE ADHERENC	CIA			
PROBETA	CARGA NORMAI	CLASIFICACION		EQUIPO UTILIZADO	
dx1	65-85	2B	7		
dx2	95-100	4B			
dx3	95-100	4B			
dx4	95-100	4B			
dx5	65-85	2B			
dx6	95-100	4B			
dx7	95-100	4B			
FOTOGRAFIAS DEL	RESULTADO				
dx	1	dx2		dx3	
dx1	- 1	dx	2	dx3	
dx	4	dx5		dx6	
dx4	11	dx5		dx6	
dx	7	Observaciones:			
dx7	44	dx1: Aparece afectada la sup	erficie del entramado	y en la parte de los cuadros entre 15 a 35%	
######################################		dx2: Pequeñas escamas del r	ecubrimiento estan se	eparadas en las intersecciones.	
		dx3: Pequeñas escamas del recubrimiento estan separadas en las intersecciones.			
		dx4: Pequeñas escamas del recubrimiento estan separadas en las intersecciones.			
		dx5: Aparece afectada la superficie del entramado y en la parte de los cuadros entre 15 a 35%			
1111111		dx6: Pequeñas escamas del recubrimiento estan separadas en las intersecciones.			
		•		eparadas en las intersecciones.	
Observaciones: De las		•		el area ha sido afectada), 2 probetas tiene un	
comportamiento 2B (35	-		•	*	
ELABORADO POR :		VERIFICO: Ing. Mg. Juan 1	Paredes	FECHA DE REVISIÓN	
REVISO: Wellington S		VALIDO: Ing. Mg. Juan Pa		14/01/2015	
•					

Ficha 4-8: Reporte del Ensayo de Adherencia por Cinta GLASURIT.

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

		CARRERA DE INGENII	ERÍA MECÁNICA	Fic.M.
	REPORTE I	DE MEDICIÓN DE A	DHERENCIA	POR CINTA
DATOS GENERALE				
tem a Inspeccionar:	Galvanizado		Identificación:	ay
Fecha de Ejecución:	15/12/2015		Reporte N °:	
Lugar de Ejecución:	E.P.N		Solictado por:	Wellington Vinicio Santos Cueva
Elaborado por:	Wellington Vinicio Sa	antos Cueva	Revisado Por:	Ing. Mg. Juan Paredes
PARÁMETROS PRI				100
nstrumento Utilizado:	Cortador de Trama (Cruzada Elcometer 107		
Normas de Refencia:	ASTM D3359		Método Ejecutad	lo B
Recubrimiento Evaluado	: Wash Primer/Fondo	de Relleno/Poliuretano	Proveedor:	GLASURIT
RESULTADOS ENSA				
PROBETA	CARGA NORMA			EQUIPO UTILIZADO
ay1	100	5B	7	
ay2	100	5B		
ay3	95-100	4B		
ay4	100	5B		27 -
ay5	100	5B		
ay6	85-95	3B		
ay7	100	5B		
OTOGRAFIAS DEI		, , , , ,		
ay		ay2		ay3
ay	4	ay5		ay6
ay4		ays		ay6
ay	7	Observaciones:		
011		ay1: No se encontro desprei	ndimiento alguno.	
ay+	44	ay2: No se encontro desprei		
111111	Comment of			eparadas en las intersecciones.
	FR.H	ay4: No se encontro desprei		•
	THE STREET	ay5: No se encontro desprei		
	E HELL	<u> </u>		o mayor al 5% pero menor al 15%.
	-	ay7: No se encontro desprei		y p
		-	5B (0% ha sido afe	ectada), 1 probeta tiene un comportamiento 4. fectada).
ELABORADO POR :	Wellington Santos	VERIFICO: Ing. Mg. Juan	Paredes	FECHA DE REVISIÓN
	antos	VALIDO: Ing. Mg. Juan P		14/01/2015

Ficha 4-8: Reporte del Ensayo de Adherencia por Cinta GLASURIT.

	REPORTE I	DE MEDICIÓN DE A	DHERENCIA I	POR CINTA
DATOS GENERALES		<u> </u>		. 01. 01.(111
Item a Inspeccionar:	Galvanizado + Masilla	a	Identificación:	by
Fecha de Ejecución:	15/12/2015	-	Reporte N °:	
Lugar de Ejecución:	E.P.N		Solictado por:	Wellington Vinicio Santos Cueva
Elaborado por:	Wellington Vinicio Sa	ntos Cueva	Revisado Por:	Ing. Mg. Juan Paredes
PARÁMETROS PRIN		ntos cueva	ic visado i or.	ing. 141g. Suan i areaes
Instrumento Utilizado:		Cruzada Elcometer 107		
Normas de Refencia:	ASTM D3359		Método Ejecutado	o B
Recubrimiento Evaluado:		de Relleno/Poliuretano	Proveedor:	GLASURIT
RESULTADOS ENSA			110 vecuoi.	02220111
PROBETA	CARGA NORMAL	CLASIFICACION		EQUIPO UTILIZADO
by1	85-95	3B	7	EQUITO CILIZZEO
by2	85-95	3B		
by3	35-65	1B		
by4	100	5B		
by5	95-100	4B		
by6	95-100	4B		
by7	85-95	3B		
FOTOGRAFIAS DEL		JD .		
byl		by2		by3
by1		by 2		by3
by4	1	by5		by6
Бу4		by	5	by6
by7		Observaciones:		
hu7	4.5	by1: Aparece afectada la sup	perficie del entramado	mayor al 5% pero menor al 15%.
by7				mayor al 5% pero menor al 15%.
		by3: Aparece afectada la sup	perficie del entramado	entre el 35 a 65%.
		by4: No se encontro desprer	ndimiento alguno.	
				eparadas en las intersecciones.
				eparadas en las intersecciones.
				mayor al 5% pero menor al 15%.
				ctada), 2 probeta tiene un comportamiento 4B
Observaciones: De las	las probetas analizadas	I tienen un comportamiento :	ob (070 mable o alec	
(5% del area ha sido afec	ctada), 3 probetas tiene			ctada), 1 probeta tiene un compartamiento 1B
	ctada), 3 probetas tiene ectada).		6 del area ha sido afe	

Ficha 4- 8: Reporte del Ensayo de Adherencia por Cinta GLASURIT.

	- 4.				
	REPORTE I	DE MEDICIÓN DE A	DHERENCIA I	POR CINTA	
DATOS GENERALES					
Item a Inspeccionar:	Fibra de Vidrio		Identificación:	cy	
Fecha de Ejecución:	15/12/2015		Reporte N °:		
Lugar de Ejecución:	E.P.N		Solictado por:	Wellington Vinicio Santos Cueva	
Elaborado por:	Wellington Vinicio Santos Cueva		Revisado Por:	Ing. Mg. Juan Paredes	
PARÁMETROS PRIN				100	
Instrumento Utilizado:	Cortador de Trama C	Cruzada Elcometer 107			
Normas de Refencia:	ASTM D3359		Método Ejecutad	0 B	
Recubrimiento Evaluado:	Wash Primer/Fondo	de Relleno/Poliuretano	Proveedor:	GLASURIT	
RESULTADOS ENSA	YO DE ADHERENO	CIA	•	•	
PROBETA	CARGA NORMAI	CLASIFICACION		EQUIPO UTILIZADO	
cy1	100	5B	1		
cy2	85-95	3B			
су3	100	5B			
cy4	85-95	3B			
cy5	35-65	1B	1		
су6	65-85	2B			
cy7	65-85	2B			
FOTOGRAFIAS DEL	RESULTADO				
cy1		cy2		су3	
Cy1				Cy3	
cy4		cy5		суб	
CY4		Cy5		Cy6	
cy7	1	Observaciones:			
	y7	cy1: No se encontro desprer	ndimiento alguno.		
	J	cy2: Aparece afectada la sup	perficie del entramado	mayor al 5% pero menor al 15%.	
11 (20 2)		cy3: No se encontro desprer	ndimiento alguno.		
		cy4: Aparece afectada la superficie del entramado mayor al 5% pero menor al 15%.			
		cy5: Aparece afectada la superficie del entramado entre el 35 a 65%.			
		cy6: Aparece afectada la su	perficie del entramado	y en la parte de los cuadros entre 15 a 35%	
		cy7: Aparece afectada la sup	oerficie del entramado	y en la parte de los cuadros entre 15 a 35%	
3B (15% del area ha sido	afectada), 2 probetas	tienen un comportamiento 21		ctada), 2 probetas tienen un comportamiento do afectada), 1 probeta tiene un	
compartamiento 1B (659				Thorn be seen as for	
ELABORADO POR : \		VERIFICO: Ing. Mg. Juan		FECHA DE REVISIÓN	
REVISO: Wellington Sa	ntos	VALIDO: Ing. Mg. Juan Pa	aredes	14/01/2015	

Ficha 4-8: Reporte del Ensayo de Adherencia por Cinta GLASURIT.

	•			
	REPORTE I	DE MEDICIÓN DE A	DHERENCIA 1	POR CINTA
DATOS GENERALES	S			
tem a Inspeccionar:	Fibra de Vidrio + Ma	silla	Identificación:	dy
Fecha de Ejecución:	15/12/2015		Reporte N °:	
ugar de Ejecución:	E.P.N		Solictado por:	Wellington Vinicio Santos Cueva
Elaborado por:	Wellington Vinicio Sa	ntos Cueva	Revisado Por:	Ing. Mg. Juan Paredes
PARÁMETROS PRIN	NCIPALES			
nstrumento Utilizado:	Cortador de Trama C	Cruzada Elcometer 107		
Normas de Refencia:	ASTM D3359		Método Ejecutad	оВ
Recubrimiento Evaluado:	: Wash Primer/Fondo	de Relleno/Poliuretano	Proveedor:	GLASURIT
RESULTADOS ENSA	YO DE ADHEREN	CIA		
PROBETA	CARGA NORMAI	CLASIFICACION		EQUIPO UTILIZADO
dy1	85-95	3B	700	
dy2	85-95	3B		
dy3	85-95	3B		
dy4	95-100	4B		
dy5	85-95	3B		
dy6	35-65	1B		
dy7	95-100	4B		1
OTOGRAFIAS DEL	RESULTADO			
dy:		dy2		dy3
dy1				
dy	4	dy5		dy6
dy	4	dy	5	dy6
dy.	7	Observaciones:		
dy	+	dy2: Aparece afectada la sup dy3: Aparece afectada la sup dy4: Pequeñas escamas del dy5: Aparece afectada la sup dy6: Aparece afectada la sup	erficie del entramado erficie del entramado recubrimiento estan s erficie del entramado perficie del entramado	o mayor al 5% pero menor al 15%. o mayor al 5% pero menor al 15%. o mayor al 5% pero menor al 15%. separadas en las intersecciones. o mayor al 5% pero menor al 15%. o entre el 35 a 65%. eparadas en las intersecciones.
omportamiento 3B (159) LABORADO POR:	% del area ha sido afect Wellington Santos	2 probeta tiene un comporta ada), 1 probeta tiene un com VERIFICO: Ing. Mg. Juan	umiento 4B (5% del partamiento 1B (65% Paredes	area ha sido afectada), 4 probetas tiene un 6 del area ha sido afectada). FECHA DE REVISIÓN
REVISO: Wellington Sa	antos	VALIDO: Ing. Mg. Juan Pa	rredes	14/01/2015

Ficha 4-9: Reporte del Ensayo de Adherencia por Cinta SHERWIN WILLIAMS.

VALIDO: Ing. Mg. Juan Paredes

REVISO: Wellington Santos

14/01/2015

Ficha 4- 9: Reporte del Ensayo de Adherencia por Cinta SHERWIN WILLIAMS.

VERIFICO: Ing. Mg. Juan Paredes VALIDO: Ing. Mg. Juan Paredes

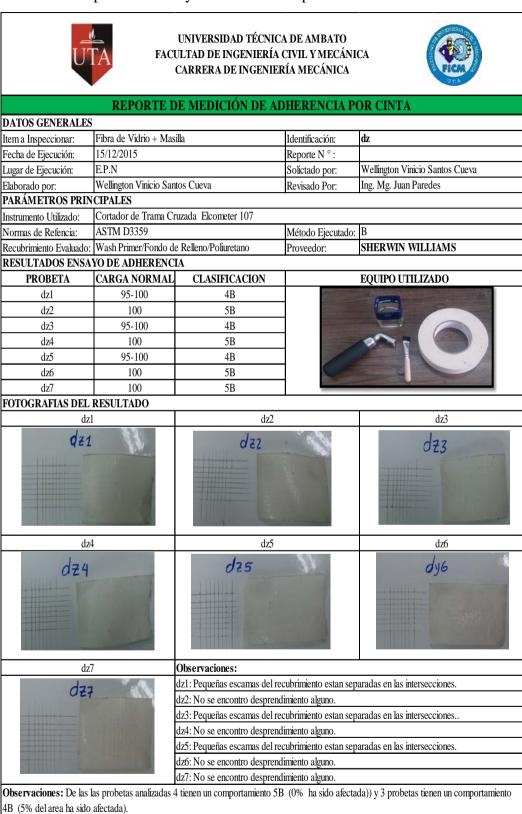
ELABORADO POR: Wellington Santos

REVISO: Wellington Santos

FECHA DE REVISIÓN

14/01/2015

Ficha 4-9: Reporte del Ensayo de Adherencia por Cinta SHERWIN WILLIAMS.



14/01/2015

VALIDO: Ing. Mg. Juan Paredes

REVISO: Wellington Santos

Ficha 4- 9: Reporte del Ensayo de Adherencia por Cinta SHERWIN WILLIAMS.

FECHA DE REVISIÓN

14/01/2015

VERIFICO: Ing. Mg. Juan Paredes

VALIDO: Ing. Mg. Juan Paredes

ELABORADO POR: Wellington Santos

REVISO: Wellington Santos

4.1.5.2 Medición de Rugosidad Superficial.

Para obtener los resultados de Rugosidad Superficial se realizó el estudio en el Laboratorio de Metrología de la Carrera de Ingeniería Mecánica de la Universidad Técnica de Ambato.

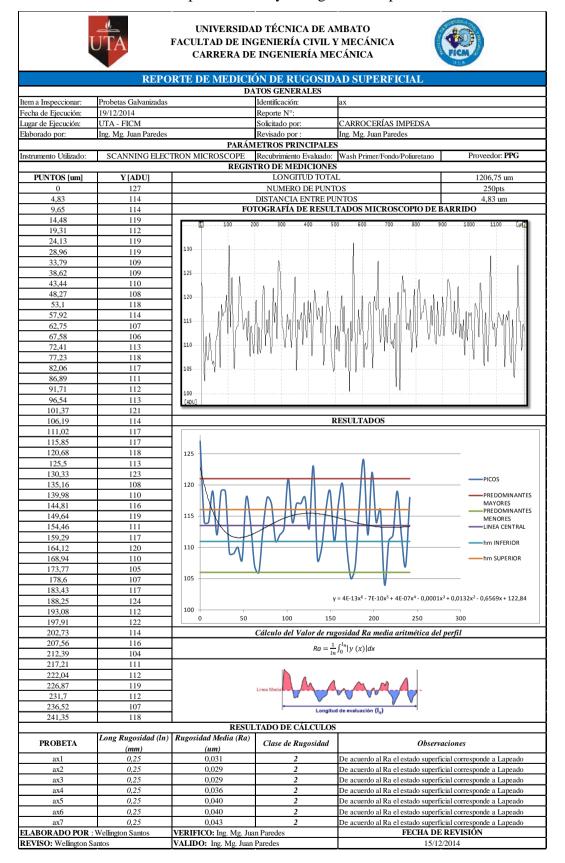
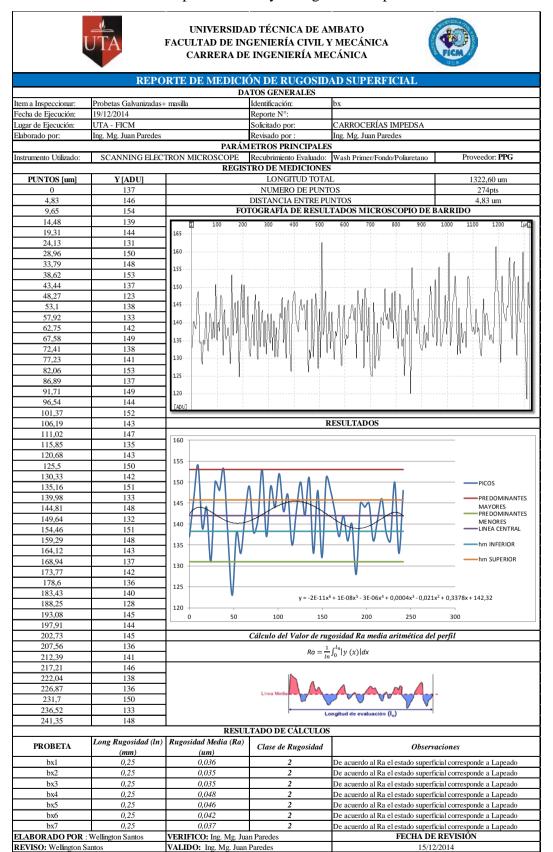
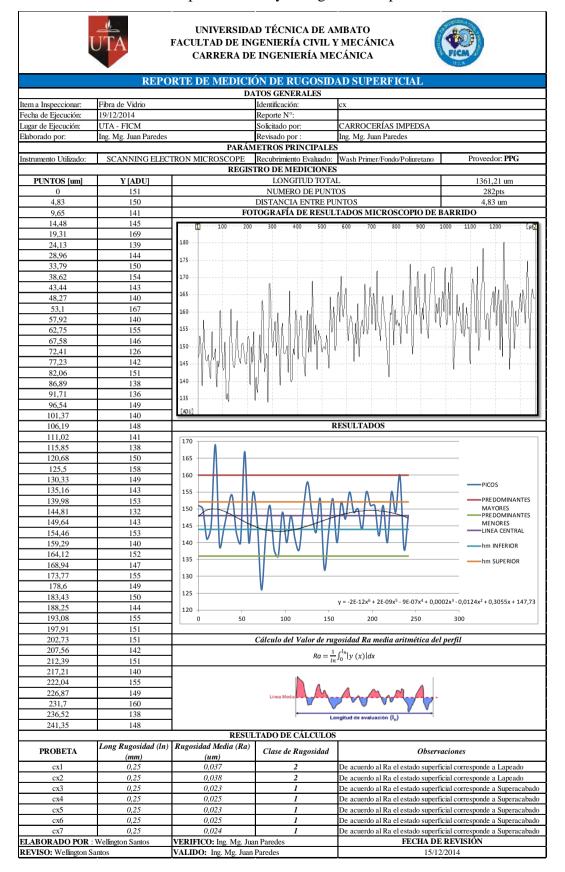
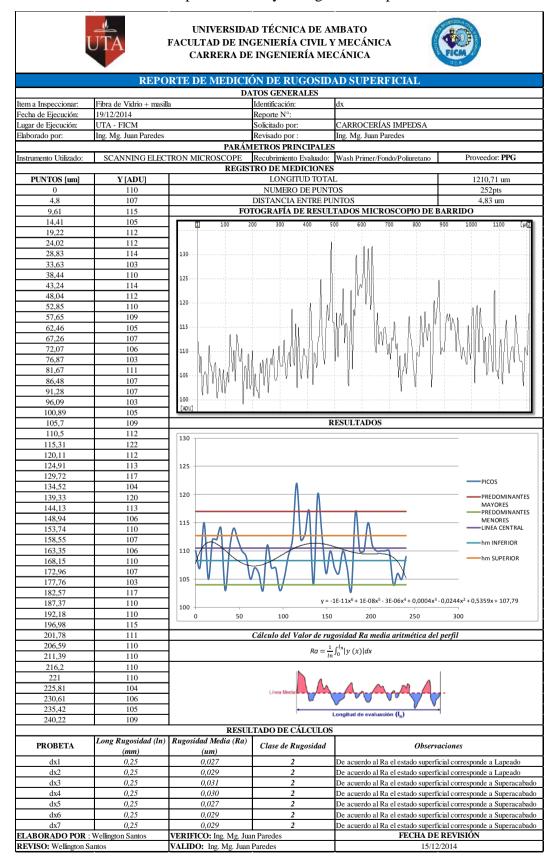

Para esta fase del proyecto de tesis se construyeron probetas en diferentes materiales como Galvanizado, Galvanizado + Masilla, Fibra de Vidrio y Fibra de Vidrio + Masilla a las cuales se les aplico tres procesos de pintura (PPG, GLASURIT y SHERWIN WILLIAMS), cada probeta tiene un código el cual se detalla en la siguiente tabla.

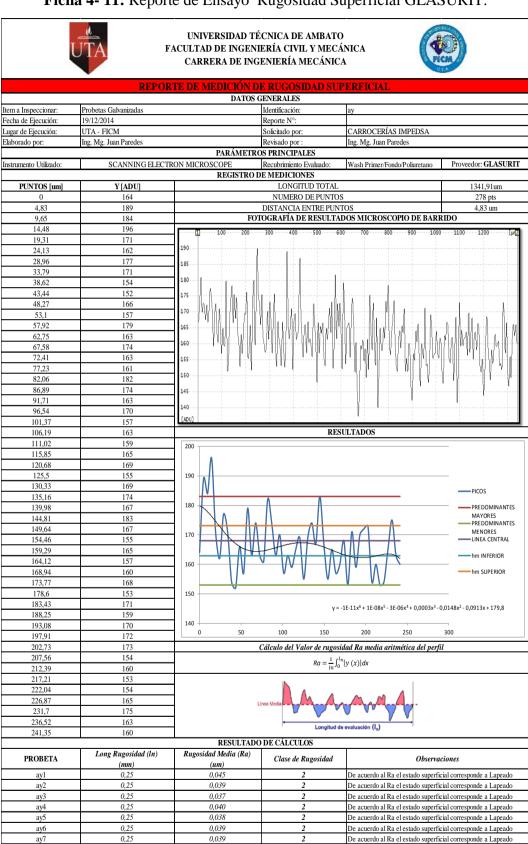
Tabla 4- 13: Codificación de las Probetas en Estudio.


PROBETAS PARA ENSAYOS						
DENOMINACIÓN	PINTURA	DENOMINACIÓN	MATERIAL	CÓDIGO		
X	PPG	a	Galvanizado	ax		
		b	Galvanizado+Masilla	bx		
		С	Fibra de Vidrio	cx		
		d	Fibra de Vidrio+Masilla	dx		
Y	GLASURIT	a	Galvanizado	ay		
		b	Galvanizado+Masilla	by		
		С	Fibra de Vidrio	cy		
		d	Fibra de Vidrio+Masilla	dy		
		a	Galvanizado	az		
Z	SHERWIN WILLIAMS	b	Galvanizado+Masilla	bz		
		С	Fibra de Vidrio	cz		
		d	Fibra de Vidrio+Masilla	dz		

(Fuente: Elaborado por Wellington Santos)


Ficha 4- 10: Reporte de Ensayo Rugosidad Superficial PPG.


Ficha 4- 10: Reporte de Ensayo Rugosidad Superficial PPG.

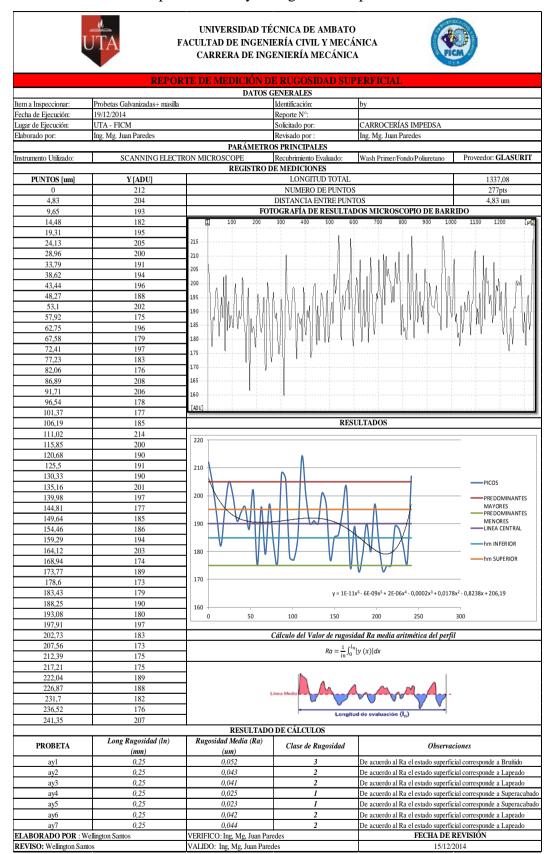

Ficha 4- 10: Reporte de Ensayo Rugosidad Superficial PPG.

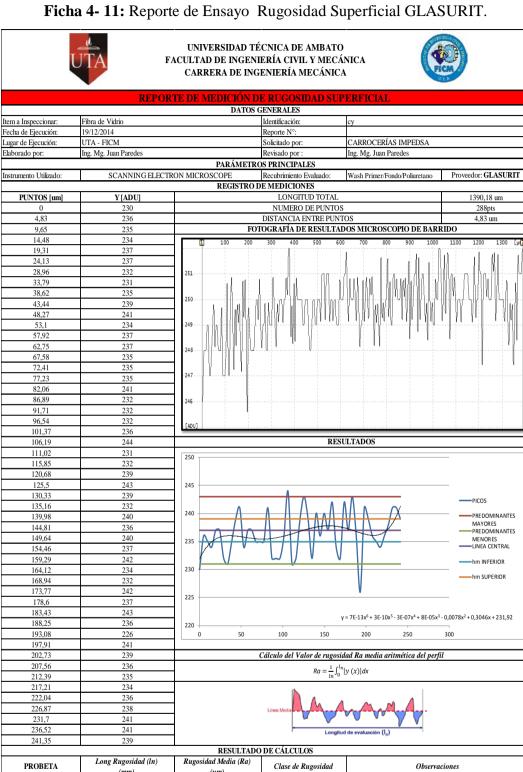
Ficha 4- 10: Reporte de Ensayo Rugosidad Superficial PPG.

Ficha 4- 11: Reporte de Ensayo Rugosidad Superficial GLASURIT.

FECHA DE REVISIÓN

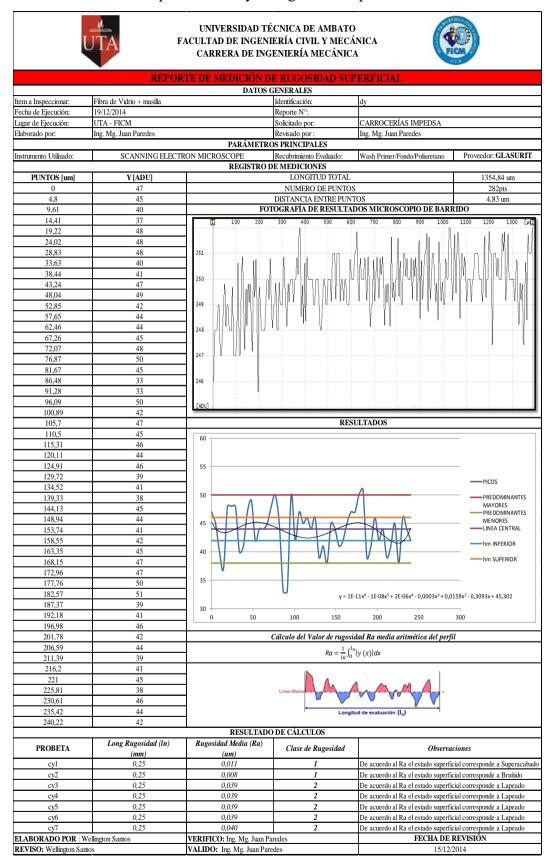
15/12/2014

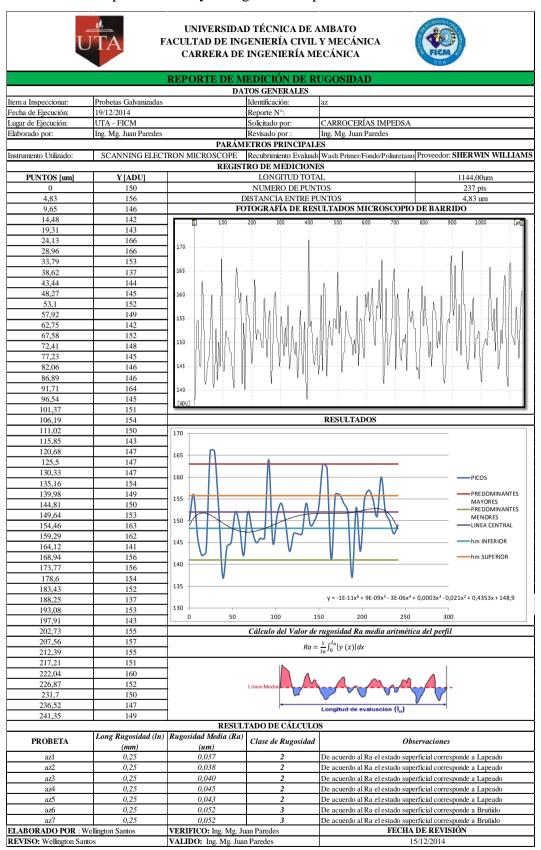

VERIFICO: Ing. Mg. Juan Paredes


VALIDO: Ing. Mg. Juan Paredes

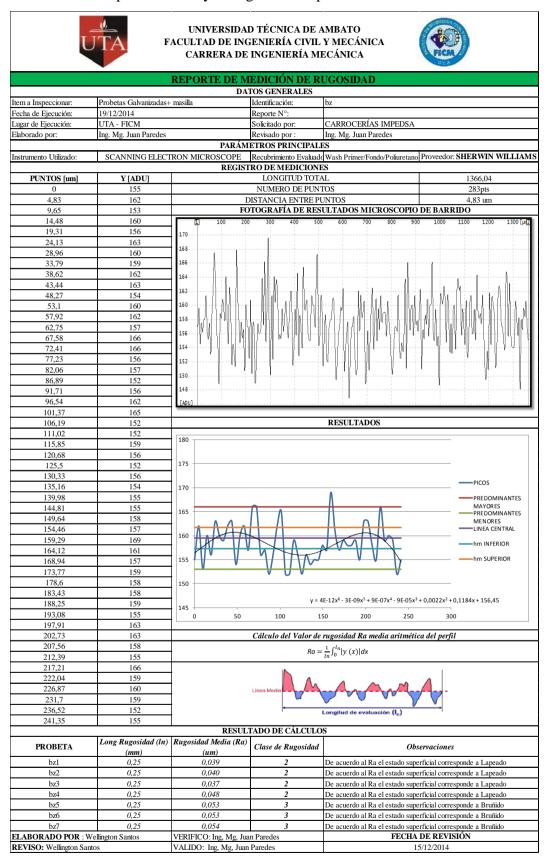
ELABORADO POR: Wellington S

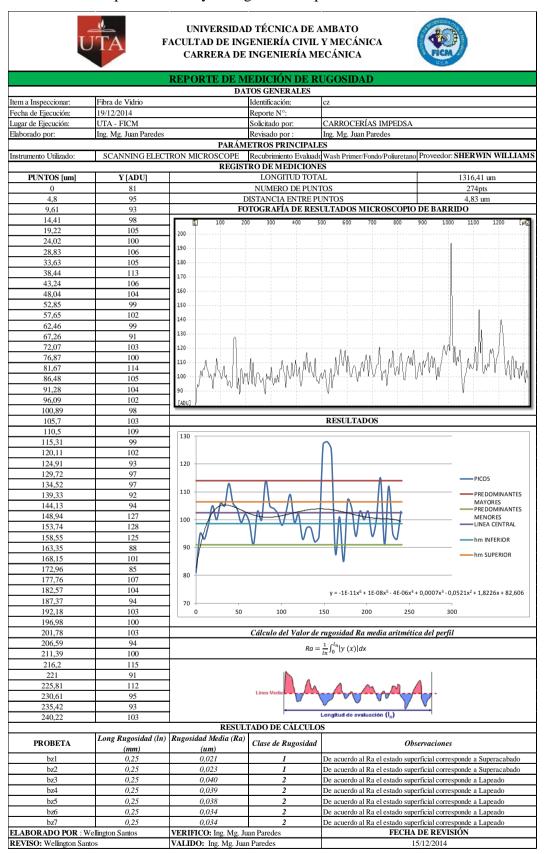
REVISO: Wellington Santos

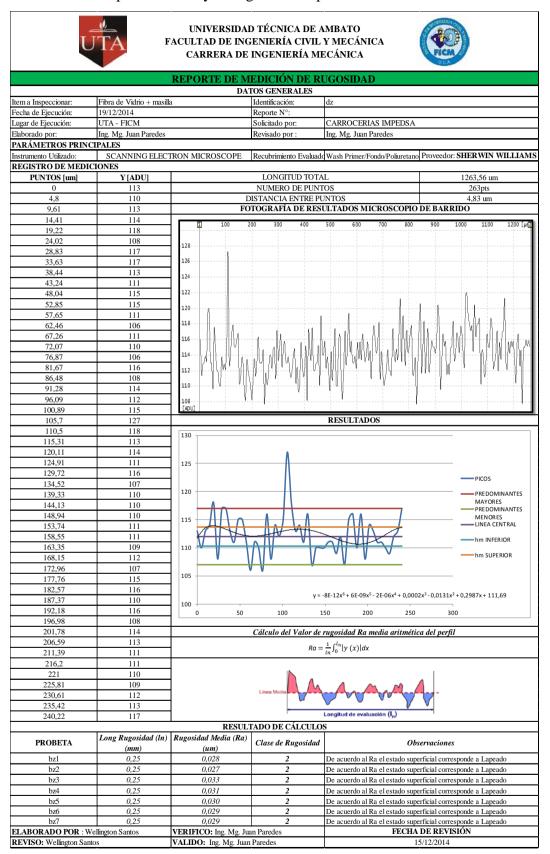

Ficha 4-11: Reporte de Ensayo Rugosidad Superficial GLASURIT.



RESULTADO DE CÁLCULOS							
PROBETA	Long Rugosidad (ln) (mm)	Rugosidad Media (Ra) (um)	Clase de Rugosidad	Observaciones			
cy1	0,25	0,058	3	De acuerdo al Ra el estado superficial corresponde a Bruñido			
cy2	0,25	0,062	3	De acuerdo al Ra el estado superficial corresponde a Bruñido			
cy3	0,25	0,045	2	De acuerdo al Ra el estado superficial corresponde a Lapeado			
cy4	0,25	0,034	2	De acuerdo al Ra el estado superficial corresponde a Lapeado			
cy5	0,25	0,037	2	De acuerdo al Ra el estado superficial corresponde a Lapeado			
суб	0,25	0,033	2	De acuerdo al Ra el estado superficial corresponde a Lapeado			
cy7	0,25	0,030	2	De acuerdo al Ra el estado superficial corresponde a Lapeado			
ELABORADO POR: Wellington Santos		VERIFICO: Ing. Mg. Juan Paredes		FECHA DE REVISIÓN			
REVISO: Wellington Santos		VALIDO: Ing. Mg. Juan Paredes		15/12/2014			


Ficha 4-11: Reporte de Ensayo Rugosidad Superficial GLASURIT.


Ficha 4- 12: Reporte de Ensayo Rugosidad Superficial SHERWIN WILLIAMS.


Ficha 4- 12: Reporte de Ensayo Rugosidad Superficial SHERWIN WILLIAMS.

Ficha 4- 12: Reporte de Ensayo Rugosidad Superficial SHERWIN WILLIAMS.

Ficha 4- 12: Reporte de Ensayo Rugosidad Superficial SHERWIN WILLIAMS.

4.1.6 Durabilidad

4.1.6.1 Envejecimiento Acelerado

"Un factor importante en el aspecto decorativo de una película de pintura es el color y la retención del mismo durante la vida útil (envejecimiento). La determinación se puede realizar por comparación visual con una carta de colores." (Pereyra & Giudice, pág. 10)

En este estudio se realizaron pruebas de envejecimiento acelerado en la cámara de ARCO DE XENON, se realizaron mediciones antes y después de la prueba de envejecimiento.

Para obtener los resultados de Envejecimiento Acelerado de Superficies Pintadas se realizó el estudio en el Centro de Investigación Aplicadas a Polímeros de la Universidad Politécnica Nacional.

Para esta fase del proyecto de tesis se construyeron probetas en diferentes materiales como Galvanizado, Galvanizado + Masilla, Fibra de Vidrio y Fibra de Vidrio + Masilla a las cuales se les aplico tres procesos de pintura (PPG, GLASURIT y SHERWIN WILLIAMS), cada probeta tiene un código el cual se detalla en la siguiente tabla.

Tabla 4- 14:: Codificación de las Probetas en Estudio.

PROBETAS PARA ENSAYOS						
DENOMINACIÓN	PINTURA	MATERIAL	CÓDIGO			
	a	Galvanizado	ax			
x	PPG	b	Galvanizado+Masilla	bx		
Λ	rrG	С	Fibra de Vidrio	cx		
		d	Fibra de Vidrio+Masilla	dx		
		a	Galvanizado	ay		
v	GLASURIT	b	Galvanizado+Masilla	by		
ı		С	Fibra de Vidrio	cy		
		d	Fibra de Vidrio+Masilla	dy		
		a	Galvanizado	az		
Z	SHERWIN	b	Galvanizado+Masilla	bz		
	WILLIAMS	С	Fibra de Vidrio	cz		
		d	Fibra de Vidrio+Masilla	dz		

Ficha 4- 13: Reporte de Ensayo de Envejecimiento Acelerado PPG.

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

DI	EDODTE DE ENCAVO I	DE ENVETECIMIENTO	ACELEDADO	
R	EPORTE DE ENSAYO I		JACELEKADU -	
T. T.		ATOS GENERALES		
Item a Inspeccionar:	Sustratos base	Identificación:	X	
Fecha de Ejecución:	22/12/2014	Reporte N°:		
Lugar de Ejecución:	PPG	Solicitado por:	UTA - FICM	
Elaborado por:	Wellington Santos	Revisado por :	Ing. Mg. Juan Par	redes
		METROS PRINCIPALES	T	
Instrumento Utilizado:	CAMARA DE ARCO DE XENON		RapidMatch	<u> </u>
Normas de Referencia:	ASTM G 155	Proveedor:	PPG	
Recubrimiento Evaluado	Wash Primer / Fondo de Relleno /			
	EGISTRO DE MEDICIONES AN	1	1	1 .
PROBETA	LECTURA 1(L a 25°)	LECTURA 2(L a 45°)	LECTURA 3(L a 75°)	PROMEDIO
ax2	97,66	97,58	97,73	97,66
ax4	97,86	97,92	97,61	97,80
ax7	97,27	97,20	97,37	97,28
	RO DE MEDICIONES ANTES I			
bx2	97,49	97,26	97,51	97,42
bx4	97,76	97,48	98,16	97,80
bx7	97,84	97,67	98,05	97,85
	GISTRO DE MEDICIONES AN			07.20
cx2	97,31	97,16	97,40	97,29
cx4	97,53 97,38	97,37	97,83 97,53	97,58 97,39
cx7	O DE MEDICIONES ANTES D	97,27		
dx2	97,67	97,42	97,91	97,67
dx4	97,56	97,42	97,91	97,63
dx7	97.28	97.08	97.54	97,30
-	etas medidas antes de entrar a la cár	,		
98,16)	etas medidas antes de entrar a la car	nara de envejeemmento decierado t	ichen un niver de laninosada	enare (>1,00 y
	GISTRO DE MEDICIONES DE	SPUES DEL ENVEJECIMIEN	TO (GALVANIZADO)	
PROBETA	LECTURA 1(L a 25°)	LECTURA 2(L a 45°)	LECTURA 3(La 75°)	PROMEDIO
ax2	96,30	96,21	96,36	96,29
ax4	96,38	96,23	96,25	96,29
ax7	96,29	95,93	96,30	96,17
REGISTR	O DE MEDICIONES DESPUES	DEL ENVEJECIMIENTO (G.	ALVANIZADO + MASILL	A)
bx2	96,39	96,19	96,42	96,33
bx4	96,43	96,35	97,19	96,66
bx7	96,76	96,51	97,12	96,80
REGI	ISTRO DE MEDICIONES DESI			•
cx2	96,23	96,05	96,38	96,22
cx4	96,39	96,27	96,54	96,40
cx7	96,31	96,12	96,48	96,30
	DE MEDICIONES DESPUES I	1		7
dx2	96,54	96,23	96,83	96,53
dx4	96,50	96,34	96,88	96,57
dx7	96,30	95,93	96,39	96,21
-	etas medidas después de entrar a la	camara de envejecimiento acelerad	to tienen un nivel de luminosida	ad entre (95,93 y
97,19)	W B . C .	VEDIEICO.	7 17 7 %	1
ELABORADO POR :	Wellington Santos	VERIFICO:	Ing. Mg. Juan Par	
REVISO:	Wellington Santos	VALIDO:	Ing. Mg. Juan Par	redes

Ficha 4- 14: Reporte de Ensayo de Envejecimiento Acelerado GLASURIT.

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

			UTA	
R	EPORTE DE ENSAYO I	DE ENVEJECIMIENTO	O ACELERADO	
	DA	ATOS GENERALES		
Item a Inspeccionar:	Sustratos base	Identificación:	У	
Fecha de Ejecución:	22/12/2014	Reporte N°:	j	
Lugar de Ejecución:	PPG	Solicitado por:	UTA - FICM	1
Elaborado por:	Wellington Santos	Revisado por :	Ing. Mg. Juan Pa	redes
•		METROS PRINCIPALES		
Instrumento Utilizado:	CAMARA DE ARCO DE XENON	Instrumento Medición:	RapidMatch	
Normas de Referencia:	ASTM G 155	Proveedor:	GLASURIT	
Recubrimiento Evaluado	Wash Primer / Fondo de Relleno /	Poliuretano Blanco		
RI	EGISTRO DE MEDICIONES AI	NTES DEL ENVEJECIMIENT	O (GALVANIZADO)	
PROBETA	LECTURA 1(L a 25°)	LECTURA 2(L a 45°)	LECTURA 3(L a 75°)	PROMEDIO
ay2	97,39	97,32	97,47	97,39
ay4	97,65	97,56	97,68	97,63
ay7	97.42	97.28	97,52	97,41
	RO DE MEDICIONES ANTES I	DEL ENVEJECIMIENTO (GA	LVANIZADO + MASILLA	
by2	97,81	97,70	97,08	97,53
by4	97,56	97,46	98,00	97,67
by7	97,38	97.24	97.44	97,35
·	GISTRO DE MEDICIONES AN		,	31,50
cy2	97,22	97,16	97,41	97,26
cy4	97,29	97,10	97,58	97,33
·	97,29	97,11	97,60	97,35
cy7	O DE MEDICIONES ANTES D		,	/
		1		
dy2	97,35 97,22	97,24 97,06	97,72 97,40	97,44 97,23
dy4	·	·	,	
dy7	97,62 etas medidas antes de entrar a la cár	97,49	97,61	97,57
98,00)	etas medidas ames de emitar a la car	nara de envejecimiento acelerado (ienen un niver de Turimosidad	enine (97,00 y
RI	EGISTRO DE MEDICIONES DES	PUES DEL ENVEJECIMIENTO	O (GALVANIZADO)	
PROBETA	LECTURA 1(L a 25°)	LECTURA 2(L a 45°)	LECTURA 3(L a 75°)	PROMEDIO
ay2	96,87	96,79	96,92	96,86
ay4	97,05	96,92	97,12	97,03
ay7	96,78	96,73	96,95	96,82
	O DE MEDICIONES DESPUES		,	/
by2	97,24	97,12	96,86	97,07
by4	97,10	96,88	97,54	97,17
by7	96,88	96,78	97,91	97,19
	ISTRO DE MEDICIONES DESI	·	·	77,17
		1	1	06.74
cy2	96,77	96,57	96,89	96,74
cy4	96,69	96,56	96,93	96,73
cy7	96,81	96,70	97,08	96,86
	DE MEDICIONES DESPUES I	1	l .	
dy2	96,84	96,74	97,18	96,92
dy4	96,71	96,15	96,86	96,57
dy7	97,17	96,92	97,22	97,10
Observaciones: Las probluminosidad entre (96,15 y	etas medidas después de entrar a la	cámara de envejecimiento acelerad	lo tienen un nivel de	
		VEDIEICO.	L. M. L. B	
ELABORADO POR :	Wellington Santos	VERIFICO:	Ing. Mg. Juan Pa	
REVISO:	Wellington Santos	VALIDO:	Ing. Mg. Juan Pa	reaes

Ficha 4- 15: Reporte de Ensayo de Envejecimiento Acelerado SHERWIN WILLIAMS.

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA

R	EPORTE DE ENSAYO I	DE ENVEJECIMIENTO	O ACELERADO	
	D.A.	ATOS GENERALES		
Item a Inspeccionar:	Sustratos base	Identificación:	Z	
Fecha de Ejecución:	22/12/2014	Reporte N°:		
Lugar de Ejecución:	PPG	Solicitado por:	UTA - FICM	1
Elaborado por:	Wellington Santos	Revisado por :	Ing. Mg. Juan Pa	redes
		METROS PRINCIPALES	1	
Instrumento Utilizado:	CAMARA DE ARCO DE XENO		RapidMatch	
Normas de Referencia:	ASTM G 155	Proveedor:	SHERWIN WILI	<u>IAMS</u>
Recubrimiento Evaluado	Wash Primer / Fondo de Relleno /		O (CALVANIZADO)	
	EGISTRO DE MEDICIONES A	LECTURA 2(L a 45°)	LECTURA 3(L a 75°)	PROMEDIO
PROBETA az2	97,83	97,64	97,80	97,76
azz	98,04	97,70	97,80	97,76
az 4 az7	97,55	97,70	97,92	97,52
	TRO DE MEDICIONES ANTES		, .	
bz2	97,67	97,58	97,66	97,64
bz4	97,72	97,38	97,64	97,58
bz7	97,81	97,63	98,06	97,83
	CGISTRO DE MEDICIONES AN		,	71,05
cz2	97,81	97,51	97,72	97,68
cz4	97,82	97,69	97,95	97,82
cz7	97.77	97.64	97.80	97,74
	RO DE MEDICIONES ANTES D	, .	,	
dz2	97,65	97,21	97,59	97,48
dz4	97,57	97,36	97,57	97,50
dz7	97,25	97,00	97,13	97,13
Observaciones: Las pro	betas medidas antes de entrar a la cá	mara de envejecimiento acelerado	tienen un nivel de luminosidad e	entre (97 y
98,06)		•		-
RF	GISTRO DE MEDICIONES DE	SPUES DEL ENVEJECIMIEN	TO (GALVANIZADO)	
PROBETA	LECTURA 1(L a 25°)	LECTURA 2(L a 45°)	LECTURA 3(L a 75°)	PROMEDIO
az2	96,91	96,72	96,97	96,87
az4	97,13	96,87	97,13	97,04
az7	96,69	96,48	96,69	96,62
REGISTI	RO DE MEDICIONES DESPUES	DEL ENVEJECIMIENTO (G	ALVANIZADO + MASILL	A)
bz2	96,76	96,54	96,71	96,67
bz4	96,81	96,41	96,76	96,66
bz7	96,89	96,69	97,15	96,91
REC	GISTRO DE MEDICIONES DES	PUES DEL ENVEJECIMIENT	O (FIBRA DE VIDRIO)	
cz2	96,92	96,61	96,83	96,79
cz4	96,91	96,77	97,06	96,91
cz7		96,68	96.85	96,78
REGISTRO	96,80	90,08	70,03	20,70
	96,80 O DE MEDICIONES DESPUES I	<u> </u>	,	
dz2	<u>'</u>	<u> </u>	,	
	O DE MEDICIONES DESPUES	DEL ENVEJECIMIENTO (FIB	BRA DE VIDRIO + MASIL	LA)
dz2	O DE MEDICIONES DESPUES 96,76	DEL ENVEJECIMIENTO (FIR 96,34	BRA DE VIDRIO + MASIL 96,65	LA) 96,58
dz2 dz4 dz7	96,76 96,51	96,34 96,38 96,22	96,65 96,59 96,28	96,58 96,49 96,29
dz2 dz4 dz7	96,76 96,51 96,38	96,34 96,38 96,22	96,65 96,59 96,28	96,58 96,49 96,29
dz2 dz4 dz7 Observaciones: Las pro	96,76 96,51 96,38	96,34 96,38 96,22	96,65 96,59 96,28	96,58 96,49 96,29 ad entre (96,22 y

4.2 INTERPRETACIÓN DE RESULTADOS

4.2.1 Interpretación de los resultados de Espesor de Película Húmeda

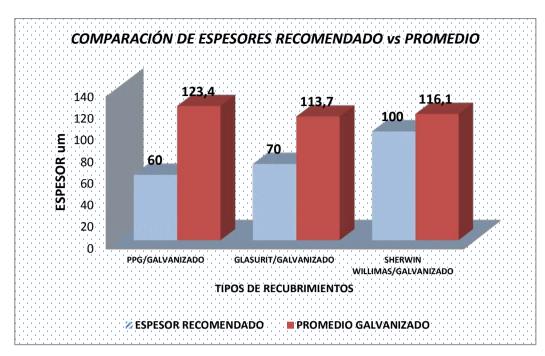

4.2.1.1 Resultados que se obtuvieron de la medición del Espesor de Película Húmeda

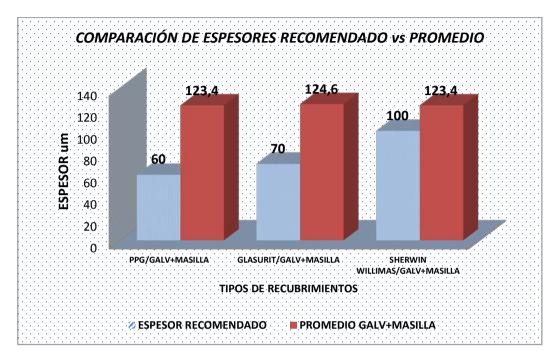
Tabla 4- 15: Resultado de los Ensayos de Espesor de Película Húmeda con los Procesos de Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado.

	INTERPRETACIÓN DE RESULTADOS EPH						
	ESPESOR DE I	PELÍCULA EN	HÚMEDO (GA	LVANIZADO)		
P	PG	GLAS	SURIT	SHERWIN	WILLIAMS		
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)		
ax1	118,5	ay1	118,5	az1	101,6		
ax2	127,0	ay2	110,1	az2	127,0		
ax3	118,5	ay3	118,5	az3	118,5		
ax4	110,1	ay4	118,5	az4	110,1		
ax5	135,5	ay5	110,1	az5	118,5		
ax6	118,5	ay6	118,5	az6	110,1		
ax7	135,5	ay7	101,6	az7	127,0		
PROMEDIO	123,4	PROMEDIO	113,7	PROMEDIO	116,1		
DESV. ESTÁNDAR	9,6	DESV. ESTÁNDAR	6,7	DESV. ESTÁNDAR	9,4		

(Fuente: Elaborado por Wellington Santos)

En la tabla 4-15 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **GLASURIT** sobre material galvanizado tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura PPG y SHERWIN WILLIAMS respectivamente. A continuación se compara el promedio de medición de espesores de película húmeda con el espesor recomendado por el proveedor de cada proceso de pintura respectivamente.

Gráfico 4- 5: Representación gráfica de los resultados de Espesores de Películas Húmeda, comparación de espesores Recomendados vs Promedio.

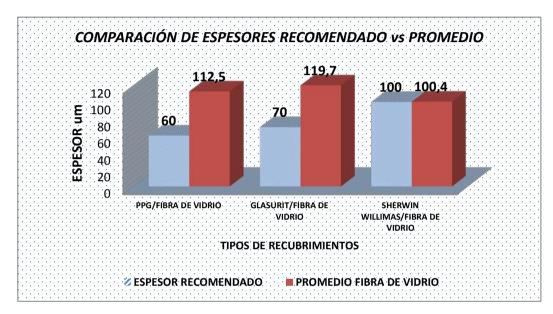

Tabla 4- 16: Resultado de los Ensayos de Espesor de Película Húmeda con los Procesos de Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado + Masilla.

	INTERPRETACIÓN DE RESULTADOS EPH						
ESPI	ESOR DE PELÍC	CULA EN HÚN	MEDO (GALVA)	NIZADO+MAS	SILLA)		
P	PG	GLA	SURIT	SHERWIN	WILLIAMS		
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)		
bx1	118,5	by1	135,5	bz1	135,5		
bx2	118,5	by2	118,5	bz2	118,5		
bx3	110,1	by3	118,5	bz3	110,1		
bx4	135,5	by4	127,0	bz4	143,9		
bx5	118,5	by5	118,5	bz5	110,1		
bx6	135,5	by6	118,5	bz6	127,0		
bx7	127,0	by7	135,5	bz7	118,5		
PROMEDIO	123,4	PROMEDIO	124,6	PROMEDIO	123,4		
DESV. ESTÁNDAR	9,6	DESV. ESTÁNDAR	8,1	DESV. ESTÁNDAR	12,8		

(Fuente: Elaborado por Wellington Santos)

En la tabla 4-16 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **GLASURIT** sobre material galvanizado + masilla tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura PPG y SHERWIN WILLIAMS respectivamente. A

continuación se compara el promedio de medición de espesores de película húmeda con el espesor recomendado por el proveedor de cada proceso de pintura respectivamente.

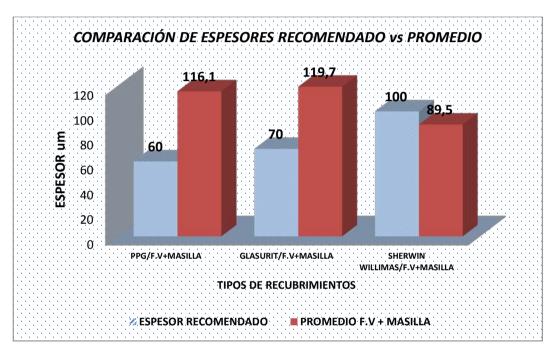

Gráfico 4- 6: Representación gráfica de los resultados de Espesores de Películas Húmeda, comparación de espesores Recomendados vs Promedio.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 17: Resultado de los Ensayos de Espesor de Película Húmeda con los Procesos de Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de Vidrio.

	INTERPRETACIÓN DE RESULTADOS EPH						
]	ESPESOR DE P	ELÍCULA EN I	HÚMEDO (FIB	RA DE VIDRI	0)		
P	PG	GLAS	SURIT	SHERWIN	WILLIAMS		
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)		
cx1	118,5	cy1	110,1	cz1	84,7		
cx2	127,0	cy2	135,5	cz2	93,1		
cx3	118,5	су3	118,5	cz3	101,6		
cx4	101,6	cy4	110,1	cz4	118,5		
cx5	110,1	cy5	127,0	cz5	93,1		
схб	118,5	суб	127,0	cz6	110,1		
cx7	93,1	cy7	110,1	cz7	101,6		
PROMEDIO	112,5	PROMEDIO	119,7	PROMEDIO	100,4		
DESV. ESTÁNDAR	11,7	DESV. ESTÁNDAR	10,3	DESV. ESTÁNDAR	11,4		

En la tabla 4-17 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **GLASURIT** sobre material Fibra de Vidrio tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura PPG y SHERWIN WILLIAMS respectivamente. A continuación se compara el promedio de medición de espesores de película húmeda con el espesor recomendado por el proveedor de cada proceso de pintura respectivamente.


Gráfico 4- 7: Representación gráfica de los resultados de Espesores de Películas Húmeda, comparación de espesores Recomendados vs Promedio.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 18: Resultado de los Ensayos de Espesor de Película Húmeda con los Procesos de Aplicación (PPG, GLASURITY SHERWIN WILLIAMS)sobre material Fibra de Vidrio + Masilla.

INTERPRETACIÓN DE RESULTADOS EPH						
OR DE PELÍCU	J <mark>LA EN HÚM</mark> I	EDO (FIBRA DE	VIDRIO + MA	ASILLA)		
PG	GLA	SURIT	SHERWIN	WILLIAMS		
RESULTADO	CÓDIGO	RESULTADO	CÓDIGO	RESULTADO		
(um)	CODIGO	(um)	CODIGO	(um)		
110,1	dy1	127,0	dz1	76,2		
110,1	dy2	118,5	dz2	84,7		
127,0	dy3	135,5	dz3	93,1		
127,0	dy4	110,1	dz4	93,1		
118,5	dy5	127,0	dz5	101,6		
110,1	dy6	101,6	dz6	84,7		
110,1	dy7	118,5	dz7	93,1		
116,1	PROMEDIO	119,7	PROMEDIO	89,5		
Q 1	DESV.	11.4	DESV.	Q 2		
0,1	ESTÁNDAR	11,4	ESTÁNDAR	8,3		
	COR DE PELÍCU PG RESULTADO (um) 110,1 110,1 127,0 127,0 118,5 110,1 110,1 116,1 8,1	OR DE PELÍCULA EN HÚMIPG RESULTADO (um) CÓDIGO 110,1 dy1 110,1 dy2 127,0 dy3 127,0 dy4 118,5 dy5 110,1 dy6 110,1 dy7 116,1 PROMEDIO 8,1 ESTÁNDAR	COR DE PELÍCULA EN HÚMEDO (FIBRA DE PG GLASURIT RESULTADO (um) CÓDIGO (um) 110,1 dy1 127,0 110,1 dy2 118,5 127,0 dy3 135,5 127,0 dy4 110,1 118,5 dy5 127,0 110,1 dy6 101,6 110,1 dy7 118,5 116,1 PROMEDIO 119,7 8,1 DESV. ESTÁNDAR 11,4	COR DE PELÍCULA EN HÚMEDO (FIBRA DE VIDRIO + MAPOR PG GLASURIT SHERWIN RESULTADO (um) CÓDIGO (um) CÓDIGO (um) 110,1 dy1 127,0 dz1 110,1 dy2 118,5 dz2 127,0 dy3 135,5 dz3 127,0 dy4 110,1 dz4 118,5 dy5 127,0 dz5 110,1 dy6 101,6 dz6 110,1 dy7 118,5 dz7 116,1 PROMEDIO 119,7 PROMEDIO PS 1 DESV. 11,4 DESV.		

En la tabla 4-18 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **PPG** sobre material Fibra de Vidrio + Masilla tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura GLASURIT y SHERWIN WILLIAMS respectivamente. A continuación se compara el promedio de medición de espesores de película húmeda con el espesor recomendado por el proveedor de cada proceso de pintura respectivamente.

Gráfico 4- 8: Representación gráfica de los resultados de Espesores de Películas Húmeda, comparación de espesores Recomendados vs Promedio.

(Fuente: Elaborado por Wellington Santos)

Mediante el Estudio Espesor de Película Húmeda (EPH) se ayuda al pintor y al inspector para el control de la cantidad de pintura depositada de forma que se alcance el espesor requerido en seco. En los Gráficos (4-5; 4-6; 4-7 y 4-8) se observa que los promedios de las medidas tomadas son mayores a las recomendadas este incremento se debe a la densidad y al diluyente que se adiciona a la pintura.

4.2.2 Interpretación de los resultados de Espesor de Película Seca

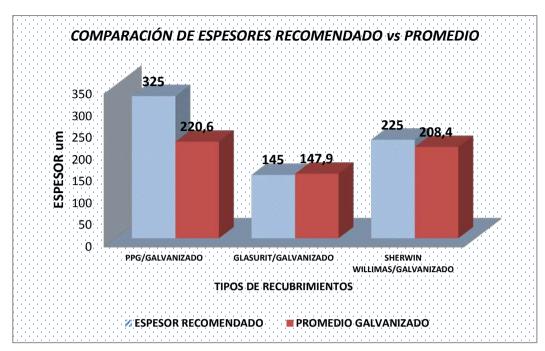

4.2.2.1 Resultados que se obtuvieron de la medición del Espesor de Película Seca

Tabla 4- 19: Resultado de los Ensayos de Espesor de Película Seca con los Procesos de Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado.

	INTERPRETACIÓN DE RESULTADOS EPS						
	PPG ESPESO	R DE PELÍCU	LA SECA (GAI	VANIZADO)			
P	PG	GLAS	SURIT	SHERWIN	WILLIAMS		
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)		
ax1	213,8	ay1	141,9	az1	206,7		
ax2	246,0	ay2	134,7	az2	210,4		
ax3	267,7	ay3	141,6	az3	199,7		
ax4	214,4	ay4	141,8	az4	212,0		
ax5	164,7	ay5	158,9	az5	207,8		
ax6	225,3	ay6	159,2	az6	210,8		
ax7	211,9	ay7	157,2	az7	211,7		
PROMEDIO	220,6	PROMEDIO	147,9	PROMEDIO	208,4		
DESV. ESTÁNDAR	32,1	DESV. ESTÁNDAR	10,2	DESV. ESTÁNDAR	4,3		

(Fuente: Elaborado por Wellington Santos)

En la tabla 4-19 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **SHERWIN WILLIAMS** sobre material Galvanizado tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura PPG y GLASURIT respectivamente. A continuación se compara el promedio de medición de espesores de película seca con el espesor recomendado por el proveedor de cada proceso de pintura respectivamente.

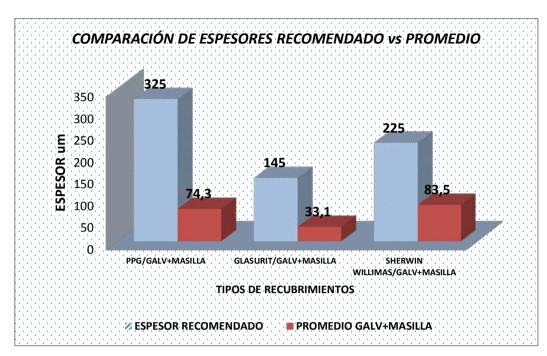

Gráfico 4- 9: Representación gráfica de los resultados de Espesores de Películas Seca, comparación de espesores Recomendados vs Promedio.

Tabla 4- 20: Resultado de los Ensayos de Espesor de Película Seca con los Procesos de Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado + Masilla.

	INTERPRETACIÓN DE RESULTADOS EPS							
E	ESPESOR DE PELÍCULA SECA (GALVANIZADO + MASILLA)							
P	PG	GLA	SURIT	SHERWIN	WILLIAMS			
CÓDIGO	RESULTADO	CÓDIGO RESULTADO		CÓDIGO	RESULTADO			
CODIGO	(um)	CODIGO	(um)	CODIGO	(um)			
bx1	90,4	by1	29,2	bz1	91,1			
bx2	84,3	by2	34,5	bz2	79,4			
bx3	48,1	by3	35,6	bz3	80,1			
PROMEDIO	74,3	PROMEDIO	33,1	PROMEDIO	83,5			
DESV.	22,9	DESV.	3,4	DESV.	6,6			
ESTÁNDAR	22,9	ESTÁNDAR	5,4	ESTÁNDAR	0,0			

(Fuente: Elaborado por Wellington Santos)

En la tabla 4-20 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **GLASURIT** sobre material Galvanizado + Masilla tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura PPG y SHERWIN WILLIAMS respectivamente. A continuación se compara el promedio de medición de espesores de película seca con el espesor recomendado por el proveedor de cada proceso de pintura respectivamente.

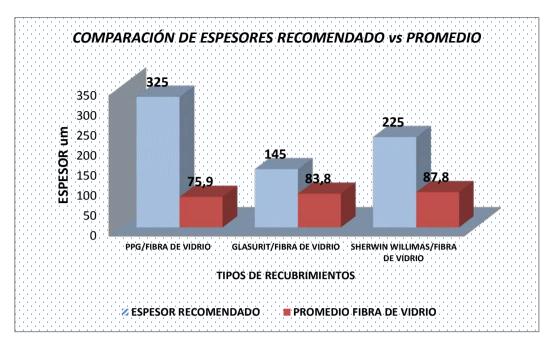

Gráfico 4- 10: Representación gráfica de los resultados de Espesores de Películas Seca, comparación de espesores Recomendados vs Promedio.

Tabla 4- 21: Resultado de los Ensayos de Espesor de Película Seca con los Procesos de Aplicación (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de Vidrio.

INTERPRETACIÓN DE RESULTADOS EPS							
	ESPESOR D	E PELÍCULA	SECA (FIBRA	DE VIDRIO)			
P	PG	GLAS	SURIT	SHERWIN	WILLIAMS		
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)		
cx1	74,2	cy1	85,1	cz1	93,9		
cx2	81,3	cy2	83,5	cz2	81,4		
cx3	72,1	су3	82,7	cz3	88,2		
PROMEDIO	75,9	PROMEDIO	83,8	PROMEDIO	87,8		
DESV. ESTÁNDAR	4,8	DESV. ESTÁNDAR	1,3	DESV. ESTÁNDAR	6,3		

(Fuente: Elaborado por Wellington Santos)

En la tabla 4-21 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **GLASURIT** sobre material Fibra de Vidrio tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura PPG y SHERWIN WILLIAMS respectivamente. A continuación se compara el promedio de medición de espesores de película seca con el espesor recomendado por el proveedor de cada proceso de pintura respectivamente.

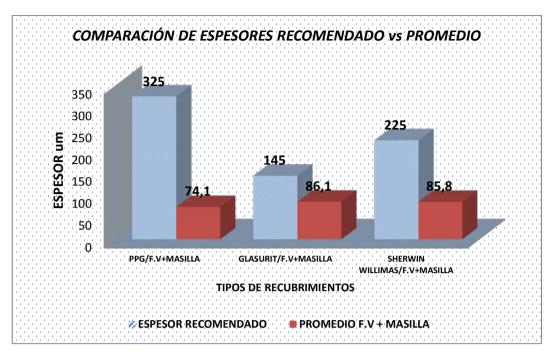

Gráfico 4- 11: Representación gráfica de los resultados de Espesores de Películas Seca, comparación de espesores Recomendados vs Promedio.

Tabla 4- 22: Resultado de los Ensayos de Espesor de Película Seca con los Procesos de Aplicación (PPG, GLASURITY SHERWIN WILLIAMS)sobre material Fibra de Vidrio + Masilla.

	INTERPRETACIÓN DE RESULTADOS EPS							
ES	ESPESOR DE PELÍCULA SECA (FIBRA DE VIDRIO + MASILLA)							
P.	PG	GLA	SURIT	SHERWIN	WILLIAMS			
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)			
dx1	77,4	dy1	88,5	dz1	93,6			
dx2	81,0	dy2	85,1	dz2	83,6			
dx3	63,9	dy3	84,6	dz3	80,2			
PROMEDIO	74,1	PROMEDIO	86,1	PROMEDIO	85,8			
DESV. ESTÁNDAR	9,0	DESV. ESTÁNDAR	2,1	DESV. ESTÁNDAR	6,9			

(Fuente: Elaborado por Wellington Santos)

En la tabla 4-22 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **GLASURIT** sobre material Fibra de Vidrio + Masilla tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura PPG y SHERWIN WILLIAMS respectivamente. A continuación se compara el promedio de medición de espesores de película seca con el espesor recomendado por el proveedor de cada proceso de pintura respectivamente.

Gráfico 4- 12: Representación gráfica de los resultados de Espesores de Películas Seca, comparación de espesores Recomendados vs Promedio.

En los Gráficos (4-9; 4-10; 4-11 y 4-12), se observa la comparación de las medidas de espesor de Película Seca Recomendadas vs el espesor de película seca Promedio en micras (um) que se obtuvo en nuestro estudio, Observando así que el recubrimiento de pintura **GLASURIT** obtuvo los valores más cercanos a los recomendados por las diferentes marcas de recubrimientos después de haber realizado el estudio de espesor de película seca en las diferentes probetas.

4.2.3 Interpretación de los resultados de Adherencia de Pintura por Cinta

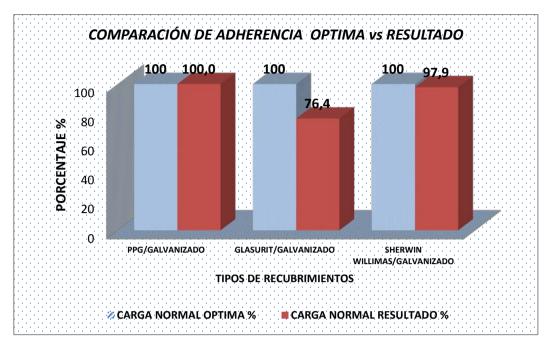

4.2.3.1 Resultados que se obtuvieron en el Estudio de Adherencia de Pintura por Cinta

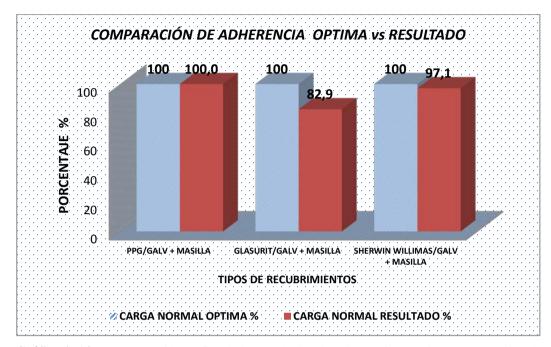
Tabla 4- 23: Resultado de los Ensayos de Adherencia por Cinta en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado.

	INTERPRETACIÓN DE RESULTADOS APC								
	ADHERENCIA POR CINTA (GALVANIZADO)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)				
ax1	100	ay1	100	az1	100				
ax2	100	ay2	85	az2	100				
ax3	100	ay3	100	az3	95				
ax4	100	ay4	85	az4	100				
ax5	100	ay5	35	az5	95				
ax6	100	ay6	65	az6	100				
ax7	100	ay7	65	az7	95				
PROMEDIO	100,0	PROMEDIO	76,4	PROMEDIO	97,9				
DESV. ESTÁNDAR	0,0	DESV. ESTÁNDAR	23,2	DESV. ESTÁNDAR	2,7				

(Fuente: Elaborado por Wellington Santos)

En la tabla 4-23 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **PPG** sobre material Galvanizado tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura GLASURIT y SHERWIN WILLIAMS respectivamente. Observando así que el recubrimiento de pintura PPG tiene mejor adherencia sobre material galvanizado con respecto a los otros recubrimientos. A continuación se compara la carga normal optima con la carga normal del resultado obtenido después de estudio realizado en los diferentes recubrimientos.

Gráfico 4- 13: Representación gráfica de los resultados de Adherencia por Cinta , comparación de carga normal Optima vs Resultado.

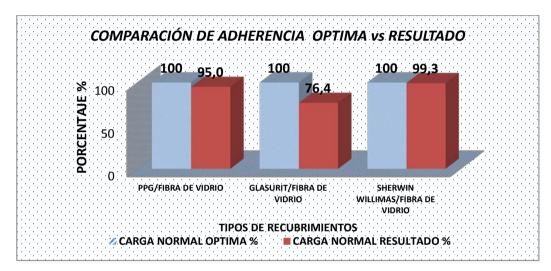

Tabla 4- 24: Resultado de los Ensayos de Adherencia por Cinta en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado + Masilla.

	INTERPRETACIÓN DE RESULTADOS APC								
	ADHERENCIA POR CINTA (GALVANIZADO + MASILLA)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)				
bx1	100	by1	85	bz1	100				
bx2	100	by2	85	bz2	85				
bx3	100	by3	35	bz3	100				
bx4	100	by4	100	bz4	100				
bx5	100	by5	95	bz5	95				
bx6	100	by6	95	bz6	100				
bx7	100	by7	85	bz7	100				
PROMEDIO	100,0	PROMEDIO	82,9	PROMEDIO	97,1				
DESV. ESTÁNDAR	0,0	DESV. ESTÁNDAR	22,0	DESV. ESTÁNDAR	5,7				

(Fuente: Elaborado por Wellington Santos)

En la tabla 4-24 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **PPG** sobre material Galvanizado + Masilla tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura GLASURIT y SHERWIN WILLIAMS respectivamente. Observando así que el recubrimiento de pintura PPG tiene mejor adherencia sobre material

galvanizado con respecto a los otros recubrimientos. A continuación se compara la carga normal optima con la carga normal del resultado obtenido después de estudio realizado en los diferentes recubrimientos.

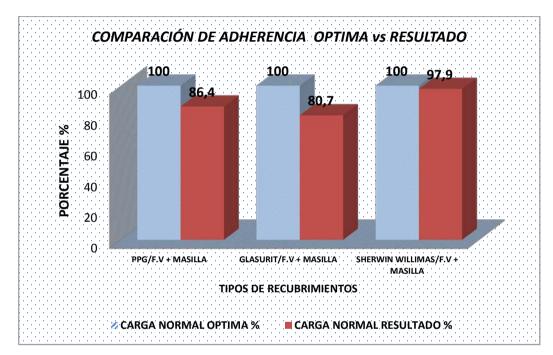

Gráfico 4- 14: Representación gráfica de los resultados de Adherencia por Cinta , comparación de carga normal Optima vs Resultado.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 25: Resultado de los Ensayos de Adherencia por Cinta en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de Vidrio.

	INTERPRETACIÓN DE RESULTADOS APC								
	ADHERENCIA POR CINTA (FIBRA DE VIDRIO)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)				
cx1	100	cy1	100	cz1	100				
cx2	85	cy2	85	cz2	100				
cx3	95	cy3	100	cz3	100				
cx4	95	cy4	85	cz4	100				
cx5	95	cy5	35	cz5	100				
схб	100	суб	65	cz6	100				
cx7	95	cy7	65	cz7	95				
PROMEDIO	95,0	PROMEDIO	76,4	PROMEDIO	99,3				
DESV. ESTÁNDAR	5,0	DESV. ESTÁNDAR	23,2	DESV. ESTÁNDAR	1,9				

En la tabla 4-25 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **SHERWIN WILLIAMS** sobre material Fibra de Vidrio tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura GLASURIT y PPG respectivamente. Observando así que el recubrimiento de pintura SHERWIN WILLIAMS tiene mejor adherencia sobre material galvanizado con respecto a los otros recubrimientos. A continuación se compara la carga normal optima con la carga normal del resultado obtenido después de estudio realizado en los diferentes recubrimientos.


Gráfico 4- 15: Representación gráfica de los resultados de Adherencia por Cinta , comparación de carga normal Optima vs Resultado.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 26: Resultado de los Ensayos de Adherencia por Cinta en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de Vidrio + Masilla.

	INTERPRETACIÓN DE RESULTADOS APC								
A	ADHERENCIA POR CINTA (FIBRA DE VIDRIO + MASILLA)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)				
dx1	65	dy1	85	dz1	95				
dx2	95	dy2	85	dz2	100				
dx3	95	dy3	85	dz3	95				
dx4	95	dy4	95	dz4	100				
dx5	65	dy5	85	dz5	95				
dx6	95	dy6	35	dz6	100				
dx7	95	dy7	95	dz7	100				
PROMEDIO	86,4	PROMEDIO	80,7	PROMEDIO	97,9				
DESV. ESTÁNDAR	14,6	DESV. ESTÁNDAR	20,7	DESV. ESTÁNDAR	2,7				

En la tabla 4-26 se observa mediante su desviación entandar, que las probetas aplicadas con el proceso de pintura **SHERWIN WILLIAMS** sobre material Fibra de Vidrio tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura GLASURIT y PPG respectivamente. Observando así que el recubrimiento de pintura SHERWIN WILLIAMS tiene mejor adherencia sobre material galvanizado con respecto a los otros recubrimientos. A continuación se compara la carga normal optima con la carga normal del resultado obtenido después de estudio realizado en los diferentes recubrimientos.

Gráfico 4- 16: Representación gráfica de los resultados de Adherencia por Cinta , comparación de carga normal Optima vs Resultado.

(Fuente: Elaborado por Wellington Santos)

En los Gráficos (4-13; 4-14; 4-15 y 4-16), se observa la comparación de la carga normal de aceptación con el resultado obtenido según los criterios de la Norma ASTM D3359 método B, Observando así que el Recubrimiento **PPG** tiene mayor resistencia a la adhesión de cada capa del recubrimiento individualmente y entre capa y capa, esto sobre sustrato Galvanizado y Galvanizado+Masilla respectivamente. También se observa que el Recubrimiento **SHERWIN WILLIAMS** tiene mayor resistencia a la adhesión de cada capa del recubrimiento

individualmente y entre capa y capa, esto sobre sustrato Fibra de Vidrio y Fibra de Vidrio+Masilla respectivamente.

4.2.4 Interpretación de los resultados de Rugosidad Superficial

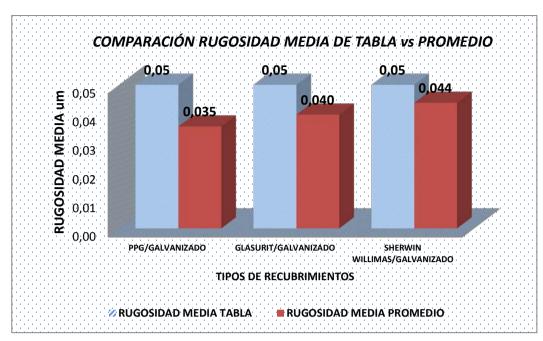

4.2.4.1 Resultados que se obtuvieron en el Estudio de Rugosidad de Superficies Pintadas

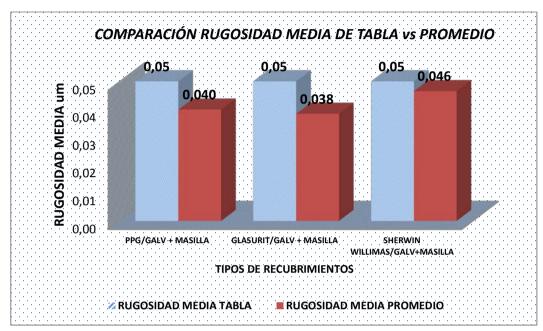
Tabla 4- 27: Resultado de los Ensayos de Rugosidad Superficial en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado.

INTERPRETACIÓN DE RESULTADOS									
	VALORES DE RUGOSIDAD MEDIA (Ra) (GALVANIZADO)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)				
ax1	0,031	ay1	0,045	az1	0,037				
ax2	0,029	ay2	0,039	az2	0,038				
ax3	0,029	ay3	0,037	az3	0,040				
ax4	0,036	ay4	0,040	az4	0,045				
ax5	0,040	ay5	0,038	az5	0,043				
ax6	0,040	ay6	0,039	az6	0,052				
ax7	0,043	ay7	0,039	az7	0,052				
PROMEDIO	0,035	PROMEDIO	0,040	PROMEDIO	0,044				
DESV. ESTADAR	0,006	DESV. ESTADAR	0,003	DESV. ESTADAR	0,006				

(Fuente: Elaborado por Wellington Santos)

En la tabla 4-27 se observa mediante su desviación estándar, que las probetas aplicadas con el proceso de pintura **GLASURIT** sobre material Galvanizado tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura PPG y SHERWIN WILLIAMS respectivamente. Observando así que el recubrimiento de pintura GLASURIT tiene un mejor acabado superficial sobre material galvanizado con respecto a los otros recubrimientos. A continuación se compara el valor de Rugosidad Media de tabla con el valor de rugosidad promedio obtenido después de estudio realizado en los diferentes recubrimientos.

Gráfico 4- 17: Representación gráfica de los resultados de Rugosidad Superficial , comparación de Rugosidad Media de Tabla vs Resultado.

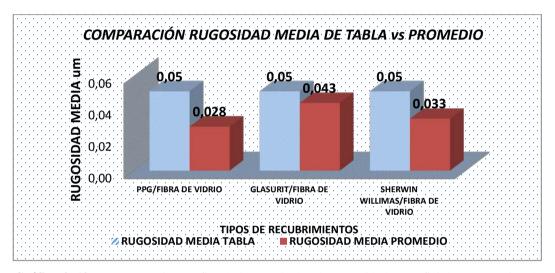

Tabla 4- 28: Resultado de los Ensayos de Rugosidad Superficial en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado+Masilla.

INTERPRETACIÓN DE RESULTADOS									
VALO	VALORES DE RUGOSIDAD MEDIA (Ra) (GALVANIZADO + MASILLA)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)				
bx1	0,036	by1	0,052	bz1	0,039				
bx2	0,035	by2	0,043	bz2	0,040				
bx3	0,035	by3	0,041	bz3	0,037				
bx4	0,048	by4	0,025	bz4	0,048				
bx5	0,046	by5	0,023	bz5	0,053				
bx6	0,042	by6	0,042	bz6	0,053				
bx7	0,037	by7	0,044	bz7	0,054				
PROMEDIO	0,040	PROMEDIO	0,038	PROMEDIO	0,046				
DESV. ESTADAR	0,006	DESV. ESTADAR	0,011	DESV. ESTADAR	0,007				

(**Fuente:** Elaborado por Wellington Santos)

En la tabla 4-28 se observa mediante su desviación estándar, que las probetas aplicadas con el proceso de pintura **PPG** sobre material Galvanizado tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura GLASURIT y SHERWIN WILLIAMS respectivamente. Observando así que el

recubrimiento de pintura PPG tiene un mejor acabado superficial sobre material galvanizado con respecto a los otros recubrimientos. A continuación se compara el valor de Rugosidad Media de tabla con el valor de rugosidad promedio obtenido después de estudio realizado en los diferentes recubrimientos.

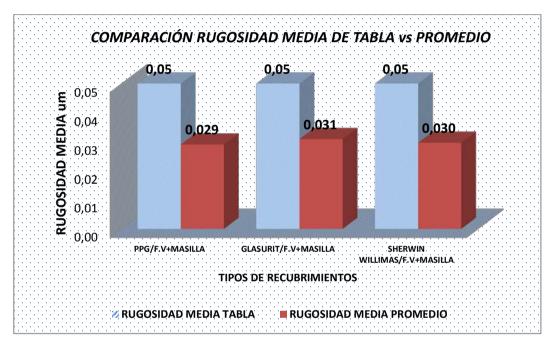

Gráfico 4- 18: Representación gráfica de los resultados de Rugosidad Superficial , comparación de Rugosidad Media de Tabla vs Resultado.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 29: Resultado de los Ensayos de Rugosidad Superficial en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de Vidrio.

	INTERPRETACIÓN DE RESULTADOS								
7	VALORES DE RUGOSIDAD MEDIA (Ra) (FIBRA DE VIDRIO)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)	CÓDIGO	RESULTADO (um)				
cx1	0,037	cy1	0,058	cz1	0,021				
cx2	0,038	cy2	0,062	cz2	0,023				
cx3	0,023	су3	0,045	cz3	0,040				
cx4	0,025	cy4	0,034	cz4	0,039				
cx5	0,023	cy5	0,037	cz5	0,038				
схб	0,025	суб	0,033	cz6	0,034				
cx7	0,024	су7	0,030	cz7	0,034				
PROMEDIO	0,028	PROMEDIO	0,043	PROMEDIO	0,033				
DESV. ESTADAR	0,007	DESV. ESTADAR	0,013	DESV. ESTADAR	0,008				

En la tabla 4-29 se observa mediante su desviación estándar, que las probetas aplicadas con el proceso de pintura **PPG** sobre material Galvanizado tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura GLASURIT y SHERWIN WILLIAMS respectivamente. Observando así que el recubrimiento de pintura PPG tiene un mejor acabado superficial sobre material galvanizado con respecto a los otros recubrimientos. A continuación se compara el valor de Rugosidad Media de tabla con el valor de rugosidad promedio obtenido después de estudio realizado en los diferentes recubrimientos.


Gráfico 4- 19: Representación gráfica de los resultados de Rugosidad Superficial, comparación de Rugosidad Media de Tabla vs Resultado.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 30: Resultado de los Ensayos de Rugosidad Superficial en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material F.V. + Masilla.

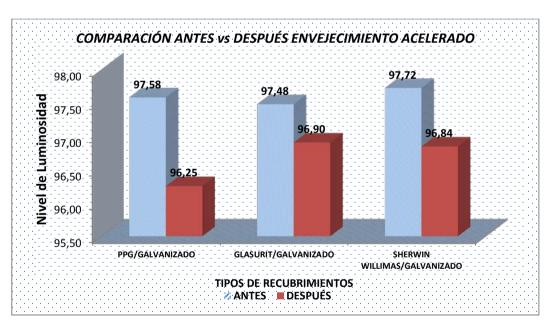
	INTERPRETACIÓN DE RESULTADOS								
VALOR	VALORES DE RUGOSIDAD MEDIA (Ra) (FIBRA DE VIDRIO + MASILLA)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO	CÓDIGO	RESULTADO	CÓDIGO	RESULTADO				
CODIGO	(um)	CODIGO	(um)	CODIGO	(um)				
dx1	0,027	dy1	0,011	dz1	0,028				
dx2	0,029	dy2	0,008	dz2	0,027				
dx3	0,031	dy3	0,039	dz3	0,033				
dx4	0,030	dy4	0,039	dz4	0,031				
dx5	0,027	dy5	0,039	dz5	0,030				
dx6	0,029	dy6	0,039	dz6	0,029				
dx7	0,029	dy7	0,040	dz7	0,029				
PROMEDIO	0,029	PROMEDIO	0,031	PROMEDIO	0,030				
DESV. ESTADAR	0,001	DESV. ESTADAR	0,014	DESV. ESTADAR	0,002				

En la tabla 4-30 se observa mediante su desviación estándar, que las probetas aplicadas con el proceso de pintura **PPG** sobre material Galvanizado tienen menos variabilidad con respecto a las probetas aplicadas con el proceso de pintura GLASURIT y SHERWIN WILLIAMS respectivamente. Observando así que el recubrimiento de pintura PPG tiene un mejor acabado superficial sobre material galvanizado con respecto a los otros recubrimientos. A continuación se compara el valor de Rugosidad Media de tabla con el valor de rugosidad promedio obtenido después de estudio realizado en los diferentes recubrimientos.

Gráfico 4- 20: Representación gráfica de los resultados de Rugosidad Superficial, comparación de Rugosidad Media de Tabla vs Resultado.

(Fuente: Elaborado por Wellington Santos)

En los Gráficos (4-17; 4-18; 4-19 y 4-20), se observa la comparación de Rugosidad Media de Tablas vs el valor Promedio que se obtuvo en nuestro estudio, Observando así que el recubrimiento de pintura **PPG** obtuvo los valores más bajos a los de Rugosidad Media de Tablas, esto nos indica que la clase de trabajo final de la superficie es mejor que el de los otros recubrimientos, después de haber realizado el estudio de rugosidad Superficial en las diferentes probetas.


4.2.5 Interpretación de los resultados de Envejecimiento Acelerado

4.2.5.1 Resultados que se obtuvieron en el Estudio de Envejecimiento Acelerado de Superficies Pintadas

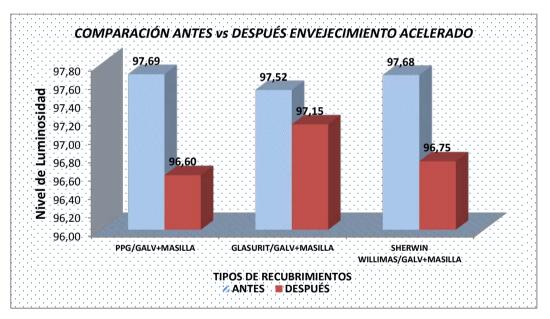
Tabla 4- 31: Resultado de los Ensayos de Envejecimiento Acelerado en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado.

INTERPRETACIÓN DE RESULTADOS								
	ENVEJECIM	IIENTO ACEI	ERADO (GAL	VANIZADO)				
P	PG	GLA	SURIT	SHERWIN	WILLIAMS			
CÓDIGO	RESULTADO	CÓDIGO	RESULTADO	CÓDIGO	RESULTADO			
ax1	96,29	ay1	96,86	az1	96,87			
ax4	96,29	ay4	97,03	az4	97,04			
ax7	96,17	ay7	96,82	az7	96,62			
PROMEDIO	96,25	PROMEDIO	96,90	PROMEDIO	96,84			

(Fuente: Elaborado por Wellington Santos)

Gráfico 4- 21: Representación gráfica de los resultados de Envejecimiento Acelerado, comparación de Antes y Después Envejecimiento Acelerado.

(Fuente: Elaborado por Wellington Santos)

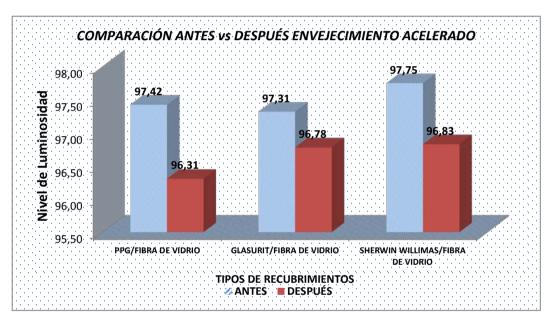

En el Gráfico 4-21, se observa la comparación del valor de Antes vs Después del Envejecimiento Acelerado que se obtuvo en nuestro estudio, observando así que el recubrimiento de pintura **GLASURIT** obtuvo menor cambio en el nivel de luminosidad en las diferentes marcas de recubrimientos después de haber

realizado el estudio de Envejecimiento Acelerado en la Cámara de Xenón en las diferentes probetas.

Tabla 4- 32: Resultado de los Ensayos de Envejecimiento Acelerado en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Galvanizado+Masilla.

	INTERPRETACIÓN DE RESULTADOS								
EN	ENVEJECIMIENTO ACELERADO (GALVANIZADO + MASILLA)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO	CÓDIGO	RESULTADO	CÓDIGO	RESULTADO				
bx1	96,33	by1	97,07	bz1	96,67				
bx4	96,66	by4	97,17	bz4	96,66				
bx7	96,80	by7	97,19	bz7	96,91				
PROMEDIO	96,60	PROMEDIO	97,15	PROMEDIO	96,75				

(Fuente: Elaborado por Wellington Santos)

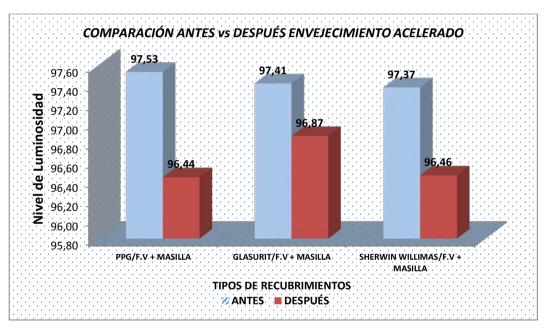

Gráfico 4- 22: Representación gráfica de los resultados de Envejecimiento Acelerado, comparación de Antes y Después Envejecimiento Acelerado.

(Fuente: Elaborado por Wellington Santos)

En el Gráfico 4-22, se observa la comparación del valor de Antes vs Después del Envejecimiento Acelerado que se obtuvo en nuestro estudio, observando así que el recubrimiento de pintura **GLASURIT** obtuvo menor cambio en el nivel de luminosidad en las diferentes marcas de recubrimientos después de haber realizado el estudio de Envejecimiento Acelerado en la Cámara de Xenón en las diferentes probetas.

Tabla 4- 33: Resultado de los Ensayos de Envejecimiento Acelerado en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material Fibra de Vidrio.

INTERPRETACIÓN DE RESULTADOS									
	ENVEJECIMIENTO ACELERADO (FIBRA DE VIDRIO)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO	CÓDIGO	RESULTADO	CÓDIGO	RESULTADO				
cx1	96,22	cy1	96,74	cz1	96,79				
cx4	96,40	cy4	96,73	cz4	96,91				
cx7	96,30	су7	96,86	cz7	96,78				
PROMEDIO	96,31	PROMEDIO	96,78	PROMEDIO	96,83				


Gráfico 4- 23: Representación gráfica de los resultados de Envejecimiento Acelerado, comparación de Antes y Después Envejecimiento Acelerado.

(Fuente: Elaborado por Wellington Santos)

En el Gráfico 4-23, se observa la comparación del valor de Antes vs Después del Envejecimiento Acelerado que se obtuvo en nuestro estudio, observando así que el recubrimiento de pintura **GLASURIT** obtuvo menor cambio en el nivel de luminosidad en las diferentes marcas de recubrimientos después de haber realizado el estudio de Envejecimiento Acelerado en la Cámara de Xenón en las diferentes probetas.

Tabla 4- 34: Resultado de los Ensayos de Envejecimiento Acelerado en las probetas de recubrimiento (PPG, GLASURIT y SHERWIN WILLIAMS) sobre material F.V. + Masilla.

	INTERPRETACIÓN DE RESULTADOS								
ENV	ENVEJECIMIENTO ACELERADO (FIBRA DE VIDRIO + MASILLA)								
P	PG	GLA	SURIT	SHERWIN	WILLIAMS				
CÓDIGO	RESULTADO	CÓDIGO	RESULTADO	CÓDIGO	RESULTADO				
dx1	96,53	dy1	96,92	dz1	96,58				
dx4	96,57	dy4	96,57	dz4	96,49				
dx7	96,21	dy7	97,10	dz7	96,29				
PROMEDIO	96,44	PROMEDIO	96,87	PROMEDIO	96,46				

Gráfico 4- 24: Representación gráfica de los resultados de Envejecimiento Acelerado, comparación de Antes y Después Envejecimiento Acelerado.

(Fuente: Elaborado por Wellington Santos)

En el Gráfico 4-24, se observa la comparación del valor de Antes vs Después del Envejecimiento Acelerado que se obtuvo en nuestro estudio, observando así que el recubrimiento de pintura **GLASURIT** obtuvo menor cambio en el nivel de luminosidad en las diferentes marcas de recubrimientos después de haber realizado el estudio de Envejecimiento Acelerado en la Cámara de Xenón en las diferentes probetas.

4.3 VERIFICACIÓN DE LA HIPÓTESIS

HIPÓTESIS: Al realizar el estudio de los diferentes procesos de pintura se garantizará la calidad del acabado superficial de la pintura de los buses en la empresa Carrocera IMPEDSA.

Comprobación

Por medio de los diferentes estudios evaluados con las normas correspondientes establecidas anteriormente que fueron realizadas sobre Material Galvanizado, Galvanizado + Masilla, Fibra de Vidrio y Fibra de Vidrio + Masilla con los diferentes recubrimientos (PPG, GLASURIT y SHERWIN WILLIAMS),

Una vez que se ha realizado el ensayo de espesor de película húmeda bajo la norma ASTM D4414 en cada una de las probetas siguiendo los parámetros establecidos por las fichas técnicas de los diferentes proveedores se determinó la diferencia entre espesores de película húmeda en las diferentes capas aplicadas.

Posteriormente, se realizó el estudio de espesor de película seca bajo la norma SSPC - PA 2 - en cada una de las probetas mediante este estudio se determinó la diferencia entre espesores de película seca al final de todas las capas aplicadas.

Después, se realizó el estudio de Rugosidad en diferentes probetas mediante este estudio se determinó el valor de rugosidad media de la superficie pintada.

Posteriormente, se realizó el estudio de Adherencia por Cinta bajo la norma ASTM D3359 en cada una de las probetas mediante este estudio se determinó el porcentaje de adherencia de la película de pintura en los diferentes sustratos aplicados.

Finalmente, se realizó el ensayo de Envejecimiento Acelerado bajo la norma ASTM G155 de las distintas probetas, donde se determinó el grado de claridad y oscuridad antes y después del ensayo y así conocer la afectación del estudio realizado.

4.3.1 Verificación de la hipótesis Espesor de Película Seca para el procedimiento (PPG, GLASURIT, SHERWIN WILLIAMS)

Tabla 4- 35: Resultados obtenidos del Espesor de Película Seca con el recubrimiento PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Galvanizado.

PROCEDIMENTO MATERIAL GALVANIZADO						
	TIPOS DE RECUBRIMIENTOS					
PROBETA	PPG (um)	PROBETA	GLASURIT (um)	PROBETA	SHERWIN WILLIAMS (um)	
	215,33	aul	149,33		206,33	
	223,67		140,00		224,33	
ax1	212,00		146,67	. 1	191,00	
axi	207,00	ay 1	136,33	az1	202,33	
	211,33		143,33		207,67	
	213,67		135,67		208,33	
	228,33		136,33		201,67	
	274,00		140,33		226,67	
ax2	221,33]	119,33	227	186,67	
axz	259,67	ay2	138,00	az2	224,00	
	224,33		134,00		190,33	
	268,33		140,33		233,00	
	251,00		137,67		200,67	
	294,00	1	138,33		201,00	
2	253,00	1	142,33	_	206,33	
ax3	264,67	ay3	137,67	az3	196,00	
	254,00	1	144,67		201,67	
	289,67	1	148,67		192,33	
	220,67		141,33		222,67	
	216,33	ay4	163,33	az4	205,67	
	205,33		133,00		204,67	
ax4	205,33		138,33		204,67	
	216,67		136,00		225,33	
	222,33		138,67		209,00	
	174,33	ay5	157,00	az5	226,33	
	162,00		172,00		210,67	
	158,00		151,67		203,67	
ax5	161,67		156,33		194,33	
	166,00		158,67		216,00	
	156,67		158,00		195,67	
	231,67	ay6	156,67	az6	200,00	
	217,67		164,33		222,00	
	221,33		155,33		204,33	
ax6	215,67		158,33		209,00	
ŀ	243,33		157,67		204.67	
ŀ	222,00		163,00		225,00	
	209,00	ay7	156,33		216,67	
}	227,33		160,33	az7	228,00	
}	192,67		158,67		194,67	
ax7	224,33		146,33		200,00	
}	197,00		163,33		216,00	
-	221,33		158,33		214,67	
	441,33		130,33		214,07	

4.3.1.1 Verificación de la hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Galvanizado

En el presente caso el modelo estadístico que se empleo es la prueba Z para dos muestras, ya que el interés es verificar cual recubrimiento de pintura tiene un mejor espesor de película seca sobre los diferentes sustratos.

Supuestos del modelo Z para dos muestras relacionadas

- Nivel de medida de las variables.
- Distribución normal o aproximadamente normal.
- Varianza de la diferencia de medidas.
- Observaciones.
- Hipótesis que se pone a prueba.

Tabla 4- 36: Contraste de medias, desconocida la varianza poblacional de las diferencias: estadístico Z.

CASO I	CASO II	CASO III	
H0: u1= u2	H0: u1= u2	H0: u1= u2	
H1: u1< u2	H1: u1≠u2	H1: u1> u2	

(Fuente: Edgar Acuña. Inferencia Estadística.)

Nivel de significancia (α)

El nivel de significancia seleccionado es del 5% (0.05) para la comprobación de la hipótesis, con un contraste bilateral o de dos colas asumiendo que puede existir diferencia; sin especificar si se situaran por encima o por debajo de los valores asignados.

Cálculo Estadístico con Excel.

Del (ANEXO A7 Tabla de valores de Z) se tiene que para una $\alpha = 5\% \rightarrow 0.05$, los valores críticos son, los valores críticos son \pm 1.96 entonces se aplica la siguiente regla de decisión:

Por tanto, la regla para decisión sería:

Rechazar Ho si Z > +1.96 O si Z < -1.96

De lo contrario, no rechazar Ho

Tabla 4- 37: Prueba Z para medias de dos muestras espesor de película seca.

CONDICIÓN 1				
VERIFICACIÓN DE HIPÓTESIS PPG vs GLASURIT				
PRUEBA Z PPG vs GLASURIT				
	Variable 1	Variable 2		
Media	220,33	147,90		
Varianza (conocida)	1099,78	131,29		
Observaciones	42,00	42		
Diferencia hipotética de las medias	0,00			
Z	13,38			
P(Z<=z) una cola	0,00			
Valor crítico de z (una cola)	1,64			
Valor crítico de z (dos colas)	0,00			
Valor crítico de z (dos colas)	1,96			

Observaciones: Encontrando el valor de Z = 13,38 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN 2

VERIFICACIÓN DE HIPÓTESIS PPG vs SHERWIN WILLIAMS

PRUEBA Z PPG vs SHERWIN WILLIAMS			
	Variable 1	Variable 2	
Media	220,33	208,43	
z	2,19		
Valor crítico de z (dos colas)	1,96		

Observaciones: Encontrando el valor de Z = 2,19 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN 3

VERIFICACIÓN DE HIPÓTESIS GLASURIT VS SHERWIN WILLIAMS

PRUEBA Z GLASURIT vs SHERWIN WILLIAMS			
	Variable 1	Variable 2	
Media	147,90	208,43	
Z	-23,68		
Valor crítico de z (dos colas)	1,96		

Observaciones: Encontrando el valor de Z = -23,68 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

Tabla 4- 38: Resultados obtenidos del Espesor de Película Seca con el recubrimiento PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Galvanizado + Masilla.

PROCEDIMIENTO MATERIAL GALVANIZADO + MASILLA					
TIPOS DE RECUBRIMIENTOS					
PROBETA	PPG (um)	PROBETA	GLASURIT (um)	PROBETA	SHERWIN WILLIAMS(um)
	89,45	- by1	28,55	bz1	89,67
bx1	91,09		31,10		86,13
UX1	91,59		27,00		94,37
	89,38		30,25		94,37
	80,13	by3	34,15	bz3	77,69
bx3	91,82		29,47		81,46
UXS	73,53		42,41		77,16
	91,82		31,98		81,46
bx6	49,68	- by6	31,22	bz6	80,89
	39,30		34,42		80,78
	51,69		38,44		77,71
	51,69		38,44		80,89

4.3.1.2 Verificación de la hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Galvanizado + Masilla

En el presente caso el modelo estadístico que se empleo es la prueba T-Student, para medias de dos muestras emparejadas, ya que el interés es verificar cual recubrimiento de pintura es mejor en los diferentes estudios realizados considerando las siguientes condiciones:

- Probabilidad del 95%, es decir una confiabilidad del 0,05.
- Hipótesis (H1)= Al realizar el estudio de los diferentes procesos de pintura se garantizara la calidad del acabado superficial de la pintura de los buses en la empresa Carrocera IMPEDSA.
- Hipótesis nula (Ho)= Al realizar el estudio de los diferentes procesos de pintura no existirá suficiente evidencia que garantice la calidad del acabado superficial de la pintura de los buses en la empresa Carrocera IMPEDSA.

 Las variables vienen a ser los diferentes recubrimientos analizados, en este caso (PPG, GLASURIT, SHERWIN WILLIAMS) estos irán alternándose en Variable 1 y Variable 2.

Cálculo Estadístico con Excel

Por tanto, la regla para decisión de las 3 Condiciones sería:

Rechazar Ho si t < -1,796 o t > +1,796

De lo contrario, no rechazar Ho

Tabla 4- 39: Prueba T para medias de dos muestras emparejadas espesor de película seca.

CONDICIÓN 1					
VERIFICACIÓN DE HIPÓTESIS PP	VERIFICACIÓN DE HIPÓTESIS PPG vs GLASURIT				
PRUEBA T PARA MEDIDAS DE DOS MUE	STRAS EMPARE	EJADAS			
	Variable 1	Variable 2			
Media	74,264	33,119			
Varianza	412,710	21,323			
Observaciones	12,000	12,000			
Coeficiente de correlación de Pearson	-0,559				
Diferencia hipotética de las medias	0,000				
Grados de libertad	11,000				
Estadístico t	6,140				
P(T<=t) una cola	0,000				
Valor crítico de t (una cola)	1,796				
P(T<=t) dos colas	0,000073				
Valor crítico de t (dos colas)	2,201				

Observaciones: Encontrando el valor de Estadístico t = 6,140 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN 2						
VERIFICACIÓN DE HIPÓTESIS PPG vs SH	IERWIN WILL	IAMS				
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS						
Variable 1 Variable 2						
Media	74,264	83,5483				
Estadístico t	-1,808					
Valor crítico de t (dos colas)	2,201					

Observaciones: Encontrando el valor de Estadístico t = -1,808 él cual se encuentra dentro del rango de aceptación, no se rechaza la hipótesis nula Ho, en conclusión no hay evidencia suficiente de que SHERWIN WILLIAMS tenga un mayor espesor de película que PPG.

CONDICIÓN 3					
VERIFICACIÓN DE HIPÓTESIS GLASU	VERIFICACIÓN DE HIPÓTESIS GLASURIT vs SHERWIN WILLIAMS				
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS					
Variable 1 Variable 2					
Media	33,119	83,548			
Estadístico t	-17,376	_			
Valor crítico de t (dos colas)	2,201				

Observaciones: Encontrando el valor de Estadístico t = -17,376 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 40: Resultados obtenidos del Espesor de Película Seca con el recubrimiento PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Fibra de Vidrio.

	PROCEDIMIENTO MATERIAL FIBRA DE VIDRIO						
	TIPOS DE RECUBRIMIENTOS						
PROBETA	PPG (um)	PROBETA	GLASURIT (um)	PROBETA	SHERWIN WILLIAMS(um)		
	77,21		83,33		95,14		
cx1	67,74	cy1	84,54	cz1	97,05		
CAI	78,15	Cyr	86,35	CZI	86,43		
	73,83		86,35		97,05		
	82,51		87,21		78,96		
cx3	78,05	су3	80,54	cz3	83,34		
CAS	81,97		85,12	CZS	79,76		
	82,51		81,18		83,34		
	77,27		83,77		88,10		
cx6	73,25	01/6	85,89	cz6	86,35		
CAU	65,93	суб	77,28		89,18		
	71,99		83,70		89,18		

4.3.1.3 Verificación de la hipótesis por selección estadístico para el procedimiento (PPG,GLASURIT Y SHERWIN WILLIAMS) sobre material Fibra de vidrio

Tabla 4- 41: Prueba T para medias de dos muestras emparejadas espesor de película seca.

CONDICIÓN 1					
VERIFICACIÓN DE HIPÓTESIS PI	VERIFICACIÓN DE HIPÓTESIS PPG vs GLASURIT				
PRUEBA T PARA MEDIDAS DE DOS MUE	STRAS EMPAR	EJADAS			
	Variable 1	Variable 2			
Media	75,868	83,772			
Varianza	30,007	8,320			
Observaciones	12,000	12,000			
Coeficiente de correlación de Pearson	0,344				
Diferencia hipotética de las medias	0,000				
Grados de libertad	11,000				
Estadístico t	-5,226				
P(T<=t) una cola	0,000				
Valor crítico de t (una cola)	1,796				
P(T<=t) dos colas	0,00028				
Valor crítico de t (dos colas)	2,201				

Observaciones: Encontrando el valor de Estadístico t = -5,226 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN 2						
VERIFICACIÓN DE HIPÓTESIS PPG vs SI	IERWIN WILI	LIAMS				
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS						
Variable 1 Variable 2						
Media	75,868	87,823				
Estadístico t	-3,894					
Valor crítico de t (dos colas)	2,201					

Observaciones: Encontrando el valor de Estadístico t = -3,894 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN 3						
VERIFICACIÓN DE HIPÓTESIS GLASURIT V	s SHERWIN V	VILLIAMS				
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS						
Variable 1 Variable 2						
Media	83,772	87,823				
Estadístico t	-2,054					
Valor crítico de t (dos colas)	2,201	_				

Observaciones: Encontrando el valor de Estadístico t = -2,054 él cual se encuentra dentro del rango de aceptación, no se rechaza la hipótesis nula Ho, en conclusión no hay evidencia suficiente de que SHERWIN WILLIAMS tenga un mayor espesor de película que GLASURIT.

Tabla 4- 42: Resultados obtenidos del Espesor de Película Seca con el recubrimiento PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Fibra de Vidrio .+ Masilla

PRO	PROCEDIMIENTO MATERIAL FIBRA DE VIDRIO + MASILLA						
	TIPOS DE RECUBRIMIENTOS						
PROBETA	PPG (um)	PROBETA	GLASURIT (um)	PROBETA	SHERWIN WILLIAMS (um)		
	71,41		93,58		77,17		
cx1	82,48	cy1 82,50 84,45	82,50	cz1	102,30		
CXI	73,32		84,45	CZI	82,56		
	82,48		93,58		112,20		
	80,60	cy3	88,38		83,22		
cx3	79,19		84,22	cz3	82,64		
CAS	82,11	Cys	79,59	CZS	84,33		
	82,11		88,38		84,33		
	67,68		86,68		79,08		
схб	56,84	су6	78,48	cz6	81,30		
CAU	63,32	Cyo	86,30	CZU	79,05		
	67,68		87,03		81,30		

(Fuente: Elaborado por Wellington Santos)

4.3.1.4 Verificación de la hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Fibra de vidrio + Masilla

Tabla 4-43: Prueba T para medias de dos muestras emparejadas espesor de película seca.

CONDICIÓN 1					
VERIFICACIÓN DE HIPÓTESIS PE	VERIFICACIÓN DE HIPÓTESIS PPG vs GLASURIT				
PRUEBA T PARA MEDIDAS DE DOS MUE	STRAS EMPAI	REJADAS			
	Variable 1	Variable 2			
Media	74,102	86,098			
Varianza	76,484	22,109			
Observaciones	12,000	12,000			
Coeficiente de correlación de Pearson	0,232				
Diferencia hipotética de las medias	0,000				
Grados de libertad	11,000				
Estadístico t	-4,659				
P(T<=t) una cola	0,000				
Valor crítico de t (una cola)	1,796				
P(T<=t) dos colas	0,00069				
Valor crítico de t (dos colas)	2,201				

Observaciones: Encontrando el valor de Estadístico t = -4,659 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN 2						
VERIFICACIÓN DE HIPÓTESIS PPO	s vs SHERWIN V	VILLIAMS				
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS						
Variable 1 Variable 2						
Media	74,102	85,790				
Estadístico t	-4,368					
Valor crítico de t (dos colas)	2,201					

Observaciones: Encontrando el valor de Estadístico t = -4,368 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN 3 VERIFICACIÓN DE HIPÓTESIS GLASURIT vs SHERWIN WILLIAMS PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS Variable 1 Variable 2 Media 86,098 85,790 Estadístico t 0,101 Valor crítico de t (dos colas) 2,201

Observaciones: Encontrando el valor de Estadístico t = 0,101 él cual se encuentra dentro del rango de aceptación, no se rechaza la hipótesis nula Ho, en conclusión no hay evidencia suficiente de que GLASURIT tenga un mayor espesor de película que SHERWIN WILLIAMS.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 44: Calificación Resultados de Verificación de Hipótesis Espesor de Película Seca.

RESULTADOS VERIFICACIÓN DE HIPÓTESIS					
	ES	PESOR DE PEL	ÍCULA SECA		
DECUDDIMIENTO		MATERIA	L BASE		DECLUTADO
RECUBRIMIENTO	GALVANIZADO	GALV+MASILLA	FIBRA DE VIDRIO	F.V+MASILLA	RESULTADO
PPG	~				~
GLASURIT				~	~
SHERWIN WILLIAMS		V	~		VV

Observaciones: De los recubrimientos analizados se determinó que **Sherwin Williams** tiene los valores más altos en espesor de película seca en comparación con otros recubrimientos.

4.3.2 Verificación de hipótesis para Adherencia por Cinta procedimiento (PPG, GLASURIT, SHERWIN WILLIAMS)

Tabla 4- 45: Resultados obtenidos de Adherencia por Cinta con el recubrimiento PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Galvanizado.

	PROCEDIMIENTO MATERIAL GALVANIZADO						
	TIPOS DE RECUBRIMIENTOS						
PROBETA	PPG (%)	PROBETA	GLASURIT (%)	PROBETA	SHERWIN WILLIAMS (%)		
ax1	100	ay1	100	az1	100		
ax2	100	ay2	85	az2	100		
ax3	100	ay3	100	az3	95		
ax4	100	ay4	85	az4	100		
ax5	100	ay5	35	az5	95		
ax6	100	ay6	65	az6	100		
ax7	100	ay7	65	az7	95		

(Fuente: Elaborado por Wellington Santos)

4.3.2.1 Verificación de Hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Galvanizado

Cálculo Estadístico con Excel.

Por tanto, la regla para decisión de las 3 Condiciones sería:

Rechazar Ho si t < -1,943 o t > +1,943

De lo contrario, no rechazar Ho.

Tabla 4- 46: Prueba T para medias de dos muestras emparejadas adherencia por cinta.

CONDICIÓN 1			
VERIFICACIÓN DE HIPÓTESIS PPO	G vs GLASURIT	ſ	
PRUEBA T PARA MEDIDAS DE DOS MUES	TRAS EMPARI	EJADAS	
	Variable 1	Variable 2	
Media	100,000	76,429	
Varianza	0,000	539,286	
Observaciones	7,000	7,000	
Coeficiente de correlación de Pearson	0,000		
Diferencia hipotética de las medias	0,000		
Grados de libertad	6,000		
Estadístico t	2,686		
P(T<=t) una cola	0,018		
Valor crítico de t (una cola)	1,943		
P(T<=t) dos colas	0,036		
Valor crítico de t (dos colas)	2,447		

Observaciones: Encontrando el valor de Estadístico t = 2,686 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN	CONDICIÓN 2						
VERIFICACIÓN DE HIPÓTESIS PPO	VERIFICACIÓN DE HIPÓTESIS PPG vs SHERWIN WILLIAMS						
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS							
	Variable 1 Variable 2						
Media	100,000	97,857					
Estadístico t	2,121						
Valor crítico de t (dos colas)	2,447						

Observaciones: Encontrando el valor de Estadístico t = 2,121 él cual se encuentra dentro del rango de aceptación, no se rechaza la hipótesis nula Ho, en conclusión no hay evidencia suficiente de que PPG tenga un mayor resistencia a la adhesión que SHERWIN WILLIAMS.

CONDICIÓN 3						
VERIFICACIÓN DE HIPÓTESIS GLASURIT vs SHERWIN WILLIAMS						
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS						
Variable 1 Variable 2						
Media	76,429	97,857				
Estadístico t	-2,542					
Valor crítico de t (dos colas)	2,447	_				

Observaciones: Encontrando el valor de Estadístico t = -2,542 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 47: Resultados obtenidos de Adherencia por Cinta con el recubrimiento PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Galvanizado + Masilla.

PROCEDIMIENTO MATERIAL GALVANIZADO + MASILLA					
		TIPOS DE RI	ECUBRIMIENT	OS	
PROBETA	PPG (%)	PROBETA	GLASURIT (%)	PROBETA	SHERWIN WILLIAMS (%)
ax1	100	ay1	85	az1	100
ax2	100	ay2	85	az2	85
ax3	100	ay3	35	az3	100
ax4	100	ay4	100	az4	100
ax5	100	ay5	95	az5	100
ax6	100	ay6	95	az6	100
ax7	100	ay7	85	az7	100

4.3.2.2 Verificación de hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Galvanizado + Masilla

Tabla 4- 48: Prueba T para medias de dos muestras emparejadas adherencia por cinta.

CONDICIÓN 1			
VERIFICACIÓN DE HIPÓTESIS PP	G vs GLASURIT		
PRUEBA T PARA MEDIDAS DE DOS MUES	STRAS EMPARI	EJADAS	
	Variable 1	Variable 2	
Media	100,000	82,857	
Varianza	0,000	482,143	
Observaciones	7,000	7,000	
Coeficiente de correlación de Pearson	0,000		
Diferencia hipotética de las medias	0,000		
Grados de libertad	6,000		
Estadístico t	2,066		
P(T<=t) una cola	0,042		
Valor crítico de t (una cola)	1,943		
P(T<=t) dos colas	0,084		
Valor crítico de t (dos colas)	2,024		

Observaciones: Encontrando el valor de Estadístico t = 2,066 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN 2					
VERIFICACIÓN DE HIPÓTESIS PPG vs SI	VERIFICACIÓN DE HIPÓTESIS PPG vs SHERWIN WILLIAMS				
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS					
Variable 1 Variable 2					
Media	100,000	97,857			
Estadístico t	1,000				
Valor crítico de t (una cola)	1,943				

Observaciones: Encontrando el valor de Estadístico t = 1,000 él cual se encuentra dentro del rango de aceptación, no se rechaza la hipótesis nula Ho, en conclusión no hay evidencia suficiente de que PPG tenga un mayor resistencia a la adhesión que SHERWIN WILLIAMS.

CONDICIÓN 3						
VERIFICACIÓN DE HIPÓTESIS GLASURIT vs SHERWIN WILLIAMS						
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS						
Variable 1 Variable 2						
Media	82,857	97,857				
Estadístico t	-1,732					
Valor crítico de t (dos colas)	2,447					

Observaciones: Encontrando el valor de Estadístico t = -1,732 él cual se encuentra dentro del rango de aceptación, no se rechaza la hipótesis nula Ho, en conclusión no hay evidencia suficiente de que SHERWIN WILLIAMS tenga un mayor resistencia a la adhesión que GLASURIT.

Tabla 4- 49: Resultados obtenidos de Adherencia por Cinta con el recubrimiento PPG, GLASURIT, SHERWIN WILLIAMS sobre Material Fibra de Vidrio.

PROCEDIMIENTO MATERIAL FIBRA DE VIDRIO					
		TIPOS DE	E RECUBRIMIE	ENTOS	
PROBETA	PPG (%)	PROBETA	GLASURIT (%)	PROBETA	SHERWIN WILLIAMS (%)
ax1	100	ay1	100	az1	100
ax2	85	ay2	85	az2	100
ax3	95	ay3	100	az3	100
ax4	95	ay4	85	az4	100
ax5	95	ay5	35	az5	100
ax6	100	ay6	65	az6	100
ax7	95	ay7	65	az7	95

(Fuente: Elaborado por Wellington Santos)

4.3.2.3 Verificación de hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Fibra de Vidrio

Tabla 4- 50: Prueba T para medias de dos muestras emparejadas adherencia por cinta.

CONDICIÓN 1				
VERIFICACIÓN DE HIPÓTESIS PPO	VERIFICACIÓN DE HIPÓTESIS PPG vs GLASURIT			
PRUEBA T PARA MEDIDAS DE DOS MUES	TRAS EMPARI	EJADAS		
	Variable 1	Variable 2		
Media	95,000	76,429		
Varianza	25,000	539,286		
Observaciones	7,000	7,000		
Coeficiente de correlación de Pearson	-0,036			
Diferencia hipotética de las medias	0,000			
Grados de libertad	6,000			
Estadístico t	2,053			
P(T<=t) una cola	0,043			
Valor crítico de t (una cola)	1,943			
P(T<=t) dos colas	0,086			
Valor crítico de t (dos colas)	2,047			

Observaciones: Encontrando el valor de Estadístico t = 2,053 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN 2						
VERIFICACIÓN DE HIPÓTESIS PPG vs SHERWIN WILLIAMS						
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS						
Variable 1 Variable 2						
Media	95,000	99,286				
Estadístico t	-2,121					
Valor crítico de t (dos colas)	2,447					

Observaciones: Encontrando el valor de Estadístico t = -2,121 él cual se encuentra dentro del rango de aceptación, no se rechaza la hipótesis nula Ho, en conclusión no hay evidencia suficiente de que SHERWIN WILLIAMS tenga un mayor resistencia a la adhesión que PPG.

CONDICIÓN 3						
VERIFICACIÓN DE HIPÓTESIS GLASURIT vs SHERWIN WILLIAMS						
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS						
Variable 1 Variable 2						
Media	76,429	99,286				
Estadístico t	-2,642					
Valor crítico de t (dos colas)	2,447					

Observaciones: Encontrando el valor de Estadístico t = -2,642 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 51: Resultados obtenidos de Adherencia por Cinta con el recubrimiento PPG, GLASURIT, SHERWIN WILLIAMS sobre material Fibra de Vidrio + Masilla.

PROCEDIMIENTO MATERIAL FIBRA DE VIDRIO + MASILLA					
	TIPOS DE RECUBRIMIENTOS				
PROBETA	PPG (%)	PROBETA	GLASURIT (%)	PROBETA	SHERWIN WILLIAMS (%)
ax1	65	ay1	85	az1	95
ax2	95	ay2	85	az2	100
ax3	95	ay3	85	az3	95
ax4	95	ay4	95	az4	100
ax5	65	ay5	85	az5	95
ax6	95	ay6	35	az6	100
ax7	95	ay7	95	az7	100

4.3.2.4 Verificación de hipótesis por selección estadístico para el procedimiento (PPG, GLASURIT Y SHERWIN WILLIAMS) sobre material Fibra de Vidrio + Masilla

Tabla 4- 52: Prueba T para medias de dos muestras emparejadas adherencia por cinta.

CONDICIÓN 1				
VERIFICACIÓN DE HIPÓTESIS PP	G vs GLASUR	IT		
PRUEBA T PARA MEDIDAS DE DOS MUE	STRAS EMPA	REJADAS		
	Variable 1	Variable 2		
Media	86,429	80,714		
Varianza	214,286	428,571		
Observaciones	7,000	7,000		
Coeficiente de correlación de Pearson	-0,141			
Diferencia hipotética de las medias	0,000			
Grados de libertad	6,000			
Estadístico t	0,560			
P(T<=t) una cola	0,298			
Valor crítico de t (una cola)	1,943			
P(T<=t) dos colas	0,596			
Valor crítico de t (dos colas)	2,447			

Observaciones: Encontrando el valor de Estadístico t = 0,560 él cual se encuentra dentro del rango de aceptación, no se rechaza la hipótesis nula Ho, en conclusión no hay evidencia suficiente de que PPG tenga un mayor resistencia a la adhesión que GLASURIT.

CONDICION 2						
VERIFICACIÓN DE HIPÓTESIS PPG vs SHERWIN WILLIAMS						
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS						
Variable 1 Variable 2						
Media	86,429	97,857				
Estadístico t	-2,359					
Valor crítico de t (dos colas)	2,117					

Observaciones: Encontrando el valor de Estadístico t = - 2,359 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

CONDICIÓN 3						
VERIFICACIÓN DE HIPÓTESIS GLASURIT	VERIFICACIÓN DE HIPÓTESIS GLASURIT vs SHERWIN WILLIAMS					
PRUEBA T PARA MEDIDAS DE DOS MUESTRAS EMPAREJADAS						
Variable 1 Variable 2						
Media	80,714	97,857				
Estadístico t	-2,121					
Valor crítico de t (dos colas)	2,117					

Observaciones: Encontrando el valor de Estadístico t = -2,121 él cual se encuentra fuera del rango de aceptación, se rechaza la hipótesis nula Ho y se acepta la aprobación de la hipótesis estadística.

Tabla 4- 53: Calificación Resultados de Verificación de Hipótesis Adherencia por Cinta.

	RESULTADOS VERIFICACIÓN DE HIPÓTESIS						
	Al	DHERENCIA P	OR CINTA				
RECUBRIMIENTO	MATERIAL BASE				RESULTADO		
RECUBRIMIENTO	GALVANIZADO	GALV+MASILLA	FIBRA DE VIDRIO	F.V+MASILLA	RESULTADO		
PPG	V	V			VV		
GLASURIT							
SHERWIN WILLIAMS			~	~	~~		

Observaciones: De los recubrimientos analizados se determinó que PPG y Sherwin Williams tienen una buena adherencia en diferentes sustratos respectivamente, para determinar cuál es mejor en adherencia tomamos en cuenta que el recubrimiento **PPG** obtuvo 0% de desprendimiento sobre material Galvanizado y Galvanizado + Masilla.

4.3.3 Verificación de hipótesis para Rugosidad Superficial procedimiento (PPG, GLASURIT, SHERWIN WILLIAMS) sobre los diferentes sustratos

Como parte de la verificación de la hipótesis este estudio se comprueba comparativamente; es decir se estableció su promedio y la desviación estándar de los diferentes Recubrimientos (PPG, GLASURIT, SHERWIN WILLIAMS), aplicados sobre material Galvanizado, Fibra de Vidrio y su combinación con Masilla respectivamente.

Tabla 4- 54: Prueba Comparativa Verificación de Hipótesis de Rugosidad Superficial.

VERIFICACIÓN DE HIPÓTESIS					
COMPARACIÓN DE RUGOSIDAD MEDIA (GALVANIZADO)					
RESULTADOS	TIPOS DE RECUBRIMIENTOS				
RESULTADUS	PPG GLASURIT SHERWIN W				
PROMEDIO (um)	0,035	0,040	0,044		
DESVIACIÓN ESTÁNDAR	0,006	0,003	0,006		

Observaciones: De lo evaluado en la tabla de resultados se establece que el recubrimiento **GLASURIT** tiene menor variabilidad, así concluimos que el recubrimiento tiene un mejor acabado superficial.

COMPARACIÓN DE RUGOSIDAD MEDIA (GALVANIZADO + MASILLA)				
DECLIE EL DOC	TIPOS DE RECUBRIMIENTOS			
RESULTADOS	PPG	GLASURIT	SHERWIN WILLIAMS	
PROMEDIO (um)	0,040	0,038	0,046	
DESVIACIÓN ESTÁNDAR	0,006	0,011	0,007	

Observaciones: De lo evaluado en la tabla de resultados se establece que el recubrimiento **PPG** tiene menor variabilidad, así concluimos que el recubrimiento tiene un mejor acabado superficial.

COMPARACIÓN DE RUGOSIDAD MEDIA (FIBRA DE VIDRIO)				
DECLII TADOC	TIPOS DE RECUBRIMIENTOS			
RESULTADOS	PPG	GLASURIT	SHERWIN WILLIAMS	
PROMEDIO (um)	0,028	0,043	0,033	
DESVIACIÓN ESTÁNDAR	0,007	0,013	0,008	

Observaciones: De lo evaluado en la tabla de resultados se establece que el recubrimiento **PPG** tiene menor variabilidad, así concluimos que el recubrimiento tiene un mejor acabado superficial.

COMPARACIÓN DE RUGOSIDAD MEDIA (FIBRA DE VIDRIO + MASILLA)				
DECLII TADOC	TIPOS DE RECUBRIMIENTOS			
RESULTADOS	PPG	GLASURIT	SHERWIN WILLIAMS	
PROMEDIO (um)	0,029	0,031	0,030	
DESVIACIÓN ESTÁNDAR	0,001	0,014	0,002	

Observaciones: De lo evaluado en la tabla de resultados se establece que el recubrimiento **PPG** tiene menor variabilidad, así concluimos que el recubrimiento tiene un mejor acabado superficial.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 55: Calificación Resultados de Verificación de Hipótesis Rugosidad Superficial.

	RESULTADOS VERIFICACIÓN DE HIPÓTESIS					
	RU	IGOSIDAD SUI	PERFICIAL			
RECUBRIMIENTO		MATERIA	AL BASE		DECLUTADO	
RECUBRIMIENTO	GALVANIZADO	GALV+MASILLA	FIBRA DE VIDRIO	F.V+MASILLA	RESULTADO	
PPG		~	~	•	V V V	
GLASURIT	V				V	
SHERWIN WILLIAMS						

Observaciones: De los recubrimientos analizados se determinó que **PPG** tienen un mejor acabado superficial en comparación con los otros recubrimientos.

4.3.4 Verificación de hipótesis para Envejecimiento Acelerado procedimiento (PPG, GLASURIT, SHERWIN WILLIAMS) sobre los diferentes sustratos

Como parte de la verificación de la hipótesis este estudio se comprueba comparativamente; es decir se estableció la variación de porcentaje del grado de claridad con respecto a la medida tomada antes de la Prueba de Envejecimiento Acelerado, pudiéndose determinar el recubrimiento más eficiente en cuanto a durabilidad.

Tabla 4- 56: Prueba Comparativa Verificación de Hipótesis de Envejecimiento Acelerado.

VERIFICACIÓN DE HIPÓTESIS				
COMPARACIÓN ENVEJECIMIENTO ACELERADO (GALVANIZADO)				
RESULTADOS	TIPOS DE RECUBRIMIENTOS			
RESULTADOS	PPG	GLASURIT	SHERWIN WILLIAMS	
Grado de Claridad Antes del Envejecimiento	97,58	97,48	97,72	
Grado de Claridad Antes del Envejecimiento	96,25	96,90	96,84	
Disminución del Grado de Claridad	1,33	0,57	0,88	
Porcentaje de Perdida (%)	1,36	0,59	0,90	

Observaciones: De lo evaluado en la tabla de resultados se establece que el recubrimiento **GLASURIT** tiene menor porcentaje de perdida, así concluimos que el recubrimiento tiene mas durabilidad en comparación con los otros recubrimientos.

COMPARACIÓN ENVEJECIMIENTO ACELERADO (GALVANIZADO + MASILLA)

RESULTADOS	TIPOS DE RECUBRIMIENTOS		
RESULTADOS	PPG	GLASURIT	SHERWIN WILLIAMS
Grado de Claridad Antes del Envejecimiento	97,69	97,52	97,68
Grado de Claridad Antes del Envejecimiento	96,60	97,15	96,75
Disminución del Grado de Claridad	1,10	0,37	0,94
Porcentaje de Perdida (%)	1,12	0,38	0,96

Observaciones: De lo evaluado en la tabla de resultados se establece que el recubrimiento **GLASURIT** tiene menor porcentaje de perdida, así concluimos que el recubrimiento tiene mas durabilidad en comparación con los otros recubrimientos.

COMPARACIÓN ENVEJECIMIENTO ACELERADO (FIBRA DE VIDRIO)				
RESULTADOS	TIPOS DE RECUBRIMIENTOS			
RESULTADOS	PPG	GLASURIT	SHERWIN WILLIAMS	
Grado de Claridad Antes del Envejecimiento	97,42	97,31	97,75	
Grado de Claridad Antes del Envejecimiento	96,31	96,78	96,83	
Disminución del Grado de Claridad	1,11	0,54	0,92	
Porcentaje de Perdida (%)	1,14	0,55	0,94	

Observaciones: De lo evaluado en la tabla de resultados se establece que el recubrimiento **GLASURIT** tiene menor porcentaje de perdida, así concluimos que el recubrimiento tiene más durabilidad en comparación con los otros recubrimientos.

COMPARACIÓN ENVEJECIMIENTO ACELERADO (FIBRA DE VIDRIO + MASILLA)

RESULTADOS	TIPOS DE RECUBRIMIENTOS			
RESULTADOS	PPG	GLASURIT	SHERWIN WILLIAMS	
Grado de Claridad Antes del Envejecimiento	97,53	97,41	97,37	
Grado de Claridad Antes del Envejecimiento	96,44	96,87	96,46	
Disminución del Grado de Claridad	1,09	0,55	0,91	
Porcentaje de Perdida (%)	1,12	0,56	0,94	

Observaciones: De lo evaluado en la tabla de resultados se establece que el recubrimiento **GLASURIT** tiene menor porcentaje de perdida, así concluimos que el recubrimiento tiene mas durabilidad en comparación con los otros recubrimientos.

(Fuente: Elaborado por Wellington Santos)

Tabla 4- 57: Calificación Resultados de Verificación de Hipótesis Envejecimiento Acelerado.

RESULTADOS VERIFICACIÓN DE HIPÓTESIS ENVEJECIMIENTO ACELERADO					
RECUBRIMIENTO		MATERIAL BASE			
RECUBRIMIENTO	GALVANIZADO	GALV+MASILLA	FIBRA DE VIDRIO	F.V+MASILLA	RESULTADO
PPG					
GLASURIT	~	V	~	~	VVV
SHERWIN WILLIAMS					

Observaciones: De los recubrimientos analizados se determinó que **GLASURIT** tienen más durabilidad después del estudio de Envejecimiento Acelerado.

Como parte final del desarrollo del presente estudio se estableció que la hipótesis que se planteó para dicha investigación se comprobó estadísticamente y comparativamente, esto ha servido para llegar a la Tabla 4-56, donde el Proceso de Pintura **PPG** es el que mejor se comportó en los diferentes estudios realizados.

Tabla 4-58: Resultado de Verificación de Hipótesis.

RESULTADOS VERIFICACIÓN DE HIPÓTESIS					
RECUBRIMIENTO		DECLI TA DO			
RECUBRIMIENTO	ESPESOR DE PELÍCULA SECA	ADHERENCIA	RUGOSIDAD	ENVEJECIMIENTO	RESULTADO
PPG		~	~		VV
GLASURIT				~	>
SHERWIN WILLIAMS	~				`

Observaciones: De los recubrimientos analizados se determinó que el Procedimiento de Pintura **PPG** tiene mejor comportamiento, esto garantizara el acabado superficial de los buses fabricados en Carrocerías IMPEDSA, por lo expuesto se verifica la hipótesis.

(Fuente: Elaborado por Wellington Santos)

Por lo expuesto se verifica la Hipótesis.

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES.

5.1 CONCLUSIONES

Una vez que se ha realizado los estudios de Espesor de Película, Adherencia, Rugosidad y Envejecimiento Acelerado en los Recubrimientos (PPG, GLASURIT Y SHERWIN WILLIAMS) se puede anotar las siguientes conclusiones.

- Los procesos de aplicación de pintura que se están llevando a cabo por la
 empresa, no son ejecutados correctamente, ya que no existe un control por
 parte de la misma en la que se establezca los procedimientos que se deben
 seguir en cada tipo de recubrimiento establecidos por los diferentes
 proveedores para cumplir con altos estándares de calidad.
- No se está llevando a cabo una inspección adecuada de espesor de película húmeda que ayuda al pintor para el control de la cantidad de pintura depositada de forma que se alcance el espesor requerido en seco, debido a que el control de calidad del proceso es casi nulo ya que son pocos los ensayos que se realizan para determinar si el proceso de aplicación de pintura que se lleva acabo cumple con los parámetros permitidos por las fichas técnicas de las distintas marcas de recubrimiento utilizadas.
- Se estableció bibliográficamente que las pruebas que determinan la calidad del acabado superficial fueron: espesores de película, adherencia, rugosidad y envejecimiento.
- Se puede observar que en el estudio de Espesor de película Seca, las tres marcas de recubrimiento analizadas se encuentran dentro del rango

establecido en las fichas técnicas de las mismas, observando así que el recubrimiento de pintura **SHERWIN WILLIAMS** obtuvo los valores más altos en comparación con un espesor de película promedio de (83,5; 87,8 y 85,8) µm esto sobre los sustratos compuestos.

- El estudio Espesor de película Seca nos proyecta que PPG obtuvo mayores espesores de película seca para las probetas de galvanizado siendo un parámetro importante a considerar debido a que este es el mayor compuesto de la carrocería (aproximadamente 90%), teniendo medidas promedio de 220 μm.
- Se notó que los resultados del estudio de espesor de película seca realizado en el Scanning Electron Microscope sobre sustratos compuestos (Galvanizado+Masilla, Fibra de Vidrio y Fibra de Vidrio+Masilla) varían debido al nivel de absorción del sustrato donde se aplicó el recubrimiento, teniendo un mejor comportamiento la pintura SHERWIN WILLIAMS.
- Se puede notar que en el estudio de Adherencia por Cinta el Recubrimiento PPG tiene mayor resistencia a la adhesión de cada capa del recubrimiento individualmente y entre capa y capa, obteniendo un 0% de área porcentual removida sobre material galvanizado y su compuesto con una calificación 5B según los criterios de aceptación de la Norma ASTM D3359 método B.
- Se observó que en el estudio de Rugosidad Superficial el recubrimiento **PPG** obtuvo los valores de Rugosidad Media más cercanos al límite inferior, concluyendo así que el recubrimiento tiene mejor acabado Superficial obteniendo un valor promedio de Rugosidad Media de (0,035; 0,040; 0,028 y 0,029)μm sobre los diferentes sustratos, este valor indica que la clase de trabajo es Refinado y su estado superficial es Superacabado.

- Se notó que después de realizar el estudio de Envejecimiento Acelerado simulando el ataque de la Radiación UV, las muestras del recubrimiento GLASURIT tuvieron menor cambio de tonalidad y degradación de color, con respecto a los otros recubrimientos analizados.
- Al hacer una comparativa entre los diferentes Recubrimientos, concluimos
 que después de haber realizado los diferentes estudios para el Control de
 Calidad de superficies pintadas en autobuses, la pintura PPG responde a
 las diversas necesidades con un completo arsenal de sistemas de acabado.

5.2 RECOMENDACIONES

Con la culminación de las pruebas realizadas en el presente estudio se ha considerado establecer las siguientes recomendaciones:

- Es indispensable que la empresa realice capacitaciones periódicas al personal para que estos puedan actualizar sus conocimientos y puedan ejecutar un trabajo adecuado, cumpliendo con normas y parámetros establecidos por la Empresa y los proveedores de la materia prima.
- Es necesario que la empresa establezca un procedimiento para cada marca de recubrimiento utilizado, considerando cada uno de los parámetros establecidos en las fichas de las diferentes marcas de pintura automotriz para Autobuses.
- La preparación de la superficie a pintar se debe realizar bajo los parámetros establecidos por el proveedor, pues una mala preparación del mismo puede afectar el acabado final del proceso de pintado, con lo que se conseguirían una mala Adherencia, defectos de forma, poco brillo, entre otros.
- Al realizar la aplicación de la Pintura se debe cumplir cada parámetro establecido en la ficha facilitada por el proveedor y registrarlo, de tal

manera que se lleve un registro de cada paso ejecutado, pues de esto depende mucho el acabado superficial final.

- Considerar siempre que la correcta aplicación de Wash Primer en la superficie Galvanizada es muy importante, pues esta capa es fundamental para la adherencia de la pintura sobre materiales ferrosos.
- Es necesario que la empresa emplee un control de calidad desde el inicio del trabajo a realizar hasta su culminación, ya que el control del mismo beneficiará a la producción, evitando posteriormente problemas que se deberán corregir y esto implicaría costos, tiempo y, en consecuencia, una mala imagen comercial de la Empresa Carrocera.
- Realizar el pintado de las probetas en condiciones ambientales semejantes de humedad y temperatura y parámetros técnicos como: presión de salida de la pistola y ángulo de abanico.

CAPÍTULO VI

PROPUESTA.

6.1 DATOS INFORMATIVOS

TEMA: "Procedimiento para medir Rugosidad de Películas de Pintura de Autobuses mediante el equipo Medidor de Rugosidad Superficial SJ-210".

Los ensayos no destructivos se realizó en los laboratorios de Materiales de la Facultad de Ingeniería Civil y Mecánica. Existe algunos parámetros que se deben poner a consideración el momento de realizar ensayos no destructivos de (Medición de Rugosidad Superficial, La evaluación del acabado superficial se realiza sobre un perfil plano de la superficie real este valor se obtiene mediante un instrumento en este caso el Medidor SJ-210, para esto hay que tomar en cuenta el material de la superficie que se va analizar, las características del equipo (SJ-210), los parámetros principales de funcionamiento, las condiciones de calibración, el cambio de condiciones de medición y los límites de tolerancia de rugosidad para proceder a la inspección y evaluación de la superficie.

Para poder evaluar el acabado superficial de una pieza es necesario distinguir entre rugosidad y defecto de forma, las desviaciones intermedias entre los defectos de forma y la rugosidad se denominan "ondulación", para distinguir las ondulaciones de la superficie se aplica filtros estos nos ayudan a eliminar la ondulación para obtener una medida correcta de rugosidad.

6.2 ANTECEDENTES DE LA PROPUESTA

Un factor importante en el aspecto decorativo de una película de pintura es la calidad del acabado superficial. La determinación de un control de calidad de la pintura es necesaria ya que la empresa requiere tener información del producto que está utilizando para garantizar la calidad de su producto.

Es por este motivo que muchas veces la inversión en un sistema de control de rugosidad superficial del recubrimiento, producirá grandes beneficios al pasar del tiempo, ya que la calidad del acabado superficial de la pintura utilizada será alta, esto garantizará el producto fabricado en Carrocerías IMPEDSA, contribuyendo en un aspecto positivo a la parte económica de la empresa y los clientes.

Como resultado de todo el trabajo de Investigación quedará a disposición el procedimiento para medir rugosidad de películas de pintura sobre los diferentes sustratos en el área de materiales de la Carrera de Ingeniería Mecánica de la Universidad Técnica de Ambato, la información así como los parámetros de evaluación sobre la rugosidad superficial de películas de pintura contribuirá con la investigación y la nutrición de conocimientos en los estudiantes de la Carrera de Ingeniería Mecánica en el Campo de Materiales.

6.3 JUSTIFICACIÓN

La investigación es de **interés** porque nos indica el procedimiento que se debe seguir para realizar ensayos no destructivos para medir rugosidad superficial de películas de pintura sobre los diferentes sustratos utilizados para la fabricación de autobuses este procedimiento está enfocado en el mejoramiento de la calidad del acabado superficial de la pintura, **novedoso** porque podemos llegar a tener un gran aumento en la calificación y evaluación de la superficies pintadas en los autobuses fabricados en Carrocerías IMPEDSA, para un posterior mejoramiento de la calidad superficial.

Factible ya que se realizará un procedimiento que tenga los parámetros y características necesarias para que se pueda evaluar y calificar las superficies pintadas con diferentes recubrimientos siguiendo la guía de aplicación de las diferentes marcas de recubrimientos evaluados, Beneficiarios serán los estudiantes de la Carrera de Ingeniería Mecánica de la Universidad Técnica de Ambato así como personal de la Empresa Carrocera IMPEDSA de la Provincia de Tungurahua.

De igual forma contribuir a la investigación y los conocimientos de los estudiantes de Ingeniería Mecánica, dejando a disposición del área de materiales el procedimiento de evaluación de rugosidad superficial de películas de pintura, conocimiento que sería una gran ventaja para los futuros profesionales de la carrera de Ingeniería Mecánica de la Universidad Técnica de Ambato.

6.4 OBJETIVOS

6.4.1 Objetivo General

• Elaborar un procedimiento de evaluación de Rugosidad en superficies planas utilizando el Equipo Medidor de Rugosidad Superficial SJ-210.

6.4.2 Objetivos Específicos

- Verificar los parámetros de recubrimiento aplicado y el tipo de sustrato utilizado en el proceso de pintura.
- Determinar el proceso de calibración y cambio de condiciones del equipo correspondiente antes de ejecutar la inspección.
- Establecer el proceso de ejecución de inspección y evaluación de superficies planas pintadas y determinar los valores de rugosidad de la superficie analizada.

6.5 ANÁLISIS DE FACTIBILIDAD

6.5.1 Económico

Tabla 6-1: Costos para el Desarrollo del Ensayo no destructivo con el SJ-210

PROCESO	EQUIPO Y MATERIAL	COSTO USD
LIMPIEZA DEL	Trapos de Limpieza	5
SUSTRATO	Solventes	10
CALIBRACIÓN DEL	CALIBRACIÓN DEL Patrón de calibración	
EQUIPO SJ-210	Manual de Usuario	50
REALIZACIÓN DEL	Rugosímetro	3000
ENSAYO	Palpador	300
OPERACIÓN Y REVISIÓN	Asesoría Técnica	200
EVALUACIÓN	Presentación de Informe y Fichas Resultados	200
T	4265	

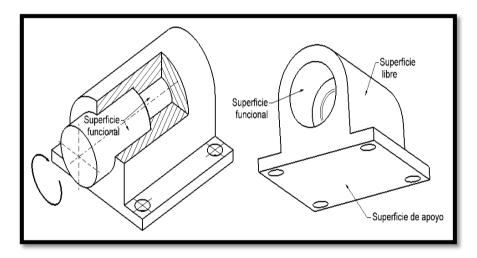
(**Fuente:** Elaborado por Wellington Santos)

6.5.2 Análisis Tecnológico del Equipo

Analizando los parámetros necesarios para la ejecución del ensayo no destructivo se puede verificar que es factible realizarlo sobre superficies planas, en este caso sobre los sustratos utilizados en el proceso de pintura de los diferentes recubrimientos, ya que para la realización de este estudio nos auxiliamos en las Normas (ISO 1997) donde nos da parámetros necesarios para la evaluación de rugosidad superficial, mediante estos parámetros se puede realizar un procedimiento de evaluación e inspección ya que se cuenta con el equipo tecnológico necesario para dicha inspección.

6.5.3 Análisis Ambiental

El ensayo no destructivo mediante el Rugosímetro SJ-210 no es contaminante para el medio ambiente ya que para la evaluación de superficies pintadas con


recubriendo automotriz no se utiliza productos químicos, ya que este procedimiento trabaja con un equipo eléctrico (SJ-210).

6.6 FUNDAMENTACIÓN

6.6.1 Tipos de Superficie

"El acabado superficial o rugosidad es un parámetro que varía según las características funcionales que tiene cada superficie en una pieza o conjunto (Gráfico 6-1)." (UNICAN, 2010, pág. 1)

Al analizar una pieza, se pueden encontrar varios tipos de superficies en un mismo conjunto, los mismos que pueden dividirse de la siguiente manera:

Gráfico 6- 1: Tipos de Superficie.

(Fuente: UNICAN, 2010)

- a) **Superficie Funcional:** Superficies que poseen contacto dinámico (rotación, traslación...) con otras, por lo que se necesita un acabado fino.
- b) **Superficie de Apoyo:** Aquellas superficies que tienen contacto estático con otras, por lo que requieren un acabado intermedio.
- c) **Superficie Libre:** Aquella que no tiene contacto con otra.

6.6.2 Calidad Superficial

En dicho parámetro, se hace referencia al grado de rugosidad de una superficie. Las superficies obtenidas según los procesos de fabricación como los que se han señalado anteriormente, se caracterizan porque la forma de la rugosidad abarca los siguientes aspectos (Gráfico 6-2):

- Se percibe que las estrías de la superficie tienen una direccionalidad según haya sido el proceso de fabricación o tratamiento.
- El perfil real es el obtenido al cortar la superficie por un plano perpendicular a dicha superficie.
- Perfil primario P. El perfil real, al realizarse la medición mediante un instrumento palpador, debido a las limitaciones geométricas del palpador y de la sensibilidad del propio instrumento queda suavizado, denominándose este perfil primario P. Este perfil primario P, puede descomponerse en dos curvas, según la escala:
- Perfil de ondulación W. En forma de onda, debido a desajustes y vibraciones de las máquinas, y
- **Perfil de rugosidad R.** Que es más sinuoso, sobre la forma ondulada, debido básicamente a las herramientas de corte.
- El perfil de rugosidad R se obtiene del perfil primario al suprimir las componentes de gran longitud de onda (baja frecuencia) aplicando el filtro λc, con lo que se suprimen las ondulaciones.
- El perfil de ondulación W se obtiene del perfil primario al suprimir las componentes de gran longitud de onda aplicando el filtro λf y las componentes de pequeña longitud de onda (alta frecuencia) mediante el filtro λc.

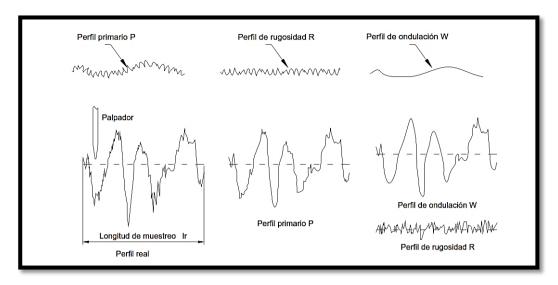


Gráfico 6-2: Características de la Rugosidad Superficial.

(Fuente: UNICAN, 2010)

6.6.3 Parámetros de Amplitud

Longitud básica, l: Longitud de la línea de referencia utilizada para separar las irregularidades que forman la rugosidad superficial.

"Longitud de evaluación ln: longitud utilizada para determinar los valores de los paramentos de rugosidad superficial. Puede comprender una o mas longitudes básicas." (Pérez, pág. 4)

"Longitud de Corte (*lc*) o Cutoff: Distancia que se utiliza para diferenciar ondulación y rugosidad." (Universidad del País Vasco – Euskal Herriko Unibertsitatea, 2011, pág. 4)

- Si el espaciado de la desviación $\geq lc$ = ONDULACION.
- Si el espaciado de la desviación < lc = RUGOSIDAD.

,	Gama aprox. de valores Ra			lores de l corte apr	
Proceso de acabado	μm	µpulg	0,25mm 0,01in	0,8mm 0,03in	2,5m 0,1ii
Superacabado	0,05-0,2	2-8	1	J	
Lapeado	0,05-0,4	2-16	J	J	
Bruñido	0,1-0,8	4-32	1	J	-
Rectificado	0,1-1,6	4-63		J	1
Torneado con					
diamante	0,1-0,4	4-16	1	1	
Torneado	0,4-6,3	16-250		/	1
Mandrinado	0,4-6,3	16-250		J	. ↓
Estirado	0,8-3,2	32-125			. /
Brochado	0,8-3,2	32-125		1	1
Extruido	0,8-3,2	32-125		Į	1
Fresado	0,8-6,3	32-250		J	1
Conformado	1,6-12,5	63-500		J	1

Gráfico 6- 3: Valores de *lc* aconsejados para la medición de rugosidad en función del proceso de fabricación.

(Fuente: Universidad del País Vasco – Euskal Herriko Unibertsitatea, 2011)

Altura máxima del perfil, Ry: Distancia entre el pico de cresta más alto y el fondo del valle más profundo dentro de la longitud básica.

"Altura de las irregularidades en diez puntos, Rz: Media de los valores absolutos de las alturas de las cinco crestas yp más altas y los cinco valles más profundos yv dentro de la longitud básica." (Pérez, pág. 8)

"Valor de rugosidad Ra media aritmética del perfil: Media aritmética de los valores absolutos de las desviaciones del perfil, en los límites de la longitud básica l." (Pérez, pág. 9)

$$Ra = \frac{1}{\ln l_n} \int_0^{l_n} |y(x)| dx$$
 Ec.(2)

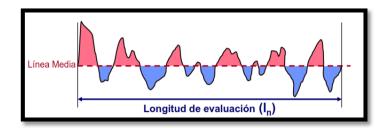


Gráfico 6- 4: Longitud de evaluación de Rugosidad.

(Fuente: Universidad del País Vasco – Euskal Herriko Unibertsitatea, 2011)

Los valores de rugosidad Ra pueden indicarse bien por su valor normalizado o por su número de clase indicados en la tabla.

Valor de rugosidad Ra en μm	Clase de rugosidad		
50	N12		
25	N11		
12,5	N10		
6,3	N9		
3,2	N8		
1,6	N7		
0,8	N6		
0,4	N5		
0,2	N4		
0,1	N3		
0,05	N2		
0,025	N1		

Gráfico 6- 5: Clase de Rugosidad Superficial.

(Fuente: Pérez)

"Desviación media cuadrática del perfil Rq: Valor medio cuadrático de las desviaciones del perfil, en los límites de la longitud básica, (valor utilizado con preferencia en normas americanas indicado en micro pulgadas RMS)." (Pérez, pág. 10)

6.6.4 Equipo Medidor de Rugosidad SJ-210

6.6.4.1 Características del SJ-210

Diseño portátil: El Rugosímetro SJ-210 tiene un peso ligero de 0,5 kg, diseñado para ser portátil. Es compacto para que pueda ser utilizado y sostenido con una sola mano, la batería hace más fácil la realización de la medición en un taller o en cualquier parte donde no haya corriente eléctrica para cargarlo. Tiene un rango máximo de 360 um (-200 um a +160 um) y puede mostrar varios parámetros de rugosidad de una superficie. (Mitutoyo, 2009, págs. 1-2)

6.6.4.2 Funciones de Operación

Para acceder al menú principal de la SJ-210 se acciona pulsando un botón. Cada tecla programable con sus funciones operativas se explican en el siguiente manual.

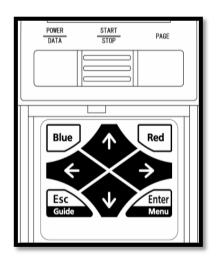


Gráfico 6- 6: Funciones de Teclas (SJ-210)

(Fuente: Mitutoyo, 2009)

FUNCIONES DE LAS TECLAS

[POWER / DATA]

Se utiliza para conectar el SJ-210, exportar datos cuando la impresora está conectada al SJ-210 o para almacenar contenido que aparece en el monitor en una tarjeta memoria en archivo de formato BMP.

[START/STOP]

Se utiliza para iniciar y detener la medición.

[PAGE]

Se utiliza para ver el resultado de la medición de otros parámetros, evaluación del perfil, los gráficos, lista condiciones.

Tecla [Azul]

Se utiliza para volver a la pantalla principal de inicio, eliminar o realizar valores numéricos funciones que van apareciendo en la pantalla.

Tecla [Red].

Se utiliza para visualizar el menú secundario, cambiar el tipo de caracteres disponibles para el introducción o realizar la función que aparece en el monitor.

Tecla de cursor ($[\uparrow], [\downarrow], [\leftarrow] [\rightarrow]$)

Se utiliza para seleccionar el elemento que desee, cambiar la página, introducir el valor numéricos / caracteres.

Tecla [Esc / Guía]

Se utiliza para volver a la pantalla anterior. Este botón también se utiliza para apagar laSJ-210.

[Intro / Menú]

Se utiliza para confirmar el elemento seleccionado en la configuración, entre en vigencia.

6.6.5 Procedimiento de uso del Rugosímetro SJ-210

6.6.5.1 Preparación del SJ-210

Previo a la utilización del SJ-210, se deben realizar las siguientes operaciones:

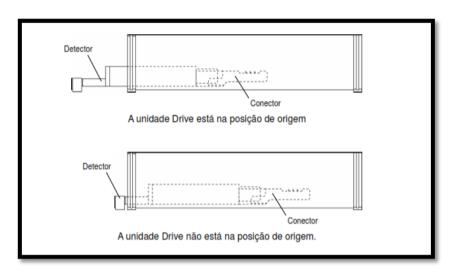
- a) Instalar la unidad conductora y el detector; el SJ-210 se forma de la unidad de pantalla, el detector y la unidad conductora. Se conectan las tres unidades con cables.
- b) Cargar la batería de la unidad SJ-210.
- c) Actualizar los ítems requeridos para el almacenaje programado de las mediciones tales como: fecha, hora, lenguaje, etc.

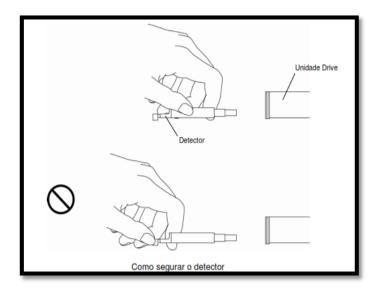
6.6.5.2 Montaje y Desmontaje del Detector

Después de completar una medición con el dispositivo, se desmonta la unidad conductora y se guarda en un lugar seguro para prevenir daños en la misma.

"IMPORTANTE: La unidad conductora debe de estar apagada antes de montar o desmontar el detector. Si está encendida, puede causar daños. Es recomendable montar o desmontar el conductor cuando la unidad conductora está en la posición del punto de ori- gen. Cuando la unidad conductora no está en esta posición, el desmontaje o montaje, puede resultar muy difícil y

también puede causar daños a la unidad (Gráfico 6-7)." (Mitutoyo, 2009, págs. 3-2)




Gráfico 6-7: Posición del Detector.

(Fuente: Mitutoyo, 2009)

1. MONTAJE

Al momento de realizar el montaje y desmontaje de la unidad, debe detener el detector por completo, ya que en el caso de detenerlo de la punta, el detector puede ser dañado (Gráfico 6-8).

"IMPORTANTE: Cuando se coloque el detector en la unidad conductora, no lo fuerce. Si lo hace ocasionara daños en el, después que el detector se siente ligero en la guía de la unidad conductora, se empuja el detector hacia dentro hasta que se detenga cuando los pernos de los conectores y del detector se ajusten. Cuando el detector está firmemente colocado en la unidad conductora, la posición del tornillo de la parte de arriba del detector debe de estar alineado el final de la cara de la unidad conducto- ra, como se muestra a continuación en la imagen (Gráfico 6-9)." (Mitutoyo, 2009, págs. 3-4)

Gráfico 6- 8: Posicionamiento del Detector.

(Fuente: Mitutoyo, 2009)

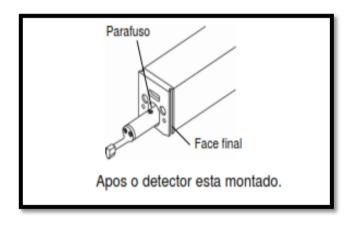


Gráfico 6-9: Alineación final del Detector.

(Fuente: Mitutoyo, 2009)

2. DESMONTAJE

Con la unidad conductora en la posición del punto de origen, suavemente jale hacia fuera el detector, de la unidad conductora (Gráfico 6-9).

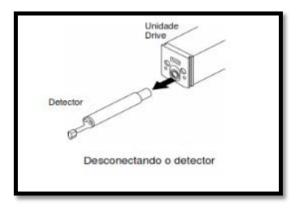


Gráfico 6- 10: Desmontaje del Detector.

(Fuente: Mitutoyo, 2009)

6.6.5.3 Montaje y Desmontaje de la Unidad Conductora

1 DESMONTAJE

- 1 Mientras presiona la sección A en la dirección indicada por la flecha (1), levante la unidad conductora en la dirección indicada por la flecha (2). Jale hacia fuera, la unidad conductora, del gancho retenedor de la unidad conductora (Gráfico 6-10).
- 2 Mientras jala hacia fuera la sección B, en la dirección indicada por la flecha.
- 3 Desmonte la unidad conductora de los pernos retenedores (Gráfico 6-10).

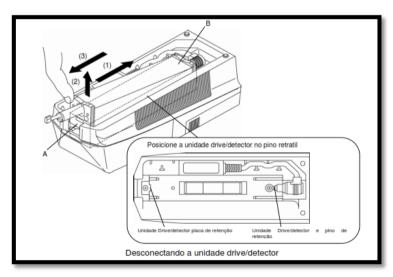


Gráfico 6-10: Desmontaje de la unidad conductora.

(Fuente: Mitutoyo, 2009)

IMPORTANTE: No se detenga del detector mientras desmonta la unidad conductora, esto le puede causar daños.

4 MONTAJE

- 1 Empuje la unidad conductora hacia dentro de la unidad de pantalla como lo indica la flecha (1). Encaja con los pernos de la unidad conductora (Gráfico 6-11).
- 2 Baje la unidad conductora en la dirección que indica la flecha (2) mientras lo presiona en la dirección indicada por la otra flecha (1) hasta que sea enganchada en la placa de retención (Gráfico 6-11)."

IMPORTANTE: No se detenga del detector mientras monta la unidad conductora, esto le puede causar daños.

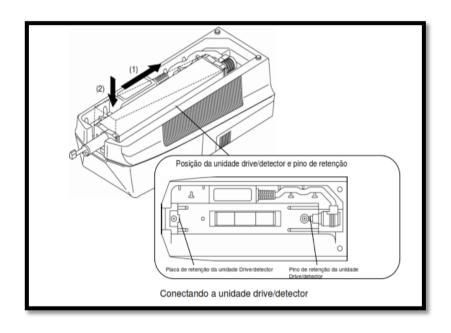


Gráfico 6-11: Desmontaje de la unidad conductora.

(Fuente: Mitutoyo, 2009)

6.6.5.4 Uso de la Extensión Unidad de Accionamiento

"Para operar el detector o unidad de accionamiento separado de la unidad de visualización, utilice el cable de conexión". (Mitutoyo, 2009, págs. 3-9)

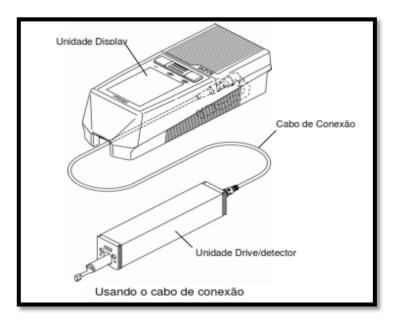
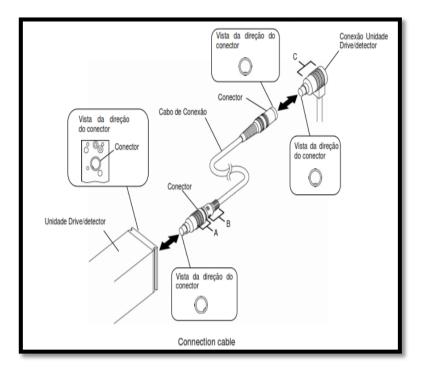


Gráfico 6-12: Extensión de la unidad de accionamiento.

(Fuente: Mitutoyo, 2009)


Conexión de la unidad de accionamiento / detector con el cable de conexión.

Compruebe la orientación de los conectores y conecte la misma explotación firmemente en la sección C.

Desconexión de la unidad de accionamiento / detector. Tire del conector hacia afuera, sosteniendo firmemente en la sección C.

Conexión del cable de conexión. Compruebe la orientación de los conectores, y luego insertar el conector en la unidad conducir sosteniendo firmemente en la sección B.

Desconectar el cable de conexión. Sostenga la sección A, mover la A a la delantera B, a continuación, tire hacia fuera.

Gráfico 6-13: Conexión y desconexión de la extensión unidad de accionamiento.

(Fuente: Mitutoyo, 2009)

6.6.5.5 Alimentación de Energía

Cuando la batería integrada es utilizada el SJ-210 puede cargarse sin tener que conectar el adaptador AC.

IMPORTANTE: Cuando una batería esta nueva tiene el interruptor de corriente apagado. Este seguro debe encenderse (interruptor eléctrico) antes de usar este instrumento. Cuando el adaptador AC está conectado mientras que el interruptor eléctrico de la batería interna está apagado el icono mostrado a continuación (Gráfico 6-14) aparece en la pantalla. Desconecte el adaptador AC, encienda el interruptor eléctrico de la batería interna y vuelva a conectar el adaptador AC. (Mitutoyo, 2009, págs. 3-13)

Gráfico 6-14: Bacteria sin conexión.

(Fuente: Mitutoyo, 2009)

"Cuando la carga de la batería interna está casi consumida no se puede

encender el instrumento, cargue la batería interna para utilizar el SJ-210.

Sin embargo, las condiciones de medición y de los resultados están

guardadas en la memoria interna.

Los siguientes elementos son guardados en la memoria interna del SJ-210

aunque el interruptor eléctrico de la batería este apagado o cuando la batería

interna es reemplazada." (Mitutoyo, 2009, págs. 3-13)

Factor de calibración del detector.

Factor de calibración de velocidad de la unidad conductora.

Tipo de la unidad conductora.

Lenguaje.

Unidad.

Punto decimal.

Formato de la fecha.

6.6.5.6 Ajustes Iniciales

Para empezar a usar el SJ-210 debes de completar los ajustes iniciales. Los

ajustes iniciales incluyen los siguientes elementos:

Fecha: Especifica la fecha y la hora.

Lenguaje: Cuando sea necesario se puede cambiar el lenguaje de la pantalla.

Unidad de cambio: Cuando sea necesario se puede cambiar la unidad de la

información, tal como los resultados de la medición mostrados en la pantalla.

Volumen de timbre: Se puede ajustar el volumen del timbre que suenan cuando

las teclas operacionales son presionadas.

234

"IMPORTANTE: Conectar el adaptador AC para prevenir que se apague el SJ-210 y se interrumpa cualquier operación. Cuando se utilice la batería interna asegúrese de que tenga suficiente carga. Si se están realizando operaciones con la carga de la batería baja el SJ-210 se puede apagar." (Mitutoyo, 2009, págs. 3-14)

6.7 METODOLOGÍA

Para la parte de la metodología, se efectúa un procedimiento de inspección de Superficies Planas Pintadas con el control de Rugosidad Superficial con el equipo **Rugosímetro SJ-210**, para dicho procedimiento se tomó en cuenta los criterios de Aceptación y Rechazo con el aporte del Cap. Estados Superficiales correspondiente al Prontuario de Máquinas de LARBURU.

Este procedimiento de Inspección tiene una secuencia con procesos y actividades que sigue una cadena estructurada como se presenta a continuación en el procedimiento de Inspección y Evaluación de Superficies planas pintadas en Autobuses, un procedimiento tiene una estructura como a continuación se presenta:

- a) **OBJETIVO:** Establece con suma claridad el "por qué" del procedimiento referente a cada proceso.
- **b). ALCANCE:** Define los extremos de aplicación del procedimiento de inspección de Superficies Planas Pintadas en Autobuses.
- c) **DOCUMENTACIÓN DE REFERENCIA**: Cita la toda la documentación con la cual se ha elaborado toda el procedimiento de inspección.
- **d) GENERALIZACIÓN:** Da información de una manera general que ayude a entender el procedimiento de inspección.

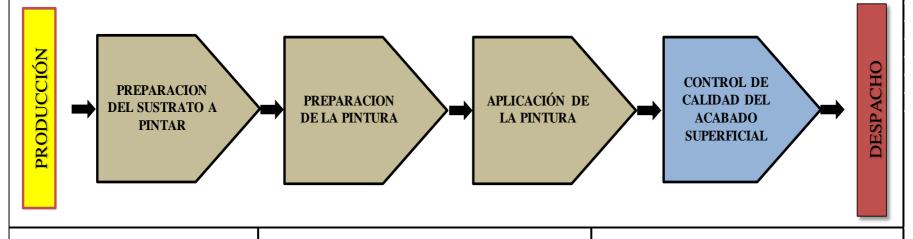
e) REALIZACIÓN DEL PROCEDIMIENTO:

Describe:

- Los procesos esenciales en cual se va a trabajar
- Las actividades que son el objetivo del procedimiento de inspección de Superficies planas pintadas.
- Descripción de las actividades correspondientes a cada proceso.
- Registros que se cuenta en el procedimiento y formatos de la inspección
 Superficies planas pintadas.
- F. ANEXOS: Se refiere a cada registro o formato, así como dato de suma importancia que ayude a comprender el procedimiento de inspección.

6.7.1 Procedimiento por medio de Ensayo no Destructivo con el Rugosímetro SJ-210

A continuación se presenta el procedimiento de inspección de rugosidad en Superficies planas pintadas por ensayos no destructivos con el equipo de inspección RUGOSÍMETRO SJ-210.


ACTIVIDADES QUE INTERVIENEN EN EL PROCESO DE PINTURA

FICM CVP-001

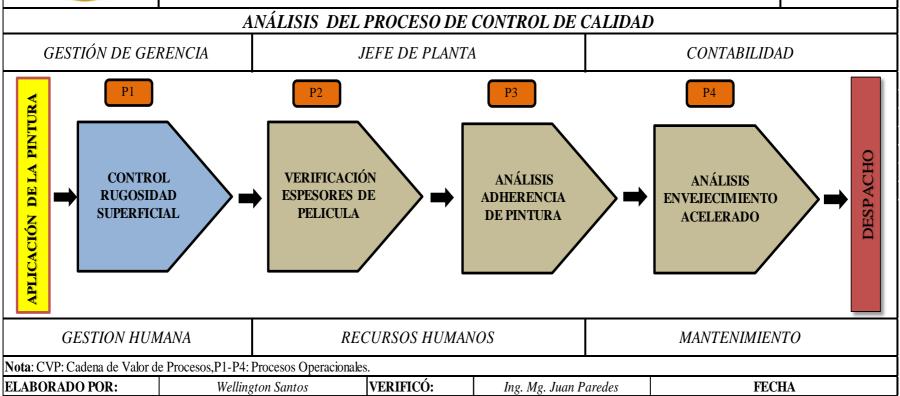
PROCESO DE CONTROL DEL PROCEDIMIENTO DE PINTADO PRINCIPAL

GESTIÓN DE GERENCIA JEFE DE PLANTA CONTABILIDAD

GESTION HUMANA RECURSOS HUMANOS MANTENIMIENTO

Nota: CVP: Cadena de Valor de Procesos.

ELABORADO POR:	Wellington Santos	VERIFICÓ:	Ing. Mg. Juan Paredes	FECHA
REVISO:	Wellington Santos	VALIDO:	Ing. Mg. Juan Paredes	20/03/215



ACTIVIDADES QUE INTERVIENEN EN EL PROCESO DE CONTROL DE CALIDAD

FICM CVP-002

20/03/215

Ing. Mg. Juan Paredes

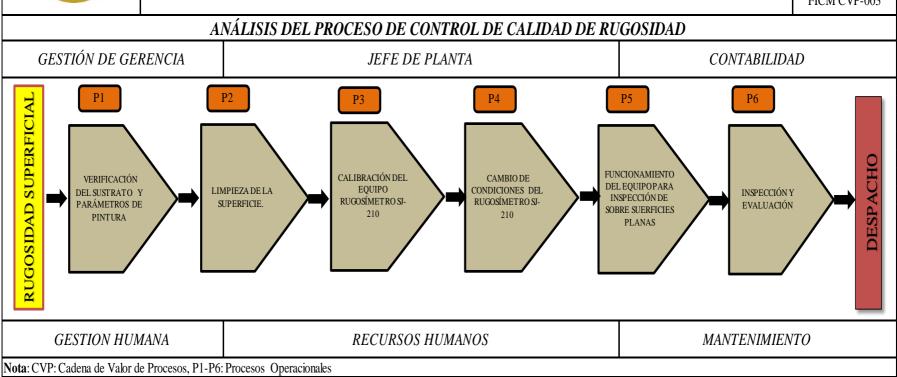
VALIDO:

Wellington Santos

REVISO:

ELABORADO POR:

REVISO:


PROCESO DE CONTROL DE CALIDAD DE RUGOSIDAD CON EL EQUIPO MEDIDOR DE RUGOSIDAD SUPERFICIAL SJ-210

FICM CVP-003

FECHA

20/03/215

Ing. Mg. Juan Paredes

Ing. Mg. Juan Paredes

VERIFICÓ:

VALIDO:

Wellington Santos

Wellington Santos

ACTIVIDADES QUE INTERVIENEN EN EL PROCESO DE CONTROL DE CALIDAD DE RUGOSIDAD (RUGOSIMETRO SJ-210)

FICM-CVA-001 Identificación: RUGOSIMETRO SJ-210 Facultad de Ingeniería Civil Y Mecánica Solicitante: 20/03/2015 Cuidad: Dirección: Av. Los Chasquis Fecha: Ambato Wellington Vinicio Santos Cueva Realizado por: Supervisor: Ing. Mg. Juan Paredes Salinas CADENA DE VALOR DE UN PROCEDIMIENTO DE INSPECCIÓN DE PINTURA GESTIÓN DE GERENCIA JEFE DE PLANTA **CONTABILIDAD** P4 -Determinar partes y - Verificación del funciones del equipo sustrato base - Determinar el - Determinar el respecto a la medición - Determinación - Configuración de utilizado. proceso de de rugosidad Proceso para la de Criterios de condiciones (Norma Limpieza para Medición de superficial para - Verificación aceptación y aplicada y sus superficies superficies planas. Superficies planas Proceso de parámetros.) rechazo -Determinar pintadas pintadas. Aplicación de parámetros de Pintura utilizado. calibración. **GESTION HUMANA** *MANTENIMIENTO* ADMINISTRATIVO FINANCIERO NOTA: CVA: CADENA DE VALOR DE UN PROCEDIMEINTO DE INSPECCIÓN DE PINTURA PROCESOS OPERACIONALES P1-P6 VERIFICÓ: ELABORADO POR: **FECHA** Wellington Santos Ing. Mg. Juan Paredes **REVISO:** VALIDO: Wellington Santos Ing. Mg. Juan Paredes 20/03/2015

PROCEDIMIENTO PARA LA VERIFICACIÓN DE SUSTRATO Y PARAMETROS DE PINTURA APLICADOS

OPP 1

FICM-OPP-001

		DATOS	GENERALES	S	•	•	
Equipo:	RUGOSÍMETRO	Iden	tificación:		SJ-210)	
Solicitante:		Facultad de Ingeniería Civil Y Mecánica					
Dirección:	Av. Los Chasquis	Fecha:	10/03/2	2015	Cuidad:	Ambato	
Realizado por:	Sr. Wellington	Santos	Superv	isor:	Ing. Mg. Ju	an Paredes Salinas	

Objetivo: Determinar el tipo de material utilizado y los parámetros principales de Pintura utilizados en los

Alcance: El material y los parámetros de pintura están acorde a los establecidos por las fichas de los proveedores.

APLICACIÓN DE PINTURA

JEFE DE PLANTA O SUPERVISOR

Recibir el autobús del proceso de Aplicación de Pintura, establecido dentro de los procesos de fabricación del autobús

Establecer una orden de autorización y verificación de los materiales utilizados (Tipo de sustrato base) que se empleó para el Pintado del autobús realizado en el proceso de pintura.

FICM-RTS-001

Autorizar y verificar si las superficies pintadas están en óptimas condiciones y bajo que parámetros de pintura fueron ejecutados (parámetros establecidos por el proveedor), para pasar al siguiente proceso

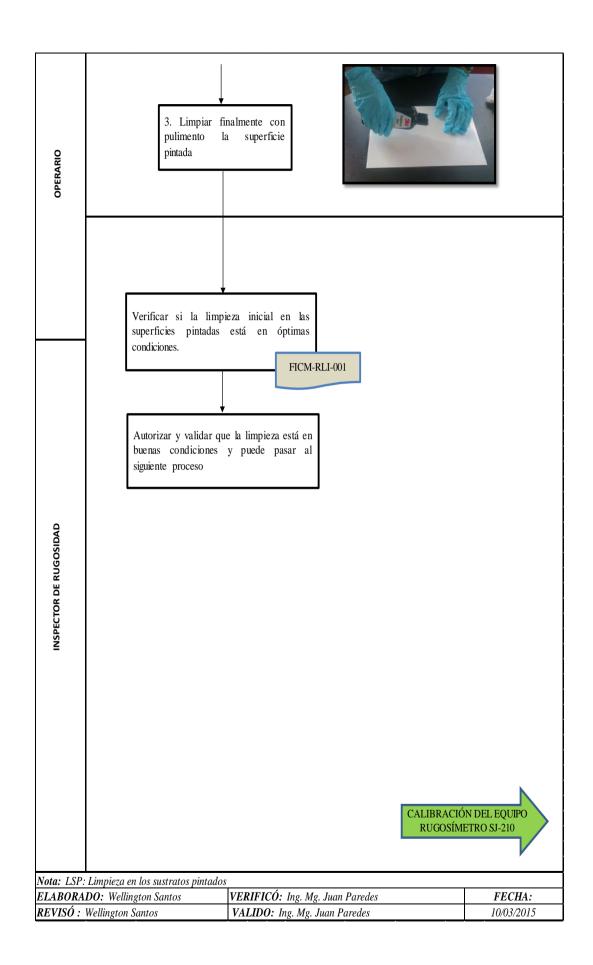
FICM-RPP-001

LIMPIEZA

Nota: OPP: Obtención de los Parámetros de Pintura.

 ELABORADO: Wellington Santos
 VERIFICÓ: Ing. Mg. Juan Paredes
 FECHA:

 REVISÓ: Wellington Santos
 VALIDO: Ing. Mg. Juan Paredes
 10/03/2015



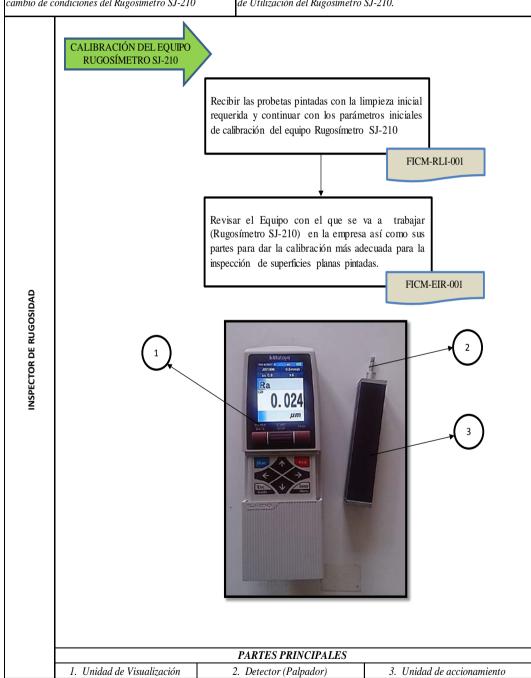
PROCEDIMIENTO PARA LA DETERMINACIÓN DE LIMPIEZA DE SUPERFICIES PINTADAS

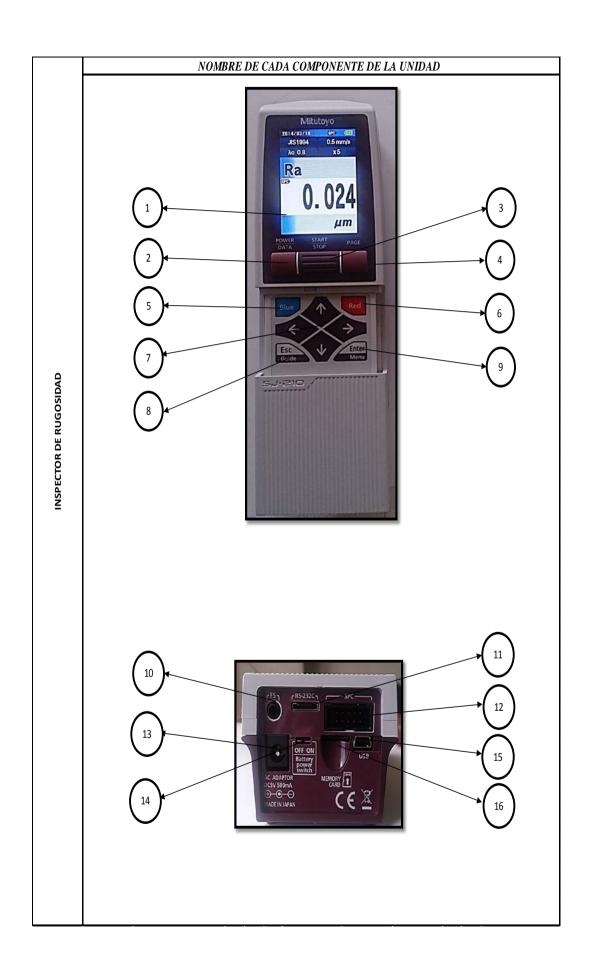
LSP 1

								FICM-LSP-001
				GENERALE	S	•	•	
Equi		RUGOSÍMETR		tificación:		SJ-2	210	
Solicit				ultad de Ingeni				
Direco		Av. Los Chasquis	Fecha:	10/03/		Cuidad:		Ambato
Realizad	_	Sr. Wellingto		Superv	isor:	Ing. Mg.	Juan Pa	redes Salinas
-		el tipo de limpieza iintadas previo al	astudio da AlCo	ance: El tipo dio de Rugosia			suficiente	e para realizar e
JEFE DE PLANTA O SUPERVISOR	LI		Revisar las si parámetros de ra Ingeniero de Con Ingenier	gistro con el eliminar las da o y la orden pas iniciales de das.	aprobados p d. tipo de limp impurezas d ara proceder limpieza de	pieza en la FICM-LSP-C	001	
OPERARIO			de la probet	s s s				

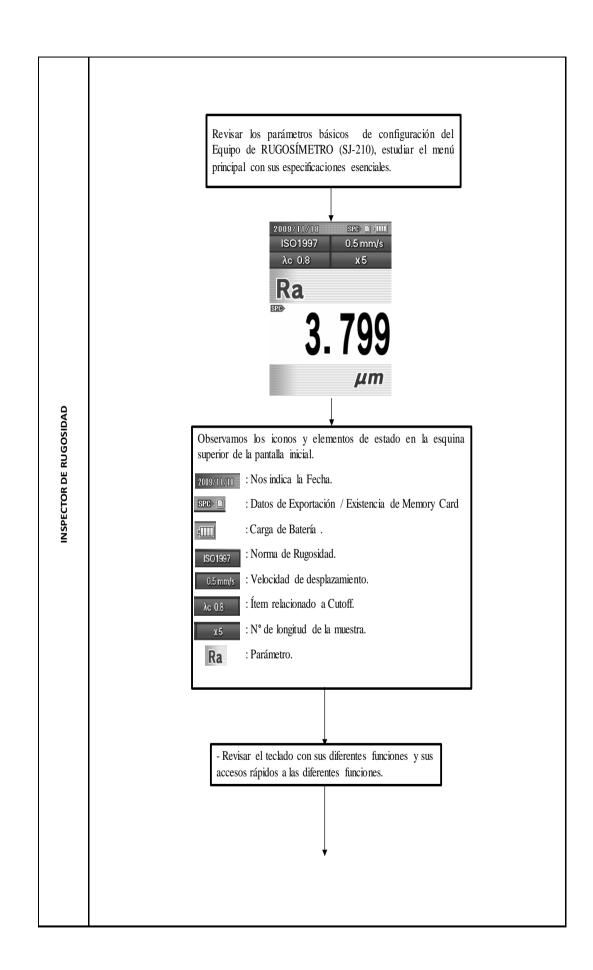
PROCESO DE CALIBRACIÓN DEL EQUIPO **RUGOSÍMETRO SJ-210**

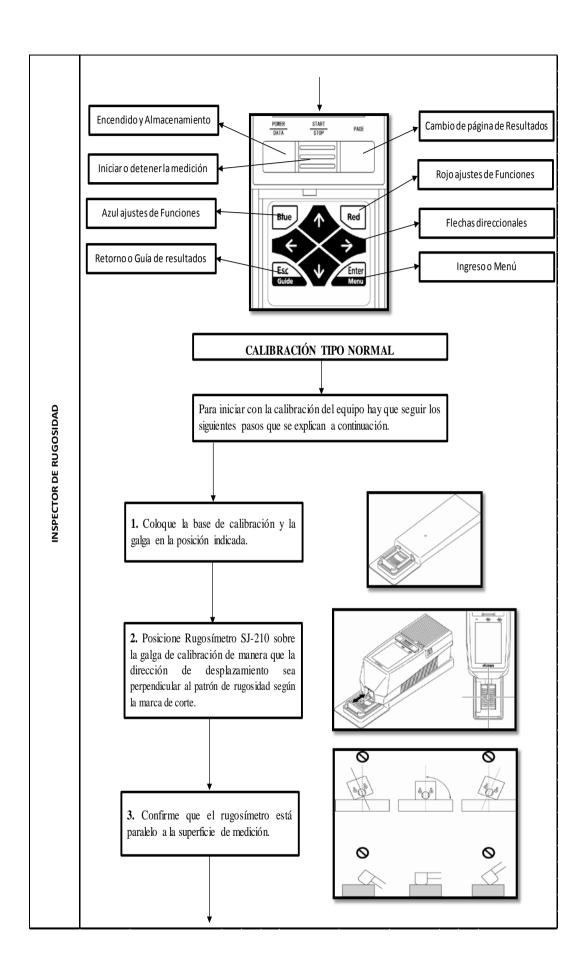
CER 1

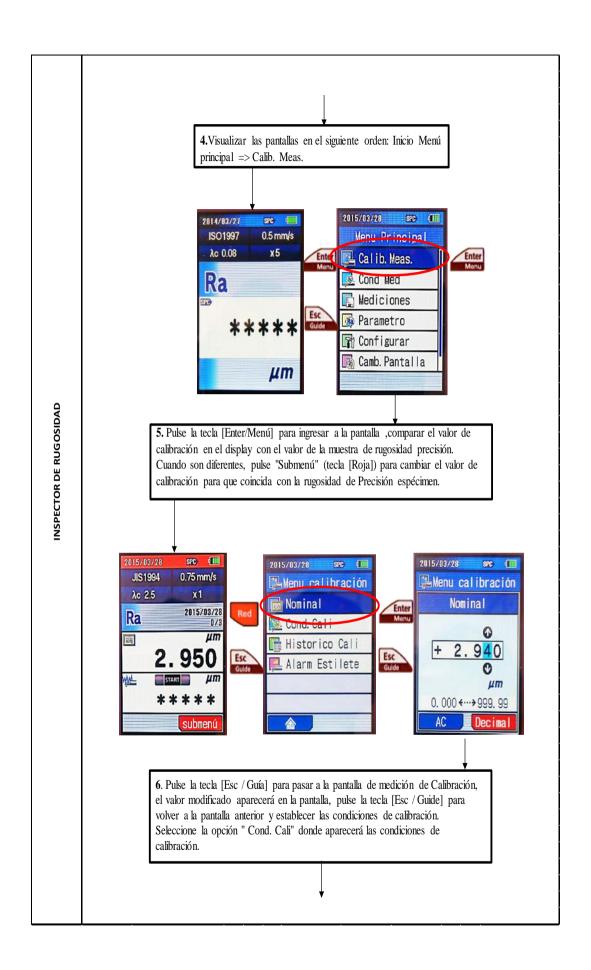


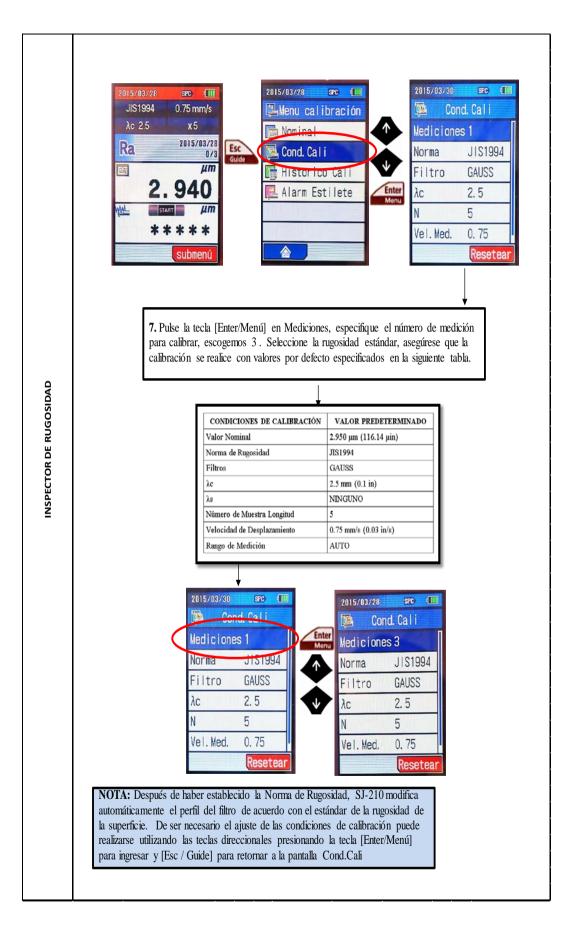

FICM-CER-001

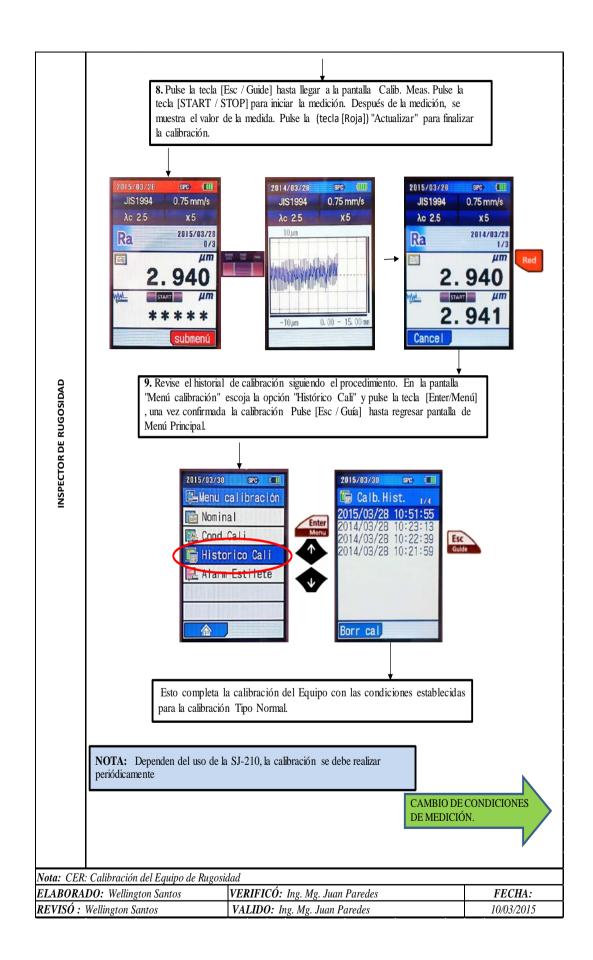
	DATOS GENERALES								
Equipo:	RUGOSÍMETRO	Iden	tificación:		SJ-210)			
Solicitante:		Facultad de Ingeniería Civil Y Mecánica							
Dirección:	Av. Los Chasquis	Fecha:	10/03/2	2015	Cuidad:	Ambato			
Realizado por:	Sr. Wellington	Supervisor:		Ing. Mg. Juan Paredes Salinas					

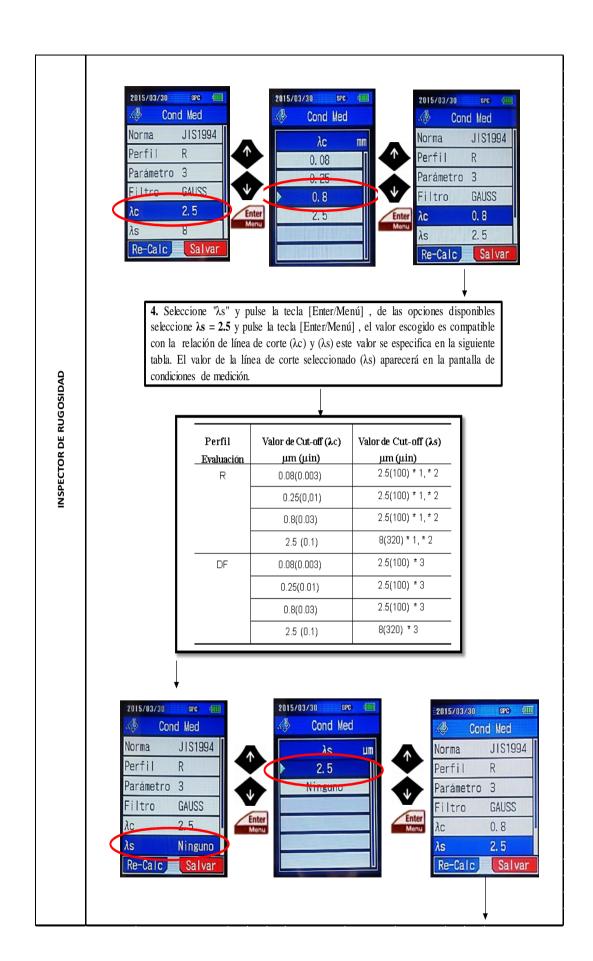

cambio de condiciones del Rugosímetro SJ-210

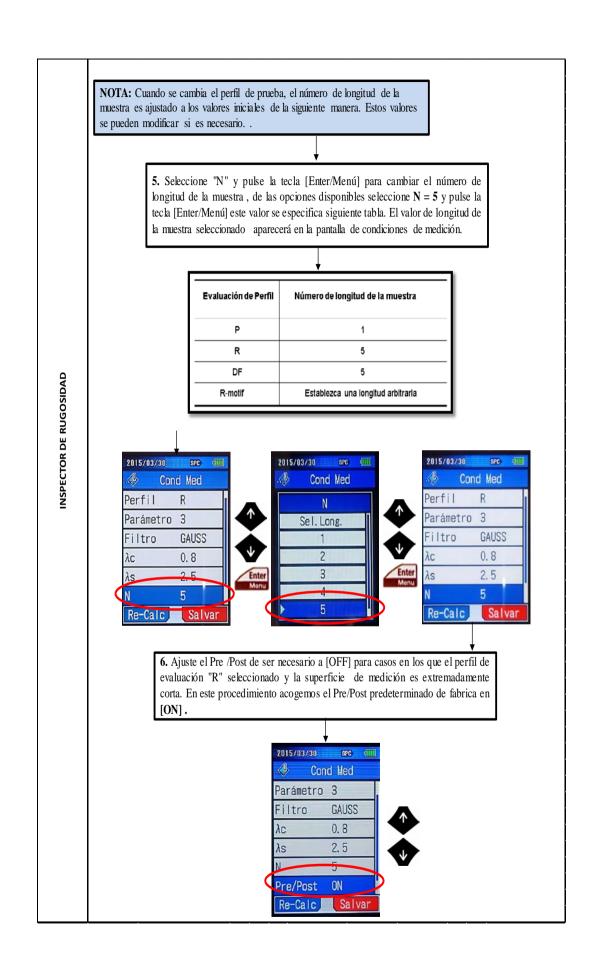

Objetivo: Determinar los parámetros de calibración y Alcance: Estos parámetros de calibración estarán acorde al Manual de Utilización del Rugosímetro SJ-210.

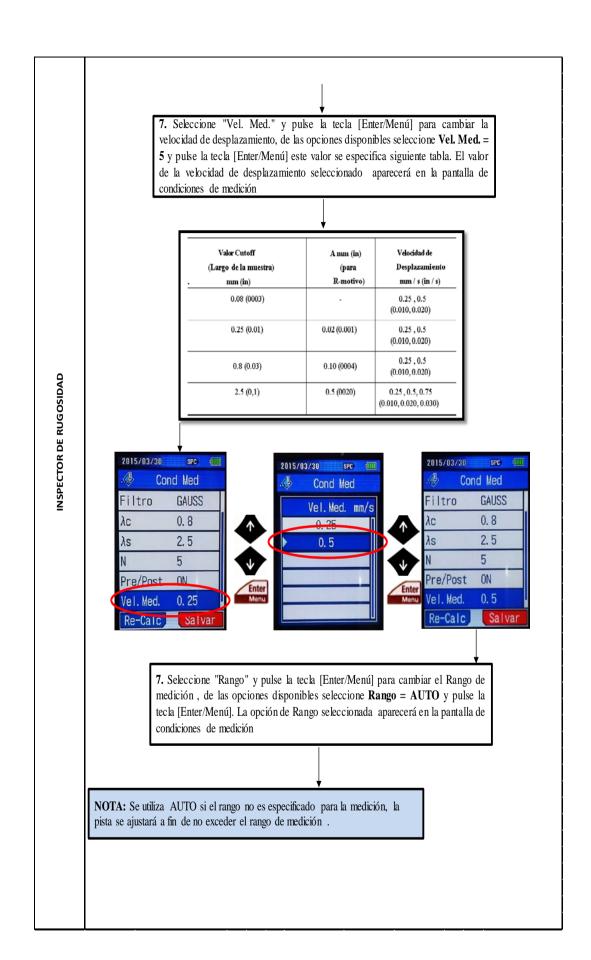


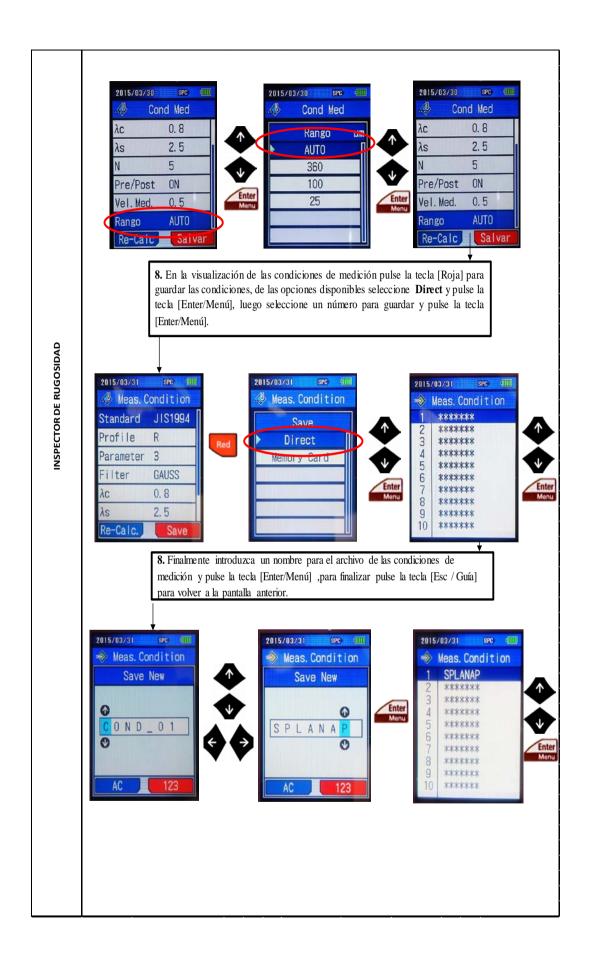


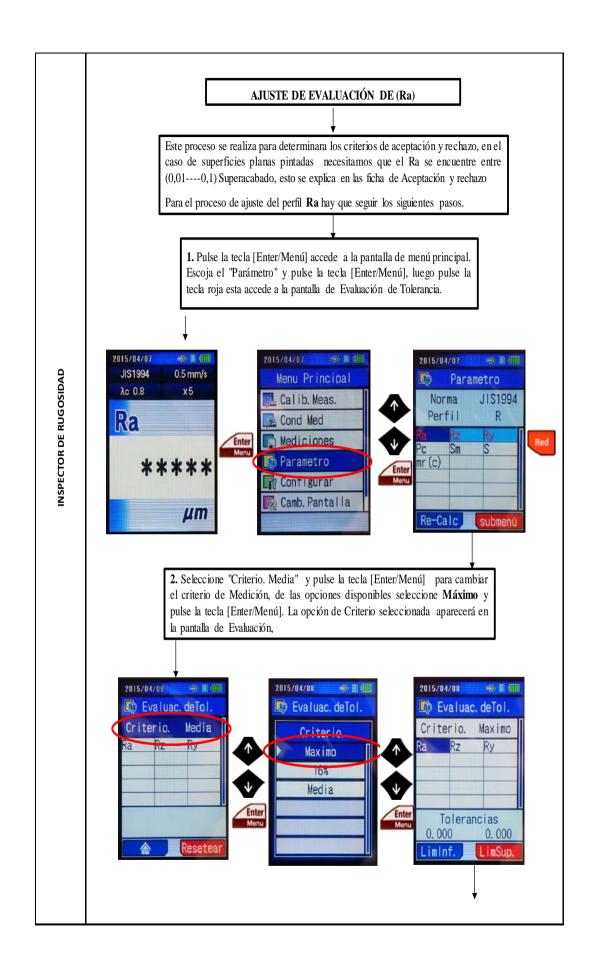


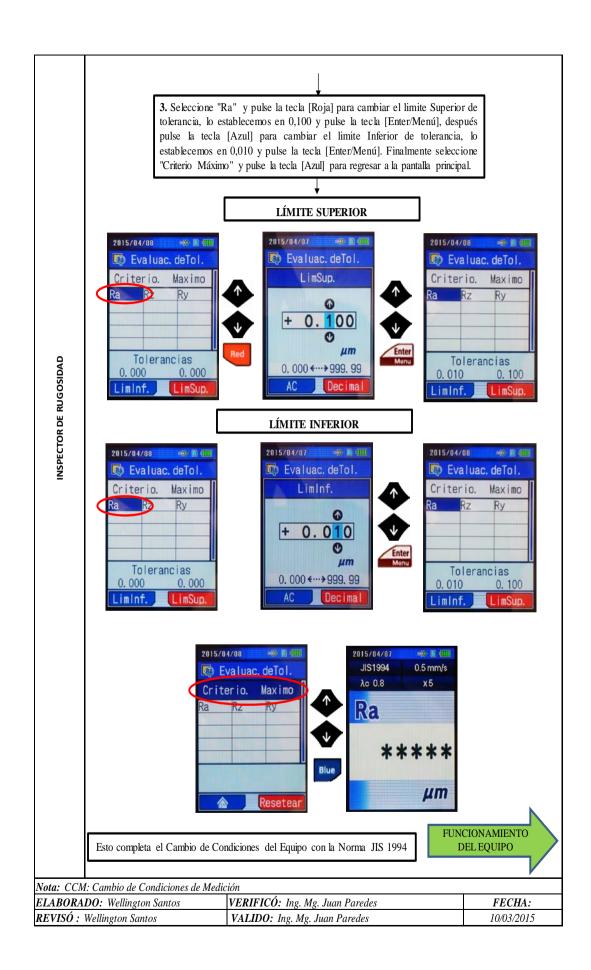


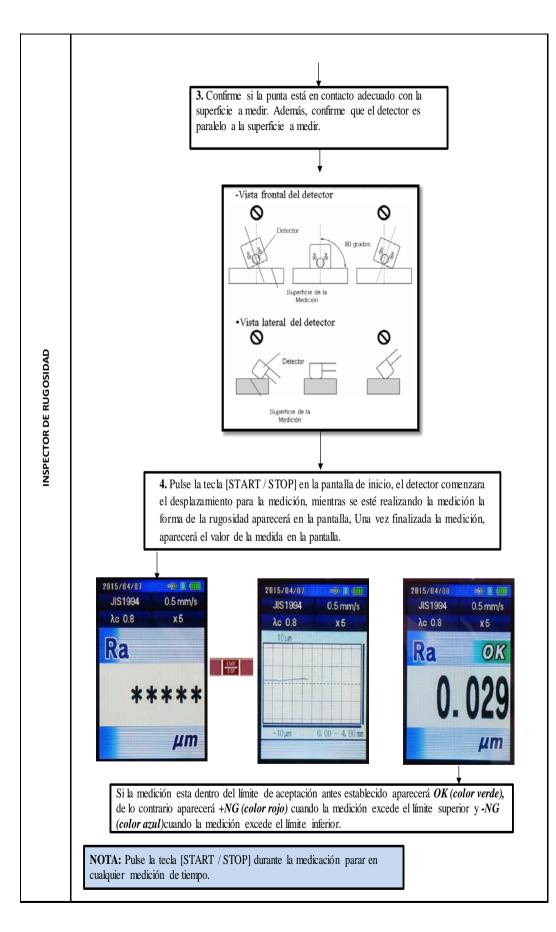

PROCESO DE CAMBIO DE CONDICIONES DE MEDICIÓN

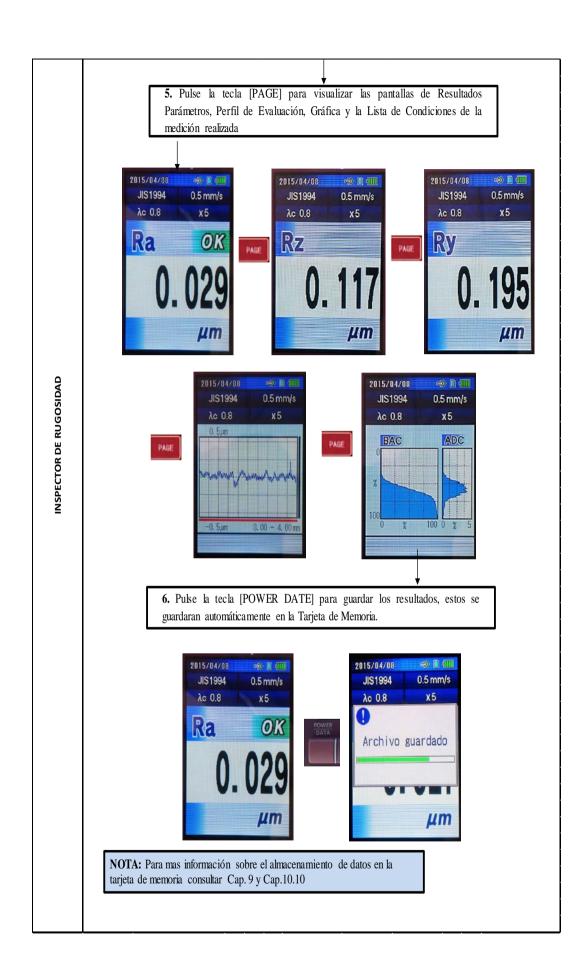

CCM 1

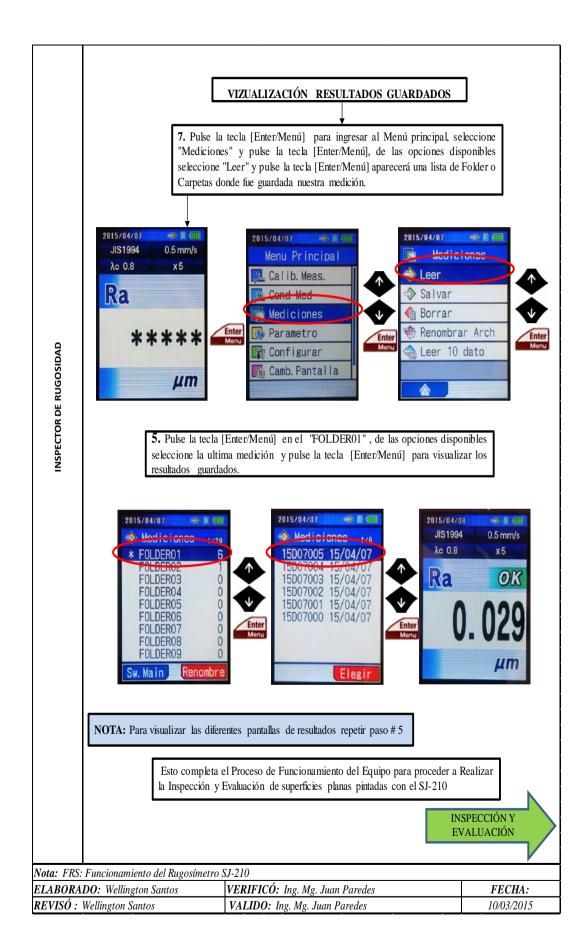



DATOS GENERALES Equipo: RUGOSIMETRO Identificación: SJ-210	2		MILL	ICION				10.100
Solicitante: Facultad de Ingeniería Civil Y Mecánica Dirección: Av. Los Chasquis Fecha: 10032015 Cuidad: Ambato	8.8							FICM-CCM-001
Solicitante: Facultad de Ingeniería Civil Y Mecánica Dirección: Av. Los Chasquis Fecha: 10032015 Cuidad: Ambato		1	DATOS	GENERALE	S	I		ı
Solicitante: Dirección: Av. Los Chasquis Fecha: 1003/2015 Cuidad: Ambato Realizado por: Sr. Wellington Santos Supervisor: Ing. Mg. Juan Paredes Salinas Objetivo: Determinar las condiciones necesarias para Alcance: Estas condiciones solo se pueden ejecutar bajo la Norma Ji a utilización del equipo SJ-210 con la Norma JIS 1994 Para el cambio de condiciones de medición hay que seguir los siguientes pasos. 1. Pulse la tecla [Roja] el accede directamente a la pantalla de condiciones de medición. Escoja la "Norma" y pulse la tecla [Enter/Menú]. Para al cambio de condiciones de medición bay que seguir los siguientes pasos. 1. Pulse la tecla [Roja] el accede directamente a la pantalla de condiciones de medición. Escoja la "Norma" y pulse la tecla [Enter/Menú]. Parametro 3 Filtro GAUSS Ac 2.5 As 8 Re-Calo Salvar 2. Seleccione la Rugosidad estándar compatible con la medida deseada y pulse la tecla [Enter/Menú], el estándar de rugosidad seleccionado aparecerá en la pantalla de condiciones de	Equipo:	RUGOSIMETRO				SJ	I-210	
Para el cambio de condiciones de medición hay que seguir los siguientes pasos. CAMBIO DE CONDICIONES DE MEDICIÓN. Para el cambio de condiciones de medición. Escoja la Norma Justificación del equipo SJ-210 con la Norma Justificación del equipo S					ería Civil Y I	Mecánica		
Alcance: Estas condiciones solo se pueden ejecutar bajo la Norma Jis 1994 CAMBIO DE CONDICIONES DE MEDICIÓN. Para el cambio de condiciones de medición hay que seguir los siguientes pasos. 1. Pulse la tecla [Roja] el accede directamente a la pantalla de condiciones de medición. Escoja la "Norma" y pulse la tecla [Enter/Menú]. 2015/03/20	Dirección:	Av. Los Chasquis						Ambato
CAMBIO DE CONDICIONES DE MEDICIÓN. Para el cambio de condiciones de medición hay que seguir los siguientes pasos. 1. Pulse la tecla [Roja] el accede directamente a la pantalla de condiciones de medición. Escoja la "Norma" y pulse la tecla [Enter/Menti]. 2015/03/30	Realizado por:	Sr. Wellington S	Santos	Superv	isor:	Ing. Mg	. Juan P	aredes Salinas
↓	Realizado por: Objetivo: Determinar ia utilización del equipo CAMBIO DE MED	Sr. Wellington St. Seledesead. seleccio	ara el cambio guir los siguie Pulse la tecantalla de Norma" y pulse la tecantalla de Norma y	de condicione entes pasos. la [Roja] el accondiciones de la tecla [Enter/Me	isor: indiciones so indiciones so is de medició is de medi	Ing. Mg Ing	ejecutar 97	aredes Salinas bajo la Norma Ji

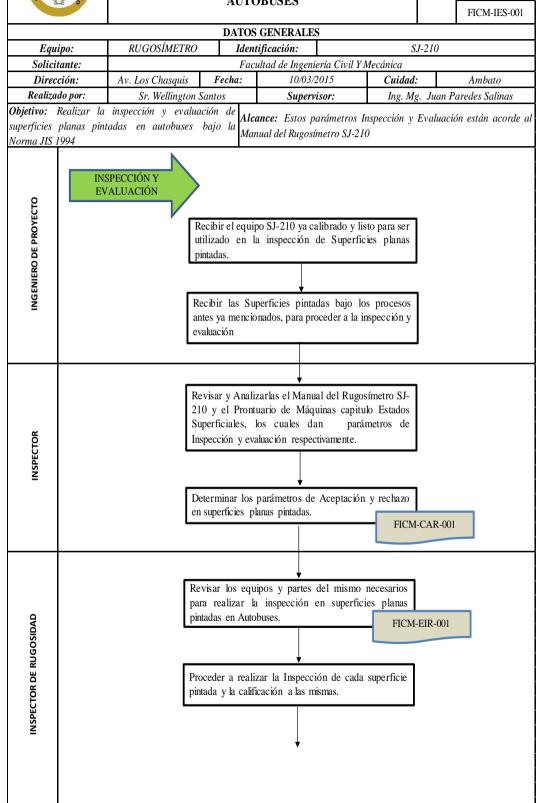


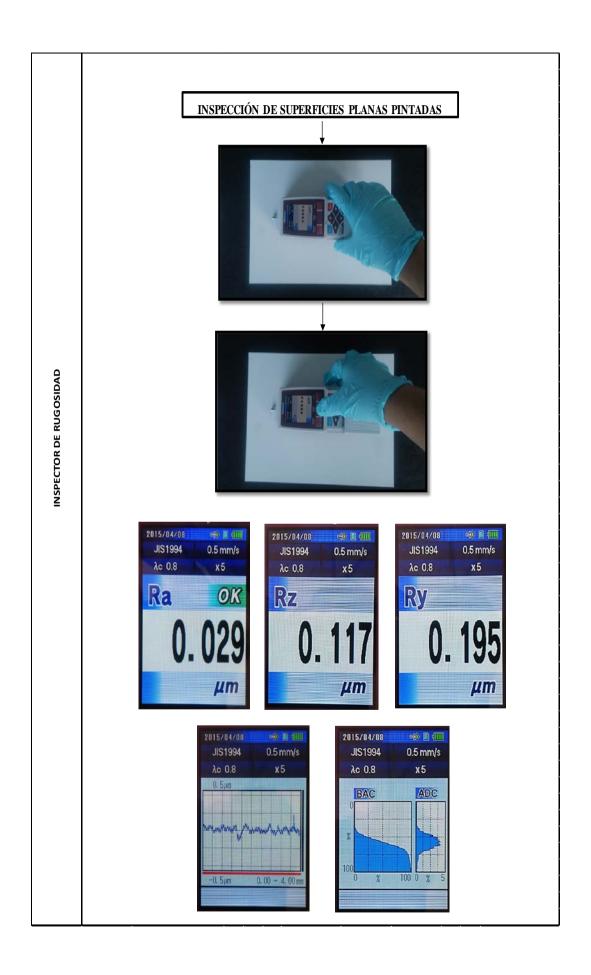


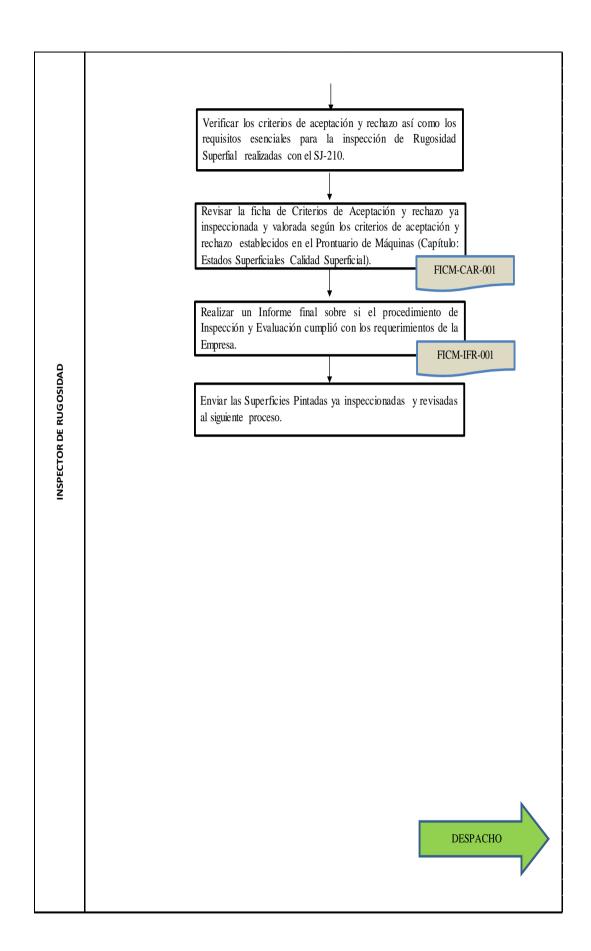



PROCESO DE FUNCIONAMIENTO DEL RUGOSÍMETRO SJ-210 PARA SUPERFICIES PLANAS

Solicitante: Foundated by Interception		1	DATEO	VENIED AT EC		FICM-FRS-00
Solicitante: Dirección: Av. Los Chasquis Fecha: 10/03/2015 Cuidad: Ambato Realizado por: Sr. Wellington Santos Dipietivo: Determinar el funcionamiento del guantina superficies lamas pintadas. FUNCIONAMIENTO DEL EQUIPO Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento	Favino	PUCOSIMETRO	T		ÇI 210	
Para el proceso de funcionamiento solo se puede ejecutar properes la condición seleccione da condición "SPLANAP" y pulse la tecla [Enter/Menti], la condición seleccionada aparecerá en la parte superior de la pantalla inicial. Distriction Para el proceso de funcionamiento del superficies planas.		KUGOSIMETKO		•		
Realizado por: Sr. Wellington Santos bjetivo: Determinar el funcionamiento del sugosimetro SJ-210 para la inspección de superficies anas pintadas. FUNCIONAMIENTO DEL EQUIPO Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . 1. Pulse la tecla [Azul] para acceder a las condiciones de medición guardadas, seleccione la condición "SPLANAP" y pulse la tecla [Enter/Menú], la condición seleccionada aparecerá en la parte superior de la pantalla inicial. 2015/04/07 3 COND_07 8 COND_07 8 COND_06 7 COND_07 8 COND_08 9 ******* 2. Para iniciar la medición, coloque el SJ-210 en la pieza a medir asegúrese de que los puntos A y B están en contacto.		Av Los Chasauis				Amhato
Determinar el funcionamiento del augosímetro SJ-210 para la inspección de superficies inspección de superficies inspección de superficies inspección de superficies planas. Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . 1. Pulse la tecla [Azul] para acceder a las condiciones de medición guardadas, seleccione la condición "SPLANAP" y pulse la tecla [Enter/Menú], la condición seleccionada aparecerá en la parte superior de la pantalla inicial. 2015/03/30 CONDO OS A CONDO						
Para el proceso de funcionamiento del Rugosímetro DEL EQUIPO 1. Pulse la tecla [Azul] para acceder a las condiciones de medición guardadas, se leccione la condición "SPLANAP" y pulse la tecla [Enter/Menú], la condición seleccionada aparecerá en la parte superior de la pantalla inicial. 2015/02/30 SC COND OS A COND OS SUMBLE O SUMBLE	bjetivo: Determin		dal	•		
Para el proceso de funcionamiento del Rugosímetro hay que seguir los siguientes pasos . 1. Pulse la tecla [Azul] para acceder a las condiciones de medición guardadas, seleccione la condición "SPLANAP" y pulse la tecla [Enter/Menú], la condición seleccionada aparecerá en la parte superior de la pantalla inicial. 2015/03/30	igosímetro SJ-210 p	ara la inspección de supe	0Y11C10C			ae ejecutar para
1. Pulse la tecla [Azul] para acceder a las condiciones de medición guardadas, seleccione la condición "SPLANAP" y pulse la tecla [Enter/Menú], la condición seleccionada aparecerá en la parte superior de la pantalla inicial. 2015/04/07	anas pintadas.		inspec	cion de superficies plar	us.	
	D	1. Pulse la tecl seleccione la condición seleccione la condicione la	a [Azul] para condición "cionada apara la medición apara la medici	los siguientes pasos . acceder a las condicion SPLANAP" y pulse ecerá en la parte superio Cond Med SPLANAP COND_03 COND_04 COND_05 COND_05 COND_07 COND_08 ************************************	nes de medición guar la tecla [Enter/Meior de la pantalla inicia 2015/04/0 JIs1994 \(\lambda \) 0 en la pieza a medición guar la tecla (Enter/Meior de la pantalla inicia 2015/04/0 JIs1994 \(\lambda \) 0 o 0.8	nú], la al. 0.5 mm/s x5






PROCEDIMIENTO PARA INSPECCIÓN Y EVALUACIÓN DE SUPERFICIES PINTADAS EN AUTOBUSES

IES 1

REGISTRO TIPO DE SUSTRATO BASE

RTS 1

CÓDIGO FICM-RTS-001

DATOS GENERALES										
Método END	Rugosidad Superficia	Rugosidad Superficial Orden del Producto RS 0001								
Solicitante:		Facu	ltad de Ingenie	ría Civil Y M	lecánica					
Producto:	Autobuses	Fecha:	15/03/2015		Cuidad:		Ambato			
Realizado por:	Sr. Wellington S	Santos	Superv	isor:	Ing. Mg	. Juan P	aredes Salinas			

TIPO DE SUSTRATO BASE	TIPO DE SUSTRATO BASE PARA APLICACIÓN DE PINTURA EN AUTOBUSES						
METÁLICO (GALVANIZADO)							
METÁLICO (GALVANIZADO + MASILLA)							
COMPUESTO (FIBRA DE VIDRIO)							
COMPUESTO (FIBRA DE VIDRIO + MASILLA)							

Nota: Marque con una X el sustrato base que se va utilizar para la aplicación de la pintura.

Nombre:
Firma de Autorización

Nota: RTS: Registro de Tipo de Sustrato .

ELABORADO: Wellington Santos	VERIFICÓ: Ing. Mg. Juan Paredes	FECHA:
REVISÓ: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/03/2015

REGISTRO DE PARAMETROS DE PINTURA APLICADOS

RPP

CÓDIGO FICM-RPP-001

Método END:	Rugosidad Superficial	Orden del Producto:		RS 0002		
Solicitante:		Facultad de Ingeniería Civil Y Mecánica				
Producto:	Autobuses	Fecha:	15/03/2015	Cuidad:	Ambato	
Realizado por:	Wellington Vinicio Santos	Cueva	Supervisor:	Ing. Mg. Juan Paredes Salinas		

	PROVE	EDOR (PI	NTURA)	RECUBRIMIENTO APLICADO			NUMERO DE MANOS			TIEMPO DE SECADO		
MATERIAL BASE	PPG	GLASURIT	SHERWIN	Wash Primar	Fondo de	Poliuretano	Simple(S),I	Normal(N), C	Cargada(C)	Wash Primer	Fondo de Relleno	Poliuretano
	110	OLASCRII	WILLIAMS	Wash Primer	Relleno	Follurelano	1 a 2	2 a 3	3 a 4	(10, 15, 20)min	(1, 4, 5)horas	(4, 18, 24)horas
9												
a												
b												
ь												
c												
d												
a												

Nombre:		

Firma de Autorización

Observaciones: a = Galvanizado; b = Galvanizado + Masilla; c = Fibra de Vidrio; d = Fibra de Vidrio + Masilla

NOTA: RPP: Registro de Parámetros de Pintura.

ELABORADO POR:	Wellington Santos	VERIFICÓ:	Ing. Mg. Juan Paredes	FECHA	
REVISO:	Wellington Santos	VALIDO:	Ing. Mg. Juan Paredes	20/03/2015	

REGISTRO DE LIMPIEZA DE SUPERFICIES PINTADAS

LSP 1

3	1 of					ļ	CÓDIGO	FICM-LSP-001	
				DATOS GENERALES					
	o END	Rugo	osidad Superficial		ı del Producto	RS 0003			
	tante:				de Ingeniería Civil Y Mec				
	ucto: do por:	A	utobuses Sr. Wellington Sa	Fecha:	15/03/2015 Supervisor		uid na Ma Juan	Ambato Paredes Salinas	
Кешида	uo por.		Sr. weuington Sa	ntos	Supervisor	· I	ng. Mg. Juan	i Fareaes Sannas	
		1							
PRO	BETA PINTA	DA	TIP	O DE CONTAMIN	IANTE	TIP	O DE LIMP	TEZA	
LOCALIZACIÓN	PINTURA	CÓDIGO	Polvo y Suciedad	Aceite y Grasa	Residuos Adhesivos	Manual	Solventes	Pulido	
		aL001							
	PPG	bL002 cL003							
S		dL004							
LATERALES		aL001							
K K	GLASURIT	bL002							
TE		cL003 dL004							
LA		aL001							
	SHERWIN	bL002							
	WILLIAMS	cL003							
		dL004 aF001							
	ppc	bF002							
	PPG	cF003							
됴		dF004							
FRENTE		aF001 bF002							
	GLASURIT	cF003							
FR		dF004							
	CHEDIUM	aF001							
	SHERWIN WILLIAMS	bF002 cF003							
	WILLIAMS	dF004							
		aR001							
	PPG	bR002							
0		cR003 dR004							
Ä		aR001							
RESPALDO	GLASURIT	bR002							
SE		cR003 dR004							
RE		aR001							
	SHERWIN	bR002							
	WILLIAMS	cR003 dR004							
		aT001							
	PPG	bT002							
	11.0	cT003							
		dT004 aT001							
ТЕСНО	OT 103	bT002							
EC	GLASURIT	cT003							
H		dT004							
	SHERWIN	aT001 bT002							
	WILLIAMS	cT003							
		dT004							
Nombre: Firma de Autorización									
			uvanīzaao + Masiila perficies pintadas.	, 1 wia ae viaita	o ; d= Fibra de Vidrio+ .				
	OO: Wellington			VERIFICÓ: Ing. M	Ig. Juan Paredes			FECHA:	
,	Vellington Sant			VALIDO: Ing. Mg				15/03/2015	

REGISTRO DE LIMPIEZA INICIAL DE SUPERFICIES PINTADAS

RLI 1

CÓDIGO

FICM-RLI-001

DATOS GENERALES									
Método END	Rugosidad Su	Rugosidad Superficial Orden del Producto RS 0004							
Solicitante:		Facultad de Ingeniería Civil Y Mecánica							
Producto:	Autobuses		Fecha:		2015	Cuidad:	Ambato		
Realizado por:	Sr. Wellington Santos Supervisor: Ing. Mg. Juc			an Paredes Salinas					

SUPERFICIE	S PINTADAS		Polvo		lico	Limpieza		Calidad de	
			iedad	Solve		Fir		Limpieza	
Localización	Código	SI	NO	SI	NO	SI	NO	Buena	Mala
	aL001								
	bL002								
70	cL003								
Ĕ	dL004								
	aL001								
- 2	bL002								
LATERALES	cL003								
. T	dL004								
ľ	aL001								
L	bL002								
L	cL003								
	dL004								
	aF001								
L	bF002								
	cF003								
r-1	dF004								
FRENTE	aF001								
Ż	bF002								
₩	cF003								
토 .	dF004								
Ļ	aF001								
L	bF002								
Ļ	cF003								
	dF004								
L	aR001								
L	bR002								
	cR003								
	dR004								
RESPALDO	aR001								
₹	bR002								
SI	cR003								
₩ F	dR004								
μ.	aR001								
ŀ	bR002								
ŀ	cR003								
	dR004 aT001								
ŀ	bT002								
}	cT003							-	
ŀ	dT004								
_	aT004								
ТЕСНО									
_ ₽ F	bT002					 		-	
当	cT003								
	dT004								
Ļ	aT001								
Ļ	bT002								
ļ	cT003								
	dT004								

Nombre:....

	Firma de	Autorización						
Observaciones : a= Galvanizado; b= Galvanizado + Masilla; c= Fibra de Vidrio; d= Fibra de Vidrio+ Masilla								
Nota: RLI : Registro de Limpieza Inicial .								
ELABORADO: Wellington Santos VERIFICÓ: Ing. Mg. Juan Paredes FECHA:								
REVISÓ : Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/03/2015						

NOTA: Escriba el Código de la probeta y marque con una x si se realizo la limpieza establecida.

REGISTRO DEL EQUIPO NECESARIO PARA LA INSPECCIÓN DE RUGOSIDAD

EIR 1

CÓDIGO FICM-EIR-001

DATOS GENERALES							
Método END	Método END Rugosidad Superficial Orden del Producto RS 0005						
Solicitante:		Facultad de Ingeniería Civil Y Mecánica					
Producto:	Autobuses	15/03/2	2015	Cuidad:		Ambato	
Realizado por:	Sr. Wellington Santos		Superv	isor:	Ing. Mg	. Juan P	aredes Salinas

EQUIPOS Y PARTES UTILIZADOS EN EL ENSAYO DE RUGOSIDAD				
EQUIPO/PARTE	IMAGEN	СНЕСК		
EQUIPO DE RUGOSIDAD	0.024			
DETECTOR (PALPADOR)				
UNIDAD DE ACCIONAMIENTO				
EXTENCIÓN DE UNIDAD DE ACCIONAMIENTO				
ADAPTADOR DE CA	10			
BASE Y PATRÓN DE RUGOSIDAD	The state of the s			
EQUIPO DE PROTECCIÓN PERSONAL (casco, guantes, trapo de Limpieza)				
NOTA: Marque con una (x) el equipo y la parte que se verificó.				

Nombre:....

Firma de Autorización

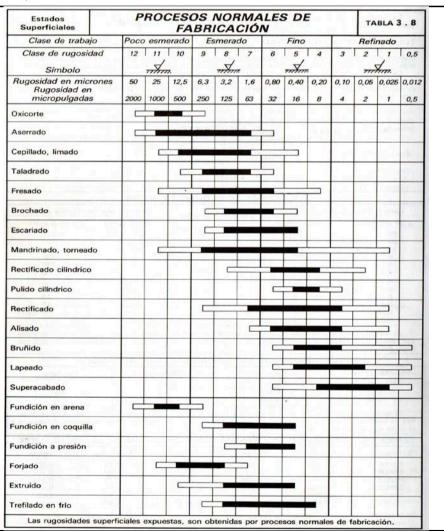
Nota: EIR: Equipo de Inspección de Rugosidad. ELABORADO: Wellington Santos VERIFICÓ: Ing. Mg. Juan Paredes FECHA: **REVISÓ**: Wellington Santos 15/03/2015 VALIDO: Ing. Mg. Juan Paredes

PARÁMETROS CRITERIOS DE ACEPTACIÓN Y

CAR 1

CÓDIGO FICM-CAR-001

DATOS GENERALES								
Método END	Rugosidad Superficial Orden del Producto RS 0006							
Solicitante:	Facultad de Ingeniería Civil Y Mecánica							
Producto:	Autobuses	Fecha: 15/03/20		015	Cuidad:	A	mbato	
Realizado por:	Sr. Wellington Santos		Supervis	sor:	Ing. Mg	g. Juan Par	edes Salinas	

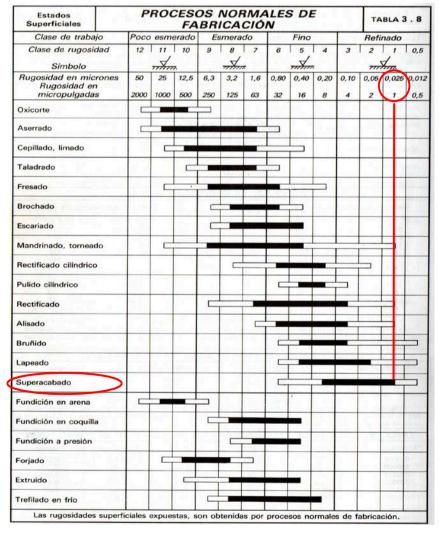

Los criterios de aceptación y rechazo están de acuerdo por el comprobador y el fabricante basado con el aporte del prontuario de máquinas en donde nos especifica los Estados superficiales (Calidad Superficial).

Un criterio admitido es el de considerar rugosidad cuando la separación entre estrías está entre 4 y 50 veces el valor de la altura máxima de las mismas y ondulación cuando la longitud de onda es 100 a 1000 veces su altura, siendo necesario que para la consideración de ésta en la longitud de exploración existan como mínimo dos, tomándose en caso contrario el defecto como error de forma.

Para los criterios de aceptación y rechazo nos respaldaremos en la tabla de PROCESOS NORMALES DE FABRICACIÓN de LARBURU, donde nos indica el estado de la Superficie después de obtener el resultado de Ra obtenido en el Proceso de Inspección de

Para Superficies planas pintadas se necesita un trabajo Refinado, por lo que establecemos un límite de Rugosidad Media (Ra).

Limite Superior = 0.10Límite Inferior = 0.01


REPORTE DE EXAMINACIÓN

ESTAD	ESTADOS SUPERFICIALES					
Valor de Rugosidad Media (Ra)	Clase de Rugosidad	ESCOGER EL ESTADO SUPERFICIAL				
0,012	0,5					
0,025	1					
0,05	2					
0,1	3					

EJEMPLO DE EXAMINACIÓN

Del resultado de Rugosidad Media (Ra) que se obtuvo de la Inspección, ingresamos en la tabla PROCESOS NORMALES DE FABRICACIÓN y Seleccionamos el estado Superficial como se explica a continuación.

Resultado de la Inspección Rugosidad Media (Ra)= 0.25

RESULTADO

ESTAD	ESTADOS SUPERFICIALES					
Valor de Rugosidad Media (Ra)	Clase de Rugosidad	ESCOGER EL ESTADO SUPERFICIAL				
0,012	0,5					
0,025	1	Superacabado				
0,05	2					
0,1	3					

El Resultado se encuentra en el rango de aceptación para superficies planas pintadas

NOTA: Marque con una x el valor de Rugosidad Media obtenido en la Inspección (Ra) y escoja el Estado Superficial Larburu.

Nota: CAR: Criterios de Aceptación y Rechazo.

ELABORADO: Wellington Santos	VERIFICÓ: Ing. Mg. Juan Paredes	FECHA :
REVISÓ: Wellington Santos	VALIDO: Ing. Mg. Juan Paredes	15/03/2015

INFORME DEL PROCESO DE INSPECCIÓN Y EVALUACIÓN DE SUPERFICIES PINTADAS

IFR 1

CÓDIGO

FICM-IFR-00

				CODIGO	FICWI-IFK-001
	REPORTE DE	MEDICIÓN DE	RUGOSIDAD SU	PERFICIAL	
		DATOS GE			
Producto:			Identificación:		
Fecha de Ejecución:			Reporte N°:		
Lugar de Ejecución:	UTA - FICM		Solicitado por:		
Realizado por:				Ing. Mg. Juan Pai	redes
	1~	PARÁMETROS	Supervisor : PRINCIPALES	166	
Instrumento Utilizado:	RUGOSÍMETRO S		1111(0111111111111111111111111111111111		
Normas de Referencia:	JIS 1994	3 210			
Superficie Evaluada:	Superficie Pintada	(Poliuretano)		Proveedor:	
Superficie Evatuada.	зиретист иншии	FOTOGRAFÍAS D	E DECLITADOS	Tioveedor.	
	FOTO 1	TOTOGRAFIAS D	E RESULTADOS	FOTO 2	
	roioi			F010 2	
	FOTO 2			FOTO 4	
	FOTO 3		F0104		
			_ ~ (- ~ ~ ~		
		RESULTADO D	E CALCULOS		
Código Probeta	Long Rugosidad (ln)	Rugosidad Media (Ra)	Clase de Rugosidad	Obse	rvaciones
Observación General:					
		T			
ELABORADO POR : Wellington Santos	ngton Santos	VALIDO: Ing. Mg. Juan		FECHA D	E REVISIÓN
REVISOR Wellington Santoe		IVALIDO: Inc Mc Inon D	aredes	1	

6.8 ADMINISTRATIVO

6.8.1 Análisis económico del Ensayo no Destructivo de Rugosidad Superficial

A continuación se presenta un análisis del costo de ensayos no destructivito de Rugosidad Superficial por medio de Equipo **RUGOSÍMETRO SJ-210.**

Tabla 6- 2: Costos de Evaluación de Rugosidad Superficial.

COSTOS ENSAYO NO DESTRUCTIVO DE RUGOSIDAD						
	SUPERFICIAL.					
		METRO SJ				
Descripción	Unidad	Cantidad	P. Unitario	Costos		
EQUIPO RUGOSÍMETRO SJ- 210	u	1	\$ 60	\$ 12		
PATRÓN DE CALIBRACIÓN	u	1	\$ 10	\$ 2		
DETECTOR (PALPADOR)	u	1	\$ 30	\$ 6		
TRANSFERENCIA DE DATOS (MEMORY CARD)	u	1	\$8	\$ 1		
Sub	-total 1			\$ 21		
MANO DE OBRA						
Descripción	Unidad	Cantidad	Costo- Hora	Costos		
PROFESIONAL A CARGO	u	1	\$ 12	\$ 24		
TÉCNICO	u	1	\$ 10	\$ 20		
	-total 2			\$ 44		
Ι	MATERI	ALES				
Descripción	Unidad	Cantidad	P. Unitario	Costos		
SOLVENTES	u	0,1	\$ 10	\$ 1		
PULIMENTO	u	0,1	\$ 5	\$ 0,50		
TRAPO LIMPIADOR	u	0,1	\$ 3	\$ 0,30		
ENERGÍA ELÉCTRICA	W	20	\$ 0,12	\$ 2,40		
Sub	- total 3			\$ 4,20		
	TOTAL	DE COSTOS (1+2+3)	S DIRECTOS	\$ 69,20		
PRECIOS NO INCLUYEN IVA		NDIRECTOS	, ,	\$ 15,22		
	COST	O TOTAL PO MEDIDA		\$ 84,42		

(Fuente: Elaborado por Wellington Santos)

6.9 PREVISIÓN DE LA EVALUACIÓN

Una vez finalizado el trabajo de investigación, el mismo que fue desarrollado para ayudar en el proceso de Inspección, Evaluación y calificación de Superficies Planas Pintadas en Buses tanto para la Empresa Carrocera IMPEDSA así como para los Laboratorios de Materiales de la Carrera de Ingeniería Mecánica.

La investigación propone mejorar la evaluación de las Superficies planas pintadas en Autobuses con el equipo de Rugosidad Superficial SJ-210 ya que se ha comprobado que es de mayor precisión que los otros métodos de Inspección de Superficies.

El presente procedimiento que fue realizado en Superficies planas pintadas, servirá como referencia para posteriores estudios de Rugosidad Superficial sobre otros materiales, estableciendo un control de calidad que mejorara el acabado superficial de diferentes materiales.

BIBLIOGRAFÍA

Libros

- 1 Elcometer. (2013). Elcometer equipos de inspección (Edición V ed.).
- 2 Garcia, J. (2009). *Embellecimiento de Superficies* (2 edición ed.). Madrid, ESPAÑA: Paraninfo, S.A.
- 3 Larburu, A. (2004). *Máquinas. Prontuario. Técnicas máquinas herramientas.* Madrid: Thomson Editores.
- 4 Mitutoyo. (2009). Surface Roughness Measuring Tester SJ-210. Takatsu-ku, Japan.
- 5 Navarro, J. (2013). *Pintado de Vehiculos por Difuminado*. España: Paraninfo S.A.
- 6 Paredes, J. (2012). Estudio de Polímeros Híbridos Estratificados de Matriz Poliéster Reforzada con Fibra de Vidrio y Cabuya como Material Alternativo y su incidencia en las propiedades mecánicas en Guardachoques para Buses. Ambato.
- 7 Parks, D. (2009). *Manual de reparación de carrocerías y pintura automotríz.* (G. NORIEGA, Ed.) México, D.F: LIMUSA, S.A. .
- 8 Smith, W. (2004). Fundamentos de la Ciencia e Ingeniería de Materiales. España: Concepción Fernández Madrid.
- 9 Spiegel, M. R. (1997). *Schaum Estadística* (Segunda Edición ed.). Madrid, España: McGRAW-HILL.

Documentos Electrónicos

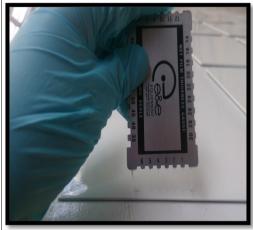
- 1 Arias, A. (2008). *La Gestión De La Calidad*. Recuperado el 30 de Septiembre de 2013, de www.sisman.utm.edu.ec: http://www.sisman.utm.edu.ec/libros/FACULTAD%20DE%20CIENCIAS%20MATEM%C3%81TICAS%20F%C3%8DSICAS%20Y%20QU%C3%8DMICAS/INGENIER%C3%8DA%20INDUSTRIAL/10/GESTION%20DE%20CALIDAD%20II/documento10123.pdf
- 2 CESVIMAP. (s.f.). Introduccion al Proceso de Pintado de Vehículos. Recuperado el 16 de Julio de 2013, de www.mapfre.com: http://www.mapfre.com/ccm/content/documentos/cesvimap/ficheros/CFPrepar acionSuperficiesEXTRACTO.pdf

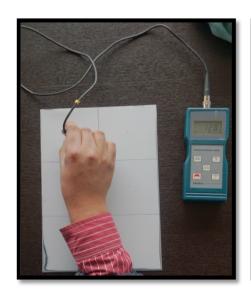
- 3 EVOLUCION-@. (Octubre de 2011). *AUTOMOCIÓN*. Recuperado el 3 de Junio de 2014, de www.irvinsystems.com: http://www.irvinsystems.com/wp-content/uploads/2011/10/Limpieza-y-desengrasado.pdf
- 4 Giudice, C., & Pereyra, A. (2009). *Tecnología de Pinturas y Recubrimientos*. Recuperado el 30 de Septiembre de 2013, de www.edutecne.utn.edu.ar: http://www.edutecne.utn.edu.ar/tecn_pinturas/A-TecPin_I_a_V.pdf
- 5 Pereyra, A., & Giudice, C. (s.f.). *Control De Calidad De Películas De Pinturas*. Recuperado el 03 de Octubre de 2013, de www.frlp.utn.edu.ar: http://www.frlp.utn.edu.ar/materias/protecmat/calidad.pdf
- 6 Pérez, J. (s.f.). Expresión Gráfica en la Ingeniería. Recuperado el 10 de Marzo de 2015, de ocw.upm.es: http://ocw.upm.es/expresion-grafica-en-laingenieria/ingenieria-grafica-metodologias-de-diseno-para-proyectos/Teoria/ PDFs/3_INFORMACION_TECNICA/3.2_ACABADOS_SUPERFICIALES_ DE_PROTECCION_FUNCIONALES_Y_DECORATIVOS/3-2-1_acabados_rugosidad.pdf
- 7 UNICAN. (Junio de 2010). *Indicación de la calidad superficial en la documentación técnica de productos*. Recuperado el 19 de Febrero de 2015, de ocw.unican.es: http://ocw.unican.es/ensenanzas-tecnicas/ingenieria-grafica/material-de-clase-1/3.1%20Tipos%20de%20Superficie.pdf
- 8 Universidad del País Vasco Euskal Herriko Unibertsitatea. (2011). *Metrología del Acabado Superficial*. Recuperado el 11 de Marzo de 2015, de www.ehu.eus: http://www.ehu.eus/manufacturing/docencia/745_ca.pdf

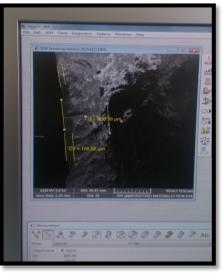
ANEXO 1

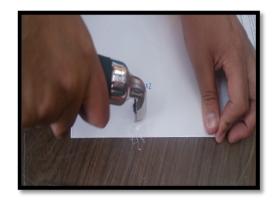
FOTOGRAFÍAS PREPARACIÓN DEL SUSTRATO

PREPARACIÓN Y APLICACIÓN DE LA PINTURA

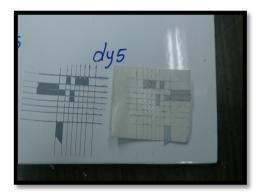



ESTUDIOS REALIZADOS

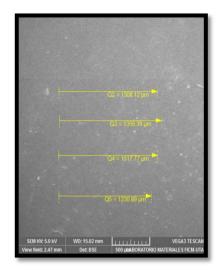

ESPESOR DE PELÍCULA HÚMEDA

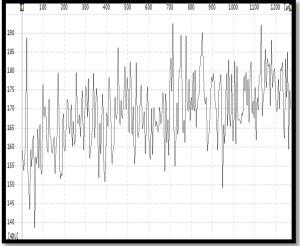


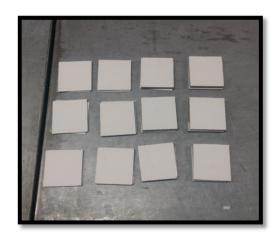
ESPESOR DE PELÍCULA SECA

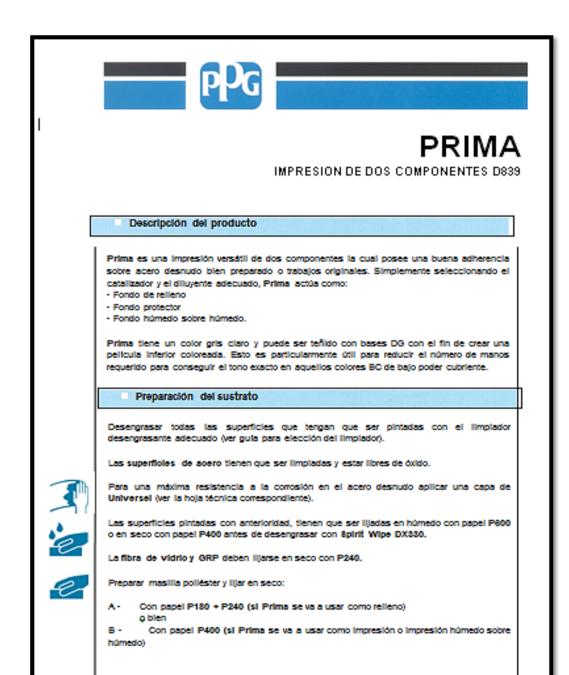


ADHERENCIA POR CINTA






RUGOSIDAD SUPERFICIAL


ENVEJECIMIENTO ACELERADO

FICHAS TÉCNICAS PPG

DELTRON DG

POLIURETANO ACRILICO DE BRILLO DIRECTO
DE DOS COMPONENTES

Descripción del producto

Deltron DG es una pintura acrilica de uretano de dos componentes y de gran rendimiento que ha sido concebida para la reparación y el repintado de automóviles y vehículos comerciales.

El rendimiento de Delfron DO satisface o excede los requisitos de garantía de los fabricantes de automóviles. El sistema Delfron cuenta con muchas homologaciones de fabricantes de primeros equipos (OEM).

Preparación del sustrato

Aplicar sobre acabados homeados originales o sobre impresiones PPG recomendadas.

Desengrasar las superficies a pintar con el limplador adecuado al sustrato (véase la guta que aparece a continuación) antes de Iljario en húmedo con papel de Ilja P800-800 o en seco con P400-600.

Eliminar los restos del Iljado y secar la superficie antes de volveria a limpiar con el limpiador adecuado al sustrato (véase la guta que aparece a continuación). Se recomienda el uso de una gasa barnizada.

Guia para la elección del limpiador del sustrato

Código	Producto	Objetivo
D845	DX310 Desengrasante de aito poder	Utilizar como pre-limpiador en la primera etapa del proceso de reparación. Utilizar antes de iniciar cualquier tipo de reparación.
D837	DX330 8pirit Wipe	Adecuado para eliminar la suciedad , la grasa u otros contaminantes antes o durante el proceso de pintado
D848	DX103 Agente desengrasante para plásticos	Desengrasante rápido y eficaz, especialmente formulado para evitar efectos nocivos sobre sustratos plásticos.

1

FICHAS TÉCNICAS GLASURIT

INFORMAÇÃO TÉCNIC	CA .	Salcomix
Nome do Produto: Fosfatizante S Composição: Resina Epoxi	ialcomiz	Cod. SAP: 56547223 (0,6L) / 57412236 (2,4L)
Material:	Fosfatizante	Salcomix
Aplicação / Propriedades:	Tem por fun agão anticon	ção, facilitar a aderência dos primers, melhorando a oslva.
Substrato / Pré-tratamento:	outras super Aplicar sobre lixada.	e alumínio, cromada, galvanizada, estanhada e diversas licies. a superficie nus, limpa, desengraxada e devidamente engraxante Salcomix
Observação:	Não indicam produto	os a aplicação direta de acabamentos sobre este
Informações Técnicas	Postatizani	Salcomiz
Composição	Resins Epós	d , pigmentos, aditivos e solventes
	Salcomix	

Nombre del Producto: Primer PU Composición: Resina Poliéster m pigmentos y aditivos	0022 rodificada, cargas, Cod. SAP: 53710079
Material:	Primer PU 0022
Aplicación / Propiedades:	Indicado para la preparación de superficie metálicas para recibir acabados de la linea 22 poliuretano o 55 poliéster. Poses óptimo pode de rellenado, lijado y rendimiento
Sustrato / Pretratamiento:	Fondo Fostatizante Anticomosivo Massilla Polisister GT Massilla Polisister de Cartucho Pintura Original
Observaciones:	Recomendamos la utilización del Control de Lijado después de la aplicación del Primer.
Informaciones Técnicas:	Primer PU 0022

FICHAS TÉCNICAS SHERWIN WILLIAMS

FICHA TÉCNICA

PRODUTO: SpectraPrimer - Primer 2K HS Branco

CÓDIGO: 05.30.0P30W

Descrição do Produto:

Indicado para preparação de superficies metálicas, especialmente para receber acabamentos como Lazzudur Poliéster Alto sólidos e Lazzuril Esmalte Poliuretano Alto sólidos. Possui alto teor de sólidos, excelente poder de enchimento, lixamento rápido e tácil. Boa aderência e dureza. O uso deste produto é exclusivo a profissionais devidamente treinados.

Resina Poliuretânica, pigmentos orgânicos e inorgânicos, solventes aromáticos, estáres e alifáticos.

Catalise e/ou Diluição:

- 4 partes em volume de SpectraPrimer Primer HS 2K Branco P30W
- 1 parte em volume de Endurecedor H38.
- 1 parte em volume do Thinner 454.

Viscosidade de aplicação 16 a 18 segundos Copo Ford-4 à 25º C.

A vida útil da mistura é de 1 hora (25°C), em temperaturas mais altas este tempo diminui.

Aplicação:

Aplicar 2 a 3 passadas com intervalo de 5 a 10 minutos entre passadas.

Regular a pressão de ar entre 45 a 50 bs/pol2.

Aplicar sobre:

Wash Primer Fundo Fosfatizante 05.00.00045 05.00.M3500 Massa Poliëster

Esmalte Original de Fábrica

Secagem:

Ao ar a 25°C:

5 a 10 minutos 20 a 30 minutos Tonue

90 minutos: A 25° C Para lixamento:

Estufa a 60°C:

15 a 20 minutos para lixamento

Preparação de Superficie:

Desengraxar a área a ser pintada com Solução Desengraxante 400. Lixar a área a ser repintada para remover tintas descascadas e ferrugem (se necessário). Aplicar o Wash Primer 045 para proteger as áreas expostas onde atingiu a chapa.

Uso do EPI:

Ler as instruções no verso da embalagem, antes de utilizar o produto.

Utilizar luvas de borracha nitrítica e óculos de segurança para manusear o produto.

Utilizar másicara respiradora com filtro contras vapores orgânicos e particulados ao manusear / aplicar o produto.

es, são baseadas em testes de laboratório e experiências práticas. A qualidade do produto é assegurada som aplicado por profissional treinado com as específicações. Nos reservamos o direito de alterar ou eliminar quaisquer informações aqui citadas.

0	05/05/11	Alexandre Gouveia	André Cruz
Revisão	Data	Elaborado	Aprovado
			GDP-0024-05

FICHA TÉCNICA

PRODUTO: Esmalte Poliuretano Alto Sólidos

CÓDIGO: 27.00

Descrição do Produto:

Indicado para pintura geral, parcial e retoques de veiculos automotivos, nacionais e importados, fácil de usar e aplicar com excelente retenção de Brilho. Disponível em sistema mixing machine cores prontas lisas. Possui secagem rápida, boa resistência à intempéries naturais e agentes químicos. O uso deste produto é exclusivo a profissionais devidamente treinados.

Composição: Resina acrítica hidroxilada, pigmentos orgânicos e inorgânicos, solventes aromáticos, acetatos e artitivos

Catalise e/ou Diluição:

2 partes em volume de Lazzumix Poliuretano Automotivo. 1 parte em volume de catalisador 065/066. 20 a 30 % em volume de Thinner 454.

Viscosidade de aplicação 16 a 18 segundos Copo Ford 4.

Aplicação:

Aplicar 3 a 4 passadas cruzadas com intervalo de 5 a 10 minutos entre passadas. Regular a pressão de ar entre 45 a 50 bs/bol2.

Aplicar sobre:

Primer Poliretano P840 05.30.0P840 Spectraprimer P30A 05.30.0P30A

Secagem:

Livre de pó 30 a 40 minutos Manuseio 4 a 5 horas Final 24 horas Recomenda-se realizar o polimento após 24 horas de secagem.

Estudar

30 minutos a 60 °C

Preparação de Superficie:

Limpar adequadamente a superficie a ser pintada, removendo partes soltas, ferrugem, oleosidades e residuos impregnantas, com Solução Desoleante 400.

Se necessário nivelar a superficie com Massa poliéster M3500, lixando após secagem completa. Aplicar o Wash Primer 045 para proteger as áreas expostas onde atingiu a chapa. Aplicar em toda superficie uma camada de Primer P30A ou P840 e lixar após secagem completa (lixa grão 320 a 600).

Uso do EPI:

Ler as instruções no verso da embalagem, antes de utilizar o produto.Utilizar luvas de borracha nitrilica e óculos de segurança para manusear o produto.Utilizar máscara respiradora com filtro contras vapores orgânicos e particulados ao manusear / aplicar o produto.

As informações aqui citades, são baseadas em testes de laboratório e experiências práticas. A qualidade do produto é assegurada somente quando aplicado por profissional treinado com as especificações. Nos reservamos o direito de alterar ou eliminar quaisquer informações aqui citadas.

2 20/05/09 Alexandre Gouveia André	André Cruz
------------------------------------	------------

USO DE LA TABLA DE DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Áreas bajo la distribución de probabilidad Normal Estándar entre la media y valores positivos de Z.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.00000	0.00399	0.00798	0.01197	0.01595	0.01994	0.02392	0.02790	0.03188	0.03586
0.1	0.03983	0.04380	0.04776	0.05172	0.05567	0.05962	0.06356	0.06749	0.07142	0.07535
0.2	0.07926	0.08317	0.08706	0.09095	0.09483	0.09871	0.10257	0.10642	0.11026	0.11409
0.3	0.11791	0.12172	0.12552	0.12930	0.13307	0.13683	0.14058	0.14431	0.14803	0.15173
0.4	0.15542	0.15910	0.16276	0.16640	0.17003	0.17364	0.17724	0.18082	0.18439	0.18793
0.5	0.19146	0.19497	0.19847	0.20194	0.20540	0.20884	0.21226	0.21566	0.21904	0.22240
0.6	0.22575	0.22907	0.23237	0.23565	0.23891	0.24215	0.24537	0.24857	0.25175	0.25490
0.7	0.25804	0.26115	0.26424	0.26730	0.27035	0.27337	0.27637	0.27935	0.28230	0.28524
0.8	0.28814	0.29103	0.29389	0.29673	0.29955	0.30234	0.30511	0.30785	0.31057	0.31327
0.9	0.31594	0.31859	0.32121	0.32381	0.32639	0.32894	0.33147	0.33398	0.33646	0.33891
1.0	0.34134	0.34375	0.34614	0.34849	0.35083	0.35314	0.35543	0.35769	0.35993	0.36214
1.1	0.36433	0.36650	0.36864	0.37076	0.37286	0.37493	0.37698	0.37900	0.38100	0.38298
1.2	-	0.38686	minorial and a second second second	0.39065	manufacture and the second	0.39435	Name and Address of the Owner, where the Owner, which is the Own	-	0.39973	The second secon
1.3	0.40320	0.40490	0.40658	0.40824	0.40988	0.41149	0.41308	0.41466	0.41621	0.41774
1.4	0.41924	0.42073	0.42220	0.42364	0.42507	0.42647	0.42785	0.42922	0.43056	0.43189
1.5	0.43319	0.43448	0.43574			0.43943			0.44295	
1.6	0.44520	_			0.44950		0.45154		0.45352	
1.7	0.45543		0.45728			0.45994			0.46246	
1.8	0.46407		0.46562	0.46638			0.46856		0.46995	
1.9	0.47128			0.47320		0.47441			0.47615	
2.0	0.47725		0.47831		0.47932			0.48077		
2.1	0.48214		0.48300	0.48341		0.48422			0.48537	
2.2	0.48610		0.48679		0.48745	0.48778		0.48840		0.48899
2.3	0.48928	2000 / 2000	0.48983							
2.4	0.49180		0.49224	38.07.607.000						
2.5	0.49379		0.49413		0.49446		0.49477		0.49506	
2.6	0.49534	CARLO SEARCH SERVICE	0.49560		0.49585	Control of the Contro	0.49609	N. C. C. S. C. C.	0.49632	0.49643
2.7	0.49653	30.00 - 00.00 - 00.00		300010000000	0.49693				0.49728	
2.8	0.49744				0.49774		_	0.49795		
2.9	0.49813		0.49825		0.49836		0.49846		0.49856	
3.0	0.49865		0.49874	0.49878			0.49889		0.49896	
3.1	0.49903		0.49910		0.49916		_		0.49926	
3.2			0.49936			_				
3.3	0.49952		0.49955		0.49958				0.49964	
3.4	0.49966		0.49969	0.49970		0.49972	0.49973		0.49975	
3.5	0.49977		0.49978		0.49980				0.49983	
3.6	0.49984	_	0.49985		0.49986	_		0.49988		
3.7	0.49989		0.49990	0.49990		0.49991	-		0.49992	
3.8	0.49993		0.49993		0.49994				0.49995	
3.9	0.49995	-	0.49996		0.49996	_		0.49996	0.49997	_
4.0	0.49997	0.49997	0.49997	0.4999/	0.4999/	0.49997	0.49998	0.49998	0.49998	0.49998

1

ESCUELA POLITÉCNICA NACIONAL

DEPARTAMENTO DE MATERIALES LABORATORIO DE METALOGRAFÍA, DESGASTE Y FALLA

CERTIFICADO DE ADHERENCIA DE PINTURA

A petición del Sr. Wellington Vinicio Santos Cueva; portador de la C.I 1804722575, certifico que las fotografías y valores de medición obtenidos sobre adherencia de pintura, fueron realizados con el equipo de medición de espesores de revestimiento elcometer, cuyo certificado de calibración es el 59758; escala 6 x 2 mm kit, serial N° NA16191 perteneciente al Laboratorio de Metalografía, Desgaste y Falla de la Escuela Politécnica Nacional.

El cortador 6 x 2; utiliza el método de prueba de acuerdo a la norma ASTM D3359 método B; en la cual se basó para obtener el reporte de resultados de las tablas 1, 2 y 3, de acuerdo a los criterios de aceptación de la norma:

5B the edges of the cuts are completely smooth; none of the squares of the lattice is detached.

4B Small flakes of the coating are detached at intersections; less than 5 % of the area is affected.

3B Small flakes of the coating are detached along edges and at intersections of cuts. The area affected is 5 to 15 % of the lattice.

2B The coating has flaked along the edges and on parts of the squares. The area affected is 15 to 35 % of the lattice.

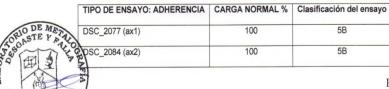
1B The coating has flaked along the edges of cuts in large ribbons and whole

res have detached. The area affected is 35 to 65 % of the lattice.

OB Flaking and detachment worse than Grade 1. (ASTM D3359-09e2)

Página 1 de 6

CLASSIFICATION OF ADHESION TEST RESULTS						
CLASSIFICATION	PERCENT AREA REMOVED	SURFACE OF CROSS-CUT AREA FROM WHICH FLAKING HAS OCCURRED FOR SEX PARALLEL CUTS AND ADHESION RANGE BY PERCENT				
5B	0% None					
4B	Less than 5%					
3B	5 - 15%					
2B	15 - 35%					
18	35 - 65%					
0В	Greater than 65%					


FIG. 1 Classification of Adhesion Test Results

Fuente: ASTM D3359-09e2

1. REPORTE DE RESULTADO ADHERENCIA

RECUBRIMIENTO PPG

Tabla 1. Resultados del ensayo de adherencia de pintura sobre sustrato.

Página 2 de 6

DSC_2087 (ax3)	100	5B
DSC_2092 (ax4)	100	5B
DSC_2096 (ax5)	100	5B
DSC_2099 (ax6)	100	5B
DSC-2103 (ax7)	100	5B
DSC_2106 (bx1)	100	5B
DSC_2110 (bx2)	100	5B
DSC_2113 (bx3)	100	5B
DSC_2120 (bx4)	100	5B
DSC_2124 (bx5)	100	5B
DSC_2127 (bx6)	100	5B
DSC_2130 (bx7)	100	5B
DSC_2131 (cx1)	100	5B
DSC_2137 (cx2)	85-95	3B
DSC_2141 (cx3)	95-100	4B
DSC_2144 (cx4)	95-100	4B
DSC_2147 (cx5)	95-100	4B
DSC_2150 (cx6)	100	5B
DSC_2154 (cx7)	95-100	4B
DSC_2157 (dx1)	65-85	2B
DSC_2160 (dx2)	95-100	4B
DSC_2163 (dx3)	95-100	4B
DSC_2166 (dx4)	95-100	4B
DSC_2169 (dx5)	65-85	2B
DSC_2173 (dx6)	95-100	4B
DSC_2176 (dx7)	95-100	4B

Página 3 de 6

RECUBRIMIENTO GLASURIT

Tabla 2. Resultados del ensayo de adherencia de pintura sobre sustrato.

TIPO DE ENSAYO: ADHERENCI	IA CARGA NORMAL %	Clasificación del ensayo
DSC_2191 (ay1)	100	5B
DSC_2194 (ay2)	100	5B
DSC_2197 (ay3)	95-100	4B
DSC_2200 (ay4)	100	5B
DSC_2206 (ay5)	100	5B
DSC_2209 (ay6)	85-95	3B
DSC-2213 (ay7)	100	5B
DSC_2216 (by1)	85-95	3B
DSC_2221 (by2)	85-95	3B
DSC_2224 (by3)	35-65	1B
DSC_2227 (by4)	100	5B
DSC_2230 (by5)	95-100	4B
DSC_2233 (by6)	95-100	4B
DSC_2236 (by7)	85-95	3B
DSC_2393 (cy1)	100	5B
DSC_2241 (cy2)	85-95	3B
DSC_2245 (cy3)	100	5B
DSC_2247 (cy4)	85-95	3B
DSC_2250 (cy5)	35-65	1B
DSC_2253 (cy6)	65-85	2B
DSC_2257 (cy7)	65-85	2B
DSC_2381 (dy1)	85-95	3B
DSC_2378 (dy2)	85-95	3B
DSC_2382 (dy3)	85-95	3B
DSC_2385 (dy4)	95-100	4B
SC_2269 (dy5)	85-95	3B

Página 4 de 6

DSC_2388 (dy6)	35-65	1B
DSC_2389 (dy7)	95-100	4B

RECUBRIMIENTO SHERWIN WILLIAMS

Tabla 3. Resultados del ensayo de adherencia de pintura sobre sustrato.

TIPO DE ENSAYO: ADHERENCIA	CARGA NORMAL %	RESULTADO
DSC_22281 (az1)	100	5B
DSC_2284 (az2)	100	5B
DSC_2287 (az3)	95-100	4B
DSC_2290 (az4)	100	5B
DSC_2295 (az5)	95-100	4B
DSC_2299 (az6)	100	5B
DSC-2302 (az7)	95-100	4B
DSC_2305 (bz1)	100	5B
DSC_2308 (bz2)	100	3B
DSC_2312 (bz3)	100	5B
DSC_2315 (bz4)	100	5B
DSC_2319 (bz5)	100	4B
DSC_2322 (bz6)	100	5B
DSC_2325 (bz7)	100	5B
DSC_2328 (cz1)	100	5B
DSC_2331 (cz2)	100	5B
DSC_2334 (cz3)	100	5B
DSC_2338 (cz4)	100	5B
DSC_2344 (cz5)	100	5B
DSC_2347 (cz6)	100	5B
DSC_2351 (cz7)	95-100	4B
DSC_2354 (dz1)	95-100	4B
DSC_2357 (dz2)	100	5B

Página 5 de 6

DSC_2361 (dz3)	95-100	4B
DSC_2365 (dz4)	100	5B
DSC_2368 (dz5)	95-100	4B
DSC_2371 (dz6)	100	5B
DSC_2374 (dz7)	100	5B

Como se puede observar los reportes realizados a los diferentes tipos de recubrimiento, se obtuvo en su mayoría una buena adherencia de pintura.

Por lo cual autorizo hacer uso del presente certificado de acuerdo a su mejor conveniencia.

Atentamente:

Informe

Elaborado por:

visado por:

Ing. Carlos Díaz

Especialista del Laboratorio de Metalografía,
Desgaste y Falla.

Jefe del Laboratorio de Metalografía, Desgaste y Falla.

Página 6 de 6

ESCUELA POLITECNICA NACIONAL DEPARTAMENTO DE CIENCIA DE ALIMENTOS Y BIOTECNOLOGÍA (DECAB) CENTRO DE INVESTIGACIONES APLICADAS A POLÍMEROS C I A P

Campus Politécnico José Rubén Orellana Ricaurte. Direc.: Ladrón de Guevara E11-253 Personas de Contacto: Tiga. Elisabeth Venegas Telf.: 255 8389. Troncal: 2507 144 ext. 2272. E-mail: <u>lizvenegas4@yahoo.es</u> Quito- Ecuador

INFORME DE RESULTADOS DE ANÁLISIS O TRABAJO

ORDEN: DC-OT0012-2015

IDENTIFICACIÓN DE LA(S) MUESTRA(S) Y SERVICIO (S)

No. muestra	ID Muestra	Descripción de muestra	Servicio/Analito	Laboratorio
1	DC- MU3112	Placas pintadas	- Envejecimiento acelerado en cámara de arco de Xenón 200 h	CIAP

1. Antecedentes

Sobre las muestras que se presentan a continuación, el cliente solicitó realizar ensayos de degradación acelerada en cámara de arco de xenón (para simular el ataque de la radiación UV) con un ciclo de 200 horas de ensayo de acuerdo a la norma ASTM G 155 "Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials", utilizando solamente ciclos de luz (sin aspersión de agua).

El cliente hizo la entrega de 36 probetas codificadas. Una fotografía de las muestras entregadas y ensayadas, con su respectivo código, se presenta a continuación:

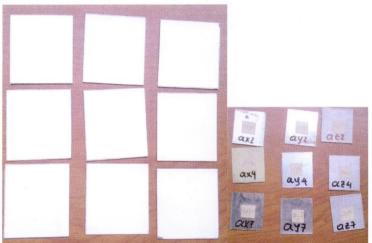


Figura 1. Muestra A entregada y su codificación según descripción del cliente

ESCUELA POLITECNICA NACIONAL DEPARTAMENTO DE CIENCIA DE ALIMENTOS Y BIOTECNOLOGÍA (DECAB) CENTRO DE INVESTIGACIONES APLICADAS A POLÍMEROS

C I A P

Campus Politécnico José Rubén Orellana Ricaurte. Direc.: Ladrón de Guevara E11-253

Personas de Contacto: Tlga. Elisabeth Venegas

Telf.: 255 8389. Troncal: 2507 144 ext. 2272. E-mail: <u>lizvenegas4@yahoo.es</u>

Quito- Ecuador

Figura 2. Muestra B entregada y su codificación según descripción del cliente

Figura 3. Muestra C entregada y su codificación según descripción del cliente

ESCUELA POLITECNICA NACIONAL DEPARTAMENTO DE CIENCIA DE ALIMENTOS Y BIOTECNOLOGÍA (DECAB) CENTRO DE INVESTIGACIONES APLICADAS A POLÍMEROS

C I A P
Campus Politécnico José Rubén Orellana Ricaurte. Direc.: Ladrón de Guevara E11-253

Personas de Contacto: Tlga. Elisabeth Venegas Telf.: 255 8389. Troncal: 2507 144 ext. 2272. E-mail: <u>lizvenegas4@yahoo.es</u>

Quito- Ecuador

Figura 4. Muestra D entregada y su codificación según descripción del cliente

El presente informe se refiere únicamente a las muestras proporcionadas por el cliente y no se extiende a lotes de producción o marcas.

2. Equipos

Cámara de arco de xenón

3. Procedimiento

- Se procedió a realizar el ensayo directamente sobre las muestras, tal cual fueron entregadas por el cliente, sin que se las haya sometido a ningún proceso preparativo o limpieza previa.
- Se siguió el procedimiento estipulado en la norma ASTM G 155, con las siguientes consideraciones:
 - o Exposición a la luz de lámparas de xenón
 - o Irradiancia: 0,35 W/m²/nm, con una longitud de onda de 340 nm
 - o Temperatura de ensayo: 63° C
 - o Se ensayaron solamente ciclos de luz (sin aspersión de agua)
 - o Tiempo de ensayo: 200 horas
- Al finalizar el ensayo, las muestras fueron fotografiadas y evaluadas
- Se observaron los cambios en la apariencia superficial de las muestras que ocurrieron durante el ensayo

ESCUELA POLITECNICA NACIONAL DEPARTAMENTO DE CIENCIA DE ALIMENTOS Y BIOTECNOLOGÍA (DECAB) CENTRO DE INVESTIGACIONES APLICADAS A POLÍMEROS C I A P

Campus Politécnico José Rubén Orellana Ricaurte. Direc.: Ladrón de Guevara E11-253 Personas de Contacto: Tiga. Elisabeth Venegas Telf.: 255 8389. Troncal: 2507 144 ext. 2272. E-mail: <u>lizvenegas4@yahoo.es</u> Quito- Ecuador

4. Resultados

Observaciones:

Al final del ensayo, 200 horas, las muestras presentan el siguiente comportamiento:

- De manera general no se observan cambios en la apariencia física, tales como quebraduras, fisuras o ampollas.
- No se observa un cambio perceptible del color, o su tonalidad (ver Nota 1)
- Fotografías de las muestras antes y después del ensayo se muestran a continuación.

Nota 1: Para una determinación más adecuada de este parámetro (color), se recomendó al cliente realice una medición del color antes y después del ensayo, a cada una de las placas expuestas a la cámara de arco de xenón.

ESCUELA POLITECNICA NACIONAL DEPARTAMENTO DE CIENCIA DE ALIMENTOS Y BIOTECNOLOGÍA (DECAB) CENTRO DE INVESTIGACIONES APLICADAS A POLÍMEROS C I A P

Campus Politécnico José Rubén Orellana Ricaurte. Direc.: Ladrón de Guevara E11-253 Personas de Contacto: Tlga. Elisabeth Venegas Telf.: 255 8389. Troncal: 2507 144 ext. 2272. E-mail: lizvenegas4@yahoo.es

Quito- Ecuador

PROFESIONAL RESPONSABLE DEL

ANÁLISIS

Ing. Miguel Aldás

AUTORIDAD AUTENTICADORA (DIRECTOR DEL CIAP)

Ing. Francisco Quiroz

E.P.N.

QUEJAS Y SUGERENCIAS

El cliente puede canalizar las quejas sobre los resultados de los análisis, sobre el tiempo de entrega del informe, u otro aspecto, a través del Jefe del DECAB, o de la persona Encargada de Recepción de Muestra y Atención al Cliente, ya sea en forma verbal o en forma escrita hasta 8 días después de la entrega del informe. En el DECAB se mantiene un registro de quejas y sugerencias con el fin de mejorar el Servicio al Cliente.

El laboratorio no se responsabiliza por el muestreo realizado antes de la entrega de las muestras al DECAB, pero si se responsabiliza de las muestras recibidas, tal como se las entrega.