UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA INGENIERÍA MECÁNICA

TRABAJO ESTRUCTURADO DE MANERA INDEPENDIENTE PREVIO A LA OBTENCIÓN DEL TÍTULO DE:

INGENIERO MECÁNICO

TEMA:

"ESTUDIO DE UN SISTEMA DE POLIMERIZACIÓN PARA MEJORAR LA CALIDAD DE LA PINTURA EPOXI POLIÉSTER APLICADA EN LOS PRODUCTOS DE LA EMPRESA ECUAMATRIZ S.A."

AUTOR: Alvaro Ricardo Valencia Medina

TUTOR: Ing. Mg. GONZALO LÓPEZ

AMBATO – ECUADOR

2014

CERTIFICACIÓN

En mi calidad de Tutor del trabajo investigativo "ESTUDIO DE UN SISTEMA DE POLIMERIZACIÓN PARA MEJORAR LA CALIDAD DE LA PINTURA EPOXI POLIÉSTER APLICADA EN LOS PRODUCTOS DE LA EMPRESA ECUAMATRIZ S.A.". Elaborado por Alvaro Ricardo Valencia Medina, egresado de la facultad de ingeniería Civil y Mecánica, carrera de Ingeniería Mecánica.

Certifico:

- Que el presente informe es original de su autor.
- Ha sido revisado en cada uno de sus capítulos.
- Está concluido y puede continuar con el trámite correspondiente.

Ambato. Agosto, 2014

Ing. Mg. Gonzalo López

DOCENTE INGENIERÍA MECÁNICA

AUTORÍA DE TRABAJO

Declaro que el contenido del trabajo investigativo "ESTUDIO DE UN SISTEMA DE POLIMERIZACIÓN PARA MEJORAR LA CALIDAD DE LA PINTURA EPOXI POLIÉSTER APLICADA EN LOS PRODUCTOS DE LA EMPRESA ECUAMATRIZ S.A.", así como sus ideas, opiniones, resultados, análisis, conclusiones y propuesta son auténticos y de responsabilidad exclusiva de mi persona en calidad de autor del presente proyecto.

Ambato. Agosto, 2014

.....

Egdo. Alvaro Ricardo Valencia Medina

DEDICATORIA

A Dios por darme fuerza para seguir adelante y no desmayar ante la adversidad.

Con todo mi cariño y mi amor para las personas que hicieron todo en la vida para que yo pudiera lograr mis sueños, por motivarme y darme la mano cuando sentía que el camino se terminaba

A mis padres Olmedo y Glenda, a todos mis hermanos por su apoyo, consejos, comprensión, amor y ayuda en los momentos difíciles.

A mis compañeros y amigos porque de todos he aprendido mucho, es imposible olvidar los momentos agradables que hemos compartido.

AGRADECIMIENTO

La concepción de este proyecto está dedicada a mis padres, pilares fundamentales en mi vida. Sin ellos, jamás hubiese podido conseguir lo que hasta ahora

Al Ing. Mg. Gonzalo López tutor de tesis, por su ayuda, colaboración y orientación en la realización del presente trabajo investigativo.

A todos mis profesores y a las personas que de una u otra manera contribuyeron en mi formación personal y espiritual, porque me enseñaron que las mayores satisfacciones se alcanzan cuando las cosas se hacen con esfuerzo, dedicación y honestidad.

ÍNDICE GENERAL

Certific	cación	. II
Autoría	a	. III
Dedica	toria	IV
Agrade	ecimiento	V
Índice	generalgeneral	.VI
Resum	en ejecutivo	XX
Executi	ive sumaryX	XI
	ÍNDICE DE CONTENIDO	
	CAPÍTULO I	
1.	El problema	1
1.1	Planteamiento del problema	1
1.1.1	Contextualización	1
1.1.2	Análisis crítico	3
1.1.3	Prognosis	3
1.1.4	Formulación del problema	4
1.1.5	Delimitación del objeto de investigación	4
1.1.5.1	Espacial	4
1.1.5.2	Temporal	5
1.2	Justificación	5
1.3	Objetivos	5
1.3.1	Objetivo general	5

1.3.2	Objetivos específicos	5
	CAPÍTULO II	
2. Marc	co teórico	7
2.1 Inv	vestigaciones previas	7
2.2 Fur	ndamentación filosófica	9
2.3 Cat	tegorías fundamentales	9
2.4 Sis	stemas de polimerización	10
2.4.1 P	Polimerización por resistencia eléctrica y convección forzada	11
2.4.2 F	Polimerización a gas por convección forzada	15
2.4.3 F	Polimerización de paneles infrarrojos	16
2.4.4 P	Polimerización	20
2.4.5 H	Hornos de polimerización	20
2.4.6 C	Clasificación de los hornos de polimerización	20
2.4.8 P	reparación de superficies	23
2.4.9 P	reparación del metal	24
2.4.10	Fosfatización	26
2.4.10.	1 Historia	26
2.4.11	Equipos de aplicación para pintar con pintura en polvo	28
2.4.12	Las pistolas electrostáticas	29
2.4.13	Cabinas de aplicación	30

2.4.14	4 Salud y medio ambiente	31
2.4.15	5 Futuro de la pintura en polvo	32
2.4.16	5 Control de calidad	33
2.4.17	7 Pintura electrostática	34
2.4.18	3 Tipos de pintura en polvo	35
2.4.19	Flexión en vigas	38
2.4.20). Esfuerzos de flexión en vigas	38
2.4.21	1. Columnas	40
2.4.21	Razón de esbeltez	42
2.4.22	2 Análisis de columna corta	43
2.5	Hipótesis	44
2.6	Señalamiento de variables	44
	CAPÍTULO III	
3.	Metodología	45
3.1	Enfoque investigativo	45
3.2	Modalidad básica de la investigación	45
3.3	Nivel o tipo de investigación	46
3.4	Población y muestra	46
3.4.1	Población	46
3.4.2	Muestra	46

3.4 Operacionalización de las variables	48
3.4.1 Variable independiente	48
3.4.2 Variable dependiente	49
3.5 Plan de recolección de la información	50
3.6 Procesamiento y análisis	50
3.6.1 Plan de procesamiento de la información	50
3.6.2 Plan de análisis de la información	51
CAPÍTULO IV	
4. Análisis e interpretación de resultados	52
4.1 Análisis de datos obtenidos en los ensayos	52
4.1.1. Factores que influyen en la calidad de la pintura epoxi poliéster	52
4.1.2. Tratamientos previos del material que se debe hacer para la aplicación de pintura epoxi poliéster.	
4.1.3 Ensayo de polimerización en el horno estático con quemadores a gas	57
4.1.4 Ensayo de curado en horno eléctrico bache	60
4.1.5 Ensayo de curado en horno infrarrojo de paneles catalíticos	62
4.2 Resultados de los ensayos obtenidos	64
4.2.1 Ensayos de Calidad en la Pintura Epoxi Poliéster.	64
4.2.2 Pinturas y productos afines. Determinación de la dureza de película método del lápiz. "INEN 1001"	64

4.2.	3 Pinturas y productos afines. Determinación de la flexibilidad mediante	;
mar	ndriles cónicos. "INEN 1002"	66
	4 Pinturas y productos afines. Determinación del impacto directo e invers EN 1005"	
	5 Pinturas y productos afines. Determinación de adherencia mediante prueba a cinta. "INEN 1006"	
	6 Pinturas y productos afines. Determinación de la resistencia a la llama etodo comparativo). "INEN 1008"	75
4.2.	7 Resultados de las pruebas realizadas	81
4.3	Interpretación de resultados	82
4.3	Verificación de hipótesis	83
	CAPÍTULO V	
5.	Conclusiones y recomendaciones	85
5.1	Conclusiones	85
5.3	Recomendaciones	86
	CAPÍTULO VI	
6	Propuesta	88
6.1	Datos informativos	88
6.2	Antecedentes de la propuesta	88
6.3	Justificación	89
6.4	Objetivos	89

6.4.1 Objetivo general	89
6.4.2 Objetivos específicos	89
6.5 Análisis de factibilidad	90
6.6 Fundamentación	90
6.6.1 Determinación de la carga en el horno	90
6.6.2 Distribución interna de la carga de los productos en el horno	91
6.6.3 Distancias, tiempos y velocidades necesarias para la polimerización de los	Š
productos	
6.7 Metodología	94
6.7.1 Esquema del horno	94
6.7.2 Cálculo del coeficiente de convección	95
6.7.3 Coeficiente de convección externo	96
6.7.4 Coeficiente de convección interno	98
6.7.5 Tiempo de calentamiento de los productos	99
6.7.6 Selección del material de aislamiento	04
6.7.7 Calor necesario para el proceso de polimerización	06
6.7.8 Cálculo de la pérdida de calor 1	09
6.7.9. Rendimiento térmico	22
6.7.10. Selección del ventilador	23
6.7.11 Diseño de ductos	124

6.7.12. Perdidas en la succión
6.7.13. Perdidas en la descarga
6.7.14. Cálculo de las resistencias
6.7.15. Cálculo numérico de los elementos de resistencia
6.7.16. Diseño estructural del horno
6.7.17. Cálculo de cargas
6.7.18. Cálculo de pórticos
6.7.19. Cálculo de momentos. 144
6.7.20. Cálculo de reacciones
6.7.21. Cálculo de esfuerzos máximos
6.7.22. Cálculo de columna recta
6.7.23. Análisis estructural mediante software
6.7.24. Cálculo de placa base
6.7.25. Diseño del transportador del producto
6.7.26. Eje del rodamiento
6.7.27. Eje del pasador
6.7.28. Eje del pasador y eslabón
6.7.29. Selección del rodamiento
6.7.30. Selección de cadena - catalina
6.7.31. Selección del variador de velocidad

6.7.32. Sistema de control
6.7.33. Órgano de medición y control XMTG
6.7.34. Selección de la termocupla
6.7.35. Selección del contactor
6.7.36. Relé térmico
6.7.37. Selección del cable eléctrico
6.7.38. Diseño de los pernos de anclaje de la estructura
6.8 Administración
6.8.1 Costos directos
6.8.2 Costos indirectos. 188
6.8.3 Mano de obra
6.8.4 Costos varios
6.8.5 Costo total de la construcción del horno y del estudio realizado
6.8.6 Calculo del VAN y TIR
6.9 Previsión de la evaluación
6.10 Bibliografía
Anexos
Catalogo
Planos

ÍNDICE DE FIGURAS

Figura 2-1: Red de categorías fundamentales
Figura 2-2: Resistencia con aletas aluminizadas
Figura 2-3: Resistencia con aletas helicoidales en acero inoxidable
Figura 2-4: Resistencia blindada tipo doble M
Figura 2-5: Convección forzada
Figura 2-6: Perfiles de velocidad
Figura 2-7: Flujo del aire al interior del horno
Figura 2-8: Quemador a gas
Figura 2-9: Espectro de radiación
Figura 2-10: Emisión de calor panel infrarrojo
Figura 2-11: Panel infrarrojo catalítico
Figura 2-12: Pieza antes y después del desengrase
Figura 2-13: Cubas de Desengrase en Caliente
Figura 2-14: Piezas limpiadas por decapado
Figura 2-15: Cubas de Fosfatización
Figura 2-16: Equipos para la aplicación de la pintura en polvo
Figura 2-17: Unidad alimentadora
Figura 2-18: Pistola electrostática
Figura 2-19: Cabinas de aplicación

Figura 2-20: Fuerzas y esfuerzo sobre un elemento de la viga de longitud dx 39
Figura 2-21: Valores de K para longitud efectiva
Figura 4-1: Curva de curado de la pintura epoxi poliéster
Figura 4-2: Sensores de temperatura
Figura 4-3: Curvas de curado de la pintura epoxi poliéster, horno estático con quemadores a gas
Figura 4-4: Sensores de temperatura
Figura 4-5: Curvas de curado de la pintura epoxi poliéster, horno eléctrico bache.
Figura 4-6: Sensores de temperatura
Figura 4-7: Curvas de curado de la pintura epoxi poliéster, horno infrarrojo de paneles catalíticos
Figura 4-8: Implementos para el ensayo de dureza
Figura 4-9: Ejecución del ensayo de dureza
Figura. 4-10: Implementos para el ensayo de flexibilidad
Figura 4-11: Ejecución del ensayo de flexibilidad
Figura 4-12: Ejecución de ensayo de impacto
Figura 4-13: Implementos para el ensayo de adherencia
Figura 4-14: Cortes en la platina
Figura 4-15: Desprendimiento de la cinta
Figura 4-16: Mechero

Figura 4-17: Ejecución del ensayo de resistencia a la llama
Figura 4-18: Prueba de adherencia
Figura 4-19: Prueba de adherencia
Figura 4-20: Prueba de resistencia a la llama
Figura 6-1: Separación de los productos
Figura 6-2: Estructura principal del horno.
Figura 6-3: Estructura externa e interna del horno
Figura 6-4: Espesor de aislamiento
Figura 6-5: Resistencia del horno.
Figura 6-6: Estructura simétrica en pórtico de soporte fijo
Figura 6-7: Diagrama de cuerpo libre del pórtico
Figura 6-8: Pórtico fijo con carga concentrada en el centro
Figura 6-9: Momentos de una carga concentrada en el centro
Figura 6-10: Relación de esfuerzos en la estructura
Figura 6-11: Placa base de Cimentación
Figura 6-12: Diagrama Transportador
Figura 6-13: Diagrama Transportador
Figura 6-14: Diagrama de Fuerzas en el rodamiento
Figura 6-15: Sujetador de Gancho
Figura 6-16: Eje del rodamiento

Figura 6-17: Pasador de Cadena
Figura 6-18: Eslabón y Pasador
Figura 6-19: Rodamiento
Figura 6-20: Ajuste del eje
Figura 6-21: Cadena. 172
Figura 6-22: Motor Reductor. 175
Figura 6-23: Controlador de temperatura
Figura 6-24: Termocupla
Figura 6-25: Contactor. 179
Figura 6-26: Relés térmicos. 179
Figura 6-27: Mando
Figura 6-28: Cable
Figura 6-29: Fuerzas y Momentos en la placa base
Figura 6-30: Distancias de pernos
Figura 6-31: Equilibrio de las fuerzas y el momento en el plano de corte 184
Figura 6-32: Diagrama de la fuerza de corte resultante para el perno A
Figura 6-33: Diagrama de la fuerza de corte resultante para el perno A
ÍNDICE DE TABLAS
Tabla 2-1.Comparacion de diferentes tipos de pintura
Tabla 2-2.Tabla de emisividad

Tabla 2-3. Propiedades mecánicas epoxi.	35
Tabla 2-4. Propiedades mecánicas poliéster-tgic	36
Tabla 2-5. Propiedades mecánicas epoxi/poliéster	37
Tabla 2- 6.Comparación de desempeño tipos de pinturas	38
Tabla 3-1. Operacionalización de la variable independiente Estudio de un sistema de polimerización.	48
Tabla 3-2. Operacionalización de la variable dependiente Calidad de la pintu	ra
epoxi poliéster	49
Tabla 3-3. Plan de recolección de datos	50
Tabla 4-1. Proceso de Limpieza	57
Tabla 4-2.Características del horno estático con quemadores a gas	58
Tabla 4-3. Características del horno eléctrico bache.	60
Tabla 4-4. Características del horno infrarrojo de paneles catalíticos	62
Tabla 4-5. Clasificación de los resultados del ensayo de adherencia	74
Tabla 4-6. Comparación de los hornos industriales	82
Tabla 4-7. Comparación costos de hornos industriales	83
Tabla 6-1. Productos mensuales a pintar y sus pesos	91
Tabla 6-2. Dimensión de la arista Mayor	93
Tabla 6-3. Distancias y tiempos del horno	93
Tabla 6-4 .Dimensiones y sus propiedades térmicas del horno	113
Tabla 6-5. Cálculo de la pérdida de Calor	113

Tabla 6-6. Dimensiones y sus propiedades térmicas del horno
Tabla 6-7.Calculo de la perdida de Calor
Tabla 6-8. Dimensiones y sus propiedades térmicas del horno
Tabla 6-9. Calculo de la perdida de Calor
Tabla 6-10. Dimensiones y sus propiedades térmicas del horno
Tabla 6-11. Calculo de la pérdida de Calor
Tabla 6-12. Pérdidas de calor
Tabla 6-13. Componentes del Transportador
Tabla 6-14: Característica del rodamiento
Tabla 6-15. Características de la cadena
Tabla 6-16. Características del motor reductor
Tabla 6-17. Campos de reglaje de los relés térmicos
Tabla 6-18 .Costos Directos
Tabla 6-19. Costos Indirectos
Tabla 6-20. Mano de Obra
Tabla 6-21. Administración de la tesis

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

INGENIERÍA MECÁNICA

"ESTUDIO DE UN SISTEMA DE POLIMERIZACIÓN PARA MEJORAR LA

CALIDAD DE LA PINTURA EPOXI POLIÉSTER APLICADA EN LOS

PRODUCTOS DE LA EMPRESA ECUAMATRIZ S.A."

Autor: Alvaro Ricardo Valencia Medina

Tutor: Ing. Mg. Gonzalo López

Fecha: 25 de Agosto de 2014

RESUMEN

El presente trabajo de investigación se desarrolló en ciudad de Ambato en el cual

se determinó las fallas que conlleva una sobre polimerización y su incidencia en los

productos de la empresa Ecuamatriz S.A. apoyadas en las normas técnicas

ecuatorianas para el control de calidad de pintura, las cuales permiten garantizar el

buen funcionamiento de los recubrimientos superficiales en cuanto a propiedades

mecánicas, químicas, color, brillo y textura.

En el diseño del horno de polimerización se consideró la selección de los materiales

para la estructura principal y la cámara de polimerización, aislamiento térmico,

ductos de ventilación, transporte y los elementos de resistencia.

Para lograr esta optimización se ha hecho un diagnóstico del funcionamiento de los

siguientes sistemas: infrarrojo de paneles catalíticos, eléctrico bache, estático con

quemadores a gas, ventilador y los aparatos para la recirculación de aire caliente.

Las pruebas fueron controladas en base a los parámetros que necesita la empresa,

para cumplir con los ambientes de funcionamiento, tales como: niveles de consumo

de energético, calidad de producto, etc.

XX

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA INGENIERÍA MECÁNICA

"STUDY OF POLYMERIZATION SYSTEM TO IMPROVE THE QUALITY OF EPOXY POLYESTER PAINT APPLIED IN GOODS ECUAMATRIZ SA "

Author: Alvaro Valencia Ricardo Medina

Tutor: Ing. Mg. Gonzalo López.

Date: August 25, 2014

SUMARY

This research was developed in Ambato in which failures leading to an over polymerization and its incidence was determined in the company's products Ecuamatriz S.A. supported by the Ecuadorian technical standards for quality control of paint, which allow ensure the smooth operation of surface coatings in

mechanical, chemical, color, brightness and texture properties.

In the curing oven design the choice of materials for the main structure and the polymerization chamber, thermal insulation, ventilation ducts, transport and

resistance elements are considered.

To achieve this optimization has made a diagnosis of the operation of the following systems: Infrared catalytic panels, electric bump, static gas burners, fan and apparatus for recirculation of hot air.

The tests were controlled based on the parameters required the company to meet operating environments, such as energy consumption levels, product quality, etc.

XXI

CAPÍTULO I

1. EL PROBLEMA

Estudio de un sistema de polimerización para mejorar la calidad de la pintura epoxi poliéster aplicada en los productos de la empresa Ecuamatriz Cía. Ltda.

1.1 PLANTEAMIENTO DEL PROBLEMA

1.1.1 Contextualización

En los últimos 50 años la industria ha perfeccionado los recubrimientos de pintura en polvo, mejorando no sólo sus materiales y componentes, sino también el proceso y la técnica de aplicación. Actualmente este revestimiento está altamente posicionado en el sector metalmecánico, gracias a que disminuye costos, se aplica rápido y produce pocos residuos, minimizando el impacto ambiental.

En los países industrializados se considera la polimerización como parte esencial de un producto terminado ya que este debe pasar por la inspección final.

La pintura en polvo ha ido ganando gran popularidad y aceptación en el mercado de los recubrimientos industriales no sólo en Estados Unidos y Europa, sino también en países vecinos como Brasil y Chile. El éxito de esta pintura radica en sus excepcionales propiedades finales: dureza, resistencia a la corrosión, excelente acabado, fácil aplicación y aceptabilidad ambiental.

Siendo una de las alternativas más limpias y eficientes, la pintura en polvo es un tipo de revestimiento orgánico que se usa para cubrir y proteger todo tipo de materiales metálicos. Comparada con las pinturas liquidas, es la única que tiene componentes secos cien por ciento libres de solventes.

Uno de los problemas actuales de la pintura epoxi poliéster es el polimerización de ésta, pues se trata de la apariencia final de las piezas lo que determina, en un principio, la calidad del producto. Para esto es muy importante seleccionar el tipo de proceso adecuado de acuerdo a su actividad, teniendo en cuenta costos y niveles de calidad, producción que se requieren.

Para la correcta polimerización de la pintura es muy importante mantenerse en los rangos establecidos puesto que el exceso de las mismas puede traer consecuencias como cambio de color, disminución de brillo, manchado y disminución en las propiedades mecánicas.

En el Ecuador aún se sigue considerando que la polimerización es simplemente colocar la superficie pintada en el horno sin tener en cuenta el tiempo adecuado que este debe estar, sin tener en cuenta los equipos de control de calidad para el acabado.

Las necesidades de aplicación de la polimerización, no son solo un problema del futuro sino también del presente, ya que cada uno de los sectores industriales y tecnológicos demandan un interés de desarrollo acorde a los procesos, empleando estrategias para mejorar sus procesos y minimizar el impacto de los cambios tecnológicos, para poder sustentar este desarrollo a través del tiempo.

La elaboración de productos de calidad se sustenta en el control de calidad realizadas a las características del producto y durante el proceso, de la polimerización equivocado de estos, puede ocasionar la entrega de productos defectuosos o el rechazo de los productos que no cumplen su especificación, reclamos de clientes, aumento de los costos de producción o pérdida de imagen y confianza. Para evitar estos problemas es necesario asegurar un nivel adecuado del acabado.

Mientras no se realice la polimerización adecuada, no se puede comprobar la calidad de un producto y más aún, producirla, ocasionando pérdidas significativas para la Empresa por productos rechazados; es por ello que este proceso surgió como

una necesidad del Estudio de un Sistema de Acabado que conlleva a optimizar el proceso de polimerización en la Empresa ECUAMATRÍZ CIA. LTDA.

1.1.2 Análisis crítico

En la actualidad, en el Ecuador existen un gran número de empresas de renombre nacional e internacional, pero son pocas las que han desarrollado un Estudio de un Sistema de Polimerización de la pintura Epoxi Poliéster en el proceso de pintura.

En algunas ocasiones solo se considera el secado de la pintura como parte fundamental en el proceso de pintura, ignorando los factores del polimerización que pueden existir en el sistema, por ejemplo: los factores ambientales, humanos, fuentes de calor, calibración en los equipos de control de calidad, etc., se puede indicar un sin número de efectos que pueden provocar cambios en el producto final.

ECUAMATRÍZ CIA. LTDA., mediante el Estudio de un Sistema de Polimerización para mejorar la calidad de la pintura Epoxi Poliéster, se conseguirá la uniformidad del acabado en el proceso de pintura y producción cumpliendo de esta manera con las exigencias y parámetros establecidos por el cliente para obtener un producto garantizado.

1.1.3 Prognosis

Una vez conocido el problema se pueden identificar los problemas como: pérdida de concursos por incumplimiento de los parámetros requeridos por el cliente, perder el renombre alcanzado durante varios años de trabajo, bajar la producción y que esto conlleve a la disminución tanto de personal como activos de la Empresa, aumento de gastos por adquisición de instrumentos y equipos innecesarios, pérdida en la producción por piezas inconformes.

1.1.4 Formulación del problema

¿Qué sistema de polimerización permitirá mejorar la calidad de la pintura epoxi poliéster que garantice la confiabilidad de los productos de la empresa Ecuamatriz S.A?.

a) Preguntas directrices

- > ¿Qué factores afectan la calidad de la pintura epoxi poliéster?.
- ➤ ¿Qué tratamientos previos al material se debe hacer para la aplicación de la pintura epoxi poliéster?.
- ➤ ¿Existe un estudio realizado sobre el sistema de polimerización que garantice la calidad de la pintura epoxi poliéster?.
- ➤ ¿Qué tipo de polimerización será el apropiado para mejorar la calidad la pintura epoxi poliéster?.
- > ¿De qué manera influye la polimerización en la calidad del producto elaborado?.

1.1.5 Delimitación del objeto de investigación

1.1.5.1 Espacial

El estudio de un sistema de polimerización se desarrollará en la Empresa de Matricería y Producción Ecuamatriz Cía. Ltda. ubicada a 1 kilómetro y medio de la Panamericana Norte de la ciudad de Ambato, provincia de Tungurahua, sector Parque Industrial – Primera Etapa, calles 4 y F.

1.1.5.2 Temporal

El presente estudio se llevará a cabo entre los meses de Diciembre del 2013 a Mayo del 2014.

1.2 JUSTIFICACIÓN

El motivo de este proyecto es conocer y buscar soluciones para mejora la productividad, se vio en la necesidad en desarrollar un estudio para la implementación de un Sistema de Polimerización, cuyo sistema ayudará para el proceso de calificación de la Norma ISO 9001 (2009), que garantizará la calidad del producto y por ende la obtención de asegurar la confiabilidad de los tipos de polimerización que se realicen, lo cual contribuirá con el fortalecimiento de la capacidad competitiva de sus productos con estándares de calidad establecidos por clientes.

Para este estudio se realizará un control de calidad en la Empresa en sus diferentes departamentos como son: Diseño, Control de Calidad y Producción.

Esto permitirá un equilibrio de los intereses de proveedores y consumidores, optimizando de ésta forma el uso de los recursos y promoviendo la aplicación de las tecnologías más adecuadas, con la finalidad de lograr una producción de calidad.

1.3 OBJETIVOS

1.3.1 Objetivo general

Estudiando un sistema de polimerización mejorara la calidad de la pintura epoxi poliéster aplicada en los productos de la empresa Ecuamatriz Cía. Ltda.

1.3.2 Objetivos específicos

➤ Identificar los factores que influyen en la calidad de la pintura epoxi poliéster.

- ➤ Identificar la preparación del material apropiado para la aplicación de la pintura epoxi poliéster.
- > Realizar un estudio de los sistemas de polimerización que garantice la calidad de la pintura epoxi poliéster.
- > Seleccionar un sistema de polimerización apropiado para garantizar la calidad de la pintura epoxi poliéster.
- ➤ Proponer una alternativa de solución que conlleve a la calidad de la polimerización de la pintura epoxi poliéster.

CAPÍTULO II

2. MARCO TEÓRICO

2.1 INVESTIGACIONES PREVIAS

La necesidad de minimizar los tiempos de producción, las grandes pérdidas e inconvenientes que trae consigo la aplicación para lacas líquidas, y tratando de mejorar la calidad superficial de los recubrimientos superficiales requeridos por la industria, se comienza a invertir en la búsqueda de nuevas técnicas para la protección anticorrosiva y acabados superficiales.

Es así como a partir del año 1950, se comienzan a realizar estudios con partículas de pintura en polvo, las cuales eran aplicadas sobre la superficie de un objeto polarizado de manera contraria al polvo, generándose entre ellos una atracción magnética que permitía la adherencia de las partículas a la superficie. Es entonces cuando Allen H. Turner en 1962 realiza la primera patente de este procedimiento de recubrimientos por electrostática, y nace la necesidad de utilizar los recubrimientos en polvo como alternativa para un acabado superficial más eficiente y de menor costo. A partir de entonces la empresa británica, "Volstatic LTDA", es la pionera en la adaptación de este nuevo principio de recubrimiento basado en la electrostática. En Suiza nace la empresa "GEMA" en 1975, que con sus experimentos dota de la tecnología necesaria a la empresa "Ransburg", para incursionar en la fabricación de equipos para la aplicación de este tipo de recubrimientos. De esta manera esas tres empresas, fueron las más destacadas en los inicios de esta nueva tecnología. [5]

Inician operaciones en los Estados Unidos de Norte América a comienzos de los años 80, década en la que crece exponencialmente el uso de esta innovadora técnica en la industria mundial.

Tabla 2-1. Comparacion de diferentes tipos de pintura.

	Pintura liquida de	Pintura liquida	Pintura en polvo
Pre tratamiento	aplicación manual Desengrase por trapeado	Desengrase y fosfatizado por spray	Desengrase y fosfatizado por inmersion ambas caras.
Tipo de pintura	Fondo anticorrosivo sintètico	Esmalte acrilico anticorrosivo	Polièster en polvo
Aplicación	Lìquida con aplicaciòn. Productos con carga mineral para darle mayor rendimiento	Lìquida con proyecciòn por copa rotante utilizado por la industria automotriz. Aplicaciòn robotizada.Pintura sin carga mineral de mayor pureza.	Final en polvo. Electrostàtica.Una vez se hornea a 180°C para producir polimerización y lograr una capa uniforme.Aplicación robotizada.
Secado	El secado es al aire.Puede generar diferencias en color y brillo dependiendo de las condiciones climàticas del momento.	El proceso de secado se acelera con horno a 80°C. Evita marcas en la manipulación posterior de la cobertura. Permite un color y brillo uniformes	Fundido en horno a 180°C. La pintura en polvo se polimeriza transformàdose en una pelìcula uniforme adherida a los productos
Durabilidad	Baja.Requiere repintado inmediato para su uso a la intemperie.	Media. El fosfatizado genera una pelicula que,	protege de impactos
Conclusiòn	La pintura solo cumple la funciòn de proteger.	Muy buena terminaciòn. Mayor poder de cobertura. Extiende la protecciòn para los primeros años.	Excelente terminaciòn. Uniforme, pareja, controlada. Lista para usar. Libre de mantenimiento de pintura posterior.

Fuente: (Deluxe pintura al horno)

Hoy en día esta técnica es utilizada en casi todos los sectores industriales que prescinden de un recubrimiento superficial para la protección o estética de sus productos. [2]

La comparación de los diferente tipos de acabados superficiales: fondo anticorrosivo y final en polvo, a continuación se muestran las diferentes sustancias entre una y otra tecnología.

2.2 FUNDAMENTACIÓN FILOSÓFICA

Los avances tecnológicos han permitido que las empresas se muevan a un ritmo acelerado. Con el tiempo las cosas han cambiado en pro de la búsqueda del perfeccionamiento personal y empresarial, dejando de lado los métodos tradicionalistas, por lo que cada día existen actualizaciones del mundo globalizado. Es así que las Empresas buscan métodos actuales que permitan actuar con rapidez, eficiencia en los procesos de producción.

2.3 CATEGORÍAS FUNDAMENTALES

¿Estudio de un sistema de polimerización para mejorar el acabado y secado de la pintura epoxi poliéster aplicada en los productos de la empresa Ecuamatriz S.A?

X= Estudio de un sistema de polimerización.

Y= Mejorar el acabado y secado de la pintura epoxi poliéster.

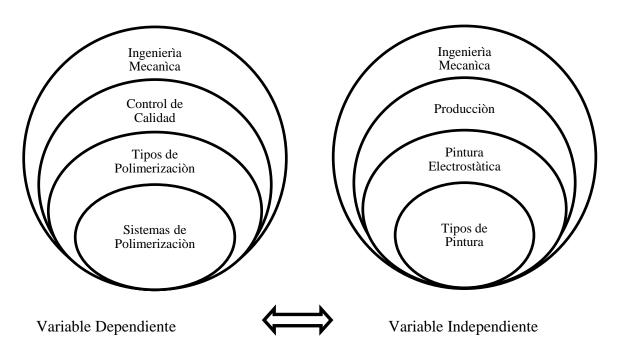


Figura 2-1: Red de categorías fundamentales. Fuente: Valencia Alvaro.

2.4 SISTEMAS DE POLIMERIZACIÓN

La polimerización de la pintura electrostática sobre la pieza es activar la reacción química del sistema de resinas por medio de calor. El perfecto balance del sistema de sustratos y el período en que la temperatura de este substrato permanece en la especificación entregada por los boletines técnicos (para cada línea de productos) determinará la perfecta estabilidad y la performance especificada para los ensayos Físicos y Químicos.

Existe una clasificación principal de estos hornos de acuerdo al tipo de operación:

a) Convección: Estos hornos consiguen llegar a la temperatura de curado a través del calentamiento del aire dentro de la cámara de polimerización donde se colocan las piezas. Se pueden utilizar quemadores de gas como resistencias eléctricas. y sistemas de recirculación de aire para generar la convección forzada.

b) Radiación: Estos hornos utilizan la radiación infrarroja para llegar a la

temperatura deseada. La presencia de calor radiante es gradual y el funcionamiento

reside en la absorción de la radiación por los objetos.

c) Eléctricos: Los hornos infrarrojos eléctricos son generalmente continuos debido

a que las piezas deben estar en contacto directo con la radiación.

2.4.1 Polimerización por resistencia eléctrica y convección forzada.

Los hornos eléctricos son más sencillos y de muchos usos en la industria, en el cual

se genera calor mediante la corriente eléctrica utilizando un elemento resistivo que

rodea el horno.

En los hornos que se calientan desde el exterior, los hornos de resistencia son

especialmente útiles en aplicaciones en la que la temperatura pueda controlarse de

forma precisa.

Existen diferentes tipos de resistencias para diferentes aplicaciones, en donde su

ubicación dentro del horno también cumple un papel fundamental en el desempeño

del mismo. Las resistencias más comunes utilizadas en los hornos de curado por

resistencia eléctrica son:

a) Resistencia con aletas aluminizadas.

Elementos que por la afiliación de aletas aluminizadas permite una gran

transmisión de calor al ambiente. Éste tipo de aletas rectangulares y la

conductividad térmica del aluminio. La temperatura máxima de funcionamiento:

250°C

Figura 2-2: Resistencia con aletas aluminizadas.

Fuente:(TopResistance@2002)

11

b) Resistencia con aletas helicoidales en acero inoxidable.

Elementos especialmente estudiados para el calentamiento de aire a temperaturas elevadas. Admite una temperatura máxima del aire a 400°C con convección forzada.

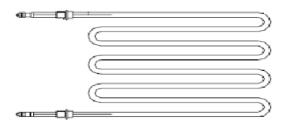


Figura 2-3: Resistencia con aletas helicoidales en acero inoxidable.

Fuente: (TopResistance@2002)

c) Resistencia blindada tipo doble M.

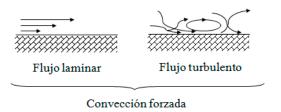
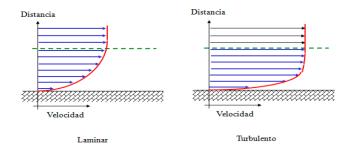

Elementos especialmente estudiados para el calentamiento de aire a una temperatura máxima de 400°C con convección forzada mínima de 3m/s. Son muy utilizadas para hornos industriales y baterías.

Figura 2-4: Resistencia blindada tipo doble M. **Fuente:** (TopResistance@2002)

Además de la resistencia eléctrica encargada de proporcionar la energía calorífica al interior del horno, se necesita aire circundante, el cual será el encargado de homogenizar la temperatura dentro del horno. Este principio de funcionamiento se basa en la teoría de transferencia de calor por convección forzada.

Cuando un fluido caliente se mueve en contacto con una superficie fría, el calor se transfiere hacia la pared a un ritmo que depende de las propiedades del fluido y si se mueve por convección forzada, se dice que puede ser por flujo laminar o por flujo turbulento.


Figura 2-5: Convección forzada. **Fuente:** (K Galsgaa, 1999)

La convección es un fenómeno de transporte (materia y energía) que tiene su origen en diferencias de densidad. Cuando un fluido se calienta, se expande; en consecuencia su densidad disminuye.

$$Q = hA(T - T\infty) = h A \Delta T$$

Ecuación 2.1

Si se tiene flujo laminar o flujo turbulento, varían de las propiedades de la convección debido a que afecta la distancia que recorre el fluido a la misma velocidad. Esto hace que sea más homogénea la transferencia de calor para el flujo turbulento como se puede apreciar en la figura 2.6.

Figura 2-6: Perfiles de velocidad **Fuente:** (K Galsgaa, 1999)

Como las piezas aplicadas de pintura electrostática para industria de matriceria, no presentan formas iguales, se debe establecer su funcionamiento en los principios de trasferencia de calor para objetos sumergidos. Para flujo en conductos definiéndose un coeficiente de transferencia calórica según:

$$Q = h m A (T - T \infty)$$

Ecuación 2.2

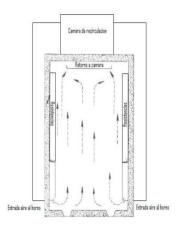
Donde

A =Área de transferencia

 T_0 = Temperatura media de la superficie del sólido

 $T\infty$ = Temperatura del fluido lejos del sólido.

También en estos sistemas se puede definir un coeficiente local de transferencia de energía según:


$$dQ = hlog (To - T\infty) dA$$

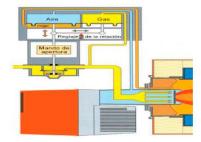
Ecuación 2.3

Donde

 T_0 = Temperatura de la superficie del sólido en un punto de superficie dA.

Para que se dé la convección forzada, los hornos requieren de moto-ventiladores en su interior, dispuestos de manera especial en cámaras sellada de recirculación para conservar el continuo movimiento del aire al interior del horno.

Figura 2-7: Flujo del aire al interior del horno **Fuente:** (Caltec@2008)


La cámara de recirculación es por medio de ductos laterales de inducir el aire al interior del horno, en el cual se calienta gracias a las resistencias eléctricas ubicadas en los laterales del mismo.

La eficiencia que tienen estos hornos para transferir el calor generado por las resistencias eléctricas depende del movimiento del fluido que genera este sistema.

2.4.2 Polimerización a gas por convección forzada.

Los hornos a gas por convección forzada son muy similares a los de resistencia eléctrica por convección forzada, la diferencia es la fuente de la energía calorífica que se va a transferir a las piezas que se desean curar.

Para los hornos a gas el elemento que nos entregara esta energía calorífica se llama quemador.

Figura 2-8: Quemador a gas. **Fuente:** (Cuenod@,2009)

La variación de la temperatura máxima de los productos de combustión en función del exceso de aire de la combustión.

El calor disponible está definido como:

$$Q_{disp} = PCS - Q_{gases}$$
 Ecuación 2.4

Donde

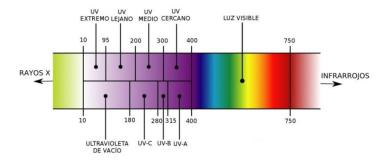
 $Q_{DISP} = Calor disponible$

PCS = Poder calorífico superior del combustible

La eficiencia de un quemador está asociada a la energía química que es posible ser transformada en calentamiento de los productos de combustión.

Eficiencia de la combustión en un quemador a gas.

$$n_{comb} = \frac{PCS - (H_{prod} - H_{react})}{PCS} * 100\%$$


Ecuación 2.5

La Ecuación 2.5 muestra el comportamiento de la eficiencia de combustión de acuerdo a la temperatura que poseen los gases inmediatamente a la salida del quemador.

2.4.3 Polimerización de paneles infrarrojos.

La técnica infrarroja ofrece ventajas importantes para determinados procesos industriales de secado, en los que resulta mucho más efectiva comparada con sistemas de calentamiento por convección.

La calefacción infrarroja consiste en la transferencia de energía térmica desde una fuente a un material, cuerpo o recubrimiento, por radiación electro-magnética. Esta energía radiante puede ser producida por diversas fuentes, tales como las ultravioleta, de radio frecuencia, o infrarrojas.

Figura 2-9: Espectro de radiación. **Fuente:** (Mckellar@2002)

La energía infrarroja es radiada a través del aire en forma de ondas electromagnéticas, y tal como la luz es direccional y puede ser enfocada, reflejada y absorbida por un cuerpo cercano.

No toda la energía infrarroja es absorbida por un material, un cuerpo o una superficie.

Ley de Stefan Boltzmann mientras más alta es la temperatura de la fuente, mayor es la radiación que emite y mayor es su eficiencia.

Ley de Boltzmann.

$$Q_{emitida} = \sigma A_S T_S^4$$

Ecuación 2.6

Donde

 $\sigma = 5.67 \text{ E-8 W/ (m2k4)}$ constante de Boltzmann

As = Área de la superficie emisora.

Ts = Temperatura de la superficie emisora

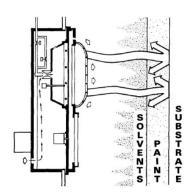
En la práctica, todos los cuerpos son grises; tienen un factor de emisividad o absorción menor que 1.

Calor emitido

$$Q_{emitida} = \varepsilon \sigma A_S T_S^4$$

Ecuación 2.7

Donde


 σ = 5.67 E-8 W/ (m²k⁴) constante de Boltzman

As = Área de la superficie emisora

Ts = Temperatura de la superficie emisora

 $\varepsilon = Es$ el valor de la emisividad

Al emitir la radiación infrarroja, las ondas viajan a la velocidad de la luz hacia la pieza cubierta de pintura electrostática. La porción absorbida de la radiación es convertida en energía térmica.

Figura 2-10: Emisión de calor panel infrarrojo **Fuente:** (Franklin@2005)

Tabla 2-2.Tabla de emisividad.

Material	Pulido	Opaco	Oxidado
Aluminio	0,04	0,056	0,11-0,19
Bronce	0,03	0,06-0,2	0,6
Cobre	0,018-0,02	-	0,57
Oro	0,018-0,035	-	-
Hierro	0,12-0,40	0,75	0,80-0,95
Acero inoxidable	0,11	0,57	0,80-0,95
Plomo	0,057-0,075	0,28	0,63
Níquel	0,45-0,87	-	-
Plata	0,02-0,035	-	-
Estaño	0,04-0,065	-	-
Zinc	0,045-0,053	-	0,11
Hierro galvanizado	0,228	-	0,267
Ladrillo	0,75-0,93	-	-
Carbón	0,927-0,967	-	-
Roble plano	0,895	-	-
Papel	0,924-0,944	-	-
Plástico	0,86-0,95	-	-
Porcelana esmaltada	0,924	-	-
Cuarzo	0,932	-	-
Refractarios	0,65-0,91	-	-
Goma	0,86-0,95	-	-
Agua	0,95-0,963	-	-
Barniz	0,8-0,95	-	-
Esmalte	0,85-0,91	-	-
Oleos	0,92-0,96	-	-
Pintura aluminio	0,27-0,67	-	-

Fuente: (Bossman, 2000)

Este equipo no controla temperatura. Controla potencia entregada por los paneles por medio de recetas.

Figura 2-11: Panel infrarrojo catalítico **Fuente:** (Premac@2009)

2.4.4 Polimerización

Es la parte más crítica de toda la línea de recubrimientos con pinturas en polvo, se nivela y endurece la pintura aplicada por vaciado electroestático cuidadosamente; por que las características de temperatura fluidez de una pintura son peculiares y determinan cómo será la nivelación de la película curada.

Las resinas y sus agentes de curado se entrecruzan volviéndose más viscosas con el tiempo.

Las propiedades finales de un recubrimiento solo se logran uniformemente sobre la pieza, si los componentes son tratados en condiciones térmicas equivalentes.

2.4.5 Hornos de polimerización

Los Hornos de combustión son utilizados principalmente para la generación de calor en el interior del horno se lo puede obtener mediante la combustión de combustible o la conversión de energía eléctrica en calor.

2.4.6 Clasificación de los hornos de polimerización

La extensa gama de hornos se pueden clasificar según su aplicación, su fuente de energía, el proceso y su función.

a) Clasificación según su aplicación.

> Hornos domésticos.

Son hornos de baja temperatura utilizados principalmente para cocinar alimentos, su uso es específicamente en hogares.

> Hornos Industriales.

Son hornos de media y alta temperatura utilizados para transformar la materia prima mediante el calentamiento o la fundición de la misma.

b) Clasificación según su fuente de energía.

> Combustión de combustible.

Los hornos de combustión utilizan combustible sólido, líquido o gaseoso dependiendo del tipo de quemador.

Conversión de la energía eléctrica en calor.

Se fundamentan en la utilización de resistencias eléctricas pueden alcanzar altas temperaturas.

c) Clasificación según el proceso.

➤ Hornos de carga por lotes.

El material permanece estático durante todo el proceso de calentamiento hasta retirar la carga y reemplazar por otro lote.

> Hornos continuos.

En estos hornos el material no permanece estático se desplaza a lo larga del horno mientras se calienta.

d) Clasificación según su función.

> Hornos de Fusión.

La función principal de este tipo de horno es la de fundir los materiales o minerales de hierro.

> Hornos de Recalentar.

Su función es el calentamiento de piezas para procesos de laminación, extrusión, forja, estampación y conformado.

> Hornos de Tratamiento Térmico.

Su función es la de inferir una propiedad al material. Algunos de los tratamientos existentes son:

Recocido, normalizado, temple, revenido, etc.

Cementación, carbonitruración, cianuración, etc.

Recubrimiento por galvanización, estañado, esmaltado, etc.

e) Por su fuente de calor

Las fuentes de calor de los hornos por lo general pueden ser de dos tipos: de combustión y de conversión de energía eléctrica a calor.

➤ Hornos Discontinuos y Continuos

Los hornos discontinuos se caracterizan por tener un punto máximo de temperatura al cual estarán sometidas las cargas.

➤ Por el tipo de combustible

Los hornos calentados eléctricamente normalmente utilizan resistencias eléctricas o se calientan por medio de inducción. Existen muchos otros tipos de calentamiento

eléctrico o electrónico. Entre los más importantes procesos de calentamiento por arcos de plasma, láser, radiofrecuencias, microondas y calentamiento electromagnético.

d) Hornos por Recirculación

Los hornos de temperaturas medias y bajas (bajo 760 °C) normalmente utilizan sistemas de recirculación de gases.

➤ De Fuego Directo o de Fuego Indirecto

Si la llama o los gases de combustión circulan sobre la carga del horno, entonces se puede decir que es un horno de fuego directo.

Para productos que pueden ser afectados por la llama o por los gases de combustión, se prefiere utilizar otros métodos de calentamiento como pueden ser los tubos radiantes o los intercambiadores de calor.

2.4.7 Factores que afectan la calidad de la pintura.

La calidad de la pintura final depende de diversos factores a lo largo del proceso de pintado. Algunos de los más importantes son:

- > Equipo de pintado.
- > Calidad y Tipo de pintura a utilizar.
- > Condiciones de aplicación.

2.4.8 Preparación de superficies

La preparación de superficie es suministrar la máxima adherencia de la pintura. Es eliminar todo tipo de material extraño que impida el contacto del recubrimiento con el sustrato y segundo proporcionar una superficie donde pueda anclarse con firmeza para desarrollar la máxima adherencia posible.

La oxidación deben ser totalmente eliminados mediante sistemas manuales o mecánicos hacer manualmente.

2.4.9 Preparación del metal

En general se habla de dos tipos que pueden ser Desengrase y Decapado (mecánico o químico) y fosfatizado.

a) Desengrase

Figura 2-12: Pieza antes y después del desengrase **Fuente:** www.dow.com

Estos actúan de tres maneras diferentes: emulsión, peptización y saponificación.

- > Emulsión: Se entiende la formación de una mezcla de líquidos que no se separan en capas al reposar.
- ➤ Peptización: Es el término dado a la reducción de partículas sólidas de suciedad en una forma finamente dividida, con lo cual se eliminan fácilmente.
- Saponificación: Es el nombre científico para la formación de jabón, que resulta de la acción química del álcali con grasas y aceites animales y vegetales.

b) Desengrasado por disolventes

Los disolventes actúan por reacciones moleculares las ventajas y desventajas se considerarse principios básicos:

El uso se incrementa la contaminación del disolvente que debe ser regenerado por destilación.

Las piezas metálicas que dan sobre su superficie una película de disolvente y una fracción de grasa disuelta que no se evapora con el disolvente.

c) Desengrasantes en caliente

El desengrase en caliente es el método más general y común de los normalmente utilizados, especialmente en la primera eliminación.

Figura 2-13: Cubas de Desengrase en Caliente **Fuente:** Valencia Alvaro.

d) Desengrasado electrolítico

El baño en ácido sulfúrico diluido, tiene el objeto de evitar transporte de residuos alcalinos a otros baños, y es indispensable su realización para obtener un neutralizado perfecto.

e) Decapado

El decapado es un tratamiento superficial de metales que se utiliza para eliminar impurezas, tales como manchas, contaminantes inorgánicos o escoria.

➤ Clases de decapado

Decapado mecánico: Consiste únicamente en el chorro centrifugado con granalla de las piezas a tratar.

Decapado químico: Es la eliminación de los óxidos de la superficie del metal base mediante su disolución química o electroquímica.

Figura 2-14: Piezas limpiadas por decapado **Fuente:** euro-inox.org

2.4.10 Fosfatización

2.4.10.1 Historia

Los procesos modernos de fosfatizado empiezan con la necesidad de evitar que las varillas metálicas de los corsets comenzaran a oxidarse destruyendo la tela. Inglés llamado Coslett calentaba esas varillas hasta el rojo vivo, y las introducía rápidamente en ácido fosfórico obteniendo así el primer proceso de fosfatizado. En los últimos veinte años la expansión del mercado de fosfatizantes, vino obligado por varias circunstancias:

- > El desarrollo de pinturas en polvo.
- > Rendimiento y durabilidad de los productos.
- ➤ Uso de metales no ferrosos, (aluminio, zinc, etc.)

a) Definición

Los fosfatizantes son productos químicos derivados del ácido fosfórico que reaccionan con el metal base produciendo una película continua y poco porosa, que impide el desarrollo de la corrosión.

- ➤ Protege transitoriamente la pieza a ser cubierta.
- Aumenta perceptiblemente la adherencia de la pintura a la superficie.

➤ Entrega protección contra la corrosión durante el tiempo de vida del producto.

Figura 2-15: Cubas de Fosfatización Fuente: Valencia Alvaro.

b) Tipos de fosfatizantes

- ➤ Fosfatizantes manuales: Pará usos menores básicamente son desoxidantes y desengrasantes.
- ➤ Fosfatos de hierro o alcalinos o amorfos: Son fosfatos alcalinos con aditivos activos y catalizadores que brindan una capa de fosfato fino e ideal para pintar, y una buena a muy buena resistencia a la corrosión.
- ➤ Fosfatos de zinc o ácidos: Son fosfatos de zinc que pueden incluir refinadores de grano, y otros metales, dan una capa de fina a gruesa de fosfatos cristalinos, con una resistencia a la corrosión de muy buena a excelente.
- ➤ Fosfatos de manganeso: No se usan para pinturas sino como auto lubricantes y retenedores de aceites y jabones.
- Fosfatos orgánicos: Son solubles en solventes, y brindan protección de buena a muy buena.

2.4.11 Equipos de aplicación para pintar con pintura en polvo

Para aplicar las pinturas en polvo es el rociado electrostático, para proporcionar medios más eficientes de aplicar recubrimientos rápidamente.

El proceso está compuesto de 5 partes básicas:

- a) Unidad Alimentadora
- b) Pistolas Electrostáticas
- c) Fuente Electrostática de Voltaje
- d) Unidad de Recuperación de Polvo
- e) Cabina de Rociado

Figura 2-16: Equipos para la aplicación de la pintura en polvo

Fuente: www.fabriequipospinturas.com

Se pueden aumentar otros componentes para mejorar el proceso generalmente conforman la mayoría de los sistemas de aplicación con pistola electrostática.

➤ La unidad alimentadora.

El polvo almacenado en esta unidad usualmente es suministrado por fluidización o por gravedad mediante una bomba que lo lleva a la pistola.

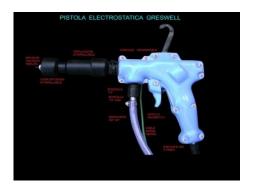


Figura 2-17: Unidad alimentadora **Fuente:** www.maquinaria.cl/pintura.htm

2.4.12 Las pistolas electrostáticas

Las funciones de las pistolas electrostáticas son:

- > Dar forma y dirigir el flujo de la pintura.
- ➤ Controlar el tamaño y forma del abanico de rociado.
- Regular la densidad de la pintura en polvo fluidizada.
- > Impartir carga eléctrica a las partículas de pintura.
- ➤ Controlar el recubrimiento de la pieza que se pinta; según: La posición de la pistola, el abanico de rociado y el nivel de carga electrostática.

Figura 2-18: Pistola electrostática **Fuente:** Pintura en polvo DT13

El espesor del recubrimiento en polvo se puede controlar por:

- La posición dé la pistola.
- ➤ El tiempo rociado.
- > El nivel de carga electrostática.
- ➤ La velocidad del flujo de pintura en polvo de la pistola al objeto.
- La forma del objeto.

2.4.13 Cabinas de aplicación.

La cabina de aplicación de pinturas por rociado electrostático se deben tener en cuenta los siguientes factores:

- ➤ Los elementos y aberturas tengan el tamaño adecuado.
- > Facilitar el acceso a los mecanismos manuales o mecánicos reguladores de la aplicación y garantizar la velocidad del aire en las aberturas.
- ➤ Asegurar la eficiencia del recubrimiento.
- Longitud y altura de la cabina de aplicación
- > Flujo de aire que transporta el exceso hacia la unidad de recuperación de un modo eficiente y seguro.

Figura 2-19: Cabinas de aplicación **Fuente:** www.europintura.com

2.4.14 Salud y medio ambiente

La Pintura en Polvo puede ser calificada de "ecológica" y "natural" en comparación con las diferentes variedades de pintura líquida.

Los cuidados que es necesario tener cuando se manipulan estos compuestos son:

- ➤ Conservar la pintura en su embalaje original esta forma se evita la contaminación de la pintura desde y hacia el ambiente además de impedir el aumento de humedad del polvo.
- > No dejar restos de pintura cerca de fuentes de ventilación.
- ➤ Utilizar máscara adecuada para evitar la inhalación de la pintura durante su aplicación.
- ➤ Utilizar guantes y ropa adecuada.
- Los restos de pintura en polvo deben ser eliminados, estos deben ser incinerados o acondicionados y remitidos como "basura tóxica".

2.4.15 Futuro de la pintura en polvo

La Pintura en polvo normalmente se aplica en películas de 30 a 70 micras.

Hay tecnología disponible para, mantener la buena terminación, bajar a 20-25 micras.

De acuerdo con las características que ofrecen las pinturas en polvo se utilizan en:

a) Industria de muebles metálicos

Muebles para el hogar, oficina, jardín, estanterías, exhibidores, equipos médicos y de laboratorio, gimnasio y otros muebles metálicos.

b) Industria de la construcción

Puertas, ventanas, marcos, cabinas, enchapes, cielos rasos, cajas eléctricas, andamios, chapas, mallas y otros objetos metálicos de la industria de la construcción.

c) Industria de electrodomésticos

Neveras, lavadoras, estufas, congeladores, aires acondicionados, botelleros, enfriadores, exterior de transformadores, y calentadores de agua, cajas y controles eléctricos, lámparas y otros electrodomésticos metálicos.

d) Industria automotriz

Rines, amortiguadores, bumpers, biseles, partes de motos y autopartes en general.

e) Industria de mantenimiento industrial

Tuberías de petroleras, gasoductos y otras.

La Pintura en polvo es una de las mejores alternativas de ahorro y desarrollo de producción en serie.

2.4.16 Control de calidad

La polimerización de estas pinturas es muy importante mantenerse en los rangos

establecidos puesto que una sobre polimerización de las mismas puede traer

resultados como cambio de color, disminución de brillo, manchado y disminución

en las propiedades mecánicas.

En la Inspección Final de Sistema de Pinturas se debe tener en cuenta como mínimo

la evaluación de los siguientes factores:

a) Dureza (Anexo A1)

El objetivo de esta prueba es comprobar la resistencia a la penetración de la

película en polvo curada. El método empleado cumple con la norma INEN y

se utilizan lápices con minas de los siguientes grados de dureza:

Blandos: 6B, 5B, 4B, 3B, 2B, B, HB, F.

Duros: H, 2H, 3H, 4H, 5H, 6H.

El lápiz de mina más dura que no raye la pintura indicará el grado de dureza; por

ejemplo: Si el lápiz H no hiere la aplicación y el 2H la raya.

b) Adherencia (Anexo A2)

Este control sirve para comprobar el grado de adhesión de la pintura al sustrato en

espesores de película hasta 5 mils (125 micrones) y sirve para detectar fallas como:

Deficiente preparación de superficie, sobre horneo, excesivo espesor de capa y

deficiencia en la composición de la pintura.

Para determinar la adherencia se deben tener presentes los siguientes requisitos:

El espesor de capa y condiciones de horneo deben ser los especificados por

el fabricante de recubrimiento en polvo.

La limpieza del sustrato debe ser óptima.

33

Las aplicaciones deben estar libres de defectos como: "Cáscara de naranja", agujeros, descascar amientos u otras irregularidades.

c) Flexibilidad (Anexo A3)

La estimación de esta propiedad permite medir la capacidad que tiene la pintura en polvo para resistir la distorsión en un mandril cilíndrico cónico, simulando un proceso maquinado.

La flexibilidad de las pinturas varía de acuerdo con su composición, preparación de superficie, espesor de capa, condiciones de horneo, y adherencia.

d) Resistencia al impacto (Anexo A4)

Se puede definir como la propiedad que poseen las películas de pinturas en polvo de soportar los impactos sin resquebrajarse. Esta característica es importante para los acabados que, después de aplicados deben someterse a maquinado severo.

e) Resistencia a la llama (Anexo A5)

La evaluación de esta propiedad permite medir el tiempo de exposición directo al calor que tiene la pintura en polvo para su exposición a altas temperaturas como hornos de la línea blanca.

2.4.17 Pintura electrostática

La pintura en polvo es una mezcla homogénea de cargas minerales, pigmentos y resinas en forma sólida, en forma de partículas finas.

La consecuencia es un revestimiento uniforme, de alta calidad, adherido a la superficie, atractivo y durable.

Las ventajas que se tiene un reciclaje del 95% de la pintura que no queda aplicada a la pieza, tienen una resistencia fisicoquímica muy superior frete a impactos, rayones, dobleces y agentes químicos.

2.4.18 Tipos de pintura en polvo

a) La pintura epoxi

La pintura Epoxi está compuesta por resinas epoxidicas, las cuales son utilizadas principalmente con fines funcionales, sacrificando así un poco el acabado. Las ventajas de este tipo de pintura son, elevada resistencia a los impactos, buen rendimiento de aplicación, mejora la adherencia, evitar la oxidación y no es contaminante.

Tabla 2-3. Propiedades mecánicas epoxi.

BRILLO GARDNER A 60°C (ISO 281	3) 15-75
ADHERENCIA: RESISTENCIA AL CUADRICULADO ISO (2409)	100 %
DUREZA KONIG (ISO1522)	90-130 oscilaciones
DUREZA AL LÁPIZ (ABNT NBR 7527)	3Н
FLEXIBILIDAD AL MANDRIL CÒNICO (ISO1519)	Resistente
ENSAYO DE IMPACTO (ASTM 2794)	80-120
RETENIDO SOBRE ALPINE (ASTM E 11-70)	
MALLA 200	0-9 %
MALLA 400	25-75 %
ESPESOR (ISO 2360)	50-60 micrones

Fuente: (Arnum, 2007)

b) La pintura poliéster-tgic

La pintura poliéster-Tgic contienen resinas de poliéster endurecidas. Las ventajas de este tipo de pintura es la alta resistencia a la intemperie, con una alta retención de brillo, mantiene estables los colores y el acabado, tiene alta resistencia a los rayos ultra violetas y a la temperatura. Las desventajas son, reventarse si se tiene una alta carga funcional, como lo pueden ser impactos y dobleces, también tiene menor resistencia a la oxidación y a los agentes químicos.

Tabla 2-4. Propiedades mecánicas poliéster-tgic

BRILLO GARDNER A 60°C (ISO 281	Mínimo 85
ADHERENCIA: RESISTENCIA AL CUADRICULADO ISO (2409)	100 %
DUREZA KONIG (ISO1522)	130 oscilaciones (min)
DUREZA AL LÁPIZ (ABNT NBR 7527)	3Н
FLEXIBILIDAD AL MANDRIL CÒNICO (ISO1519)	Resistente
ENSAYO DE IMPACTO (ASTM 2794)	160 (min)
RETENIDO SOBRE ALPINE (ASTM E 11-70)	
MALLA 200	0-9 %
MALLA 400	25-75 %
ESPESOR (ISO 2360)	50-60 micrones

Fuente: (Arnum, 2007)

c) LA PINTURA EPOXI/POLIÉSTER

La pintura epoxi/poliéster contiene resinas poliéster, las cuales son endurecidas con resina epoxidicas. Las ventajas de este tipo de pinturas es resistencia a los impactos

y la dureza. Las aplicaciones más comunes para este tipo de pinturas son: usos generales en interiores y decoración, usos en exteriores.

Tabla 2-5. Propiedades mecánicas epoxi/poliéster

BRILLO GARDNER A 60°C (ISO 281	Mínimo 85
ADHERENCIA: RESISTENCIA AL CUADRICULADO ISO (2409)	100 %
DUREZA KONIG (ISO1522)	130 oscilaciones (min)
DUREZA AL LÁPIZ (ABNT NBR 7527)	3Н
FLEXIBILIDAD AL MANDRIL CÒNICO (ISO1519)	Resistente
ENSAYO DE IMPACTO (ASTM 2794)	160 (min)
RETENIDO SOBRE ALPINE (ASTM E 11-70)	
MALLA 200	0-9 %
MALLA 400	25-75 %
ESPESOR (ISO 2360)	50-60 micrones

Fuente: (Arnum, 2007)

La constitución y las aplicaciones de los diferentes tipos de pintura, se realiza una tabla comparativa de las tres, teniendo en cuenta los factores y variables más importantes de desempeño, calificándose de 1 a 5, siendo 5 el mejor desempeño y 1 el peor.

Tabla 2-6.Comparación de desempeño tipos de pinturas

VARIABLE	EPOXI	EPOXI/POLIESTER	POLIESTER-
			TGIC
Dureza	5	4	3
Flexibilidad	5	5	5
Resistencia al Exterior	2	3	5
Resistencia a la Corrosión	5	4	4
Resistencia Química	4	5	4
Propiedades Mecánicas	5	3	3
Estabilidad de estacionamiento	5	4	5
Durabilidad	2	3	4

Fuente: (Wiley, &Sons, 2002)

2.4.19 Flexión en vigas

2.4.20. Esfuerzos de flexión en vigas

Una viga se encuentra sometida a flexión pura cuando el momento flector es la única fuerza al interior de la sección. Estas cargas provocan momentos de flexión en la viga, que originan esfuerzos de tensión normales, tracción o compresión.

a) Teoría de flexión pura.

Se dice que una pieza está sometida a "flexión pura" cuando se aplica fuerza en sus extremos dos pares iguales y opuestos.

Las expresiones para las curvaturas en función de los momentos flectores son:

$$K_{y} = \frac{M_{z} I_{y} + M_{y} I_{yz}}{E(I_{y} I_{z} - I_{yz}^{2})}$$

Ecuación 2.8

$$K_z = -\frac{M_y I_z + M_z I_{yz}}{E(I_y I_z - I_{yz}^2)}$$

Ecuación 2.9

Donde:

My = Momento flector en el eje Y. Iy = Inercia en el eje Y.

Mz = Momento flector en el eje Z. Iz = Inercia en el eje Z.


E = Modulo de elasticidad.

Finalmente sustituyendo estas ecuaciones se obtiene:

$$x = \frac{(M_y \ I_z + M_z I_{yz}) Z - (M_z \ I_y + M_y I_{yz}) y}{(I_y I_z - I_{yz}^2)}$$

Ecuación 2.10

Donde Mz1 es el momento flector en la cara (ad), y Mz2 el momento en la cara (bc).

Figura 2-20: Fuerzas y esfuerzo sobre un elemento de la viga de longitud dx **Fuente:**(Timoshenko, S. 1974)

Considerando que:

$$\frac{(M_{z2} - M_{z1})}{dx} = -Vy$$

Ecuación 2.11

Dicho esfuerzo se expresa como:

$$\tau = \frac{Vy}{t(I_y I_z - I_{yz}^2)} [I_{yz} \int_0^s y \, dA - \int_0^s z \, dA]$$

Ecuación 2.12

El cálculo de estos esfuerzos es necesario para hallar el punto de cortante de la sección.

b) Deflexión en vigas

Por la acción de cargas transversales una viga se flexiona, deformándose así su eje longitudinal según una línea curva.

$$k = \frac{1}{\rho} = -\frac{M}{EI}$$

Ecuación 2.13

2.4.21. Columnas

Una columna es una pieza estructural que soporta una carga axial por compresión y tiende a fallar como resultado de inestabilidad elástica o pandeo.

Las propiedades de la sección transversal importantes son:

- > El área de la sección transversal, A.
- ➤ El momento de inercia de la sección transversal (I) respecto al eje alrededor del cual es mínimo dicho valor.

> El valor mínimo del radio de giro de la sección transversal (r).

El radio de giro se calcula a partir de:

$$r = \sqrt{\frac{I}{A}}$$

Ecuación 2.14

La manera en que se apoyan o sustentan ambos extremos de la columna afectan su longitud efectiva, que se define como:

$$Le = KL$$

Ecuación 2.15

Dónde:

L es la longitud real de la columna entre los soportes

K es una constante que depende de la fijación de los extremos.

Columna articulada-articulada	Columna empotrada-articulada	Columna empotrada-empotrada	Columna empotrada-libre
$L_e = L$	$L_e = \theta.699L$	$L_e = \theta.5L$	$L_e = 2L$
K=1	K = 0.699	K = 0.5	K = 2

Figura 2-21: Valores de K para longitud efectiva. **Fuente:** (Mott, R. 1995)

2.4.21 Razón de esbeltez

Es la relación de la longitud efectiva de la columna con su radio de giro mínimo.

Esto es:

razón de esbeltezz =
$$\frac{Le}{r_{min}} = \frac{KL}{r_{min}}$$

Ecuación 2.16

a) Razón de transición de esbeltez

Se presentan dos métodos para el análisis de columnas rectas con cargas en el centro: la fórmula de Euler para columnas largas y la fórmula de J.B. Johnson para columnas cortas. En relación con la razón de transición de delgadez, Cc se define como:

$$Cc = \sqrt{\frac{2\,\pi^2 E}{Sy}}$$

Ecuación 2.17

Donde los valores de E y Sy se refieren al material del que está construida la columna.

Análisis de columna larga Se realiza mediante la utilización de la Fórmula de Euler.

Este método se utiliza si la razón de delgadez es mayor que Cc.

La fórmula de Euler es la siguiente:

$$Pcr = \frac{\pi^2 E A}{\left(\frac{KL}{r}\right)^2}$$

Ecuación 2.18

De ella se obtiene la carga crítica Pcr a la cual la columna empezará a pandearse.

La ecuación también se puede expresar de la siguiente manera:

$$Pcr = \frac{\pi^2 E I}{\left(\frac{KL}{r}\right)^2}$$

Ecuación 2.19

Esta fórmula permite conseguir el tamaño y forma de una sección transversal para que soporte una determinada carga.

El objetivo del análisis y diseño de columnas es verificar que la carga es segura,

Pcr = carga critica que origina pandeo

Pa = carga permisible o tolerable

P = carga real que se aplica

N = factor de diseño

Así:

$$Pa = \frac{Pcr}{N}$$
 Ecuación 2.20

La carga real que se aplica (P) debe ser menor que Pa.

2.4.22 Análisis de columna corta

Se realiza mediante la utilización de la Fórmula de J.B. Johnson.

La fórmula de J.B. Johnson se expresa de la siguiente manera:

$$P_{cr} = AS_y \left[1 - \frac{S_y \left(\frac{KL}{r}\right)^2}{4\pi^2 E} \right]$$

Ecuación 2.21

La carga crítica para una columna corta se ve afectada por la resistencia del material además de su rigidez (E).

2.5 HIPÓTESIS

El estudio de un sistema de polimerización mejorará la calidad de la pintura epoxi poliéster aplicada en los productos de la empresa Ecuamatriz S.A

2.6 SEÑALAMIENTO DE VARIABLES

VARIABLE INDEPENDIENTE

Estudio de un sistema de polimerización

VARIABLE DEPENDIENTE

Calidad de la pintura epoxi poliéster

TÉRMINO DE RELACIÓN

Mejorará

CAPÍTULO III

3. METODOLOGÍA

3.1 ENFOQUE INVESTIGATIVO

El presente proyecto de investigación tiene un enfoque cuanti— cualitativo debido a que a través de la recopilación de datos obtendremos factores que se tomarán en cuenta para el diseño de un Horno de Polimerización.

3.2 MODALIDAD BÁSICA DE LA INVESTIGACIÓN

a) Investigación de Campo

En el presente proyecto se aplicará la investigación de campo, ya que la misma nos ayudará a realizar un estudio en sitio de la realidad existente.

Esta investigación en sitio nos permitirá tener de primera mano todos los datos necesarios, con los que, el investigador podrá manipular con mayor seguridad los mismos y por lo tanto podrá proponer la mejor alternativa de solución al problema existente.

b) Investigación documental-bibliográfica

La investigación bibliográfica nos ayudará a conocer, comparar, profundizar y por lo tanto a deducir diferentes enfoques y teorías sobre los sistemas de polimerización así como los efectos de los mismos al no aplicarlos en el tratamiento de la pintura epoxi poliéster.

c) Intervención social o proyecto factible

El presente proyecto tiene como finalidad ayudar a las empresas de matricería a proveer un mejor tratamiento de la pintura en polvo, beneficiando al acabado y al

secado de los diferentes productos metales mecánicos, obteniendo un mejor brillo, disminuyendo imperfecciones y reduciendo el tiempo curado.

3.3 NIVEL O TIPO DE INVESTIGACIÓN

Los tipos de investigaciones que se van a utilizar para el proyecto son los siguientes.

- a) Exploratoria.- Dado que el personal de control de calidad busca que el producto salga con las especificaciones establecidas por el cliente, por lo que será necesario entrevistar al personal de calidad para que nos ayuden a determinar requerimientos para establecer técnicas de mejoramiento para el acabado.
- **b**) **Descriptivos.-** Se conocerá las ventajas del Sistema de Polimerización, ya que especificaremos características importantes de este sistema.
- c) Explicativa.- Pues a través de esta investigación lograremos fijar causas de los defectos de los productos y la manera en la que se podría corregirlas.

3.4 POBLACIÓN Y MUESTRA

3.4.1 Población

La población está dirigida al área de Calidad de la Empresa Ecuamatríz S.A, para su beneficio y mejoramiento de sus productos.

3.4.2 Muestra

La muestra real involucrada en el problema motivo de estudio se procederá a calcular a través de la ecuación de cálculo de muestra infinita dado por la siguiente expresión:

$$n = \frac{Z^2 x P x Q}{E^2}$$

Ecuación 3.1

Dónde:

n: Probabilidad a Favor (0.15)

P: Probabilidad de ocurrencia, para nuestro caso tomaremos un valor de 0.5

Q: Probabilidad de no ocurrencia, para nuestro caso tomaremos un valor de 0.5

E: Error de muestreo (entre 3% a 5%), para nuestro caso tomaremos el 5%

Z: Nivel de confianza = 0.05 = 1.96

Reemplazando los valores en la formula tendremos:

$$q = 1 - p = 1 - 0.5 = 0.5$$

$$n = \frac{1.96^2 \times 0.5 \times 0.5}{0.05^2}$$

$$n = \frac{0.038416}{0.0025} = 15,366 = 15$$
 mediciones

Se utilizarán 15 mediciones como son: la dureza, la flexibilidad, la resistencia a la llama, adherencia, y la resistencia al impacto.

3.4 OPERACIONALIZACIÓN DE LAS VARIABLES

3.4.1 VARIABLE INDEPENDIENTE

Tabla 3-1. Operacionalización de la variable independiente.- Estudio de un sistema de polimerización.

CONCEPTUALIZACIÓN	CATEGORÍAS O DIMENSIONES	INDICADORES	ÍTEMS	TÉCNICAS INSTRUMENTOS
Sistema de Curado: Hace referencia a las condiciones de polimerización de la pieza pintada con pintura en polvo,	Tiempo	• Tiempo de Calentamiento	¿Qué tiempo es el adecuado para el calentamiento del horno?.	T: Observación de campo. I: Cuaderno de notas.
esto es, temperatura y tiempo. Ambos parámetros son necesarios a la hora de considerar la implementación de un horno.	Energía	Consumo Energético	¿Cuál es el consumo eléctrico del sistema de curado?.	T: Observación de campo. I: Cuaderno de notas.

Fuente: Valencia Alvaro.

3.4.2 VARIABLE DEPENDIENTE

Tabla 3-2. Operacionalización de la variable dependiente.- Calidad de la pintura epoxi poliéster.

CONCEPTUALIZACIÓN	CATEGORÍAS O DIMENSIONES	INDICADORES	ÍTEMS	TÉCNICAS INSTRUMENTOS
Pintura Epoxi Poliéster: Combinación de resinas	Durabilidad.	• Dureza de la pintura.	¿Cuál es la durabilidad de la pintura?. (0-10)	T: Observación de campo. I: Cuaderno de notas.
epoxi con pinturas de poliéster indicadas para piezas de decoración. Tienen muy buena resistencia	Adherencia.	Adherencia de la pintura	¿Cuál es la adherencia de la pintura?.(35<100>65)	T: Observación de campo. I: Cuaderno de notas.
química, buenas propiedades mecánicas, permite diferentes tipos de acabados.	Flexibilidad	Flexibilidad de la pintura.	¿Cuál es la flexibilidad de la pintura?. (0-100)%	T: Observación de campo. I: Cuaderno de notas.

Fuente: Valencia Alvaro.

3.5 PLAN DE RECOLECCIÓN DE LA INFORMACIÓN

Tabla 3-3. Plan de recolección de datos

Técnicas	Instrumentos		
Observación.	 Ficha de Campo Formato de control de Recubrimientos bajo las Normas INEN (Pruebas sección de Anexo) 		
Medición	 Cronómetro Termógrafo (PCE-HT 110) Termómetro Infrarrojo (tipo pistola) (EST-67 IR) Termocupla Tipo J para medir temperatura del aire Termocupla tipo K para medir temperaturas superficiales Medidor de Espesores (Elcometer 456) Medidor de Condiciones Ambientales (Fluke 345) 		

Fuente: Valencia Alvaro.

3.6 PROCESAMIENTO Y ANÁLISIS

3.6.1 Plan de procesamiento de la información

A continuación se hace una descripción de los pasos que se llevaron a cabo para la ejecución y desarrollo de las pruebas de calidad: Los ensayos realizados en laboratorio incluyeron pruebas que involucraron cada uno de los métodos reportados en las normas INEN, las probetas usadas fueron láminas de acero

laminado en frío, las cuales se les realizó un pre tratamiento adecuado para garantizar una buena adherencia de la pintura y evitar la aparición de defectos en el recubrimiento, este pre tratamiento consistió en limpiar la pieza con un desengrasante fosfatizantes; a continuación se efectuó el pintado en la cabina. Es importante asegurase de que la cabina esté totalmente limpia para evitar contaminación de la pintura; después de pintadas las piezas se ubicaron en el horno el cual tenía set point de 180°C, cuando la temperatura del horno se encontraba en 170°C se introdujeron las piezas y se dejaron durante 15 minutos para luego ser retiradas y ubicadas en un sitio ventilado para su enfriamiento.

3.6.2 Plan de análisis de la información

Los resultados presentados aquí permiten hacer énfasis en las situaciones que requieren atención y los análisis dan solución complementando la información presentada en los resultados.

Los defectos presentados en los ensayos que se les realizó en la empresa Ecuamatriz fueron: los bits, contaminación, caja de faraday, ampollamiento y piel de naranja

CAPÍTULO IV

4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS.

4.1 ANÁLISIS DE DATOS OBTENIDOS EN LOS ENSAYOS.

Los resultados presentados aquí permiten hacer énfasis en las situaciones que requieren atención y los análisis dan solución complementando la información presentada en los resultados.

El análisis e interpretación del proceso de secado determinará todas las características de dicho proceso. Dentro de este análisis se encuentra los parámetros de funcionamiento del proceso, y dentro del diagnóstico se encuentra los sistemas o aparatos que funcionan en el horno.

4.1.1. Factores que influyen en la calidad de la pintura epoxi poliéster.

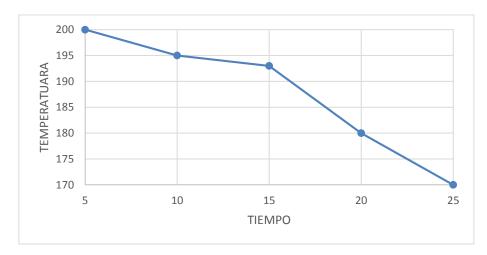
La calidad de la pintura final depende de diversos factores a lo largo del proceso de pintado.

a) Equipo de pintado.

- ➤ Unidad alimentadora: El polvo almacenado en esta unidad usualmente es suministrado por fluidización o por gravedad mediante una bomba que lo lleva a la pistola.
- ➤ Pistola electrostática: Las funciones de las pistolas electrostáticas son:

Dar forma y dirigir el flujo de la pintura.

Controlar el tamaño y forma del abanico de rociado.


Regular la densidad de la pintura en polvo.

Impartir carga eléctrica a las partículas de pintura.

Controlar el recubrimiento de la pieza que se pinta; según: La posición de la pistola, el abanico de rociado y el nivel de carga electrostática.

b) Calidad y Tipo de pintura a utilizar.

La pintura electrostática epoxi poliéster es la más adecuada ya que sus componentes químicos son los apropiados para la aplicación de los productos de la Empresa Ecuamatriz S.A.

Figura 4-1: Curva de curado de la pintura epoxi poliéster. **Fuente:** Valencia Alvaro.

c) Condiciones de aplicación.

Para la aplicación de la pintura epoxi poliéster se debe tener en cuenta los siguientes pasos:

> Conservar la pintura en su embalaje original.

No permitir la acumulación o dejar restos de pintura cerca de fuentes de

ventilación.

Utilizar máscara adecuada para evitar la inhalación de la pintura durante su

> Aplicación

> Utilizar guantes y ropa adecuada.

Disposición de los residuos. (Reciclar)

4.1.2. Tratamientos previos del material que se debe hacer para la aplicación

de la pintura epoxi poliéster.

La selección del tratamiento previo a la aplicación se determina por la cantidad de

los productos, la geometría de las mismas, el tipo de resistencia a corrosión

requerido.

Se determinó las tinas de fosfatización por inmersión con los siguientes pasos.

a) Desengrase

Finalidad: Retirar aceites, grasas de la superficie.

Producto: Sosa cáustica o productos alcalinos.

Concentración: 5 a 6% (V/V)

PH: 12 a 13%

Tiempo: 10 minutos.

Temperatura: 70 a 90° C

54

b) Baño de lavado

Finalidad: Retirar el producto utilizado para el desengrase

Producto: Agua corriente

PH: 10 a11

Tempo: 2 minutos

Temperatura: Ambiental.

c) Baño de decapado

Finalidad: Retirar cualquier inició de corrección provenientes de la chapa formada

por la reacción con el medio ambiente

Producto: Ácido clorhídrico comercial.

Concentración: 1,3 a 1,5 g/l

Concentración del Inhibidor: 0.5 a 1.0 %

Cambio del baño: Cuando la concentración del hierro alcanza 380 g/l

Concertación de fierro admisible: 118 g/l

Temperatura: Ambiente

Tiempo: 2 minutos

d) Fosfatizado

Finalidad: Homogenizar la capa de fosfato.

Producto: sales de oxalato de titanio y carbón de solidó.

Concentración: 1 a 5 g/l

PH: 6 a 8 %

Tiempo: 1 minutos.

Temperatura: Ambiente

e) Baño de fosfato

Finalidad: Depositar capa (cristalina) de fosfato en la superficie para prevención contra la corrosión y aumentar adhesión.

Producto: Fosfato de zinc.

PH: 2,6 a 2,9 %

Acidez libre: 1,4 a 2,6 puntos.

Acidez total: 28 a 34 puntos

Relación entre acidez libre / total: 13 a 20 puntos.

Acelerador: Nitrito de sodio 1.02 g/l

Concentración: 2.0 a 2.8 ml

Peso de capa: 12 a 60 mg/dm2 de KMN04 0.1N

Tiempo: 12 minutos.

Temperatura: Ambiente.

f) Baños de pasiguado (orgánico)

Finalidad: Proteger la capa de fosfato evitado oxidación prematura y cierre de los

poros entre los cristales de fosfato de la arena expulsada.

Producto: Solución de tanino y dispersante.

Concentración: 1 a 2 g/l

Tiempo: 1.5 minutos.

Temperatura: 50 a 60° C

g) Secado

Finalidad: Secar las piezas.

Tiempo: 10 min.

Temperatura: 100 a 120°C

Después del enfriamiento de las piezas debe haber cuidado en manejarlas con guantes y pintarlas enseguida a un plazo máximo de 2 horas.

Tabla 4-1. Proceso de Limpieza.

Proceso	Tiempo
Desengrasado	10 min
Baño de lavado	2 min
Baño de capado	2 min
Fosfatizado	1 min
Baño de fosfato	12 min
Baño de pasiguado	1.5 min
Secado	10 min

Fuente: Valencia Alvaro.

4.1.3 Ensayo de polimerización en el horno estático con quemadores a gas

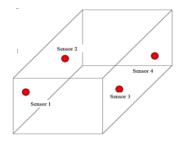
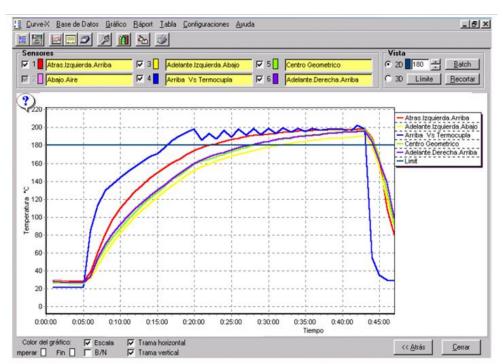

La mayor temperatura alcanzada en el horno estático es la registrada por el sensor No.3 ubicado en la parte adelante del horno (214°C) y la menor temperatura es la registrada por el sensor N° 4 ubicado en la parte de atrás del horno (182°C), se encontró una diferencia de 32°C lo que permitió concluir que el horno no es homogéneo entre zonas generando un sobre curado en las piezas.

Tabla 4-2. Características del horno estático con quemadores a gas

	Horno Estático con
Características	Quemadores a Gas
Dimensiones(H x L x A)(mm)	2591x4935x3912
Ancho Máximo Pieza (mm)	1100
Alto Máximo Pieza (mm)	2450
Temperatura Máximo(°C)	320
Sistema de Apagado	Manual
Sistema de Encendido	Manual
Control de Temperatura	Análogo
Tipo de Alarma	Luz, Sonido
Potencia (Kw)	350
Consumo de Gas (kw/h)	352
Consumo de Energía (kw/h)	7,64
Tiempo de Curado (min)	4,5
Piezas x Minuto	0,7


Fuente: Valencia Alvaro.

Los sensores N° 1 y 3 alcanzan 200°C durante 10,29 y 21,03 minutos respectivamente, los sensores N° 1 ,3 y 4 alcanzan 180°C durante 31, 32,5 y 13,2 minutos respectivamente todas las zonas censadas alcanzan los 160 °C durante 15 minutos, las piezas ubicadas en la parte adelante del horno pueden quedar sobre horneadas ya que las mayores temperaturas se presentan allí, esto puede ocasionar fallas en las propiedades mecánicas tales como impacto, adherencia y dureza.

Figura 4-2: Sensores de temperatura. **Fuente:** Valencia Alvaro.

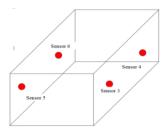
En la figura 4-3 se representan las curvas de curado en el horno estático con quemadores a gas, obteniendo datos de tiempo (min) vs temperatura (°C) graficado con el software Curve-X3

Figura 4-3: Curvas de curado de la pintura epoxi poliéster, horno estático con quemadores a gas.

Fuente: Valencia Alvaro.

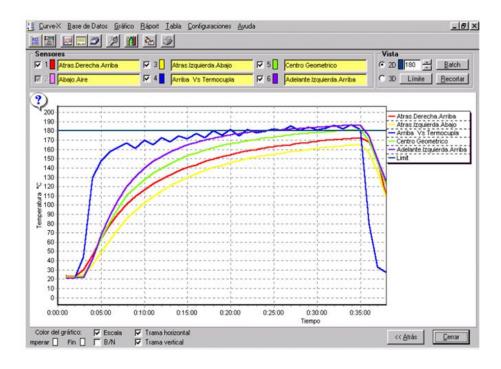
4.1.4 Ensayo de curado en horno eléctrico bache

La mayor temperatura alcanzada en el horno es la registrada por el sensor No.6 ubicado en la parte adelante del horno (185°C) y la menor temperatura es la registrada por los sensores Nº 5 y 3 ubicados en el centro y parte de atrás del horno (170°C), se encontró una diferencia de 10°C, lo que representa un mínimo desfase de temperatura dentro del horno.


Tabla 4-3. Características del horno eléctrico bache.

Características	Horno Eléctrico Bache
Dimensiones(H x L x A)(mm)	2591x4952x3150
Ancho Máximo Pieza (mm)	950
Alto Máximo Pieza (mm)	2450
Temperatura Máximo(°C)	260
Sistema de Apagado	Manual
Sistema de Encendido	Manual
Control de Temperatura	Análogo
Tipo de Alarma	Luz, Sonido
Potencia (Kw)	157,64
Consumo de Gas (kw/h)	N.A
Consumo de Energía (kw/h)	157,64
Tiempo de Curado (min)	6
Piezas x Minuto	0,4

Fuente: Valencia Alvaro.


Ninguno de los sensores alcanzan temperatura de 200 °C, los sensores N° 4 y 6 alcanzan 180°C durante 15,12 y 7,02 minutos respectivamente todas las zonas censadas alcanzan los 178 °C durante 15 minutos, las piezas ubicadas en la parte de

atrás del horno pueden presentar falta de curado ya que las menores temperaturas se presentan allí, esto puede ocasionar fallas en textura, color y brillo de la película de recubrimiento.

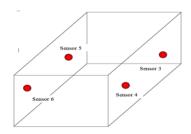
Figura 4-4: Sensores de temperatura. **Fuente:** Valencia Alvaro

En la figura 4-5 se representan las curvas de curado en el horno eléctrico bache, obteniendo datos de tiempo (min) vs temperatura (°C) graficado con el software Curve-X3

Figura 4-5: Curvas de curado de la pintura epoxi poliéster, horno eléctrico bache. **Fuente:** Valencia Alvaro.

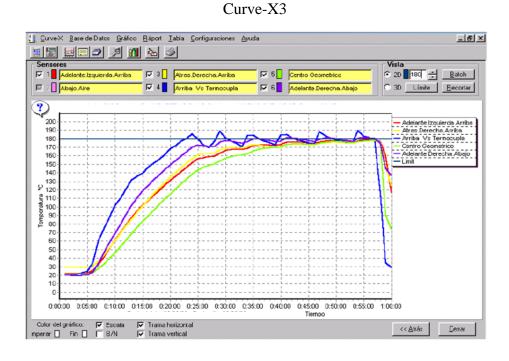
4.1.5 Ensayo de curado en horno infrarrojo de paneles catalíticos

La mayor temperatura alcanzada en el horno es la registrada por el sensor No.6 ubicado en la parte adelante del horno (190°C) y la menor temperatura es la registrada por los sensores Nº 5 y 3 ubicados en el centro y parte atrás del horno (165°C), se encontró una diferencia de 25°C, lo que representa un desfase considerable de temperatura dentro del horno.


Tabla 4-4. Características del horno infrarrojo de paneles catalíticos.

Características	Horno Infrarrojo
Dimensiones(H x L x A)(mm)	2260x5900x3210
Ancho Máximo Pieza (mm)	1322
Alto Máximo Pieza (mm)	2610
Temperatura Máximo(°C)	400
Sistema de Apagado	Automático/Manual
Sistema de Encendido	Automático/Manual
Control de Temperatura	Digital
Tipo de Alarma	Luz, Sonido
Potencia (Kw)	185
Consumo de Gas (kw/h)	180
Consumo de Energía (kw/h)	5
Tiempo de Curado (min)	6
Piezas x Minuto	2,5

Fuente: Valencia Alvaro.


Ninguno de los sensores alcanzan temperatura de 200°C, los sensores N° 4 y 6 alcanzan 190 °C durante 15,12 y 7,02 minutos respectivamente todas las zonas censadas alcanzan los 170 °C durante 15 minutos, las piezas ubicadas en la parte atrás del horno pueden presentar falta de curado ya que las menores temperaturas

se presentan allí, esto puede ocasionar fallas en textura, color y brillo de la película de recubrimiento.

Figura 4-6: Sensores de temperatura. **Fuente:** Valencia Alvaro

En la figura 4-7se representan las curvas de curado en el horno eléctrico bache, obteniendo datos de tiempo (min) vs temperatura (°C) graficado con el software

Figura 4-7: Curvas de curado de la pintura epoxi poliéster, horno infrarrojo de paneles catalíticos.

Fuente: Valencia Alvaro.

4.2 RESULTADOS DE LOS ENSAYOS OBTENIDOS

4.2.1 Ensayos de Calidad en la Pintura Epoxi Poliéster.

Las partículas de polvo, grasa u óxidos sobre la superficie del metal a revestir como una pintura en polvo, puede producir fallos importantes en adherencia y de resistencia a la corrosión, por lo que es obligado el desengrase y desoxidado de las piezas antes de ser pintadas. Así mismo si se recubren las piezas de una película de protección tras el desengrase considerablemente la resistencia a la corrosión, manteniendo una buena adherencia, optimizando esta cuando se exponen las superficies pintadas a condiciones ambientales.

4.2.2 Pinturas y productos afines. Determinación de la dureza de película método del lápiz. "INEN 1001"

4.2.2.1 Objeto

Esta norma establece el método de ensayo para determinar la dureza de películas, igualmente la resistencia de la película a la ruptura y al rasgado combinado con la adherencia de la película al substrato.

4.2.2.3 Métodos de ensayo

a) Resumen.

El lápiz o mina de lápices se pasa por la superficie hasta cuando uno de estos rompa la película de pintura

b) Aparatos

Un juego de lápices de dibujo o minas de lápices con dureza de 7 B hasta B, HB, F y H son considerados estándar.

4.2.2.4 Preparación de la muestra

Se prepara un panel de vidrio o una lámina de acero laminada en frío, cuyas dimensiones son 190 x 115 x 0,8 mm, previamente limpiado con un disolvente apropiado. El espesor de película seca debe ser de 25,4 mm.

Figura 4-8: Implementos para el ensayo de dureza **Fuente:** Valencia Alvaro.

4.2.2.5 Procedimiento

- Tajar los lápices removiendo la madera de la mina desnuda, de modo que se extienda 6 mm fuera de la madera. Debe tenerse cuidado de no raspar el borde de la mina. Lijar Luego el extremo de la mina perpendicularmente a su eje hasta que esté plano, liso y de sección circular.
- El lápiz se sostiene firmemente a un ángulo de 45° y se empuja sobre la película en dirección contraria del probador. Mientras el Lápiz es empujado sobre la película de pintura, debe aplicarse suficiente presión hacia abajo para cortar la película hasta el substrato o hasta aplastar el borde agudo del lápiz. La estría debe tener un mínimo de 6 mm de largo. El proceso se repite usando sucesivamente lápices de diferente dureza, hasta encontrar el lápiz más duro que no produzca estría en la película. La dureza de este lápiz expresa la dureza de la película. Al efectuar la prueba, si el borde agudo de la mina se repone o se

aplasta, deberá afilarse nuevamente.

Figura 4-9: Ejecución del ensayo de dureza **Fuente:** Valencia Alvaro.

4.2.3 Pinturas y productos afines. Determinación de la flexibilidad mediante mandriles cónicos. "INEN 1002"

4.2.3.1 Objeto

Esta norma establece el método para determinar la flexibilidad y elasticidad de una película de pintura seca aplicada sobre un panel de ensayo que se somete a doblado sobre mandriles cónicos. El ensayo de flexibilidad de pinturas sobre mandril se practica según dos métodos.

- a) Doblado alrededor de mandriles cilíndricos de distintos diámetros.
- b) Doblado alrededor de mandril cónico con radio de curva progresivo.

4.2.3.2 Método de ensayo

a) Resumen.

Preparar un panel con la pintura que debe ensayarse. Colocar en el aparato de mandriles cónicos y proceder a doblarlos.

b) Equipos.

Mandril cónico con radio de curvatura progresivo. Consiste en un cono truncado, rectificado y de acero. Tiene 203 mm de longitud con un diámetro de 3 mm en un extremo y 38 mm de diámetro en el otro. Está sujeto con un soporte montado sobre una placa de base maciza de acero. Esta placa tiene cuatro agujeros para atornillar el aparato a la mesa de trabajo. A un costado del mandril paralelo a la generatriz del cono se encuentra el dispositivo de sujeción de las chapas de ensayo que se compone de una placa con tuercas de mariposa y un tope.

El arco doblador, con palanca de mano y presa paneles, está sujeto en el eje del cono.

Se utilizan láminas de acero cuyas dimensiones son de aproximadamente 190 mm x 115 mm x 0,8 mm o 290 mm x 115 mm x 0,8 mm. El espesor de la película seca en una de las caras del panel puede ser de 25,4 μ m o a convenirse entre las partes.

Figura. 4-10: Implementos para el ensayo de flexibilidad **Fuente:** Valencia Alvaro.

4.2.3.3 Procedimiento

- La determinación debe realizarse por duplicado
- El recubrimiento aplicado sobre el panel debe tener un espesor uniforme y estar curado.

- Colocar el rodillo del aparato de modo que el mango del mismo se ubique frente al operador en una posición horizontal.
- Colocar el panel con la superficie pintada hacia afuera en el canal del aparato, insertar un papel entre la superficie pintada y el rodillo del aparato.
- Ajustar el panel mediante las tuercas tipo mariposa de modo que el borde del panel esté alineado con el extremo más delgado del mandril cónico.
- Levantar el mango del rodillo a una velocidad uniforme, girar 180° a fin de doblar el panel aproximadamente 135°, en un tiempo de 15 segundos.
- Examinar la superficie doblada del panel a simple vista y observar si se encuentran rajaduras en la superficie recubierta.
- Determinar y señalar, la rajadura más alejada del extremo pequeño del mandril, indicando la distancia en centímetros a dicho extremo. Esta distancia es usada para calcular la flexibilidad.
- Para retirar el panel, retornar el mango del rodillo a su posición inicial, aflojar las tuercas y levantar el panel del mandril cónico.

Figura 4-11: Ejecución del ensayo de flexibilidad **Fuente:** Valencia Alvaro.

4.2.4 Pinturas y productos afines. Determinación del impacto directo e inverso. "INEN 1005"

4.2.4.1 Objeto

Esta norma establece el método de ensayo para determinar los efectos de la prueba del impacto directo e inverso en pinturas y productos afines.

4.2.4.2 Alcance

- a) Impacto directo o cóncavo. Este método nos permite determinar cuando se efectúa directamente sobre la superficie del panel que tiene la película de pintura seca, la resistencia al impacto y la fuerza de adhesión de dicha película.
- **b) Impacto inverso o convexo**. Si la prueba se efectúa del lado del panel que no tiene la película de pintura, determinará por este método la elasticidad o habilidad de elongación de la película alrededor de la protuberancia hacha por el instrumento bajo las condiciones del impacto.

4.2.4.3 Métodos de ensayo

Equipo para prueba de impacto.

- Un tubo cilíndrico hueco que tiene una escala en centímetros, que va de 0 a 203,2 cm. El tubo cilíndrico que contiene un peso muerto de 1,816 kg puede dejarse caer a la altura deseada, de acuerdo a la escala especificada anteriormente.
- Panel. Se utiliza un panel laminado en frío, un milímetro de espesor (1 mm) y un espesor de película de pintura seca de 25,4 a 38,1 mm.
- Soportes circulares.Los soportes circulares pueden ser de varios diámetros; para la prueba se puede escoger de acuerdo al tamaño de la abertura deseado.

4.2.4.4 Procedimiento

Para efectuar la prueba de impacto directo, colocar el panel perpendicular al tubo cilíndrico que contiene el peso muerto. Levantar este peso hasta la altura deseada y dejar caer libremente. Para la prueba de impacto inverso, seguir el mismo procedimiento. Hacer varias pruebas y reportar los resultados.

Figura 4-12: Ejecución de ensayo de impacto **Fuente:** Valencia Alvaro.

4.2.4.5 Cálculos

Para calcular la fuerza del impacto, se emplea la siguiente ecuación:

I = M x d

Ecuación 4.1

Donde:

I = impacto en kg. cm.

M = peso muerto, en kilogramos.

d = altura en centímetros.

M = 2 kg

d = 100cm

I = 200 kg.cm

4.2.5 Pinturas y productos afines. Determinación de adherencia mediante prueba de la cinta. "INEN 1006"

4.2.5.1 Objeto

Esta norma establece los métodos para determinar la adherencia de películas de recubrimientos de pinturas y productos afines aplicados sobre paneles metálicos o superficies recomendadas, mediante la aplicación y remoción de una cinta sensible a la presión, sobre cortes realizados en la película.

4.2.5.2 Métodos de ensayo

a) Método de la cuadrícula

Equipos

- Aparato de corte con cuchilla de dientes múltiples para corte cruzado (con 6 u 11 dientes).
- Cinta adhesiva de 25,4 mm de ancho semi transparente sensible.
- Borrador de caucho colocado en el extremo de un lápiz
- Una fuente de luz útil para determinar si los cortes han sido hechos a través de la película seca hasta el panel.
- Cepillo de cerdas plásticas
- Panel metálico o superficie recomendada de acuerdo al tipo de pintura.

Figura 4-13: Implementos para el ensayo de adherencia **Fuente:** Valencia Alvaro.

4.2.5.3 Procedimiento


- Seleccionar un área libre de manchas e imperfecciones.
- Asegurar que la superficie esté limpia y seca (valores extremos de temperatura y humedad relativa pueden afectar la adherencia de la cinta)
- Colocar el panel sobre una base firme y hacer cortes cruzados usando el aparato de corte con cuchilla de dientes múltiples.
- Para recubrimientos que tengan hasta 50 micrómetros de espesor de película seca, usar la cuchilla que tenga 11 dientes y 1 mm de separación entre dientes y realizar el corte
- Para recubrimientos que tengan un espesor de película seca entre 50 micrómetros y 125 micrómetros, usar una cuchilla que tenga 6 dientes y 2 mm de separación entre dientes y realizar el corte

Figura 4-14: Cortes en la platina Fuente: Valencia Alvaro.

- Hacer los cortes en el recubrimiento con un movimiento firme y presión suficiente para que el borde cortante alcance el panel.
- Revisar los bordes cortantes de las cuchillas y si es necesario limpiarlos, hacer entonces los cortes adicionales a 90° y centrados en los cortes anteriores.
- Proceder a limpiar con el cepillo el área de los cortes para remover cualquier residuo de recubrimiento levantado. Si el metal no ha sido alcanzado, hacer otro corte igual en otra área hasta alcanzar el metal.
- Cortar un pedazo de cinta de adherencia de aproximadamente 75 mm de largo.
- Colocar el centro de la cinta sobre la rejilla formada por el corte y sus alrededores, dejando un extremo libre, después alisarla con el dedo. Luego frotar firmemente con el borrador del extremo de un lápiz para lograr un buen contacto.

• Esperar de 60 a 120 segundos después de la aplicación y retirar la cinta de la superficie halando rápidamente del extremo libre formando un ángulo de aproximadamente 180°.

Figura 4-15: Desprendimiento de la cinta **Fuente:** Valencia Alvaro.

• Inspeccionar el área de la rejilla para comprobar si hay remoción del recubrimiento del panel, comparar la cuadrícula resultante con las que se indican en la tabla 4-5, seleccionar la más parecida y calificar el porcentaje de adherencia entre los valores menores de 35 y 100 %.

Tabla 4-5. Clasificación de los resultados del ensayo de adherencia.

Clasificación	Superficie de corte cruzado en la cual ha ocurrido desprendimiento (seis cortes paralelos) Adherencia	% Adherencia	% Desprendimiento	Criterio
				Ningún
5	Ninguno	100	0	desprendimiento

				El desprendimiento es
				en los ángulos de los
4		95-100	0-5	cuadrados.
				El desprendimiento es
				a lo largo de los bordes
				y en las intersecciones
3		85-95	5-15	de los cortes.
				El desprendimiento es
				a lo largo de los bordes
				y parte del área de los
2		65-85	15-35	cuadrados
				El desprendimiento es
				a lo largo de los bordes
1		35-65	35-65	y en todo el cuadrado.
				El desprendimiento es
				mayor que en el grado
0	Mayor de 65%	< 35	> 65	1.

Fuente: Norma INEN "1006"

4.2.6 Pinturas y productos afines. Determinación de la resistencia a la llama (método comparativo). "INEN 1008"

4.2.6.1 Objeto

Esta norma establece el método para determinar la resistencia a la llama de las pinturas.

4.2.6.2 Aparatos

Paneles de acero dulce doble desapado, de forma cuadrada, de 200 mm de lado y de $0.86 \ \mathrm{mm}$ de espesor.

a) Mecheros

Figura 4-16: Mechero **Fuente:** http://es.wikipedia.org/wiki/Archivo:Bunsen_burner.jpg

4.2.6.3 Métodos de ensayo

- Sobre los paneles de las características puntualizadas en 2.1 se aplica a pincel una mano de la pintura en examen y una de la muestra tipo (ver nota 1); en cada uno de los paneles se deja secar 24 h, posteriormente se aplica una segunda mano en cada uno y se deja secar 72 h.
- Cada uno de dichos paneles se disponen sobre un trípode común de laboratorio en la forma indicada en la figura 1 de la Norma INEN 1008 y se calienta durante un minuto con el mechero (a), con la abertura incolora de las característica establecidas en la figura 4-16.
- Al cumplir el minuto se inicia el calentamiento con el mechero b, de acuerdo con lo indicado en la figura 1 de la Norma INEN 1008, manteniendo esas condiciones durante un minuto.
- Durante dicho lapso se observa si de la película de la pintura en examen se desprenden vapores inflamables y si entra en combustión. Una vez frío se observa la película de pintura de los paneles comparativamente.

Figura 4-17: Ejecución del ensayo de resistencia a la llama **Fuente:** Valencia Alvaro.

Al realizar las diversas pruebas de calidad en probetas de laminado en frio bajo las Normas INEN de pintura se detallan a continuación en los registros, en el siguiente orden:

- a) Horno a gas.
- b) Horno eléctrico bache.
- c) Horno infrarrojo.

ENSAYO N°-1

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECANÍCA INGENIERÍA MECANÍCA

Hoja N°- 1

PLACAS: 1, 2, 3, 4, 5.

PRODUCTO DE ENSAYO : PROBETA LAMINADO EN FRIO DE 190 x 115 x 0,8 mm **APLICADA CON PINTURA EPOXI POLIESTER PLATINIUM**

SOLICITADO POR: TESIS DE GRADO REVISADO:ING.GONZALO LÓPEZ REALIZADO: HORNO A GAS

ENSAYADO POR: VALENCIA MEDINA ALVARO RICARDO

Fecha de inicio: 29/12/2014 Fecha de terminación: 30/12/2014

EQUIPO: 1°- Kit de Adherencia

4°- Tubo Cilíndrico

7°- Mechero

2°- Mandril Cónico 3°- Medidor de Espesores 5°- Peso Muerto 1,816 Kg 6°- Juego de Lápices

TIPO DE ENSAYO	CARGA NORMAL	RESULTADOS	OBSERVACIONES
ADHERENCIA	96 % Cuadricula	PASA LA NORMA (Norma INEN1006)	La adherencia del sustrato es perfecta
DUREZA	2Н	NO PASA LA NORMA (Norma INEN1001)	La probeta presenta rayaduras
FLEXIBILIDAD	45%	PASA LA NORMA (Norma INEN1002)	No existe rajadura de la pintura la flexibilidad es del 97%
IMPACTO	d=0 M=1.816 Kg	PASA LA NORMA (Norma INEN1005)	No existe desprendimiento de la pintura
RESISTENCIA A LA LLAMA	1 min	NO PASA LA NORMA (Norma INEN1008)	La pintura se evapora a los 20 seg

CONCLUSIONES: La probeta presento rayaduras en la prueba de dureza Se determinó que la pintura presento ampollamiento a la prueba de llama. **ENSAYO** N°-2

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECANÍCA INGENIERÍA MECANÍCA

Hoja N°- 2

PLACAS: 6, 7, 8, 9, 10.

PRODUCTO DE ENSAYO : PROBETA LAMINADO EN FRIO DE 190 x 115 x 0,8 mm APLICADA CON PINTURA EPOXI POLIESTER PLATINIUM

SOLICITADO POR: TESIS DE GRADO REVISADO: ING.GONZALO LÓPEZ

REALIZADO: HORNO ELÉCTRICO BACHE

ENSAYADO POR: VALENCIA MEDINA ALVARO RICARDO

Fecha de inicio: 27/01/2014 Fecha de terminación: 29/01/2014

EQUIPO: 1°- Kit de Adherencia 4°- Tubo Cilíndrico

5°- Peso Muerto 1,816 Kg

7°- Mechero

2°- Mandril Cónico 3°- Medidor de Espesores 6°- Juego de Lápices

TIPO DE ENSAYO	CARGA NORMAL	RESULTADOS	OBSERVACIONES
ADHERENCIA	98 % Cuadricula	PASA LA NORMA (Norma INEN1006)	La adherencia del sustrato es perfecta
DUREZA	2Н	PASA LA NORMA (Norma INEN1001)	La probeta no presenta rayaduras
FLEXIBILIDAD	35 %	PASA LA NORMA (Norma INEN1002)	No existe rajadura de la pintura la flexibilidad es del 98%
IMPACTO	d=0 M=1.816 Kg	PASA LA NORMA (Norma INEN1005)	No existe desprendimiento de la pintura
RESISTENCIA A LA LLAMA	1 min	PASA LA NORMA (Norma INEN1008)	La pintura se evapora a los 1min 33 seg

CONCLUSIONES: La probeta no presento fallas con lo cual se determina la selección del horno.

ENSAYO N°-3

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECANÍCA INGENIERÍA MECANÍCA

Hoja N°-3

PLACAS: 11, 12, 13, 14, 15.

PRODUCTO DE ENSAYO : PROBETA LAMINADO EN FRIO DE 190 x 115 x 0,8 mm **APLICADA CON PINTURA EPOXI POLIESTER PLATINIUM**

SOLICITADO POR: TESIS DE GRADO REVISADO: ING.GONZALO LÓPEZ REALIZADO: HORNO INFRARROJO

ENSAYADO POR: VALENCIA MEDINA ALVARO RICARDO

Fecha de inicio: 39/01/2014 Fecha de terminación: 03/02/2014

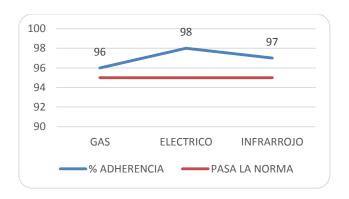
EQUIPO:1°- Kit de Adherencia

4°- Tubo Cilíndrico

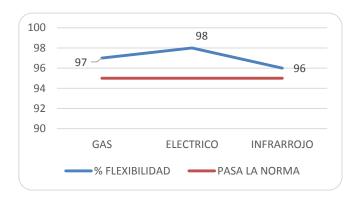
7°- Mechero

2°- Mandril Cónico

5°- Peso Muerto 1,816 Kg


3°- Medidor de Espesores

6°- Juego de Lápices


TIPO DE ENSAYO	CARGA NORMAL	RESULTADOS	OBSERVACIONES
ADHERENCIA	97 % Cuadricula	PASA LA NORMA (Norma INEN1006)	La adherencia del sustrato es perfecta
DUREZA	2Н	PASA LA NORMA (Norma INEN1001)	La probeta no presenta rayaduras
FLEXIBILIDAD	36 %	PASA LA NORMA (Norma INEN1002)	No existe rajadura de la pintura la flexibilidad es del 96%
IMPACTO	d=0 M=1.816 Kg	PASA LA NORMA (Norma INEN1005)	No existe desprendimiento de la pintura
RESISTENCIA A LA LLAMA	1 min	NO PASA LA NORMA (Norma INEN1008)	La pintura se evapora a los 25 seg

CONCLUSIONES: La probeta presento fallas al someterla a la prueba de resistencia a la llama la cual no supero el minuto que se expone la pintura a esta prueba.

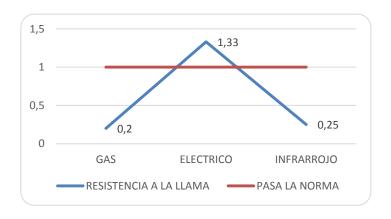

4.2.7 Resultados de las pruebas realizadas.

Figura 4-18: Prueba de adherencia. **Fuente:** Valencia Alvaro.

Figura 4-19: Prueba de adherencia. **Fuente:** Valencia Alvaro.

Figura 4-20: Prueba de resistencia a la llama. **Fuente:** Valencia Alvaro.

4.3 INTERPRETACIÓN DE RESULTADOS

Para la mejor selección del horno se debe considerara los parámetros establecidos para la pintura epoxi poliéster, el mejor rendimiento, costo, temperaturas, tiempo.

Tabla 4-6. Comparación de los hornos industriales

7. 670 776	TIPO DE HORNO			
FACTORES	GAS	ELÉCTRICO	INFRARROJO	
Tamaño	3	5	5	
Inversión Inicial	4	4	5	
Volumen de producción	3	4	3	
Transporte Interno	4	4	3	
Mantenimiento	3	3	4	
Disponibilidad de Trabajo	4	5	3	
Consumo de energía	3	4	3	
TOTAL	24	29	26	

Fuente: Valencia Alvaro.

Indicadores

- 5 Muy buena
- 4 Buena
- 3 Regular
- 2 Mala
- 1 Muy mala

Tabla 4-7. Comparación costos de hornos industriales

	COSTOS DE CONSTRUCCION HORNO			
FACTORES	GAS	ELÉCTRICO	INFRARROJO	
Construcción	5	4	4	
Circulación interna de aire	3	5	3	
Acceso a los equipos	5	5	5	
TOTAL	13	14	12	

Fuente: Valencia Alvaro.

Indicadores

- 5 Muy buena
- 4 Buena
- 3 Regular
- 2 Mala
- 1 Muy mala

4.3 VERIFICACIÓN DE HIPÓTESIS.

Los parámetros de diseño utilizados en el Horno para la polimerización de los productos es la causa de los problemas de funcionamiento que actualmente presenta en la empresa Ecuamatriz S.A de la ciudad de Ambato

De lo revisado en este capítulo, al realizar las diversas pruebas de calidad en probetas de laminado en frio bajo las Normas INEN de pintura se estableció que la mejor opción en la selección del Horno Eléctrico.

Basado en la tabla 4-6 y 4-7, se llega a la conclusión que la configuración para el horno que satisface los factores de diseño es el de la segunda propuesta, el horno eléctrico debido a que la ubicación de los equipos es la que proporciona el diseño más compacto y simple.

CAPÍTULO V

5. CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

- ➤ Mediante la investigación se determinó que los equipos deben estar en óptimas condiciones para la aplicación de la pintura epoxi poliéster, ya que esto conlleva a la uniformidad de la aplicación de la pintura.
- ➤ Se determinó que el tiempo en el tratamiento previo del material debe ser sincronizado ya que si estos permanecen sumergidos puede perder sus propiedades.
- ➤ El tratamiento de fosfatización nos permite obtener una capa superficial que permite una mejor adherencia de la pintura epoxi poliéster en los materiales.
- ➤ Mediante la investigación la temperatura máxima obtenida en los ensayos con los diferentes hornos, se obtuvo en el horno a gas con una temperatura de 200°C con un tiempo de 10,29 y 21,03 minutos.
- ➤ Mediante la investigación la temperatura que necesita la pintura epoxi poliéster para su polimerización se da en el horno eléctrico alcanzando una temperatura de 180°C durante 15,12 y 7,02 minutos.
- ➤ Las pruebas de calidad mediante las normas INEN se determinaron que la polimerización en el horno eléctrico da un 98 % de adherencia con respectó a los diferentes hornos.

- ➤ Las pruebas de calidad mediante las normas INEN se determinaron que la polimerización en el horno eléctrico da un 98 % de flexibilidad con respectó a los diferentes hornos.
- Las pruebas de calidad mediante las normas INEN se determinaron que la polimerización en el horno eléctrico da un tiempo de 1.33 min de resistencia a la llama con respectó a los diferentes hornos.
- Las pruebas de calidad mediante las normas INEN de dureza, impacto no presento fallas en ninguno de los hornos.

5.3 RECOMENDACIONES

- ➤ Para un buen proceso de aplicación de la pintura es preciso, realizar un tratamiento previo de la pieza adecuado, calibrar las condiciones en el equipo de aplicación, limpiar totalmente la cabina de aplicación cuando se cambia de color y usar la temperatura y tiempo de curado necesario para el polimerizado del recubrimiento.
- ➤ Tener un control de calidad de la pintura más riguroso para lograr que el rendimiento de esta sea 100% eficiente y evitar que se aprecien defectos en la película del recubrimiento.
- ➤ Es muy importante que la superficie a pintar llegue rápidamente a la temperatura especificada. El polvo aplicado sufre cambios, una vez que se los somete al calor.
- ➤ El tiempo de horneo es fijo para cada carga o para cada velocidad y la temperatura que alcanza cada pieza depende de la masa de metal. Para que

las condiciones sean uniformes se recomienda armar cada carga con piezas de masa semejante caso contrario las piezas de menor masa corren riesgo de amarilleo en los colores claros porque sufren sobre horneo.

- ➤ La pintura en polvo se aplica para proteger la pieza pintada. En el diseño e instalación de la pieza se recomienda tener en cuenta algunas consideraciones. Los distintos materiales se pintan por separado y luego se ensamblan.
- ➤ El contacto del aluminio con cobre, plomo o acero debe ser evitado porque los pares galvánicos generan corrosión.
- Así mismo ciertos tipos de madera en contacto con aluminio no son recomendables. En el caso de maderas tratadas hay que controlar que no tengan sales de cobre, de plata o fluoruros.
- ➤ El aluminio en contacto con materiales de construcción alcalinos sufre un manchado en la superficie que promueve la corrosión.

CAPÍTULO VI

6 PROPUESTA

DISEÑO DE UN HORNO ELÉCTRICO PARA LA POLIMERIZACIÓN DE LA PINTURA EPOXÍ POLIÉSTER APLICADA EN LOS PRODUCTOS DE LA EMPRESA ECUAMATRIZ S.A DE LA CIUDAD DE AMBATO.

6.1 DATOS INFORMATIVOS

Los datos para el diseño del horno son los siguientes:

- > El espacio de planta disponible
- Dimensiones del horno (1500 x 2000 x 10000)mm
- > Dimensiones y peso de las piezas a pintar
- > Transporte de las piezas
- > Altura interior del horno
- > Suministro de calor

6.2 ANTECEDENTES DE LA PROPUESTA

Ecuamatriz Cía. Ltda. es una empresa dedicada al diseño, fabricación, producción, de todo lo que es en el área de matricería su ubicación es en el Parque Industrial Ambato II etapa calle IV y la F.

Ecuamatriz Cía. Ltda. ha alcanzado un desarrollo industrial y tecnológico que le permite obtener un prestigio importante en el Ecuador, en todo lo referente a matricería, herramientas de la construcción, auto partes, línea eléctrica y servicios de troquelado.

6.3 JUSTIFICACIÓN

Es importante que el horno utilizado en la polimerización de los productos de la empresa sea capaz de funcionar eficazmente con su propósito tomando en cuenta las dimensiones de los productos que fábrica la empresa.

Con los datos obtenidos en el capítulo cuatro se llega a comprobar la necesidad de implementar un sistema de polimerización, siendo el más adecuado para los requerimientos de la empresa horno eléctrico ya que su capacidad y eficiencia la hacen la más propicia en la empresa.

La implementación del horno eléctrico se justifica porque con ella se conseguirá reducir los costos y tiempos de producción, y la empresa no tendrá que pagar horas extras a los trabajadores para culminar la producción.

6.4 OBJETIVOS

6.4.1 Objetivo general

Diseño de un horno eléctrico para mejorar la calidad de la pintura epoxi poliéster aplicada en los productos de la empresa Ecuamatriz S.A.

6.4.2 Objetivos específicos

➤ Realizar un diseño térmico con una alta eficiencia energética de acuerdo al tamaño requerido por la empresa.

- ➤ Realizar un diseño estructural interior, exterior de acuerdo al tamaño requerido por la empresa.
- ➤ Diseñar un sistema de control que cumpla adecuadamente con los parámetros de funcionamiento del horno.
- ➤ Diseñar un sistema de transporte interno que cumpla adecuadamente con los parámetros de funcionamiento del horno.

6.5 ANÁLISIS DE FACTIBILIDAD

El diseño del horno para el mejorar la calidad en el proceso de polimerización en la empresa ECUAMATRIZ Cía. Ltda. ubicada en la ciudad de Ambato es factible ya que esto será la guía para el futuro. Los elementos para la construcción se encuentran fácilmente en nuestro medio, además los materiales utilizados en el diseño son los encontrados en el mercado, el desmontaje de las partes innecesarias y las que se van a reemplazar así como la implementación de los nuevos elementos implica procedimientos sencillos y que pueden ser realizados por el personal de la misma empresa y sin el requerimiento de equipo ajeno a la empresa, motivo por el cual el costo de estos procedimientos resultaría bajo.

6.6 FUNDAMENTACIÓN

La presente propuesta se basa en la información recolectada en el capítulo II que se relaciona con el marco teórico y en los resultados obtenidos del estudio de los parámetros de diseño de la estructura en el capítulo IV. La propuesta se ha realizado bajo los siguientes parámetros fundamentales de diseño para la estructura.

6.6.1 Determinación de la carga en el horno

La principal variable a determinarse en el diseño del horno es la carga de ingreso de los productos. Anexo D1

Dentro los principales productos de fabricación de la empresa son las siguientes:

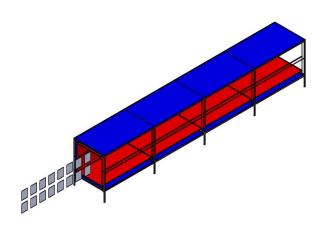
Tabla 6-1. Productos mensuales a pintar y sus pesos

PRODUCTOS	PROD- RODUCTOS MENSUAL PESO COMPO				PESO TOTAL (gr)	
		Base	Tapa	Rejilla		
Caja 220x200	2000	0,6	0,32	0,12	1,04	
Caja 300x200	4000	0,85	0,68	0,21	1,74	
Caja 400x200	300	1,005	0,82	0,21	2,035	
Caja 250x220	2500	1,52	0,965	0,31	2,795	
Caja 470x320	500	1500	0,86	0,12	2,48	
Carretillas	200				1500	

Fuente: Valencia Alvaro.

6.6.2 Distribución interna de la carga de los productos en el horno

Los elementos descritos en la tabla 6-1, son los productos los cuales estarán sometidos en el horno.


Para precisar la distribución correcta en la parte interior del horno es conviene ubicarlas con su lado más corto en el sentido del transporte para aumentar el volumen de la carga.

La separación entre piezas para evitar el contacto entre ellas con el movimiento de transporte que se pudiera producir en el interior del horno.

Esta separación permite que la radiación pase entre las piezas favoreciendo a la polimerización de la pintura.

Por la experiencia en el horno actual y recomendaciones esta distancia oscila entre:

Distancia de Separación	100-200 mm

Figura 6-1: Separación de los productos. **Fuente:** Valencia Alvaro.

La distribución vertical de las piezas que se pueden poner en columna de acuerdo a la disponibilidad de la altura útil de la cámara se determinó mediante la medición de los productos.

El tiempo es determinado en base a las especificaciones de la pintura epoxi poliéster, se debe variar en función al tamaño, peso, y su incidencia de los factores de transferencia de calor.

Su tiempo es 15 minutos para cualquier tipo de horno sin sufrir un sobre curado o falta del mismo.

Tabla 6-2. Dimensión de la arista Mayor

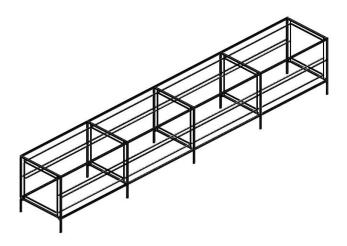
PRODUCTOS	MED.ARISTA MAYOR	PIEZA POR COLUMNA
Caja 220x200	200	4
Caja 300x200	300	3
Caja 400x200	400	2
Caja 250x220	250	2
Caja 470x320	470	1
Carretillas	800	1

6.6.3 Distancias, tiempos y velocidades necesarias para la polimerización de los productos

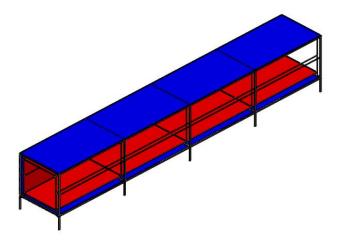
Al realizar las pruebas en el capítulo 4 se determinó las distancias, tiempos y la velocidad, los cuales permitirán el diseño estructural, termodinámico.

Tabla 6-3. Distancias y tiempos del horno

Descripción	Valor	Unid.
Longitud total del horno	10000	mm
Ancho total del horno	1500	mm
Alto total del horno	2000	mm
Velocidad de la cadena	0,4 – 1.1	m/s
Longitud necesaria para la polimerización a 180°C	9800	mm
Ancho útil del horno	1300	mm
Alto útil del horno	1800	mm


Ancho útil del Piso	1200	mm
Tiempo necesario para la polimerización a 180°C	15	min
Tiempo que se mantiene sobre los 180 ° C	4	min
Tiempo que se mantiene debajo de los 180 ° C	3	min

6.7 METODOLOGÍA


Para el desarrollo del diseño del horno se seguirá los siguientes pasos:

- > Cálculo de coeficiente de Convección
- > Cálculo de Perdidas de Calor
- > Cálculo de las Resistencia
- ➤ Cálculo Estructural

6.7.1 Esquema del horno

Figura 6-2: Estructura principal del horno. **Fuente:** Valencia Alvaro.

Figura 6-3: Estructura externa e interna del horno. **Fuente:** Valencia Alvaro.

6.7.2 Cálculo del coeficiente de convección

Para el cálculo tendremos efectos convectivos y para el cálculo del calor se determinará el coeficiente de convección del aire T_i y fuera del horno T_0 del ambiente.

Calculamos en base a datos como la velocidad de flujo externa e interna del horno se tomará las siguientes suposiciones

- ➤ Condiciones de estado estable
- > Flujo de aire interno a presión de 1 atm.
- Flujo de aire por ducto (cámara de polimerización)

Para poder determinar tomaremos las fórmulas de transferencia por ductos circulares se debe obtener un diámetro efectivo o equivalente como longitud características del ducto rectangular como sigue:

$$De = 1.3 \frac{(axb)^{0.625}}{(a+b)^{0.25}}$$

Ecuación 6.1

Donde a y b son los lados del ducto, m.

Las dimensiones de la cámara de calentamiento son: 1.50 m, de alto por 1m de ancho entonces tenemos:

$$De = 1.3 \frac{(1.5 m x 1m)^{0.625}}{(1.5m + 1m)^{0.25}} = 1.332 m$$

6.7.3 Coeficiente de convección externo

Aplicado para paredes verticales se obtiene los valores del Anexo E1:

Propiedades del Aire a 24,8 °C = 297.95 °K = Tf

K = 0.02551 W/m.°K Conductivida térmica

 $v = 1.562 \text{ x } 10^{-5} \text{ m}^2/\text{s}$ Viscocidad cinemática

 $\alpha = 2.141 \times 10^{-5} \,\mathrm{m}^2 / \mathrm{s}^2$ Difusividad térmica

Pr = 0.7296 Número de Prandtl

 $\rho = 1.181 \text{ Kg/m}^3$ Densidad aire

$$\beta = \frac{1}{Tf} = \frac{1}{297.95 \, {}^{\circ}K} = 3.356 \, x \, 10^{-03} \, {}^{\circ}K^{-1}$$

Ecuación 6.2

β Coeficiente de expansión térmica.

Cálculo del número de Rayleigh asociado con la transferencia de calor en el interior del fluido. Cuando el número de Rayleigh está por debajo de un cierto valor crítico, la transferencia de calor se produce principalmente por conducción.

Si Ra > 1000 la transferencia de calor se da por convección.

Si Ra < 10 la transferencia de calor se da por conducción.

$$Ra_L = \frac{g \cdot \beta \cdot (Tsp - T\infty) L^3}{\alpha \cdot \upsilon}$$
; $L = 1.2 m (altura de la pared)$

Ecuación 6.3

$$Ra_{L} = \frac{9.8 \frac{\text{m}}{\text{s}^{2}} x (3.356 x 10^{-03} {}^{\circ}K^{-1}) x (30 - 24) {}^{\circ}K (1.2 m)^{3}}{\left(2.141 \times 10^{-5} \frac{\text{m}^{2}}{\text{s}^{2}}\right) x (1.562 \times 10^{-5} \frac{\text{m}^{2}}{\text{s}})}$$

$$Ra_L = 1.0196 \ x \ 10^9$$

Cálculo del número de Nusselt mide el aumento de la transmisión de calor desde una superficie en la que un fluido fluye.

$$Nu_{L} = \left\{ 0.825 + \frac{0.387 \, Ra_{L}^{1/6}}{\left[1 + \left(\frac{0.492}{Pr}\right)^{9/16}\right]^{8/27}} \right\}^{2}$$

Ecuación 6.4

$$Nu_{L} = \left\{ 0.825 + \frac{0.387 (3.162392 \times 10^{9})^{1/6}}{\left[1 + \left(\frac{0.492}{0.7296}\right)^{9/16}\right]^{8/27}} \right\}^{2}$$

$$Nu_L = 176.1923$$

Cálculo del coeficiente de convección promedio

$$he = \frac{Nu_L x K}{De}$$

Ecuación 6.5

$$he = \frac{176.1923 \times 0.02551 \frac{W}{m \circ K}}{1.332 m}$$

$$he = 3.3743 \frac{W}{m^2 \, {}^{\circ}K}$$

6.7.4 Coeficiente de convección interno

Propiedades del aire a 180°C = 453.15 °K se obtiene los valores del Anexo E1:

 $K = 0.03646 \text{ W/m.}^{\circ}\text{K}$ Conductivida térmica

v = 1.6 - 3.3 m/s Velocidad del flujo Recomendado ASHARAE

 $\rho = 0.7788 \text{ Kg}/\text{m}^3$ Densidad aire

Pr = 0.6992 Número de Prandtl

 $\mu = 250.4 \times 10^{-7} \text{ N.s/m}^2$ Viscocidad dinámica

$$Re = \frac{\rho \cdot v \cdot De}{\mu}$$

Ecuación 6.6

$$Re = \frac{0.7788 \frac{\text{Kg}}{m^3} \times 3.3 \frac{\text{m}}{s} \times 1.332 m}{250.4 \times 10^{-7} \frac{N s}{m^2}}$$

$$Re = 138327.9872$$

Si el número de Reynolds es menor de 2100 el flujo será laminar y si es mayor de 3000 el flujo será turbulento.

El valor del número de Reynolds es de régimen turbulento.

$$Nu = 0.0296$$
. $Re^{4/5}$. $Pr^{1/3}$

Ecuación 6.7

$$Nu = 0.0296 \ (138327.9872)^{\frac{4}{5}} (\ 0.6992)^{1/3}$$

 $Nu = 340.5808$

Entonces:

$$he = \frac{Nu \times K}{De}$$

$$he = \frac{340.5808 \times 0.03646 \frac{W}{m^{\circ}K}}{1.332 m}$$

$$he = 9.3225 \frac{W}{m^{2} {}^{\circ}K}$$

6.7.5 Tiempo de calentamiento de los productos

La temperatura del aire en el horno para el curado de los recubrimientos debe ser lo suficientemente alta, como para lograr que la superficie de la pieza alcance una temperatura de 180 °C durante un tiempo de 15 min. Basado en la figura 4-3, donde se presenta una curva tomada en un horno a gas de la empresa Ecuamatriz, se establece que el límite inferior de temperatura del horno es 170 °C, y se puede observar que el periodo de tiempo en el cual la superficie de la pieza, se mantiene por encima de los 180 °C supera los 10 min.

En el caso más crítico se tiene que el área equivalente expuesta al calentamiento y la longitud característica del producto son:

$$As = (0.3x0.4) \text{ m}^2$$

$$As = 0.12 \text{ m}^2$$

$$Lc = 0.4 \text{ m}$$

m = 1 Kg (Masa de la placa)

Para encontrar el valor de conducción térmica K de la placa ingresamos con la temperatura media:

$$Tm = \frac{Ti + Ta}{2}$$

Ecuación 6.8

Dónde:

Ta = 20 °C Temperatura inicial o del ambiente

Ti = 180 °C Temperatura dentro de la cámara de polimerización

$$Tm = \frac{20 \, ^{\circ}C + 180 \, ^{\circ}C}{2} = 100 \, ^{\circ}C = 383,15 \, ^{\circ}K$$

Tenemos que la Temperatura media es de 100°C con la misma se obtiene del Anexo E2:

 $K = 42,2 \text{ W/m.}^{\circ}K$ Conductivida térmica.

 $Cp = 487 \text{ J/Kg.}^{\circ}\text{K}$ Calor específico.

Reemplazando los valores obtenidos:

$$Bi = \frac{h.Lc}{K}$$

Ecuación 6.9

$$Bi = \frac{9.3225 \frac{W}{m^2 \circ K} \times 0.4 m}{42.2 \frac{W}{m \circ K}} = 0,08836 < 0,1$$

El resultado obtenido indica que la resistencia interna del horno es despreciable lo cual valida el método de análisis térmico.

En el proceso de polimerización se lo hará por medio de convección forzada emitida por las resistencias eléctricas, lo que por su naturaleza emite una radiación térmica con lo cual el aire también es calentado dentro de la cámara de polimerización, convirtiendo en un efecto mixto.

La ecuación de la conservación de la energía para cualquier instante en el tiempo es:

$$[h(T - T\infty) + \varepsilon \sigma (T^4 - Talr^4)]As = m. Cp \frac{dT}{dt}$$

Ecuación 6.10

Al no ser posible integrar la ecuación diferencial se analizara por separado respectivamente para cada fenómeno de convección y radiación.

Considerando el efecto convectivo insignificante se reduce la ecuación a:

$$m.Cp \frac{dT}{dt} = -\varepsilon . \sigma(T^4 - Talr^4). As$$

Ecuación 6.11

Separando las variables e integrando para la condición de que alcance una Temperatura T en un tiempo t se tiene que:

$$\frac{\varepsilon \cdot \sigma \cdot As}{m \cdot Cp} \int_0^t dt = \int_{Ti}^T \frac{dt}{Talr^4 - T^4}$$

$$t = \frac{m.\,Cp}{4\,\varepsilon\,.\,\sigma.\,As\,Talr^3}\,\left[\ln\left|\frac{Talr+T}{Talr-T}\right| - \left|\frac{Talr+Ti}{Talr-Ti}\right| + 2\left(tan^{-1}\left(\frac{T}{Talr}\right) - \,tan^{-1}\left(\frac{Ti}{Talr}\right)\right)\right]$$

Esta expresión no sirve para evaluar de forma explícita el tiempo buscando ya que al ser la temperatura de los alrededores menor que la temperatura final de la placa, obtendremos un valor negativo el mismo que no existe el logaritmo natural.

Sin tomar en cuenta la temperatura de los alrededores Talr = 0 estableciendo los límites de integración se obtiene la siguiente expresión:

$$\frac{\varepsilon \cdot \sigma \cdot As}{m \cdot Cp} \int_0^t dt = \int_{Ti}^T \frac{dt}{T^4}$$

$$t = \frac{m.Cp}{3 \varepsilon. \sigma. As Talr^3} \left(\frac{1}{T^3} - \frac{1}{Ti^3} \right)$$

Ecuación 6. 12

Para la aplicación de esta ecuación se debe conocer la emisividad de la placa laminado en frio. La cual está en la Tabla 2-2 y es $\varepsilon = 0.3$

emisivilidad

m = 1 Kgmasa de probeta $As = 0.12 \text{ m}^2$ área de probeta $\varepsilon = 0.3$

 $\sigma = 1.38 \times 10^{-23} \frac{J}{K} = 5.67 \times 10^{-8} \frac{W}{m^2} {}^{\circ}K^4$ (Constante Boltzmann)

 $Ta = 20 \, ^{\circ}C = 293 \, ^{\circ}K$ temperatura ambiente

 $Ti = 180 \, ^{\circ}C = 356 \, ^{\circ}K$ temeperatura interior $Cp = 487 \text{ J/Kg.}^{\circ}K = 0.1352 \text{ Wh / Kg}^{\circ}K$ calor específico.

$$t = \frac{\text{m.Cp}}{3 \varepsilon.\sigma. \text{A } Talr^3} \left(\frac{1}{T^3} - \frac{1}{Ti^3} \right)$$

$$t = \frac{1 \, Kg \times 0,1352 \, \frac{Wh}{Kg \, {}^{\circ}K}}{3 \, (5,67 \, x \, 10^{-8} \, \frac{W}{m^2 \, {}^{\circ}K})(0,3)(0,12 \, m)^3} \, (\frac{1}{293 \, {}^{3\circ}K} - \frac{1}{356^3 {}^{\circ}K})$$

$$t = 0.388 h = 23.30 min$$

El cálculo obtenido es el tiempo que se demorara en calentar la probeta sin pintar, este valor es justificado ya que el metal tiene un coeficiente de absorción ($a = \varepsilon$) de la energía emitida muy baja.

Al ingresar la probeta cubierta con pintura epoxi poliéster su emisividad cambia $\varepsilon = 0.86-0.9$, siendo necesario un tiempo de calentamiento con la probeta pintada.

$$t = 0.132 h = 7.94 min$$

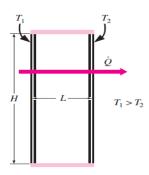
Dado los valores de los tiempos se verificó que están dentro del rango consultando a los especialistas en estos hornos de polimerización, este tiempo logrará a reducir de 5 a 8 minutos.

Para la verificación del tiempo requerido se tomará los efectos convectivos sin tomar en cuenta la transferencia de calor por radiación.

Integrando con los límites establecidos de la ecuación 6.11 obtendremos

$$t = \frac{m. Cp}{h \infty. As} \ln \left| \frac{T - T \infty}{Ti - T \infty} \right|$$

Ecuación 6.13


$$t = \frac{1 \, Kg \, x \, 0,1352 \, \frac{Wh}{Kg \, {}^{\circ}K}}{3.3743 \, \frac{W}{m^{2} \, {}^{\circ}K} x \, 0.12 \, m^{2}} \ln \left| \frac{180 \, {}^{\circ}K - 200 \, {}^{\circ}K}{20 \, {}^{\circ}K - 200 \, {}^{\circ}K} \right|$$

$$t = 0,254 h = 15,25 min$$

Este tiempo concuerda con lo recomendado por las hojas técnicas de los proveedores de pintura epoxi poliéster la cual nos indica de 15 min a 180 °C.

6.7.6 Selección del material de aislamiento

La selección del aislante térmico se la debe realizar tomando en cuenta el precio y sus propiedades térmicas.

Figura 6-4: Espesor de aislamiento. **Fuente:** Valencia Alvaro.

Ti = 250 °C	Temperatura máxima interna en el techo.
$hi = 9.3225 \frac{W}{m^2 \circ c}$	Coeficiente de convección interno medio.
Ta = 18 °C	Temperatura ambiente.
ho = $3.3743 \frac{W}{m^2 {}^{\circ}C}$	Coeficiente de convección
$K = 0.032 \text{ W/m }^{\circ}\text{C}$	Conductividad térmica del aislante

Para el cálculo consideraremos lo siguiente:

- > Transferencia de Calor estacionaria
- > Transferencia de calor unidimensional

Las resistencias térmicas por convección y conducción se calculan mediante:

$$R_{conveccion} = \frac{1}{hi \cdot A}$$

Ecuación 6. 14

$$R_{conduccion} = \frac{x}{Kx \cdot A}$$

Ecuación 6. 15

Área del techo = $(10 \text{ x } 1.20) \text{ m}^2 = 12 \text{ m}^2$

$$R_{conveccion} = \frac{1}{9.3225 \frac{W}{m^2 \circ C} \times 12 \text{ m}^2} = 8.938 \times 10^{-3} \circ C/W$$

$$R_{conduccion} = \frac{1}{3.3743 \frac{W}{m^2 \circ c} \times 12 \text{ m}^2} = 0.0246 \circ C/W$$

$$R_x = \frac{x}{0.032 \frac{W}{m \circ c} \times 12 \text{ m}^2} = \frac{x}{0.384} \circ C/W$$

$$R_{Total} = R_{conv} + R_{cond} + Rx$$

Ecuación 6.16

$$R_{Total} = 8.938 \times 10^{-3} + 0.0246 + \frac{x}{0.384}$$

$$R_{Total} = 0.0335 + \frac{x}{0.384} = \frac{12.878 \times 10^{-3} + x}{0.384}$$

La pérdida de calor hacia el ambiente por paredes planas es:

$$Q = \frac{Ti - To}{R_{Total}} = \frac{(180 - 20)}{\frac{12.878 \, x \, 10^{-3} + x}{0.384}} = \frac{61.44 \, W}{12.878 \, x \, 10^{-3} + x}$$

Ecuación 6.17

$$Q = \frac{Ts - Ta}{R_x} = \frac{(160 - 18)}{\frac{x}{0.384}} = \frac{54.52 W}{x}$$

Ecuación 6.18

Igualando las ecuaciones 6.17 = 6.18 se obtiene:

$$\frac{54.52}{x} = \frac{61.44 W}{12.878 x 10^{-3} + x}$$

$$61.44 x = 54.52 (12.878 x 10^{-3} + x)$$

$$x = 0.196 m = 8 plg$$

6.7.7 Calor necesario para el proceso de polimerización

Para determinar este valor se empleara la siguiente expresión:

$$Q_{curado} = Qs + Qp + Qa$$

Ecuación 6.19

Dónde:

Qs = carga térmica para calentar el producto

Qp = carga térmica por Pérdida

Qa = carga térmica del aire renovable ventilador

Qt = carga térmica del transportador

Todos estos valores son necesarios para cada periodo de tiempo.

a) Cálculo de Qs

El cálculo de calor necesario mínimo que requiere los productos para alcanzar la temperatura adecuada para la pintura epoxi poliéster tenga una buena polimerización .Para encontrar Qs debemos sumar la carga térmica del sustrato Qs₁ y la carga térmica de la pintura epoxi poliéster Qs₂.

$$Q_s = Qs_1 + Qs_2$$

Ecuación 6.20

Dónde:

$$Q_{s1} = m_{sustrato} x Cp \Delta T$$

Propiedades del material:

Acero laminado en frio $0.9 \text{ mm} \approx \text{AISI } 1010 \text{ (Tabla Anexo E2)}$

 $Cp = 434 \text{ J/Kg}^{\circ}\text{K}$ Calor especifico

m = 0.7 Kg (peso de la base 220x200x70)

 $m_T = m * \# piezas$ # cantidad que entran en el horno

 $m_T = 0.7 * 92$

 $m_T = 64.4 \text{ Kg}$

$$\Delta T = (180 - 18) \, ^{\circ}C$$

 $\Delta T = 163 \, ^{\circ}C$

$$Q_{s1} = 64.4 \, Kg \, x \, 0.434 \, \frac{KJ}{Kg \, {}^{\circ}K} \, x \, 163 \, {}^{\circ}K$$

$$Q_{s1} = 4555.784 \, KJ$$

Qs₂ Caga térmica de la pintura o recubrimientos:

$$Q_{s1} = m_{pintura} x Cp \Delta T$$

Ecuación 6.21

Propiedades de la pintura epoxi poliéster

 $Cp = 1.884 \text{ KJ/Kg} ^{\circ}\text{K}$ Calor especifico

 $\rho = 1473.69 \text{ Kg} / \text{m}^3$ Densidad

 $e = 100 \mu m = 9,9744 \times 10^{-5} m$ Espesor de la pintura 80 micras

 $At = 0.12 \text{ m}^2$ Area probeta

Ti = 180°C Temperatura interior

 $Ta = 18^{\circ}C$ Temperatura ambiente

$$m = \rho$$
. At. e

Ecuación 6.22

$$m = 1473.69 \frac{\text{Kg}}{\text{m}^3} \times 0.12 \text{ m}^2 \times 9.9744 \times 10^{-5} \text{ m}$$

 $m = 0.01766 \text{ Kg}$

Masa Total:

$$m_T={
m m}$$
 . # piezas
$$m_T=0.01766~Kg~{
m x}~92$$

$$m_T=1.6254~Kg$$

$$Q_{s2}=1.6254~Kg~x~1.884~{{
m KJ}\over {
m Kg}~{
m °K}}~(180-18)~{
m °K}$$

$$Q_{s2}=496.08~KJ$$

Reemplazando los valores:

$$Q_{s2} = 4555.784 \, KJ + 496.08 \, KJ$$

$$Q_s = 5051.864 \, KJ$$

El tiempo de polimerización recomendado por los fabricantes de píntura epoxi polyester es de 15 min. = 0.25 h.

$$Q_s = \frac{5051.864}{0.25} \frac{KJ}{h} = 20207.456 \frac{KJ}{h}$$

6.7.8 Cálculo de la pérdida de calor

Q_p es el calor perdido por las paredes planas, techo, aberturas, puertas que pueda tener el horno durante su funcionamiento y su jornada de trabajo.

Dónde:

Q_{pp}: calor perdido en paredes

 Q_{pt} : calor perdido en techo

Q_{ps}: calor perdido en el piso

Q_{pu}: calor perdido en puertas frontal y posterior

Q_{pa}: calor perdido en aberturas (aire que se escapa al ambiente)

Q_{pr}: calor perdido por radiación

$$Q_p = Q_{pp} + Q_{pt} + Q_{ps} + Q_{pu} + Q_{pa} + Q_{pr}$$

Ecuación 6.23

a) Cálculo de Qpp

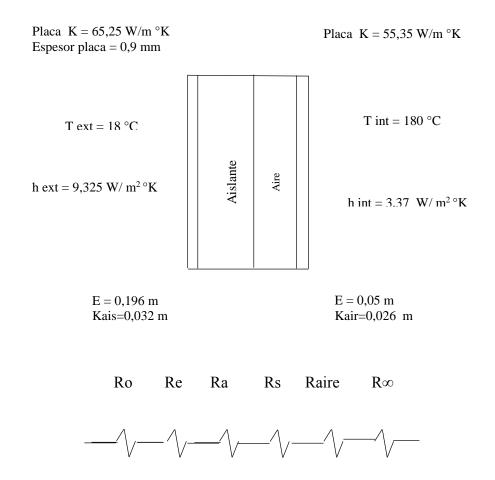
La determinación de las Pérdida por las paredes del horno de polimerización se da por la siguiente expresión:

$$Q_{pp} = \frac{Tint - Tamb}{\Sigma R}$$

Ecuación 6.24

Dónde:

Tint = Es la temperatura dentro de la cámara polimerización


Tamb = Es la temperatura del medio ambiente

 ΣR = Resistencia total desde el ambiente interno hasta el medio ambiente.

La resistencia equivalente o total es igual a:

$$\Sigma R = R \infty + Raire + Rs + Ra + Re + Ro$$

Ecuación 6.25

Figura 6-5: Resistencia del horno. **Fuente:** Valencia Alvaro.

Dónde:

 $R\infty$ = Resistencia por convección del ambiente interno a la pared de la cámara.

Rs = Resistencia por conducción de la pared interna a la superficie interna del aislamiento térmico.

Ra = Resistencia por conducción de la superficie interna a la externa del aislamiento.

Re = Resistencia por conducción de la pared externa del aislamiento hacia la pared externa del horno.

Ro = Resistencia por convección de la pared externa del horno al medio ambiente.

Raire = Resistencia por convección de la pared externa del horno al aire interno.

Las resistencias $R \infty$, Ro por convección se determinarán por la ecuación 6.14 y Rs, Ra, Re se calcular por medio de la ecuación 6.15.

Los valores de las pérdidas de calor por las paredes se determinarán por las ecuaciones 6. 14 y 6.15.

a) Cálculo de la pérdida de calor en las paredes

La pared del horno está compuesta por lámina galvanizada de acero al carbono cuyo espesor es 0,9 mm, y contiene el aislante seleccionado en la sección 6.7.6.

Para el cálculo de las pérdidas de calor en el horno se realizan las siguientes suposiciones:

- > Conducción en estado estable.
- Conducción unidimensional a través de la pared.
- > Conductividad térmica constante.
- Resistencia térmica de contacto despreciable.
- ➤ Se supone una cámara interna del horno un poco más amplia para efecto de los cálculos.

Tabla 6-4 .Dimensiones y sus propiedades térmicas del horno

DIMENSIONES					
Largo	9,8	m			
Alto	1,8	m			
PROPIE	EDADES '	TERMICAS	1		
°T ambiente	18	°C			
°T Trabajo	180	°C			
hi	9,325	W/m2 °C			
ho	3,37	W/m2 °C			
K AISI 1010	65,25	W/m°K	0,0009	m	
K AISI 1010	55,35	W/m°K	0,0009	m	
K lana de Vidrio	0,032	W/m°K	0,196	m	
K aire	0,026	W/m°K	0,05	m	

Tabla 6-5. Cálculo de la pérdida de Calor

CÁLCULOS				
			Datos	Unid.
		Área	35,28	m2
$R_{conveccion}$	$\frac{1}{hi.A}$	R∞	0,003039643	°C/W
		Ro	0,008410882	°C/W
		Rs	3,90961E-07	°C/W
D	x	Ra	4,60889E-07	°C/W
K _{conduccio}	$on = \frac{x}{Kx.A}$	Re	0,090171485	°C/W
		Raire	0,03270539	°C/W
		Resist.Total	0,134328252	°C/W
		Qpp	1206,000957	W

	Qpp	1,21	KW
--	-----	------	----

b) Cálculo de la pérdida de calor en el techo

Tabla 6-6. Dimensiones y sus propiedades térmicas del horno

DIMENSIONES				
Largo	9,8	m		
Ancho	1,3	m		
PRO	PIEDADE	S TERMICAS	1	•
°T ambiente	18	°C		
°T Trabajo	180	°C		
hi	9,325	W/m2 °C		
ho	3,37	W/m2 °C		
K AISI 1010	65,25	W/m°K	0,0009	m
K AISI 1010	55,35	W/m°K	0,0009	m
K lana de Vidrio	0,032	W/m°K	0,196	m
K aire	0,026	W/m°K	0,05	m

Tabla 6-7. Calculo de la perdida de Calor

CÁLCULOS			
		Datos	Unid.
n 1	Área	12,74	m2
$R_{conveccion} = \frac{1}{hi.A}$	R∞	0,008417473	°C/W
	Ro	0,023291672	°C/W
	Rs	1,08266E-06	°C/W

	Ra	1,27631E-06	°C/W
$R_{conduccion} = \frac{x}{Kx.A}$	Re	0,249705651	°C/W
	Raire	0,090568772	°C/W
	Resist.Total	0,371985928	°C/W
	Qpt	435,5003455	W
	Qpt	0,435	KW

c) Cálculo de la pérdida de calor en el piso

Tomando en cuenta que el horno reposa en sus soportes en el piso y está compuesta por lámina galvanizada de acero al carbono cuyo espesor es 0,9 mm, se realiza el cálculo de transferencia de calor en el piso para hallar las pérdidas de calor que en este se generan.

Tabla 6-8. Dimensiones y sus propiedades térmicas del horno

DIMENSIONES				
Largo	9,8	m		
Ancho	1,2	m		
PROPIEDADES TERMICAS				
°T ambiente	18	°C		
°T Trabajo	180	°C		
hi	9,325	W/m2 °C		
ho	3,37	W/m2 °C		
K AISI 1010	65,25	W/m°K	0,0009	m
K AISI 1010	55,35	W/m°K	0,0009	m
K lana de Vidrio	0,032	W/m°K	0,196	m
K aire	0,026	W/m°K	0,05	m

Tabla 6-9. Calculo de la perdida de Calor

CÁLCULOS				
		Datos	Unid.	
'	Área	11,76	m2	
$R = \frac{1}{2}$	R∞	0,009118929	°C/W	
$R_{conveccion} = \frac{1}{hi}$	A Ro	0,025232645		
	Rs	1,17288E-06	°C/W	
	Ra	1,38267E-06	°C/W	
$R_{conduccion} = \frac{R_{conduccion}}{K_{conduccion}}$	Re Re	0,270514456	°C/W	
	Raire	0,270514456	°C/W	
	Resist.Total	0,575383041	°C/W	
	Qps	281,5515724	W	
	Qps	0,281	KW	

d) Cálculo de la pérdida de calor en las puertas

Tomando en cuenta:

- > Que existe una puerta de entrada y otra de salida.
- ➤ Que la cantidad de estaciones en el transportador depende del ancho del horno y de la distancia mínima que se permite entre pieza. Esta distancia se toma como 200 mm, para que de esta manera se puedan colgar marcos de carretillas, cuyo ancho es 1000 mm, uno al lado del otro.

Tabla 6-10. Dimensiones y sus propiedades térmicas del horno

DIMENSIONES				
Dimensiones				
Alto	1,8	m		
Ancho	1,2	m		
PROPIEDADES TERMICAS				
°T ambiente	18	°C		
°T Trabajo	180	°C		
hi	9,325	W/m2 °C		
ho	3,37	W/m2 °C		
K AISI 1010	65,25	W/m°K	0,0009	m
K AISI 1010	55,35	W/m°K	0,0009	m
K lana de Vidrio	0,032	W/m°K	0,196	m
K aire	0,026	W/m°K	0,05	m

Tabla 6-11. Calculo de la pérdida de Calor

CÁLCULOS			
		Datos	Unid.
·	Área	4,32	m2
$R_{conveccion} = \frac{1}{hi.A}$	R∞	0,024823751	°C/W
	Ro	0,068688867	°C/W
	Rs	3,19285E-06	°C/W
$R_{conduccion} = \frac{x}{Kx.A}$	Ra	3,76393E-06	°C/W
	Re	0,736400463	°C/W
	Raire	0,267094017	°C/W
	Resist.Total	1,097014055	°C/W

	Qpu	147,6735865	W
	Qpu	0,147	KW

e) Cálculo del calor perdido en aberturas

El calor perdido hacia el ambienté se da por fenómenos convectivos, utilizando las siguientes ecuación

$$Q_{pp} = \frac{Tint - Text}{Rpa}$$

Ecuación 6.27

$$Rpa = \frac{1}{h\infty - Ato}$$

Ecuación 6.28

Dónde:

Rpa: Resistencia por convección hacia el medio ambiente.

Ato: Es el área total de los orificio

Las pérdidas de calor en las aberturas se toman un valor de 5mm en el peor de casos tanto en las puertas y elementos soldados.

Ato =
$$0.025 \text{ m}^2$$

Reemplazando en las ecuaciones se obtiene los siguientes valores:

$$Rpa = \frac{1}{9.3225 \frac{W}{m^2 \circ K} - 0.025 \text{ m}^2} = 0.1075 \frac{\circ K}{W}$$

$$Q_{pp} = \frac{180 \text{ °}K - 18 \text{°}K}{0,1075 \frac{\text{°}K}{W}} = 1.506 \text{ KW}$$

f) Cálculo del calor perdido por radiación

Las superficies emiten y absorben energía radiante con diferente intensidad, según sea la naturaleza de la propia superficie.

$$Q_r = \varepsilon . \sigma . A (Ts^4 - Ta^4)$$

Ecuación 6.29

Dónde:

Qr= Calor transmitido por radiación

 ε = Emisividad de la superficie emisora 0,074

 σ = Constante universal 5.67 x 10⁸ W/m2 · K ⁴

Ts = temperatura de la superficie emisora 180°C

Ta = temperatura ambiente 18 °C

A =Área de la superficie emisora 12,74 m²

$$Q_r = 0.074 \cdot \left(5.67 \times 10^{-8} \frac{W}{\text{m}^2 \cdot \text{K}^4} \right) \cdot 12,74 \, m^2 \, (180^4 - 18^4)^{\circ} K$$

$$Q_r = 0.056 \, KW$$

Sumando el valor de todas las pérdidas de calor

$$Q_{pp} = (1.21 + 0.435 + 0.281 + 0.147 + 1.506 + 0.056)KW$$

$$Q_{pp} = 3.635 KW$$

Tabla 6-12. Pérdidas de calor

Descripción	Perdida de calor	
Paredes	1.21 KW	
Techo	0.435 KW	
Piso	0.281 KW	
Puertas	0.147 KW	
Aberturas	1.506 KW	
Radiación	0.056 KW	
Total	3.635 KW	

g) Cálculo de la carga térmica del aire

El cálculo de la masa del aire ocupado en la cámara de polimerización debemos partir del volumen ocupado.

$$V = L. a. h$$

Ecuación 6.30

$$V = 9.8 \times 1.8 \times 1.2$$

$$V = 21,168 m^3$$

 $Ti=180^{\circ}C$

Ta = 18 °C

 $\Delta T = 162^{\circ}C$

 $^{\circ}$ T promedio = 100 $^{\circ}$ C =373,15 $^{\circ}$ K

Propiedades del aire a 373,15 °K

$$Cp = 1,009 \text{ KJ/Kg} \circ \text{K}$$

$$\rho = 0.9458 \text{ Kg/m}^3$$

$$m = \rho \times V$$

Ecuación 6.31

$$m = 0.9458 \frac{Kg}{m^3} \times 21,168 m^3 = 20.02 \text{ Kg}$$

En el catálogo de ventiladores S & P la renovación de aire para este tipo de ambientes es de 30 a 60 NR/h (NR = renovación de aire por hora).Para los cálculos se tomó el valor promedio.

$$\dot{m} = 40 \frac{NR}{h} \times 20.02 \, Kg$$

$$\dot{m} = 800,8 \frac{kg}{h}$$

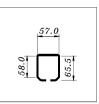
Reemplazando estos valores obtendremos la carga térmica del aire renovable:

$$Qa = \dot{m} \cdot Cp \cdot \Delta T$$

Ecuación 6.32

$$Qa = 800.8 \frac{kg}{h} \times 1.009 \frac{KJ}{Kg \, ^{\circ}K} \times 162 \, ^{\circ}K$$

$$Qa = 130897.166 \frac{KJ}{h} = 36.36 \, KW$$


El calor del transportador es de 25% del calor del perfil en el régimen de trabajo

Material del Perfil compuesto Tipo Riel

$$masa = 51,345 \text{ Kg x } 6m = 83,86 \text{ Kg x } 9,8 \text{ m}$$

$$Cp = 0.487 \text{ KJ/Kg} \circ \text{K}$$

$$\Delta T = (180 - 18) = 162 \, ^{\circ}K$$

$$Qt = 0.25 \left(\frac{83,86 \, Kg \, x \, 0.487 \, \frac{KJ}{Kg \, {}^{\circ}K} \, x \, 162 \, {}^{\circ}K}{0.25} \right)$$

$$Qt = 6616.05 KJ$$

Finalmente el calor empleado en el proceso de polimerización es:

$$Qp = (5051.864 + 130897.166 + 6616.05) KJ$$

$$Qp = \frac{142565.08 \, KJ}{900 \, s} = 158.40 \, KW$$

h) Calor total suministrado por el sistema.

Una vez que se conoce el valor de las pérdidas de calor para un ciclo de funcionamiento, y la cantidad de calor absorbido por la carga durante el periodo de calentamiento, el calor total aportado por el sistema es:

$$QT = Qp - Qpp$$

Ecuación 6.33

$$QT = 158.40 \ KW - 3.635 \ KW = 154.765 \ KW$$

6.7.9. Rendimiento térmico

$$R_T = \frac{154.765 \, KW}{158.40 \, KW} = 97,77 \, \%$$

6.7.10. Selección del ventilador

Caudal del Ventilador

$$\rho = \frac{m}{V} \rightarrow V = \frac{m}{\rho}$$

Ecuación 6.34

El sistema absorberá en un porcentaje del 50% del flujo interno de la cámara para el efecto se tomará del ambiente para renovarlo.

$$Q = \frac{800.8 \frac{kg}{h}}{0.9458 \frac{Kg}{m^3}} \times 0.5 = 378.69 \frac{m^3}{h}$$

Velocidad del aire caliente que sale por las puertas

$$m = \rho x v x A \rightarrow v = \frac{m}{\rho x A}$$

Ecuación 6.35

A área de la puerta

$$A = (1.8 \times 1.2) = 2,16 \text{ m}^2$$

$$v = \frac{800.8 \frac{kg}{h}}{0.9458 \frac{Kg}{m^3} x \ 2.16 \text{ m}^2} = 391.98 \frac{m}{h} = 0.108 \frac{m}{s}$$

La selección de la velocidad del soplador debe ser mayor que la velocidad de salida del aire caliente determinado en catalogo se determina una velocidad de 1 a 3,2 m/seg.

Selección del Ventilador

El caudal a renovarse es de $400 \frac{m^3}{h}$ lo cual se seleccionará una ventilador centrifugo Soler & Palau. Catalogo Soler & Palau modelo CET-60000.

6.7.11. Diseño de ductos

Debido a que el intercambiador utilizado es del tipo regenerador donde el fluido caliente fluye a través del mismo espacio seguido de un frio entre los cuales se intercambia el calor, los ductos del sistema serán utilizados para recircular el aire caliente y como intercambiador de calor.

Para el cálculo del caudal de flujo másico que ingresa al interior de la cámara de polimerización se utiliza la siguiente ecuación basada en las normas ASHRAE

$$Q = VxA \quad \rightarrow \quad V = \frac{Q}{A}$$

Ecuación 6.36

Dónde:

Q es el caudal de la corriente de aire, en m^3/h

A es la sección transversal del conducto, en m^2

Obtenido el caudal que proporciona el ventilador y la velocidad de salida, qué es una constante impuesta para el diseño.

Velocidad de salida del ventilador despejando de la ecuación 6.36 se obtiene.

$$V1 = \frac{Q}{A1}$$

A1 área de descarga del ventilador

 $A1 = (0,153 \times 0,089) \text{ m}^2$

 $A1 = 0.0136 \text{ m}^2$

$$V1 = \frac{400 \frac{m^3}{h}}{0,0136 m^2} = 29375.04 \frac{m}{h} = 8,159 \frac{m}{seg}$$

Velocidad en los ductos

$$Q = \frac{1}{2} Qv = \frac{1}{2} \left(400 \frac{m^3}{h} \right) = 200 \frac{m^3}{h}$$

 $A2 = (0.12 \times 0.06) \text{ m}^2$

 $A2 = 0.0072 \text{ m}^2$

$$V2 = \frac{400 \frac{m^3}{h}}{0.0072 m^2} = 55555.5 \frac{m}{h} = 15.43 \frac{m}{seg}$$

Dimensionamiento del soplador

Aplicando la ecuación de continuidad

$$O = A2 \times V2 = A3 \times V3$$

Ecuación 6.37

$$A3 = \frac{A2 \text{ xV2}}{V3} = \frac{0,0072 \text{ m}^2 \text{ x } 15,43 \frac{m}{\text{seg}}}{2,5 \frac{m}{\text{seg}}} = 0,044 \text{ m}^2$$

La altura del soplador que cubre la superficie inferior de la cámara de curado, el ancho a entrar es de:

$$altura = \frac{A3}{h} = \frac{0,044 \ m^2}{1 \ m} = 0,044 \ m$$

6.7.12. Perdidas en la succión

$$Q = 400 \text{ m}^3/\text{ h} = 406824,96 \text{ plg}^3/\text{min}$$

$$\emptyset = 152 \text{ mm} = 6 \text{ plg}.$$

La longitud total es de L = 0.4 m = 15.74 plg

Las pérdidas por fricción para flujos de aire en ductos galvanizados están basadas en las normas ASHRAE (Asociación Americana de Aire Acondicionado y Ventilación)

$$Hf_n = rac{P\'erdida (plg - ca)}{100 \ plg} \ x \ Longitud \ plg$$

Ecuación 6.38

$$Hf_{nt} = \frac{1,75 (plg - ca)}{100 \ plg} \ x \ 15,74 \ plg$$

$$Hf_{nt} = 0.275 \ plg - ca$$

Pérdida en la conexión de tubería al ventilador. Anexo E4

Número de piezas = 4

R = 145 mm = 5.74 plg.

D = 143 mm = 5.62 plg.

R/D = 1.013 = 1

C = Coeficiente de pérdidas .Anexo E4

Realizando la interpolación C = 0.7

Área del ducto

$$A = \frac{\pi}{4} D^2 = \frac{\pi}{4} (5.62plg)^2 = 24,80 plg^2$$

Velocidad del flujo

$$Vt = \frac{Q}{Ad} = \frac{406824,96 \frac{\text{plg}^3}{\text{min}}}{24,80 \text{ plg}^2} = 16400.04 \text{ plg/min}$$

$$Hfn = C \left[\frac{Vt}{4000} \right]^2$$

Ecuación 6.39

$$Hfn = 0.7 \left[\frac{16400.04 \, plg/min}{4000} \right]^2 = 11.76 \, plg - ca$$

Pérdida total de Succión

$$Hfs = Hfn + Hfnt$$

Ecuación 6.40

$$Hfs = 0.275 \ plg - ca + 11.76 \ plg - ca = 12.042 \ plg - ca$$

6.7.13. Perdidas en la descarga

El caudal es de 406824,96 plg³/min

a = 77 mm = 3,03 plg.

b = 138 mm = 5,433 plg.

Diámetro equivalente $\emptyset = 5.5$ plg.

$$Hf_1 = \frac{1,5 (plg - ca)}{100 plg} \times 5,5 plg$$

$$Hf_1 = 0.0825 \ plg - ca$$

Pérdida en la reducción el ducto.

$$a = 77 \text{ mm} = 3,03 \text{ plg}.$$

$$b = 138 \text{ mm} = 5,433 \text{ plg}.$$

$$c = 87 \text{ mm} = 3,425 \text{ plg}.$$

$$A1 = 3,425 \times 5,433 = 18 \text{ plg}^2$$
.

$$A2 = 3,425 \times 3,03 = 10 \text{ plg}^2.$$

$$A1/A2 = 18/10 = 1,8$$

C = 0,05 Se toma el mínimo valor. Anexó E4

Reemplazando estos valores en la ecuación 6.39

$$Hf_2 = 0.05 \left[\frac{16400.04 \, plg/min}{4000} \right]^2 = 0.084 \, plg - ca$$

$$Hf_t = 0.084 \ plg - ca + 0.0825 \ plg - ca = 0.1665 \ plg - ca$$

Pérdida en el distribuidor de ductos en el ramal se analiza 1 ramal equivalente a un codo de radio uniforme.

$$R = 100 \text{ mm} = 3.93 \text{ plg}.$$

$$W = 95 \text{ mm} = 3,74 \text{ plg}.$$

$$H = 118 \text{ mm} = 4,64 \text{ plg}.$$

$$R/W = 3,93/4,64 = 0,846$$

$$H/W = 4,64/3,74 = 1,24$$
 $C = 0,2.$ Anexo E4

$$A = (3,74 \times 4,64) = 17,35 \text{ plg}^2$$

$$V = \frac{16400.04 \, plg/min}{17.35 \, plg^2} = 945.24 \, plg - ca$$

$$Hf = 0.2 \left[\frac{945.24 \, plg - ca}{4000} \right]^2 = 0.011 \, plg - ca$$

Caudal en cada ramal $Q = 406824,96 \text{ plg}^3/\text{min}$ en cada ramal.

Pérdida en el ducto.

$$L = 0.5 \text{ m} = 19.69 \text{ plg}.$$

$$a = 118 \text{ mm} = 4,64 \text{ plg}.$$

$$b = 150mm = 5,90 plg.$$

Ø = 5,9 plg. "Diámetro Equivalente"

$$Hf3 = \frac{0.55}{100}x$$
 5.9 plg = 0.032 $plg - ca$

Pérdida en el codo de radio uniforme.

R = 117 mm = 6,96 plg.

W = 118 mm = 4,645 plg.

H = 150 mm = 5,90 plg.

$$R/W = 1, 17; H/W = 1,270$$
 $C = 0,16.$ Anéxo E4

$$A = (4,645 \text{ x } 5,90) = 27.04 \text{ plg}^2$$

 $v = 16400.04 \ plg/min / 0.23 = 1027.60 \ p / min.$

$$V4 = \frac{16400.04 \ plg/min}{27.40 \ plg^2} = 598.54 \ \frac{plg}{min}$$

$$Hf4 = 0.16 \left[\frac{598.54 \ plg/min}{4000} \right]^2 = 0.0035 \ plg - ca$$

Pérdida Total en el difusor

$$Hft = (0.1665 + 0.011 + 0.032 + 0.0035) plg - ca$$

 $Hft = 0.213 \ plg - ca$

Pérdida total del sistema

$$Hft = (0.1085 + 0.1079 + 0.0825) plg - ca$$

 $Hft = 0.2989 \ plg - ca$

Diseño del Difusor

Para el diseño del difusor es necesario tomar en cuenta la altura del difusor que es equivalente a la altura de la cámara de curado en ancho es de 2 plg = 0,508 m.

6.7.14. Cálculo de las resistencias

Dentro el cálculo de las resistencias para el horno, intervienen varios factores importantes:

- > Potencia del horno
- > Tensión disponible en la red
- > Temperatura de los elementos
- ➤ Carga específica
- ➤ Coeficiente de resistividad

- > Elementos de resistencia y duración de los elementos.
- > Conexión eléctrica.

Para nuestro caso tenemos:

Potencia del horno = 158400 W

Tensión = 220 V

Temperatura de trabajo = 180 °C

a) Potencia de fase.

$$PF = \frac{Pt}{3} = \frac{158400 W}{3} = 52800 W$$

Ecuación 6.41

b) Corriente de fase.

$$IF = \frac{Pt}{Vl} = \frac{52800 W}{220 V} = 240 A$$

Ecuación 6.42

c) Corriente de línea.

$$IL = \sqrt{3} IF = \sqrt{3} (240 A) = 415.69 A$$

Ecuación 6.43

d) Potencia total.

$$Pt = 3 Req x IF^2$$

Ecuación 6.44

e) Resistencia equivalente.

$$Req = \frac{Pt}{3 \ x \ IF^2} = \frac{52800 \ W}{3(415.69^{\ 2})} = 0.10 \ \Omega$$

$$R = 2 \ Req$$

$$R = 2 \ x \ 0.10 \ \Omega = 0.203 \ \Omega$$

6.7.15. Cálculo numérico de los elementos de resistencia

Con lo expuesto anteriormente se calcula los parámetros que determinan los elementos de resistencia.

Para calcular el diámetro del elemento utilizaremos los siguientes datos:

Potencia del horno = 52800 W

Tensión = 220 V

Temperatura de trabajo = 180°C

Factor de temperatura Ct, para T = 180°C, tenemos un valor de 1.01

Carga especifica (p) = 6,67 W/cm2.

Resistividad eléctrica (p) = 139 $\mu \Omega / cm = 1.39*10-4 \Omega / cm$.

$$cm^2/\Omega = \frac{P^2 \times Ct}{V^2 \times p} = \frac{(52800^2) \times 1.01}{(220^2)(6.67)} = 8722.03 \quad cm^2/\Omega$$

Ecuación 6.45

Con este valor vamos a la tabla del Anexo E3, observamos que corresponde un diámetro d = 8 mm (diámetro de hilo), cuya resistencia por unidad de longitud es $0.0288 \, \Omega/m$.

Datos por elemento

a) Resistencia en caliente (Rc)

$$Rc = R = 9.68 \Omega$$

b) Resistencia en frío (R20°C)

$$Rc\ 20^{\circ}C = \frac{Rc}{Ct} = \frac{9.68}{1.01} = 9.584 \,\Omega$$

Ecuación 6.46

c) Longitud radiante de hilo (L)

$$L = \frac{P}{3.1416 \, x \, d \, x \, p} = \frac{30000}{3.1416 \, x \, 5.5 \, x \, 6.67} = 260.30 \, cm$$

Ecuación 6.47

L = 2.60 m

d) Diámetro de la espiral (D)

Para hornos industriales, la temperatura de los elementos menores a 1000 °C, se tiene: D/d = 6 - 8

D/d = 7 esto implica D = 7d = 7*(5.5) = 38.5 mm - 39 mm

e) Número de espiras (n)

$$n = \frac{1000 \, x \, L}{3.1416 \, (D - d)} = \frac{1000(2.60)}{3.1416(39 - 5.5)} = 25 \, espiras$$

Ecuación 6.48

f) Longitud de la espira comprimida (Lw)

Lw=
$$n \cdot d = 25 \times 5.5 = 137.5 \text{ mm}$$
.

Ecuación 6.49

g) Paso de arrollamiento (s)

Se tratara de obtener la distancia más larga entre las espiras vecinas, para que sea menor la radiación recíproca.

Los valores recomendados para el paso son: s/d = 2 - 4

Se escoge 3.

S / d = 3 esto es $S = 4 \times d$; $s = 4 \times 5.5 = 22$ mm.

Ecuación 6.50

h) Longitud de la espira extendida (L)

 $L = s \times n$

 $L = 22 \times 25 = 550 \text{ mm}.$

Ecuación 6.51

6.7.16. Diseño estructural del horno.

En el diseño de este tipo de hornos para la polimerización se debe construir con elementos metálicos como perfiles y planchas de acero, elementos no metálicos resistentes al calor.

- Carga muerta (D)
- Carga Viva (L)
- Carga de Viento (W)

En el diseño no se considera cargas de viento, accidéntales ya que el horno se encuentra en la parte interna de la empresa.

6.7.17. Cálculo de cargas

a) Cálculo de carga muerta

El cálculo de esta carga es permanente y está compuesta por todos los elementos estructurales.

➤ Peso total de paredes

Peso del Tool de pared

$$\dot{m}$$
 paredes = $L x h x 2e x \rho$

Ecuación 6.52

Dónde:

L = longitud del horno (10000mm)

h = altura del horno (1500 mm)

e = espesor del tool laminado en frio (0.9mm)

 ρ = densidad del tool (acero ASTM A 36) Anexo E7 (7832 Kg/m³)

N = 4 pórticos.

$$\dot{m} \ paredes = 10m \ x \ 1.5m \ x \ 2(0.0009) \ m \ x \ 7832 \ \frac{Kg}{m^3} = 211.952 \ Kg$$

$$\dot{m} \ paredes = \frac{211.952}{4} = 52.86 \ Kg$$

Peso del aislante de pared

Utilizando la ecuación 6.20 tenemos:

L=10000 mm

h = 1500 mm

e = 196 mm

 $\rho = 36.3 \text{ kg} / \text{m}^3$

 $\dot{m} \ aislante = 10m \ x \ 1.5m \ x \ 2(0.196m)x \ 36.3 \ \frac{Kg}{m^3} = 213.44 \ Kg$

$$\dot{m} \ aislante = \frac{213.44 \ Kg}{4} = 53.36 \ Kg$$

El peso total de las paredes es:

 \dot{m} total paredes = \dot{m} paredes + \dot{m} aislante

Ecuación 6.53

$$\dot{m}\ total\ paredes = 52.86\ Kg + 53.36\ Kg$$

$$\dot{m}$$
 total paredes = 106.22 Kg

> Peso total del piso

Peso del Tool de piso

$$\dot{m} piso = L x a x e x \rho$$

Ecuación 6.54

Dónde:

a = ancho el horno 1500 mm

L = 10000 mm

e = 0.9 mm

 $\rho = 7832 \text{ kg/m}^3$

$$\dot{m} \ piso = 10m \ x \ 1.5m \ x \ 0.0009 \ m \ x \ 7832 \ \frac{Kg}{m^3} = \ 105.732 \ Kg$$

$$\dot{m} \ piso = \frac{105.732 \ Kg}{4} = 26.43 \ kg$$

Peso del aislante de piso

Utilizando la ecuación 6.20 tenemos:

L = 10000 mm

a = 1500 mm

e = 196 mm

 $\rho = 36.3 \text{ kg/m}^3$

$$\dot{m}$$
 aislante piso = $10m \times 1.5m \times 0.196 \times 36.3 = 106.722 \text{ Kg}$

$$\dot{m} \ aislante \ piso = \frac{106.722 \ Kg}{4} = 26.68 \ kg$$

El peso total del piso es:

$$\dot{m}$$
 total piso = \dot{m} piso + \dot{m} aislante piso

$$\dot{\mathrm{m}}\ total\ piso = 26.43\ kg + 26.68\ kg$$

$$\dot{m} total piso = 53.11 Kg$$

> Peso total del techo

Peso del tool del techo

$$\dot{m} \ techo = L \ x \ a \ x \ e \ x \ \rho = 105.732 \ kg$$

$$\dot{m} \ aislante \ techo = L \ x \ a \ x \ e \ x \ \rho = 106.722 \ kg$$

$$\dot{m} \ total \ techo = \frac{212.454 \ Kg}{4} = 53.11 \ Kg$$

Carga muerta total es la suma de todos los pesos de la estructura.

$$Carga\ muerta = 106.22\ Kg + 53.11\ Kg + 53.11\ Kg = 212.44\ Kg$$

> Peso techo y piso interno

Peso del Tool de techo y piso

$$\dot{m}$$
 paredes = $L x h x 2e x \rho$

Dónde:

L = longitud del horno (10000mm)

h = altura del horno (1000 mm)

e = espesor del tool laminado en frio (0.9mm)

 ρ = densidad del tool (acero ASTM A 36) Anexo E7 (7832 Kg/m³)

N = 4 pórticos.

$$\dot{m}$$
 techo, piso, pa inte = 10m x 1 m x 2(0.0009) m x 7832 $\frac{Kg}{m^3}$ = 140.97 Kg

$$\dot{m} \ techo$$
 , $piso$, $paredes\ y\ inter = \frac{140.97}{4} = 42.29\ Kg\ x\ 9.8\ \frac{m}{s^2} = 345.39\ N$

b) Cáculo carga viva (l)

La carga es eventual es decir que no es permanente por lo tanto su valor es variable en el cálculo estructural se tomará el peso que ocupa el producto al interior del horno.

Carga ejercida al interior del horno por el producto.

En el interior del horno geométricamente alcanzan 28 bases de cajas 450x220 con una separación entre ellas de 150 mm.

$$Wprod = N^{\circ} productos x Wbases$$

Ecuación 6.55

$$Wprod = 92 \times 1.5 Kg = \frac{138 Kg}{4} = 34.5 Kg$$

Carga de personal de mantenimiento

Wpers = 70 Kg x 9.8
$$\frac{m}{s^2}$$
 x 2 = 171.5 N

c) Cálculo carga de sismo (v)

Esta carga es proporcional de la carga muerta y esta depende de ella y se determina por:

$$V = \frac{Z \times I \times C}{R \times \mathcal{O}_P \times \mathcal{O}_C} \times D \quad [Kgf]$$

Ecuación 6.56

Dónde:

Z Factor de zonificación

I Factor de importancia de la estructura

C Factor relacionado con: definición del espectro del sismo de diseño

R Factor de reducción de respuesta estructural

 \emptyset_P Coeficiente de irregularidad en planta

Ø_c Coeficiente de irregularidad en elevación

D Carga muerta

Z = 0.4 El valor Z es para la ciudad de Ambato correspondiente a la zona IV. Anexo E5.

I = 1.0 Factor de importancia de la estructura. Anexo E5.

Para determinar el coeficiente C, usamos

$$C = \frac{1.25 \, x \, S^s}{T} \le C_m$$

Ecuación 6.57

Donde:

S Coeficiente del suelo

T Periodo de Vibración

Valor comparativo relacionado con C.

Si Cm es mayor que C este valor se reemplaza en la ecuación para hallar V

Utilizando las tablas del Anexo E5. encontramos para suelos intermedios S=1,0 , C=2,5 $\,$

El valor de T se determina mediante

$$T = Ct x h_n^{3/4}$$

Ecuación 6.58

Ct = 0.09 para porticos de acero

 $h_n = 2m$ altura de la estructura del horno

$$T = 0.09 \times 2^{3/4}$$

$$T = 0.1513$$

Reemplazando en la ecuación 6.57

$$C = \frac{1.25 \times 1,0^{1,0}}{0.1513} \le C_m$$

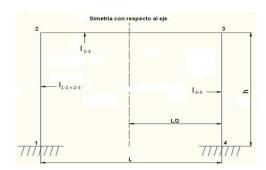
Utilizando la tabla del Anexo E6 ;R=7 para estructuras armadas de acero.

Teniendo en cuenta que la estructura no tiene irregularidades tanto como en la elevación como en la planta los coeficientes son respectivamente son :

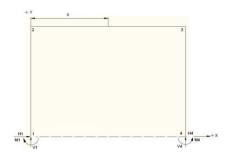
$$\emptyset_P = 0.9 \; ; \; \emptyset_C = 1$$

Reemplazando los valores en la ecuación 6.56

$$V = \frac{0.4 \times 1.0 \times 2.5}{7 \times 0.9 \times 1} \times D \quad [Kgf]$$


$$V = 0.158 D = 25.44 kg$$

En consecuencia la carga por sismo es del 15.796 % de la carga muerta.


6.7.18. Cálculo de pórticos

Para el diseño de la estructura del horno se utilizará un diagrama de cuerpo libre con el objetivo de obtener un mejor entendimiento. La cual es una estructura simétrica con pórtico de soporte fijo y se determinará las cargas.

Las notaciones, coordenadas y constantes de la estructura se encuentran en el diagrama de cuerpo libre en la figura 6.7.

Figura 6-6: Estructura simétrica en pórtico de soporte fijo. **Fuente:** Valencia Alvaro.

Figura 6-7: Diagrama de cuerpo libre del pórtico. **Fuente:** Valencia Alvaro.

Las constantes de la estructura se obtiene por las siguientes formulas:

$$\emptyset = \frac{I_{1-2} \times L}{I_{2-3} \times h}$$

Ecuación 6.59

$$F = 6 \left[2 + \frac{1}{\emptyset} \right]$$

Ecuación 6.60

Dónde:

I₁₋₂= Momento de inercia de la sección transversal del miembro 1-2.

I₂₋₃= Momento de inercia de la sección transversal del miembro 2-3.

L = Arco entre las líneas centrales de los apoyos.

h = Dimensiones del eje vertical.

F y \emptyset = Constantes adimensionales, dependen de las propiedades geométricas y físicas de la estructura.

Reemplazando los siguientes datos en la ecuación 6.59 se tiene:

 $I_{1-2} = I_{2-3} = 14.13 \text{ cm}^4$ Perfil cuadrado 40 x 2; W = 17.58 Kg. Anexó E8

L = 1.5 m

h = 2.00 m

$$\emptyset = \frac{14.13 \ cm^4 \ x \ 1.5 \ m}{14.13 \ cm^4 \ x \ 2 \ m} = 0.75$$

Reemplazando en la ecuación 6.60.

$$F = 6 \left[2 + \frac{1}{0.75} \right] = 20$$

6.7.19. Cálculo de momentos.

Para el cálculo de momentos ver las Figuras 6-8 y 6-9.

Los momentos en las secciones correspondientes de la mitad derecha de la estructura, son idénticos de la mitad izquierda.

El cálculo de momentos en los puntos 1 y 4; 2 y 3 se resuelve con las siguientes ecuaciones:

$$M1 = M4 = \frac{3PL}{4F}$$

Ecuación 6.61

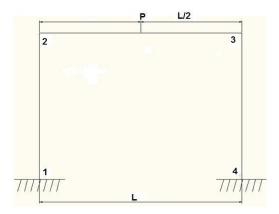
$$M2 = M3 = -\frac{3PL}{2F}$$

Ecuación 6.62

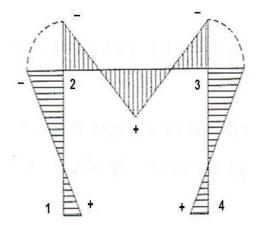
Dónde:

P = Carga concentrada

Mn= Momento de flexión en la sección n.


L = Arco entre las líneas centrales de los apoyos.

Reemplazando los siguientes datos en las ecuaciones 6.61 y 6.62 se tiene:


$$P = 40.29 \text{ Kg} + 34.5 \text{ Kg} + 17.58 \text{ Kg} = 92.37 \text{ Kg}.$$

L = 1.5 m

F = 20

Figura 6-8: Pórtico fijo con carga concentrada en el centro. **Fuente:** Valencia Alvaro.

Figura 6-9: Momentos de una carga concentrada en el centro. **Fuente:** Valencia Alvaro.

$$M1 = M4 = \frac{3 \times 92.37 \, Kg \times 1.5m}{4 \times 20} = 5.431 \, Kg. m$$

$$M2 = M3 = -\frac{3 \times 92.37 \, kg \times 1.5 \, m}{2 \times 20} = -10.39 \, Kg.m$$

El momento de diseño se obtendrá con la carga concentrada en el punto medio de la viga horizontal, se diseña con la ecuación 6.62.

$$Mx = \frac{PX}{2} + M_2$$

Ecuación 6.63

Dónde:

P = Carga concentrada.

x = Distancia al centro de la viga horizontal.

Mx = Momento de diseño.

 M_2 = Momento de flexión en la sección 2.

Reemplazando los siguientes datos en la ecuación 6.63 se tiene:

$$P = 92.37 \text{ Kg}.$$

$$X = 0.75 \text{ m}$$

$$M_2 = -10.39 \, Kg. \, m$$

$$Mx = \frac{92.37 \, kg \, x \, 0.75 \, m}{2} + (-10.39 \, Kg. \, m)$$

$$Mx = 24.24 \ kg.m$$

6.7.20. Cálculo de reacciones.

Las reacciones horizontales en los puntos 1 y 4 son los mismos por lo que se aplica la ecuación 6.63.

$$H_1 = H_4 = \frac{3M_1}{h}$$

Ecuación 6.64

Dónde:

Hn= Componente horizontal de la reacción de la estructura de la sección n.

M₁= Momento de flexión en la sección 1.

h = Dimensiones del eje vertical.

Reemplazando los siguientes datos en la ecuación 6.64 se tiene:

 $M_1 = 5.431 \, Kg. \, m$

h = 2.00 m

$$H_1 = H_4 = \frac{3 \times 5.43}{2} = 8.145 \, Kg$$

Las reacciones verticales en los puntos 1 y 4 se obtienen por medio de la ecuación 6.65.

$$V_1 = V_4 = \frac{P}{2}$$

Ecuación 6.65

Dónde:

Vn = Componente vertical de las reacciones de la estructura de la sección n.

P = Carga concentrada.

Reemplazando el valor de P en la ecuación 6.65 se tiene:

P = 92.37 Kg.

$$V_1 = V_4 = \frac{92.37 \, Kg}{2} = 46.185 \, kg$$

6.7.21. Cálculo de esfuerzos máximos.

El esfuerzo máximo que soporta la viga horizontal se calcula por medio de la siguiente ecuación 6.66.

$$\sigma = \frac{Mx}{Z}$$

Ecuación 6.66

Dónde:

 σ = Esfuerzo máximo que soporta la viga horizontal.

S = Z = Módulo de sección del eje X.

Mx = Momento de diseño.

Reemplazando los siguientes datos en la ecuación 6.63 se tiene:

$$M_x = 24.24 \ kg. \ m = 1454.4 \ Kg.cm$$

$$Z = 5.65 \text{ cm}^3$$
. Anexó E8

$$\sigma = \frac{1454.4 \text{ Kg. cm}}{5.65 \text{ cm}^3} = 257.41 \frac{kg}{cm^2}$$

6.7.22. Cálculo de columna recta.

a) Longitud efectiva.

La manera en que se apoyan ambos extremos de la columna afecta la longitud efectiva de la misma, se define son la ecuación 6.67.

$$L_e = K \times L$$

Ecuación 6.67

Dónde:

Le = Longitud efectiva.

K = Constante práctica de fijación de los extremos.

L = Arco entre las líneas centrales de los apoyos.

Reemplazando los siguientes valores en la ecuación 6.67 se tiene:

K = 2.10. Figura 2-21.

L = 2.00 m.

$$L_e = 2.10 \ m \ x \ 2.1 = 4,41 \ m$$

d) Razón de esbeltez.

La razón de esbeltez es la relación de la longitud efectiva de la columna con su radio de giro mínimo, esto se indica en la ecuación 6.68

Razon de esbeltez =
$$\frac{L_e}{r \min} = \frac{L_e}{r y}$$

Ecuación 6.68

Reemplazando los siguientes valores en la ecuación 6.68 se tiene:

Le = 4.41 m.

ry = 0.148 m

Razon de esbeltez =
$$\frac{4.41 \text{ m}}{0.148 \text{ m}}$$
 = 29.79 \leq 200 Norma AISC

e) Razón de transición de esbeltez.

La razón de transición de esbeltez o constante de columna Cc se define con la ecuación 6.69.

$$C_c = \sqrt{\frac{2\,\pi^2 x\,E}{S_y}}$$

Ecuación 6.69

Dónde:

Cc = Constante de columna.

Sy = Resistencia a la fluencia del acero.

 $E = M\acute{o}dulo de elasticidad del tubo rectangular (50 x 60 x 2)$

Reemplazando los siguientes valores en la ecuación 6.69 se tiene:

$$E = 2.2 \times 10^6 \text{ Kg/cm}^2$$

$$Sy = 2536 \text{ Kg/cm}^2$$

$$C_c = \sqrt{\frac{2 \pi^2 x (2.2 \times 10^6 \frac{Kg}{cm^2})}{2536 \frac{Kg}{cm^2}}} = 130,85$$

Debido a que Razón de delgadez es mayor que la Razón de transición de esbeltez se trata de una columna larga.

f) Análisis de Columna Larga.

Para el análisis de columnas largas se emplea la fórmula de Euler como se indica en la ecuación 6.70.

$$Per = \frac{\pi^2 xE x I}{(K x L)^2}$$

Ecuación 6.70

Dónde:

Per = Carga crítica a la cual la columna empezará a pandearse.

E = Módulo de elasticidad.

I = Momento de inercia para el tubo rectangular (50 x 60 x 2). Anexo E8

K = Constante práctica de fijación de los extremos.

L = Arco entre las líneas centrales de los apoyos.

Reemplazando los siguientes valores en la ecuación 6.70 se tiene:

$$E = 2.2 \times 10^6 \text{ Kg/cm}^2$$

$$I = 18.39 \text{ cm}^4$$

K = 2.10. Figura 2-21.

L = 200 cm

$$Per = \frac{\pi^2 x \left(2.2 \times 10^6 \frac{Kg}{cm^2}\right) x \ 18.39 \ cm^4}{(2.10 \ x \ 200 \ cm)^2} = 2263.63 \ Kg$$

La falla se presentará a una carga límite admisible (Pa), el concepto de un factor de diseño (N) se aplica la carga crítica (Per) y no a la resistencia máxima del material (Sy).

$$Pa = \frac{Per}{N}$$

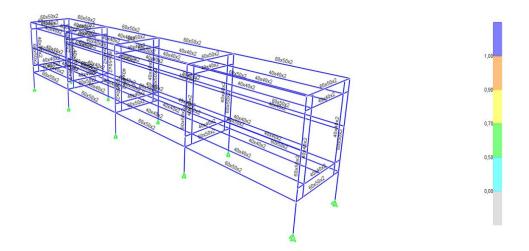
Ecuación 6.71

Para columnas fijas en los extremos con cargas conocidas, se utiliza el factor más bajo de 2, ver Anexo E6.

Per = 1109,04 Kg

N = 2

$$Pa = \frac{2263.63 \, Kg}{2} = 1131.81 \, Kg$$


6.7.23. Análisis estructural mediante software.

Después de determinar las diferentes cargas se procederá a determinar las diferentes combinaciones utilizando el código de diseño AISC-ASD 89.

Carga Muerta – Viva

Carga Muerta - Sismo

Carga Muerta – Viva – Sismo

Figura 6-10: Relación de esfuerzos en la estructura. **Fuente:** Valencia Alvaro.

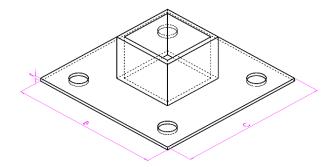
Se analizó las combinaciones antes mencionadas la estructura presenta las cargas y perfiles, determinando un rango aceptable los cuales son: 0,9 a 1

Tubo rectangular (50 x 60 x 2) mm Estructura principal.

Tubo cuadrado (40x2) mm Cámara de polimerización.

Dando como resultado los siguientes valores.

$$Fx = 176, 45 \text{ Kgf}$$
 $Mx = 40,312 \text{ Kgf-m}$


$$Fy = 34,73 \text{ Kgf}$$
 $My = 7,489 \text{ Kgf-m}$

$$Fz = 170,65 \text{ Kgf}$$
 $Mz = 4,476 \text{ Kgf-m}$

6.7.24. Cálculo de placa base

Para el cálculo de la placa base se tomarán los valores máximos de momentos (Mx o My) y de fuerza compresión (Fz).

$$Fz = 170.65 \text{ Kgf}$$
 $Mx = 40.132 \text{ Kgf.m}$

Figura 6-11: Placa base de Cimentación **Fuente:** Valencia Alvaro.

Para el cálculo utilizaremos el Manual de Especificaciones el cual proporciona la siguiente formula:

$$Fp \ge 0.35 \, f'c = \frac{F}{BC} \pm \frac{6M}{BC^2}$$

Ecuación 6.71

Fp Presion unitaria permisible de contacto de cimentación Kgf/m².

f'c Esfuerzo permisible de la cimentación Kgf/m².

F Fuerza axial aplicada Kgf

M Momento máximo Kgf.m

B Ancho de la Placa cm.

C Largo de la Placa cm.

La placa base estará sobre concreto el cual tiene una resistencia permisible de 210 Kgf/cm².Reemplazando estos valores en la ecuación 6.71.

$$Fp \ge 0.35 (210)$$

$$Fp = 73.5 \, Kgf/cm^2$$

Después de varias iteraciones y tomando B=8 cm., se obtiene C=7 cm. Se tomará 5 cm más de estas dimensiones debido a que se tiene espacio suficiente para alojar los pernos, tuercas y arandelas que se usarán para el anclaje, así como, las medidas de las herramientas con que se ajustarán.

$$P = \frac{F}{BC} \pm \frac{6M}{BC^2}$$

Ecuación 6.72

$$P = \frac{170.65 \text{ Kgf}}{0.07 m \times 0.08 m} \pm \frac{6 \times 40.132 \text{ Kgf. m}}{0.07 m \times (0.08 m)^2}$$

$$P = 842.21 \text{ Kgf} / \text{m}^2$$

$$P = -232.75 \text{ Kgf} / \text{m}^2$$

Ahora, el espesor de la placa se calcula con la siguiente ecuación:

$$t = \sqrt{\frac{6M}{Fb}}$$

Ecuación 6.73

Dónde:

t es el espesor de la placa, en cm.

M es el momento real aplicado en la placa, en Kgf-cm.

Fb es el valor permisible del material de la placa, en Kgf/cm².

n = 1 cm Factor de cimentación

Si se considera el ancho de una placa de 1 cm el momento flexionanté en el borde del rectángulo equivalente es:

$$M = P n \frac{n}{2} = P \frac{n^2}{2}$$

Ecuación 6.74

El módulo de sección necesario es:

$$S = \frac{M}{Fb} = \frac{P \, n^2}{2 \, Fb}$$

Ecuación 6.75

Para un acero A36, Fy = 25,31 MKgf/m², por lo que, Fb = $0.75 \cdot \text{Fy}$

El momento de inercia de un rectángulo de 1 cm de ancho y "t" cm de espesor es:

$$I = \frac{1t^3}{12} = \frac{t^3}{12}$$

Ecuación 6.76

El centro de giro c es "t/2"

$$S = \frac{I}{c} = \frac{t^3/12}{t/2} = \frac{t^2}{6}$$

Ecuación 6.77

Igualando las ecuaciones 6.76, 6.77 y reemplazando en la ecuación 6.74.

$$t = \sqrt{\frac{3 P x n^2}{0.75 F y}}$$

$$t = \sqrt{\frac{3 \times 842.21 \frac{\text{Kgf}}{m^2} \times (1 \text{ cm})^2}{0.75 \times 25310 \frac{\text{Kgf}}{m^2}}}$$

6.7.25. Diseño del transportador del producto

El diseño del transportador se la realizo considerando la carga, espacio en el interior del horno.

Figura 6-12: Diagrama Transportador **Fuente:** Valencia Alvaro.

La carga que se necesita para el diseño de cada una de las partes y para la selección de los dispositivos de movimientos se toma en cuenta el peso de la carga neta a transportar y el peso de la cadena.

Figura 6-13: Diagrama Transportador **Fuente:** Valencia Alvaro.

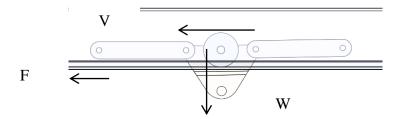
El peso máximo de carga es de 7.2 Kg. en el gancho.

Los diferentes materiales se describen en la siguiente tabla 6-13.

La longitud total de la cadena transportadora que cubre total del horno.

$$Lc = 2 x R x \pi + 2L$$

$$Lc = (2 x 0.75 x \pi + 2x10)m$$


$$Lc = 24.712 m$$

La carga total determinada en la dirección del desplazamiento de la cadena se analizara las fuerzas sometidas sobre el rodamiento que se mueve en el riel del transportador.

Tabla 6-13. Componentes del Transportador

Componente	Material	Densidad	Volumen	Masa	Can.	Total
		gr/mm ³	mm^3	gr		gr
Ganchera	ASTM A	0,01	1218.82	9.57	1	9.57
	36					
Eslabón	ASTM A	0,01	409.73	3.22	4	12.88
	36					
Eje de	Acero	0,01	401.64	3.16	1	3.16
Rodamiento	AISI 1010					
Transportador	ASTM A 36	0,01	6192.75	48.61	1	48.61
Rodamiento				3	2	6
MASA TOTAL (Kg)						0.0802

Fuente: Valencia Alvaro.

Figura 6-14: Diagrama de Fuerzas en el rodamiento **Fuente:** Valencia Alvaro.

v = 1.2 m/seg.

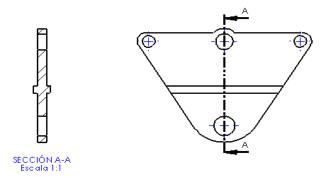
e = 154 mm

 $m_w = 7.2 \text{ kg}$

 $m_t = 7.2 + 0.0802 = 7,28 \text{ Kg}$

$$\Sigma F = m. a$$

Ecuación 6.78


$$W - F = m. \frac{v^2}{e}$$

$$F = m.\frac{v^2}{e} - W = 7.2 \ kg \ x \ 9.8 \frac{m}{seg^2} - \frac{1.2 \frac{m}{seg}}{0.154 \ m} = 62,767 \ N$$

Se determina la carga total.

$$FT = \frac{Lc}{e} x F$$

$$FT = \frac{24,712 m}{0,154 m} \times 62,767 N = 10,07 KN$$

Figura 6-15: Sujetador de Gancho **Fuente:** Valencia Alvaro.

El sujetador del gancho está sometido a esfuerzos combinados: flexión y cortante

$$\sigma t = \frac{1}{2} x \sqrt{\sigma 1^2 + 4 (\tau x y)^2}$$

Ecuación 6.79

Dónde:

 σ 1 Esfuerzo flexiónante normal.

τxy Esfuerzo cortante máximo.

$$\sigma 1 = \frac{M \times c}{I}$$

Ecuación 6.80

Siendo, M el momento máximo; c radio de giro; I inercia de la sección.

$$\sigma 1 = \frac{(Ft \times d) \times (b \times 2)}{\frac{e \cdot b^2}{12}} = \frac{6Ft \times d}{eb^2}$$

$$\sigma 1 = \frac{6(10,07 \, KN) \, x \, 0.01312m}{0.005m \, x \, 0.03394 \, ^2m} = 137,6 \, \frac{MN}{m^2}$$

$$\tau xy = \frac{F}{A}$$

Ecuación 6.81

$$\tau xy = \frac{F}{A} = \frac{F}{b \cdot e}$$

$$\tau xy = \frac{10,07 \, KN}{0.005 \, x \, 0.03394} = 59.34 \, \frac{MN}{m^2}$$

Aplicando la ecuación 6.79

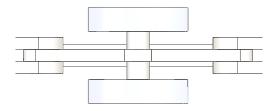
$$\sigma t = \frac{1}{2} x \sqrt{137.6^2 + 4(59.34)^2}$$

$$\sigma t = 90.6 \frac{MN}{m^2}$$

El material seleccionado para el sujetador es de Acero AISI A36 por su tenacidad aplicada a piezas de mediana resistencia. Anexo E7.

Siendo $Sy = 250 \text{ MN/m}^2$ Esfuerzo a la cedencia.

Por consiguiente el factor de seguridad es:


$$n = \frac{Sy}{\sigma t}$$

Ecuación 6.82

$$n = \frac{250}{90.6} = 2,75$$

6.7.26. Eje del rodamiento

Para el diseño del eje del rodamiento se debe tomar en cuenta que está sometido una fuerza combinada: flexión y cortante. Aplicando las ecuaciones para secciones circulares de acuerdo a la Teoría de von Mises.

Figura 6-16: Eje del rodamiento **Fuente:** Valencia Alvaro.

Se tiene

$$\sigma 1 = \frac{M \times c}{I} = \frac{32 M}{\pi \times d^3}$$

$$\sigma 1 = \frac{32 \ x \left(\frac{10.07}{2} \ KN\right) x \ 0,032 \ m}{\pi \ x \ (0,004 \ m)^3}$$

$$\sigma 1 = 102.57 \quad \frac{MN}{m^2}$$

$$\tau xy = \frac{4 x \left(\frac{Ft}{2}\right)}{\pi x d^2}$$

$$\tau xy = \frac{4 x \left(\frac{5,035 \, KN}{2}\right)}{\pi \, x \left(0,004 \, m\right)^2} = 200.33 \, \frac{MN}{m^2}$$

Aplicando la ecuación 6.79 obtenemos

$$\sigma t = \frac{1}{2} x \sqrt{102.57^2 + 4(200.33)^2}$$

$$\sigma t = 206.79 \frac{MN}{m^2}$$

El material seleccionado para el eje del rodamiento es de acero para maquinaria IVAN BOHMAN AISI 4140 por su tenacidad aplicada a piezas de mediana resistencia. Anexo E7.

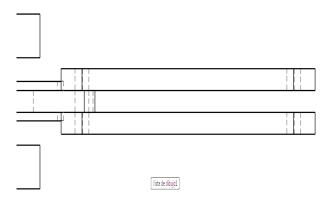
Siendo $Sy = 686 \text{ MN/m}^2$ Esfuerzo a la cedencia.

Por consiguiente el factor de seguridad es:

$$n = \frac{686}{206.79} = 3{,}317$$

6.7.27. Eje del pasador

El eje del pasador está sometido a un esfuerzo cortante .Aplicando la ecuación 6.81 Se obtiene:


$$\tau xy = \frac{4 x \left(\frac{Ft}{2}\right)}{\pi x d^2}$$

$$\tau xy = \frac{4 \, x \, (\frac{5,035}{2})}{\pi \, x \, 0,0066 \, m^2} = 73.58 \frac{MN}{m^2}$$

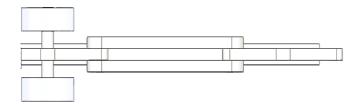
Aplicando la ecuación 6.81 obtenemos:

$$\sigma t = \tau x y \qquad \qquad \sigma 1 = 0$$

$$\sigma t = 73.580 \quad \frac{MN}{m^2}$$

Figura 6-17: Pasador de Cadena. **Fuente:** Valencia Alvaro.

El material seleccionado para el sujetador es de Acero AISI 1018 por su tenacidad aplicada a piezas de mediana resistencia. Anexo E7.


Siendo $Sy = 303.8 \text{ MN/m}^2 \text{ Esfuerzo a la cedencia.}$

Por consiguiente el factor de seguridad es:

$$n = \frac{303,8}{73,58} = 4,128$$

6.7.28. Eje del pasador y eslabón

La sección critica para el pasador y el eslabón es el mismo ya que el esfuerzo cortante actúa en las dos partes.

Figura 6-18: Eslabón y Pasador. **Fuente:** Valencia Alvaro.

$$\tau xy = \frac{Ft/2}{A}$$

$$A = (D - d)x \ 2e$$

$$A = (0.009 - 0.0066)x \ 2(0.005)$$

$$A = 0.024 \ x \ 10E - 3 \ m^2$$

$$\tau xy = \frac{5.035 \ KN}{0.024 \ x \ 10E - 3 \ m^2} = 209.791 \ KN/m^2$$

Aplicando la ecuación 6.81 obtenemos:

$$\sigma t = \tau xy$$

$$\sigma 1 = 0$$

$$\sigma t = 209.791 \quad \frac{MN}{m^2}$$

El material seleccionado para el eslabón y sujetador es de Acero ASTM A36. Anexo $E7.Siendo\ Sy = 250\ MN/m^2\ Esfuerzo\ a la cedencia.$

Por consiguiente el factor de seguridad es:

$$n = \frac{250}{209.791} = 1,191$$

6.7.29. Selección del rodamiento

Para la selección se debe tomar en cuenta que este va estar siempre en movimiento (0,4 a 2,2 m/seg) y con una carga radial

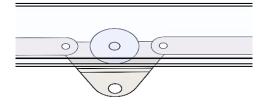


Figura 6-19: Rodamiento. Fuente: Valencia Alvaro.

$$v = 2.2 \text{ m/min}$$

d = 0,030 m, asumido

$$W = \frac{v}{\pi x d} = \frac{2.2 \, m/min}{\pi \, x \, 0.030 \, m} = 23.342 \, rpm$$

Capacidad de carga del rodamiento

$$C = P \sqrt[a]{\frac{Lh \, x \, n \, x \, 60}{10^6 \, x \, a1 \, x \, a2 \, x \, a3}}$$

Ecuación 6.83

Dónde:

P Capacidad de carga máxima, KN.

L_h Vida nominal.

n = velocidad en rpm.

al factor de probabilidad de fallo.

a2 factor de material.

a3 factor de condiciones de servicio.

a=3, para cojinetes de bolas (10/3, para cojinetes de rodillo, cilíndrico y cónico).

Valores de orientación para fl y valores usuales de cálculo:

fl = 4,5 hornos giratorios, catálogo de la FAG siendo la ecuación

$$fl = \sqrt[3]{\frac{Lh}{500}}$$

Ecuación 6.84

Despejando Lh tenemos:

$$Lh = fl^3x 500$$

$$Lh = 4.5^{3}x 500$$

$$Lh = 45562,5$$

a1 factor de probabilidad de fallo.

Se toma un 10 % de probabilidad de fallo. Siendo a1 = 1

Factor a2 de material

Con el factor a2 se tienen en cuenta las características del material y del tratamiento térmico. Siendo a2 = 1

Factor a3 de condiciones de servicio

El factor a3 tiene en cuenta las condiciones de servicio, sobre todo las condiciones de lubricación a velocidad y temperatura de servicio. Siendo a3 = 1,5

Reemplazando los valores en la ecuación 6.83.

C = 15 x 10⁻³ KN
$$\sqrt[3]{\frac{45562,5 \times 23,342 \times 60}{10^6 \times 1 \times 1,5}}$$

$$C = 0.243 \text{ KN} = 1 \text{ KN}$$

Determinando la carga total se divide para el numero de rodamientos en este caso es 2 obteniendo C= 0,5 KN.

Calculado la carga se ingresa al Catálogo de rodamientos de la FAG, seleccionando una carga dinámica menor o igual a la determinada, designación 624. Anexó E8.

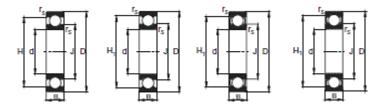


Tabla 6-14: Característica del rodamiento.

Diámetro Interno (d)	Diámetro Externo (D)	Ancho del Rodamiento (B)	Carga Dinámica	Peso
4 mm	13 mm	5 mm	1,29 KN	0,003 kg

Fuente: Valencia Alvaro.

$$fs *= \frac{Co}{Po *}$$

Ecuación 6.85

fs* factor de esfuerzos estáticos

Co capacidad de carga estática

Po* carga equivalente del rodamiento [kN],

$$fs *= \frac{0.49 \, KN}{15 \, x \, 10^{-3} \, KN}$$

fs * = $1,5 \dots 2,5$ para exigencias elevadas

Ratio de viscosidad k

$$k = k1 + k2$$

Ecuación 6.86

El valor K1 puede tomarse del diagrama superior de esta página en función del tipo de rodamiento y del factor de esfuerzos estáticos fs*.

K1 = 0; ya que los parámetros de fs del rodamiento no se encuentra en el rango.

K2 depende del ratio de viscosidad k y del factor fs.*

K2 = 0; ya que los parámetros de fs del rodamiento no se encuentra en el rango

El diámetro medio (D + d)/2

$$dm = \frac{13+4}{2} = 8.5$$

Ecuación 6.87

Se determina k con la siguiente ecuación.

$$\kappa = \frac{v}{v1}$$

Ecuación 6.88

Para el cálculo del ratio de viscosidad se utilza la siguiente ecuación.

$$\kappa = \left(\frac{1000}{n}\right)^{1/3}$$

Ecuación 6.89

n revoluciones por minuto

Reemplazando en la ecuación se obtiene.

$$\kappa = \left(\frac{1000}{23}\right)^{1/3} = 3.51$$

Siendo

v viscosidad de servicio del lubricante en el área de contacto de rodadura

$$v = k \frac{4500}{\sqrt{n \, dm}}$$

Ecuación 6.90

Reemplazando en la ecuación se obtiene.

$$v = 3.51 \, \frac{4500}{\sqrt{23 \, x \, 8.5}} = 1129.65$$

v1 viscosidad relativa en función del diámetro y la velocidad.

$$v = \frac{4500}{\sqrt{fv}}$$

Ecuación 6.91

Siendo fv factor de velocidad, reemplazando en la ecuación se obtiene.

$$v = \frac{4500}{\sqrt{25 \times 8.5}} = 308.69$$

Vida ampliada Lhna.

Lh = a1 x a2 x a3
$$\left(\frac{C}{P}\right)^3 \frac{10^6}{n \times 60}$$

Ecuación 6.92

al factor de probabilidad de fallo.

a2 factor de material.

a3 factor de condiciones de servicio.

C capacidad de carga dinámica.

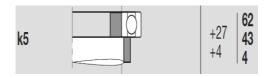
P capacidad de carga estática

n revoluciones por minuto

Reemplazando los valores se obtiene.

Lh = 1 x 1 x 1
$$\left(\frac{1.29}{0.49}\right)^3 \frac{10^6}{23 \times 60} = 132221.4 h$$

a) Selección de lubricación del rodamiento.


La selección de la lubricación del rodamiento depende del funcionamiento y la temperatura de 180°C se contempla en el catálogo de la FAG.

La selección se la realizo con grasa especial temperatura 200 KFK2U-40 DIN 5 1825. Es especialmente adecuada para aplicaciones que funcionan a temperaturas extremadamente altas desde -40 °C hasta 260 °C.

b) Ajuste al eje.

El ajuste se lo realizo con el catálogo de la FAG siendo K5 ajuste fijo teniendo una tolerancia en micras (0,001um) al eje.

Diferencia del agujero al rodamiento +4, +27

Figura 6-20: Ajuste del eje. **Fuente:** Catalogo de la FAG.

6.7.30. Selección de cadena - catalina

Este sistema de cadena - catalina permite transmitir el movimiento de los productos dentro del interior del horno.

La cadena de la empresa Ecuamatriz S.A tiene las siguientes características:

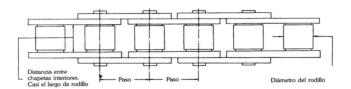


Figura 6-21: Cadena. Fuente: Robert Mott.

Tabla 6-15. Características de la cadena

Numero de Cadena	Paso (mm)	Ancho (mm)
ANSI 80	25,40	15,88

Fuente: Valencia Alvaro.

Se recomienda que el número mínimo de dientes de la catalina más pequeño de una transmisión por cadena sea:

N diente = 12 baja velocidad

N dientes = 17 media velocidad

N dientes = 21 alta velocidad

a) Selección de la Catalina

> El diámetro primitivo Dp se calcula mediante la fórmula:

$$Dp = \frac{P}{sen \frac{180}{N}}$$

Ecuación 6.93

$$Dp = \frac{25,40}{sen \frac{180}{12}} = 0,09466 m$$

➤ El diámetro exterior De tiene los siguientes valores:

$$De = Dp + 0.85 d$$

Ecuación 6.94

$$De = 94,66 + 0,85 (15,88) = 0,108 m$$

> El diámetro interior

$$Df = Dp - d$$

Ecuación 6.95

$$Df = 94,66 - 15,88 = 0,07878 m$$

> El ancho de diente

$$L = 0.91 b$$

Ecuación 6.96

$$L = 0.91 \times 15.87 = 0.0144 m$$

> El ancho extremo diente

$$I = 0.65 b$$

Ecuación 6.97

$$I = 0.65 \times 15.87 = 0.012 m$$

La lubricación para la cadena ya que está expuesta se recomienda un engrase normal y mantenimiento regular.

6.7.31. Selección del variador de velocidad

Para la selección de motor reductor se debe tomaren cuenta la velocidad de transporte $v=1,2\ m/min=20\ rpm$

El factor de servicio para transporte con más de 10 horas de servicio por día: Sf = 1,25

El torque normal se determina:

$$T = \frac{dp}{2}xFT$$

Ecuación 6.98

$$T = \frac{0.108 \, m}{2} x \, 10070 \, \text{N} = 543.78 \, \text{N. m}$$

$$T = 543.78 \text{ N. m}$$

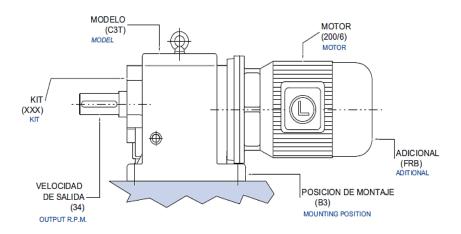
La potencia del motor es:

$$H = \frac{FT \ x \ \pi \ x \ dp \ x \ n}{60000} x \ Sf$$

Ecuación 6.99

Dónde:

Wt Carga transmitida


- dp diámetro de contacto
- n Velocidad en RPM
- Sf Factor de Servicio

$$H = \frac{10070 \text{ N. m } x \pi x 0,0144 m x 20 rpm}{60000} x 1,25$$

$$H = 0.189 W = 1 HP$$

Para la selección del motor reductor se utiliza un Catálogo LENTAX.

Por la configuración del horno seleccionamos un motor reductor tipo U.

Figura 6-22: Motor Reductor. **Fuente:** Valencia Alvaro.

Tabla 6-16. Características del motor reductor.

DATOS TÉCNICOS							
Potencia de Entrada RPMVelocidad Velocidad de Relación Salida RPMRelación Modelo Relación Relación Relación Relación Relación Relación Relación Fac.SMomento Útil							
0.189W 1HP	1,9	727,88	C6HR	4,00	1,00	13951	

6.7.32. Sistema de control

En el equipo de regulación de temperatura se distinguen tres elementos fundaméntales:

- El aparato de medición y control, el cual envía una señal de actuación.
- ➤ El detector propiamente dicho (termopar)
- ➤ El órgano regulador, el cual recibe la señal del anterior y actúa, sobre la entrada de corriente en los hornos calentados eléctricamente.

6.7.33. Órgano de medición y control XMTG

En este caso se ha escogido un aparato de medición que cae en el grupo de los de amplificación electrónica.

Se trata de un controlador de temperatura analógico XMTG, los detalles de funcionamiento y conexión de este controlador se encuentran en los planos.

Figura 6-23: Controlador de temperatura. **Fuente:** Valencia Alvaro.

6.7.34. Selección de la termocupla

El dimensionamiento de la termocupla se lo hace mediante recomendaciones técnicas que vienen dadas por el órgano controlador de temperatura, el cual nos recomienda utilizar una termocupla tipo J para la entrada de la señal, el valor de mili voltaje generado por la termocupla está dentro de un rango de 4mV a 20 mV.

Según nos indica los valores más aproximados corresponde a una termocupla tipo J, con un mili voltaje de 12.23mV, y una temperatura de 438.8 °F.

Se observa claramente que los valores dados son similares con los valores que tenemos como datos.

El tipo de termocupla calculado coincide con la termocupla que nos recomienda el fabricante del controlador de temperatura XMTG.

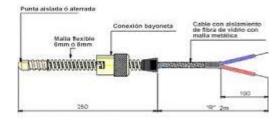


Figura 6-24: Termocupla. Fuente: Valencia Alvaro.

6.7.35. Selección del contactor

Para elegir el contactor que más se ajusta a nuestras necesidades, se debe tener en cuenta los siguientes criterios:

Datos de la bobina del contactor:

> Tipo de corriente: Corriente altera

➤ Voltaje de alimentación: 220 V.

Frecuencia: 60 Hz.

➤ Potencia nominal de la carga: (2.2 KW).

Condiciones de servicio: Existen maniobras que modifican la corriente de arranque y de corte.

Por la categoría de servicio: AC1, (carga puramente resistiva, para calefacción eléctrica).

Tipo de corriente (alterna), tensión de alimentación de la bobina (220 V) y 60 Hz. de frecuencia.

Potencia nominal de la carga (1/2 HP).

Condiciones de servicio: Existen maniobras que modifican la corriente de arranque y de corte. En nuestro caso el servicio es normal.

Si es para el circuito de potencia, los contactos deberán soporta 2 A. Y el número de contactos auxiliares los necesarios.

Por la categoría de empleo AC2, (motor sincrónico).

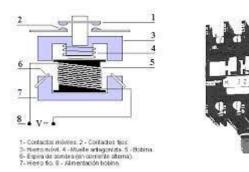


Figura 6-25: Contactor. Fuente: Valencia Alvaro.

6.7.36. Relé térmico

Este tipo de protección se la dimensionará casi de forma similar a la del contactor, tomando como referencia la corriente que circula por los elementos. Estos elementos cuentan con un contacto normalmente cerrado y otro normalmente abierto, el que nosotros utilizaremos en ambos casos es el contacto NC. Este contacto cumple la función de abrir el circuito de mando si este detecta una sobre corriente en las resistencias o en el motor del ventilador.

El rango que utilizaremos para la protección térmica de las resistencias es de 6 - 9.5 Amperios, mientras que la protección térmica del motor del ventilador lo aremos con un rango de 2.4-5 amperios. Estos valores lo obtenemos de la tabla 6.17. La cual nos da el tipo de relé térmico que se debe utilizar.

Figura 6-26: Relés térmicos. Fuente: Valencia Alvaro.

Tabla 6-17. Campos de reglaje de los relés térmicos

Tipo	Campo de	Tipo	Campo de	Tipo	Campo de
	reglaje (A).		reglaje (A).		reglaje (A).
CT 3-0.16 A	0.1-0.16	CT 3-12.5 A	8.5-12.5	CT 1-90 A	70-90
CT 324 A	0.15-0.24	CT 3-16 A	12-16	CT 1-100 A	65-100
CT 3-0.38 A	0.24-0.38	CT 3-23 A	16-23	CT 1-145 A	90-145
CT 3-0.62 A	0.38-0.62	CT 3-32 A	23-32	CT 1-150 A	100-150
CT 3-1 A	0.62-1	CT 3-42-32 A	25-32	CT 1-200 A	140-200
CT 3-1.6 A	1-1.6	CT 3-42 A	32-42	CT 1-290 A	180-290
CT 3-2.5 A	1.6-2.5	CT 3-52 A	40-52	CT 1-400 A	275-400
CT 3-4 A	2.5-4	CT 3-60 A	52-60	CT 1-500 A	320-500
CT 3-6 A	3.8-6	CT 3-64 A	58-64	CT 1-800 A	500-800
CT 3-9.5 A	6-9.5	CT 3-72 A	64-72.5	CT 1-1250 A	780-1250

6.7.48. Elementos de mando y señalización

Los elementos de mando utilizados en el horno son:

- ➤ Pulsador de color rojo de contactos normalmente cerrados (1,2), para el apagado del horno, con una capacidad de corriente de 10 A, y un voltaje de 500 V.
- ➤ Pulsador de color verde de contactos normalmente abiertos (3,4), para el encendido del horno, con una capacidad de corriente de 10 A, y un voltaje de 500 V.
- ➤ Luces piloto de de 220V, 10W, de color rojo, verde y azul, la luz verde indica el correcto encendido del horno, la luz azul indica el encendido y apagado del banco de resistencias, y la luz roja indicará si el horno no está funcionando correctamente.

Figura 6-27: Mando. Fuente: Valencia Alvaro.

6.7.37. Selección del cable eléctrico

Esta selección está en función de la máxima cantidad de corriente que el conductor puede transportar.

La alimentación de los elementos de resistencia y el motor del ventilador están por medio de tres cables Nº 10 AWG, que son suficiente para la corriente que necesitan estos elementos. Para el circuito de control se utiliza un alambre flexible Nº 18 AWG.

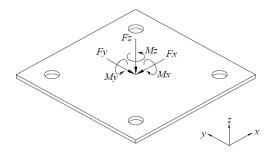

Para la alimentación de energía eléctrica en todo el sistema del horno utilizamos un enchufe trifásico de una capacidad de 30A, 500 V.

Figura 6-28: Cable. Fuente: Valencia Alvaro.

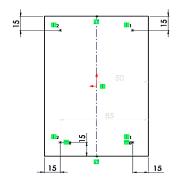
6.7.38. Diseño de los pernos de anclaje de la estructura

Determinando los esfuerzos cortantes y momentos máximos al desplegar se obtiene los siguientes datos de la figura 6-29:

Figura 6-29: Fuerzas y Momentos en la placa base. **Fuente:** Valencia Alvaro.

Para el cálculo del momento resultante se calcula por medio de la siguiente ecuación.

$$Mr = \sqrt{Mx^2 + My^2}$$


Ecuación 6.100

$$Mr = \sqrt{(40,312 \ Kgf.m)^2 + (7,489Kgf.m)^2} = 41,00 \ Kgf.m$$

Para detrminar las fuerzas de traccion sobre los pernos A,B,C,D se realiza la sumatoria de momentos en los puntos

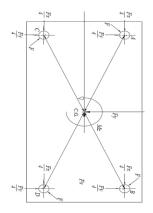
$$\sum Mp = 0$$

$$Mr = 80 F_A + 80 F_B + 15 F_C + 15 F_D + 50 F_Z$$

Figura 6-30: Distancias de pernos. **Fuente:** Valencia Alvaro.

De la figura 6-29, se observa que $F_A = F_B \ y \ F_C = F_{D}$;

$$F_A = \frac{80}{15} \ F_C = 5.33 F_C$$


$$Mr = 2 (80 F_A) + 2(15 F_C) + 50 F_Z$$

$$41\,Kgf.\,m = 2\,(80\,x\,5.33\,F_C\,) + 2(15\,F_C) + 50\,x\,170.65\,Kgf$$

$$F_C = 36,77 \, Kgf = F_D$$

$$F_A = 195,73 \, Kgf = F_B$$

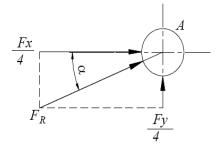

De acuerdo a éstos resultados se determina que los pernos sometidos a mayor tracción son: A y B.

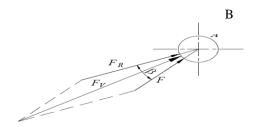
Figura 6-31: Equilibrio de las fuerzas y el momento en el plano de corte. **Fuente:** Valencia Alvaro.

Por medio de la figura 6-32 se determina la fuerza cortante, momento eje z sobre los pernos de anclaje.

La fuerza resultante por las componentes en el eje x e y sobre el perno es:

Figura 6-32: Diagrama de la fuerza de corte resultante para el perno *A*. **Fuente:** Valencia Alvaro.

$$F_R = \sqrt{\left(\frac{F_x}{4}\right)^2 + \left(\frac{F_y}{4}\right)^2}$$


Ecuación 6.101

$$F_R = \sqrt{\left(\frac{176,45 \, Kgf}{4}\right)^2 + \left(\frac{34,73 \, Kgf}{4}\right)^2}$$

$$F_R = 44,95 \ Kgf$$

$$\propto = arctg \frac{\frac{F_y}{4}}{\frac{F_x}{4}} = arctg \frac{F_y}{F_x} = \frac{34,73}{176,45}$$

∝= 11,13°

Figura 6-33: Diagrama de la fuerza de corte resultante para el perno *A*. **Fuente:** Valencia Alvaro.

$$\beta = 90 - 34,22 - \alpha$$

$$\beta = 90 - 34,22 - 11,3 = 44,36$$

Aplicando la ley de cósenos se obtiene:

$$F_V = \sqrt{FR^2 + F^2 + 2FR \times F \times \cos \beta}$$

Ecuación 6.102

Se realiza la sumatoria de momentos en el centro de gravedad obteniendo la dirección y el valor de la fuerza resultante aplicado en el perno B.

$$\sum M_{CG} = 0$$

$$M_Z - 4 F (0.91 m) = 0$$
185

$$F = \frac{Mz}{3.64 m} = \frac{4,476 \, Kgf.m}{3.64 \, m} = 1.23 \, Kgf$$

Reemplazando en la ecuación 6.94 la fuerza cortante es:

$$F_V = \sqrt{44,95 \, Kgf^2 + 1.23 \, Kgf^2 + 2 \, x \, 44,95 \, Kgf \, x \, 1.23 \, Kgf \, x \, Cos \, 44,36}$$

$$F_{V} = 45,84 \, Kgf$$

Los esfuerzos axiales y cortantes respectivamente son:

$$\sigma_1 = \frac{F_A}{At}$$
 \Longrightarrow $\sigma_1 = \frac{195,73 \, Kgf}{At}$

$$\tau_{xy} = \frac{F_V}{At} \qquad \Longrightarrow \qquad \tau_{xy} = \frac{45,84 \, Kgf}{At}$$

Aplicando el esfuerzo equivalente de la ecuación 6-49.

$$\sigma_e = \sqrt{\sigma_1^2 + 4 \tau_{xy}^2}$$

$$\sigma_e = \sqrt{\left(\frac{195,73 \, Kgf}{At}\right)^2 + 4 \, \left(\frac{45,84 \, Kgf}{At}\right)^2}$$

$$\sigma_e = \frac{216,\!13\,Kgf}{At}$$

El esfuerzo de prueba del perno, se obtiene por:

$$\frac{Sp}{n} = \sigma_e = \frac{216,13 \, Kgf}{At}$$

Dónde:

Sp Es el esfuerzo de prueba del perno, Kgf/m².

n Es el factor de seguridad, adimensional.

Para el esfuerzo de prueba utilizamos un perno normal ASME Grado 2, de bajo contenido de carbono rosca gruesa, $Sp = 40.8 \text{ MKgf/m}^2 \text{ y un factor de seguridad}$ 2,5

$$At = \frac{2.5 \times 216,13 \, Kgf}{40.8 \, \frac{MKgf}{m^m}} = 1.32 \times 10E - 5 \, m^2$$

$$d = \sqrt{\frac{4 At}{\pi}} = \sqrt{\frac{4 \times 1.32 \times 10E - 5 m^2}{\pi}} = 4.10 \times 10^{-3} m = 4.10 mm$$

Determinando el diámetro se elige un perno comercial 1/4 x 2" UNC.

6.8 ADMINISTRACIÓN

Los costos no se pueden predecir con absoluta certeza pero nos dan una información confiable y de base útil para la planeación, control, y toma de decisiones administrativas.

6.8.1 Costos directos.

Son los valores por concepto de material, de mano de obra y de gastos, correspondientes directamente a la fabricación o producción del horno eléctrico.

Tabla 6-18 . Costos Directos

			PRECIO
DENOMINACIÓN	DIMENSIONES	CANTIDAD	(USD)
Plancha de Tol	2440x1220x0,9	15	1200
Plancha de Tol galvanizado	2240x1220x0,7	4	500

TOT	20900		
Imprevistos			5000
Electrodos	6013	100	100
Electrodos	6011	100	100
Transportador		1	1200
Ventilador		2	650
del Horno		1	2500
Sistema Eléctrico de Encendido			
Termocupla		4	1200
Tablero de Control		1	5000
Remaches	3/16 x 1"	100	10
Pernos	5/16x3/4"	10	4
Pernos	1/2 x 2"	20	20
Tubo Cuadrado	30x2	6	500
Tubo Cuadrado	20x2	4	120
Tubo Cuadrado	50x2 mm	10	500
Tubo Rectangular	50x60x2 mm	10	800
térmico Fiber Glass	1219 x 1 1/2 "	2	1500
Plancha de Aislante			

6.8.2 Costos indirectos.

Los costos indirectos incluyen todo aquello gastos correspondientes a la utilización de maquinaria, el costo de mano de obra, entre otros gastos que no se ven reflejados directamente en la construcción pero que fueron necesarios para la misma.

Tabla 6-19. Costos Indirectos

	HORAS	
DENOMINACIÓN	EMPLEADAS	PRECIO(USD)
Dobladora	20	30
Suelda MIG	50	80
Suelda Eléctrica	10	15
Torno	5	10
Taladro de Pedestal	10	15
Troquel	4	10
Esmeril	10	5
Guillotina	6	10
Compresor	20	25
Remachado	25	10
Fresadora	20	40
Otros	36	250
TOTAL	1	500

6.8.3 Mano de obra.

Es el costo por el personal que transforman la materia prima en el producto final pasando por muchos procesos con trabajos directos e indirectos; en resumen la mano de obra es aquel esfuerzo aportado en proceso de fabricación que debe ser valorado en todo.

Tabla 6-20. Mano de Obra

PERSONAL	HORAS EMPLEADAS	PRECIO(USD)
Soldador	100	560
Ayudantes	150	500
Pintor	36	400
Eléctrico	24	200
Técnico	30	400
	2060	

6.8.4 Costos varios.

Son todos aquellos costos de actividades paralelas y no directas necesarias para la realización del bien.

Tabla 6-21. Administración de la tesis

DETALLES	CANTIDAD	PRECIO(USD)
Resmas de hojas	4	20
Impresiones	1000	200
Impresión de planos formato A0	10	18
Impresión de planos formato A4	10	10
Copias	50	7,5
Anillados	4	15
Empastados	3	50
Horas de internet	300	300
Transporte	500	500
TOTAL		1120.5

Fuente: Valencia Alvaro.

6.8.5 Costo total de la construcción del horno y del estudio realizado

El costo total de la construcción del horno se suma los costó directos e indirectos mano de obra y el estudio realizado de la tesis.

COSTO TOTAL(USD) 25000 dólares americanos

6.8.6 Calculo del VAN y TIR

También conocido como valor actualizado neto o valor presente neto, cuyo acrónimo es VAN.

La tasa interna de retorno (TIR) es una tasa de rendimiento utilizada en el presupuesto de capital para medir y comparar la rentabilidad de las inversiones.

Datos para el análisis						
Inversión	mporte 21.947					
Flujo de caja (neto anual)	inversión -21.947	10.535	2 12.890	3 15.763	17.920	5 19.432
2	Cálculo de	el V.A.N. y	la T.I.R.			
Tasa de descuento	10,00%					
V.A.N a cinco años	34.431,82					
T.I.R a cinco años	54,21%					

Fuente: Valencia Alvaro.

6.9 PREVISIÓN DE LA EVALUACIÓN

La presente propuesta debe estar sujeta a un plan de monitoreo y evaluación con el fin de mejorar los resultados obtenidos.

El diseño de la estructura del horno eléctrico de polimerización debe estar en constante monitoreo debido a los posibles cambios en los parámetros de funcionamiento, para lo cual deberá identificarse el parámetro modificado y verificando si este afecta al diseño de la estructura.

Se debe monitorear si en un futuro el horno eléctrico de polimerización no cumpliría otra función, para lo cual deberá identificarse los nuevos factores para el diseño y verificar si estos no afectan al diseño.

6.10 BIBLIOGRAFÍA

- 1. BONIFAZ Palacios, Marcelo E, Mejoramiento del subproceso de pintura electrostática, Quito/ EPN.
- 2. BRASSO, Jorge (2006). Lussol Pinturas. Boletín Nº 1.
- 3. CASTELLOT, Fernández, A, La Fosfatización anticorrosivo, base adherente para las pinturas. Para la deformación en frío de los metales. Barcelona/ España.
- CENGEL BOLES (2002). Transferencia de Calor y Masa. Quinta Edición.
 México.
- 5. CIDEPINT (CIC-CONICET), Centro de Investigación y Desarrollo en Tecnología de Pinturas
- 6. DIPAC productos de acero. (2012). Perfiles. Ambato: Sin editorial.
- 7. DIPAC productos de acero. (2012). Planchas. Ambato: Sin editorial.
- 8. EDWARD G.PITA. Principios y Sistemas de Acondicionamiento de Aire. Segunda Edición. Editorial CECSA
- 9. Fratelli, M. G. (2003). DISEÑO DE ESTRUCTURAS METÁLICAS estados límites LRFD (Primera ed.). Caracas, Venezuela: UNIVE.

- 10. Greswell, R., Pintura en Polvo Electrostática.
- 11. GROOVER, M (1997). Fundamentos de manufactura moderna. Prentice Hall. México.
- 12. HEINZLER, M (1990). Tabellenbuch Metall. Alemania. Editorial Europa.
- 13. INEN, Tratamientos Superficiales y recubrimientos metálicos, definiciones, terminología. Quito/ 1981.
- 14. INEN, Pinturas y productos afines determinación de la densidad, Quito/1983.
- 15. INEN, Pinturas y productos afines determinación de los tiempos de secamiento, Quito/1983.
- 16. IZQUIERDO José María, Tecnología de Recubrimientos en Polvo, Editorial Ingoprint, Barcelona 1990.
- 17. JIJON, Saa, P, Estudio del proceso de Pintura Electrostática. Ecuador/Quito/1986.
- 18. JULIO ASTIGARRAGA URQUIZA. (1998). Hornos Industriales de Resistencias. Editorial Nomos S.A. octubre. Colombia.
- 19. KERN, Donald (1999). Procesos de Transferencia de Calor. Trigésima primera edición. México
- 20. Leontovich, V. (1981). Pórticos y Arcos (Decima segunda ed.). México D.
- 21. F.: COMPAÑIA EDITORIAL CONTINENTAL S. A.
- MOTT, Robert (1996). Mecánica de Fluidos aplicada. Cuarta edición.
 México.
- 23. McCormac. (2006). DISEÑO DE ESTRUCTURAS METÁLICAS (Cuarta ed.). Colombia: Alfaomega.
- 24. Stiopin, P. A. (1968). RESISTENCIA DE MATERIALES. MOSCU: MIR.
- 25. SHINGLEY JOSEPH EDWARD, Diseño en Ingeniería Mecánica, Quinta Edición Editorial. Mc Graw Hill 2007.
- 26. STUDEMAN, Hans, Ensayo de materiales y control de defectos en la industria del metal. Bilbao/ Urmo/ 1979.
- 27. TRINKS, W (2003). Industrial Furnaces. Sexta edición. United States.

- 28. Hojas Técnicas, Pinturas en polvo, WESCO S.A
- 29. http://www.directindustry.es
- 30. http://www.igm.mex.tl/imagesnew2/0/0/0/0/./Pintura%20Electrostatica.pdf
- 31. http://www.dow.com
- 32. http://www.euroinox.org
- 33. http://www.maquinaria.cl/pintura.htm
- 34. http://www.pinturascondor.com
- 35. http://www.vilba.com.ar.
- 36. http://orbita.starmedia.com/~polpin/aplicacion.htm
- 37. http://www.arnum.com
- 38. http://www.asimet.cl/pintura_solida.htm
- 39. http://www.geplastics.com
- 40. http://www.listopop.com.ec
- 41. http://www.metokote.com/spanish/powderCoatingProcessSpecifi cs.asp
- 42. http://www.peninsulacustomcoaters.com

ANEXOS

ANEXO A NORMAS INEN

Anexo A1.Norma INEN 1001

CDU: 667.613 QU 04.05-302

PINT	TURAS Y PRODUCTOS AFINES.	INEN
DET	ERMINACIÓN DE LA DUREZA DE PELICULA.	1 001
MET	ODO DEL LAPIZ	1983-4

1. OBJETO

1.1 Esta norma establece el método de ensayo para determinar la dureza de películas, igualmente la resistencia de la película a la ruptura y al rasgado combinado con la adherencia de la película al substrato.

2. METODOS DE ENSAYO

2.1 Resumen. El lápiz o mina de lápices se pasa por la superficie hasta cuando uno de estos rompa la película de pintura

2.2 Aparatos

22.1 Un juego de lápices de dibujo o minas de lápices con dureza de 7 B hasta B, HB, F y H son considerados estándar.

2.3 Preparación de la muestra

23.1 Se prepara un panel de vidrio o una lámina de acero laminada enfrío, cuyas dimensiones son

190 x 115 x 0,8 mm, previamente limpiado con un disolvente apropiado. El espesar de película seca debe ser de 25,4 μm.

2.4 Procedimiento

- **2.4.1** Tajar los lápices removiendo la madera de la mina desnuda, de modo que se extiendo 6 mm fuera de la madera. Debe tenerse cuidado de no raspar el borde de la mina. Lijar Luego el extremo de la mina perpendicularmente a su eje hasta que esté plano, liso y de sección circular.
- **2.4.2** El lápiz se sostiene firmemente a un ángulo de 45° y se empuja sobre la película en dirección contraria del probador. Mientras el Lápiz es empujado sobre la película de pintura, debe aplicarse suficiente presión hacia abajo para cortar la

película hasta el substrato o hasta aplastar el borde agudo del lápiz. La estría debe tener un mínimo de 6 mm de largo. El proceso se repite usando sucesivamente lápices de diferente dureza, hasta encontrar el lápiz más duro que no produzca estría en la película. La dureza de este lápiz expresa la dureza de la película. Al efectuar la prueba, si el borde agudo de la mina se repone o se aplasta, deberá afilarse nuevamente.

2.5 Informe de resultados

- **25.1** La dureza se reporta como aquella comprendida entre la del primer lápiz que rompe la película y el inmediato anterior.
- **2.5.1.1** El informe deberá tener:
- 2.5.12 Dureza de la pintura,
- **2.5.13** Fecha del ensayo.
- **2.5.1.4** Número de ensayos.
- **2-5.1.5** Identificación del producto, muestra y fabricante.
- **2.5.1.6** Nombre del analista

Anexo A2.Norma INEN 1002

CDU: 667.613	CIIU: 3521
ICS: 87.040	QU 04.05.303

PINTURAS Y PRODUCTOS AFINES.					
DETERMINACIÓN DE LA FLEXIBILIDAD					
MEDIANTE MANDRILES CÓNICOS.					

1. OBJETO

- **1.1** Esta norma establece el método para determinar la flexibilidad y elasticidad de una película de pintura seca aplicada sobre un panel de ensayo que se somete a doblado sobre mandriles cónicos. El ensayo de flexibilidad de pinturas sobre mandril se practica según dos métodos.
- a) Doblado alrededor de mandriles cilíndricos de distintos diámetros.
- b) Doblado alrededor de mandril cónico con radio de curva progresivo.

2. MÉTODO DE ENSAYO

2.1 Resumen.

2.1.1 Preparar un panel con la pintura que debe ensayarse. Colocar en el aparato de mandriles cónicos y proceder a doblarlos.

2.2 Equipos

- 2.2.1 Mandril cónico con radio de curvatura progresivo. Consiste en un cono truncado, rectificado y de acero. Tiene 203 mm de longitud con un diámetro de 3 mm en un extremo y 38 mm de diámetro en el otro. Está sujeto con un soporte montado sobre una placa de base maciza de acero. Esta placa tiene cuatro agujeros para atornillar el aparato a la mesa de trabajo. A un costado del mandril paralelo a la generatriz del cono se encuentra el dispositivo de sujeción de las chapas de ensayo que se compone de una placa con tuercas de mariposa y un tope. El arco doblador, con palanca de mano y presa paneles, está sujeto en el eje del cono.
- 2.2.2 Se utilizan láminas de acero cuyas dimensiones son de aproximadamente 190 mm x 115 mm x 0,8 mm o 290 mm x 115 mm x 0,8 mm. El espesor de la película

seca en una de las caras del panel puede ser de $25,4~\mu m$ o a convenirse entre las partes.

2.3 Procedimiento

- **2.3.1** La determinación debe realizarse por duplicado
- **2.3.2** El recubrimiento aplicado sobre el panel debe tener un espesor uniforme y estar curado.
- **2.3.3** Colocar el rodillo del aparato de modo que el mango del mismo se ubique frente al operador en una posición horizontal.
- **2.3.4** Colocar el panel con la superficie pintada hacia afuera en el canal del aparato, insertar un papel entre la superficie pintada y el rodillo del aparato.
- **2.3.5** Ajustar el panel mediante las tuercas tipo mariposa de modo que el borde del panel esté alineado con el extremo más delgado del mandril cónico.
- **2.3.6** Levantar el mango del rodillo a una velocidad uniforme, girar 180° a fin de doblar el panel aproximadamente 135°, en un tiempo de 15 segundos.

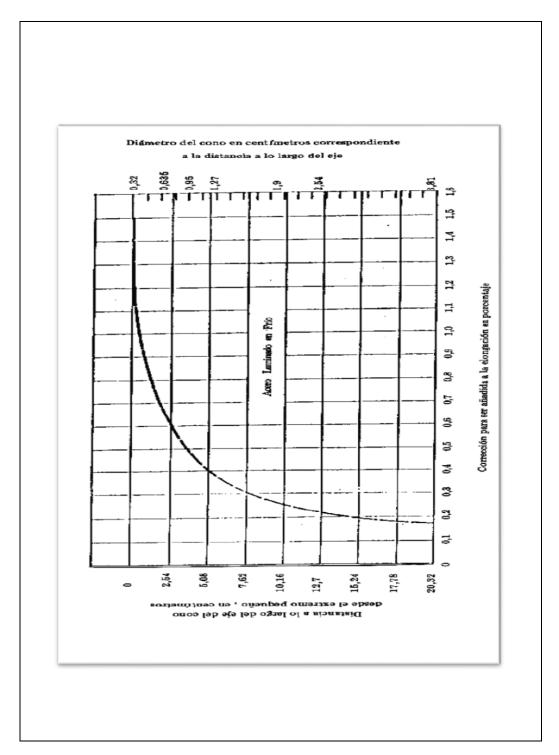
(Continúa)

DESCRIPTORES: pinturas, productos afines, recubrimientos, método de ensayo, flexibilidad.

- **2.3.7** Examinar la superficie doblada del panel a simple vista y observar si se encuentran rajaduras en la superficie recubierta.
- **2.3.8** Determinar y señalar, la rajadura más alejada del extremo pequeño del mandril, indicando la distancia en centímetros a dicho extremo. Esta distancia es usada para calcular la flexibilidad.
- **2.3.9** Para retirar el panel, retornar el mango del rodillo a su posición inicial, aflojar las tuercas y levantar el panel del mandril cónico.

2.4 Cálculos

2.4.1 Determinar la flexibilidad del acabado desde las coordenadas de la curva indicada en la figura 1.


Esta curva representa la relación entre el porcentaje de flexibilidad y el diámetro del mandril cónico para un espesor de 25 µm de recubrimiento. La relación entre la distancia a lo largo del mandril cónico y el correspondiente diámetro ha sido también trazada en esta curva.

- **2.4.2** Ajustar el valor obtenido del porcentaje de flexibilidad de la figura 1 para el espesor del recubrimiento añadiendo el factor de corrección obtenido de la figura 2.
- **2.4.3** Ejemplo: Suponga que la distancia entre el extremo pequeño del mandril y la rajadura más alejada de este extremo es de 75 mm. En la figura 1, determine el porcentaje de flexibilidad para esta distancia, siendo en este ejemplo 5,2 %. Para corregir el valor obtenido debido al espesor del recubrimiento utilice la figura 2. Para la distancia de 75 mm la corrección por 25 μ m de espesor de recubrimiento es 0,3 %. Si en el ejemplo el espesor es de 50 mm, el porcentaje de flexibilidad es de 5,2 + (2 x 0,3) = 5,8 %.

2.5 Informe de resultados

2.5.1 En el informe de resultados debe indicarse:

- **2.5.1.1** El valor de flexibilidad como porcentaje con aproximación de una cifra decimal.
- 2.5.1.2 Tipo, número de la muestra o cualquier otra indicación que la identifique.
- **2.5.1.3** NTE INEN de referencia.
- **2.5.1.4** Fecha de muestreo y ensayo.
- **2.5.1.5** Debe mencionarse, además cualquier condición no especificada en esta norma o considerada como opcional, así como cualquier circunstancia que pueda haber influido sobre el resultado.
- **2.5.1.6** Deben incluirse todos los detalles para la completa identificación de la muestra.

 $\Box \Box \Box \Box \Box$

QU 04.05-306

PINTURAS Y PRODUCTOS AFINES.						
DETERMINACIÓN DEL IMPACTO DIRECTO E						
INVERSO						
INVERSO						

1. OBJETO

CDU: 667.613

1.1 Esta norma establece el método de ensayo para determinar los efectos de la prueba del impacto directo e inverso en pinturas y productos afines.

2. ALCANCE

- **2.1 Impacto directo o cóncavo.** Este método nos permite determinar cuándo se efectúa directamente sobre la superficie del panel que tiene la película de pintura seca, la resistencia al impacto y la fuerza de adhesión de dicha película.
- **2.2 Impacto inverso o convexo**. Si la prueba se efectúa del lado del panel que no tiene la película de pintura, determinará por este método la elasticidad o habilidad de elongación de la película alrededor de la protuberancia hacha por el instrumento bajo las condiciones del impacto.

3. METODOS DE ENSAYO

3.1 Equipo

- **3.1.1** Equipo para prueba de impacto. Este consiste en un soporte circular que sostiene el panel. Un tubo cilíndrico hueco que tiene una escala en centímetros, que va de 0 a 203,2 cm. El tubo cilíndrico que contiene un peso muerto de 1,816 kg puede dejarse caer a la altura deseada, de acuerdo a la escala especificada anteriormente.
- **3.1.2** Panel. Se utiliza un panel laminado en frío, un milímetro de espesor (1 mm) y un espesor de película de pintura seca de 25,4 a 38,1 μm.
- **3.1.3** Soportes circulares. Los soportes circulares pueden ser de varios diámetros; para la prueba se puede escoger de acuerdo al tamaño de la abertura deseado.

3.2 Procedimiento

- **3.2.1** Para efectuar la prueba de impacto directo, colocar el panel perpendicular al tubo cilíndrico que contiene el peso muerto. Levantar este peso hasta la altura deseada y dejar caer libremente. Para la prueba de impacto inverso, seguir el mismo procedimiento. Hacer varias pruebas y reportar los resultados.
- **3.3 Cálculos.** Para calcular la fuerza del impacto, se emplea la siguiente ecuación:

 $I = M \times d$

Dónde:

I = impacto en kg. cm.

M = peso muerto, en kilogramos.

d = altura en centímetros.

3.4 Informe de resultados

- **3.4.1** El informe de resultados debe tener:
- fecha de ensayo;
- Identificación de la muestra;
- Número de ensayos realizados;
- Impacto directo o inverso en kg. cm.;
- alturas empleadas;
- razón social o nombre del fabricante.

Anexo A4.Norma INEN 1006

DU: 667.613	CIIU: 3521
ICS: 87.040	QU 04.05.307

Norma	PINTURAS Y PRODUCTOS AFINES.	NTE
Técnica	DETERMINACIÓN DE ADHERENCIA MEDIANTE	INEN
recinea	DETERMINATION DE ADHERENCIA MEDITANTE	1006:98
Ecuatoriana	PRUEBA DE LA CINTA.	
Voluntaria		

1. OBJETO

1.1 Esta norma establece los métodos para determinar la adherencia de películas de recubrimientos de pinturas y productos afines aplicados sobre paneles metálicos o superficies recomendadas, mediante la aplicación y remoción de una cinta sensible a la presión, sobre cortes realizados en la película.

2. MÉTODOS DE ENSAYO

- 2.1 Método de la cuadrícula
- **2.1.1** Equipos
- **2.1.1.1** Aparato de corte con cuchilla de dientes múltiples para corte cruzado (con 6 u 11 dientes).
- **2.1.1.2** Cinta adhesiva de 25,4 mm de ancho semitransparente sensible a la presión (ver nota 1).
- **2.1.1.3** Borrador de caucho colocado en el extremo de un lápiz
- **2.1.1.4** Una fuente de luz útil para determinar si los cortes han sido hechos a través de la película seca hasta el panel.
- **2.1.1.5** Cepillo de cerdas plásticas
- **2.1.1.6** Panel metálico o superficie recomendada de acuerdo al tipo de pintura.
- **2.1.2** Procedimiento
- **2.1.2.1** Seleccionar un área libre de manchas e imperfecciones.
- **2.1.2.2** Asegurar que la superficie esté limpia y seca (valores extremos de temperatura y humedad relativa pueden afectar la adherencia de la cinta).

- **2.1.2.3** Colocar el panel sobre una base firme y hacer cortes cruzados usando el aparato de corte con cuchilla de dientes múltiples.
- **2.1.2.4** Para recubrimientos que tengan hasta 50 micrómetros de espesor de película seca, usar la cuchilla que tenga 11 dientes y 1 mm de separación entre dientes y realizar el corte.
- **2.1.2.5** Para recubrimientos que tengan un espesor de película seca entre 50 micrómetros y 125 micrómetros, usar una cuchilla que tenga 6 dientes y 2 mm de separación entre dientes y realizar el corte.
- **2.1.2.6** Hacer los cortes en el recubrimiento con un movimiento firme y presión suficiente para que el borde cortante alcance el panel.
- **2.1.2.7** Revisar los bordes cortantes de las cuchillas y si es necesario limpiarlos, hacer entonces los cortes adicionales a 90° y centrados en los cortes anteriores.
- **2.1.2.8** Proceder a limpiar con el cepillo el área de los cortes para remover cualquier residuo de recubrimiento levantado. Si el metal no ha sido alcanzado, hacer otro corte igual en otra área hasta alcanzar el metal.
- **2.1.2.9** Cortar un pedazo de cinta de adherencia de aproximadamente 75 mm de largo.
- **2.1.2.10** Colocar el centro de la cinta sobre la rejilla formada por el corte y sus alrededores, dejando un extremo libre, después alisarla con el dedo. Luego frotar firmemente con el borrador del extremo de un lápiz para lograr un buen contacto.
- **2.1.2.11** Esperar de 60 a 120 segundos después de la aplicación y retirar la cinta de la superficie halando rápidamente del extremo libre formando un ángulo de aproximadamente 180°.
- **2.1.2.12** Inspeccionar el área de la rejilla para comprobar si hay remoción del recubrimiento del panel, comparar la cuadrícula resultante con las que se indican en la tabla 1, seleccionar la más parecida y calificar el porcentaje de adherencia entre los valores menores de 35 y 100 %.

NTE INEN 1 006 1998-05

TABLA 1. Clasificación de los resultados del ensayo de adherencia

Clasificación	Superficie de corte cruzado en la cual ha ocurrido desprendi- miento (seis cortes paralelos)	Adheren- cia %	Despren- dimiento %	Criterio
5	Ninguno	100	0	Ningún desprendi- miento
4		95-100	0-5	El desprendimiento es en los ángulos de los cuadrados.
3		85-95	5-15	El desprendimiento es a lo largo de los bor- des y en las intersec- ciones de los cortes.
2		65-85	15-35	El desprendimiento es a lo largo de los bor- des y parte del área de los cuadrados
1		35-65	35-65	El desprendimiento es a lo largo de los bor- des y en todo el cua- drado.
0	Mayor de 65%	< 35	> 65	El desprendimiento es mayor que en el grado 1.

2.1.2.13 Repetir el ensayo en otro sitio de cada panel de prueba.

2.1.3 Errores de método

- **2.1.3.1** Los siguientes criterios deben ser usados para evaluar la aceptabilidad de los resultados con un nivel de confianza del 95%.
- a) Repetibilidad. Los resultados obtenidos por el mismo operador deben ser considerados dudosos si difieren en más de un rango para los dos ensayos.
- b) Reproducibilidad. Dos resultados obtenidos por diferentes operadores deben ser considerados dudosos si difieren en más de dos rangos para los ensayos.

2.1.4 Informe de resultados

- **2.1.4.1** En el informe de resultados debe indicarse:
- a) El número de ensayos y su valor promedio.
- b) Para el caso de sistemas de recubrimientos indicar en donde se observó la falta de adherencia, por ejemplo, entre el primer recubrimiento y el panel, entre el primer y segundo recubrimiento, etc.
- c) El panel empleado.
- d) El tipo de recubrimiento y el método de curado.
- e) NTE INEN de referencia.
- f) Fecha de muestreo y ensayo.
- 2.2 Método del corte en X
- **2.2.1** Este método se aplica para espesores de película seca mayor a 125 micrómetros.
- **2.2.2** Equipo
- 2.2.2.1 Similares a los indicados en el método de la cuadrícula.
- **2.2.2.2** Escalpelo, cuchillo u otro elemento de corte.
- 2.2.3 Procedimiento
- **2.2.3.1** Seleccionar un área libre de defectos e imperfecciones. La superficie debe estar limpia y seca.

Condiciones extremas de temperatura o humedad relativa pueden afectar la adherencia de la cinta o la pintura.

- **2.2.3.2** Hacer dos cortes en la película seca de pintura, de aproximadamente 40 mm de largo cada uno, que intersectan cerca de sus mitades con un ángulo comprendido entre 30 y 45°. Cuando se hagan las incisiones se debe usar una guía de corte y atravesar la película hasta llegar al panel con un movimiento firme.
- **2.2.3.3** Inspeccionar las incisiones por reflexión de la luz sobre el panel para establecer que la película de pintura ha sido penetrada. Si el panel no ha sido alcanzado se repite el procedimiento en un lugar diferente. No se debe profundizar un corte previo, porque esto puede afectar la adherencia a lo largo de la incisión.
- **2.2.3.4** Cortar un pedazo de cinta de adherencia de aproximadamente 75 mm de largo.
- **2.2.3.5** Colocar el centro de la cinta en la intersección de los cortes pasándola en la misma dirección de los ángulos comprendidos entre 30 y 45°. Alisar la cinta en el área de la incisión con el dedo y luego frotar firmemente con el borrador del extremo de un lápiz cuidando de que quede bien adherida; el color bajo la cinta adhesiva es una indicación útil de cuando se hace un buen contacto.
- **2.2.3.6** Esperar de 60 a 120 segundos después de la aplicación y retirar la cinta de la superficie halando rápidamente del extremo libre formando un ángulo de aproximadamente 180°.

NTE INEN 1 006 1998-05

- **2.2.3.7** Inspeccionar la remoción de pintura en el área del corte en X.
- **2.2.3.8** Clasificar la adherencia de acuerdo a la escala que se indica en la tabla 2.

TABLA 2. Clasificación de la adherencia

Clasificación	Criterio	Adherencia %
5A	No existe remoción de la película o peladuras	100
4A	Trazas de peladuras o remoción a lo largo de las incisiones	95-100
3A	Remoción dentada de 1,6 mm a lo largo de la parte superior de las incisiones sobre cada lado	85-95
2A	Remoción dentada de 3,2 mm a lo largo de la parte superior de las incisiones sobre cada lado	65-85
1A	Remoción del área de la X cubierta por la cinta	35-65
0A	Remoción más allá del área de la X	> 65

- **2.2.3.9** Repetir el ensayo en otro sitio del panel de prueba. Para estructuras grandes se hacen suficientes cortes para asegurar que la evaluación de la adherencia sea representativa de toda la superficie.
- **2.2.3.10** Después de varios cortes, examinar el instrumento de corte y verificar que el borde cortante se encuentre en buenas condiciones. Los aparatos de corte que desarrollen irregularidades u otros defectos que dañan la película deben ser descartados.

2.3.4 Errores de método

2.3.4.1 Los siguientes criterios deben ser usados para evaluar la aceptabilidad de los resultados con un nivel de confianza del 95%.

- a) Repetibilidad. Los resultados obtenidos por el mismo operador deben ser considerados dudosos si difieren en más de un rango para los dos ensayos.
- b) Reproducibilidad. Dos resultados obtenidos por diferentes operadores deben ser considerados dudosos si difieren en más de dos rangos para los ensayos.

2.3.5 Informe de resultados

2.3.5.1 En el informe de resultados debe indicarse:

- a) El número de ensayos y su valor promedio.
- b) Para el caso de sistemas de recubrimientos indicar en donde se observó la falta de adherencia, por ejemplo, entre el primer recubrimiento y el panel, entre el primer y segundo recubrimiento, etc.
- c) El panel empleado.
- d) El tipo de recubrimiento y el método de curado.
- e) NTE INEN de referencia.
- f) Fecha de muestreo y ensayo.
- **2.3.5.2** Debe mencionarse además cualquier condición no especificada en esta norma o considerada como opcional, así como cualquier circunstancia que pueda haber influido sobre el resultado.
- **2.3.5.3** Deben incluirse todos los detalles para la completa identificación de la muestra.

Anexo A5.Norma INEN 1008

CDU: 617.613 QU 04.05-309

Norma	PINTURAS Y PRODUCTOS AFINES.			
Técnica	DETERMINACIÓN DE LA RESISTENCIA A LA	008		
Ecuatoriana	LLAMA. (METODO COMPARATIVO)	1983-4		

1. OBJETO

1.1 Esta norma establece el método para determinarla resistencia a la llama de las pinturas.

2. APARATOS

- **2.1** Paneles de acero dulce doble desapado, de forma cuadrada, de 200 mm de lado y de 0,86 mm de espesor.
- **2.2** Mecheros

3. METODOS DE ENSAYO

- **3.1** Sobre los paneles de las características puntualizadas en 2.1 se aplica a pincel una mano de la pintura en examen y una de la muestra tipo (ver nota 1); en cada uno de los paneles se deja secar 24h, posteriormente se aplica una segunda mano en cada uno y se deja secar 72 h.
- **3.2** Cada uno de dichos paneles se disponen sobre un trípode común de laboratorio en la forma indicada en la figura y se calienta durante un minuto con el mechero (a), con la abertura incolora de las característica establecidas en la figura 1.
- **3.3** Al cumplir el minuto se inicia el calentamiento con el mechero b, de acuerdo con lo indicado en la figura 1, manteniendo esas condiciones durante un minuto.
- **3.4** Durante dicho lapso se observa si de la película de la pintura en examen se desprenden vapores inflamables y si entra en combustión. Una vez frío se observa la película de pintura de los paneles comparativamente.

4. INFORME DE RESULTADOS

- **4.1** Se considera que el producto en examen cumple este ensayo cuando la película de pintura no desprende vapores inflamables, no entra en combustión y el aspecto no difiere de la muestra comparativa.
- **4.2** El informe debe reunir los siguientes puntos:
- **4.2.1** Fecha del ensayo.
- **4.2.2** Identificación de la muestra tipo (color, apariencia, fecha de producción, lote, etc.).
- **4.2.3** Referencia del inciso 4.1.
- 4.2.4 Nombre del analista.
- **4.2.5** Número de ensayos

NOTA 1. Muestra tipo. Es una muestra de pintura con una composición, color, apariencia, etc., igual a la pintura que va a analizarse y que se toma como patrón para el ensayo. Esta muestra se toma de lotes anteriores que pasaron ésta determinación positivamente.

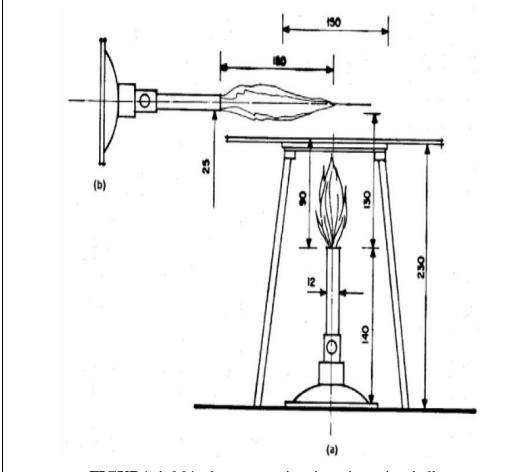


FIGURA 1. Método comparativo de resistencia a la llama

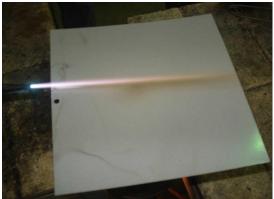
ANEXO B

Anexo B1.Pruebas de Dureza

Anexo B2.Pruebas de Adherencia

Anexo B3.Pruebas de Flexibilidad

Anexo B4.Pruebas de Impacto



Anexo B5.Pruebas de Resistencia a la llama

ANEXO C

Anexo C1. Ficha de Registro de Ensayo

		_		

ANEXO D

Anexo D1.Fotos de Productos

Caja 220x200	Caja 300x200
Caja 250x220	Caja 470x320
Carretillas	Caja 400x200
	A CONTRACTOR

ANEXO E

Anexo E1. Propiedades del Aire a la Presión de 1 ATM

TABLA	A-15							
Propieda	Propiedades del aire a la presión de 1 atm							
Temp., T, °C	Densidad, ρ, kg/m ³	Calor específico, c _p , J/kg · K	Conductividad térmica, k, W/m - K	Difusividad térmica, α, m ² /s ²	Viscosidad dinámica, μ, kg/m · s	Viscosidad cinemática, v, m²/s	Número de Prandtl, Pr	
-150	2.866	983	0.01171	4.158×10^{-6}	8.636 × 10 ⁻⁶	3.013 × 10 ⁻⁶	0.7246	
-100	2.038	966	0.01582	8.036×10^{-6}	1.189×10^{-6}	5.837×10^{-6}	0.7263	
-50	1.582	999	0.01979	1.252×10^{-5}	1.474×10^{-5}	9.319×10^{-6}	0.7440	
-40	1.514	1 002	0.02057	1.356×10^{-5}	1.527×10^{-5}	1.008×10^{-5}	0.7436	
-30	1.451	1 004	0.02134	1.465×10^{-5}	1.579×10^{-5}	1.087×10^{-5}	0.7425	
-20	1.394	1 005	0.02211	1.578×10^{-5}	1.630×10^{-5}	1.169×10^{-5}	0.7408	
-10	1.341	1 006	0.02288	1.696×10^{-5}	1.680×10^{-5}	1.252×10^{-5}	0.7387	
0	1.292	1 006	0.02364	1.818×10^{-5}	1.729×10^{-5}	1.338×10^{-5}	0.7362	
5	1.269	1 006	0.02401	1.880×10^{-5}	1.754×10^{-5}	1.382×10^{-5}	0.7350	
10	1.246	1 006	0.02439	1.944×10^{-5}	1.778×10^{-5}	1.426×10^{-5}	0.7336	
15	1.225	1 007	0.02476	2.009×10^{-5}	1.802×10^{-5}	1.470×10^{-5}	0.7323	
20	1.204	1 007	0.02514	2.074×10^{-5}	1.825×10^{-5}	1.516×10^{-5}	0.7309	
25	1.184	1 007	0.02551	2.141×10^{-5}	1.849×10^{-5}	1.562×10^{-5}	0.7296	
30	1.164	1 007	0.02588	2.208 × 10 ⁻⁵	1.872 × 10 ⁻⁵	1.608 × 10 ⁻⁵	0.7282	
35	1.145	1 007	0.02625	2.277 × 10 ⁻⁵	1.895 × 10 ⁻⁵	1.655 × 10 ⁻⁵	0.7268	
40	1.127	1 007	0.02662	2.346 × 10 ⁻⁵	1.918 × 10 ⁻⁵	1.702 × 10 ⁻⁵	0.7255	
45	1.109	1 007	0.02699	2.416 × 10 ⁻⁵	1.941 × 10 ⁻⁵	1.750 × 10-5	0.7241	
50	1.092	1 007	0.02735	2.487 × 10 ⁻⁵	1.963 × 10 ⁻⁵	1.798 × 10-5	0.7228	
60 70	1.059 1.028	1 007 1 007	0.02808 0.02881	2.632×10^{-5} 2.780×10^{-5}	2.008×10^{-5} 2.052×10^{-5}	1.896×10^{-5} 1.995×10^{-5}	0.7202 0.7177	
80	0.9994	1007	0.02881	2.931 × 10 ⁻⁵	2.096 × 10 ⁻⁵	2.097 × 10 ⁻⁵	0.7177	
90	0.9994	1 008	0.02933	3.086×10^{-5}	2.139 × 10 ⁻⁵	2.201 × 10 ⁻⁵	0.7134	
100	0.9458	1 009	0.03024	3.243×10^{-5}	2.181 × 10 ⁻⁵	2.306 × 10 ⁻⁵	0.7111	
120	0.8977	1011	0.03235	3.565×10^{-5}	2.264 × 10 ⁻⁵	2.522 × 10 ⁻⁵	0.7073	
140	0.8542	1013	0.03374	3.898×10^{-5}	2.345 × 10 ⁻⁵	2.745 × 10 ⁻⁵	0.7041	
160	0.8148	1016	0.03511	4.241×10^{-5}	2.420 × 10 ⁻⁵	2.975 × 10 ⁻⁵	0.7014	
180	0.7788	1019	0.03646	4.593×10^{-5}	2.504×10^{-5}	3.212×10^{-5}	0.6992	
200	0.7459	1 023	0.03779	4.954×10^{-5}	2.577×10^{-5}	3.455×10^{-5}	0.6974	
250	0.6746	1 033	0.04104	5.890×10^{-5}	2.760×10^{-5}	4.091×10^{-5}	0.6946	
300	0.6158	1 044	0.04418	6.871×10^{-5}	2.934×10^{-5}	4.765×10^{-5}	0.6935	
350	0.5664	1 056	0.04721	7.892×10^{-5}	3.101×10^{-5}	5.475×10^{-5}	0.6937	
400	0.5243	1 069	0.05015	8.951×10^{-5}	3.261×10^{-5}	6.219×10^{-5}	0.6948	
450	0.4880	1 081	0.05298	1.004×10^{-4}	3.415×10^{-5}	6.997×10^{-5}	0.6965	
500	0.4565	1 093	0.05572	1.117×10^{-4}	3.563×10^{-5}	7.806×10^{-5}	0.6986	
600	0.4042	1 115	0.06093	1.352×10^{-4}	3.846×10^{-5}	9.515×10^{-5}	0.7037	
700	0.3627	1 135	0.06581	1.598×10^{-4}	4.111×10^{-5}	1.133×10^{-4}	0.7092	
800	0.3289	1 153	0.07037	1.855×10^{-4}	4.362×10^{-5}	1.326×10^{-4}	0.7149	
900	0.3008	1 169	0.07465	2.122×10^{-4}	4.600×10^{-5}	1.529×10^{-4}	0.7206	
1 000	0.2772	1 184	0.07868	2.398×10^{-4}	4.826×10^{-5}	1.741×10^{-4}	0.7260	
1 500	0.1990	1 234	0.09599	3.908×10^{-4}	5.817×10^{-5}	2.922×10^{-4}	0.7478	
2 000	0.1553	1 264	0.11113	5.664×10^{-4}	6.630×10^{-5}	4.270×10^{-4}	0.7539	

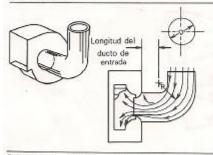
Note: Para los gases ideales, las propiedades c_p , k, μ y Prison independientes de la presión. Las propiedades ρ , ν y α a una presión P (en atm) diferente de 1 atm se determinan al multiplicar los valores de ρ , a la temperatura dada, por P y al dividir ν y α entre P.

Fuente: Datos generados basándose en el software EES desertollado por S. A. Klein y F. L. Alvarado. Fuentes originales: Kaenan, Chao, Keyes, Gas Tables, Wiley, 1984, y Thermophysical Properties of Matter, Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena y P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.

Anexo E2. Propiedades de Metales Sólidos

APÉNDICE 1											
TABLA A-3											
Propiedades de metales	sólidas										
	Punto	P	opiedad	ies a 300	K			des a var. KW/m - K		eraturas (l - K)	Ю,
Composición	de fusión, K	p kg/m³	ς, Jkg·K	<i>k</i> Wm - K	a x 10 ⁶ m ² /s	100	200	400	600	800	1 000
Aluminio:											
Puro	933	2 702	903	237	97.1	302 482	237 798	240 949	231 1 033	218 1146	
Akación 2024-T6 (4.5% Cu, 1.5% Mg,	775	2 770	875	177	73.0	65	163	186	186	1140	
0.6% Mn) Aleación 195, fundido (4.5% Cu)		2 790	883	168	68.2	473	787	925 174	1 042 185		
Berillo	1 550	1 850	1825	200	59.2	990	301	161	126	106	90.8
Bismuto	545	9 780	122	7.86	6.59	203 16.5	1 114 9.69	2 191 7.04	2 604	2 823	3 018
Daniel	545	3700	122	7.00	6.59	112	120	127			
Boro	2 573	2 500	1 107	27.0	9.76		55.5	16.8	10.6		
rududa.	104	8 650		00.0		128	600	1 463	1892	2160	2 338
Cadmio	594	8 600	231	96.8	48.4	203 198	99.3 222	94.7 242			
Cromo	2 118	7 160	449	93.7	29.1	159	111	90.9	80.7	71.3	65.4
						192	384	484	542	581	616
Cobalto	1 769	8 862	421	99.2	26.6	167 236	122 379	85.4 450	67.4 503	58.2 550	52.1 628
Cobre:						2.50	212	430	503	330	ueu
Puro	1 358	8 933	385	401	117	482	413	393	379	366	352
Bronce cornercial (90% Cu, 10% Al) Bronce al téstoro	1 293	8 800	420	52	14	252	356 42 785	397 52 160	417 59 545	433	451
para engranes (89% Cu, 11% Sn)	1 104	8 780	355	54	17		41	65	74		
Latón para cartuchos (70% Cu, 30% Zn)	1 188	8 530	380	110	33.9	75	95 360	137 395	149 425		
Constantán (55% Cu, 45% NI)	1 493	8 920	384	23	6.71	17 237	19 362				
Germanio	1 211	5 360	322	59.9	34.7	232	96.8	43.2	27.3	19.8	17.
Oro	1 336	19 300	129	317	127	190 327 109	290 323 124	337 311 131	348 298 135	357 284 140	375 270 145
Iridio	2 720	22 500	130	147	50.3	172	153 122	144	138 138	132	126 153
Hiero: Puro	1 810	7 870	447	80.2	23.1	134	94.0	69.5	54.7	43.3	32.8
	1 010	, 010	77/	60.2	23.1	215	384	490	574	680	975
Armoo (99.75% puro)		7 870	447	72.7	20.7	95.6 215	80.6 384	65.7 490	53.1 574	42.2 680	32.3 975
Aceros al carbono: Simple al carbono (Mn s Si s 0.1%)	1%,	7 854	434	60.5	17.7			56.7 487	48.0 559	39.2 685	30.0 1 169
AJSI 1010		7 832	434	63.9	18.8			58.7	48.8	39.2	31.2
Al carbono-silicio (Mn s 19 0.1% < Si s 0.6%)	x.	7817	446	51.9	14.9			487 49.8 501	559 44.0 582	685 37.4 699	1 168 29.3

Anexo E3.Relación de Diámetro de las Resistencias

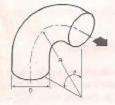

		NC.	20	100	200	300	9	500	8	8	900	900	8	1100	1200	1300	1400
												1,0					
Kantha	dA-L	œ	1	1	1	1	1	1,01	1,02	1,02	1,00	7	1,04	1,04	1,04	1,08	1,04

the table figures are valid for ikenthal a-1

						
dameter mm	Redistanc O/m 2090	cm2/0 2090	weigh per length g/m	surface on2/m	cross cm2/m	diameter mm
9,5	0,0205	14600	503	298	70,9	9,5
8,0	0,0288	87 10	357	251	50,3	8,0
7,5	0,0328	7480	314	236	44,2	7,5
7,0	0,0377	5840	273	220	38,5	7,0
6,5	0,0437	4670	236	204	33,2	6,5
6,0	0,0513	36.80	201	188	28,3	6,0
5,5	0,0610	2830	169	173	23,8	5,5
5,0	0,0738	2130	139	157	19,6	5,0
4,8	0,0801	880	128	151	18,1	4,8
4,5	0,0912	1550	113	141	15,9	4,5
4,2	0,1050	1260	98,4	132	13,9	4,2
4,0	0,1150	1090	89,2	126	12,6	4,0
3,8	0,1280	934	80,5	119	11,3	3,8
3,5	0,1510	730	68,3	110	9,6	3,5
3,2	0,1800	558	57,1	101	8,0	3,2
3,0	0,2050	459	50,2	94,2	7,1	3,0
2,8	0,2350	374	43,7	88,0	6,2	2,8
2,5	0,2950	266	34,9	78,5	4,9	2,5
2,2	0,3810	181	27,0	69,1	3,8	2,2
2,0	0,4620	136	22,3	62,8	3,1	2,0
1,9	0,5110	117	20,1	59,7	2,8	1,9
1,8	0,5700	99,2	18,1	56,5	2,5	1,8
1,7	0,6390	83,6	16,1	53,4	2,3	1,7
1,6	0,7210	69,7	14,3	50,3	2,0	1,6
1,5	0,8210	57,4	12,5	47,1	1,8	1,5
1,4	0,9420	45,7	10,9	44,0	1,5	1,4
1,3	1,0900	37,4	9,42	40,8	1,33	1,3
1,2	1,2800	29,4	8,03	37,7	1,13	1,2
1,1	1,5300	22,6	6,75	34,6	0,95	1,1
1,0	1,8500	17,0	5,58	31,4	0,79	1,0

Anexo E4. Coeficientes para Acoples de Ductos de Aire

TABLA 8.9. COEFICIENTES DE PÉRDIDA (C) PARA CONEXIONES DE DUCTO RECTO REDONDO A SUCCIÓN DE VENTILADOR.


	de	Longitud de la entrada, en diámetros							
R/D	0	2D	5D						
0.75	1.6	0.8	0.4						
1.0	1.3	0.7	0.3						
2.0	1.2	0.5	0.25						
3.0	0.7	0.4	0.20						

Reproducido con autorización del manual "HVAC System — Duct Design" SMACNA, segunda edición, 1981.

TABLA 8.4. COEFICIENTES DE PÉRDIDA, CODOS

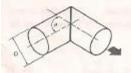
Usar la presión de velocidad (H_{ν}) de la sección corriente arriba. Pérdida de la conexión $(H_{\nu}) = C \times H_{\nu}$

A. Codo de radio (troquelado), redondo

Coe	icient	es para	codos	de 90	o hver	notal
R/D	0.5	0.75	1.0	1.5	2.0	2.5
C	0.71	0.33	0.22	0.15	0.13	0.12

Nota: Para ángulos distintos de 90°, multiplicar por los siguientes factores:

0° 20° 30° 46° 60° 75° 90° 110° 130° 150° 16


K 0 031 045 050 038 090 100 413 120 128 1

B. Codo redondo, de 3 a 5 partes, 90°

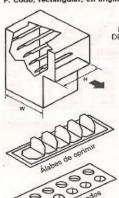
No.			R/D		
Pieces	0.5	0.75	1.0	1.5	2.0
5	-	0.46	0.33	0.24	0.19
4	-	0.50	0.37	0.27	0.24
3	0.98	0.54	0.42	0.34	0.33

C. Codo de ángulo, redondo

9	201	301	45"	60"	76"	90
C	0.08	0.16	0.34	0.55	0.81	1.5

D. Codo de ángulo, rectangular

			C	oeficie	nte C									
0	1 - 0	H/W												
	0.25	0.5	0.75	1.0	1.5	2.0	3.0	4.0	5.0	6.0	8.0			
20'	0.08	80.0	0.08	0.07	0.07	0.07	0.06	0.06	0.05	0.05	0.05			
30° 45°	0.18	0.17	0.17	0.16	0.15	0.15	0.13	0.13	0.12	0.12	0.11			
60° 75°	0.60	0.59	0.57	0.55	0.52	0.49	0.46	0.43	0.41	0.39	0.38			
90"	1.3	1.3	1.2	1.2	1.1	1.1	0.67	0.63	0.61	0.58	0.57			


E. Codo, rectangular de radio uniforme sin álabes

Coeficientes para codos de 90º (ver nota)

RW		H/W											
ev.	0.25	0.5	0.75	1.0	1.5	2.0	3.0	4.0	5.0	6.0	0.0		
0.5	1.5	1.4	1.3	1.2	1.1	1.0	1.0	1.1	1.1	1.2	1.2		
0.75	0.57	0.52	0.48	0.44	0.40	0.39	0.39	0.40	0.42	0.43	0.44		
1.0	0.27	0.25	0.23	0.21	0.18	0.18	0.18	0.19	0.20	0.27	0.21		
1.5	0.22	0.20	0.19	0.17	0.15	0.14	0.14	0.15	0.16	0.17	0.13		
2.0	0.20	0.18	0.16	0.15	0.14	0.13	0.13	0.14	0.14	0.15	0.13		

F. Codo, rectangular, en ángulo, con álabes de directionamiento

ÁLABES DE ESPESOR SENCILLO Dimensiones, pulgadas L 0.75 0 1.60

ORILLA POSTERIOR

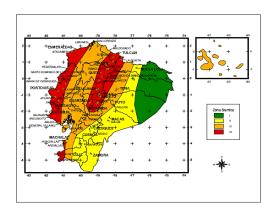
Cuando no se tione extensión de la crisia posterior para este codo, las pérdidas permanecces agracimadamente igual para codos sencirlos, pero aumentan mucho paro codos en sesse.

ÁLABES DE ESPESOR DOBLE Coeficiente C

2002	Dimensi	iones, in	Ve	locidad	(V), Itily	in	Observaciones
"No.	R	S	1000	5000	3000	4000	Gusci vadorino
1	2.0	1.5	0.27	0.22	0.19	0.17	Embossed Vane Runner
2	2.0	1.5	0.33	0.29	0.26	0.23	Push-On Vane Bunner
3	2.0	2.13	0.35	0.31	0.27	0.24	Embossed Vane Runner
4	4.5	3.25	0.26	0.21	0.18	0.16	Embossed Vane Runner

B. Transición, rectangular, piramidal

Cuando ∂ = 180°


AviA		with the same of	Alleria -		9			
ALUK.	16"	50,	30°	45°	60"	90"	120"	180*
2 4 6 ≥10	0.18 0.36 0.42 0.42	0.22 0.43 0.47 0.49	0.25 0.50 0.58 0.59	0.29 0.56 0.68 0.70	0.31 0.61 0.72 0.80	0.32 0.63 0.76 0.87	0.33 0.63 0.76 0.85	0.30 0.63 0.75 0.88

Nota: $A = \text{área, corriente de aire que entra, } A_i = \text{área, corriente de aire que sale}$

Anexo E5.Factores para el Cálculo de Carga de Sismo

Valores del factor z en función de la zona sísmica adoptada

Zona sísmica	I	II	III	IV
Valor factor Z	0.15	0.25	0.30	0.4

Tipo de uso, destino e importancia de la estructura (i)

Categoría	Tipo de uso, destino e importancia	Factor
Edificaciones esenciales y/o peligrosas	Hospitales, clínicas, centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación, transmisión y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1,5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente	1,3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1,0

Coeficiente de suelo s y coeficiente cm

Perfil tipo	Descripción	s	Cm
S1	Roca o suelo firme	1,0	2,5
S2	Suelos intermedios	1,2	3,0
S3	Suelos blandos y estrato profundo	1,5	2,8
S4	Condiciones especiales de suelo	2,0*	2,5

^{(*) =} Este valor debe tomarse como mínimo, y no substituye los estudios de detalle necesarios para construir sobre este tipo de suelos.

Valores del coeficiente de reducción de respuesta estructural R

Sistema estructural	R
Sistemas de pórticos espaciales sismo-resistentes, de hormigón armado con vigas descolgadas o de acero laminado en caliente, con muros estructurales de hormigón armado(sistemas duales).	12
Sistemas de pórticos espaciales sismo-resistentes, de hormigón armado con vigas descolgadas o de acero laminado en caliente.	10
Sistemas de pórticos espaciales sismo-resistentes, de hormigón armado con vigas banda y	
muros estructurales de hormigón armado(sistemas duales).	10
Sistemas de pórticos espaciales sismo-resistentes, de hormigón armado con vigas descolgadas y diagonales rigidizadoras.*	10
Sistemas de pórticos espaciales sismo-resistentes de hormigón armado con vigas banda y diagonales rigidizadoras. *.	9
Sistemas de pórticos espaciales sismo-resistentes de hormigón armado con vigas banda.	8
Estructuras de acero con elementos armados de placas o con elementos de acero conformados en frío. Estructuras de aluminio.	7
Estructuras de madera	7
Estructura de mampostería reforzada o confinada	5
Estructuras con muros portantes de tierra reforzada o confinada	3

^{(*) =} Cuando se utilizan diagonales, se debe verificar que los elementos en tensión cedan antes que los elementos en compresión.

Coeficientes de configuración en planta.

Tipo	Descripción de las irregularidades en planta	Φ_{pi}
	Irregularidad torsional	•
1	Existe irregularidad por torsión, cuando la máxima deriva de piso de un extremo de la estructura calculada incluyendo la torsión accidental y medida perpendicularmente a un eje determinado, es mayor que 1,2 veces la deriva promedio de los extremos de la estructura con respecto al mismo eje de referencia. La torsión accidental se define en el numeral 6.4.2 del presente código.	0,9
2	Entrantes excesivos en las esquinas La configuración de una estructura se considera irregular cuando presenta entrantes excesivos en sus esquinas. Un entrante en una esquina se considera excesivo cuando las proyecciones de la estructura, a ambos lados del entrante, son mayores que el 15% de la dimensión de la planta de la estructura en la dirección del entrante.	0,9
3	Discontinuidad en el sistema de piso La configuración de la estructura se considera irregular cuando el sistema de piso tiene discontinuidades apreciables o variaciones significativas en su rigidez, incluyendo las causadas por aberturas, entrantes o huecos, con áreas mayores al 50% del área total del piso o con cambios en la rigidez en el plano del sistema de piso de más del 50% entre niveles consecutivos.	0,9
4	Desplazamiento del plano de acción de elementos verticales Una estructura se considera irregular cuando existen discontinuidades en los ejes verticales, tales como desplazamientos del plano de acción de elementos verticales del sistema resistente.	0,8
5	Ejes estructurales no paralelos La estructura se considera irregular cuando los ejes estructurales no son paralelos o simétricos con respecto a los ejes ortogonales principales de la estructura.	0,9
6	Sistema de piso flexible Cuando la relación de aspecto en planta de la edificación es mayor que 4:1 o cuando el sistema de piso no sea rígido en su propio plano se deberá revisar la condición de piso flexible en el modelo estructural	-

Coeficiente de configuración en elevación.

Tipe	Descripción de las irregularidades en elevación	Pérticos	Sistemas
,.0	Secretarion de las irregulariones en devacion	espaciales	duales o
		y pórticos	con
		con vigas	diagonales
l		banda	ΦE_t
\vdash	Direchlande (imamularidad au riaidae)	ΦE,	
l	Piso blando (uregularidad en rigidez)		
l	La estructura se considera irregular cuando la		
١.	rigidez lateral de un piso es menor que el 70% de		
1	la rigidez lateral del piso superior o menor que el	0,9	1,0
ı	80 % del promedio de la rigidez lateral de los tres		
<u> </u>	pisos superiores.		
l	Irregularidad en la distribución de las masas		
l .	La estructura se considera irregular cuando la masa		
2	de cualquier piso es mayor que 1,5 veces la masa		1,0
ı	de uno de los pisos adyacentes, con excepción del		
l	piso de cubierta que sea más liviano que el piso		
	inferior.		
	Irregularidad geométrica		
l	La estructura se considera irregular cuando la		
3	dimensión en planta del sistema resistente en	0,9	1,0
	cualquier piso es mayor que 1,3 veces la misma	'	
ı	dimensión en un piso adyacente, exceptuando el		
l	caso de los altillos de un solo piso.		
	Desalineamiento de ejes verticales		
l	La estructura se considera irregular cuando existen		
4	desplazamientos en el alineamiento de elementos		0.9
l	verticales del sistema resistente, dentro del mismo		
l	plano en el que se encuentran, y estos		
l	desplazamientos son mayores que la dimensión		
	horizontal del elemento. Se exceptúa la		
l	aplicabilidad de este requisito cuando los		
	elementos desplazados solo sostienen la cubierta		
	de la edificación sin otras cargas adicionales de		
	tanques o equipos.		
	Piso débil-Discontinuidad en la resistencia		
	La estructura se considera irregular cuando la		
5	resistencia del piso es menor que el 70%de la		1.0
"	resistencia del piso inmediatamente superior,		-,-
	(entendiéndose por resistencia del piso la suma de		
	las resistencias de todos los elementos que		
	comparten el contante del piso para la dirección		
	considerada).		
\vdash	Columnas cortas		
6	Se debe evitar la presencia de columnas cortas,	_	_
"	tanto en el diseño como en la construcción de las	-	_
	estructuras.		
	escuciulas.		

Anexo E6.Factores de Diseño.

	FACTOR	ES D	E DISEÑO.
TIPO DE MATERIAL	FACTOR APLICACIÓN DISEÑO (N)	DE	APLICACIÓN
	1.25 a 2.0		Diseño de estructuraras bajo cargas estáticas, para las que haya un alto grado de confianza en todos los datos de diseño.
Materiales Dúctiles	2.0 a 2.5		Diseño de elementos de máquinas bajo cargas dinámicas con una confianza promedio en todos los datos de diseño.
	2.5 a 4.0		Diseño de estructuras estáticas elementos de máquinas bajo cargas dinámicas con incertidumbre acerca de las cargas, propiedades de los materiales, análisis de esfuerzos o al ambiente.
	4.0 o mas		Diseño de estructuras estáticas o Elementos de máquinas bajo cargas dinámicas, con incertidumbre en cuanto a alguna combinación de cargas, propiedades del material, análisis de esfuerzos o el ambiente. El deseo de dar una seguridad adicional a componentes críticos puede justificar también el ejemplo de estos valores.
Materiales Frágiles	3.0 a 4.0 4.0 a 8.0		Diseño de estructuraras bajo cargas estáticas, donde haya un alto grado de confianza en todos los datos de diseño. Diseño de estructuras estáticas o elementos de máquinas bajo cargas dinámicas con incertidumbre acerca de las cargas, propiedades delos materiales, análisis de esfuerzos o al ambiente.

Anexo E7. Propiedades de los Aceros.

ACERO AISI-SAE 1045 (UNS G10450)

1. Descripción: es un acero utilizado cuando la resistencia y dureza son necesarios en condición de suministro. Este acero medio carbono puede ser forjado con martillo. Responde al tratamiento térmico y al endurecimiento por llama o inducción, pero no es recomendado para cementación o cianurado. Cuando se hacen prácticas de soldadura adecuadas, presenta soldabilidad adecuada. Por su dureza y tenacidad es adecuado para la fabricación de componentes de maquinaria.

2. Normas involucradas: ASTM A108

3. Propiedades mecánicas: Dureza 163 HB (84 HRb)

Esfuerzo de fluencia 310 MPa (45000 PSI) Esfuerzo máximo 565 MPa (81900 PSI)

Elongación 16% (en 50 mm) Reducción de área (40%)

Módulo de elasticidad 200 GPa (29000 K5I) Maquinabilidad 57% (AISI 1212 = 100%)

4. Propiedades físicas: Densidad 7.87 g/cm3 (0.284 lb/in3)

5. Propiedades químicas: 0.43 - 0.50 % C

0.60 - 0.90 % Mn 0.04 % P máx 0.05 % 5 máx

 Usos: los usos principales para este acero es piñones, cuñas, ejes, tornillos, partes de maquinaria, herramientas agricolas y remaches.

7. Tratamientos térmicos: se da normalizado a 900°C y recocido a 790°C

MOTA

Les valores expresados en las propiedades mecánicas y fisicas corresponden a los valores promedo que se expera cumple el material. Tales valores son para oriente a aquella persona que debe diseñar o constituir algún componente o estructura pero en ningún momento se deben considerar como valores estricturrente esactos para su uso en el diseño.

ACERO AISI-SAE 4140 (UNS G41400)

1. Descripción: es un acero medio carbono aleado con cromo y molibdeno de alta templabilidad y buena resistencia a la fatiga, abrasión e impacto. Este acero puede ser nitrurado para darle mayor resistencia a la abrasión. Es susceptible al endurecimiento por tratamiento térmico

2. Normas involucradas: A5TM 322

3. Propiedades mecánicas: Dureza 275 - 320 HB (29 - 34 HRc)

Esfuerzo a la fluencia: 690 MPa (100 K5I) Esfuerzo máximo: 900 - 1050 MPa (130 - 152 K5I)

Elongación mínima 12% Reducción de área mínima 50%

4. Propiedades físicas: Densidad 7.85 g/cm3 (0.284 lb/in3)

5. Propiedades químicas: 0.38 - 0.43% C

0.75 - 1.00 % Mn 0.80 - 1.10 % Cr 0.15 - 0.25 % Mo 0.15 - 0.35 % Si 0.04 % P máx 0.05 % 5 máx

- Usos: se usa para piñones pequeños, tijeras, tornilo de alta resistencia, espártagos, guías, seguidores de leva, ejes reductores, cinceles.
- 7. Tratamientos térmicos: se austeniza a temperatura entre 830 850 °C y se da temple en aceite. El revenido se da por dos horas a 200°C para obtener dureza de 57 HRc y si se da a 315°C la dureza será de 50 HRc. Para recocido se calienta entre 680 720°C con dos horas de mantenimiento, luego se enfría a 15°C por hora hasta 600°C y se termina enfriando al aire tranquilo. Para el alivio de tensiones se calienta entre 450 650°C y se mantiene entre ½ y 2 horas. Se enfría en el horno hasta 450°C y luego se deja enfríar al aire tranquilo.

NOTA

Los valores expresados en las propiedades mecánicas y fisicas corresponden a los valores promedio que se espera cumpte el material. Tales valores son para orienter a aquella persona que debe diseñar o constituir algún componente o estructura pero en ningún momento se deben considerar como valores estricturrente esactos para su uso en el diseña.

ACERO AISI-SAE 1018 (UNS G10180)

f. Descripción: este acero de bajo - medio carbono tiene buena soldabilidad y ligeramente mejor maquinabilidad que los aceros con grados menores de carbono. Se presenta en condición de calibrado (acabado en frio). Debido a su alta tenacidad y baja resistencia mecánica es adecuado para componentes de maquinaria.

2. Normas involucradas: A5TM A 108

3. Propiedades mecánicas: Dureza 126 HB (71 HRb)

Esfuerzo de fluencia 370 MPa (53700 PSI) Esfuerzo máximo 440 MPa (63800 PSI) Elongación máxima 15% (en 50 mm)

Reducción de área 40%

Modulo de elasticidad 205 GPa (29700 K5I) Maquinabilidad 76% (AISI 1212 = 100%)

4. Propiedades físicas: Densidad 7.87 g/cm3 (0.284 lb/in3)

5. Propiedades químicas: 0.15 - 0.20 % C

0.60 - 0.90 % Mn 0.04 % P máx 0.05 % 5 máx

6. Usos: se utiliza en operaciones de deformación plástica como remachado y extrusión. Se utiliza también en componentes de maquinaria debido a su facilidad para conformario y soldario. Piezas típicas son los pines, cuñas, remaches, rodillos, piñones, pasadores, tomillos y aplicaciones de lámina

NOTA:

Les valores expresados en las propiedades medinicas y físicas corresponden e los valores promedio que se expera cumple el material. Tales valores son para oriente a aquella persona que debe diseñar o construir algún componente o estructura pero en ningún momento se deben considerar como valores estricturrente exactos pera su uso en el diseño.

Propiedades

Como la mayoría de los aceros, el A36, tiene una densidad de 7850 kg/m³ (0.28 lb/in³). El acero A36 en barras, planchas y perfiles estructurales con espesores menores de 8 pulg (203,2 mm) tiene un límite de fluencia mínimo de 250 MPA (36 ksi), y un límite de rotura mínimo de 410 MPa (58 ksi). Las planchas con espesores mayores de 8 plg (203,2 mm) tienen un límite de fluencia mínimo de 220 MPA (32 ksi), y el mismo límite de rotura.

Propiedades Mecánicas

Límite de flu	iencia mínimo	Resistencia	a la Tracción		
Mpa	Psi	Psi		Мра	
		Min	Máx	Min	Máx
250	36000	58000	80000	400	550

Anexo E8.Catálogo de la FAG.

		1111							
Les reclamiences punchen alcarrar uns deración de vich illenizada, si $C_{\mu}/P_{\mu} p d_{\mu}$ our $P_{\mu} p A I$.	Moddas autiliares D, D, f, mh max max	4.4 8.0 0.15 4.4 8.0 0.15 4.4 8.0 0.15	58 112 02 58 112 02 58 112 02 64 130 03 64 130 03	74 150 03 74 150 03 74 100 03 74 100 03 74 100 03	8.4 100 03 8.4 100 03 8.4 100 03	9 17 03 9 17 03 9 17 03 94 196 03 94 196 03	10 20 0.3 10 20 0.3 10 20 0.3	11 22 0.5 11 22 0.5 11 22 0.5 11 22 0.5 11 22 0.5 11 22 0.5	153 FAG
	Denominación a abreviada Rodamiento FAG	623 623.272 623.275	654.27 654.275 654.275 654.22 634.22	655.27 625.275 625.275 635.275 635.275	628 628.97 638.97	607.22 607.285 607.285 627.28 627.285	608 606.2Z 606.2ES	800 800.278 600.2788 620 620.228 620.2788	en ambatamon.
	Velocidad de referencia	0,000	53000 53000 43000 43000	43000 43000 40000	38000	36000 36000 34000 34000	30000	30000 30000 30000	nciones; no duden
H	Velocidad Ilmite	53000 45000 32000	45000 38000 28000 28000 38000 24000	24000 24000 24000 20000 20000 20000	22000	38000 32000 22000 30000 20000	30000	30000 30000 20000 30000 28000 19000	nistrabla otrus ejea
10 to	Capacidad de carga Cyn. stat. C Co.	0.22	0,040 0,40 0,007 0,007	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	333	1,37	137	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lięo danada tenbién sen suministable oezu ejesziones; so dades en emtatame
	Capac Ogn NN	0000 0000	444 KKK	<u> </u>	2000	222 232 2222 2322	ala Mala	⁶⁸ 10년 12년 12년 12년 12년 12년 12년 12년 12년 12년 12	Bijo deman
H. H. H. State of the state of	Peso Peso	5 0,001 5 0,001 5 0,001	7 0,005 7 0,004 8.5 0,000 8.5 0,000 8.5 0,000	85 0.005 85 0.005 85 0.005 100 0.006 10.8 0.006	10.0 10.0 10.0 10.00 10.00 10.00	10.0 0.007 10.0 0.006 10.0 0.007 12.4 0.011 12.4 0.017	12.4 0.01 12.4 0.011 12.4 0.01	4 0,015 4 0,016 4 0,027 4 0,027 4 7 0,027 4 7 0,027	
<u>.</u> 3 1 , §	±ε	8 8 8 8 5 5 8	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	484 484 407 707	10.7 10.7	197	101	2015 2015 2015 2015 2015 2015 2015	
± 0 m 8	± t	52 52	10.5 10.5 12.5 12.5 12.5	252 252 252 252 252 252 252 252 252 252	14144 14144 14144	<u> </u>	<u> </u>	1900 1900 1900 1900 1900 1900 1900 1900	
de bolas	υĒ	0,15 0,15 0.15	222 222	378 378	333	200 200 200 200 200 200 200 200 200 200	00 00 00 00 00 00	200 200 200 200 200 200 200 200 200 200	
rígidos d	œ	4 4 4	ana anan	www 000	000	000 1111	***	~~ ~ ***	
ntos FAG	Dimensiones d b	000	<u> </u>	000 000	999	222 XXX	ននន	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Rodamientos FAG rígidos de de una hilera		lededed ea	4	kakakal kakakal	lalalal u	r	l lololol		FAG 152

Anexo E9.Grasa

GRASA ESPECIAL TEMP200

TEMP200 *)

Grasa especial para rodamientos de bolas y rodillos

Aplicaciones típicas:

- · Rodillos de apoyo en hornos
- Bielas en compresores
- Vagonetas de horno
- · Plantas químicas

Adecuada para

Bajas temperaturas	++
Altas temperaturas	++
Baja fricción,	
alta veloctdad	
Grandes cargas,	
bajas velocidades	+
Vibraciones	_
Proptedades obturadoras	0
Aptitud para relubricación	0

Valoración

- ++ extremadamente adecuada
- + muy adecuada
- o adecuada
- poco adecuada
- -- no adecuada

I ⊆ //Λ \	

FAG Industrial Bearings AG

FAG Rolling Bearing Grease Arcanol TEMP200

Properties, applications: High temperature grease for high loads

Characteristics		Unit	Yelse	Test method
Marking			KFK2U-40	DIN 51825
Colour:			white	
Temperature range:		[10]	-40 to 360	DIN 51825
Longtime limit tempera	tane	[10]	200	
Specifications:				
Thickener:			PTPE	
Type of base oil:			uorinated polyether si	ı
Base oil viscosity	at 40°C:	[mm*a]	400	DIN 51562 - 1
	M 100°C	[mm*n]	35	DIN 61562 - 1
Identification letters of	oddilives:			
Worked penetration:		[0,1 mm]	265-295	DIN ISO 2137
Consistency:		[NLGI-CI.]	2	DIN 51818
Drop point		[C]	not measurable	DIN ISO 2176
Oxidation stability Pressure drop after 10	0 hat 99 °C:	$\lfloor kPa \rfloor$	< 00	DIN 51008
Water resistance:		(Fampe)	0.90	DIN 51807 - 1
Flow pressure at -31 "C		[hPa]	< 1400	DIN 51905
Emoor Tost		Com.Grad	0/1	DIN 51802
Copper corrosion after	24 h/100 °C	[Corr.Grad]	1	DIN 51811
Four ball weld load:		[N]	4500	DIN 51350 - 4
Wear scar of four ball t	est:	[mm]		DIN 51350 - 5
FEB tests (rolling eleme	nt weer)			
536050 - 7,5/80 - 150 FEB tests (grease servi		0 [mg]	7.7 19	DIN 51819
A / 1500 / 3000 - 150	F18/F60		1000 /	DIN 51821
A / 1500 / 3000 - 260	F18/F60) IN	132 / 156	DIN 51821
Speed range:	Unit		earings and	Other roller
	Orne	cylindrica	roller bearings	bearings"

		climation rotation pennings	bearings"
Speed limit n°dm	[men/enit]	300.000	100.000
and the state of t	miner and retarded	and the state of t	

I not cyanarical color trical bearings and systemal rater brust bearings

This copy is not belien into account by the updefing service.
The data are based on account by the updefing service.
Edition to the respective seatments. Guaranteed properties or warrantees correct to belien over.

Edition: 01.03.2002.

Cantidades disponibles:

70 g tubo

1 kg bote

Antigua designación FAG: Arcanol I.79V

FAG

CATALOGO

Catalogo S&P

Renovación del aire en	Renovaciones/hora
locales habitados	N
Catedrales	0.5
Iglesias modernas (techos bajos)	1-2
Escuelas, aulas	2-3
Oficinas de Bancos	3-4
Cantinas (de fábricas o militares)	4-6
Hospitales	5-6
Oficinas generales	5-6
Bar del hotel	5-8
Restaurantes lujosos (espaciosos)	5-6
Laboratorios (con campanas localizadas)	6-8
Talleres de mecanizado	5 - 10
Tabernas (con cubas presentes)	10 -12
Fábricas en general	5 - 10
Salas de Juntas	5-8
Aparcamientos	6-8
Salas de balle clásico	6-8
Discotecas	10 - 12
Restaurante medio (un tercio de fumadores)	8 - 10
Gallineros	6 - 10
Clubs privados (con fumadores)	8 - 10
Café	10 - 12
Cocinas domésticas (mejor instalar campana)	10 - 15
Teatros	10 - 12
Lavabos	13 - 15
Sala de Juego (con fumadores)	15 - 18
Cines	10 - 15
Cafeterias y Comidas rápidas	15 - 18
Cocinas industriales (indispensable usar campana)	15 - 20
Lavanderías	20 - 30
Fundiciones (sin extracciones localizadas)	20 - 30
Tintorerias	20 - 30
Obradores de panaderias	25-35
Naves industriales con homos y baños (sin campanas)	30 - 60
Talleres de pintura (mejor instalar campana)	40 - 60

Locales Industriales	NR/H
Ambientes nocivos	30 - 60
Depósito de mercancias	3-6
Fundición	20 - 30
Lavanderia industriai	15 - 30
Sala de maguinas	20 - 30
Taller (general)	8 - 10
Tailer con homos	30 - 60
Taller de maquinado	5 - 10
Taller de pintura	30 - 60
Taller de soldura	15 - 30
Tintoreria	20 - 30

EXTRACTORES CENTRIFUGOS DE ÁLABES CURVOS ADELANTADOS 800, 1200, 2000, 2600, 4000, 5000, 6000 m³/h

La serie CEB-T es una gama de extractores centrifugos de simple oído de aspiración, con rodete de alabes curvos adelantados y motor directamente acopiado.

Dentro de una construcción ligera pero robusta y una óptima relación entre consumo y prestaciones, esta serie destaca por su gran versatilidad al disponer de siete modelos con cuatro alternativas en la posición de descarga en cada uno.

Características Principales:

Carcasa en acero electrosoldado, acabado en pintura en polvo polléster homeada de gran resistencia a la corrosión, boca de descarga en cuatro posiciones con brida opcional.

Aplicaciones:
Instalaciones en sistemas de ventilación,
extracción, calefacción y accondicionamiento de aire.
Impulsión de aire dentro de conductos,
refrigeración de máquinas industriales, etc.

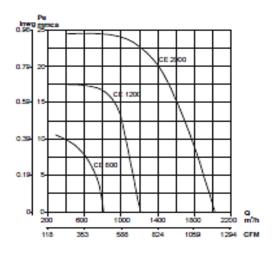
CARACTERÍSTICAS TÉCNICAS

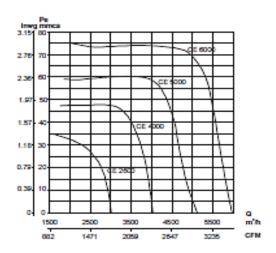
Modelo	Velooidad RPM	Potenola HP	Tensión Volts	Intensidad A	Caudal a degoarga libre m*/hr/ CFM	Presión sonora dB(A)*	Peso apróx. Kg
CEB-800	1550	1/20	127	1.60	800 / 471	53	6
CEB-1200	1625	1/10	127	1.35	1,200 / 706	56	6
CEB-2000	1740	1/2	127/220	8.00 / 3.80	1,900 / 1,118	60	11
CEB-2800	1750	3/4	127/220	12.5 / 5.50	2,600 / 1,529	63	25
CET-2000	1700	1/2	220/440	1.90 / 1.00	1,900 / 1,118	60	11
CET-2800	1730	3/4	220/440	3.00 / 1.50	2,600 / 1,529	63	25
CET-4000	1760	1 1/2	208-230/460	4.20 / 2.10	3,950 / 2,324	72	28
CET-6000	1760	2	208-230/460	6.20 / 3.10	5,200 / 3,059	75	32
CET-8000	1765	3	208-230/460	7.80 / 3.90	6,500 / 3,824	80	34

"Nivel sonoro medido de souerdo a las normas AMCA 300/05 y 301/05

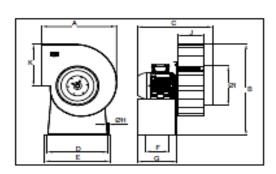
ORIENTACIÓN BOCA DE DESCARGA (CW)

→90°


245



CEB-T

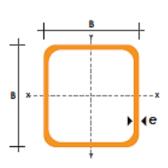

EXTRACTORES CENTRIFUGOS DE ÁLABES CURVOS ADELANTADOS 800, 1200, 2000, 2600, 4000, 5000, 6000 m³/h

CURVAS CARACTERÍSTICAS

DIMENSIONES

MODELO	Α	В	С	D	E	F	Э	ØH	ØI	J	K
CEB-800	272	395	238	285	310	70	113	7.9	152	89	153
CEB-1200	302	412	249	294	319	70	113	7.9	177	102	172
CEB-2000	315	435	390	257	287	111	188	11.5	185	125	187
CEB-2800	363	489	454	302	332	136	235	11.1	216	147	218
CEB-4000	454	574	515	348	383	132	239	11.1	258	173	273
CEB-5000	495	633	525	358	393	132	244	11.1	279	185	297
CEB-8000	586	768	588	476	511	185	311	11.1	333	210	351

Catalogo DIPAC Perfiles


TUBO ESTRUCTURAL CUADRADO

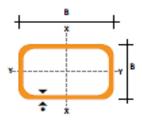
Especificaciones Generales

Norma i ASTM A-500 Recubrimiento Negro o galvanizado
Largo normal 6 mts.
Otros largos Previa Consulta
Dimensiones Desde 20mm a 100mm
Espesor Desde 2,0mm a 3,0mm

	DIM	ENSIONES		AREA	EJES	X-Xe Y-	Y
	Α	ESPESOR	PESO	AREA	1	W	Ξ.
1	mm	mm	Kg/m	cm2	cm4	cm3	cm
1	20	1,2	0,72	0,90	0,53	0,53	0,77
1	20	1,5	0,88	1,05	0,58	0,58	0,74
1	20	2,0	1,15	1,34	0,69	0,69	0,72
1	25	1,2	0,90	1,14	1,08	0,87	0,97
1	25	1,5	1,12	1,35	1,21	0,97	0,95
1	25	2,0	1,47	1,74	1,48	1,18	0,92
1	30	1,2	1,09	1,38	1,91	1,28	1,18
1	30	1,5	1,35	1,65	2,19	1,46	1,15
1	30	2,0	1,78	2,14	2,71	1,81	1,13
1	40	1,2	1,47	1,80	4,38	2,19	1,25
1	40	1,5	1,82	2,25	5,48	2,74	1,56
1	40	2,0	2,41	2,94	6,93	3,46	1,54
1	40	3,0	3,54	4,44	10,20	5,10	1,52
1	50	1,5	2,29	2,85	11,06	4,42	1,97
1	50	2,0	3,03	3,74	14,13	5,65	1,94
1	50	3,0	4,48	5,61	21,20	8,48	1,91
1	60	2,0	3,66	3,74	21,26	7,09	2,39
1	60	3,0	5,42	6,61	35,06	11,69	2,34
1	75	2,0	4,52	5,74	50,47	13,46	2,97
	75	3,0	6,71	8,41	71,54	19,08	2,92
	75	4,0	8,59	10,95	89,98	24,00	2,87
1	100	2,0	6,17	7,74	122,99	24,60	3,99
1	100	3,0	9,17	11,41	176,95	35,39	3,94
1	100	4,0	12,13	14,95	226,09	45,22	3,89
1	100	5,0	14,40	18,36	270,57	54,11	3,84
1							

TUBO ESTRUCTURAL RECTANGULAR

Especificaciones Generales


Norma ASTM A-500

Recubrimiento Negro o galvanizado

Largo normal 6 mfs.
Otros largos Prevía Consulta
Dimensiones Desde 12mm x 25mm a 40mm x 80mm
Espesor Desde 2,0mm a 3,0mm

DIM	IENSIC	ONES		AREA		EJES X	-X	E	JES Y-	Y
A	B	ESPESOR	PESO	AREA	I	W	I	I	W	l
mm	mm	mm	Kg/m	om2	om4	om3	om	am4	om3	om
20 20 20 25 25 25 25 30 30 30 30 40 40 40 40 40 30 30 30 40	40 40 40 50 50 50 50 70 70 60 60 70 70 80	1,2 1,5 2,0 1,5 2,0 3,0 1,5 2,0 3,0 2,0 3,0 1,5 2,0 3,0 1,5	1,09 1,35 1,78 1,71 2,25 3,30 1,88 2,41 3,30 3,03 4,48 2,29 3,03 4,48 2,29 3,03 4,48 2,29 2,76	1,32 1,65 2,14 2,10 2,74 4,14 2,25 2,94 4,21 3,74 5,41 2,91 3,74 5,41 2,91 3,74 5,41 3,74 5,41 3,74	2,61 3,26 4,04 6,39 8,37 12,56 7,27 9,52 12,78 22,20 30,50 14,90 18,08 25,31 18,08 22,20 30,50 31,75	1,30 1,63 2,02 2,56 3,35 5,02 2,91 3,81 5,11 6,34 8,71 4,97 6,13 8,44 5,17 6,34 8,71 7,94	1,12 1,40 1,37 1,74 1,74 1,80 1,74 2,44 2,37 2,26 2,22 2,16 2,49 2,44 2,37 2,49 2,44 2,37	0,88 1,09 1,33 2,19 2,80 3,32 4,28 5,66 5,85 7,84 7,94 9,81 13,37 4,76 5,85 7,84 10,77	0,88 1,09 1,33 1,75 2,24 3,19 2,21 2,85 3,77 3,90 5,23 3,97 4,90 6,69 3,17 3,90 5,23 5,39	0,83 0,81 0,79 1,02 1,01 0,99 1,21 1,21 1,16 1,25 1,20 1,65 1,62 1,57 1,28 1,25 1,20
40	80	2,0	3,66	4,54	37,32	9,33	2,87	12,70	6,35	1,67
40	80	3,0	5,42	6,61	52,16	13,04	2,81	17,49	8,75	1,63
50	100	2,0	4,52	5,74	74,94	14,99	3,61	25,65	10,26	2,11
50	100	3,0	6,71	8,41	106,34	21,27	3,56	35,97	14,39	2,07
50	150	2,0	6,17	7,74	207,45	27,66	5,18	37,17	14,87	2,19
50	150	3,0	9,17	11,41	298,35	39,78	5,11	52,54	21,02	2,15

PLANCHAS LAMINADAS AL FRIO

Especificaciones Generales

Norma

ASTM A366 JIS 3141 SPCC

SAE 1008 SAE 1010

Espesores | 0,40 a 1,90

Rollos X 1219
Planchas 4 X 8 y medidas especiales

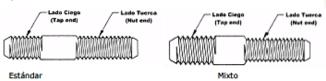
CALIDAD	DESIGNACION	CARBON	MANGANESO	FOSFORO	AZUFRE	ALUMINIO
Calidad Camaraial	CS TIPO A	0,10	0,6	0.03	0,035	
Calidad Comercial	CS TIPO B	0,02 a 0,15	0,8	0,03	0,035	
	CS TIPO C	80,0	0,6	0,10	0,035	
Embutido leve	FS TIPO A	0,10	0,5	0,02	0,035	
	FS TIPO B	0,02 to 0,10	0,5	0,02	0,030	
Embutido profundo	DDS	0,08	0,5	0,02	0,025	0,01
	EDDS	0,02	0,4	0,02	0,020	0,01
Estructural	30 (230)	0,20		0,040	0,040	
SS Grd	37 (255)	0,20		0,10	0,040	
	40(275)	0,25		0,10	0,040	
	50(340)	0,40		0,20	0,040	
	50(340)	0,50		0,040	0,040	
	80 (550)	0,20		0,040	0,040	

Catalogo Motor Reductor LENTAX.

Entra		Velocidad Entrada aprox.	Velocidad Salida aprox.	Relación	MODE		ater de guridad	Util	Ditte		Entrado	Velocidad Selide	Relación	MODE		actor de l guridad	Mane no Utili
W	HP	(RPM)	(RPM)				6)	(Nm)	kw	HP	(RPM)	(CPM)	0			(fa)	(Nm)
		1400	230,0	6,08	HR	2,00	3,80	61				16.0	88,40 78,96	CSTS	3.00	1.30	1282
		700	102.0	6,85	TR	2.00 /8	0.95	138	l			20.0	72.26	SB	3,00	1,60	1048
			130.0	5,38	TR	2,00 B	1.20	108	l			21.0	66,23 55,51	CSTS	3.00	7.05	960
			193.0	3.64	TR	2.00 B	1.80	73	l			28.0	49.97	SB	3.00	2.30	723
									l			31.0	45,80	CSTS	3.00	2,50	664
		940	137.0 175.0	6.85 5.38	TR	2.00 A	1.60	103 81	l			34.0 40.0	41.91 35,58	SB	3.00	2.70 3.20	516
			356.0	2.64	TR	2.00 /6	3,30	40	l			43.0	32,61	C3T3	3.00	3,50	473
		1400	204.0	6,85	TR	2.00	1.90	69	l			47.0	30,36	CST2	3.00	3.35	447
			260.0	5,38	TR	2.00	2.45	54	l								
			320.0	3.64	TR	2.00	3.00	44 37	l			21.0 22.0	68,75 63,55	器	3.00	0.95 1.05	997 922
									l			24.0	57,94	C2T3	3,00	1.30	840
			391.0 474.0	3.58	78	2.00	0.95 1.15	36 30	l			27.0 30.0	52,66 47,47	CEB	3.00	1.35	764 666
			365.0	2.48	FR	2.00	1,35	25	l			33.0	42,61	CZTS	3.00	1.75	618
			064.0 775.0	2.11	78	2.00	1.60	21 18	l			37.0 43.0	37.88	SEE	3.00	1.90	549 481
			.05.0	1,01	P.K.	2,00	1,90	10	l			30.0	28.29	C2T3	3.00	7.60	410
	-	1411			CATTO	202		*****				58.0	24,38	C2T3	3.00	3,00	353
2, 200	3,000	1415	1.5	960,80 878,92	COHR	3,00	1.10	13714				61.0	23.09	CZTZ	3.00	2,80	340
			1.9	727.88 613.08	COHR	3.00	130	10389	l			73.0 86.0	19.29 16.41	C2172	3.00	3.10	284 242
			2.3	613,08 577,88	COHE	3,00	1.85	3563	l			97.0	15,33	CZTZ	3.00	3.25	242
			3.1	450.14	COHE	3.00	2.10 2.45	6425				100.0	14,14	CZTZ	3,00	3,95	208
			3.6	390,24	COHR	3,00	2.45	2007	l			25.0	40.05	CITY	2.00	1.05	704
			3.8 4.5	371.84 313.20	COHE	3.00	3.05	4670	l			35.0 41.0	40.95 34,45	SHB	3.00	1.05	594 500
			5.3	267,12	COHR	3,00	3,55	3813	l			44.0	31.84	CITS	3,00	1.25	462 425
					Corne	3,00	3,90		l			56.0	29.34 25.22	SHB	3.00	1.45	366
			2.9	491,89	CSHR	3,00	1.00	7021	l				27.04	CITA	3.00	2.00	322
			3.4	419.53 361.16	CSHR	3.00	1.20	3155	l			65.0 78.0	21.84 18.18	CITZ	3.00	2, 25	268
			4.5	313,10	CSHR	3.00	1.640	4669	l			92.0	15,40	CITZ	3,00	2,50	227
			5.4	267.67	CSHR	3.00	1.90 2.15	3749	l			114.0	13.21 12.44	CHIZ	3.00	2.60	195 183
			7.2	197.75	CSHR	3.00	2.50	2823	l			124.0	11.45	CITZ	3.00	2.95	169
		940	5.1	183.54	CST3	3.00 A	2.05	4007	l			134.0 157.0	9.04	CHTZ	3.00	3,30	155
		-	6.6	143,39	CSTS	3.00 &	2.60	3130	l			181.0	7.84	CITZ	3.00	3,95	115
			7.0	133,49	SEE	3.00 A	2.80 3.25	2914 2530	l		940	155.0	6.08	HR	3.00 /6	1.70	137
			9.0	104.29	CST3	3.00 &	3,60	2276	l		-	198.0	4,75	HR		2.15	107
			9.8	95,94	CST3	3,00 &	3,90	2094	l			245.0	3,84	HR	3,00 /6	2.65	87
		1415	8.0	183,54	CST3	3,00	3,05	2662	l		1415	233.0	6,08	HR	3,00	2,55	91
			10.0	143,39	CST3	3,00	3,95	2079	l			298.0	4.75 3.84	HR	3.00	3.25 4.00	71 57
			4.2	338,00	C45HR	3,00	1.00	4824	l								
			4.8 5.9	293,00	C45HR C45HR	3.00	1.15	4182	l		940	175.0 356.0	5.38 2.64	TR	3.00 /6	1.10	121
			6.8	209,40	C45HR	3.00	1.60	2989	l								
			7.3	193,84	C45HR	3,00	1.75	2767	l		1415	207.0	6,85	TR	3.00	1.25	102
		940	5.5	171,80	C45T3	3,00 &	1,35	2452	l			324.0	4,37	TR	3.00	2.00	65
			6.5 7.7	143.90	C4ST3	3.00 A	1.60	2054 1751	l			389.0	3.64	TR	3.00	2.40	54 46
			8.3	113,60	C45T3	3,00 &	2.05	1621				535,0	2,64	TR	3.00	3,30	40
			8.9	106,10	C45T3	3,00 &	2.20	1514				618.0	2.29	TR	3,00	3,80	34
		1415	8.2	171,80	C45T3	3,00	2.05	2452	3,00	4,00	1405	1.9	727.88	CHR	4.00	1.00	13951
			9.8	143.90	C4ST3	3.00	2.45	2054 751				2.3	613.08 577.88	COHE	4.00	1.15	11751
			12.5	113,60	C45T3	3.00	3.10	1621	l			3.1	450.14	COHR	4.00	1.60	8678
			13.3	106.10	C4ST3 C4ST3	3.00	3,30	B14	I			3.6	390.24	COHE	4.00	1.80	7480
			15,3	92.70		3,00	3,75	523				4.5	313, 20	CHHR	4.00	2,25	7127 6003
			7.7 8.2	182.77	C413 C413	3.00	1.10	2650				5.3	267.12 244.35	COHR	4.00	2.65	5120 4683
			9.9	172,13	C413	3.00	1.15	1080	l			6.1	229,96	COHE	4.00	3,10	4408
			10.1	139,83	C4T3 C4T3	3.00	1.45	20.28	l			7.0	199,36	C6HR	4.00	3,55	3821
			12.1	98,50	C4T3	3,00	1.95	1690 1428	I		960	4.2	228,76	C6T3	4.00 /6	2.15	6519
			15.0	96.12	C4T3 C4T3	3.00	2.05	D194				5.3	179.67	CATS	4.00 /6	2.70 3.10	5120
			16.0 17.0	90,53	C4T3	3,00	2.10	1313 1190	l			6.1	158,11	C6T3	4.00 /6 4.00 /6	3,10	4506 4163
			19.0	73.54	C413	3.00	7.60	1066				7.7	124,18	Call	4,00 /6		3539
			23.0	61,28 53,21	C413 C413	3.00	3,25	889			1405	3.9	361.16	CSHR	4.00	1.00	
			27.0 28.0	50.99	C4T3	3,00	3.90	772 739			1403	4.5 5.3	313.10	CSHR	4.00	1.15 1.40	6922
												5.3	262,67	CSHR	4.00	1.40	5034
			12.0	118,75	SE	3.00	1.10	1514	I			6,2 7,1	227,71 197,75	CSHR	4.00	1.60	4364 3790
			15.0	96,46		3.00	1.20	1399									

Catologo de Pernos de Anclajes

ESPARRAGOS (Studs)

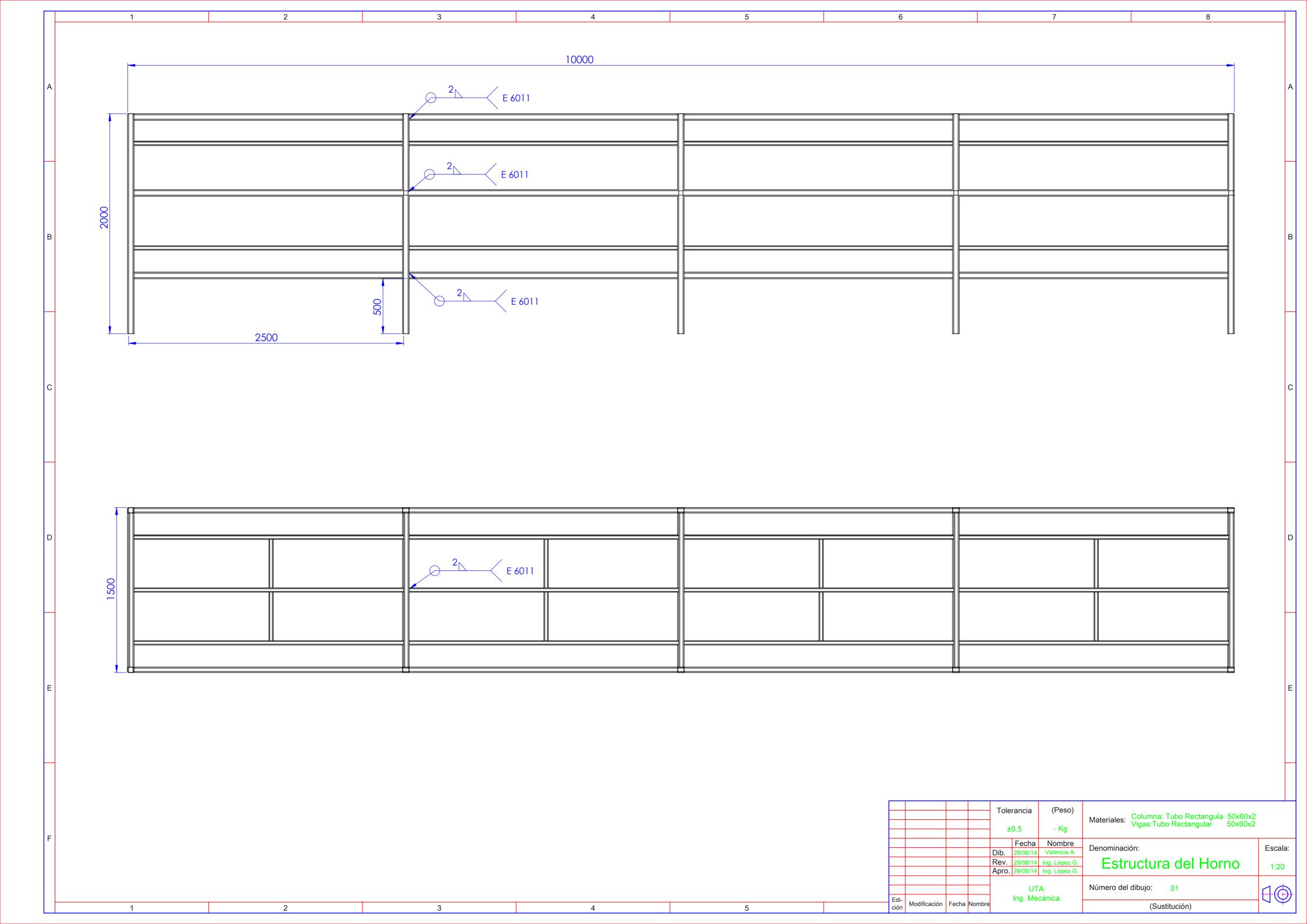

Espárragos. Son elementos de fijación formados por un eje cilíndrico roscado en ambos extremos. Se aplican fijando una de sus puntas a un agujero previamente roscado, y atornillado una tuerca en el otro extremos.

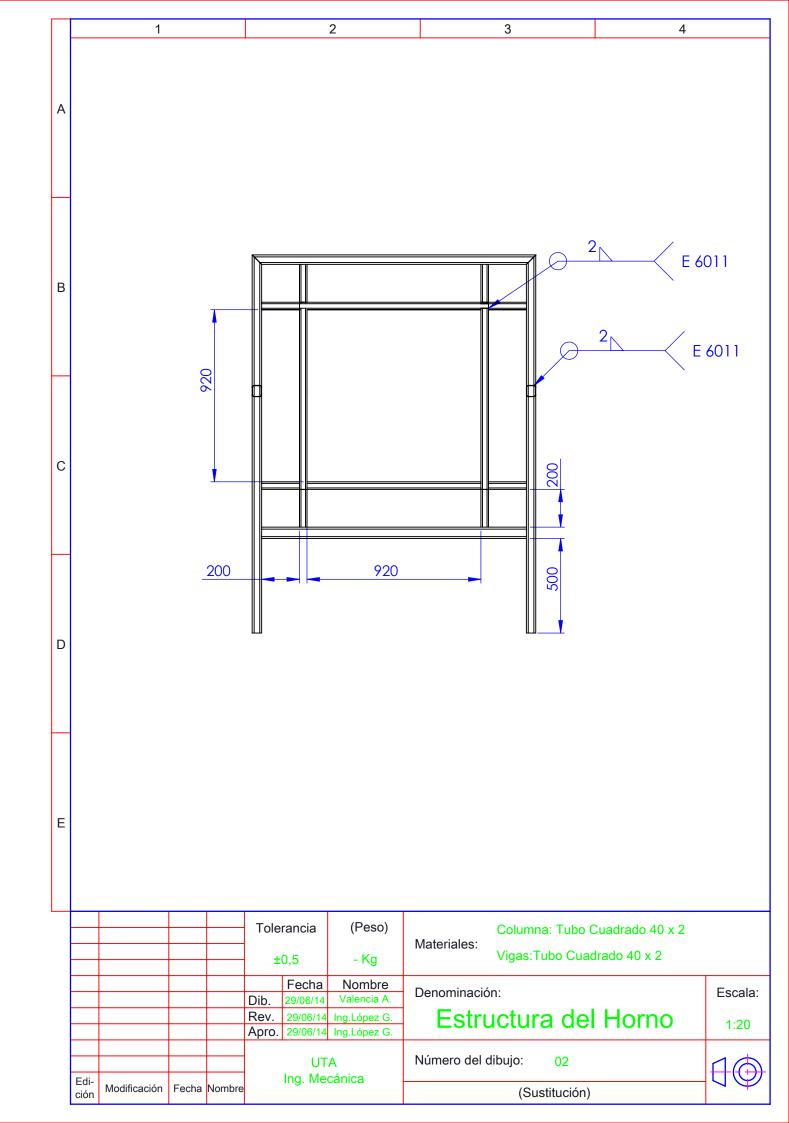
Características Técnicas

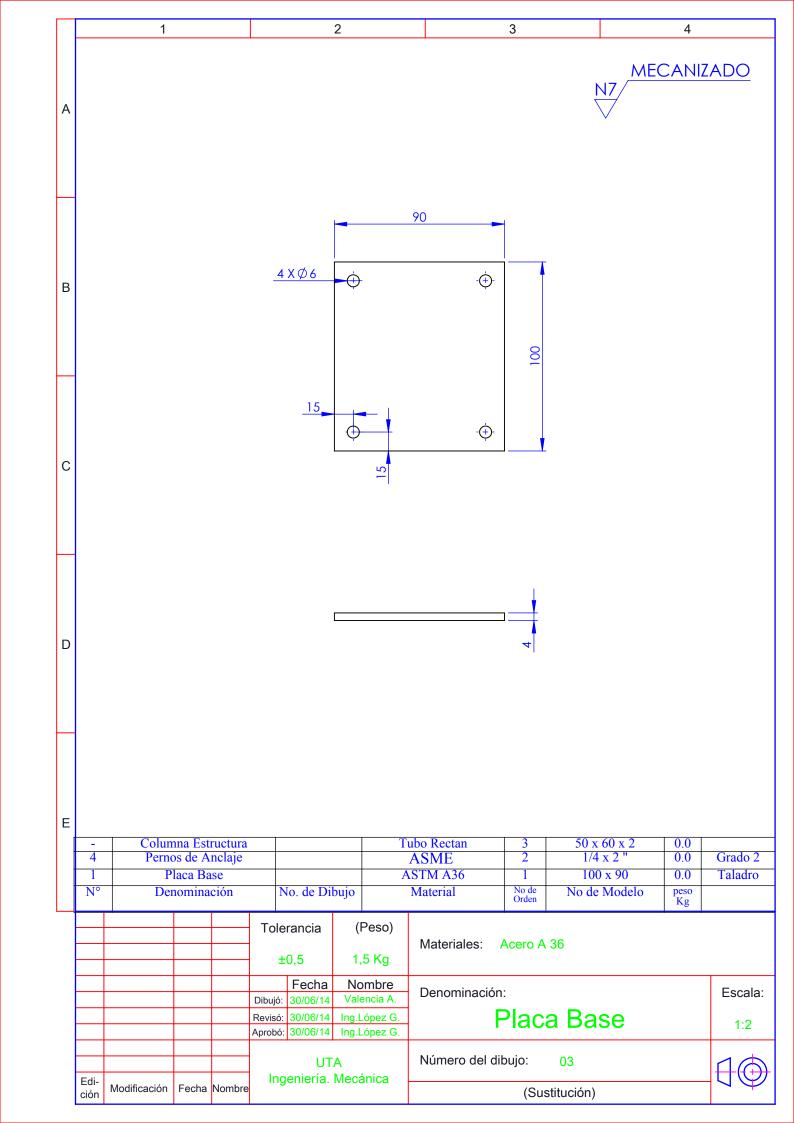
	ANSI/ASME	ISO			
Serie de Rosca	UNC - UNF	MA - MB - Especial			
Clase de Rosca	2A	6g			
Diámetros	5/16" 3/8" 7/16" 1/2" 9/16" 5/8" 3/4"	M6 M8 M10 M12			
Longitudes	Desde 1 1/4" hasta 4"	Desde 30 hasta 100mm			
Calidad del Material	Grado 2	Clase 5.8			
Acabado	Pavonado	Pavonado			

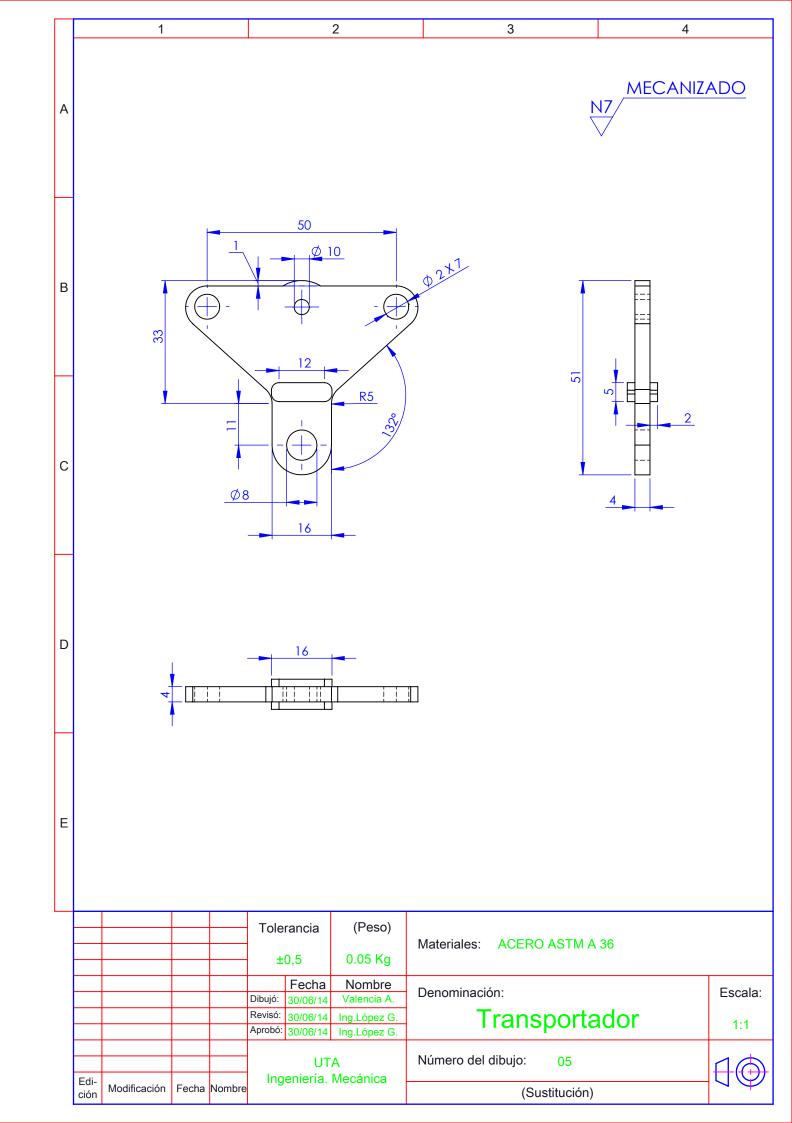
Nota: Otras especificaciones consultar.

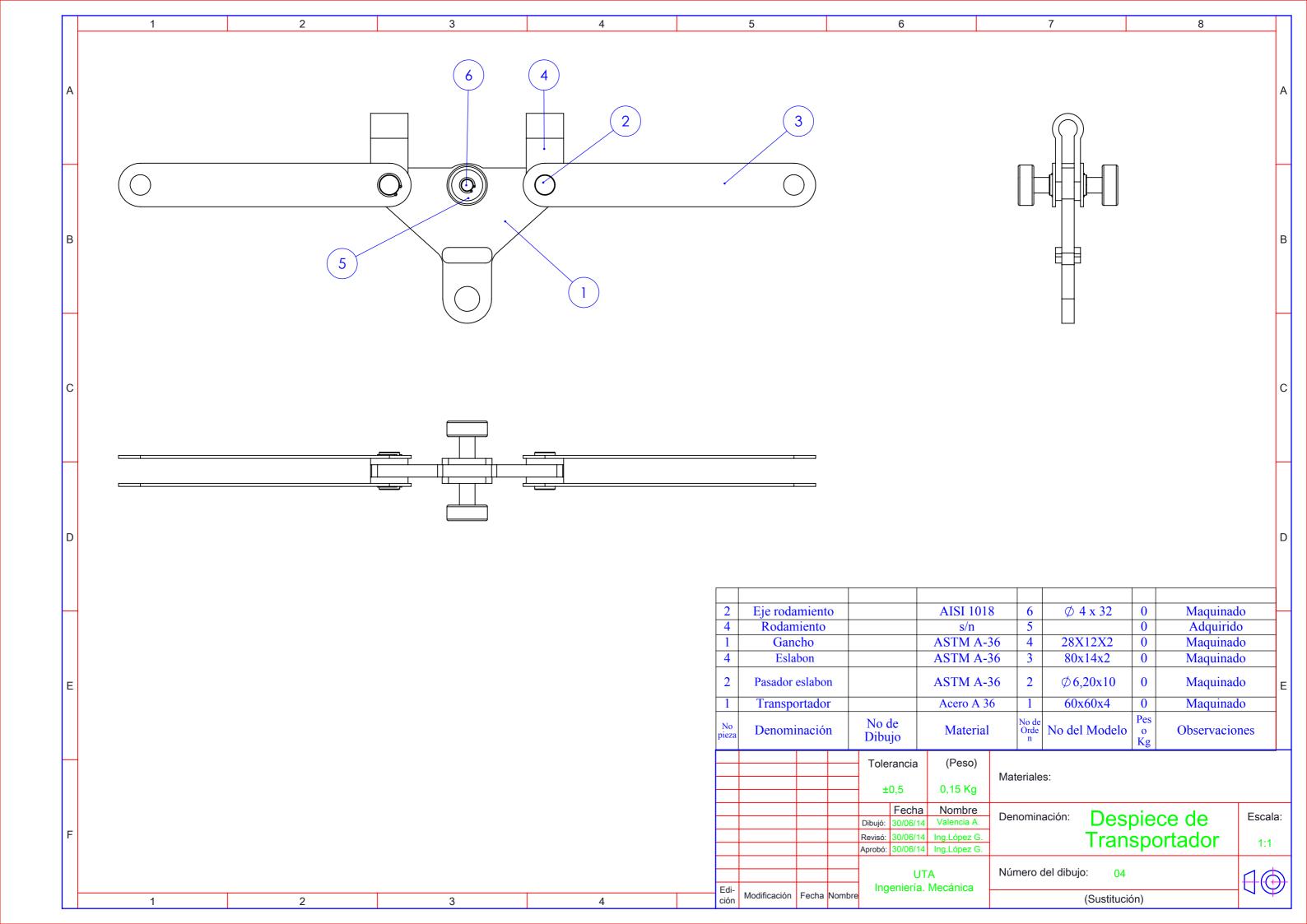
Tipos de Construcción


Combinaciones de Fabricación


Tipos de Espárrago	Est	indar	Mixto			
Lados	Lado Ciego (Tap end)	Lado Tuerca (Nut end)	Lado Ciego (Tap end)	Lado Tuerca (Nut end)		
Serie de Rosca	UNC	UNC	UNC	UNF		
	UNF	UNF	UNC	UNC		
	UNC	UNF	-	-		
	MA	MA	-	-		
	МВ	МВ	-	-		


Materiales


Norma	Designació	Material (*)	Resistencia a la tracción	Elongación %	Dureza Rockwell
			Min.	Min.	Min. Max.


PLANOS

