UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

MAESTRÍA EN MECÁNICA

(COHORTE 2017)

TEMA:

"ANÁLISIS DE LA ALEACIÓN MECÁNICA DE ALUMINIO 1060 CON PORCENTAJES CONTROLADOS EN PESO DE ZINC Y SU INCIDENCIA EN LA RESISTENCIA ÚLTIMA A LA TENSIÓN, DUREZA E IMPACTO"

Trabajo de Titulación

Previa a la obtención del Grado Académico de Magíster en Mecánica Mención Diseño

Autor: Ing. Giovanny Vinicio Pineda Silva

Director: Ing. Gonzalo Eduardo López Villacís, Mg.

Ambato- Ecuador

2019

A la Unidad Académica de Titulación de la Facultad de Ingeniería Civil y Mecánica

El tribunal receptor del Trabajo de Titulación presidido por el Ing. Juan Enrique Garcés Chávez, Mg., e integrado por los señores: Ing. Alex Santiago Mayorga Pardo, Mg. e Ing. María Belén Paredes Robalino, Mg., designados por la Unidad Académica de Titulación de la Universidad Técnica de Ambato, para receptar el Trabajo de Titulación con el tema: "ANÁLISIS DE LA ALEACIÓN MECÁNICA DE ALUMINIO 1060 CON PORCENTAJES CONTROLADOS EN PESO DE ZINC Y SU INCIDENCIA EN LA RESISTENCIA ÚLTIMA A LA TENSIÓN, DUREZA E IMPACTO", elaborado y presentado por el señor: Ing. Giovanny Vinicio Pineda Silva, para optar por el Grado Académico de Magíster en Mecánica mención Diseño; una vez escuchada la defensa oral del Trabajo de Titulación, el Tribunal aprueba y remite el trabajo para uso y custodia en las bibliotecas de la UTA.

Ing. Juan Enrique Garcés Chávez, Mg. Presidente del Tribunal

avne Ing. Alex Santiago Mayorga Pardo, Mg.

Miembro del Tribunal

Ma Rele Ing. María Belén Paredes Robalino, Mg.

Maria Belen Faredes Robalillo, Mg. Miembro del Tribunal

AUTORÍA DE LA INVESTIGACIÓN

La responsabilidad de las opiniones, comentarios y críticas emitidas en el Trabajo de Titulación presentado con el tema: "ANÁLISIS DE LA ALEACIÓN MECÁNICA DE ALUMINIO 1060 CON PORCENTAJES CONTROLADOS EN PESO DE ZINC Y SU INCIDENCIA EN LA RESISTENCIA ÚLTIMA A LA TENSIÓN, DUREZA E IMPACTO", le corresponde exclusivamente al: Ing. Giovanny Vinicio Pineda Silva, Autor bajo la Dirección del Ing. Gonzalo Eduardo López Villacís, Mg., Director del Trabajo de Titulación; y el patrimonio intelectual a la Universidad Técnica de Ambato.

Ing. Giovanny Vinicio Pineda Silva CC: 1804062147 AUTOR

Ing. Gonzalo Eduardo López Villacís Mg. CC: 1803100898 DIRECTOR

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que el Trabajo de Titulación, sirva como un documento disponible para su lectura, consulta y procesos de investigación, según las normas de la Institución.

Cedo los Derechos de mi trabajo, con fines de difusión pública, además apruebo la reproducción de esta, dentro de las regulaciones de la Universidad.

Ing. Giovanny Vinicio Pineda Silva CC: 1804062147

DEDICATORIA

Este trabajo se lo dedico a Dios por darme la oportunidad de seguir avanzando en mi formación profesional, y de manera muy especial a esas personitas que alegran mi vida, mis preciosos y adorados hijos Cristina Estefanía y Giovanny Alejandro.

AGRADECIMIENTO

Agradezco a los docentes del programa de Posgrado quienes compartieron sus conocimientos y experiencias útiles para mi formación académica integral, de manera especial al Ing. Gonzalo López, quien colaboró con el desarrollo de este proyecto, demostrando ser un gran profesional y amigo.

A mis padres y esposa, quienes brindaron su apoyo para la consecución de este nuevo logro académico.

DEDICATORIA	V
AGRADECIMIENTO	Ί
ÍNDICE DE CONTENIDOSVI	[]
ÍNDICE DE FIGURASXI	II
ÍNDICE DE TABLASXV	Ί
ANEXOS	X
RESUMEN EJECUTIVO	X
SUMMARY	Γ
CAPÍTULO 1	1
1.1 Tema	1
1.2 Planteamiento del problema	1
1.2.1 Contextualización	1
1.2.2 Análisis crítico	3
1.2.3 Prognosis	4
1.2.4 Formulación del problema	4
1.2.5 Preguntas directrices	4
1.2.6 Delimitación del problema	5
1.2.6.1 Delimitación de contenidos	5
1.2.6.2 Delimitación espacial	5
1.2.6.3 Delimitación temporal	5
1.3 Justificación	5
1.4 Objetivos	6
1.4.1 General	6
1.4.2 Específicos	6
CAPÍTULO 2	7
2.1 Antecedentes Investigativos	7
2.2 Fundamentación teórica	9
2.2.1 Procesos de fabricación de aleaciones	9
2.2.1.1 Proceso de fusión	9
2.2.1.2 Proceso de electrólisis	0
2.2.1.3 Proceso de compresión	0

ÍNDICE DE CONTENIDOS

2.2.2 Pulvimetalurgia	0
2.2.2.1 Producción de polvos metálicos	2
2.2.2.2 Atomización	2
2.2.2.3 Procesos químicos	3
2.2.2.4 Procesos electrolíticos	4
2.2.2.5 Procesos de molienda	4
2.2.3 Aleación mecánica	6
2.2.3.1 Producción de polvo	7
2.2.3.2 Proceso de tamizado	9
2.2.3.3 Proceso de mezclado de los elementos aleantes	9
2.2.3.4 Proceso de conformado	0
2.2.3.5 Proceso de sinterizado	2
2.2.4 Ingeniería de Materiales	3
2.2.4.1 Ensayo de tensión	3
2.2.4.2 Probeta ensayo de tensión	5
2.2.4.3 Máquina de ensayos universal - Deformímetro	5
2.2.4.4 Ensayo de dureza	6
2.2.4.5 Ensayo de impacto	7
2.2.5 Propiedades mecánicas	8
2.2.5.1 Fluencia y límite elástico	8
2.2.5.2 Resistencia última a la tensión	9
2.2.5.3 Módulo de Elasticidad	9
2.2.5.4 Dureza	0
2.2.6 Características de los elementos aleantes	1
2.2.6.1 Aluminio 1060	1
2.2.6.2 Zinc	1
2.3 Fundamentación Filosófica	2
2.4 Fundamentación legal	2
2.5 Categorías fundamentales	2
2.6 Hipótesis	3
2.7 Señalamiento de variables	3

2.7.1 Variable independiente
2.7.2 Variable dependiente
2.7.3 Término de relación
CAPÍTULO 3
3.1 Enfoque
3.2 Modalidad Básica de la investigación
3.2.1 Experimental
3.2.2 Bibliográfico
3.3 Nivel o tipo de investigación
3.3.1 Exploratorio
3.3.2 Descriptivo
3.3.3 Asociación de variables
3.4 Población y muestra
3.4.1 Población
3.4.2 Muestra
3.5 Operacionalización de variables
3.5.1 Variable Independiente
3.5.2 Variable Dependiente
3.6 Recolección de la información
3.7 Procesamiento y análisis
CAPÍTULO 4
4.1 Análisis de los resultados
4.1.1 Cálculo de la masa de materiales base y aleante
4.1.1.1 Masa de las probetas para el ensayo de tracción
4.1.1.2 Masa de las probetas para el ensayo de impacto
4.1.1.3 Masa total requerida de los materiales base y aleante
4.1.2 Adquisición de materia prima
4.1.2.1 Adquisición del Aluminio 1060
4.1.2.2 Adquisición de zinc
4.1.3 Obtención de polvo de Zinc
4.1.4 Tamizaje de los polvos metálicos

4.1.5 Forma de partículas polvo metálico	. 50
4.1.6 Mezclado de polvos	. 51
4.1.7 Proceso de Compactación	. 51
4.1.8 Proceso de Sinterización	. 52
4.1.9 Control de calidad y dimensional de las probetas obtenidas	. 53
4.1.10 Codificación de probetas	. 54
4.2 Interpretación de los resultados	. 55
4.2.1 Resultados Ensayos	. 55
4.2.1.1 Resultados Ensayo de Dureza	. 55
4.2.1.2 Resultados Ensayo de Tracción	62
4.2.1.3 Resultados Ensayo de Impacto	. 68
4.2.2 Análisis comparativo de los resultados obtenidos	. 74
4.2.2.1 Análisis comparativo – Ensayo de Dureza	74
4.2.2.2 Análisis Comparativo – Ensayo de Tracción	75
4.2.2.3 Análisis Comparativo – Ensayo de Impacto	. 77
4.3 Verificación de la hipótesis	. 78
4.3.1 Verificación de la hipótesis – Dureza	. 81
4.3.2 Verificación de la hipótesis – Límite de Fluencia	82
4.3.3 Verificación de la hipótesis – Resistencia a la Tracción	. 83
4.3.4 Verificación de la hipótesis – Energía de Impacto	. 84
CAPÍTULO 5	. 85
5.1 Conclusiones	. 85
5.2 Recomendaciones	. 88
CAPÍTULO 6	. 90
6.1 Datos informativos	. 90
6.1.1 Título	. 90
6.1.2 Beneficiario	. 90
6.1.3 Equipo Técnico Responsable	. 90
6.2 Antecedentes de la propuesta	. 90
6.3 Justificación	. 90
6.4 Objetivos	. 91

6.4.1 Objetivo General	91
6.4.2 Objetivos Específicos	91
6.5 Análisis de factibilidad	91
6.6 Fundamentación	92
6.6.1 Esfuerzos en elementos mecánicos	92
6.6.1.1 Esfuerzo normal	92
6.6.1.2 Esfuerzo cortante directo	93
6.6.1.3 Esfuerzo cortante por torsión	94
6.6.2 Diseño de elementos mecánicos sometidos a carga estática	95
6.6.2.1 Teoría del esfuerzo cortante máximo (ECM)- material dúctil	95
6.6.2.2 Teoría de la energía de distorsión (ED)- material dúctil	96
6.6.2.3 Teoría de Mohr Coulomb (CMD) – material dúctil	97
6.6.2.4 Teoría del esfuerzo normal máximo (ENM) – material frágil	98
6.6.2.5 Teoría de Mohr frágil (CMF) y Mohr modificada (MM)- material frágil .	99
6.6.3 Fatiga	. 100
6.6.4 Límite de Resistencia a la Fatiga	. 101
6.6.5 Resistencia a la Fatiga	. 102
6.6.6 Factores que modifican el límite de resistencia a la fatiga	. 103
6.6.6.1 Factor de superficie ka	. 104
6.6.6.2 Factor de tamaño kb	. 104
6.6.6.3 Factor de carga <i>kc</i>	. 105
6.6.6.4 Factor de temperatura kd	. 105
Esta ecuación es válida en el intervalo $70 \le TF \le 1000^{\circ}F$. 105
6.6.6.5 Factor de confiabilidad ke	. 105
6.6.6.6 Factor de efectos varios kf	. 106
6.6.7 Diseño de elementos mecánicos sometidos a carga dinámica	. 106
6.7 Metodología	. 108
6.7.1 Parámetros de operación dirigibles	. 108
6.7.2 Análisis y cálculo de fuerzas sobre los pasadores	. 108
6.7.2.1 Fuerzas plano vertical	. 109
6.7.2.2 Fuerzas plano horizontal	. 115

6.7.3 Diseño a carga estática	. 119
6.7.4 Diseño a carga dinámica	. 122
6.7.5 Simulación diseño a carga estática	. 126
6.8 Administración	. 131
6.8.1 Costos directos	. 131
6.8.2 Costos indirectos	. 131
6.8.3 Costos Total	. 132
6.9 Previsión de la evaluación	. 133
Referencias Bibliográficas	. 134

ÍNDICE DE FIGURAS

Figura 1.1 Laboratorio de materiales IMDEA1
Figura 1.2 Instalaciones Laboratorio de Procesos de Manufactura – ETAL2
Figura 2.1 Imágenes SEM de muestras consolidadas a) Cu puro b) Cu-10Ni-40Zr7
Figura 2.2 Probetas para ensayo de tracción de la aleación Aluminio – Babbit 238
Figura 2.3 a) Proceso de fusión. b) Molde en arena9
Figura 2.4 Proceso de electrólisis
Figura 2.5 Elementos fabricados con procesos de pulvimetalurgia11
Figura 2.6 Métodos de producción de polvo metálico por atomización (a) y (b)
métodos de atomización por gas, (c) atomización por agua (d) atomización centrífuga
por el método del disco rotativo12
Figura 2.7 Polvo de hierro obtenido por procesos químicos13
Figura 2.8 Molino de bolas de alta energía Emax14
Figura 2.9 Molino de bolas planetario Emax15
Figura 2.10 Molino de bolas vibratorio
Figura 2.11 Molino de rodillos
Figura 2.12 Formas de partícula de polvo17
Figura 2.13 Tamaño de partícula a) 88-105 um b) 44-53 um c) 20-25 um
Figura 2.14 Tamiz vibratorio
Figura 2.15 Ciclo de compactación de polvo metálico
Figura 2.16 Secuencia del desarrollo de elementos por aleación mecánica22
Figura 2.17 Diagrama de fase Al-Zn23
Figura 2.18 Curva esfuerzo – deformación
Figura 2.19 Probeta para prueba de tensión no mecanizada plana estándar para
productos de pulvimetalurgia25
Figura 2.20 Máquina de ensayos universal26
Figura 2.21 a) Deformímetro análogo b) Deformímetro digital26
Figura 2.22 Ensayo de dureza a) fuerza aplicada b) diámetro de indentación27
Figura 2.23 Probeta para el ensayo de impacto
Figura 2.24 Deformación elastoplástica, límite proporcional P y límite elástico σ_y 28
Figura 2.25 Resistencia última a la tensión – diagrama esfuerzo deformación29
Figura 2.26 Indentadores y huella en función del tipo de dureza30

Figura 3.1 Proceso de recolección de la información
Figura 3.2 Procesamiento y análisis de datos de ensayos mecánicos40
Figura 4.1 Proceso de la investigación y análisis de resultados42
Figura 4.2 Probeta para el ensayo de impacto46
Figura 4.3 Aluminio 1060 - Al > 99.5% a) Empaquetadura al vacío b) Polvo
Figura 4.4 Lingote de zinc 99% de pureza48
Figura 4.5 a) Molino de bolas FICM – UTA. b) Polvo de zinc49
Figura 4.6 a) Equipo de tamizaje. b) Tamizaje del polvo metálico49
Figura 4.7 Forma de la partícula a) Aluminio 1060. b) Zinc50
Figura 4.8 a) Equipo de mezclado tipo V. b) Proceso de mezclado de polvos51
Figura 4.9 a) Máquina prensadora b) Proceso de compactación52
Figura 4.10 a) Arena refractaria b) Recubrimiento de las probetas con arena
refractaria
Figura 4.11 Proceso de sinterización53
Figura 4.12 Limpieza de arena refractaria
Figura 4.13 Probetas para el ensayo de tracción codificadas y etiquetadas54
Figura 4.14 Probetas para el ensayo de impacto codificadas y etiquetadas55
Figura 4.15 a) Cono y bola 5 mm. b) Microscopio para medición de huella. c) Ensayo
de dureza55
Figura 6.1 Esfuerzo normal
Figura 6.2 Esfuerzo cortante. a) Conexión barra horquilla mediante un perno. b) Vista
lateral esquemática. c) Diagrama de cuerpo libre del perno93
Figura 6.3 Esfuerzo cortante por torsión. a) Dirección de los esfuerzos b) Variación
del esfuerzo cortante por torsión94
Figura 6.4 Teoría del esfuerzo cortante máximo96
Figura 6.5 Teoría de la energía de distorsión97
Figura 6.6 Teoría de Mohr Coulomb98
Figura 6.7 Teoría del esfuerzo normal máximo99
Figura 6.8 Teoría de Mohr y Mohr modificada100
Figura 6.9 Ciclos de esfuerzo típicos que pueden producir falla por fatiga. a) Esfuerzo
completamente invertido. b) Esfuerzo fluctuante sinusoidal101
Figura 6.10 Fracción de resistencia a la fatiga102
Figura 6.11 Criterios de falla para carga dinámica107

Figura 6.12 DCL – Plano Vertical – Superficie recta y nivelada	110
Figura 6.13 DCL – Plano Vertical – Superficie desfasada 45°	112
Figura 6.14 DCL – Plano Horizontal – Superficie recta y nivelada	116
Figura 6.15 DCL – Plano Horizontal – Superficie desfasada 45°	118
Figura 6.16 Modelación pasador	127
Figura 6.17 Ensamble pasador – bisagra	127
Figura 6.18 Ubicación geometría fija	128
Figura 6.19 Fuerza cortante aplicada	128
Figura 6.20 Momento torsor aplicado	129
Figura 6.21 Mallado del ensamble	130
Figura 6.22 Factor de seguridad mínimo pasador	130

ÍNDICE DE TABLAS

Tabla 2.1 Técnicas de conformado	20
Tabla 2.2 Secuencia compactación unidireccional	20
Tabla 2.3 Presiones de compactado polvo metálico	21
Tabla 2.4 Dimensiones de la probeta de tensión	25
Tabla 2.5 Composición y propiedades del Aluminio 1060	
Tabla 2.6 Propiedades físicas y mecánicas del zinc	
Tabla 3.1 Muestras ensayo de tracción	
Tabla 3.2 Muestras ensayo de dureza Brinell	
Tabla 3.3 Muestras ensayo de impacto	
Tabla 3.4 Operacionalización de Variable Independiente	
Tabla 3.5 Operacionalización de Variable Dependiente	
Tabla 4.1 Dimensiones de la probeta de tracción	43
Tabla 4.2 Masa total de las probetas para el ensayo de tracción	45
Tabla 4.3 Dimensiones de la probeta para el ensayo de impacto	46
Tabla 4.4 Masa total de las probetas para el ensayo de impacto	47
Tabla 4.5 Masa total requerida de los materiales base y aleante	47
Tabla 4.6 Codificación de las probetas	54
Tabla 4.7 Ensayo de Dureza Brinell HB-P0.5-LT	56
Tabla 4.8 Ensayo de Dureza Brinell HB-P1.0-LT	57
Tabla 4.9 Ensayo de Dureza Brinell HB-P1.5-LT	58
Tabla 4.10 Ensayo de Dureza Brinell HB-P0.5-HT	59
Tabla 4.11 Ensayo de Dureza Brinell HB-P1.0-HT	60
Tabla 4.12 Ensayo de Dureza Brinell HB-P1.5-HT.	61
Tabla 4.13 Ensayo de Tracción TT-P0.5-LT	62
Tabla 4.14 Ensayo de Tracción TT-P1.0-LT	63
Tabla 4.15 Ensayo de Tracción TT-P1.5-LT	64
Tabla 4.16 Ensayo de Tracción TT-P0.5-HT.	65
Tabla 4.17 Ensayo de Tracción TT-P1.0-HT	66
Tabla 4.18 Ensayo de Tracción TT-P1.5-HT.	67
Tabla 4.19 Ensayo de Impacto IT-P0.5-LT.	68
Tabla 4.20 Ensayo de Impacto IT-P1.0-LT.	69

Tabla 4.21 Ensayo de Impacto IT-P1.5-LT.	70
Tabla 4.22 Ensayo de Impacto IT-P0.5-HT	71
Tabla 4.23 Ensayo de Impacto IT-P1.0-HT	72
Tabla 4.24 Ensayo de Impacto IT-P1.5-HT	73
Tabla 4.25 Análisis Comparativo resultados Dureza Brinell	74
Tabla 4.26 Análisis Comparativo resultados Ensayo de Tracción - Hoja 1	75
Tabla 4.27 Análisis Comparativo resultados Ensayo de Tracción - Hoja 2	76
Tabla 4.28 Análisis Comparativo resultados Ensayo de Impacto	77
Tabla 4.29 Matriz del estudio – Factores Variables	78
Tabla 4.30 Niveles factores - resultados de Dureza	78
Tabla 4.31 Niveles factores - resultados de Fluencia, Resistencia a la Tra	ucción e
Impacto	78
Tabla 4.32 Verificación de hipótesis – parámetros previos Dureza Brinell	81
Tabla 4.33 Verificación de hipótesis – Dureza Brinell	82
Tabla 4.34 Verificación de hipótesis – parámetros previos Límite de Fluencia.	82
Tabla 4.35 Verificación de hipótesis - Límite de Fluencia	82
Tabla 4.36 Verificación de hipótesis – parámetros previos Resistencia a la Trac	ción.83
Tabla 4.37 Verificación de hipótesis – Resistencia a la Tracción	83
Tabla 4.38 Verificación de hipótesis – parámetros previos Energía de Impacto	84
Tabla 4.39 Verificación de hipótesis – Energía de Impacto	84
Tabla 6.1 Parámetros a y b - Factor de superficie k_a	104
Tabla 6.2 Factor de confiabilidad k_e	106
Tabla 6.3 Parámetros de operación dirigibles	108
Tabla 6.4 Posiciones críticas de los planos de vuelo	109
Tabla 6.5 Parámetros de operación – físicos y geométricos – plano vertical	109
Tabla 6.6 Análisis de fuerzas Plano Vertical – Sup. Recta y nivelada	110
Tabla 6.7 Análisis de fuerzas Plano Vertical – Sup. Desfasada 45°	112
Tabla 6.8 Resultados Fuerzas plano vertical – superficie recta y nivelada	114
Tabla 6.9 Resultados Fuerzas plano vertical – superficie desfasada 45°	114
Tabla 6.10 Parámetros de operación – físicos y geométricos – plano horizontal	115
Tabla 6.11 Análisis de fuerzas Plano Horizontal – Sup. Recta y nivelada	116
Tabla 6.12 Análisis de fuerzas Plano Horizontal – Sup. Desfasada 45°	118
Tabla 6.13 Resultados Fuerzas plano horizontal – superficie recta y nivelada	119

Tabla 6.14 Resultados Fuerzas plano horizontal – superficie desfasada 45°11
Tabla 6.15 Diseño a carga estática – selección diámetro pasador
Tabla 6.16 Diámetro pasadores – plano vertical – superficie recta y nivelada12
Tabla 6.17 Diámetro pasadores – plano vertical – superficie desfasada 45°12
Tabla 6.18 Diámetro pasadores – plano horizontal – superficie recta y nivelada12
$\textbf{Tabla 6.19} \ \text{Diámetro pasadores} - plano \ horizontal - superficie \ des fasada \ 45^{\circ}122$
Tabla 6.20 Diámetro pasador – diseño a carga estática
Tabla 6.21 Diseño a carga dinámica – selección diámetro pasador
Tabla 6.22 Parámetros diseño a Carga dinámica
Tabla 6.23 Diámetro pasadores – plano vertical – carga dinámica12
Tabla 6.24 Diámetro pasadores – plano horizontal– carga dinámica
Tabla 6.25 Diámetro pasador – diseño a carga dinámica
Tabla 6.26 Simulación diseño a carga estática
Tabla 6.27 Rubros de costos – recursos materiales
Tabla 6.28 Rubros de costos – máquinas – equipos – ensayos
Tabla 6.29 Rubros de costos – recursos humanos
Tabla 6.30 Rubros de costos – recursos de oficina
Tabla 6.31 Rubro de costo total

ANEXOS

ANEXO 1. Características polvo de aluminio 1060 – LOBA CHEMIE	138
ANEXO 2. Características zinc – Metalquímica Galvano	139
ANEXO 3. Molde probeta ensayo de tracción – pulvimetalurgia	140
ANEXO 4. Molde probeta ensayo de impacto- pulvimetalurgia	141
ANEXO 5. Probetas para ensayo de tracción codificadas	142
ANEXO 6. Probetas para ensayo de impacto codificadas	143
ANEXO 7. Informe ensayo de tracción – Centro de fomento	productivo
metalmecánico carrocero	144
ANEXO 8. Informe ensayo de impacto – Centro de fomento	productivo
metalmecánico carrocero	156
ANEXO 9. Tabla de distribución de la prueba de Fisher. Puntos críticos	al 5% de la
distribución F	167
ANEXO 10. Velocidad del viento en función de la altura	
ANEXO 11. Factores Atmosféricos ISA	171
ANEXO 12. Coordenadas plano de vuelo	173
ANEXO 13. Perfil geométrico plano de vuelo	174
ANEXO 14. Planos	175

RESUMEN EJECUTIVO

El proyecto de Investigación inicia debido a la necesidad de contar con información técnicamente documentada referente a pulvimetalurgia dentro del ámbito de aleación mecánica, proceso de fabricación que está incursionando en la Industria Nacional, debido a las ventajas que presenta con respecto a los procesos tradicionales; siendo las más representativas, un control más exacto de los límites de la composición, optimización de materia prima y proceso susceptible de automatización con buen acabado superficial para producción en serie de componentes mecánicos.

El proceso experimental de la aleación mecánica inicia con la obtención de polvo metálico de los elementos base: Aluminio 1060 con tamaño de partícula 30 um y aleante: Zinc con tamaño de partícula entre 45 - 63 um a través de la utilización de molino de bolas y un control de tamizaje; proceso de mezclado en función de los porcentajes en peso definidos para el posterior compactado y sinterizado de las probetas, para el correcto desarrollo de los ensayos.

El estudio de la resistencia a la tracción, dureza e impacto se desarrolló a través del control de variables de porcentaje en peso de elemento aleante: 0.5 - 1.0 y 1.5% Zn, y temperatura de sinterización: 462°C y 594°C; los mejores resultados se obtuvieron en el caso de estudio desarrollado con 1% de Zn y temperatura de 594°C, donde la dureza y la resistencia a la tracción se incrementaron en un 69% y 12.29% respectivamente en relación al elemento base; mientras que la resistencia al impacto en función de la energía absorbida disminuye en un 39.40 % en el mejor de los casos 1% de Zn y 462°C; además las variables controladas están correlacionadas entre sí e inciden directamente en las propiedades en estudio de acuerdo al análisis estadístico desarrollado mediante la prueba de Fisher.

Descriptores: Aleación mecánica, pulvimetalurgia, compactado, sinterizado.

EXECUTIVE SUMMARY

The research project starts due to the need to have technically documented information related to powder metallurgy within the scope of mechanical alloy, manufacturing process that is venturing into the National Industry, due to the advantages it presents with respect to traditional processes; being the most representative, a more exact control of the limits of the composition, optimization of raw material and is a process susceptible to automation with good surface finish for serial production of mechanical components.

The experimental process of the mechanical alloy begins with the obtaining of mechanical powder of the base elements: Aluminum 1060 with particle size 30 um and alloying: Zinc with particle size between 45 - 63 um through the use of ball mill and a screening control; mixing process based on the percentages in weight defined for the subsequent compaction and sintering of the test pieces for the correct development of the tests.

The study of tensile strength, hardness and impact was developed though the control of variables of percentage by weight of alloying element: 0.5 - 1.0 y 1.5% Zn, and sintering temperature: 462° C y 594° C; the best results were obtained in the case of a study developed with 1% Zn and a temperature of 594° C, where the hardness and tensile strength were increased by 69% and 12.29% respectively in relation to the base element; while the impact resistance as a function of the energy absorbed decreases by 39.40% in the best case 1% Zn and 462° C; in addition, the controlled variables are correlated with each other and directly affect the properties under study according to the statistical analysis developed by Fisher's test.

Keywords: Mechanical alloy, powder metallurgy, compacted, sintered.

CAPÍTULO 1

1.1 Tema

"ANÁLISIS DE LA ALEACIÓN MECÁNICA DE ALUMINIO 1060 CON PORCENTAJES CONTROLADOS EN PESO DE ZINC Y SU INCIDENCIA EN LA RESISTENCIA ÚLTIMA A LA TENSIÓN, DUREZA E IMPACTO"

1.2 Planteamiento del problema

1.2.1 Contextualización

A nivel mundial, existen programas de investigación conformado por equipos interdisciplinares expertos en metalurgia física; uno de los más reconocidos y enfocados en el desarrollo de materiales y sus procesos de fabricación es el INSTITUTO IMDEA MATERIALES (Instituto Madrileño de Estudios Avanzados en Materiales), cuyas instalaciones (ver Figura 1.1) están localizadas en España; donde establecen entre las líneas principales del programa, el estudio del procesado de estado sólido de materiales que involucra el desarrollo de nuevas aleaciones mediante métodos termodinámicos y manufactura de polvos, a través de aleado mecánico y atomización de gas en condiciones no oxidativas, consolidación por sinterizado asistido por campo o mediante prensa y sinterizado convencional, es decir a base de calentamiento por debajo del punto de fusión [1].

Figura 1.1 Laboratorio de materiales IMDEA [1]

Uno de los proyectos desarrollados por esta entidad a base de aleación mecánica entre 2017 y 2018 es el tratamiento termo mecánico de la aleación Zamac 2 ($ZnAl_4Cu_3$) mediante metalurgia en polvo con la finalidad de mejorar las propiedades mecánicas y la resistencia a la corrosión en comparación con la obtenida por fundición a cargo del Dr. Srdian Milenkovic, donde una vez desarrolladas las pruebas y ensayos efectivamente se logró el objetivo [1].

A nivel latinoamericano, en México se encuentran las instalaciones de ETAL (ver Figura 1.2), una empresa de Grupo Marmex, la misma que está enfocada a la diversificación e integración vertical de procesos de manufactura que le permite ser el proveedor preferencial debido a la calidad en sus productos; uno de sus departamentos está encargado de la metalurgia de polvos donde los estudios desarrollados sobre aleaciones de metales con altas diferencias entre sus puntos de fusión permite controlar la porosidad de las piezas logrando mejoras en la propiedades mecánicas [2].

Figura 1.2 Instalaciones Laboratorio de Procesos de Manufactura - ETAL [2]

A nivel nacional, las empresas dedicadas a la metalurgia de a poco están incursionando en nuevos procesos para la obtención de aleaciones, como es el caso de la Empresa FILARET S.A localizada en la ciudad de Guayaquil, entidad dedicada a actividades de forja, prensado y laminado de metales; en los últimos cinco años se ha preocupado por su equipamiento para procesos de pulvimetalurgia con la finalidad de brindar al mercado objetos terminados como tanques y materia prima a partir de polvos de metal que se someten a tratamiento calorífico o de compresión [3].

1.2.2 Análisis crítico

La tendencia en los últimos años, con respecto al desarrollo de aleaciones y materiales compuestos de matriz metálica se basan en procesos de molienda para obtener polvo, los mismos que de acuerdo a estudios previos desarrollados permiten alcanzar niveles de propiedades que por otros métodos resulta muy difícil, es por esto que la aleación mecánica ha ganado espacio en el área de Ingeniería de Materiales con respecto a otros métodos utilizados como es el caso de la fundición.

A partir del estudio desarrollado en el IMDEA se concluye que la técnica de aleación por metalurgia de polvos permite mejorar las propiedades mecánicas y aumentar la resistencia a la corrosión en comparación con la obtenida por fundición de la aleación Zamac 2. Además, en las pruebas desarrolladas por ETAL, se determinó que la técnica de aleación mecánica entre materiales con una diferencia considerable entre sus puntos de fusión, permite controlar la porosidad de las piezas logrando mejoras en las propiedades mecánicas.

Una de las ventajas que presenta la aleación mecánica es que se consigue eliminar problemas de segregación y formación de aglomerados, los cuales están asociados a las mezclas convencionales anteriormente utilizadas, a más de que se evita las limitaciones asociadas a los puntos de fusión y solubilidades relativas, debido a que se desarrolla el proceso en estado sólido.

El proceso de aleación mecánica suele incluir por lo menos un elemento dúctil, que actúa como soporte o matriz de los demás componentes, en este estudio es el aluminio; las partículas de polvo sometidas a altas colisiones, evolucionan a partir de continuas soldaduras y fracturas, donde el equilibrio entre ambos fenómenos es necesario para el correcto desarrollo del proceso; la intensidad de la molienda incide directamente en las características del polvo, por lo que el uso apropiado de los equipos (molinos) es indispensable para conseguir resultados apropiados, minimizando en lo posible los sesgos y errores en las pruebas posteriores.

El estudio es tecnológicamente viable, por la información disponible en estudios e investigaciones previas desarrolladas, que serán utilizados como parámetros de entrada y conductores de la presente investigación.

1.2.3 Prognosis

La industria metalúrgica en el Ecuador está en actual proceso de desarrollo, por lo que aún existen varias interrogantes y necesidad de estudios complementarios que permitan de a poco conseguir materiales desarrollados con procesos de fabricación alternativos, para posibilitar la comparación de resultados con respecto a materiales base o aleaciones obtenidas por métodos tradicionales.

Por lo tanto, es necesario contar con un estudio que permita conocer ventajas y desventajas de la aleación mecánica; puesto que, a falta de esta investigación, las alternativas referentes a procesos de obtención de materiales compuestos y aleaciones se vería limitado a procesos tradicionales, impidiendo el avance de la industria de Ingeniería de Materiales y por ende el desarrollo tecnológico nacional, limitando la posibilidad de hallar alternativas de producción que conlleven a mejores resultados.

1.2.4 Formulación del problema

¿Cómo desarrollar el análisis de la aleación mecánica de Aluminio 1060 con porcentajes controlados en peso de zinc para cuantificar su incidencia sobre la resistencia última a la tensión, dureza e impacto?

1.2.5 Preguntas directrices

- ¿Cómo desarrollar la mezcla de los polvos obtenidos con porcentajes en peso de zinc controlados?
- ¿Cuál es la metodología para obtener las probetas de la mezcla de los polvos metálicos a partir del proceso de compactación y sinterización?
- ¿Cuál es el porcentaje en peso de zinc con el cual se consiguen los mejores resultados dentro del rango de variación en estudio?
- ¿Qué tipo de relación e interacción existe entre las variables en estudio?

1.2.6 Delimitación del problema

1.2.6.1 Delimitación de contenidos

El presente estudio se fundamenta en el campo de la Maestría en Mecánica mención Diseño, en el área de Materiales con los módulos de Materiales para Ingeniería, Diseño de Experimentos y Modelación de Sistemas Mecánicos.

1.2.6.2 Delimitación espacial

La obtención de polvo metálico sobre los materiales en estudio, así como el desarrollo de la aleación mecánica y ensayos necesarios para la investigación, serán desarrollados en el Laboratorio de Materiales de la Facultad de Ingeniería Civil y Mecánica (FICM) de la Universidad Técnica de Ambato (UTA) y el Centro de Fomento Carrocero. El estudio teórico se complementará en la biblioteca de la Facultad de Ingeniería Civil y Mecánica Civil y Mecánica de la Universidad Técnica de Ambato, Universidad de las Fuerzas Armadas en Latacunga y estudios previos desarrollados, así como artículos publicados en revistas de impacto científico a nivel nacional e internacional.

1.2.6.3 Delimitación temporal

El estudio será realizado en el período julio 2018 - julio 2019, tiempo en el cual se desarrollarán los ensayos pertinentes y se conseguirán los parámetros y datos necesarios para el correcto desarrollo de la investigación.

1.3 Justificación

Con esta investigación se pretende documentar resultados que contribuyan a establecer propiedades mecánicas a partir de aleación mecánica, específicamente a partir de polvo metálico, la misma que será utilizada en el proyecto y de esta manera determinar ventajas y desventajas en el campo tecnológico de procesos de fabricación de materiales alternativos que satisfagan requerimientos operacionales y su posible aplicabilidad en el diseño de elementos constitutivos de máquinas, estructuras, entre otras y por ende aportar con el crecimiento de la industria metalúrgica ecuatoriana.

Esta investigación parte de estudios previamente desarrollados, como es el caso de métodos de obtención de polvo metálico, técnicas de elaboración de aleaciones a partir

de pulvimetalurgia; además resulta ser un trabajo complementario y comparativo con respecto a las propiedades mecánicas del material base, con la finalidad de establecer ventajas y la técnica que permite conseguir mejorar resultados sobre las propiedades a determinar.

El desarrollo de la investigación es económicamente factible considerando que se posee los recursos necesarios; es factible técnicamente debido a que se dispone de los equipos necesarios en el laboratorio de Materiales de la FICM – UTA y Centro de Fomento Carrocero, tanto para la obtención de polvo metálico como para el desarrollo de los ensayos necesarios, además se posee acceso a la información documentada en investigaciones previas realizadas.

Las entidades beneficiarias del proyecto serán la industria metalúrgica ecuatoriana, así como las empresas constructoras de planchas, chapas, cubiertas, carrocerías, y todas aquellas relacionadas que utilizan esta aleación como materia prima; logrando contribuir con estudios técnicamente desarrollados para el avance científico tecnológico y de producción nacional.

1.4 Objetivos

1.4.1 General

Desarrollar el análisis de la aleación mecánica de Aluminio 1060 con porcentajes controlados en peso de zinc para cuantificar su incidencia sobre la resistencia última a la tensión, dureza e impacto.

1.4.2 Específicos

- Desarrollar la mezcla de los polvos obtenidos con porcentajes en peso de zinc controlados.
- Obtener las probetas de la mezcla de los polvos metálicos a partir del proceso de compactación y sinterización.
- Determinar el porcentaje en peso de zinc con el cual se consiguen los mejores resultados dentro del rango de variación en estudio.
- Establecer la relación e interacción existente entre las variables en estudio.

CAPÍTULO 2

2.1 Antecedentes Investigativos

El Ing. C. Martínez, en el año 2017, estuvo a cargo de la investigación referente a la caracterización mecánica y microestructura de aleaciones de cobre, níquel y zirconio obtenidas por aleación mecánica y presión en caliente como se muestra en la Figura 2.1, donde llegaron a la conclusión de que la consolidación de los polvos de Ni y Cu aumentan la resistencia del cobre puro a la compresión y tracción en un 5%, mientras que la adición de zirconio la disminuye; por lo que este método basado en pulvimetalurgia efectivamente incide en la mejora de propiedades mecánicas controlando los porcentajes de cada componente aleante [4].

Figura 2.1 Imágenes SEM de muestras consolidadas a) Cu puro b) Cu-10Ni-40Zr [4]

Además, el Ing. R. Ramírez en el año 2012, en la Universidad Autónoma de Nuevo León en México, desarrolló un estudio previo a la obtención de grado de Máster en Ciencias de la Ingeniería Mecánica con el tema "Efecto del zinc en las propiedades mecánicas de la aleación Al-Si Tipo A319" donde utilizó la técnica tradicional de aleación mediante fundición de cada uno de los metales y desarrolló su estudio hasta alcanzar el 1.5% en peso de Zinc, en el cual concluyó que la adición de Zn desde 0.5% hasta 1% en peso mejora las propiedades mecánicas sin pérdida de ductilidad; los porcentajes fueron considerados en un rango bajo, tomando en cuenta que el material base es ya una aleación de Al-Si con aproximadamente el 6% de silicio [5]. En el año 2012, un grupo de investigadores a cargo del Ing. A. Moreta, Mg, desarrollaron un proyecto de servicio comunitario para vinculación con la sociedad con la finalidad de disponer de una máquina para la obtención de polvo de aluminio, donde determinaron que las características del polvo obtenido dependen principalmente del rodillo desbastador y su velocidad de rotación, e inciden directamente en las propiedades mecánicas del proceso posterior de compactación [6].

En el año 2017, el Sr. A. Beltrán bajo tutorías del Ing. G. López, desarrolló un molde para compactación de probetas planas de pulvimetalurgia para el ensayo de tracción como las mostradas en la Figura 2.2, de acuerdo a lo estipulado en la Norma ASTM E8, con la finalidad de desarrollar una aleación de aluminio con Babbit B23, donde llegó a la conclusión que el material con la fracción volumétrica de 80% Aluminio y 20% Babbit, alcanza las mejores propiedades mecánicas con respecto a las otras fracciones analizadas; donde el molde utilizado permitió obtener probetas con características apropiadas para el correcto desarrollo de los ensayos [7].

Figura 2.2 Probetas para ensayo de tracción de la aleación Aluminio – Babbit B23 [7]

El Ing. J. Solá, en 2010, desarrolló un estudio sobre la influencia de las variables de molienda en las propiedades del polvo de aluminio donde concluyó que el tiempo de molienda incide directamente en las propiedades mecánicas del polvo obtenido y deja de lado la influencia de otras variables como la energía de los impactos que está en función la velocidad de giro, o el número de impactos por unidad de tiempo como consecuencia del número de bolas, el estudio determinó que a mayor tiempo de molienda, menor tamaño de grano y mayor dureza obtenida [8].

2.2 Fundamentación teórica

2.2.1 Procesos de fabricación de aleaciones

Los procesos de fabricación de aleaciones se han ido desarrollando en función de las necesidades y aplicaciones industriales, así como avance tecnológico e innovación de equipos de procesamiento y fabricación, los más utilizados dentro de la industria metalúrgica se especifican a continuación:

2.2.1.1 Proceso de fusión

Dentro del ámbito de la metalurgia, se denomina fundición al proceso de fabricación de elementos mecánicos que consiste en superar ligeramente el punto de fusión del material como se observa en la Figura 2.3 a), e introducirlo en un molde, donde se solidifica adquiriendo la forma geométrica del mismo. Las características principales de este proceso se mencionan a continuación [9]:

- Factible de trabajar con superficies que poseen cierto grado de complejidad.
- Relativamente económico y fácil de ejecutar.
- Los desperdicios pueden ser reutilizados.

Los resultados que se consiguen de la estructura metalográfica y propiedades mecánicas dependen del proceso de solidificación, por lo que es importante compensar el volumen contraído debido al enfriamiento del líquido; una manera de conseguirlo es sobredimensionar el molde como el mostrado en la Figura 2.3 b) y colocar mazarotas que mantengan la alimentación de material fundido a la cavidad del elemento durante este proceso [9].

Figura 2.3 a) Proceso de fusión. b) Molde en arena [10]

2.2.1.2 Proceso de electrólisis

Este método se basa en la utilización de energía eléctrica, algunos de los procedimientos metalúrgicos basados en este método han permitido la obtención de diferentes metales reductores como aluminio, magnesio o potasio.

El método consiste en permitir el paso de corriente eléctrica, donde el electrolito que contiene en disolución cationes de los elementos que se desea alear, hace que los iones se depositen sobre el cátodo como se muestra en la Figura 2.4 [9].

Figura 2.4 Proceso de electrólisis [10]

2.2.1.3 Proceso de compresión

Este proceso consiste en mezclar materiales en forma de polvo o virutas, se somete a una presión determinada y un posterior proceso de sinterización; es decir, se basa en el campo de estudio de la pulvimetalurgia que se amplifica a continuación:

2.2.2 Pulvimetalurgia

La pulvimetalurgia es un método utilizado para la obtención de elementos mecánicos con excelentes tolerancias y de alta calidad, se basa en el tratamiento sobre polvos metálicos con ciertas características de tamaño y forma como los mostrados en la Figura 2.5; los procesos principales para el desarrollo de esta técnica son la obtención del polvo, su compactación y la unión termal de las partículas por medio de la sinterización, proceso que se desarrolla por debajo del punto de fusión del metal [11].

Figura 2.5 Elementos fabricados con procesos de pulvimetalurgia [12]

Este proceso de manufactura permite obtener un rango amplio de nuevos materiales, microestructuras y propiedades mecánicas con una extensa aplicabilidad en la industria. En función de las ventajas que presenta con relación a otros métodos de tratamiento sobre materiales considerando productividad, energía utilizada y materia prima, ha ganado mucho espacio en los procesos de manufactura, reemplazando a los métodos tradicionales [13].

Las ventajas más sobresalientes de este proceso de fabricación, el cual evita la necesidad de pasar por la fase líquida se mencionan a continuación [11]:

- Soluciona el problema de alto punto de fusión, o gran diferencia en este parámetro entre los elementos de aleación.
- Evita la contaminación del metal fundido por la atmósfera o material del crisol o molde.
- Implica bajo desperdicio de material, consiguiendo aprovechar hasta el 97% del material procesado.
- Capacidad de procesar metales que resultan difíciles de fabricar por otros métodos, como es el caso del tungsteno utilizado en filamentos de bombillas.
- Proceso susceptible a ser automatizado para producción industrial.

Así como existen ventajas, la pulvimetalurgia también presenta algunas desventajas y limitaciones para su procesamiento [13]:

- Costos de equipos, herramientas y polvos metálicos altos.
- Degradación del polvo metálico y dificultad de almacenamiento.
- Limitaciones en la geometría de piezas o elementos complejos.

2.2.2.1 Producción de polvos metálicos

Los métodos mediante los cuales se producen comercialmente polvos metálicos son la atomización, procesos químicos, electrolíticos y de molienda [13].

Éstos últimos surgieron en los últimos años con el desarrollo de los materiales compuestos de matriz metálica, el cual es considerado como un método eficaz para conseguir aleaciones de difícil obtención por otros métodos, siendo el más efectivo la aleación mecánica [14].

2.2.2.2 Atomización

Este método implica la conversión de metal fundido, que mediante pulverización se solidifica obteniendo polvo. Es el método más versátil y popular para producir polvo metálico, aplicables a casi todos los metales, aleaciones y metales puros. Existen múltiples formas de crear el spray de metal fundido, dos de los métodos mostrados en la Figura 2.6 a) y b) se basan en la atomización de gas, en la que la corriente de gas de alta velocidad (aire o gas inerte) se utiliza para atomizar el metal líquido [11].

Figura 2.6 Métodos de producción de polvo metálico por atomización (a) y
(b) métodos de atomización por gas, (c) atomización por agua (d) atomización centrífuga por el método del disco rotativo [11]

En (a), el gas fluye a través de una boquilla de expansión, sifonando el metal fundido y pulverizándolo en un recipiente, en (b) el metal fundido fluye por la gravedad a través de una boquilla y es inmediatamente atomizado por chorros de aire. Mientras que en (c) se utiliza la atomización mediante la utilización de un chorro de agua y (d) basado en un disco rotatorio [13].

La atomización ha demostrado ser la técnica más favorable para la obtención de polvos pre aleados, debido a la posibilidad de un buen control de la composición química, tamaño, forma y distribución granulométrica. Estas características, importantes para la posterior compactación, añadidas a la posibilidad de obtener una microestructura fina con un elevado contenido en solutos, han hecho de la atomización el proceso de obtención de polvo de mayor implantación industrial [15].

2.2.2.3 Procesos químicos

Este proceso incluye una variedad de reacciones químicas aplicados a los compuestos metálicos, mediante las cuales se reduce a polvos metálicos elementales. El proceso más común para producir polvos de tungsteno, cobre y hierro como el mostrado en la Figura 2.7, es el uso de agentes reductores como hidrógeno o monóxido de carbono, el cual se combina con el oxígeno y permite la liberación del elemento metálico [11].

Otro método utilizado para la obtención de polvo de hierro es la utilización de pentacarbonilo de hierro, con la finalidad de producir partículas esféricas de alta pureza [11].

Figura 2.7 Polvo de hierro obtenido por procesos químicos [11]

2.2.2.4 Procesos electrolíticos

El proceso de electrolisis se basa en una celda electrolítica, donde el ánodo se disuelve lentamente bajo un voltaje aplicado y es transportado a través del electrolito para ser depositado en el cátodo, el cual es lavado y secado, donde se consigue un polvo metálico de muy alta pureza, este proceso es utilizado para producir polvos de berilio, cobre, hierro, plata, tántalo y titanio [11].

2.2.2.5 Procesos de molienda

El objetivo del proceso de molienda es reducir el tamaño de la partícula y de esta manera producir polvo metálico con una microestructura fina y controlada; lo cual se consigue por la soldadura repetida, fractura y nueva soldadura de los polvos reactivos mezclados en equipos diseñados para este propósito [15].

Se utilizan diferentes tipos de equipos de alta energía para producir mecánicamente polvos metálicos, se diferencian principalmente en su diseño, capacidad, velocidad de operación, capacidad para controlar la temperatura de molienda y eficiencia; los más utilizados se presentan a continuación [14]:

a) Molino de bolas de alta energía: en este equipo el proceso de molienda se lleva a cabo mediante la acción de un agitador que tiene un eje central giratorio vertical con brazos horizontales, los equipos modernos como el que se muestra en la Figura 2.8, poseen un sistema automatizado para controlar el torque aplicado, así como minimizar la contaminación por oxígeno durante el procesamiento [15].

Figura 2.8 Molino de bolas de alta energía Emax [16]

Estos equipos pueden ser utilizados para moliendas de larga duración sin pausas de enfriamiento intermedias, lo cual permite aprovechar el tiempo de procesamiento. El aporte de energía en combinación con su sistema de refrigeración único lo convierten en un molino ideal para la aleación mecánica y moliendas nanométricas [17].

b) Molino de bolas planetario: es uno de los molinos más utilizados en la investigación de aleaciones mecánicas, en este equipo la fuerza centrífuga alcanza hasta 20 veces la aceleración de la gravedad, la cual es originada por la rotación del disco de soporte, transmitiendo la carga de molienda hacia las bolas, generando una energía de trituración muy alta, la cual se traduce en tiempos cortos de molienda [15].

Son muy útiles para aplicaciones en las que se deben obtener granulometrías finísimas. Además de realizar los procesos clásicos de trituración y mezcla, el molino como el que se observa en la Figura 2.9, cumple técnicamente con todos los requisitos para la molienda coloidal o nanomolienda y cuenta con el rendimiento energético necesario para efectuar aleaciones mecánicas [16].

Figura 2.9 Molino de bolas planetario Emax [16]

c) Molino de bolas vibratorio: son equipos utilizados para preparar aleaciones amorfas; la carga del polvo y las herramientas de fresado se agitan en tres direcciones perpendiculares a muy alta velocidad. El equipo mostrado en la Figura 2.10 está diseñado para evitar reacciones con gases de la atmósfera circundante, por lo que la aplicación principal es para procesar sistemas altamente reactivos como elementos de tierras raras (escandio, itrio, praseodimio, holmio, entre otros) [15].

Figura 2.10 Molino de bolas vibratorio [16]

d) **Molino de rodillos:** son equipos que consisten de dos rodillos distribuidos en una o más etapas que giran en sentidos contrarios como se muestra en la Figura 2.11, los cuales trituran y muelen los materiales bajo el principio de compresión reduciéndolos a polvo, una de las ventajas de este tipo de molino es que cuenta con una superficie mayor para el proceso optimizando el tiempo de operación [16].

Figura 2.11 Molino de rodillos [17]

2.2.3 Aleación mecánica

La aleación mecánica definida como un proceso de molienda en seco que se basa en soldadura y fractura repetida constituye el proceso mecánico más actualizado para la obtención y procesamiento de polvo, el cual hace posible el refinamiento de la microestructura, disminuyendo notablemente los problemas de segregación y formación de aglomerados [11].

Una de las mayores ventajas de la aleación mecánica es la síntesis de aleaciones novedosas que no son posibles mediante cualquier otra técnica, como la aleación de elementos normalmente inmiscibles; esto se debe a que la aleación mecánica es una técnica de procesamiento de estado completamente sólido [18].

La aleación mecánica involucra varios procesos, los cuales se describe a continuación:

2.2.3.1 Producción de polvo

Como se indicó en la sección 2.2.2.1 existen varios métodos para obtener el polvo metálico, el cual puede definirse como un sólido particulado finamente dividido, cuya geometría (ver Figuras 2.12 y 2.13) está definida por los parámetros siguientes [11]:

a) Tamaño y forma de la partícula: puede ser determinado con precisión utilizando el método de escaneo de microscopía electrónica SEM para polvos relativamente gruesos o microscopía electrónica de transmisión TEM para polvos más finos. Lo ideal es que las partículas de polvo tengan un tamaño uniforme y no sean de forma esférica, condiciones que están en función del tipo de molino utilizado y tiempo de molienda, el cual puede ser controlado en el proceso [14].

Figura 2.12 Formas de partícula de polvo [11]

En las primeras etapas de la molienda e incluso en la mayoría de los casos en las últimas etapas, el polvo tiene forma irregular, donde se puede determinar el diámetro equivalente esférico a partir del volumen definido por [14]:

$$D_{v} = \left(\frac{6V}{\pi}\right)^{1/3}$$
 Ec. 1

 $D_v \rightarrow diámetro equivalente (um)$ $V \rightarrow volumen de la partícula (um³)$

Figura 2.13 Tamaño de partícula a) 88-105 um b) 44-53 um c) 20-25 um [14]

b) **Área superficial:** asumiendo que la partícula tiene forma esférica, este parámetro estaría dado por:

$$A = \pi D^2 \qquad \qquad \text{Ec. } 2$$

 $A \rightarrow \acute{a}rea\ superficial\ (um^2)$

 $D \rightarrow diámetro \ de \ la \ partícula \ (um^3)$

En general, la relación área volumen puede expresarse para cualquier forma de partícula mediante la ecuación:

$$K_s = \frac{AD_v}{V}$$
 Ec. 3

 $K_s \rightarrow factor \ de \ forma$ $D_v \rightarrow diámetro \ equivalente \ (um)$ $A \rightarrow área \ superficial \ (um^2)$ $V \rightarrow volumen \ de \ la \ partícula \ (um^3)$ Un tamaño de partícula pequeño y factor de forma alto significa mayor área de superficie para el mismo peso total del polvo metálico. El tamaño incide de manera proporcional a la aglomeración de las partículas, es decir a menor tamaño de grano se obtiene una compactación más uniforme y por ende mejores propiedades mecánicas en el producto final [14].

2.2.3.2 Proceso de tamizado

El proceso de tamizado permite clasificar el polvo obtenido en función del tamaño de grano, es un método fácil y efectivo, consiste en permitir el paso de las partículas sobre una superficie provista de orificios del tamaño deseado. Los equipos de tamizado son vibratorios como el mostrado en la Figura 2.14 pueden estar formados por barras, placas metálicas perforadas o tejidos de hilos metálicos [13].

Figura 2.14 Tamiz vibratorio [12]

2.2.3.3 Proceso de mezclado de los elementos aleantes

El proceso de mezclado es una etapa importante, debido a que se debe conseguir que se distribuya lo más uniformemente posible el o los elementos aleantes sobre el material base, con la finalidad de evitar concentraciones o aglomeraciones en una zona específica, que inciden negativamente sobre los procesos posteriores, generalmente este proceso se desarrolla en máquinas agitadoras o en el mismo equipo utilizado para el proceso de molienda por un período recomendado de por lo menos 15 minutos, el principal parámetro a controlar es la contaminación por desgaste del contenedor o elementos mezcladores [15].

2.2.3.4 Proceso de conformado

El conformado consiste en dar consistencia y forma a los polvos, las técnicas más utilizadas se especifican en la Tabla 2.1:

TÉCNICA	PROCESO	
Dransado	Unidireccional	
TTEllsauo	Isostático	
Conformado plástico	Extrusión	
Comornado prastico	Moldeo por inyección	

Tabla 2.1 Técnicas de conformado [15]

Los procesos de extrusión y prensado isostático generalmente requieren el uso de altas presiones y temperaturas durante períodos de tiempo prolongados, lo cual presenta ciertas desventajas como es la pérdida de las características conseguidas en las nano estructuras obtenidas [18].

Uno de los procesos que mejores resultados presenta es la compactación unidireccional que conlleva los pasos estipulados en la Tabla 2.2 [19]:

No.	Actividad
1	Llenado de la matriz
2	Posicionamiento de los punzones
3	Entrada punzón superior
4	Compactación a una presión definida
5	Cese de la aplicación de presión
6	Extracción del compacto

 Tabla 2.2 Secuencia compactación unidireccional [19]

La Figura 2.15 muestra las actividades indicadas en la tabla anterior con la finalidad de conseguir un compacto apropiado, con características adecuadas para el proceso posterior de sinterizado.

Figura 2.15 Ciclo de compactación de polvo metálico [19]

La Tabla 2.3 establece los rangos de presiones de compactado recomendado para distintos polvos metálicos:

Material	Presión de Compactado (MPa)
Aluminio	70 - 275
Latón	400 - 700
Bronce	200 - 275
Hierro	350 - 800
Tantalio	70 - 140
Tungsteno	70 - 140
Carbono	140 - 165
Carburo Cementado	140 - 400
Ferritas	110 -165

Tabla 2.3 Presiones de compactado polvo metálico [20]

2.2.3.5 Proceso de sinterizado

Este proceso pretende generar puentes de unión entre las partículas de polvo; las temperaturas recomendadas para desarrollar deben estar en el siguiente orden [11]:

$$70\%(T_f) \le T_s \le 90\%(T_f)$$
 Ec. 4

$T_f \rightarrow temp. de fusión de la aleación mecánica$ $T_s \rightarrow temp. de sinterización$

Para la consecución de mejores resultados es necesario que los elementos procesados posean densidades cercanas al 100% de la densidad teórica, por lo que el proceso previo debe ser desarrollado considerando este parámetro [18].

En la Figura 2.16 se muestra el proceso descrito para el correcto desarrollo de una aleación mecánica.

Figura 2.16 Secuencia del desarrollo de elementos por aleación mecánica [19]

La temperatura de fusión de la aleación mecánica está dada por el diagrama de fase de la aleación en estudio Al-Zn, mostrado en la Figura 2.17.

Figura 2.17 Diagrama de fase Al-Zn [21]

2.2.4 Ingeniería de Materiales

La ingeniería de materiales es la ciencia encargada de la investigación, desarrollo y pruebas de nuevos materiales con la finalidad de determinar propiedades mecánicas a partir de ensayos y pruebas normalizadas en laboratorio, las cuales permiten reproducir de manera muy aproximada las condiciones de servicio a las que estará sometido un elemento determinado [22].

2.2.4.1 Ensayo de tensión

El ensayo de tensión mide la resistencia de un material a una fuerza gradualmente aplicada en forma uniaxial a lo largo de una probeta normalizada de acuerdo a lo estipulado en la norma ASTM_E8, la misma que es colocada en una máquina de ensayos universal hasta llegar a la rotura, donde se efectúa la medición del alargamiento que se produce en función de la carga aplicada [22].

Durante el ensayo, la deformación está confinada en la región más estrecha del centro, la cual tiene una sección uniforme a lo largo de su longitud; la probeta se monta con sus extremos en las mordazas de la máquina de ensayos. Los parámetros a considerar en este ensayo son la tensión nominal y deformación nominal, definidas mediante las siguientes relaciones [23]:

$$\sigma = \frac{F}{A}$$
 Ec. 5

 $\sigma \rightarrow tensión nominal (Pa)$

 $F \rightarrow carga instantánea aplicada perpendicularmente (N)$

 $A \rightarrow \text{área de la sección otiginal antes de aplicar la carga } (m^2)$

$$\epsilon = \frac{\Delta l}{l_o} = \frac{l_f - l_o}{l_o}$$
 Ec. 6

 $\in \rightarrow$ deformación nominal $\Delta l \rightarrow variación de longitud de la probeta (mm)$ $l_o \rightarrow longitud inicial de la probeta (mm)$ $l_f \rightarrow longitud final de la probeta (mm)$

La manera de representar los datos del ensayo es mediante la curva esfuerzo – deformación como la que se muestra en la Figura 2.18:

Figura 2.18 Curva esfuerzo – deformación [24]

Las propiedades mecánicas que se obtienen a partir de la prueba de tensión son resistencia a la fluencia, resistencia última a la tensión, módulo de elasticidad, la ductilidad, la cual está en función del porcentaje de elongación o de reducción en el área [22].

2.2.4.2 Probeta ensayo de tensión

Las probetas normalizadas para el desarrollo de ensayos de pulvimetalurgia estipulada en la Norma ASTM_E8 debe cumplir con las dimensiones especificadas en la Figura 2.19 y Tabla 2.4:

Figura 2.19 Probeta para prueba de tensión no mecanizada plana

estándar para productos de pulvimetalurgia [25]

Dimensiones, mm					
G- Longitud de calibre	25.40±0.8				
D- Ancho en el centro	5.72±0.03				
W- Ancho al final de la sección reducida	5.97±0.03				
T- Espesor de compacto	3.56 a 6.35				
R- Radio de filete	25.4				
A- Mitad de la longitud de la sección reducida	15.88				
B- Longitud de agarre	80.95±0.03				
L- longitud total	89.64±0.03				
C- Ancho de la sección de agarre	8.71±0.03				
F- Mitad del ancho de la sección de agarre	4.34±0.03				
E- Radio final	4.34±0.03				

Tabla 2.4 Dimensiones de la probeta de tensión [25]

2.2.4.3 Máquina de ensayos universal - Deformímetro

La Figura 2.20 muestra una máquina de ensayos universal diseñada para alargar la probeta a una velocidad constante y controlada, medir continua y simultáneamente la carga instantánea aplicada y el alargamiento resultante. La presión necesaria para el desarrollo de la prueba se consigue mediante placas o mandíbulas accionadas por tornillos o un sistema hidráulico; es necesario recalcar que la máquina debe estar calibrada y encerada para evitar mediciones erróneas [23].

Figura 2.20 Máquina de ensayos universal [26]

El deformímetro es un instrumento que se adapta a la probeta del material a ensayar y sirve para medir pequeñas deformaciones lineales en función de la carga aplicada; la apreciación, parámetro que establece el error de medición durante el ensayo está dado por el tipo de deformímetro, siendo el más preciso el digital mostrado en la Figura 2.21 b) [23].

Figura 2.21 a) Deformímetro análogo b) Deformímetro digital [26]

2.2.4.4 Ensayo de dureza

El ensayo de dureza consiste en cuantificar la resistencia a la penetración del material en estudio por un objeto duro; las pruebas mayormente utilizadas son la de Rockwell y la de Brinell, las cuales permiten determinar la macrodureza o resistencia a los rayones o indentación [22]. La norma ASTM_E10 establece los parámetros para el desarrollo del ensayo de dureza Brinell, donde establece el uso de una esfera de acero duro, la cual es aplicada mediante una fuerza sobre la superficie del material en estudio y se mide el diámetro de la impresión (ver Figura 2.22), para calcular la dureza con la expresión [27]:

$$HBW = 0.102 * \frac{2F}{\pi * D * (D - \sqrt{D^2 - d^2})}$$
 Ec. 7

 $D \rightarrow diámetro \ de \ la \ bola \ (mm)$ $F \rightarrow carga \ aplicada \ (N)$ $d \rightarrow diámetro \ de \ la \ indentación \ (mm)$

El tamaño de la bola estándar utilizada para el ensayo es de 10±0.005 mm y debe estar libre de defectos superficiales. No existe una forma o tamaño estándar para la probeta de ensayo de dureza Brinell, pero debe cumplir las siguientes características [27]:

- El espesor de la probeta deberá ser por lo menos diez veces la profundidad de la indentación.
- La distancia del centro de la indentación al borde de la muestra o el borde de otra indentación debe ser al menos dos veces y media el diámetro de la misma.
- La indentación debe estar claramente definida para permitir la medición de su diámetro con precisión.

Figura 2.22 Ensayo de dureza a) fuerza aplicada b) diámetro de indentación [27]

2.2.4.5 Ensayo de impacto

El ensayo de impacto es desarrollado mediante la utilización del péndulo Charpy, el cual consiste en dejarlo caer desde una altura determinada e impactar una probeta

normalizada de acuerdo a lo estipulado en la Norma ASTM_E23, con la finalidad de cuantificar la energía absorbida por el material [28].

Las dimensiones de la probeta normalizada se muestran en la Figura 2.23:

Figura 2.23 Probeta para el ensayo de impacto [28]

2.2.5 Propiedades mecánicas

Las propiedades mecánicas de los materiales dependen de su composición, microestructura y los esfuerzos asociados en su proceso de fabricación; estas propiedades describen el comportamiento de un material determinado al aplicarle fuerzas de diferente tipo como tracción, compresión, torsión, entre otras [29].

2.2.5.1 Fluencia y límite elástico

Es importante conocer el nivel de tensiones en el que empieza la deformación plástica, es decir, cuando ocurre el fenómeno de fluencia, en el caso de los metales que experimentan una transición elastoplástica de forma gradual; el punto de fluencia puede determinarse como la desviación inicial de la linealidad de la curva esfuerzo – deformación, este punto se conoce como límite proporcional [24].

Figura 2.24 Deformación elastoplástica, límite proporcional P y límite elástico σ_y [23]

Para determinar la posición del límite elástico se ha establecido una convención por la cual se traza una línea recta paralela a la línea elástica del diagrama a una determinada deformación, generalmente 0,002, como se muestra en la Figura 2.24 [23].

2.2.5.2 Resistencia última a la tensión

Representa la máxima tensión que se alcanza en la curva esfuerzo deformación que se aprecia en la Figura 2.25; se determina trazando una línea horizontal desde el punto máximo de la curva hasta el eje de tensiones. Las probetas para el ensayo de este método presentan una zona de estricción o decrecimiento localizado; mientras más dúctil sea el material analizado, mayor es la estricción hasta llegar a la fractura [30].

Figura 2.25 Resistencia última a la tensión – diagrama esfuerzo deformación [29]

2.2.5.3 Módulo de Elasticidad

El módulo de elasticidad está relacionado con la fuerza de enlace entre los átomos del material, se lo puede determinar con el ensayo de tracción, a partir de la zona elástica del diagrama esfuerzo deformación mediante la ecuación [23]:

$$E = \frac{\sigma}{\epsilon}$$
 Ec. 8

 $E \rightarrow m \acute{o} dulo \ de \ elasticidad \ (Pa)$ $\in \rightarrow deformaci \acute{o} nominal$ $\sigma \rightarrow esfuerzo \ (Pa)$

2.2.5.4 Dureza

La dureza es un parámetro que mide la resistencia que presenta un material a la deformación permanente que incluye penetración, abrasión y rayado. La Figura 2.26 muestra los tipos de indentadores y huellas producidas dependen del tipo de dureza, siendo los más comunes: Brinell, Vickers, Knoop y Rockwell [30].

Figura 2.26 Indentadores y huella en función del tipo de dureza [30]

El tipo de dureza a determinar depende del material a analizar, lo recomendable es dureza Brinell para materiales blandos como es el caso del aluminio, material a analizar en esta investigación.

2.2.6 Características de los elementos aleantes

2.2.6.1 Aluminio 1060

El aluminio 1060 se caracteriza por su alta conductividad térmica y eléctrica, buenas propiedades de trabajabilidad, por lo que es comúnmente utilizado para la fabricación de planchas, placas, alambres y aplicado en carrocerías, fuselajes de aeronaves, aparatos reflectantes, intercambiadores de calor, entre otros [31].

La Tabla 2.5 muestra algunas de las propiedades del aluminio 1060.

Composición química									
Si (%)	Fe (%)	Cu (%)	M	n (%)	Mg (%)	Zn (%	6)	Ti (%)	Otros
0.25	0.35	0.05	0.03		0.03	0.05	5	0.03	0.03
	Propiedades físicas y mecánicas								
Propiedad			Magnitud			Unidad			
Resistencia a la tracción			53,93			MPa			
Límite de Fluencia			29,4				MPa	l	
Módulo de Elasticidad			68,67			MPa	l		
Dureza Brinell			19						
Densidad			2710		Kg/m ³		1 ³		
Temperatura de fusión				660.452			°C		

Tabla 2.5 Composición y propiedades del Aluminio 1060 [31]

2.2.6.2 Zinc

El zinc es un elemento dúctil y maleable, aunque impurezas en pequeñas cantidades lo vuelven quebradizo, es buen conductor de calor y electricidad, en las aleaciones con aluminio, es utilizado en porcentajes que va desde el 1% hasta el 8%, con lo que se modifica las propiedades a más de aumentar su resistencia a la corrosión [31].

Propiedades físicas y mecánicas					
Propiedad	Magnitud	Unidad			
Resistencia a la tracción	137	MPa			
Dureza Brinell	38				
Densidad	7140	Kg/m³			
Temperatura de fusión	419.5	°C			

Tabla 2.6 Propiedades físicas y mecánicas del zinc [31]

2.3 Fundamentación Filosófica

La presente investigación está basada en el paradigma crítico propositivo, debido a que parte de interrogantes existentes con respecto a procesos de fabricación alternativos, específicamente el método de aleación mecánica a partir de polvo metálico, problema actual de la industria metalúrgica nacional; con la finalidad de establecer ventajas y desventajas en relación a procesos tradicionales de obtención de aleaciones, mediante el estudio y desarrollo de ensayos que permitan cuantificar el efecto de la adición en porcentajes en peso controlados de zinc sobre el aluminio 1060 sobre la resistencia última a la tensión, dureza e impacto, propiedades mecánicas de interés dentro del diseño, lo cual representará un aporte en el desarrollo del ámbito de Ingeniería de Materiales.

2.4 Fundamentación legal

La elaboración de probetas y ensayos serán desarrollados en base a lo estipulado en las normas siguientes:

- ASTM E8 Ensayo de tracción de materiales metálicos.
- ASTM E10 Método de prueba estándar para dureza Brinell de materiales metálicos.
- ASTM E23 Prueba de impacto de materiales metálicos.

2.5 Categorías fundamentales

2.6 Hipótesis

La aleación mecánica de porcentajes en peso controlados de zinc incide en la resistencia última a la tensión, dureza y prueba de impacto del Aluminio 1060.

2.7 Señalamiento de variables

2.7.1 Variable independiente

Aleación mecánica de porcentajes en peso controlados de zinc.

2.7.2 Variable dependiente

Resistencia última a la tensión, dureza y prueba de impacto del aluminio 1060.

2.7.3 Término de relación

Incidencia

CAPÍTULO 3

3.1 Enfoque

En el proceso de investigación se realizarán análisis cuantitativos, debido a que se recolectarán datos e información a partir de los ensayos a desarrollar, con los cuales se determinará la magnitud de la resistencia última a la tensión, dureza y energía absorbida por medio de la prueba de impacto de la aleación mecánica en estudio bajo condiciones prestablecidas, para el posterior procesamiento e interpretación de los resultados obtenidos.

3.2 Modalidad Básica de la investigación

3.2.1 Experimental

Es necesario el desarrollo de obtención de probetas normalizadas y posterior ejecución de ensayos mecánicos; específicamente tracción, dureza y prueba de impacto bajo normativa dada por la ASTM con la finalidad de cuantificar y analizar la resistencia última a la tensión, dureza Brinell y energía absorbida en función de los parámetros de variación establecidos, correcta utilización de los equipos del Laboratorio de Materiales de la FICM y apoyo del Centro de Fomento Carrocero.

3.2.2 Bibliográfico

Para obtener como parámetros de entrada, información actualizada y validada, a partir de fuentes como libros, artículos técnicos, y tesis relacionadas con pulvimetalurgia y aleación mecánica necesaria para tratar el problema a investigar.

3.3 Nivel o tipo de investigación

3.3.1 Exploratorio

Debido a que amerita una indagación en el ámbito de aleación mecánica mediante un tipo de investigación flexible que permita cuantificar algunas de las propiedades mecánicas conseguidas por la adición de porcentajes en peso controlados de zinc en el aluminio 1060, mediante la técnica de pulvimetalurgia, información que actualmente

es limitada; para su posterior procesamiento e interpretación que permitirá el desarrollo de nuevos estudios comparativos y/o complementarios para posibles aplicaciones industriales.

3.3.2 Descriptivo

Puesto que se describirá el proceso de aleación mecánica a desarrollar desde el método utilizado para la obtención de los polvos metálicos, proceso de compactación, sinterización y ensayos de tracción, dureza e impacto realizados, para documentar técnicamente la investigación.

3.3.3 Asociación de variables

Debido a que se determinará si existe una relación directa o inversamente proporcional entre el porcentaje en peso de zinc y las propiedades mecánicas en estudio con la finalidad de establecer la relación y posible asociación de variables.

3.4 Población y muestra

3.4.1 Población

Aleación mecánica de aluminio 1060 con porcentajes controlados en peso de zinc, sometido a un proceso de compactación y sinterización.

3.4.2 Muestra

La técnica de muestreo aplicada en la investigación es no probabilística, la cual se basa en un criterio en base al juicio, aplicado con respecto a estudios e investigaciones previas, donde se establece que el número mínimo requerido de probetas para el desarrollo de los ensayos es de cinco para cada caso de estudio.

En las Tablas 3.1 a 3.3 se especifica los parámetros que conlleva cada uno de los casos de estudio a desarrollar de la aleación mecánica de aluminio 1060 con porcentajes controlados en peso de zinc y temperatura de sinterización bajo las normas correspondientes para tracción ASTM E8, dureza ASTM E10 e impacto ASTM E23, con el número de probetas a ensayar en cada uno de ellos.

Ensayo	Norma	Porc. Zinc	Temp. Sint.	No. Probetas
		0,5 %	462 °C	5
Tracción A S			594 °C	5
	Λ ΩΤΜ ΕΩ	1,0 %	462 °C	5
Traccion	Traccion ASTM E8		594 °C	5
		1 5 0/	462 °C	5
		1,3 %	594 °C	5
			TOTAL	30

Tabla 3.1 Muestras ensayo de tracción

Tabla 3.2 Muestras ensayo de dureza Brinell

Ensayo	Norma	Porc. Zinc	Temp. Sint.	No. Indentaciones
Dureza Brinell ASTM E10		0,5 %	462 °C	15
			594 °C	15
		1.0.0/	462 °C	15
	1,0 %	594 °C	15	
		150/	462 °C	15
		1,5 %	594 °C	15
			TOTAL	90

Tabla 3.3 Muestras ensayo de impacto

Ensayo	Norma	Porc. Zinc	Temp. Sint.	No. Probetas
Impacto ASTM E23		050/	462 °C	5
		0,3 %	594 °C	5
		1,0 %	462 °C	5
	ASTM E25		594 °C	5
		150/	462 °C	5
		1,5 %	594 °C	5
			TOTAL	30

3.5 Operacionalización de variables

3.5.1 Variable Independiente

Aleación mecánica de porcentajes en pesos controlados de zinc.

CONCEPTUALIZACIÓN	CATEGORÍAS	INDICADORES	ÍNDICE	TÉCNICAS E INSTRUMENTOS
La aleación mecánica de porcentajes controlados en peso de zinc con aluminio 1060 consiste en producir	-Adición de zinc	- Porcentajes en peso de zinc	0,5 % 1,0 % 1,5 %	- Balanza digital - Hojas de registro
y tratar el polvo del metal base y elemento aleante bajo condiciones de proceso preestablecidas.	-Condiciones de proceso de aleación mecánica	- Temperatura de sinterizado	462 °C 594 °C	 Equipo de compactado y sinterizado. Termómetro Hojas de registro

Tabla 3.4 Operacionalización de Variable Independiente

3.5.2 Variable Dependiente

Resistencia última a la tensión, dureza y prueba de impacto del aluminio 1060.

CONCEPTUALIZACIÓN	CATEGORÍAS	INDICADORES	ÍNDICE	TÉCNICAS E INSTRUMENTOS
La evaluación del comportamiento de la resistencia última a la tensión, dureza e impacto del aluminio 1060 consiste en efectuar ensayos bajo normas ASTM y especificaciones	- Tensión - Dureza	 Límite de fluencia Resistencia última a la tracción Dureza Brinell 	¿Cuál es el valor del límite de fluencia? ¿Cuál es la resistencia a la tracción? ¿Cuál es el valor de la dureza Brinell?	 Norma ASTM E8 Máquina Universal Fichas para recolección de datos de ensayos Norma ASTM E10 Indentador Fichas para recolección de datos de
técnicas de los equipos				ensayos
utilizados.	-Impacto	- Energía residual	¿Cuál es el valor de la energía residual?	 Norma ASTM E23 Péndulo Charpy Fichas para recolección de datos de ensayos

Tabla 3.5 Operacionalización de Variable Dependiente

3.6 Recolección de la información

La Figura 3.1 muestra el proceso de recolección de la información pertinente a métodos utilizados en pulvimetalurgia y aleación mecánica mediante la técnica Bibliográfica, proveniente de libros, tesis y artículos técnicos relacionados; y la técnica De Campo, a través del desarrollo de los ensayos mecánicos necesarios para obtener y procesar los datos de las propiedades en estudio: tracción, dureza e impacto, para lo cual es indispensable el uso de las instalaciones y equipos del laboratorio de materiales de la Facultad de Ingeniería Civil y Mecánica y Centro de Fomento Carrocero.

Figura 3.1 Proceso de recolección de la información

3.7 Procesamiento y análisis

Una vez recolectada la información referente a los datos cuantitativos obtenidos de las propiedades mecánicas en estudio, se procederá a clasificarla y organizarla de manera que facilite su interpretación mediante la tabulación y aplicación de estadística inferencial que permita generalizar los datos procesados de una muestra a la población, a través de la técnica de Fisher, para determinar la incidencia de cada una de las variables controladas, porcentaje de elemento aleante y temperatura de sinterización sobre las propiedades mecánicas, e interacción entre las mismas, relacionando así las variables de la investigación para generar conclusiones y recomendaciones válidas y objetivas, como se muestra en el flujograma estipulado en la Figura 3.2.

Figura 3.2 Procesamiento y análisis de datos de ensayos mecánicos

CAPÍTULO 4

4.1 Análisis de los resultados

En esta etapa de la investigación se especifica el proceso desarrollado de forma sistemática como se muestra en el flujograma de la Figura 4.1, con la finalidad de analizar e interpretar los resultados obtenidos en los ensayos y así lograr los objetivos propuestos.

Figura 4.1 Proceso de la investigación y análisis de resultados

4.1.1 Cálculo de la masa de materiales base y aleante

El porcentaje en peso del elemento aleante determina la cantidad de masa necesaria de sí misma y del material base para el desarrollo de los estudios planificados, cantidades que son directamente proporcionales al volumen y número requerido de probetas.

4.1.1.1 Masa de las probetas para el ensayo de tracción

Las probetas para el ensayo de tracción de productos de pulvimetalurgia, estipulado en la Norma ASTM-E8, establece el área de presión longitudinal y su espesor, como se indica en la Tabla 4.1.

Tabla 4.1 Dimensiones de la probeta de tracción [25]

Parámetro	Magnitud	Unidad
Área longitudinal	645	mm^2
Espesor	3,56 - 6,35	mm

De esta manera, se determina el volumen mínimo necesario por probeta, donde la magnitud del espesor al estar dada por un rango se opta por trabajar con su valor medio:

$$V = A * T$$
 Ec. 9
 $V = 6,45 \ cm^2 * (0,5 \ cm)$
 $V = 3,225 \ cm^3$

 $V \rightarrow volumen \ de \ la \ probeta \ de \ tracción \ (cm^3)$ $A \rightarrow ext{ area longitudinal } de \ la \ probeta \ de \ tracción \ (cm^2)$ $T \rightarrow espesor \ medio \ de \ la \ probeta \ de \ tracción \ (cm)$

Mediante las siguientes ecuaciones se determina la masa necesaria de los materiales base y aleante:

$$m_a = \frac{P}{100} * m$$

$$m_a = \frac{P}{100} * (m_a + m_b)$$

$$m_a = \frac{P * m_b}{100 - P}$$
Ec. 10

 $m_a \rightarrow masa \ del \ material \ aleante - Zinc \ (g)$

- $m_b \rightarrow masa \; del \; material \; base Al \; 1060(g)$
- $m \rightarrow masa \ total \ por \ probeta \ (g)$

 $P \rightarrow porcentaje \ en \ peso \ del \ material \ aleante$

$$V_a + V_b = V$$

$$\frac{m_a}{\delta_a} + \frac{m_b}{\delta_b} = V$$
 Ec. 11

$$V_a \rightarrow volumen \ del \ material \ aleante - Zinc \ (cm^3)$$

 $V_b \rightarrow volumen \ del \ material \ base - Al \ 1060 \ (cm^3)$
 $V \rightarrow volumen \ de \ la \ probeta \ de \ tracción \ (cm^3)$
 $\delta_a \rightarrow densidad \ del \ material \ aleante - Zinc \ (g/cm^3)$
 $\delta_b \rightarrow densidad \ del \ material \ base - Al \ 1060 \ (g/cm^3)$

Al reemplazar la Ec. 10 en la Ec. 11 se obtiene la ecuación que permite hallar la masa del material base necesario para cada probeta a ensayar.

$$\frac{P * m_b}{(100 - P)\delta_a} + \frac{m_b}{\delta_b} = V$$

$$m_b = \frac{V}{\frac{P}{(100 - P)\delta_a} + \frac{1}{\delta_b}}$$
Ec. 12

De la Ec. 12, se obtiene la ecuación que permite determinar la masa del material aleante, una vez conocida la masa del material base.

$$m_a = \delta_a \left(V - \frac{m_b}{\delta_b} \right)$$
 Ec. 13

En la Tabla 4.2 se presenta los datos obtenidos de la masa necesaria de cada material en estudio a partir de las siguientes ecuaciones:

$$m_{bi} = m_b * n * f$$
 Ec. 14

$$m_{ai} = m_a * n * f$$
 Ec. 15

$$m_{bT} = \sum_{i=1}^{3} m_{bi}$$
 Ec. 16

$$m_{aT} = \sum_{i=1}^{3} m_{ai}$$
 Ec. 17

 $m_{bi} \rightarrow masa \ del \ material \ base \ por \ estudio - Al \ 1060$

 $m_{ai} \rightarrow masa \ del \ material \ aleante \ por \ estudio - zinc$

 $m_{bT} \rightarrow masa \ del \ material \ base \ total \ para \ probetas \ de \ tracción - Al \ 1060$

 $m_{aT} \rightarrow masa \ del \ material \ aleante \ total \ para \ probetas \ de \ tracción - zinc$

 $n \rightarrow n$ úmero de probetas

Es necesario recalcar que el factor de corrección (f) es utilizado con la finalidad de evitar contratiempos en los procesos siguientes debido a que existe desperdicio de masa, incluso por la manipulación en cada una de las etapas; además se ha considerado 16 probetas (8 para cada temperatura de sinterización) por caso de estudio, puesto que existe la posibilidad de que algunas probetas no cumplan con el control dimensional o sufran algún tipo de daño durante el proceso.

Datos de Entrada					
Parámetro	Símbolo	Magnitud	Unidad		
Densidad Al 1060	δ_b	2,71	g/cm ³		
Densidad Zn	δ_a	7,14	g/cm^3		
Volumen probeta	V	3,225	cm^3		
Factor corrección	f	1,5			
Ν	Aasa materiales – Cas	sos de estudio			
ESTUDIO 1					
Porcentaje (P)	0,5	No. probetas (n)	16		
$m_b\left(g ight)$	$m_{b1}\left(g ight)$	$m_{a}\left(g ight)$	$m_{a1}\left(g ight)$		
8,723	209,355	0,0438	1,052		
ESTUDIO 2					
Porcentaje (P)	1,0	No. probetas (n)	16		
$m_b(g)$	$m_{b2}\left(g ight)$	$m_a(g)$	$m_{a2}\left(g ight)$		
8,706	208,953	0,0879	2,111		
ESTUDIO 3					
Porcentaje (P)	1,5	No. probetas (n)	16		
$m_{b}\left(g ight)$	$m_{b3}\left(g ight)$	$m_{a}\left(g ight)$	$m_{a3}\left(g ight)$		
8,690	208,549	0,1323	3,176		
Masa total probetas ensayo de tracción					
Masa material base (Al 1060) (g)		Masa material aleante $(Zn)(g)$			
m_{b1}	209,355	m_{a1}	1,052		
<i>m</i> _{b2}	208,953	m_{a2}	2,111		
<i>m</i> _{b3}	208,549	m_{a3}	3,176		
m_{bT}	626,856	m_{aT}	6,339		

Tabla 4.2 Masa total de las probetas para el ensayo de tracción

4.1.1.2 Masa de las probetas para el ensayo de impacto

Las probetas para el ensayo de impacto de productos de pulvimetalurgia, estipulado en la Norma ASTM-E23, establece la longitud, el ancho y espesor requerido, como se indica en la Figura 4.2 y Tabla 4.3.

Figura 4.2 Probeta para el ensayo de impacto [28]

Con esta información, se determina el volumen mínimo requerido de material por probeta:

Tabla 4.3 Dimensiones de la probeta para el ensayo de impacto [28]

Parámetro	Magnitud	Unidad
Longitud	55	mm
Ancho	10	mm
Espesor	10	mm

$$V = L * W * T$$
 Ec. 18

 $V = 5,5 \ cm * 1 \ cm * 1 \ cm$

 $V = 5,5 \ cm^3$

 $V \rightarrow volumen \ de \ la \ probeta \ para \ ensayo \ de \ impacto \ (cm^3)$

 $A \rightarrow longitud de la probeta (cm)$

 $W \rightarrow$ ancho de la probeta (cm)

 $T \rightarrow espesor \ de \ la \ probeta \ (cm)$

Mediante las Ec. 11 –18, utilizadas para las probetas de tracción es factible también determinar la masa necesaria de los materiales base y aleante para las probetas de impacto; de la misma manera ha sido considerado un factor de corrección y una cantidad adicional de probetas, como se indica en la Tabla 4.4.

Datos de Entrada					
Parámetro	Símbolo	Magnitud	Unidad		
Densidad Al 1060	δ_b	2,71	g/cm ³		
Densidad Zn	δ_a	7,14	g/cm^3		
Volumen probeta	V	3,225	cm^3		
Factor corrección	f	1,5			
Ν	/lasa materiales – Cas	sos de estudio			
	ESTUDIO	1			
Porcentaje (P)	0,5	No. probetas (n)	16		
$m_b(g)$	$m_{b1}\left(g ight)$	$m_a(g)$	$m_{a1}\left(g ight)$		
14,877	357,039	0,0748	1,794		
ESTUDIO 2					
Porcentaje (P)	1,0	No. probetas (n)	16		
$m_b\left(g ight)$	$m_{b2}\left(g ight)$	$m_a\left(g ight)$	$m_{a2}\left(g ight)$		
14,848	356,354	0,1500	3,600		
ESTUDIO 3					
Porcentaje (P)	1,5	No. probetas (n)	16		
$m_b\left(g ight)$	$m_{b3}\left(g ight)$	$m_a\left(g ight)$	$m_{a3}\left(g ight)$		
14,819	355,664	0,2257	5,416		
Masa total probetas ensayo de impacto					
Masa material base (Al 1060) (g)		Masa material aleante $(Zn)(g)$			
m_{b1}	357,039	m_{a1}	1,794		
m_{b2}	356,354	m_{a2}	3,600		
<i>m</i> _{b3}	355,664	m _{a3}	5,416		
m_{bI}	1069,057	m_{aI}	10,810		

Tabla 4.4 Masa total de las probetas para el ensayo de impacto

4.1.1.3 Masa total requerida de los materiales base y aleante

Consiste en la sumatoria de las masas requeridas para el ensayo de tracción e impacto, como se muestra en la Tabla 4.5.

Ensayo	Masa material base (Al 1060)	Masa material aleante (Zn)	Unidad
Tracción	626,856	6,339	gramos
Impacto	1069,057	10,810	gramos
TOTAL	1695,913	17,149	gramos

Tabla 4.5 Masa total requerida de los materiales base y aleante

4.1.2 Adquisición de materia prima

Una vez determinada la cantidad mínima necesaria de masa del material base (Aluminio 1060) y material aleante (zinc) se procede a realizar la adquisición de cada uno de ellos de la siguiente manera:

4.1.2.1 Adquisición del Aluminio 1060

El Aluminio 1060 fue adquirido en forma de polvo (ver Figura 4.3) con un tamaño de partícula promedio de 30 *um*, a través de la empresa Novachem del Ecuador localizada en la ciudad de Quito, entidad encargada de la importación y comercialización de equipos, reactivos y materiales en general para el ámbito industrial y de Investigación, la misma que proporcionó una ficha técnica del producto adquirido, elaborada por la Empresa productora LOBA Chemie – Segmento Alpha Chemicals, cuyas principales propiedades físicas están estipuladas en el Anexo 1.

(a) (b)Figura 4.3 Aluminio 1060 - Al > 99.5% a) Empaquetadura al vacío b) Polvo

4.1.2.2 Adquisición de zinc

El zinc fue adquirido como sólido en forma de bloque como se muestra en la Figura 4.4, a través de la Industria Metalquímica Galvano, localizada en la ciudad de Quito.

Figura 4.4 Lingote de zinc 99% de pureza

4.1.3 Obtención de polvo de Zinc

Con la finalidad de facilitar el proceso de obtención de polvo metálico de zinc en el molino de bolas con el que cuenta el laboratorio de la FICM – UTA (ver Figura 4.5), en primera instancia se obtuvo viruta para su posterior proceso de molienda, el cual tuvo una duración de 8 horas aproximadamente, hasta conseguir la cantidad y tamaño requerido, debido a que de acuerdo a [14] y estudios previos establecen que a menor tamaño de partícula se consiguen mejores resultados.

(a) (b) Figura 4.5 a) Molino de bolas FICM – UTA. b) Polvo de zinc

4.1.4 Tamizaje de los polvos metálicos

Una vez obtenido el polvo metálico de los materiales base y aleante, se procede a tamizar cada uno de ellos, para clasificar las partículas y conseguir la cantidad requerida de polvo con el tamaño mínimo medible (45 - 63) *um* en el equipo de tamizaje del laboratorio de la FICM – UTA que se muestra en la Figura 4.6.

Figura 4.6 a) Equipo de tamizaje. b) Tamizaje del polvo metálico

4.1.5 Forma de partículas polvo metálico

Un parámetro fundamental que incide directamente sobre los resultados a obtener es la forma de la partícula, de acuerdo a [11], es recomendable formas irregulares como las que se observa en las fotografías de los polvos obtenidos y no circulares o simétricas para el mejor empaquetamiento de las partículas en los procesos posteriores.

Figura 4.7 Forma de la partícula a) Aluminio 1060. b) Zinc

4.1.6 Mezclado de polvos

Una vez definidas las masas de los elementos base y aleante para cada caso de estudio, se desarrolló el proceso de mezclado de los polvos mediante la utilización del equipo disponible en el laboratorio de materiales de la FICM en la Universidad Técnica de Ambato, el cual consta de recipientes en forma de V que giran sobre un eje como se muestra en la Figura 4.8, proceso que permite distribuir lo más uniformemente posible el elemento aleante sobre el material base, con la finalidad de evitar aglomeraciones en una zona específica, que incide negativamente sobre los procesos posteriores; el período de tiempo recomendado es mínimo de 15 minutos según [15], en este caso tuvo una duración de 45 minutos por cada proceso de mezclado.

Figura 4.8 a) Equipo de mezclado tipo V. b) Proceso de mezclado de polvos

4.1.7 Proceso de Compactación

Una vez que se ha conseguido la mezcla apropiada, se procedió a desarrollar el compactado, mediante la colocación del polvo en los moldes desarrollados para la obtención de las probetas de tracción e impacto (ver Anexos 5 y 6), y por medio de la utilización de la máquina prensadora de los laboratorios de la Facultad de Ingeniería Civil y Mecánica (ver Figura 4.9) se aplicó una presión de 270 MPa, la cual se encuentra en el rango recomendado de presiones de compactación para polvos de aluminio (70-275 MPa), de acuerdo a lo estipulado por [20].

(b) Figura 4.9 a) Máquina prensadora b) Proceso de compactación

4.1.8 Proceso de Sinterización

En el proceso de compactación se obtuvo las probetas en verde (frágiles y susceptibles a desintegrarse con facilidad), por lo que existe la necesidad del proceso de sinterización; es necesario recalcar que con la finalidad de evitar el contacto directo de éstas con el oxígeno (proceso de oxidación) durante el proceso, se ingresó las probetas recubiertas por arena refractaria, como se muestra en la Figura 4.10.

Figura 4.10 a) Arena refractaria b) Recubrimiento de las probetas con arena refractaria

La sinterización es un tratamiento térmico que consiste en someter las probetas a una temperatura comprendida entre el 70% y 90% de la temperatura de fusión de la aleación mecánica (Al-Zn), correspondientes a 462 y 594 °C respectivamente, por un período de 4 horas una vez alcanzada la temperatura mencionada, luego se procedió al enfriamiento lento dentro del horno durante 5 horas; proceso que fue desarrollado en

el horno del laboratorio de la Carrera de Ingeniería Mecánica de la UTA como se muestra en la Figura 4.11

Figura 4.11 Proceso de sinterización

Una vez concluido el proceso, se debe retirar la arena refractaria de las probetas a través de un proceso de limpieza mostrado en la Figura 4.12

Figura 4.12 Limpieza de arena refractaria

4.1.9 Control de calidad y dimensional de las probetas obtenidas

Una vez desarrollado el proceso de sinterización, se realizó una limpieza de las probetas y se procede con el control de calidad que consiste en una inspección visual para identificar zonas con presencia de oxidación y/o rechupes; además del control dimensional corroborado por el Centro de Fomento Carrocero (ver Anexos 7 y 8), donde se indica que cumple con los criterios dimensionales estipulados en las normas respectivas ASTM E8 para el ensayo de tracción y ASTM E23 para el ensayo de impacto, proceso que permitió descartar aquellas que no estaban aptas para el correcto desarrollo de los ensayos.

4.1.10 Codificación de probetas

Una vez seleccionadas las probetas que cumplen con los requerimientos para el desarrollo de los ensayos, se procede a establecer la codificación indicada en la Tabla 4.6, la cual permitirá diferenciar los casos de estudio que están en función del porcentaje en peso del material aleante (Zn) y temperatura de sinterización, para facilitar la identificación los resultados correspondientes a cada una de ellas.

Nomenclatura	Significado
TT	TENSION TESTING
IT	IMPACT TESTING
P0.5	0.5%Zn-99.5% Al1060
P1.0	1.0%Zn-99.0% Al1060
P1.5	1.5%Zn-98.5% Al1060
LT	Low Temperature 462°C
HT	High Temperature 594°C

Tabla 4.6 Codificación de las probetas

A continuación, se muestra las probetas para el ensayo de tracción e impacto debidamente etiquetadas para cada uno de los casos de estudio en función de los estipulado en la Tabla 4.6.

Figura 4.13 Probetas para el ensayo de tracción codificadas y etiquetadas

Figura 4.14 Probetas para el ensayo de impacto codificadas y etiquetadas

4.2 Interpretación de los resultados

Una vez desarrollados los ensayos, se procede a tabular los datos obtenidos con la finalidad de facilitar su procesamiento e interpretación.

4.2.1 Resultados Ensayos

4.2.1.1 Resultados Ensayo de Dureza

El Ensayo de dureza se desarrolló de acuerdo a lo estipulado en la Norma ASTM – E10, que especifica lineamientos generales para obtener valores fiables (distancia al borde mayor a 2 mm – espesor de la muestra a ensayar mayor a 1.6 mm); se optó por desarrollar 15 mediciones en cada caso de estudio para un mejor procesamiento e interpretación de los datos, mediante el equipo Hardness Tester HBRV-187.5.

Figura 4.15 a) Cono y bola 5 mm. b) Microscopio para medición de huella. c) Ensayo de dureza

Tabla 4.7 Ensayo de Dureza Brinell HB-P0.5-LT

	UNIVERSIDAD TÉC	CNICA DE AMBATO					
UTA	FACULTAD DE INGENIE	RÍA CIVIL Y MECÁNICA	D22				
	MAESTRÍA EN MECÁNI	ICA - MENCIÓN DISEÑO	FICM				
	ENSAVO DE DURE	ZA BRINELL (HB)					
CÓDIGO:	HB-P0 5-LT	HOJA:	01 de 06				
FECHA:	4/12/2018	CIUDAD:	Ambato				
LABORATORIO:	Laboratorio de Materiales Ing	peniería Mecánica FICM-UTA					
FOUIPO:	Hardness Tester Model HBR	V-187 5	•				
NORMA: ASTM E10 - Standard Test Method for Brinell Hardness of Metallic Materials							
	COMPOSICIÓN - CARAC	TERÍSTICAS ALEACIÓN					
Material base	Aluminio 1060 - 99.5 % W	Material aleante:	Zinc - 0.5 % W				
Tamaño Particulas	45 um - 63 um	Granulometría	Mixtos				
Presión Compactado	270 MPa	Temperatura Sinterizado	462°C				
	CONDICIONES	S DEL ENSAYO					
Diámetro bola (D)	5 mm	Espesor probeta	5 mm				
Distancia al borde	$\geq 2 \text{ mm}$	Dist. entre penetraciones	$\geq 2 \text{ mm}$				
			0.102 * ² F				
Carga aplicada (F)	612,9 N	Modelo matemático (HB)	$0.102 * \frac{\pi D(D - \sqrt{D^2 - d^2})}{\pi D(D - \sqrt{D^2 - d^2})}$				
RESUL	TADOS OBTENIDOS ENS	AYO DE DUREZA BRINEI	L (HB)				
Número	Diámetro Indent. d (mm)	Dureza Brinell (HB)	Error absoluto				
HB-01	1,72	26,08	0,282				
HB-02	1,66	28,07	1,700				
HB-03	1,76	24,87	1,493				
HB-04	1,66	28,07	1,700				
HB-05	1,73	25,77	0,593				
HB-06	1,69	27,05	0,682				
HB-07	1,78	24,30	2,068				
HB-08	1,75	25,17	1,198				
HB-09	1,78	24,30	2,068				
HB-10	1,71	26,40	0,034				
HB-11	1.65	28.42	2.051				
HB-12	1.74	25.47	0.898				
HB-13	1.66	28.07	1.700				
HB-14	1,72	26,08	0,282				
HB-15	1,68	27,38	1,015				
Promedio	1,71	26,37	1,184				
Desviación Estándar	0,04	1,41					
	GRÁFICAS DE	RESULTADOS					
	Described and Described						
	Resultados Dureza	Brinell HB-P0.5-L1					
29,00 28.07	28.07	28,42	28.07				
28,00	27.05		27,38				
27,00 26.08	27,00	26,40	26.08				
26,00	25,77	25.17 25,47	20,00				
25,00	24,87 24,30	24.30					
24.00	- ,						
23.00							
23,00							
HB-01 HB-02	HB-03 HB-04 HB-05 HB-06 HB-07	HB-08 HB-09 HB-10 HB-11 HB-12	HB-13 HB-14 HB-15				
22.02							
29,00							
28,00							
27.00							
27,00							
26,00							
25.00							
24,00							
23,00							
22,00							
HB-01 HB-02	пр-03 пр-04 НВ-05 НВ-06 НВ-07	пе-ое пе-оэ не-то не-11 не-15	пр-13 ПВ-14 НВ-15				
		Aprobado por: Ing. Mg. Go	nzalo López				
Elaborado por:	Ing. Giovanny Pineda	Validado por Ing Mg Con	zalo I ópez				
		i vanuauo por, mg. mg. Gon	LUPCL				

Tabla 4.8 Ensayo de Dureza Brinell HB-P1.0-LT

<u> </u>	UNIVERSIDAD TÉC	CNICA DE AMBATO	
UTA	FACULTAD DE INGENIE	RÍA CIVIL Y MECÁNICA	
	MAESTRÍA EN MECÁNI	ICA - MENCIÓN DISEÑO	FICM
•		ZA PDINELI (LIP)	
CÓDICO:	HB PLOIT	HOIA	02 de 06
FECHA:	4/12/2018	CUDAD:	Ambato
I ABORATORIO:	4/12/2018 Laboratorio de Materiales Inc	reniería Mecánica EICM UTA	Ambato
EABORATORIO.	Hardness Tester Model HPP	2V 187 5	<u> </u>
NOPMA:	ASTM E10 Stendard Test	Mathad for Prinall Hardnass of	of Matallia Matarials
	COMPOSICIÓN - CARAC	TERÍSTICAS AL FACIÓN	of Wretallic Wraterials
Material base	Aluminio 1060 99.0 % W	Material algente:	Zinc 1.0 % W
Tamaño Particulas	Adumino 1000 - 33,0 % W	Granulometría	Mixtos
Presión Compactado	270 MP ₂	Temperatura Sinterizado	462°C
Tresion Compactado		S DEL ENSAVO	402 C
Diámetro bolo (D)	5 mm	Esnesor probeta	5 mm
Distancia al borde	> 2 mm	Dist entre penetraciones	> 2 mm
	<u> </u>	Dist. entre penetraciones	2 I IIII
Carga aplicada (F)	612,9 N	Modelo matemático (HB)	$0.102 * \frac{\pi D(D - \sqrt{D^2 - d^2})}{\pi D(D - \sqrt{D^2 - d^2})}$
RESUI	TADOS OBTENIDOS ENS	AYO DE DUREZA BRINEI	L (HB)
Número	Diámetro Indent, d (mm)	Dureza Brinell (HB)	Error absoluto
HB-01	1.60	30.28	0.654
HB-02	1,60	29.14	0.480
HB 03	1,03	29,14	0,480
HB 0/	1,04	20,70	0,045
	1,02	29,31	0,109
	1,01	29,69	0,209
	1,02	29,51	0,109
	1,01	29,89	0,269
HB-08	1,62	29,51	0,109
HB-09	1,60	30,28	0,654
HB-10	1,63	29,14	0,480
HB-11	1,60	30,28	0,654
HB-12	1,59	30,67	1,047
HB-13	1,61	29,89	0,269
HB-14	1,65	28,42	1,203
HB-15	1,63	29,14	0,480
Promedio	1,62	29,62	0,509
Desviación Estándar	0,02	0,63	
	GRÁFICAS DE	RESULTADOS	
	Resultados Duraza	Brinell HB_P1 0_I T	
	Resultatios Durcza	Dimen IID-I 1.0-L1	
31,00		30,67	
30,50 30,28	29,89 29,89	50,28 50,28	29,89
30,00	29,51 29,51	29,51	
29,50 29,14	28.78	29,14	29,14
29,00			28,42
28,30			
28,00			
27,00			
HB-01 HB-02	HB-03 HB-04 HB-05 HB-06 HB-07	HB-08 HB-09 HB-10 HB-11 HB-12	HB-13 HB-14 HB-15
21.00			
51,00			
30,50			
30,00			
29.50		\sim \sim \sim	
29,00			
28,50			
28,00			
27.50			
27,50			
27,00			
HR-01 HR-02	пе-из пе-и4 не-из не-и6 не-07	пр-ле пр-ла нв-тл нв-11 нв-15	пр-13 пр-14 МВ-15
		Aprobado por: Ing Mg Go	nzalo López
Elaborado por:	Ing. Giovanny Pineda	Validado por Ing. Mg. Con	zalo I ópez
		, and poir ing. Mig. Oon	Luio Lopez

Tabla 4.9 Ensayo de Dureza Brinell HB-P1.5-LT

3 1,	UNIVERSIDAD TÉC	NICA DE AMBATO						
UTA	FICM							
•	ENSAVO DE DURE	ZA BRINELL (HR)						
CÓDIGO:	HB-P1.5-LT	HOJA:	03 de 06					
FECHA: 4/12/2018 CIUDAD: Ambato								
LABORATORIO:	Laboratorio de Materiales Ing	geniería Mecánica FICM-UTA	L					
EQUIPO:	Hardness Tester Model HBR	V-187,5						
NORMA:	ASTM E10 - Standard Test I	Method for Brinell Hardness of	of Metallic Materials					
	COMPOSICIÓN - CARAC	CTERÍSTICAS ALEACIÓN						
Material base	Aluminio 1060 - 98,5 % W	Material aleante:	Zinc - 1,5 % W					
Tamaño Particulas	45 um - 63 um	Granulometría	Mixtos					
Presión Compactado	270 MPa	Temperatura Sinterizado	462°C					
	CONDICIONES	S DEL ENSAYO						
Diámetro bola (D)	5 mm	Espesor probeta	5 mm					
Distancia al borde	$\geq 2 \text{ mm}$	Dist. entre penetraciones	$\geq 2 \text{ mm}$					
Carga aplicada (F)	612,9 N	Modelo matemático (HB)	$0.102 * \frac{2F}{\pi D(D - \sqrt{D^2 - d^2})}$					
RESUL	TADOS OBTENIDOS ENS.	AYO DE DUREZA BRINEI	L (HB)					
Número	Diámetro Indent. d (mm)	Dureza Brinell (HB)	Error absoluto					
HB-01	1,71	26,40	1,580					
HB-02	1,76	24,87	0,054					
HB-03	1,73	25,77	0,954					
HB-04	1,72	26,08	1,264					
HB-05	1,77	24,58	0,236					
HB-06	1,74	25,47	0,649					
HB-07	1,78	24,30	0,521					
HB-08	1,81	23,47	1,348					
HB-09	1,76	24,87	0,054					
HB-10	1,74	25,47	0,649					
HB-11	1,79	24,02	0,801					
HB-12	1,74	25,47	0,649					
HB-13	1,78	24,30	0,521					
HB-14	1,80	23,74	1,077					
HB-15	1,81	23,47	1,348					
Promedio	1,76	24,82	0,780					
Desviación Estándar	0,03	0,94						
27,00 26.40	Resultados Dureza	Brinell HB-P1.5-L1						
20,10	26,08							
26,00	25,47	25,47 25,47						
25,00	24,58 24.30	24,87	24 30					
24.00	2,,50	24,02	23,74 22,47					
24,00		23,47	23,47					
23,00								
22.00								
HB-01 HB-02	HB-03 HB-04 HB-05 HB-06 HB-07	HB-08 HB-09 HB-10 HB-11 HB-12	HB-13 HB-14 HB-15					
27.05								
27,00								
26,50								
26,00								
25,50								
25,00								
24,30								
24,00								
23,50								
23,00								
22,30								
22,00 HB-01 HB-02	HB-03 HB-04 HB-05 HB-06 HB-07	HB-08 HB-09 HB-10 HB-11 HB-12	2 HB-13 HB-14 HB-15					
Flat	Ing Ciguanny Dired-	Aprobado por: Ing. Mg. Go	nzalo López					
Enaborado por:	mg. Giovalilly Filleda	Validado por: Ing. Mg. Gon	zalo López					

Tabla 4.10 Ensayo de Dureza Brinell HB-P0.5-HT

UTA	FICM								
	ENSAYO DE DURE	ZA BRINELL (HB)	•						
CÓDIGO:	HB-P0.5-HT	HOJA:	04 de 06						
FECHA: 4/12/2018 CIUDAD: Ambato									
LABORATORIO: Laboratorio de Materiales Ingeniería Mecánica FICM-UTA									
FOUIPO	Hardness Tester Model HBR	V-187 5							
NORMA:	ASTM E10 - Standard Test	Method for Brinell Hardness of	of Metallic Materials						
	COMPOSICIÓN CARAC	TEDÍSTICAS AL FACIÓN	in Wietanie Wiaterials						
	Aburginia 1060 00 5 % W	Meterial algorithm	7						
Material base	Aluminio 1060 - 99,5 % W	Zific - 0,5 % W							
Tamano Particulas	45 um - 63 um	Granulometria	Mixtos						
Presión Compactado	270 MPa	Temperatura Sinterizado	594°C						
	CONDICIONES	S DEL ENSAYO							
Diámetro bola (D)	5 mm	Espesor probeta	5 mm						
Distancia al borde	$\geq 2 \text{ mm}$	Dist. entre penetraciones	$\geq 2 \text{ mm}$						
Carga aplicada (F)	612,9 N	Modelo matemático (HB)	$0.102 * \frac{2F}{\pi D(D - \sqrt{D^2 - d^2})}$						
RESUL	TADOS OBTENIDOS ENS	AYO DE DUREZA BRINEI	L (HB)						
Número	Diámetro Indent. d (mm)	Dureza Brinell (HB)	Error absoluto						
HB-01	1 92	20.76	1 109						
HB-02	2 02	18 68	0.979						
HB-02	1.02	20.54	0.886						
HB 04	1,25	10.90	0,000						
	1,90	19,07	0,233						
	2,03	18,48	1,1/2						
HB-06	1,98	19,47	0,182						
HB-07	1,94	20,32	0,666						
HB-08	1,99	19,27	0,386						
HB-09	1,95	20,10	0,449						
HB-10	2,00	19,07	0,587						
HB-11	1,97	19,68	0,025						
HB-12	1,94	20,32	0,666						
HB-13	1,96	19,89	0,235						
HB-14	2,01	18,87	0,784						
HB-15	1.98	19.47	0.182						
Promedio	1.97	19.66	0.569						
Desviación Estándar	0.03	0.69							
2 comercia Lotanuar	GRÁFICAS DE								
	Resultados Dureza	Brinell HB-P0.5-HT							
21,00 20,76	20,54 20.32	20.22							
20,50	19.89	20,10	19.89						
20,00	19,47	19,68	19,47						
19,50		19,07	18.87						
19,00 18,68	18,48								
18,50									
18,00									
17,50									
17,00 HB-01 HB-02	НВ-03 НВ-04 НВ-05 НВ-06 НВ-07	НВ-08 НВ-09 НВ-10 НВ-11 НВ-12	HB-13 HB-14 HB-15						
21,00									
20.50									
20,50									
20,00									
19,50									
10.00		Y							
15,00									
18,50									
18,00									
17.50									
17,50									
17,00									
HB-01 HB-02	нв-03 нв-04 нв-05 нв-06 нв-07	нв-оя нв-оэ нв-10 нв-11 нв-15	HB-13 HB-14 HB-15						
		Aprobado por Ing Mg Co	nzalo I ópez						
Elaborado por:	Ing. Giovanny Pineda	Validada nor Inc. Ma. Com							
		vanuauo por: ing. Mg. Gon	izaio Lopez						

Tabla 4.11 Ensayo de Dureza Brinell HB-P1.0-HT

UTA	UNIVERSIDAD TÉC FACULTAD DE INGENIE MAESTRÍA EN MECÁNI	FICM	
	ENSAYO DE DURE	EZA BRINELL (HB)	
CÓDIGO:	HB-P1.0-HT	HOJA:	05 de 06
FECHA:	4/12/2018	CIUDAD:	Ambato
LABORATORIO:	Laboratorio de Materiales Ing	geniería Mecánica FICM-UTA	A
EQUIPO:	Hardness Tester Model HBR	V-187,5	
NORMA:	ASTM E10 - Standard Test 1	Method for Brinell Hardness of	of Metallic Materials
	COMPOSICIÓN - CARAC	CTERÍSTICAS ALEACIÓN	
Material base	Aluminio 1060 - 99,0 % W	Material aleante:	Zinc - 1,0 % W
Tamaño Particulas	45 um - 63 um	Granulometría	Mixtos
Presión Compactado	270 MPa	Temperatura Sinterizado	594°C
-	CONDICIONES	S DEL ENSAYO	
Diámetro bola (D)	5 mm	Espesor probeta	5 mm
Distancia al borde	> 2 mm	Dist. entre penetraciones	> 2 mm
			2 f
Carga aplicada (F)	612,9 N	Modelo matemático (HB)	$0.102 * \frac{\pi D(D - \sqrt{D^2 - d^2})}{\pi D(D - \sqrt{D^2 - d^2})}$
RESUI	TADOS OBTENIDOS ENS	AYO DE DUREZA BRINEI	L (HB)
Número	Diámetro Indent d (mm)	Dureza Brinell (HB)	Error absoluto
HB-01	1.57	31.48	0.635
HB-02	1,54	32.75	0,635
HB-02 HB-03	1.53	33.19	1.076
HB-03	1,55	30,12	0.204
HB 05	1,53	32,32	1,526
	1,52	20.67	1,320
	1,39	21.80	1,443
	1,50	31,89	0,220
	1,51	21.80	1,984
HB-09	1,56	31,89	0,220
HB-10	1,58	31,07	1,043
HB-11	1,54	32,75	0,636
HB-12	1,59	30,67	1,443
HB-13	1,58	31,07	1,043
HB-14	1,56	31,89	0,220
HB-15	1,55	32,32	0,204
Promedio	1,56	32,11	0,835
Desviación Estándar	0,02	1,04	
	GRAFICAS DE	RESULTADOS	
35,00 34,00 33,00 32,75 32,00 31,48 31,00 30,00	Resultados Dureza 3 33,19 32,32 30,67 30,67	Brinell HB-P1.0-HT 34,09 32,75 31,89 31,07 30,67	31,89 ^{32,32} 31,07
28,00 HB-01 HB-02 35,00 34,00 33,00 32,00 31,00 30,00 29,00 28,00 HB-01 HB-02	нв-03 нв-04 нв-05 нв-06 нв-07	HB-08 HB-09 HB-10 HB-11 HB-12	HB-13 HB-14 HB-15
Elaborado por:	Ing. Giovanny Pineda	Aprobado por: Ing. Mg. Go	nzalo López
poin	J	Validado por: Ing. Mg. Gor	izalo López

Tabla 4.12 Ensayo de Dureza Brinell HB-P1.5-HT

UTA	FICM		
	ENSAYO DE DURE	EZA BRINELL (HB)	
CÓDIGO:	HB-P1.5-LT	HOJA:	06 de 06
FECHA:	4/12/2018	CIUDAD:	Ambato
LABORATORIO:	Laboratorio de Materiales Ins	peniería Mecánica FICM-UTA	
FOUIPO	Hardness Tester Model HBP	V 187 5	•
EQUIPO:	ASTEM E10 St. L. LT. (1	V-107,5	C X & H' X &
NORMA:	ASTMEIU - Standard Test I	Method for Brinell Hardness of	of Metallic Materials
	COMPOSICION - CARAC	TERISTICAS ALEACION	
Material base	Aluminio 1060 - 98,5 % W	Material aleante:	Zinc - 1,5 % W
Tamaño Particulas	45 um - 63 um	Granulometría	Mixtos
Presión Compactado	270 MPa	Temperatura Sinterizado	594°C
	CONDICIONES	S DEL ENSAYO	•
Diámetro bola (D)	5 mm	Espesor probeta	5 mm
Distancia al horde	> 2 mm	Dist_entre_penetraciones	> 2 mm
Carga aplicada (F)	612.9 N	Modelo matemático (HB)	$0.102 * \frac{2F}{-2(2+\sqrt{2^2-\sqrt{2}})}$
RESUL	TADOS OBTENIDOS ENS.	AYO DE DUREZA BRINEI	$\frac{\pi D(D - \sqrt{D^2 - a^2})}{LL (HB)}$
Número	Diámetro Indent d (mm)	Dureza Brinell (HB)	Error absoluto
HB 01			0.026
	1,03	29,14	0,030
HB-02	1,61	29,89	0,785
HB-03	1,62	29,51	0,407
HB-04	1,61	29,89	0,785
HB-05	1,59	30,67	1,563
HB-06	1,71	26,40	2,704
HB-07	1,62	29.51	0,407
HB-08	1 72	26.08	3,020
HB 00	1,72	27,38	1,723
LID-09	HB-09 1,68		1,723
HB-10	HB-10 1,59 30,67		1,563
HB-11	1,61 29,89		0,785
HB-12	1,68	27,38	1,723
HB-13	1,58	31,07	1,963
HB-14	1,65	28,42	0,687
HB-15	1.59	30.67	1.563
Promedio	1.63	29.10	1 314
Desvjación Estándar	0.05	1.61	1,011
Destruction Estundur	GRÁFICAS DE		
32,00 31,00 29,89 30,00 29,14 29,00 28,00 27,00	Resultados Dureza 29,51 29,89 29,51 26,40	Brinell HB-P1.5-LT	31,07 <u>30,67</u> 28,42
26,00 25,00 24,00 23,00 HB-01 HB-02	нв-03 нв-04 нв-05 нв-06 нв-07	НВ-08 НВ-09 НВ-10 НВ-11 НВ-12	HB-13 HB-14 HB-15
32,00 31,00 30,00 29,00 28,00 27,00 26,00 25,00 24,00 33,00			
HB-01 HB-02	HB-03 HB-04 HB-05 HB-06 HB-07	HB-08 HB-09 HB-10 HB-11 HB-12	HB-13 HB-14 HB-15
Elaborado por:	Ing. Giovanny Pineda	Aprobado por: Ing. Mg. Go	nzalo Lopez
		vandado por: Ing. Mg. Gon	izaio Lopez

4.2.1.2 Resultados Ensayo de Tracción

Tabla 4.13 Ensayo de Tracción TT-P0.5-LT

	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO						
		ENS	SAYO DE TRA	CCIÓN		•	
CÓDIGO:		TT-P0.	5-LT	HOJA:		01 de 06	
FECHA:		19/11/2	19/11/2018 CIUDAD:			Ambato	
LABORATORIO):	Centro de Foment	o Productivo M	etalmecánico C	arrocero		
EQUIPO:		Máquina Universa	l de Ensayos M	etrotest 50 kN -	- Serie 8210M00	2	
NORMA:		ASTM E8 - Stand	lard Test Metho	ds for Tension	Testing of Metal	lic Materials	
		COMPOSICIÓN	- CARACTER	ÍSTICAS ALE	ACIÓN		
Material base		Aluminio 1060	Aluminio 1060 - 99,5 % W Material aleante				
Tamaño Partícul	as	45 um -	63 um	Granulometri	ía	Mixtos	
Presión Compac	tado	270 N	Лра	Temperatura	Sinterizado	462°C	
		CARACT	TERÍSTICAS D	EL ENSAYO			
Tipo de ensayo		Cuantit	ativo	Tipo de prob	eta	Plana	
Velocidad ensay	0	10 mm	/min	Precarga		100 N	
Dimensiones		Cumple o	criterios	Longitud cali	brada	25,4 mm	
Temperatura ens	avo	22.4	°C	Humedad rela	ativa	53.2%	
	R	ESULTADOS OF	STENIDOS EN	SAYO DE TRA	ACCIÓN	55,270	
Número	Fuerza de Rotura (N)	Fuerza de Fluencia (N)	Resistencia de Rotura (MPa)	Límite de Fluencia (MPa)	Resistencia a la Tracción (MPa)	% Elongación	
TT-P0.5-LT-01	1822,96	508,58	48,12	13,41	48,90	9,12	
TT-P0.5-LT-02	1672,03	412,35	48,41	11,93	48,41	6,40	
TT-P0.5-LT-03	1689,75	584,60	45,83	15,85	46,76	11,76	
TT-P0.5-LT-04	1420,71	468,86	42,43	14,03	42,43	6,88	
TT-P0.5-LT-05	1587,45	561,65	42,89	15,15	43,61	9,89	
Promedio X	1638,58	507,21	45,54	14,07	46,02	8,81	
Desviación estandar Sn-1	148,17	69,68	2,81	1,53	2,88	2,21	
Coeficiente de variación Cv	9,04	13,74	6,18	10,86	6,26	25,06	
		GRÁF	ICAS DE RESU	JLTADOS			
Lími 18,00 16,00 14,00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 13,41 12,01 10,00 13,41 12,01 10,01 1	11,93	15,85 14,03 14,03 14,03	15,15 50,00 48,00 46,00 44,00 40,00 38,00 5 ²	Resister	encia a la tra ^{8,41} ^{46,76} ^{46,76} ⁵² _{7,805} , ^{1,05} _{7,805} , ^{1,05}	42,43 43,61 42,43 43,61	
	14 12 10 8 8 9 2 2 0 0	9 9,12 6,4 1,805-11-01 7,805-11-01	6 Elongaci 11,76	ón 6,88 55 ^{11,00} (1,905 ^{11,6}	9,89 \$2		
Elat	oorado por:]	ing. Giovanny Pine	da	Aprobado po Validado por	r: Ing. Mg. Gon: : Ing. Mg. Gonz	zalo López alo López	

UT	Ā	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA						
		MAESTRÍA	EN MECÁNIC	A - MENCIÓN	I DISEÑO	FICM		
		ENS	SAYO DE TRA	CCIÓN				
CÓDIGO:		TT-P1.	.0-LT	HOJA:		02 de 06		
FECHA:		19/11/2018 CIUDAD: Ambato						
LABORATORIC):	Centro de Foment	to Productivo M	etalmecánico C	arrocero			
EQUIPO:		Máquina Universa	al de Ensayos Me	etrotest 50 kN	Serie 8210M002	2		
NORMA:		ASTM E8 - Standard Test Methods for Tension Testing of Metallic Materials						
		<u>COMPOSICIÓN</u>	- CARACTERÍ	STICAS ALE	ACIÓN			
Material base		Aluminio 1060) - 99,0 % W	Material alea	nte	Zinc - 1,0 % W		
Tamaño Partícul	as	45 um -	63 um	Granulometr	ía	Mixtos		
Presión Compac	tado	270 N	Мра	Temperatura	Sinterizado	462°C		
	CARACTERÍSTICAS DEL ENSAYO							
Tipo de ensayo		Cuanti	tativo	Tipo de prob	eta	Plana		
Velocidad ensay	0	10 mm	10 mm/min Precarga		100 N			
Dimensiones		Cumple criterios		Longitud calibrada		25,4 mm		
Temperatura ens	ayo	22,4	°C	Humedad relativa		53,2%		
	R	ESULTADOS OF	BTENIDOS ENS	SAYO DE TRA	ACCIÓN			
Número	Fuerza de Rotura (N)	Fuerza de Fluencia (N)	Resistencia de Rotura (MPa)	Límite de Fluencia (MPa)	Resistencia a la Tracción (MPa)	% Elongación		
TT-P1.0-LT-01	1875,61	464,58	49,51	12,25	50,23	12,82		
TT-P1.0-LT-02	1773,91	711,67	51,36	20,59	51,36	10,07		
TT-P1.0-LT-03	2000,56	685,66	54,26	18,59	54,26	7,41		
TT-P1.0-LT-04	1596,84	438,45	47,69	13,12	48,65	13,16		
TT-P1.0-LT-05	2132,64	613,82	57,62	16,56	57,62	8,44		
Promedio X	1875,91	582,84	52,09	16,22	52,42	10,38		
Desviación estandar Sn-1	205,99	125,46	3,93	3,54	3,56	2,57		
Coeficiente de variación Cv	10,98	21,53	7,55	21,84	6,78	24,73		
		GRÁFI	CAS DE RES	ULTADOS				
Lím	ite de Flu	iencia (MPa)		Resistenci	a a la tracció	ón (MPa)		

Tabla 4.14 Ensayo de Tracción TT-P1.0-LT

Ā	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO					FICM
	ENS	SAYO DE T	FRA	CCIÓN		
	TT-P1.5-LT			HOJA:		03 de 06
	19/11/	2018		CIUDAD:		Ambato
0:	Centro de Foment	to Productiv	o Me	etalmecánico C	arrocero	
	Máquina Universal de Ensayos Metrotest 50 kN - Serie 8210M002					2
	ASTM E8 - Stand	lard Test M	ethod	ls for Tension	Testing of Metall	lic Materials
(COMPOSICIÓN	- CARACI	ſERÍ	STICAS ALE	ACIÓN	
	Aluminio 1060) - 98,5 % V	V	Material alea	nte	Zinc - 1,5 % W
las	45 um -	63 um		Granulometr	ía	Mixtos
tado	270 N	Ира		Temperatura	Sinterizado	462°C
	CARAC	TERÍSTICA	AS D	EL ENSAYO		
	Cuanti	tativo		Tipo de prob	eta	Plana
0	10 mm	n/min		Precarga		100 N
	Cumple of	criterios		Longitud cali	brada	25,4 mm
sayo	22.4 °C Humedad relativa				ativa	53,2%
R	ESULTADOS OF	BTENIDOS	ENS	SAYO DE TRA	ACCIÓN	
Fuerza de Rotura (N)	Fuerza de Fluencia (N)	Resistencia Rotura (M	a de IPa)	Límite de Fluencia (MPa)	Resistencia a la Tracción (MPa)	% Elongación
1822.96	667.86	48.12		17.61	48,96	7.16
- ,				12.54	55.20	
1886,86	468,00	54,63		15,54	33,32	3,22
1886,86 1777,50	468,00 599,35	54,63 48,21		15,34	48,21	3,22
1886,86 1777,50 1730,77	468,00 599,35 474,88	54,63 48,21 51,69		16,25 14,21	48,21 52,48	3,22 6,84 11,36
1886,86 1777,50 1730,77 1802,12	468,00 599,35 474,88 502,62	54,63 48,21 51,69 48,69		13,54 16,25 14,21 13,56	53,52 48,21 52,48 48,69	3,22 6,84 11,36 4,33
1886,86 1777,50 1730,77 1802,12 1804,04	468,00 599,35 474,88 502,62 542,54	54,63 48,21 51,69 48,69 50,27		15,34 16,25 14,21 13,56 15,03	33,32 48,21 52,48 48,69 50,73	3,22 6,84 11,36 4,33 6,58
1886,86 1777,50 1730,77 1802,12 1804,04 57,65	468,00 599,35 474,88 502,62 542,54 87,55	54,63 48,21 51,69 48,69 50,27 2,85		15,34 16,25 14,21 13,56 15,03 1,82	33,32 48,21 52,48 48,69 50,73 3,07	3,22 6,84 11,36 4,33 6,58 3,15
1886,86 1777,50 1730,77 1802,12 1804,04 57,65 3,20	468,00 599,35 474,88 502,62 542,54 87,55 16,14	54,63 48,21 51,69 48,69 50,27 2,85 5,66		15,34 16,25 14,21 13,56 15,03 1,82 12,08	33,32 48,21 52,48 48,69 50,73 3,07 6,06	3,22 6,84 11,36 4,33 6,58 3,15 47,81
1886,86 1777,50 1730,77 1802,12 1804,04 57,65 3,20	468,00 599,35 474,88 502,62 542,54 87,55 16,14 GRÁFI	54,63 48,21 51,69 48,69 50,27 2,85 5,66 CAS DE F	RESU	15,54 16,25 14,21 13,56 15,03 1,82 12,08 ULTADOS	33,32 48,21 52,48 48,69 50,73 3,07 6,06	3,22 6,84 11,36 4,33 6,58 3,15 47,81
1886,86 1777,50 1730,77 1802,12 1804,04 57,65 3,20	468,00 599,35 474,88 502,62 542,54 87,55 16,14 GRÁFI tencia (MPa)	54,63 48,21 51,69 48,69 50,27 2,85 5,66 CAS DE F	56,0	15,34 16,25 14,21 13,56 15,03 1,82 12,08 JLTADOS Resistenc	48,21 52,48 48,69 50,73 3,07 6,06 ia a la tracci	3,22 6,84 11,36 4,33 6,58 3,15 47,81 ón (MPa)
	O: las etado ro sayo R Fuerza de Rotura (N) 1822,96	ENS TT-P1. 19/11/ O: Centro de Foment Máquina Universa ASTM E8 - Stand COMPOSICIÓN Aluminio 1066 las 45 um - etado 270 N CARACT Cuantin ro 10 mm Cumple of sayo 22,4 RESULTADOS OF Fuerza de Rotura (N) Fuerza de Fluencia (N) 1822,96 667,86	ENSAYO DE 7 TT-P1.5-LT 19/11/2018 O: Centro de Fomento Productiv Máquina Universal de Ensayo ASTM E8 - Standard Test M COMPOSICIÓN - CARACT Aluminio 1060 - 98,5 % V Ias ASTM E8 - Standard Test M COMPOSICIÓN - CARACT Aluminio 1060 - 98,5 % V Ias ASTM E8 - Standard Test M COMPOSICIÓN - CARACT Aluminio 1060 - 98,5 % V Ias CARACTERÍSTICA Cuantitativo CARACTERÍSTICA Cuantitativo CARACTERÍSTICA Cuantitativo CARACTERÍSTICA Cuantitativo 22,4 °C RESULTADOS OBTENIDOS Fuerza de Rotura (N) Fuerza de Resistenci Resistenci Rotura (N) Fuerza de Rotura (N) Resistenci Rotura (N) Resistenci Rotura (N)	ENSA YO DE TRAC TT-P1.5-LT 19/11/2018 O: Centro de Fomento Productivo Me Máquina Universal de Ensayos Me ASTM E8 - Standard Test Method COMPOSICIÓN - CARACTERÍ Aluminio 1060 - 98,5 % W las 45 um - 63 um cARACTERÍSTICAS D Cuantitativo 270 Mpa CARACTERÍSTICAS D Cuantitativo ro 22,4 °C RESULTADOS OBTENIDOS ENS Fuerza de Rotura (N) Fluencia (N) 1822,96 667,86 48,12	ENSAYO DE TRACCIÓN TT-P1.5-LT HOJA: 19/11/2018 CIUDAD: O: Centro de Fomento Productivo Metalmecánico C Máquina Universal de Ensayos Metrotest 50 kN ASTM E8 - Standard Test Methods for Tension ASTM E8 - Standard Test Methods for Tension ASTM E8 - Standard Test Methods for Tension COMPOSICIÓN - CARACTERÍSTICAS ALE Aluminio 1060 - 98,5 % W Material alea 45 um - 63 um Ias 45 um - 63 um CARACTERÍSTICAS DEL ENSAYO Cuantitativo Tipo de prob 10 mm/min Precarga Cumple criterios Longitud cali sayo 22,4 °C Humedad rel: Fuerza de Fuerza de Resistencia de Fluencia (M) I822,96 667,86 48,12 17,61	ENSAYO DE TRACCIÓN ENSAYO DE TRACCIÓN TT-P1.5-LT HOJA: 19/11/2018 CIUDAD: O: Centro de Fomento Productivo Metalmecánico Carrocero Máquina Universal de Ensayos Metrotest 50 kN - Serie 8210M00 ASTM E8 - Standard Test Methods for Tension Testing of Metal COMPOSICIÓN - CARACTERÍSTICAS ALEACIÓN Aluminio 1060 - 98,5 % W Material aleante Ias 45 um - 63 um CARACTERÍSTICAS DEL ENSAYO Cuantitativo Tipo de probeta 'co 10 mm/min Precarga Cumple criterios Longitud calibrada sayo 22,4 °C Humedad relativa RESULTADOS OBTENIDOS ENSAYO DE TRACCIÓN Fuerza de Rotura (N) Fuerza de Fluencia (N) Resistencia de Rotura (MPa) Resistencia a la Tracción (MPa) 1822,96 667,86 48,12 17,61 48,96

Tabla 4.15 Ensayo de Tracción TT-P1.5-LT

Tabla 4.16 Ensayo de Tracción TT-P0.5-HT

[
Ŭ	Ā	UNIV FACULTAD MAESTRÍA	IBATO ECÁNICA I DISEÑO	FICM			
•		ENS	SAYO DE TRA	CCIÓN			
CÓDIGO:		TT-P0	5-HT	HOIA		04 de 06	
FECHA:		10/11/	2018	CIUDAD:		Ambato	
I ABORATORI) .	Centro de Foment	to Productivo M	cicoAD.	arrocaro	Anoato	
LABORATORIO	J .	Méquino Universe	l de Enserves Ma	stratest 50 kN	Samia 8210M00	2	
EQUIPO:		Maquina Universal de Ensayos Metrotest 50 kN - Serie 8			Serie 8210M00		
NORMA:		ASTM E8 - Stand	lard Test Method	is for Tension	Testing of Metal	lic Materials	
	COMPOSICION - CARACTERISTICAS ALEACION						
Material base		Aluminio 1060) - 99,5 % W	Material alea	nte	Zinc - 0,5 % W	
Tamaño Partícu	las	45 um -	63 um	Granulometri	ía	Mixtos	
Presión Compac	tado	270 N	Лра	Temperatura	Sinterizado	594°C	
		CARACT	TERÍSTICAS D	EL ENSAYO			
Tipo de ensayo		Cuantit	tativo	Tipo de prob	eta	Plana	
Velocidad ensay	0	10 mm	n/min	Precarga		100 N	
Dimensiones		Cumple of	criterios	Longitud cali	brada	25,4 mm	
Temperatura ens	sayo	22,4	°C	Humedad rela	ativa	53,2%	
	R	ESULTADOS OF	BTENIDOS ENS	SAYO DE TRA	ACCIÓN		
				Límite de	Resistencia a		
Número	Fuerza de	Fuerza de	Resistencia de	Fluencia	la Tracción	% Elongación	
	Rotura (N)	Fluencia (N)	Rotura (MPa)	(MPa)	(MPa)	0	
TT-P0.5-HT-01	1940.77	590.12	51.23	15.56	52.65	6.14	
TT-P0.5-HT-02	1837.47	640.12	53.20	18.52	53.65	10.81	
TT-P0.5-HT-03	1790.41	501.24	48.56	13.59	48.56	15.81	
TT-P0 5-HT-04	1669.83	531.02	49.87	15,89	50.10	11.69	
TT-P0 5-HT-05	1800.64	474.08	49,67	12 79	48.65	16.21	
Promodio V	1807,82	547.32	50 30	15.27	50 72	12.12	
Pioneulo A	1007,02	547,52	50,50	15,27	50,72	12,13	
estandar Sn-1	97,40	67,45	1,95	2,24	2,33	4,12	
Coeficiente de	5,39	12,32	3,88	14,64	4,59	33,99	
Vallación CV		CDÁFI	CAS DE DESI				
Lím 20,00 18,00 16,00 14,00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 4,00 1,00 10,0	ite de Flu 18,52	15,89 13,59 13,59 14,89 14,89 14,895,14,08 14,895,14,08 14,895,14,08 14,895,14,08 14,895,14,08 14,1495,14	55,01 54,01 53,01 51,00 51,00 49,01 48,00 48,00 46,00	Resiste	encia a la tra	NOA TROSPANDO	
		8 6 4 2 0 8 6 4 2 0 0 1 8 6 4 2 0 0 1 8 6 4 2 0 0 1 8 6 1 1 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1	TROSHING TR	5-HAR TROSHI	\$2		
			· · ·	Annehod	m Ing Ma Ca	rolo I óper	
Elal	oorado por:]	Ing. Giovanny Pine	eda	Aprobado po Validado por	r: Ing. Mg. Gonz	zalo López	

Tabla 4.17 Ensayo de Tracción TT-P1.0-HT

			HIGH					
CÓDICO	ENSAYO DE TRACCION							
CODIGO.		TT-P1.	0-HT	HOJA:		05 de 06		
FECHA:		19/11/2	2018	CIUDAD:		Ambato		
LABORATORIO:		Centro de Foment	to Productivo Me	etalmecánico C	arrocero			
EQUIPO:		Máquina Universa	2					
NORMA:		ASTM E8 - Stand	lard Test Method	ls for Tension	Testing of Metall	ic Materials		
		COMPOSICIÓN	- CARACTERÍ	STICAS ALE	ACIÓN			
Material base		Aluminio 1060	- 99,0 % W	Material alea	nte	Zinc - 1,0 % W		
Tamaño Partículas		45 um -	63 um	Granulometri	ía	Mixtos		
Presión Compactado		270 N	Лра Гали ала а	Temperatura	Sinterizado	594°C		
		CARACI	FERISTICAS D	EL ENSAYO				
Tipo de ensayo		Cuantit	ativo	Tipo de prob	eta	Plana		
Velocidad ensayo		10 mm	/min	Precarga		100 N		
Dimensiones		Cumple c	criterios	Longitud cali	brada	25,4 mm		
Temperatura ensayo		22,4	°C	Humedad rela	ativa	53,2%		
KESULIADUS UBIENIDUS ENSAYU DE TRACCIUN								
Número Fuer Rotu	rza de ıra (N)	Fuerza de Fluencia (N)	Resistencia de Rotura (MPa)	Limite de Fluencia (MPa)	Resistencia a la Tracción (MPa)	% Elongación		
TT-P1.0-HT-01 244	47,66	654,21	64,61	17,25	64,96	7,86		
TT-P1.0-HT-02 206	50,24	710,63	59,65	20,56	59,65	9,75		
TT-P1.0-HT-03 215	59,11	816,59	58,56	22,14	59,04	0,93		
TT-P1.0-HT-04 187	75,76	662,02	56,02	19,81	56,02	8,54		
TT-P1.0-HT-05 230)5,12	785,07	62,28	21,18	63,11	4,51		
Promedio X 210	59,58	725,70	60,22	20,19	60,56	6,32		
Desviación estandar Sn-1 22	0,28	72,76	3,33	1,85	3,52	3,58		
voriación Cy 10),15	10,03	5,52	9,17	5,82	56,73		
		GRÁFI	CAS DE RESI					
Límite c 25,00 20,00 15,00 10,00 5,00 0,00	le Flu	iencia (MPa)	66,00 64,00 62,00 58,00 58,00 54,00 52,00 50,00 \$52,00 \$50,00 \$52,00\$52,00 \$52,00 \$52,00\$\$\$52,00\$\$\$52,00\$\$\$52,00\$\$\$52,00\$\$\$52,00\$\$\$52,00\$\$\$52,00\$\$\$52,00\$\$\$52,00\$\$\$52,00\$\$\$52,00\$\$\$\$52,00\$\$\$\$52,00\$\$\$\$52,00\$\$\$\$\$\$52,00\$\$\$\$\$\$\$\$\$\$	Resiste	encia a la tra	rcción (MPa)		
		2 0 8 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% Elongaci	ón	\$2			
	~		\$^ \$^	Anrohado no	r Ing Mg Gonz	ralo Lónez		

Tabla 4.18 Ensayo	de Tracción	TT-P1.5-HT
-------------------	-------------	------------

UNIVERSIDAD TÉCNICA DE AMBATOFACULTAD DE INGENIERÍA CIVIL Y MECÁNICAMAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO					FICM	
		ENS	SAYO DE TRA	CCIÓN		
CÓDIGO:		TT-P1.	5-HT	HOJA:		06 de 06
FECHA:		19/11/	2018	CIUDAD:		Ambato
LABORATORIO):	Centro de Foment	to Productivo M	etalmecánico Ca	arrocero	
EOUIPO:		Máquina Universa	al de Ensavos Me	etrotest 50 kN -	Serie 8210M00	2
NORMA:		ASTM E8 - Stand	lard Test Method	ds for Tension '	Testing of Metal	ic Materials
		COMPOSICIÓN	- CARACTERÍ	STICAS ALE	ACIÓN	
Material base		Aluminio 1060	0.111101211	Material alea	nte	Zinc - 1.5 % W
Tamaño Partícul	96	45 um -	63 um	Granulometri	a	Mixtos
Presión Compact	us obet		Jpa	Temperatura	Sinterizado	594°C
Tresion Compact	lauo	CAPACI	πρα Γερίςτις λς D	FL ENSAVO	Sintenzado	5) 4 C
Tino do oncovo		Cuantit	tativo	Tine de prob	ata	Dlana
Velocided ensayo		Luanua 10 mm		Dressares	eta	F Ialla
velocidad elisayo)		· · ·	Precarga		100 N
Dimensiones		Cumple of	criterios	Longitud cali	Drada	25,4 mm
Temperatura ens	ayo	22,4	<u> </u>	Humedad rela	auva	53,2%
	R	ESULTADOS OF	STENIDOS ENS	SAYO DE TRA	ACCION	
Número	Fuerza de Rotura (N)	Fuerza de Fluencia (N)	Resistencia de Rotura (MPa)	Límite de Fluencia (MPa)	Resistencia a la Tracción (MPa)	% Elongación
TT-P1.5-HT-01	2092,31	514,27	55,23	13,56	55,23	7,040
TT-P1.5-HT-02	1656,14	615,58	47,95	17,81	48,56	10,430
TT-P1.5-HT-03	2147,31	412,35	58,24	11,18	58,24	9,080
TT-P1.5-HT-04	1660,12	306,87	49,58	9,18	49,58	10,580
TT-P1.5-HT-05	1820,26	376,97	49,18	10,17	49,18	4,780
Promedio X	1875,23	445,21	52,04	12,38	52,16	8,38
Desviación estandar Sn-1	233,69	121,11	4,46	3,44	4,33	2,46
Coeficiente de	12,46	27,20	8,57	27,82	8,30	29,40
		GRÁFI	CAS DE RES	ULTADOS		
Límite de Fluencia (MPa) 1000 10						
% Elongación 12,000 10,000 8,000 4,000 2,000 0,000 Tratsman Tratsman Tratsman Tratsman Tratsman Tratsman Tratsman Tratsman						
Elat	oorado por: I	ng. Giovanny Pine	eda	Aprobado po Validado por	r: Ing. Mg. Gonz : Ing. Mg. Gonza	zalo López alo López

4.2.1.3 Resultados Ensayo de Impacto

Tabla 4.19 Ensayo de Impacto IT-P0.5-LT

UTA	FACUI MAES	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO				
		ENSAYO DE I	МРАСТО		•	
CÓDIGO:	IT-P0	.5-LT	HOJA:		01 de 06	
FECHA:	20/11	/2018	CIUDAD:		Ambato	
LABORATORIO:	Centro de Fomento	Productivo Metalme	cánico Carrocero			
EQUIPO: Máquina de ensayos Charpy. PIC 450 J Serie M152552AR14						
NORMA:	ASTM E23 - Standa	rd Test Methods for	Notched Bar Impact	Testing of Metallic	Materials	
	COMPOS	ICIÓN - CARACTI	ERÍSTICAS ALEAC	CIÓN		
Material base	Aluminio 106	0 - 99,5 % W	Material aleante		Zinc - 0,5 % W	
Tamaño Partículas	45 um	- 63 um	Granulometría		Mixtos	
Presión Compactado	270	Мра	Temperatura Sinter	rizado	462°C	
	C	ARACTERÍSTICAS	S DEL ENSAYO			
Tipo de ensayo	Cuant	itativo	Tipo de probeta		Plana	
Vel. máx. de impacto	5,42	m/s	Ancho/Espesor		10 mm / 10 mm	
Dimensiones	Cumple	criterios	Longitud		55 mm	
Temperatura ensayo	24,2	2 °C	Humedad relativa		50,6%	
	RESULTA	DOS OBTENIDOS	ENSAYO DE IMPA	СТО	•	
			Aspecto fractura	Fractura	le Probeta	
Número	Energía absorbida	Resistencia al	(% de	Flactula	le l'Iobeta	
	(J)	impacto (J/cm ²)	cizallamiento)	SI	NO	
	0.00	71.001	00	N/		
11-P0.5-L1-01	0,89	71,221	90	A		
TT-P0.5-LT-02	0,59	50,975	100	X		
IT-P0.5-LT-03	0,89	70,028	100	X		
IT-P0.5-LT-04	0,59	57,19	80	X		
IT-P0.5-LT-05	0,89	81,013	60	Х		
Promedio X	0,77	66,885				
Desviación estandar Sn-1	0,164	12,415				
Coeficiente de variación Cv	21,34	18,562				
		GRÁFICAS DE RI	ESULTADOS			
	1	Energía abso	orbida (J)			
	1 0,89	0,8	39	0,89		
C),8					
0	0.6	0,59	0,59			
),4					
0),2					
	0					
	IT-P0.5-LT-01 I	T-P0.5-LT-02 IT-P0.5-	-LT-03 IT-P0.5-LT-04	IT-P0.5-LT-05		
	Resi	stencia al im	npacto (J/cm ²)		
g	90			81,013		
8	71,221	70,0	28			
7	70		57 19			
6	50	50,975	51,15			
5	50					
4	10					
	20					
	10					
	0					
	IT-P0.5-LT-01	T-P0.5-LT-02 IT-P0.5-	LT-03 IT-P0.5-LT-04	IT-P0.5-LT-05		
			T			
Flahamda	nor Ing Giovarry	Dinada	Aprobado por: Ing.	Mg. Gonzalo Lópe	Z	
Enaboliado	, por. mg. Olovaility	i muta	Validado por: Ing.	Mg. Gonzalo López		

Tabla 4.20 Ensayo de Impacto IT-P1.0-LT

UTA	FACUI MAES	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO				
		ENSAYO DE L	MPACIO			
CODIGO:	IT-P1	.0-LT	HOJA:		02 de 06	
FECHA:	20/11	/2018	CIUDAD:		Ambato	
LABORATORIO:	Centro de Fomento	Productivo Metalmec	cánico Carrocero			
EQUIPO:	Máquina de ensayos	Charpy. PIC 450 J.	- Serie M152552AR1	4		
NORMA:	ASTM E23 - Standa	rd Test Methods for	Notched Bar Impact	Testing of Metallic	Materials	
	COMPOS	ICIÓN - CARACTI	ERÍSTICAS ALEAC	TIÓN		
Material base	Aluminio 106	0 - 99,0 % W	Material aleante		Zinc - 1,0 % W	
Tamaño Partículas	45 um -	- 63 um	Granulometría		Mixtos	
Presión Compactado	270	Mna	Temperatura Sinter	izado	462°C	
Treston Computado	<u></u>	ARACTERÍSTICAS	S DEL ENSAVO	izuuo	102 0	
Tino do oncorro	Cuant	itativo	Tine de prohete		Dlana	
Tipo de ensayo	Cuant	itativo	Tipo de probeta		Plana	
Vel. max. de impacto	5,42	m/s	Ancho/Espesor		10 mm / 10 mm	
Dimensiones	Cumple	criterios	Longitud		55 mm	
Temperatura ensayo	24,9	Э°С	Humedad relativa		47,5%	
	RESULTA	DOS OBTENIDOS	ENSAYO DE IMPA	СТО		
				_		
	Energía absorbida	Resistencia al	Aspecto fractura	Fractura	de Probeta	
Número	(I)	impacto (I/cm ²)	(% de			
	(8)	impueto (o/em)	cizallamiento)	SI	NO	
IT-P1 0-LT-01	1.03	108 766	80	x		
IT P1.0 LT 02	0.74	72 702	80	v		
11-P1.0-L1-02	0,74	13,192	80	Λ		
IT-P1.0-LT-03	1,33	127,442	80	X		
IT-P1.0-LT-04	1,03	87,6	90	X		
IT-P1.0-LT-05	1,93	177,626	70	Х		
Promedio X	1.212	1 212 115 045				
Degriggión estendon		110,010				
	0,452 40,511					
5II-1						
Coeficiente de	37.323	35.213				
variation Cv	,					
		GRAFICAS DE RI	ESULTADOS			
		Energía abso	orbida (J)			
	2 5	0	~ /			
	2,5					
	2			1,93		
		1.2	2			
	1,5	1,5	1 03			
	1	0.74	1,03			
		0,71				
	0,5					
	0					
	IT-P1.0-LT-01 I	T-P1.0-LT-02 IT-P1.0-	LT-03 IT-P1.0-LT-04	IT-P1.0-LT-05		
Resistencia al impacto (J/cm ²)						
	200		* <u> </u>	·		
	200			177,626		
	180	.80				
	140	107	442			
	120 108,766	140 12/,442				
	100		87,6			
	80	73,792				
	60					
	40					
	20					
	0					
	IT-P1.0-LT-01	IT-P1.0-LT-02 IT-P1.0	-LT-03 IT-P1.0-LT-04	IT-P1.0-LT-05		
		D ¹ 1.	Aprobado por: Ing.	Mg. Gonzalo Lóp	ez	
Elaborad	o por: ing. Giovanny	rineda	Validado por: Ing.	Mg. Gonzalo Lópe	Z	
				- I ·		

Tabla 4.21 Ensayo de Impacto IT-P1.5-LT

UTA	FACUI MAES	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO				
		ENSAYO DE I	МРАСТО		•	
CÓDIGO:	IT-P1	.5-LT	HOJA:		03 de 06	
FECHA:	20/11	/2018	CIUDAD:		Ambato	
LABORATORIO	Centro de Fomento l	Productivo Metalmec	cánico Carrocero			
ENDORMORIO.	Méquina de ansavos	Charpy PIC 450 I	Sorio M152552AD1	4		
NODMA:	ASTM E22 Standa	charpy. FIC 450 J.	Vetabed Dan Januart	+ Taating of Matallia	Matariala	
NORMA:	ASTM E23 - Standa	ra Test Methods for	Notched Bar Impact	Testing of Metallic	Materials	
	COMPOS	ICION - CARACII	ERISTICAS ALEAC	ION	I	
Material base	Aluminio 106	0 - 98,5 % W	Material aleante		Zinc - 1,5 % W	
Tamaño Partículas	45 um -	- 63 um	Granulometría		Mixtos	
Presión Compactado	270	Мра	Temperatura Sinter	izado	462°C	
	C	ARACTERÍSTICAS	S DEL ENSAYO			
Tipo de ensayo	Cuant	itativo	Tipo de probeta		Plana	
Vel. máx. de impacto	5,42	m/s	Ancho/Espesor		10 mm / 10 mm	
Dimensiones	Cumple	criterios	Longitud		55 mm	
Tomporature ancore	24/) °C	Humodod volotice		52.00	
remperatura ensayo	24,2		munedad relativa	CTO C	53,0%	
	RESULTA	DOS OBTENIDOS	ENSAYO DE IMPA	010		
	Transf 1 111	Dest i t	Aspecto fractura	Fractura	de Probeta	
Número	Energia absorbida	Resistencia al	(% de			
	(J)	impacto (J/cm ²)	cizallamiento)	SI	NO	
	0.62	52.042	, 00	37		
11-P1.5-L1-01	0,62	53,043	80	X	+	
IT-P1.5-LT-02	1,18	104,26	90	X		
IT-P1.5-LT-03	0,88	70,091	70	Х		
IT-P1.5-LT-04	0,59	56,655	90	Х		
IT-P1 5-I T-05	0.88	85 252	70	x		
Dromodio V	0,00	72.96	10	1		
Fiomeulo A	0,85	/3,80				
Desviación estandar Sn-1	0,239	21,198				
Coeficiente de variación Cv	28,84	28,701				
		GRÁFICAS DE RI	FSULTADOS		Į.	
	1,4 1,2 1 0,8 0,6 0,4 0 IT-P1.5-LT-01 I Resi 120 80 60 53,043	Energía abso 1,18 0,8 T-P1.5-LT-02 IT-P1.5- stencia al im 104,26 70,0	orbida (J) 8 0,59 0,5	0,88 IT-P1.5-LT-05		
	40 20 0 IT-P1.5-LT-01	T-P1.5-LT-02 IT-P1.5-	-LT-03 IT-P1.5-LT-04	IT-P1.5-LT-05		
		D'1.	Aprobado por: Ing.	Mg. Gonzalo Lópe	ez	
Elaborado	o por: Ing. Giovanny	Pineda	Validado por: Ing. 1	Mg. Gonzalo López	<u> </u>	
L				r		

Tabla 4.22 Ensayo de Impacto IT-P0.5-HT

UTA	FACUI MAES	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO				
		ENSAYO DE I	МРАСТО			
CÓDIGO:	IT-P0	.5-HT	HOJA:		04 de 06	
FECHA:	20/11	/2018	CIUDAD:		Ambato	
LABORATORIO:	Centro de Fomento	Productivo Metalme	cánico Carrocero			
EQUIPO:	Máquina de ensayos	Charpy. PIC 450 J.	- Serie M152552AR1	14		
NORMA:	ASTM E23 - Standa	rd Test Methods for	Notched Bar Impact	Testing of Metallic	Materials	
	COMPOS	ICIÓN - CARACTI	ERÍSTICAS ALEAC	TIÓN		
Material base	Aluminio 106	0 - 99.5 % W	Material aleante		Zinc - 0.5 % W	
Tamaño Partículas	45 um	- 63 um	Granulometría		Mixtos	
Presión Compactado	270	Mpa	Temperatura Sinte	rizado	594°C	
	C/	ARACTERÍSTICAS	S DEL ENSAYO			
Tipo de ensavo	Cuant	itativo	Tipo de probeta		Plana	
Vel. máx. de impacto	5.42	m/s	Ancho/Espesor		10 mm / 10 mm	
Dimensiones	Cumple	criterios	Longitud		55 mm	
Temperatura ensavo	25	L°C	Humedad relativa		47.6%	
Temperatura ensayo	BESULTA	DOS OBTENIDOS	FNSA VO DE IMPA	СТО	47,070	
	RESULTA	DOS OD TEXTIDOS				
	Energía absorbida	Resistencia al	Aspecto fractura	Fractura o	le Probeta	
Número	(J)	impacto (J/cm ²)	(% de	GT	NO	
	(-)	I	cizallamiento)	81	NO	
IT-P0.5-HT-01	1,02	115,854	90	Х		
IT-P0.5-HT-02	1,03	80,439	80	Х		
IT-P0.5-HT-03	0,74	70,237	60	Х		
IT-P0.5-HT-04	0,74	62,21	80	Х		
IT-P0.5-HT-05	1,03	93,405	80	Х		
Promedio X	0,912	84,429				
Desviación estandar	,	,				
Sn-1	0,157	21,09				
Coeficiente de	17,222	24,979				
Variación CV		CDÁFICAS DE DI	ESTIT TA DOC			
1,2 1 0,8 0,6 0,4 0,2 0 1 1 4 12 10 8 6 4 2	F 1,02 1,0	Energía absor 1,03 0,74 P0.5-HT-02 IT-P0.5-HT tencia al imp 80,439 70,23	rbida (J) 0,74 1-03 IT-P0.5-HT-04 0acto (J/cm ²)	1,03 IT-P0.5-HT-05 93,405		
	0 IT-P0.5-HT-01 IT-	P0.5-HT-02 IT-P0.5-H	T-03 IT-P0.5-HT-04	IT-P0.5-HT-05		
Elaborado	por: Ing. Giovanny	Pineda	Aprobado por: Ing. Validado por: Ing.	. Mg. Gonzalo Lópe Mg. Gonzalo López	Z	

Tabla 4.23 Ensayo de Impacto IT-P1.0-HT

UTA	FACUI MAES	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO				
`		FNSAVO DE I	мрасто			
CÓDIGO	IT_P1	0-HT	нота		05 de 06	
FECHA:	20/11	/2018	CUDAD		Ambato	
LABORATORIO:	Centro de Fomento	Productivo Metalme	cánico Carrocero		7 iniouto	
EQUIPO:	Máquina de ensavos	aujna de ensavos Charny, PIC 450 L - Serie M152552AR14				
NORMA:	ASTM E23 - Standa	rd Test Methods for	Notched Bar Impact	Testing of Metallic	Materials	
	COMPOS	ICIÓN - CARACT	ERÍSTICAS ALEAC	TIÓN	, interesting	
Material base	Aluminio 106	0 - 99,0 % W	Material aleante		Zinc - 1,0 % W	
Tamaño Partículas	45 um	- 63 um	Granulometría		Mixtos	
Presión Compactado	270	Mpa	Temperatura Sinter	rizado	594°C	
	C.	ARACTERÍSTICAS	S DEL ENSAYO			
Tipo de ensayo	Cuant	itativo	Tipo de probeta		Plana	
Vel. máx. de impacto	5,42	m/s	Ancho/Espesor		10 mm / 10 mm	
Dimensiones	Cumple	criterios	Longitud		55 mm	
Temperatura ensayo	24,2	2 °C	Humedad relativa		54,5%	
	RESULTA	DOS OBTENIDOS	ENSAYO DE IMPA	СТО		
	F / I I I	D • 4 • • •	Aspecto fractura	Fractura	de Probeta	
Número	Energia absorbida	Resistencia al	(% de			
	(J)	impacto (J/cm ²)	cizallamiento)	SI	NO	
IT-P1.0-HT-01	0.59	50.935	90	Х		
IT-P1.0-HT-02	1,18	102,976	100	Х		
IT-P1.0-HT-03	1,48	138,85	90	Х		
IT-P1.0-HT-04	1,18	95,612	80	Х		
IT-P1.0-HT-05	1,18	98,913	90	Х		
Promedio X	1,122	97,457				
Desviación estandar Sn-1	0,325	31,28				
Coeficiente de variación Cv	28,924	32,096				
	1	GRÁFICAS DE R	ESULTADOS		4	
	2 1,5 1 0,59 0,5 0 IT-P1.0-HT-01	Energía abs 1, 1,18 17.91.0-HT-02 IT-P1.0	orbida (J) 48 1,18 0-HT-03 IT-P1.0-HT-04	1,18 IT-P1.0-HT-05		
	Res	132 102,976 IT-P1.0-HT-02 IT-P1.0	95,612 95,612 0-HT-03 IT-P1.0-HT-04	2) 98,913 IT-P1.0-HT-05		
Elaborad	o por: Ing. Giovanny	Pineda	Aprobado por: Ing.	Mg. Gonzalo Lóp	ez	
	- ,		vancado por: Ing.	wig. Gonzalo Lòpe	Z	

Tabla 4.24 Ensayo de Impacto IT-P1.5-HT

UTA	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO				FICM	
		ENSAVO DE I	МРАСТО			
CÓDICO:	IT_P1					
FECHA:	20/11	/2018	CIUDAD:		Ambato	
LABORATORIO:	Centro de Fomento I	Productivo Metalmec	cánico Carrocero		Tinouto	
EOUIPO:	Máquina de ensavos	Charpy, PIC 450 J.	- Serie M152552AR1	4		
NORMA:	ASTM E23 - Standa	rd Test Methods for	Notched Bar Impact	Testing of Metallic I	Materials	
	COMPOS	ICIÓN - CARACTI	ERÍSTICAS ALEAC	IÓN		
Material base	Aluminio 106	0 - 98,5 % W	Material aleante		Zinc - 1,5 % W	
Tamaño Partículas	45 um -	45 um - 63 um Granulometría Mixtos				
Presión Compactado	270	Мра	Temperatura Sinter	rizado	594°C	
	C	ARACTERÍSTICAS	S DEL ENSAYO			
Tipo de ensayo	Cuant	itativo	Tipo de probeta		Plana	
Vel. máx. de impacto	5,42	m/s	Ancho/Espesor		10 mm / 10 mm	
Dimensiones	Cumple	criterios	Longitud		55 mm	
Temperatura ensayo	25,1	°C	Humedad relativa		51,8%	
	RESULTAI	DOS OBTENIDOS	ENSAYO DE IMPA	СТО		
	Energía absorbida	Resistencia al	Aspecto fractura	Fractura d	tura de Probeta	
Número	(J)	impacto (J/cm ²)	(% de	CT.	NO	
		• • •	cizallamiento)	SI	NO	
IT-P1.5-HT-01	0,59	60,749	90	X		
IT-P1.5-HT-02	0,88	77,249	80	X		
IT-P1.5-HT-03	1,18	115,141	60	X		
IT-P1.5-HT-04	1,18	111,332	80	X		
TT-P1.5-HT-05	0,88	80,642	80	X		
Promedio X	0,942	89,023				
Desviacion estandar Sn-1	0,247	23,389				
Coeficiente de variación Cv	26,266	26,273				
		GRÁFICAS DE RI	ESULTADOS			
	1,4 1,2 1 0,8 0,59 0,6 0,4 0,2 0 IT-P1.5-HT-01	Energía abso 0,88 T-P1.5-HT-02 IT-P1.5-	orbida (J) 18 1,18 -HT-03 IT-P1.5-HT-04 npacto (J/cm ²	0,88 IT-P1.5-HT-05		
	140 120 100 80 60,749 60 40 20 0 IT-P1.5-HT-01	77,249 115, 117-P1.5-HT-02 IT-P1.5	141 111,332 -нт-03 IT-P1.5-нт-04	80,642 80,742 IT-P1.5-HT-05		
Elaborado	o por: Ing. Giovanny	Pineda	Aprobado por: Ing. Validado por: Ing	Mg. Gonzalo López Mg. Gonzalo López	Z	

4.2.2 Análisis comparativo de los resultados obtenidos

En las Tablas 4.25 a 4.28, se presentan los valores medios obtenidos en cada uno de los ensayos realizados para cada caso de estudio para efectuar la comparación con las propiedades mecánicas del material base sin elemento aleante.

4.2.2.1 Análisis comparativo – Ensayo de Dureza

UTA		UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO				
	T	ABLA COMPARA	ATIVA - ENSAYO DE DUF	REZA BRINELL (HI	B)	
FECHA:	-	8/2/2019	HOJA:	01	de 01	
LABORATORI	(O:	Laboratorio de Mat	teriales Ingeniería Mecánica F	FICM-UTA		
EQUIPO:		Hardness Tester M	odel HBRV-187,5			
NORMA:		ASTM E10 - Stand	lard Test Method for Brinell	Hardness of Metallic	Materials	
			RESULTADOS OBTENIDO			
E-4 1.		ТЕМРЕ	RATURA DE SINTERIZA	DO 462°C		
Estudio			Material base	Material aleante	Dureza Brinell (HB)	
1		HB-P0.5-LI	Aluminio 1060 - 99,5 % W	Zinc - 0.5 % W	26,37	
2		HB-P1.0-L1	Aluminio 1060 - 99,0 % W	Zinc - 1,0 % W	29,62	
		TEMDE	Autilino 1000 - 98,5 % W	DO 504°C	24,02	
Fetudio		Código	Material base	Motorial alganta	Dureze Brinell (HB)	
Listuaio			Aluminio 1060 00 5 % W	Zing 0.5 % W	10.66	
5		HB-P1 0-HT	Aluminio 1060 - 99,0 % W	Zinc = 0.5% W	32.11	
6		HB-P1 5-HT	Aluminio 1060 - 98,5 % W	Zinc - 1,5 % W	29.10	
0		110-1 1.5-111	GRÁFICA COMPARATIV	Zine - 1,5 % W	29,10	
	35 30 25 20 15 10 5 0	29,62 26,37 HB-P0.5-LT HB-P1.0-	24,82 24,82 19,66 LT HB-P1.5-LT HB-P0.5-HT	32,11 29,10 HB-P1.0-HT HB-P1.5-F	IT	
		PORCENIAJ	E DE VARIACIÓN	D D ! !!		
Estudio		Código	Dureza Brinell HB material base Al 1060	Dureza Brinell HB aleación mecánica	Porcentaje de Variación	
1		HB-P0.5-LT	19	26,37	38,79	
2		HB-P1.0-LT	19	29,62	55,89	
3		HB-P1.5-LT	19	24,82	30,63	
4		HB-P0.5-HT	19	19,66	3,47	
5		HB-P1.0-HT	19	32,11	69,00	
6	HB-P1.5-HT 19 29,10 53,16				53,16	
Comentario:						
El mayor por analizada de caso de estud material base	centaje dureza lio nún Al 10 do pou	de variación pos Brinell con resp nero 5, cuyo códi 60 y 1.0 % de Zn	itivo, el cual es un indicac pecto al material base sir go es HB-P1.0-HT, equi desarrollado a una temp Pineda	lor de mejora en la n elemento aleante valente a la compo eratura de sinteriza	propiedad mecánica , se consigue en el sición de 99.0 % de ción de 594°C.	

Tabla 4.25 Análisis Comparativo resultados Durez
--

naterial base Al 1060 y 1.0 % de Zn desarrollado a una temperatura de sinterización de 594°C.				
Elaborado por: Ing. Giovanny Pineda	Aprobado por: Ing. Gonzalo López Mg.			
	Validado por: Ing. Gonzalo López Mg.			

4.2.2.2 Análisis Comparativo – Ensayo de Tracción

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA UT, MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑO TABLA COMPARATIVA - ENSAYO DE TRACCIÓN FECHA: 8/2/2019 HOJA: 01 de 02 LABORATORIO: Centro de Fomento Productivo Metalmecánico Carrocero Máquina Universal de Ensayos Metrotest 50 kN - Serie 8210M002 EQUIPO: NORMA: ASTM E8 - Standard Test Methods for Tension Testing of Metallic Materials RESULTADOS OBTENIDOS TEMPERATURA DE SINTERIZADO 462°C Límite de Fluencia Resistencia a la Código Material base Material aleante Tracción (MPa) (MPa) TT-P0.5-LT Aluminio 1060 - 99.5 % W Zinc - 0,5 % W 14,07 46,02 TT-P1.0-LT Aluminio 1060 - 99.0 % W Zinc - 1,0 % W 16,22 52,42 TT-P1.5-LT Aluminio 1060 - 98,5 % W Zinc - 1,5 % W 50,73 15,03 TEMPERATURA DE SINTERIZADO 594°C Límite de Fluencia Resistencia a la Código Material base Material aleante Tracción (MPa) (MPa) TT-P0.5-HT Aluminio 1060 - 99.5 % W Zinc - 0,5 % W 15,27 50,72 TT-P1.0-HT Aluminio 1060 - 99,0 % W Zinc - 1,0 % W 60,56 20,19 TT-P1.5-HT Aluminio 1060 - 98,5 % W Zinc - 1,5 % W 12,38 52,16 **GRÁFICAS COMPARATIVAS** Límite de Fluencia (MPa) 25 20.19 20 16.22 15.27 15,03 14,07 15 12,38 10 5 0 TT-P0.5-LT TT-P1.0-LT TT-P1.5-LT TT-P0.5-HT TT-P1.0-HT TT-P1.5-HT Resistencia a la Tracción (MPa) 70 60,56 60 52,42 50,73 52,16 50,72 46,02 50 40 30 20 10 0 TT-P0.5-LT TT-P1.0-LT TT-P1.5-LT TT-P0.5-HT TT-P1.0-HT TT-P1.5-HT Aprobado por: Ing. Mg. Gonzalo López Elaborado por: Ing. Giovanny Pineda Validado por: Ing. Mg. Gonzalo López

Tabla 4.26 Análisis Comparativo resultados Ensayo de Tracción - Hoja 1

UTA	UNIVERS FACULTAD D MAESTRÍA E	FICM		
_	TABLA COMP	ARATIVA - ENSAYO	DE TRACCIÓN	
FECHA:	15/2/2019	HOJA:	02 d	e 02
LABORATORIO:	Centro de Fomento Prod	uctivo Metalmecánico C	arrocero	
EQUIPO:	Máquina Universal de E	nsayos Metrotest 50 kN -	Serie 8210M002	
NORMA:	ASTM E8 - Standard Te	st Methods for Tension 7	Festing of Metallic Mate	rials
	POR	CENTAJE DE VARIA	CIÓN	
		LÍMITE DE FLUENCI	A	
Estudio	Código	Límite de Fluencia material base Al 1060 (MPa)	Límite de Fluencia aleación mecánica (MPa)	Porcentaje de Variación
1	TT-P0.5-LT	29,40	14,07	-52,14
2	TT-P1.0-LT	29,40	16,22	-44,83
3	TT-P1.5-LT	29,40	15,03	-48,88
4	TT-P0.5-HT	29,40	15,27	-48,06
5	TT-P1.0-HT	29,40	20,19	-31,33
6	TT-P1.5-HT	29,40	12,38	-57,89
	POR	CENTAJE DE VARIA	CIÓN	
	RESI	STENCIA A LA TRAC	CIÓN	
Estudio	Código	Resistencia a la tracción material base Al 1060 (MPa)	Resistencia a la tracción aleación mecánica (MPa)	Porcentaje de Variación
1	TT-P0.5-LT	53,93	46,02	-14,67
2	TT-P1.0-LT	53,93	52,42	-2,80
3	TT-P1.5-LT	53,93	50,73	-5,93
4	TT-P0.5-HT	53,93	50,72	-5,95
5	TT-P1.0-HT	53,93	60,56	12,29
6	TT-P1.5-HT	53,93	52,16	-3,28
Comentario:				

 Tabla 4.27 Análisis Comparativo resultados Ensayo de Tracción - Hoja 2

Los mejores resultados se han conseguido en el caso de estudio número 5, cuyo código es TT-P1.0-HT, equivalente a la composición de 99.0 % de material base Al 1060 y 1.0 % de Zn desarrollado a una temperatura de sinterización de 594°C, donde la propiedad mecánica de resistencia a la tracción efectivamente mejoró con respecto al material base sin elemento aleante al existir un porcentaje de variación positivo, mientras que el límite de fluencia disminuyó en todos los casos de estudio, pero es el caso de estudio 5 donde el porcentaje de variación negativo es menor.

Elaborado por: Ing. Giovanny Pineda	Aprobado por: Ing. Gonzalo López Mg.
	Validado por: Ing. Gonzalo López Mg.

4.2.2.3 Análisis Comparativo – Ensayo de Impacto

Tabla 4.28 Análisis Comparativo resultados Ensayo de Impacto

4.3 Verificación de la hipótesis

Una vez tabulados los datos obtenidos de las propiedades mecánicas en estudio se procede a aplicar una prueba de contraste de hipótesis, a partir de un diseño factorial con dos factores con sus respectivos niveles, mediante la distribución F (Fisher), que permite comparar medias y varianzas de diferentes variables, para de esta manera establecer si las variables influyen o no en las propiedades mecánicas en estudio [32].

En las Tablas 4.29 a 4.31 se muestra la matriz del estudio y los niveles de los factores de porcentaje de elemento aleante y temperatura de sinterización.

MATRIZ DEL ESTUDIO				
FACTOR 1 (A)	FACTOR 2 (B)			
Porcentaje elemento	Temperatura de			
aleante	Sinterización			
A1 Zing 0.5 %	B1. 462 °C			
A1. ZIIIC - 0,5 %	B2. 594 °C			
$\mathbf{A2} \mathbf{Zinc} 10.04$	B1. 462 °C			
A2. ZINC - 1,0 %	B2. 594 °C			
A3 7ing 15%	B1. 462 °C			
A3. ZINC - 1,5 %	B2. 594 °C			

Tabla 4.29 Matriz del estudio - Factores variables

Tabla 4.30 Niveles factores - resultados de Dureza

NIVEL FACTORES – DUREZA						
PARÁMETRO	VALOR					
No. repeticiones (<i>n</i>)	15					
No. experimentaciones (N)	90					
Nivel factor 1 (<i>a</i>)	3					
Nivel factor 2 (<i>b</i>)	2					

Tabla 4.31 Niveles factores - resultados de Fluencia, Resistencia a la Tracción e Impacto

NIVEL FACTORES - FLUENCIA - TRACCIÓN - IMPACTO					
PARÁMETRO VALOR					
No. repeticiones (<i>n</i>)	5				
No. experimentaciones (N)	30				
Nivel factor 1 (<i>a</i>)	3				
Nivel factor 2 (<i>b</i>)	2				

Las ecuaciones a utilizar para el desarrollo de la Prueba de Fisher, las mismas que permiten comparar los valores de F y F_{tabla} , se presentan a continuación:

Los grados de libertad se determinan a través de:

$$GL_A = a - 1 Ec. 19$$

$$GL_B = b - 1 Ec. 20$$

$$GL_{AB} = (a-1)(b-1)$$
 Ec. 21

$$GL_{Error} = a * b * (n - 1)$$
 Ec. 22

$$GL_T = a * b * n - 1$$
 Ec. 23

Las sumas de cuadrados están dadas por:

$$SC_A = \frac{\sum Y_i^2}{b * n} - \frac{\left(\sum Y_{ij}\right)^2}{N}$$
 Ec. 24

$$SC_B = \frac{\sum Y_j^2}{a * n} - \frac{\left(\sum Y_{ij}\right)^2}{N}$$
 Ec. 25

$$SC_{AB} = \frac{\sum Y^2}{n} - \frac{\left(\sum Y_{ij}\right)^2}{N} - SC_A - SC_B \qquad \text{Ec. 26}$$

$$SC_T = \sum Y_{ij}^2 - \frac{\left(\sum Y_{ij}\right)^2}{N}$$
 Ec. 27

$$SC_{Error} = SC_T - (SC_A + SC_B + SC_{AB})$$
 Ec. 28

Los valores de los cuadrados medios se determinan mediante:

$$CM_A = \frac{SC_A}{2}$$
 Ec. 29

$$CM_B = \frac{SC_B}{2}$$
 Ec. 30

$$CM_{AB} = \frac{SC_{AB}}{2}$$
 Ec. 31

$$CM_{Error} = \frac{SC_{Error}}{2}$$
 Ec. 32

Los valores del parámetro F (Fisher) se calculan mediante las ecuaciones:

$$F_A = \frac{CM_A}{CM_{Error}}$$
 Ec. 33

$$F_B = \frac{CM_B}{CM_{Error}}$$
 Ec. 34

$$F_{AB} = \frac{CM_{AB}}{CM_{Error}}$$
 Ec. 35

Las hipótesis nulas y alternativas están definidas de la siguiente manera:

 H_{oA} : El porcentaje de Zinc no incide en la propiedad mecánica en estudio.

 H_{aA} : El porcentaje de Zinc incide en la propiedad mecánica en estudio.

 H_{oB} : La temperatura de sinterización no incide en la propiedad mecánica en estudio. H_{aB} : La temperatura de sinterización incide en la propiedad mecánica en estudio.

 H_{oAB} : No existe interacción entre el porcentaje de zinc y la temp. de sinterización H_{aAB} : Existe interacción entre el porcentaje de zinc y la temp. de sinterización

La condición de Aceptación/Rechazo de la hipótesis nula es:

 $F < F_{tabla}$ se acepta la hipótesis nula y se rechaza la hipótesis alternativa. $F > F_{tabla}$ se rechaza la hipótesis nula y se acepta la hipótesis alternativa.

4.3.1 Verificación de la hipótesis – Dureza

DUREZA BRINELL (HB)					
FACTOR 1 (A) FACTOR 2 (B)					
Porcontojo alamanto algonto	Ter	nperatura d	le Sinterización		1014111
rorcentaje elemento aleante	B1. 462	°C	B2. 594	°C	
	26,08		20,76		
	28,07		18,68		
	24,87		20,54		
	28,07		19,89		
	25.77		18.48		
	27.05		19.47		
	24.30		20.32		
A1. Zinc - 0,5 %	25,17	395,50	19,27	294,83	690,33
	24,30		20,10		
	26,40		19,07		
	28,42		19,68		
	25,47		20,32		
	28,07		19,89		
	26,08		18,87		
	27,38		19,47		
	30,28		31,48		
	29,14		32,75		
	28,78		33,19		
	29,51		32,32	-	
	29,89		33,64		
	29,51		30,67		
	29,89		31,89		
A2. Zinc - 1,0 %	29,51	444,31	34,09	481,66	925,98
	30,28		31,89	-	
	29,14		31,07	-	
	30,28		32,75		
	30,67		30,67		
	29,89		31,07		
	28,42		31,89	-	
	29,14		32,32		
	26,40		29,14	-	
	24,87		29,89	-	
	25,77		29,51		
	26,08		29,89	-	
	24,58		30,67	-	
	25,47		26,40	-	
$\mathbf{A3} \mathbf{Zinc} 15 \ \mathbf{\%}$	24,50	372 31	29,31	136 57	808 88
AS. Zuic - 1,5 %	23,47	572,51	20,08	430,37	000,00
	24,87		27,38		
	23,47		20.80		
	24,02		27,09		
	23,47		31.07		
	23.74		28.42		
	23,47		30.67		
Total Yj	1212,1	2	1213,0)7	2425,19

Tabla 4.32 Verificación de hipótesis – parámetros previos Dureza Brinell

EFECTO	Suma de cuadrados (SC)	Grados de Libertad	Cuadrado Medio (CM)	F	F tabla	A/R Ho
А	925,50	2	462,75	8,91	3,11	R
В	0,01	1	0,005	0,0001	3,96	А
AB	522,02	2	261,01	5,03	3,11	R
Error	103,82	84	51,91			
Total	1551,35	89				

Tabla 4.33 Verificación de hipótesis –Dureza Brinell

4.3.2 Verificación de la hipótesis – Límite de Fluencia

Tabla 4.34 Verificación de hipótesis - parámetros previos Límite de Fluencia

LÍMI					
FACTOR 1 (A)		FACTO	R 2 (B)		Total Vi
Porcentaia alemente alegata	Tempe	Temperatura de Sinterización			
	B1. 462 °	°C	B2. 594 °	°C	
	13,41		15,56		
A1. Zinc - 0,5 %	11,93		18,52		
	15,85	70,37	13,59	76,35	146,72
	14,03		15,89		
	15,15	1	12,79		
	12,25	81,11	17,25	100,94	182,05
	20,59		20,56		
A2. Zinc - 1,0 %	18,59		22,14		
	13,12		19,81		
	16,56		21,18		
	17,61		13,56		
	13,54		17,81		
A3. Zinc - 1,5 %	16,25	75,17	11,18	61,90	137,07
	14,21		9,18		
	13,56		10,17		
Total Yj	226,65		239,19		465,84

Tabla 4.35 Verificación de hipótesis - Límite de Fluencia

EFECTO	Suma de cuadrados (SC)	Grados de Libertad	Cuadrado Medio (CM)	F	F tabla	A/R Ho
А	126,45	2	63,23	3,73	3,35	R
В	170,52	1	85,26	5,03	4,21	R
AB	113,91	2	56,96	3,36	3,35	R
Error	33,90	24	16,95			
Total	444,78	29				

4.3.3 Verificación de la hipótesis – Resistencia a la Tracción

RESISTEN					
FACTOR 1 (A)		FACTO	R 2 (B)		Total Vi
Porcantaja alamanta alganta	Tempo	Temperatura de Sinterización			
	B1. 462	°C	B2. 594 °	°C	
	48,90		52,65		
A1. Zinc - 0,5 %	48,41		53,65		
	46,76	230,11	48,56	253,61	483,72
	42,43		50,10		
	43,61		48,65		
	50,23		64,96	302,78	564,90
	51,36		59,65		
A2. Zinc - 1,0 %	54,26	262,12	59,04		
	48,65		56,02		
	57,62		63,11		
	48,96		55,23		
	55,32		48,56		
A3. Zinc - 1,5 %	48,21	253,66	58,24	260,79	514,45
	52,48		49,58		
	48,69		49,18		
Total Yj	745,89		817,18		1563,07

Tabla 4.36 Verificación de hipótesis - parámetros previos Resistencia a la Tracción

Tabla 4.37 Verificación de hipótesis – Resistencia a la Tracción

EFECTO	Suma de cuadrados (SC)	Grados de Libertad	Cuadrado Medio (CM)	F	F tabla	A/R Ho
А	262,12	2	131,06	3,87	3,35	R
В	313,59	1	156,80	4,63	4,21	R
AB	231,64	2	115,82	3,42	3,35	R
Error	67,73	24	33,87			
Total	875,08	29				

4.3.4 Verificación de la hipótesis – Energía de Impacto

ENE						
FACTOR 1 (A)		FACTO	R 2 (B)		Total Vi	
Porcontaja alamanta alganta	Tempe	Temperatura de Sinterización				
	B1. 462 °C		B2. 594 °	°C		
	0,89		1,02			
A1. Zinc - 0,5 %	0,59		1,03			
	0,89	3,85	0,74	4,56	8,41	
	0,59		0,74			
	0,89	1	1,03			
	1,03	6,06	0,59		11,67	
	0,74		1,18	5,61		
A2. Zinc - 1,0 %	1,33		1,48			
	1,03		1,18			
	1,93		1,18			
	0,62		0,59			
	1,18		0,88			
A3. Zinc - 1,5 %	0,88	4,15	1,18	4,71	8,86	
	0,59		1,18			
	0,88		0,88			
Total Yj	14,06		14,88		28,94	

Tabla 4.38 Verificación de hipótesis - parámetros previos Energía de Impacto

Tabla 4.39 Verificación de hipótesis – Energía de Impacto

EFECTO	Suma de cuadrados (SC)	Grados de Libertad	Cuadrado Medio (CM)	F	F tabla	A/R Ho
А	1,78	2	0,89	3,43	3,35	R
В	2,30	1	1,15	4,43	4,21	R
AB	1,75	2	0,88	3,37	3,35	R
Error	0,52	24	0,26			
Total	6,35	29				

CAPÍTULO 5

5.1 Conclusiones

- El desarrollo del estudio de la incidencia del Zinc sobre el Aluminio 1060 mediante el proceso de pulvimetalurgia, se ejecutó de acuerdo a la planificación establecida, considerando los parámetros de porcentaje de elemento aleante: 0.5%, 1.0% y 1.5% y temperatura de sinterización: 462°C y 594°C correspondientes al 70% y 90% de la temperatura de fusión de la aleación mecánica respectivamente, como variables independientes o controlables.
- Para el correcto desarrollo de la mezcla de los polvos de material base y aleante; en primera instancia se determinó la masa mínima necesaria de los mismos, en función de las dimensiones y número requerido de probetas para cada uno de los ensayos a desarrollar, siendo el requerimiento total de 1695,913 gramos de Aluminio 1060 y 17,149 gramos de Zinc.
- El proceso de obtención de las probetas necesarias para el correcto desarrollo de los ensayos, se muestra a continuación en forma secuencial, donde se indican los parámetros y condiciones utilizadas en cada uno de ellos.
 - Adquisición de materia prima: polvo de aluminio 1060 con 30 um de tamaño de partícula, bloque sólido de Zinc.
 - Obtención de polvo de Zinc: mediante la utilización de un molino de bolas.
 - Tamizaje de polvo metálico de Zinc: desarrollado en un tamiz eléctrico para obtener la cantidad necesaria requerida con un tamaño de partícula entre 35 *um y* 63 *um*.
 - Verificación de forma de partícula: desarrollado en un microscopio electrónico, donde se verificó que la forma es irregular y asimétrica.

- Mezclado de polvos: desarrollado en un recipiente en forma de V, con un tiempo aproximado de 45 minutos por cada mezcla.
- Proceso de compactación: desarrollado a una presión de 270 MPa.
- Proceso de sinterización: llevado a cabo en un horno eléctrico a temperaturas de 462°C y 594°C.
- Control dimensional de probetas: inspección y medición de las probetas obtenidas para corroborar que se encuentren dentro de los rangos estipulados por las Normas.
- Codificación de probetas: asignación de códigos para una mejor identificación y clasificación.
- Desarrollo de ensayos: tracción e impacto en los laboratorios del Centro de Fomento Carrocero y dureza en el laboratorio de materiales de la FICM-UTA.
- Las formas irregulares de polvo y menor tamaño de partícula permiten conseguir mejores resultados, por lo que se ha optado por utilizar partículas de forma asimétrica para una mejor adhesión en el proceso de compactación, al igual que tamaños de partícula: Aluminio 1060 (30 um) y Zinc (45 63 um), en función de los equipos disponibles para la obtención del mismo.
- La presión de compactación utilizada fue de 270 MPa, la cual se encuentra dentro del rango recomendado 70 – 275 MPa, dado por [20] para el polvo metálico de Aluminio como material base.
- La temperatura de sinterización es otro de los parámetros que incide directamente en los resultados a obtener, de acuerdo a estudios previos se establece que este parámetro debe estar entre el 70 y 90 % de la temperatura de fusión de la aleación mecánica, para este caso específico se optó por trabajar con los límites de esta recomendación, es decir con 462 °C y 594 °C durante un período aproximado de 4 horas una vez alcanzada la temperatura estipulada.
- La magnitud de la propiedad mecánica de Dureza Brinell presentó un porcentaje de variación positivo en los seis casos de estudio desarrollados, siendo el más alto de 69%, correspondiente a 32,11 HB en la aleación de 1% de Zinc a una

temperatura de sinterización de 594°C, lo cual establece que la adición de zinc por el método de pulvimetalurgia incrementa esta propiedad sobre el material base Aluminio 1060.

- La magnitud de la propiedad mecánica de Límite de Fluencia presentó un porcentaje de variación negativo en los seis casos de estudio desarrollados, siendo el menos afectado de 31,33%, correspondiente a 20,19 MPa en la aleación de 1% de Zinc a una temperatura de sinterización de 594°C.
- La magnitud de la propiedad mecánica de Resistencia Última a la Tracción presentó un porcentaje de variación negativo en cinco de los seis casos de estudio desarrollados, el único porcentaje de variación positivo 12,29%, indicativo de mejora en la propiedad en estudio, correspondiente a un valor de 60,56 MPa se logró en el caso de estudio con un porcentaje de aleación de 1% de Zinc a una temperatura de sinterización de 594°C.
- La magnitud de la propiedad mecánica de energía absorbida en el impacto presentó un porcentaje de variación negativo en los seis casos de estudio desarrollados, siendo el menos afectado de 39,40%, correspondiente a 1,212 J en la aleación de 1% de Zinc a una temperatura de sinterización de 462°C.
- Los mejores resultados de las propiedades mecánicas de dureza Brinell, límite de fluencia, resistencia última a la tracción analizadas dentro del rango de variación establecido, se han obtenido en el caso de estudio donde el porcentaje de elemento aleante Zinc es del 1% y el proceso de aleación desarrollado a una temperatura de sinterización de 594 °C, correspondiente al 90 % de la temperatura de fusión de la aleación mecánica, mientras que la energía absorbida en el impacto consiguió el mejor resultado con un porcentaje de elemento aleante Zinc del 1% con una temperatura de sinterización de 462 °C.
- La temperatura de sinterización no influye en la magnitud del valor de la dureza Brinell, mientras que el porcentaje del elemento aleante Zn si lo hace, además existe interacción entre las variables controlables de acuerdo a la prueba de contraste de hipótesis de Fisher.
El porcentaje del elemento aleante Zn, al igual que la temperatura de sinterización inciden directamente en la magnitud del límite de fluencia, resistencia última a la tracción y energía de impacto absorbida; existe además interacción entre las variables controlables de acuerdo a la prueba de contraste de hipótesis de Fisher.

5.2 Recomendaciones

- El laboratorio de materiales de la Carrera de Ingeniería Mecánica de la UTA debe ser fortalecido con equipos que faciliten el proceso de obtención del polvo metálico a más de que posean la capacidad de obtener partículas cuyo tamaño esté por debajo de los 40 um, de manera que se optimice el recurso tiempo en su procesamiento.
- Evitar la contaminación del polvo metálico con impurezas que pueden afectar e incidir negativamente en su composición y por ende en los resultados de los análisis a desarrollar posteriormente.
- Efectuar un control después de cada uno de los procesos a desarrollar, con la finalidad de obtener probetas de calidad, sin imperfecciones, que cumplan con los requerimientos establecidos por las normas ASTM aplicables.
- Los tiempos requeridos en los procesos de molienda y mezclado de los polvos metálicos deben ser desarrollados de acuerdo a las recomendaciones establecidas con el objetivo de desarrollar adecuadamente estas actividades y evitar aglomeraciones del elemento aleante en una zona específica, más bien conseguir una distribución uniforme.
- El proceso de compactación debe obedecer al rango de presiones recomendadas en función del material base, además los moldes a utilizar deben poseer la capacidad de evitar fugas del material, lo cual conllevaría consigo probetas que no cumplan con los requerimientos dimensionales establecidos por la norma respectiva.
- Evitar acciones corrosivas sobre las probetas mediante la utilización de arena refractaria, la cual actúa como un medio aislante y evita el contacto directo con el

oxígeno, fenómeno que puede ser afectado en forma acelerada en el proceso de sinterización, al someter los materiales a temperaturas considerablemente altas.

- Desarrollar cada procedimiento con las respectivas normas de seguridad industrial, para minimizar la ocurrencia de accidentes que involucren afectación a los materiales procesados o al personal encargado.
- Realizar investigaciones complementarias y/o paralelas mediante el control de otras variables como es la presión de compactado y procesos térmicos posteriores a la sinterización.
- Desarrollar investigaciones que permitan obtener otras propiedades mecánicas que colaboren con la caracterización de la aleación en estudio, como es la resistencia a la fatiga para contar con la curva de comportamiento y aumentar las alternativas de aplicación de la misma.

CAPÍTULO 6

6.1 Datos informativos

6.1.1 Título

Rediseño de los pasadores acopladores de las superficies fija y móvil de los planos de vuelo de dirigibles construidos en el Centro de Investigación y Desarrollo de la Fuerza Aérea Ecuatoriana para mejorar su comportamiento mecánico.

6.1.2 Beneficiario

El beneficiario directo del desarrollo de la presente investigación será el departamento de diseño y mantenimiento del CIDFAE, al contar con documentación técnicamente argumentada que permita alargar el tiempo de funcionamiento operativo de las aeronaves y por ende mejorar la confiabilidad de los elementos mecánicos en estudio, aportando de esta manera al desarrollo tecnológico en el área.

6.1.3 Equipo Técnico Responsable

- Investigador: Ing. Giovanny Pineda.
- Tutor FICM UTA: Ing. Mg. Gonzalo López.

6.2 Antecedentes de la propuesta

6.3 Justificación

Los proyectos previos de investigación desarrollados referente a los planos de vuelo de los dirigibles, han sido enfatizados en el diseño aerodinámico y estructural, donde se ha ido optimizando cada vez más su configuración consiguiendo resultados satisfactorios, pero se ha relegado el estudio de los elementos mecánicos considerados menores, aunque cumplen una función de relevancia en la correcta operatividad de las aeronaves; de acuerdo con el departamento de mantenimiento se registra una tasa de fallos alta de los elementos acopladores de las superficies fija y móvil, las cuales representan una de las causas principales de paradas no programadas.

Al rediseñar los elementos acopladores se pretende prolongar su vida útil y minimizar la probabilidad de ocurrencia de eventos no esperados en operación de vuelo, para de esta manera aumentar la confiabilidad y disminuir el número de mantenimientos correctivos que repercuten negativamente en las misiones asignadas a este tipo de aeronaves.

El beneficio que recibe el CIDFAE es contar con una nueva alternativa de diseño de los pasadores, que sirva como complemento de estudios previos enfocados al resto de componentes y conseguir el funcionamiento acorde a los requerimientos de los planos de vuelo, para de esta manera influir positivamente en la correcta operación de las misiones asignadas a este tipo de aeronave.

6.4 Objetivos

6.4.1 Objetivo General

Rediseñar los pasadores acopladores de las superficies fija y móvil de los planos de vuelo de dirigibles construidos en el Centro de Investigación y Desarrollo de la Fuerza Aérea Ecuatoriana.

6.4.2 Objetivos Específicos

- Identificar las posiciones críticas de los planos de vuelo y especificar el tipo de esfuerzo a los que están sometidos los pasadores en operación de vuelo.
- Determinar las cargas que actúan directamente sobre los pasadores de los planos de vuelo vertical y horizontal.
- Calcular el diámetro de los pasadores mediante un proceso de rediseño.

6.5 Análisis de factibilidad

El rediseño de los pasadores acopladores de las superficies fija y móvil de los planos de vuelo se basa en parámetros previos conocidos y estudiados referente a condiciones de operación, así como cargas soportadas por las superficies aerodinámicas de los dirigibles, datos argumentados técnicamente que servirán como punto de partida para identificar y proponer alternativas positivas que se ajusten a las necesidades de operatividad de las aeronaves.

6.6 Fundamentación

6.6.1 Esfuerzos en elementos mecánicos

Los elementos mecánicos están sometidos a diferentes tipos de esfuerzos, los cuales están en función de la dirección y el tipo de carga; es necesario recalcar que sobre la mayoría de componentes mecánicos actúan esfuerzos de diferentes tipos a la vez, por lo que es fundamental calcular esfuerzos principales; se inicia la descripción con los principales tipos de esfuerzos, los cuales se describen a continuación:

6.6.1.1 Esfuerzo normal

El esfuerzo normal se caracteriza porque actúa en forma perpendicular al plano sobre el que se aplica la fuerza que puede ser de tracción o compresión, distribuido de manera uniforme por toda su superficie y se determina a partir de la siguiente ecuación [33]:

$$\sigma = \frac{P}{A}$$
 Ec. 36

 $\sigma \rightarrow esfuerzo normal (MPa)$

 $P \rightarrow Carga \ aplicada \ (MN)$

 $A \rightarrow$ área sección transversal perpendicular a la carga aplicada (m^2)

Figura 6.1 Esfuerzo normal [33]

6.6.1.2 Esfuerzo cortante directo

La característica del esfuerzo cortante directo es que actúa de manera tangencial a la superficie del material, donde la fuerza actuante tiende a cortar el elemento mecánico; se asume que el esfuerzo cortante está distribuido uniformemente como se aprecia en la Figura 6.2 c. El esfuerzo cortante es aplicado en el diseño de pernos, pasadores, remaches, cuñas, soldaduras y juntas pegadas [34].

Figura 6.2 Esfuerzo cortante. a) Conexión barra horquilla mediante un perno.b) Vista lateral esquemática. c) Diagrama de cuerpo libre del perno.

El esfuerzo cortante promedio sobre la sección transversal de un elemento se obtiene mediante la siguiente ecuación:

$$\tau = \frac{V}{A}$$
 Ec. 37

 $\tau \rightarrow esfuerzo \ cortante \ (MPa)$

 $V \rightarrow Fuerza \ cortante \ (MN)$

 $A \rightarrow$ área sección trasversal paralela a la carga aplicada

En función del diseño geométrico de la junta, puede existir un esfuerzo cortante doble, el cual se caracteriza por existir dos áreas de corte, la ecuación a utilizar es:

$$\tau = \frac{V}{2A}$$
 Ec. 38

6.6.1.3 Esfuerzo cortante por torsión

Existe una relación directamente proporcional entre el par de torsión aplicado sobre un componente y la magnitud del esfuerzo cortante, la ecuación que permite hallar la magnitud del esfuerzo sobre un elemento mecánico de sección transversal circular se muestra a continuación [35]:

$$\tau = \frac{16T}{\pi D^3}$$
 Ec. 39

 $\tau \rightarrow esfuerzo \ cortante \ (MPa)$ $T \rightarrow momento \ torsor \ (MNm)$ $D \rightarrow diámetro \ sección \ circular \ (m)$

Los esfuerzos cortantes producidos por un momento torsor varían linealmente con la distancia medida desde el centro de la barra, esto es consecuencia de la ley de Hooke, como se aprecia en la Figura 6.3.

Figura 6.3 Esfuerzo cortante por torsión. a) Dirección de los esfuerzos b) Variación del esfuerzo cortante por torsión. [35]

En el caso de existir esfuerzos cortantes directos y producidos por torsión, la magnitud del esfuerzo cortante total estaría dado por la suma algebraica de los mismos [34].

6.6.2 Diseño de elementos mecánicos sometidos a carga estática

Una carga estática está definida como la acción estacionaria de una fuerza, momento o torque que actúa sobre un determinado elemento, de manera que su magnitud, dirección y punto o zona de aplicación no varíen con el tiempo, es decir se pueda considerar como constante y tratar como tal [33].

Las teorías de falla aplicables para un diseño a carga estática están en función del comportamiento de un material que se clasifica como dúctil o frágil, aunque bajo situaciones especiales un material considerado normalmente como dúctil puede fallar de manera frágil, en estos últimos no se presenta una resistencia a la fluencia identificable. Las posibles formas o modos de falla en un elemento mecánico se pueden presentar como deformación permanente, agrietamiento y ruptura, cuyas teorías se describen a continuación [33]:

6.6.2.1 Teoría del esfuerzo cortante máximo (ECM)- material dúctil

La teoría del esfuerzo cortante máximo o más comúnmente conocida como teoría de Tresca, estipula que la fluencia de un material comienza cuando el esfuerzo cortante máximo de un elemento mecánico sometido a estados de carga iguala el esfuerzo cortante máximo obtenido en una pieza de ensayo sometida a tensión cuando ésta empieza a fluir como se muestra en la Figura 6.4 [33].

La formulación matemática que permite hallar la magnitud del esfuerzo cortante máximo está dado por las siguientes ecuaciones.

$$\tau_{m\acute{a}x} = \frac{S_y}{2n} \qquad \qquad \text{Ec. 40}$$

$$\sigma_1 - \sigma_3 = \frac{S_y}{n}$$
 Ec. 41

 $\tau_{m \acute{a} x} \rightarrow esfuerzo \ cortante \ m \acute{a} ximo \ (MPa)$ $S_y \rightarrow l \acute{m} ite \ de \ fluencia \ del \ material \ (MPa)$ $n \rightarrow factor \ de \ seguridad$ $\sigma_1, \sigma_3 \rightarrow esfuerzos \ principales \ (MPa)$

Figura 6.4 Teoría del esfuerzo cortante máximo [33]

6.6.2.2 Teoría de la energía de distorsión (ED)- material dúctil

La teoría de la energía de distorsión, conocida también como teoría de Von Mises, predice que la falla de un elemento mecánico por fluencia ocurre cuando la energía de deformación total por unidad de volumen iguala o excede la energía de deformación por unidad de volumen correspondiente a la resistencia a la fluencia en tensión o en compresión del mismo material [33].

Las ecuaciones que relacionan el límite de fluencia del material con los esfuerzos principales están dadas por las siguientes ecuaciones:

$$\frac{S_y}{n} = \sqrt{\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}{2}}$$
Ec. 42

$$\frac{S_y}{n} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2}$$
 Ec. 43

 $S_y \rightarrow l$ ímite de fluencia del material (MPa) $n \rightarrow factor de seguridad$ $\sigma_1, \sigma_2, \sigma_3 \rightarrow esfuerzos principales (MPa)$ $\sigma_x \rightarrow esfuerzo a lo largo del eje x (MPa)$ $\sigma_y \rightarrow esfuerzo a lo largo del eje y (MPa)$ $\tau_{xy} \rightarrow esfuerzo cortante (MPa)$

Figura 6.5 Teoría de la energía de distorsión [33]

6.6.2.3 Teoría de Mohr Coulomb (CMD) - material dúctil

Debido a que no todos los materiales tienen magnitudes de resistencias iguales a esfuerzos de compresión y tracción, la teoría de Mohr Coulomb es útil, debido a que la formulación matemática considera los dos parámetros mencionados, que en ciertos materiales difieren significativamente, por lo que otorga una importancia primordial a las hipótesis que pueden usarse para predecir la falla de materiales con estas características [33].

$$\frac{\sigma_1}{S_t} - \frac{\sigma_3}{S_c} = \frac{1}{n}$$
 Ec. 44

 $S_t \rightarrow l$ ímite de fluencia del material en tracción (MPa) $S_c \rightarrow l$ ímite de fluencia del material en compresión (MPa) $n \rightarrow factor de seguridad$ $\sigma_1, \sigma_3 \rightarrow esfuerzos principales (MPa)$

Algunos materiales pueden presentar una resistencia a la tracción mayor que a la compresión o viceversa; por lo que, en caso de no poseer dichos valores, existe la necesidad de desarrollar ensayos para estimar estos valores y predecir más acertadamente el comportamiento de un elemento mecánico.

Figura 6.6 Teoría de Mohr Coulomb [33]

6.6.2.4 Teoría del esfuerzo normal máximo (ENM) - material frágil

La teoría del esfuerzo normal máximo, que en la actualidad es poco utilizada y no muy recomendable, es aplicada en materiales considerados como frágiles, es decir, aquellos donde el límite de fluencia no está definido o su magnitud es muy baja con respecto a la resistencia última a la tracción o compresión [34].

Esta teoría estipula que la falla ocurre cuando uno de los tres esfuerzos principales es igual o excede la resistencia del material.

Las ecuaciones de este criterio de diseño se muestran a continuación y están dadas para la resistencia a la tracción y compresión [33].

$$\sigma_A = \frac{S_{ut}}{n}$$
 Ec. 45

$$\sigma_B = -\frac{S_{uc}}{n}$$
 Ec. 46

 $S_{ut} \rightarrow resistencia última a la tensión (MPa)$ $S_{uc} \rightarrow resistencia última a la compresión (MPa)$ $n \rightarrow factor de seguridad$ $\sigma_A, \sigma_B \rightarrow esfuerzos sobre el elemento (MPa)$

Figura 6.7 Teoría del esfuerzo normal máximo [33]

6.6.2.5 Teoría de Mohr frágil (CMF) y Mohr modificada (MM)- material frágil

Una vez determinados los esfuerzos principales, se puede aplicar una de las modificaciones existentes de la teoría de Mohr, que para ciertas condiciones coincide con la teoría del esfuerzo normal máximo, las ecuaciones dadas se restringirán al esfuerzo plano y se muestran a continuación [33].

Mohr Coulomb frágil:

$$\sigma_A = \frac{S_{ut}}{n}$$
 $\sigma_A \ge \sigma_B \ge 0$ Ec. 47

$$\frac{\sigma_A}{S_{ut}} - \frac{\sigma_B}{S_{uc}} = \frac{1}{n} \qquad \qquad \sigma_A \ge 0 \ge \sigma_B \qquad \qquad \text{Ec. 48}$$

$$\sigma_B = -\frac{S_{uc}}{n}$$
 $0 \ge \sigma_A \ge \sigma_B$ Ec. 49

Mohr modificada:

$$\sigma_A = \frac{S_{ut}}{n}$$
 $\sigma_A \ge \sigma_B \ge 0$, $\sigma_A \ge 0 \ge \sigma_B$ $y \left| \frac{\sigma_B}{\sigma_A} \right| \le 1$ Ec. 50

$$\frac{(S_{uc} - S_{ut})\sigma_A}{S_{uc} * S_{ut}} - \frac{\sigma_B}{S_{uc}} = \frac{1}{n} \qquad \sigma_A \ge 0 \ge \sigma_B \ y \ \left|\frac{\sigma_B}{\sigma_A}\right| > 1 \qquad \text{Ec. 51}$$

$$\sigma_B = -\frac{S_{uc}}{n}$$
 $0 \ge \sigma_A \ge \sigma_B$ Ec. 52

 $S_{ut} \rightarrow resistencia$ última a la tensión (MPa) $S_{uc} \rightarrow resistencia$ última a la compresión (MPa) $n \rightarrow factor de seguridad$

 $\sigma_A, \sigma_B \rightarrow esfuerzos \ sobre \ el \ elemento \ (MPa)$

Figura 6.8 Teoría de Mohr y Mohr modificada [33]

6.6.3 Fatiga

El fenómeno de ruptura por fatiga se presenta en la mayoría de elementos de máquinas que están sometidos a esfuerzos variables cíclicos; provocados por fuerzas alternantes que varían su magnitud en función del tiempo, los cuales son causantes de que estos fallen, frecuentemente para un esfuerzo mucho menor que el de ruptura dado para cargas estáticas [33].

La falla de fatiga es de naturaleza frágil y es aplicada para materiales considerados dúctiles y materiales frágiles. Al reducirse la magnitud del esfuerzo máximo, el número de ciclos requeridos para causar la ruptura aumenta hasta que se alcanza un esfuerzo denominado el límite de resistencia o fatiga [34].

El diseño por resistencia a la fatiga, causado por esfuerzos alternados, puede ser desarrollado con la finalidad de determinar el esfuerzo a aplicar sin que el elemento no falle un número indefinido de veces conocido como vida infinita; o a su vez el esfuerzo que puede ser aplicado un número limitado de veces llamado vida finita [33].

Si el fallo se produce con un número de ciclos menor a mil, se le conoce como fatiga de bajo ciclo; sin embargo, muchos componentes metálicos experimentan fallas después de millones de ciclos de esfuerzo aplicado. En la Figura 6.9 se muestra los esfuerzos fluctuantes que conducen a la falla por fatiga en los metales [35].

Figura 6.9 Ciclos de esfuerzo típicos que pueden producir falla por fatiga.

a) Esfuerzo completamente invertido. b) Esfuerzo fluctuante sinusoidal [35]

6.6.4 Límite de Resistencia a la Fatiga

El procedimiento para determinar el límite de resistencia a la fatiga amerita un proceso extenso, por lo que en función de varias investigaciones previas desarrolladas se ha podido establecer métodos que permiten obtener este parámetro de manera muy aproximada [36].

Para los aceros el límite de resistencia a la fatiga está dado por:

$$S'_e = \begin{array}{ll} 0.5 \ Sut & si \ Sut \leq 1400 \ MPa \\ 700 \ MPa & si \ Sut > 1400 \ MPa \end{array} \qquad \text{Ec. 53}$$

Mientras que para las aleaciones de Aluminio es:

$$S'_e = \begin{cases} 0,4 \ Sut & si \ Sut \le 280 \ MPa \\ 160 \ MPa & si \ Sut > 280 \ MPa \end{cases} \qquad \text{Ec. 54}$$

Donde Sut representa la resistencia última a la tracción.

6.6.5 Resistencia a la Fatiga

La Resistencia a la Fatiga está dado por el número de ciclos en el cual un elemento de máquina puede desempeñar correctamente la función para la cual fue diseñado, este método permite estimar el tiempo de vida útil cuando la única información que se posee es el ensayo a tensión simple [36].

La fracción de resistencia a la fatiga se puede aproximar mediante la Figura 6.10:

Las ecuaciones que permiten determinar la resistencia a la fatiga son:

$$S_f = a * N^b$$
 Ec. 55

$$a = \frac{(f * Sut)^2}{S_e}$$
 Ec. 56

$$b = -\frac{1}{3}\log\left[\frac{f*Sut}{S_e}\right]$$
 Ec. 57

 $S_f \rightarrow resistencia del material a vida finita (MPa)$ $N \rightarrow n$ úmero de ciclos de vida útil $f \rightarrow fracción de resistencia a la fatiga$ $Sut \rightarrow resistencia última a la tracción (MPa)$ $S_e \rightarrow l$ ímite de resistencia a la fatiga modificado (MPa)

6.6.6 Factores que modifican el límite de resistencia a la fatiga

El límite de resistencia a la fatiga varía en función de varios parámetros, algunos de los más representativos incluyen [36]:

- Material: composición, base de falla, variabilidad.
- Manufactura: método, tratamiento térmico, corrosión superficial por tratamiento, acabado superficial, concentración de esfuerzo.
- Entorno: corrosión, temperatura, estados de esfuerzo, tiempos de relajación.
- Diseño: tamaño, forma, vida, estado de esfuerzos, velocidad, rozamiento, excoriación.

Se ha identificado factores que permiten cuantificar algunos de los efectos mencionados con anterioridad, a través de la ecuación de Marin:

$$S_e = k_a k_b k_c k_d k_e k_f S'_e$$
 Ec. 58

 $S_e \rightarrow l$ ímite de resistencia a la fatiga modificado (MPa)

 $S'_e \rightarrow l$ ímite de resistencia a la fatiga (MPa)

 $k_a \rightarrow factor \ de \ modificaci\u00f3n \ por \ la \ consici\u00f3n \ superficial$

 $k_b \rightarrow factor \ de \ modificación \ por \ el \ tamaño$

 $k_c \rightarrow factor \ de \ modificaci$ ón por la carga

 $k_d \rightarrow factor \, de \, modificación \, por \, la \, temperatura$

 $k_e \rightarrow factor \ de \ confiabilidad$

 $k_f \rightarrow factor \ de \ modificaci$ ón por efectos varios

A continuación, se especifica las ecuaciones y condiciones necesarias para calcular cada uno de los factores mencionados anteriormente:

6.6.6.1 Factor de superficie k_a

El factor de superficie está en función de los parámetros a y b, los cuales dependen de la calidad del acabado superficial y de la resistencia última a la tracción; se determina mediante la siguiente ecuación:

$$k_a = aSut^b$$
 Ec. 59

 $k_a \to factor \ de \ modificación \ por \ la \ consición \ superficial$ Sut $\to resistencia$ última a la tracción

Los parámetros a y b están dados en Tabla 6.1:

Apphado superficial	Fact	Exponente	
Acabado supernetar	Sut, kpsi	Sut, MPa	b
Esmerilado	1.34	1.58	-0.085
Maquinado o laminado en frío	2.70	4.51	-0.265
Laminado en caliente	14.4	57.7	-0.718
Como sale de la forja	39.9	272.0	-0.995

Tabla 6.1 Parámetros a y b - Factor de superficie k_a [36]

6.6.6.2 Factor de tamaño k_b

El factor de tamaño está en función del diámetro del elemento mecánico, es necesario recalcar que en caso de que el componente no posea una sección circular, se debe trabajar con el diámetro equivalente respectivo [36]:

$$k_{b} = \frac{\left(\frac{d}{0.3}\right)^{-0.107} = 0.879d^{-0.107}}{\left(\frac{d}{7.62}\right)^{-0.107}} = 0.879d^{-0.107} \qquad 0.11 \le d \le 2 \text{ pul}$$

$$2 \le d \le 10 \text{ pul}$$

$$2.79 \le d \le 51 \text{ mm}$$

$$1.51d^{-0.157} \qquad 51 \le d \le 254 \text{ mm}$$

Para carga axial se debe tomar el valor de $k_b = 1$

6.6.6.3 Factor de carga k_c

Los valores medios del factor de carga en función de varias investigaciones y ensayos desarrollados están dados en función del tipo de esfuerzo al cual está sometido el elemento en análisis y se presentan a continuación [36]:

$$k_c = \begin{array}{ccc} 1.00 & flexión \\ k_c = 0.85 & axial \\ 0.59 & torsión \end{array} \hspace{1.5cm} \text{Ec. 61}$$

6.6.6.4 Factor de temperatura k_d

Cuando el componente mecánico está sometido a temperaturas de operación considerablemente menores o mayores que la temperatura ambiente, la fractura frágil es muy probable, un ajuste de la curva polinomial del factor de modificación en función de la temperatura está dado por [36]:

$$k_{d} = 0.975 + 0.432(10^{-3})T_{F} - 0.115(10^{-5})T_{F}^{2}$$
$$+ 0.104(10^{-8})T_{F}^{3} - 0.595(10^{-12})T_{F}^{4} \qquad \text{Ec. 62}$$

Esta ecuación es válida en el intervalo $70 \le T_F \le 1000^{\circ}$ F

6.6.6.5 Factor de confiabilidad k_e

El factor de confiabilidad en función de experimentaciones desarrolladas sobre el estudio de datos de resistencia a la fatiga, presentan desviaciones estándar menores al 8%, por lo tanto, la magnitud de este factor se puede determinar a partir de la siguiente ecuación [36]:

$$k_e = 1 - 0.08z_a \qquad \qquad \text{Ec. 63}$$

En la Tabla 6.2 se muestra algunos factores de confiabilidad estándar:

Tabla 6.2 Factor de confiabilidad k_e [36]

Confiabilidad, %	Variación de transformación z _a	Factor de confiabilidadr k _e
50	0	1.000
90	1.288	0.897
95	1.645	0.868
99	2.326	0.814
99.9	3.091	0.753
99.99	3.719	0.702
99.999	4.265	0.659
99.9999	4.753	0.620

6.6.6 Factor de efectos varios k_f

El factor de efectos varios debe ser considerado por diferentes fenómenos que se pueden presentar en un componente mecánico a lo largo de su vida operativa [36]:

- Corrosión: un elemento sometido a esfuerzos repetidos puede fallar al encontrarse en una atmósfera corrosiva, por lo que en lo posible se debe minimizar la ocurrencia de este fenómeno.
- Recubrimiento electrolítico: los recubrimientos metálicos pueden reducir el límite de resistencia a la fatiga hasta en un 50%, mientras que la oxidación anódica hasta en un 39%.
- Metalizado por aspersión: reducen hasta un 14% la resistencia a la fatiga, este proceso provoca imperfecciones superficiales.
- Frecuencia cíclica: si existe corrosión, temperaturas elevadas y frecuencias bajas, la propagación de grietas será mayor.
- Corrosión por frotamiento: es producido por ajustes a presión, puede variar entre 0,24 y 0,90 en función de los materiales a unir.

6.6.7 Diseño de elementos mecánicos sometidos a carga dinámica

Una carga dinámica está definida como la acción fluctuante de una fuerza, momento o torque que actúa sobre un determinado elemento, de manera que su magnitud, dirección y punto o zona de aplicación varían con el tiempo [37].

La Figura 6.11 muestra varias teorías de falla aplicables para un diseño a carga dinámica, unas más conservadoras que otras y depende del diseñador la selección una de ellas, en función de la aplicabilidad del elemento de máquina [37].

Figura 6.11 Criterios de falla para carga dinámica [36]

• Criterio de Soderberg:

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_v} = \frac{1}{n}$$
 Ec. 64

• Criterio de Goodman modificado:

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} = \frac{1}{n}$$
 Ec. 65

• Criterio de Gerber:

$$\frac{n\sigma_a}{S_e} + \left(\frac{n\sigma_m}{S_{ut}}\right)^2 = 1$$
 Ec. 66

• Criterio de ASME - Elíptica:

$$\left(\frac{n\sigma_a}{S_e}\right)^2 + \left(\frac{n\sigma_m}{S_{ut}}\right)^2 = 1$$
 Ec. 67

Donde los valores de esfuerzo medio σ_m y amplitud de esfuerzo σ_a , están daos por las siguientes ecuaciones:

$$\sigma_m = \frac{\sigma_{m\acute{a}x} + \sigma_{m\acute{n}}}{2} \qquad \qquad \text{Ec. 68}$$

$$\sigma_m = \frac{\sigma_{m \dot{a} x} - \sigma_{m \dot{n} n}}{2} \qquad \qquad \text{Ec. 69}$$

6.7 Metodología

6.7.1 Parámetros de operación dirigibles

Las características de operación de los dirigibles se muestran en la Tabla 6.3, de acuerdo a los registros que presenta el Centro de Investigación y Desarrollo de la FAE, y las respectivas interpolaciones de estos valores con respecto a los factores atmosféricos ISA (ICAO Standard Atmosphere).

Parámetro	Magnitud	Unidad
Altitud de vuelo sobre el nivel del mar	3577	m
Velocidad promedio de operación	6,94	m/s
Velocidad de viento	11,97	m/s
Velocidad axial	5,03	m/s
Velocidad de viento cruzado	2,572	m/s
Temperatura	264,921	K
Densidad del aire	0,85662	Kg/m³

Tabla 6.3 Parámetros de operación dirigibles [38] [39]

6.7.2 Análisis y cálculo de fuerzas sobre los pasadores

Las fuerzas que inciden sobre los pasadores acopladores de las superficies fija y móvil de los dirigibles están en función de la presión ejercida por la velocidad del viento en dirección axial y transversal a la altura de operación de estas aeronaves, así como del peso propio de la estructura de las superficies aerodinámicas; en la Tabla 6.4, se estipula los estudios a desarrollar en función de las posiciones críticas de la superficie móvil.

Plano de vuelo	Posición	
Vortical	Recta y nivelada	
vertical	Desfasada 45°	
Horizontal	Recta y nivelada	
HUHZUIItal	Desfasada 45°	

 Tabla 6.4 Posiciones críticas de los planos de vuelo

6.7.2.1 Fuerzas plano vertical

En la Tabla 6.5 se muestran las características de operación del plano vertical, así como las propiedades geométricas y físicas necesarias para el correcto desarrollo del estudio de fuerzas actuantes sobre los pasadores.

PARÁMETROS - PLANO DE VUELO VERTICAL					
Parámetro Símbolo Magnitud Unidad					
Altitud de vuelo sobre el nivel del mar	h_{nm}	3577	m		
Velocidad axial	Va	5,03	m/s		
Velocidad transversal	V_t	2,572	m/s		
Densidad del aire	δ	0,85662	Kg/m³		
Longitud base superficie móvil	b	1,2026	m		
Longitud altura superficie móvil	h	1,6	m		
Distancia horizontal centro de gravedad	d	0 4083	m		
- posición pasador	u_{χ}	0,+005			
Área superficie móvil	A_{sm}	1,92416	m²		
Masa estructura superficie móvil	m_e	1,465	Kg		
Masa recubrimiento superficie móvil	m_r	0,177	Kg		
Masa superficie móvil	m_{sm}	1,642	Kg		
Aceleración de la gravedad a la altitud	<i>a</i> ,	9 799	m/s^2		
de vuelo	9h),1))	111/ 5		

Tabla 6.5 Parámetros de operación - físicos y geométricos - plano vertical

Una vez definidos los parámetros de entrada, se presenta a continuación los diagramas de cuerpo libre (DCL) para el correcto análisis de las fuerzas que actúan sobre los pasadores acopladores del plano vertical en las posiciones críticas definidas en la Tabla 6.4.

Tabla 6.6 Análisis de fuerzas Plano Vertical – Sup. Recta y nivelada

Elaborado por: Ing. Giovanny Pineda	Aprobado por: Ing. Mg. Gonzalo López	
	Validado por: Ing. Mg. Gonzalo López	

Tabla 6.7 Análisis de fuerzas Plano Vertical – Sup. Desfasada 45°

UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA
MAESTRÍA EN MECÁNICA – MENCIÓN DISEÑOANÁLISIS DE FUERZAS PLANO VERTICAL
SUPERFICIE DESFASADA 45°Hoja: 02 de 02• Sumatoria de fuerzas sobre el eje x – y – z:
$$\Sigma F_x = 0$$

 $-A_x + C_x = 0$
 $3R_y - m_{sm} * g_h = 0$
 $3R_z + (F_t - F_a) * sen(45°) = 0$
 $C_x = A_x$
Ec. 86
 $R_y = \frac{m_{sm}*g_h}{3}$
Ec. 87
 $R_z = \frac{(F_a - F_t)*sen(45°)}{3}$
Ec. 88Ec. 88• Sumatoria de momentos alrededor del eje z:
 $\sum M_{B_Z} = 0$
 $m_{sm} * g_h * d_x - A_x * \frac{h}{2} - C_x * \frac{h}{2} = 0$
 $A_x = \frac{m_{sm} * g_h * d_x}{h}$
Ec. 89• Torque aplicado alrededor del eje y:
 $T_y = (F_a - F_t) * sen(45°) * d_x$ Ec. 90• Fuerzas cortantes pasadores A – B - C:Ec. 90

Fuerzas cortantes pasadores A – B - C:

I

$$V_A = \sqrt{{A_x}^2 + {R_z}^2}$$
 Ec. 91

$$V_B = R_z$$
 Ec. 92

$$V_C = \sqrt{{C_x}^2 + {R_z}^2}$$
 Ec. 93

Elaborado por: Ing. Giovanny Pineda	Aprobado por: Ing. Mg. Gonzalo López	
	Validado por: Ing. Mg. Gonzalo López	

En las Tablas 6.8 y 6.9, se presentan los resultados obtenidos de las fuerzas actuantes sobre los pasadores acopladores del plano vertical en función de las Ec. 70 - Ec. 93 estipuladas con anterioridad.

PLANO VERTICAL - SUPERFICIE RECTA Y NIVELADA				
Parámetro	Símbolo	Magnitud	Unidad	
Presión transversal	P_t	2,83	Pa	
Fuerza transversal	F _t	5,45	N	
Reacción pasador A a lo largo del eje x	A_x	4,106	Ν	
Reacción pasador C a lo largo del eje x	C_x	4,106	Ν	
Reacción a lo largo del eje y	R_y	5,363	Ν	
Reacción pasadores a lo largo del eje z	R_z	1,817	Ν	
Torque pasadores alrededor del eje y	T_y	2,226	Nm	
Fuerza cortante pasador A	V_A	4,490	Ν	
Fuerza cortante pasador B	V_B	1,817	N	
Fuerza cortante pasador C	V _C	4,490	N	

Tabla 6.8 Resultados Fuerzas plano vertical – superficie recta y nivelada

Tabla 6.9 Resultados Fuerzas plano vertical – superficie desfasada 45°

PLANO VERTICAL - SUPERFICIE DESFASADA 45°				
Parámetro	Símbolo	Magnitud	Unidad	
Presión transversal	P_t	2,83	Pa	
Fuerza transversal	F _t	5,45	Ν	
Presión axial	P_a	10,84	Pa	
Fuerza axial	Fa	20,85	Ν	
Reacción pasador A a lo largo del eje x	A_{x}	4,106	N	
Reacción pasador C a lo largo del eje x	C_x	4,106	Ν	
Reacción pasador B a lo largo del eje y	R_y	5,363	Ν	
Reacción pasadores a lo largo del eje z	R_z	3,630	Ν	
Torque pasadores alrededor del eje y	T_y	4,446	Nm	
Fuerza cortante pasador A	V_A	5,480	Ν	
Fuerza cortante pasador B	V_B	3,630	Ν	
Fuerza cortante pasador C	V _C	5,480	Ν	

6.7.2.2 Fuerzas plano horizontal

En la Tabla 6.10 se muestran las características de operación del plano horizontal, así como las propiedades geométricas y físicas necesarias para el correcto desarrollo del estudio de fuerzas actuantes sobre los pasadores.

PARÁMETROS - PLANO DE VUELO HORIZONTAL				
Parámetro	Símbolo Magnitud Unidad			
Altitud de vuelo sobre el nivel del mar	h_{nm}	3577	m	
Velocidad axial	V_a	5,03	m/s	
Velocidad transversal	V_t	2,572	m/s	
Densidad del aire	δ	0,85662	Kg/m³	
Longitud base superficie móvil	b	1,20	m	
Longitud altura superficie móvil	h	1,60	m	
Distancia horizontal centro de gravedad	d	0.14	m	
- posición pasador	u_x	0,14		
Área superficie móvil	A _{sm}	1,92	m²	
Masa estructura superficie móvil	m_e	1,554	Kg	
Masa recubrimiento superficie móvil	m_r	0,174	Kg	
Masa superficie móvil	m_{sm}	1,728	Kg	
Aceleración de la gravedad a la altitud de vuelo	g_h	9,799	m/s²	

Tabla 6.10 Parámetros de operación - físicos y geométricos - plano horizontal

Una vez definidos los parámetros de entrada, se presenta a continuación los diagramas de cuerpo libre (DCL) para el correcto análisis de las fuerzas que actúan sobre los pasadores acopladores del plano horizontal en las posiciones críticas definidas en la Tabla 6.4.

Tabla 6.11 Análisis de fuerzas Plano Horizontal - Sup. Recta y nivelada

UNVERSIDAD TÉCNICA DE AMBATO
MAESTRÍA EN MECÁNICA - MENCIÓN DISEÑOANALSIS DE FUERZAS PLANO HORIZONTAL
SUPERFICIE RECTA Y NIVELADAHuja: 02 de 02ANALSIS DE FUERZAS PLANO HORIZONTAL
SUPERFICIE RECTA Y NIVELADAHuja: 02 de 02• Sumatoria de fuerzas sobre el eje y:
$$\sum F_y = 0$$

 $F_s - m_{sm} * g_h - 3 * R_y = 0$
 $R_y = \frac{F_s - m_{sm} * g_h}{3}$ Ec. 97• Torque aplicado alrededor del eje z:
 $T_y = (F_s - m_{sm} * g_h) * d_x$ Ec. 98• Fuerzas cortantes pasadores A - B - C:
 $V_A = V_B = V_C = R_y$ Ec. 99

Elaborado por: Ing. Giovanny Pineda	Aprobado por: Ing. Mg. Gonzalo López	
	Validado por: Ing. Mg. Gonzalo López	

Tabla 6.12 Análisis de fuerzas Plano Horizontal – Sup. Desfasada 45°

En las Tablas 6.13 y 6.14, se presentan los resultados obtenidos de las fuerzas actuantes sobre los pasadores acopladores del plano horizontal en función de las Ec. 94 – Ec. 102 estipuladas con anterioridad.

PLANO HORIZONTAL - SUPERFICIE RECTA Y NIVELADA				
Parámetro	Símbolo	Magnitud	Unidad	
Velocidad total	V_T	5,65	m/s	
Presión de sustentación	P_s	13,67	Pa	
Fuerza de sustentación	F _s	26,25	N	
Reacción pasadores a lo largo del eje y	R_y	3,105	Ν	
Torque pasadores alrededor del eje z	T_z	1,276	Nm	
Fuerza cortante pasador A	V_A	3,105	Ν	
Fuerza cortante pasador B	V_B	3,105	Ν	
Fuerza cortante pasador C	V _C	3,105	Ν	

Tabla 6.13 Resultados Fuerzas plano horizontal - superficie recta y nivelada

Tabla 6.14 Resultados Fuerzas plano horizontal – superficie desfasada 45°

PLANO HORIZONTAL - SUPERFICIE DESFASADA 45°				
Parámetro	Símbolo	Magnitud	Unidad	
Velocidad total	V_T	5,65	m/s	
Presión de sustentación	P_s	13,67	Pa	
Fuerza de sustentación	F_s	26,25	Ν	
Reacción pasadores a lo largo del eje y	R_y	0,542	Ν	
Torque pasadores alrededor del eje z	T_z	0,223	Nm	
Fuerza cortante pasador A	V_A	0,542	Ν	
Fuerza cortante pasador B	V_B	0,542	N	
Fuerza cortante pasador C	V_{C}	0,542	N	

6.7.3 Diseño a carga estática

Con los resultados obtenidos de las fuerzas que inciden directamente sobre los pasadores, (Ver Tablas 6.8, 6.9, 6.13 y 6.14), se procede a realizar el diseño de estos elementos mecánicos mediante el criterio de Mohr Coulomb para materiales frágiles con un factor de seguridad de 2, de acuerdo a lo recomendado por [39], que establece un rango de 2 a 2.5 para aeronaves no tripuladas.

Tabla 6.15 Diseño a carga estática - selección diámetro pasador

Elaborado por: Ing. Giovanny Pineda	Aprobado por: Ing. Mg. Gonzalo López	
	Validado por: Ing. Mg. Gonzalo López	

En las Tablas 6.16 a 6.19, se muestra el proceso iterativo desarrollado para el cálculo del diámetro del pasador, a partir de la Ec. 107.

Plano vertical - Superficie recta y nivelada - Pasador A			
$D_{n}\left(m\right)$	$D_{n+1}(m)$	Error Absoluto	% Error
0,006000	0,007473	0,001473	19,713020
0,007473	0,007221	0,000252	3,495275
0,007221	0,007212	0,000009	0,125248
0,007212	0,007212	0,000000	0,000157
Plano verti	ical - Superf	icie recta y nivela	da - Pasador B
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error
0,006000	0,007469	0,001469	19,671208
0,007469	0,007218	0,000251	3,479896
0,007218	0,007209	0,000009	0,124090
0,007209	0,007209	0,000000	0,000154
Plano vertical - Superficie recta y nivelada - Pasador C			
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error
0,006000	0,007473	0,001473	19,713020
0,007473	0,007221	0,000252	3,495275
0,007221	0,007212	0,000009	0,125248
0,007212	0,007212	0,000000	0,000157

Tabla 6.16 Diámetro pasadores - plano vertical - superficie recta y nivelada

Tabla 6.17 Diámetro pasadores – plano vertical – superficie desfasada 45°

Plano vertical - Superficie desfasada 45° - Pasador A			
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error
0,006000	0,010936	0,004936	45,134217
0,010936	0,008778	0,002158	24,584187
0,008778	0,008090	0,000688	8,504326
0,008090	0,008001	0,000089	0,011123
Plano ver	tical - Super	ficie desfasada 45	° - Pasador B
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error
0,006000	0,010932	0,004932	45,114430
0,010932	0,008632	0,002300	26,645041
0,008632	0,007919	0,000713	9,003662
0,007919	0,007885	0,000034	0,431198
Plano vertical - Superficie desfasada 45° - Pasador C			
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error
0,006000	0,010936	0,004936	45,134217
0,010936	0,008778	0,002158	24,584187
0,008778	0,008090	0,000688	8,504326
0,008090	0,008001	0,000089	0,011123

Plano horizontal - Superficie recta y nivelada - Pasadores			
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error
0,006000	0,005991	0,000009	0,153869
0,005991	0,005991	0,000000	0,000237
0,005991	0,005991	0,000000	0,000000
0,005991	0,005991	0,000000	0,000000

Tabla 6.18 Diámetro pasadores - plano horizontal - superficie recta y nivelada

Tabla 6.19 Diámetro pasadores – plano horizontal – superficie desfasada 45°

Plano horizontal - Superficie desfasada 45° - Pasadores			
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error
0,006000	0,004347	0,001652	38,011997
0,004347	0,003559	0,000787	22,121534
0,003559	0,003359	0,000199	5,9512870
0,003359	0,003347	1,237E-05	0,3697161

En la Tabla 6.20 se muestra el resumen del diámetro obtenido y el aceptado para los pasadores de los planos de vuelo vertical y horizontal en las posiciones críticas en estudio para soportar carga estática; es necesario recalcar que se tomará el mayor de los diámetros calculados el cual será aceptado para los dos planos de vuelo.

Plano	Posición	Magnitud	Unidad
Vortical	Recta y nivelada	7,212	mm
ventical	Desfasada 45°	8,001	mm
Horizontal	Recta y nivelada	5,991	mm
Horizoittai	Desfasada 45°	3,347	mm
Diámetro seleccionado		8,000	mm

Tabla 6.20 Diámetro pasador - diseño a carga estática

6.7.4 Diseño a carga dinámica

En vista de que la superficie móvil está en constante movimiento para provocar los giros de la aeronave, los esfuerzos fluctúan en función de la posición de la misma, por lo que a continuación se muestra el diseño a carga dinámica de los pasadores mediante el criterio Goodman modificado, entre las posiciones críticas en estudio.

Tabla 6.21 Diseño a carga dinámica - selección diámetro pasador

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA MAESTRÍA EN MECÁNICA – MENCIÓN DISEÑO

ANÁLISIS DE ESFUERZOS - DISEÑO A CARGA DINÁMICA Hoja: 02 de 02

• Límite de resistencia a la fatiga

$$S_e = k_a * k_b * k_c * k_d * k_e * k_f * \frac{1}{K_f} S'_e$$
 Ec. 115

• Esfuerzo medio

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2} \qquad \qquad \text{Ec. 116}$$

• Amplitud de esfuerzo

$$\sigma_a = \frac{\sigma_{m\acute{a}x} - \sigma_{m\acute{n}}}{2} \qquad \qquad \text{Ec. 117}$$

• Selección del diámetro

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}} = \frac{1}{n}$$

$$\frac{\sigma_{m\dot{a}x} - \sigma_{m\dot{n}n}}{2S_e} + \frac{\sigma_{m\dot{a}x} + \sigma_{m\dot{n}n}}{2S_{ut}} = \frac{1}{n}$$

$$\frac{\frac{2V_2}{\pi D^2} + \frac{16T_2}{\pi D^3} - \frac{2V_1}{\pi D^2} - \frac{16T_1}{\pi D^3}}{2S_e} + \frac{\frac{2V_2}{\pi D^2} + \frac{16T_2}{\pi D^3} + \frac{2V_1}{\pi D^2} + \frac{16T_1}{\pi D^3}}{2S_{ut}} = \frac{1}{n}$$

$$S_{ut}nD(V_2 - V_1) + 8S_{ut}n(T_2 - T_1) + S_enD(V_2 + V_1)$$

$$+ 8S_en(T_2 + T_1) - \pi D^3S_eS_{ut} = 0$$
Ec. 118

• El diámetro estaría dado por la Ec. 119 hallada mediante la aplicación del método de Newton Raphson sobre la Ec. 118

$$D_{n+1} = D_n - \frac{S_{ut}nD_n(V_2 - V_1) + 8S_{ut}n(T_2 - T_1) + S_enD_n(V_2 + V_1)}{S_{ut}n(V_2 - V_1) + S_en(V_2 + V_1) - 3\pi D_n^2 S_e S_{ut}}$$

Ec. 119

Elaborado por: Ing. Giovanny Pineda	Aprobado por: Ing. Mg. Gonzalo López
	Validado por: Ing. Mg. Gonzalo López

A continuación, en la Tabla 6.22 a 6.24 se muestra un resumen de los parámetros que modifican la resistencia del material y las iteraciones desarrolladas para la obtención del diámetro de los pasadores de los planos de vuelo vertical y horizontal.

Parámetro	Símbolo	Magnitud	Unidad
Resistencia última a la tensión	S_{ut}	60,56	MPa
Factor de seguridad	n	2	
Límite de resistencia a la fatiga viga rotatoria	S'e	24,224	MPa
Factor de superficie	k _a	1	
Factor de tamaño	k_b	0,97	
Factor de carga	k _c	0,59	
Factor de temperatura	k _d	1	
Factor de confiabilidad	k _e	1	
Factor de efectos diversos	k_f	1	
Límite de resistencia a la fatiga	S_e	13,863	MPa

Tabla 6.22 Parámetros diseño a Carga dinámica

Tabla 6.23 Diámetro pasadores - plano vertical - carga dinámica

Plano vertical - Pasador A – Carga dinámica					
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error		
0,006000	0,016770	0,010770	64,222634		
0,016770	0,012814	0,003956	30,873582		
0,012814	0,011341	0,001473	12,990720		
0,009841	0,009833	0,000008	0,0813586		
Plano vertical - Pasador B – Carga dinámica					
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error		
0,006000	0,016769	0,010769	64,219386		
0,016769	0,012813	0,003956	30,870557		
0,012813	0,011340	0,001473	12,987307		
0,009840	0,009833	0,000007	0,0711888		
Planc	vertical - Pa	asador C – Carga dii	námica		
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error		
0,006000	0,016770	0,010770	64,222634		
0,016770	0,012814	0,003956	30,873582		
0,012814	0,011341	0,001473	12,990720		
0,009841	0,009833	0,000008	0,0813586		

Plano horizontal - Pasadores – Carga dinámica					
$D_n(m)$	$D_{n+1}(m)$	Error Absoluto	% Error		
0,006000	0,008762	0,002762	31,523620		
0,008762	0,008074	0,000688	8,523772		
0,008074	0,008012	0,000062	0,774397		
0,008012	0,008011	0,000001	0,006033		

Tabla 6.24 Diámetro pasadores - plano horizontal- carga dinámica

En la Tabla 6.25 se muestra el resumen del diámetro obtenido y el aceptado para los pasadores de los planos de vuelo vertical y horizontal en las posiciones críticas en estudio para soportar carga dinámica; es necesario recalcar que se tomará el mayor de los diámetros calculados el cual será aceptado para los dos planos de vuelo.

Tabla 6.25 Diámetro pasador - diseño a carga dinámica

Plano	Magnitud	Unidad
Vertical	9,83	mm
Horizontal	8,01	mm
Diámetro seleccionado	10,00	mm

Por lo tanto, en el diseño a carga estática se determinó que el diámetro de los pasadores debe ser de 8,00 mm, mientras que para soportar cargas dinámicas amerita un diámetro de 10,00 mm, se concluye que el diámetro apropiado para los pasadores de los planos de vuelo vertical y horizontal es:

$$D = 10,00 mm$$

6.7.5 Simulación diseño a carga estática

Mediante la simulación en un software de diseño, se ha desarrollado el análisis a carga estática de los pasadores que actúan como elementos acopladores entre las superficies fija y móvil de los planos de vuelo, en función de las cargas de fuerza y momento torsor críticos, para corroborar el cálculo desarrollado donde el factor de seguridad resulta ser de 2.331; por lo tanto, el diseño es el adecuado.

Tabla 6.26 Simulación diseño a carga estática

6.8 Administración

Una vez concluido el proyecto de investigación en función de los objetivos planteados, es necesario documentar el análisis de costos que conllevó el desarrollo del mismo, con la finalidad de que futuras investigaciones en el área, posean una base referente a los recursos económicos que ésta amerita.

En las Tablas 6.27 a 6.30, se muestran los rubros de los costos directos e indirectos:

6.8.1 Costos directos

	RUBROS DE COSTOS - RECURSOS MATERIALES						
No.	CANTIDAD	UNIDAD	DETALLE	PRECIO UNIT.		VALOR (USD)	
1	2	Kg	Aluminio 1060	100,00	\$	200,00	
2	1	Kg	Zinc	50,00	\$	50,00	
3	5	Kg	Arena refractaria	16,00	\$	80,00	
-				SUBTOTAL	\$	330,00	
				IVA 12%	\$	39,60	
				TOTAL (1)	\$	369,60	

Tabla 6.27 Rubros de costos – recursos materiales

6.8.2 Costos indirectos

	RUBROS DE COSTOS - MÁQUINAS - EQUIPOS - ENSAYOS						
No.	CANTIDAD	UNIDAD	DETALLE	PRECIO UNIT.	VALOR (USD)		
1	20	h	Uso molino de bolas	5,00	\$	100,00	
2	4	h	Uso tamizadora eléctrica	5,00	\$	20,00	
3	50	h	Uso matrices probetas	2,50	\$	125,00	
4	15	h	Uso máquina de compactado	5,00	\$	75,00	
5	30	h	Uso horno sinterizado	5,00	\$	150,00	
6	2	h	Uso microscopio electrónico	10,00	\$	20,00	
7	36		Ensayo de tracción	15,00	\$	540,00	
8	90		Ensayo de dureza Brinell	1,25	\$	112,50	
9	36		Ensayo de impacto	7,50	\$	270,00	
				SUBTOTAL	\$	1.412,50	
				IVA 12%	\$	169,50	
				TOTAL (2)	\$	1.582,00	

Tabla 6.28 Rubros de costos – máquinas – equipos - ensayos

Tabla 6.29 Rubros de costos – recursos human
--

	RUBROS DE COSTOS - RECURSOS HUMANOS				
No.	CANTIDAD	PRECIO UNIT.		VALOR (USD)	
1	1	Ayudante obtención polvo metálico	100,00	\$	100,00
2	1	Ayudante elaboración de probetas	100,00	\$	100,00
			TOTAL (3)	\$	200,00

Tabla 6.30 Rubros de costos - recursos de oficina

	RUBROS DE COSTOS - RECURSOS DE OFICINA					
No.	CANTIDAD	UNIDAD	DETALLE	PRECIO UNIT.	,	VALOR (USD)
1	1000		Impresiones	0,10	\$	100,00
2	500		Copias	0,02	\$	10,00
3	4		Anillados	5,00	\$	20,00
4	3		Empastados	30,00	\$	90,00
5	200	h	Uso internet	0,50	\$	100,00
6	1		Movilización	50,00	\$	50,00
	•		•	SUBTOTAL	\$	370,00
				IVA 12%	\$	44,40
				TOTAL (4)	\$	414,40

6.8.3 Costos Total

El costo total de la Investigación desarrollada está dado por la sumatoria de los costos directos e indirectos estipulados, como se muestra en la Tabla 6.31.

Tabla 6.31Rubro de costo total

RUBRO DE COSTO TOTAL					
No.	DETALLE VAL (US				
1	Recursos materiales	\$	369,60		
2	Recursos máquinas - equipos - ensayos	\$	1.582,00		
3	Recursos humanos	\$	200,00		
4	Recursos de oficina	\$	414,40		
	SUBTOTAL	\$	2.566,00		
	Imprevistos (10%)	\$	256,60		
	TOTAL	\$	2.822,60		

6.9 Previsión de la evaluación

El desarrollo de la investigación será de aporte significativo para nuevos proyectos en el ámbito de metalurgia de polvos, debido a que se muestra el procedimiento apropiado para la consecución de la aleación; además se demostró que se puede obtener resultados favorables sobre algunas propiedades mecánicas al desarrollar aleaciones por este método, controlando dos de las variables más influyentes, porcentaje de elemento aleante y temperatura de sinterización.

Es necesario el desarrollo y ejecución de nuevas investigaciones complementarias y/o paralelas para establecer parámetros de entrada en función del manejo de rangos de nuevas variables: tamaño de partícula, presión de compactación, tratamiento térmico posterior como posibles alternativas, con la finalidad de encontrar materiales con mejores características que aporten al desarrollo y evolución industrial de este proceso de fabricación, en función de las ventajas que presenta con respecto a los procesos tradicionales.

Referencias Bibliográficas

- S. Molenkovic. Dr., "Tratamiento termo mecánico de la aleación Zamac 2", Instituto Madrileño de Estudios Avanzados en Materiales, España, 2018.
- [2] L. Manriquez. Dr., 2016, Investigador Departamento Pulvimetalurgia ETAL-GRUPO MARMEX. México. Available: www.etal.mx/mercados/metalurgiade-polvos.
- [3] Empresa FILARET S.A. 2017. Guayaquil. Ecuador. Available: www.ekosnegocios.com/empresas/empresas.aspx?ide=2391&b=1
- [4] C. Martínez, F. Briones, P. Rojas, C. Aguilar, D. Guzmán, S. Ordóñez.
 "Microstructural and Mechanical Characterization of Copper, Nickel, and Cu-Based Alloys Obtained by Mechanical Alloying and Hot Pressing", *Materials Letters*, Agosto 2017. Available: dx.doi.org/10.1016/j.matlet.2017.08.082
- [5] R. Ramírez. "Efecto del zinc en las propiedades mecánicas de una aleación Al-Si Tipo A319", Tesis Maestría en Ciencias de la Ingeniería Mecánica con especialidad en Materiales", UANL, Nuevo León, 2012.
- [6] G. López, A. Moreta, J. Molina. "Rediseño y construcción de una máquina de pulvimetalurgia para la obtención de polvo de aluminio, en la Universidad Técnica de Ambato, Facultad de Ingeniería Civil y Mecánica, en la Carrera de Ingeniería Mecánica, Laboratorio de Materiales", Proyecto académico de Servicio Comunitario para vinculación con la Sociedad, UTA, Ambato, 2012.
- [7] J. Beltrán. "Análisis de material sinterizado aluminio 1060 con Babbit B23 Alloy 2 y su incidencia en la resistencia a la tracción, dureza y desgaste combinados por mezcla de polvos", Proyecto técnico previo a la obtención del título de Ingeniero Mecánico, UTA, Ambato, 2017.
- [8] J. Solá, J. Llumá, J. Jorba. "Estudio de la influencia de las variables de molienda en las propiedades del polvo de aluminio nanocristalino", UPC, Barcelona, 2010.

- [9] H. Bawa, "Procesos de Manufactura", 1ra ed., México D.F., McGraw-Hill, 2007.
- [10] Empresa RADVER, 2016, México DF, México, Available: www.radver.com/procesos/fundicion-en-arena-sand-casting.html
- [11] M. Groover, "Fundamentals of Modern Manufacturing Materials, Processes and Systems", 5ta ed., Estados Unidos de América, Wiley, 2013.
- [12] Aceros LLOBEGAT S.A. 2016. Barcelona. España. Available: www.acerosllobregat.com/
- [13] E. Ruiz, F. C. da Costa, F. Velasco, J. Torralba. "Aleación Mecánica: Método de obtención de polvos metálicos y de materiales compuestos", Revistas de metalurgia, Madrid 2000. Available: revistademetalurgia.revistas.csic.es
- [14] C. Suryanarayana, "Mechanical Alloying and Milling", New York, Marcel Dekker, 2004.
- [15] M. Sherif. "Mechanical Alloying for fabrication of advanced Engineering Materials", Estados Unidos de América, Noyes Publications, 2001.
- [16] Retsch Lab Equipment. 2018. Haan. Alemania. Available: www.retsch.es
- [17] SIEHE Industry. 2017. Shanghai. China. Available: www.sieheindustry.com
- [18] ASM Metal Handbook, Vol.7, "Powder Metal Technologies and Applications", Advisory Board, 1997.
- [19] C. Arcos, "Pulvimetalurgia", Departamento de Ingeniería Metalúrgica, Universidad de Santiago de Chile, Chile, 2015.
- [20] S. Kalpakjian y S. Schimd, "Procesamiento de polvos metálicos Manufactura, Ingeniería y Tecnología", 5ta ed., México, Pearson, 2008.
- [21] ASM Metal Handbook, Vol.3, "Alloy Phase Diagrams", Advisory Board, 1997.
- [22] D. Askeland, "Ciencia e Ingeniería de los Materiales", 6ta ed., México DF, Cengage, 2011.

- [23] W. Callister, "Introducción a la Ciencia e Ingeniería de los Materiales", 2da ed., España, Reverte, 2007
- [24] M. Ashby, D. Jones, "Engineering Materials 1", 4ta ed., Estados Unidos, Copyrighted Materials, 2012.
- [25] ASTM E 8M-04, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International Standards, Estados Unidos, 2004.
- [26] Sistemas de Ensayo, 2016. Madrid. España. Available: www.sistemasdeensayo.com
- [27] ASTM E 10-01, Standard Test Method for Brinell Hardness of Metallic Materials, ASTM International Standards, Estados Unidos, 2001.
- [28] ASTM E 23-01, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International Standards, Estados Unidos, 2001.
- [29] J. Shackelford, "Introducción a la Ciencia de materiales para Ingenieros", 6ta ed., España, Pearson Educación S.A., 2007.
- [30] W. Smith, J. Hashemi, "Fundamentos de la ciencia e ingeniería de materiales", 4ta ed., México, McGrawHill Companies, 2006.
- [31] Cedal Aluminio. 2017. Quito. Ecuador. Available: www.cedal.com.ec/
- [32] H. Gutiérrez, R. de la Vara. "Análisis y diseño de Experimentos", 2da ed., México, McGrawHill Companies, 2008.
- [33] R. Craig, "Mecánica de Materiales", 3ra ed., Estados Unidos de América, John Wiley & Sons, 2011.
- [34] R. Hibbeler, "Mecánica de Materiales", 6ta ed., México, Pearson, 2006.
- [35] G. James, G. Barry, "Mecánica de Materiales", 7ma ed., México, Cengage Learning Editores S.A, 2009.
- [36] R. Budynas, J. Keith, "Diseño en Ingeniería Mecánica de Shigley", 9na ed., México, McGrawHill Companies, 2012.

- [37] R. Johnston, F. Beer, "Mecánica de Materiales", 5ta ed., México, McGrawHill Companies, 2010.
- [38] Centro de Investigación y Desarrollo de la Fuerza Aérea Ecuatoriana, Departamento de Diseño, Ambato, 2018.
- [39] S. Brandt, "Introduction to Aeronautics: A Design Perspective", 2da ed., New York, AIAA Education Series, 2004.

ANEXO 1

Características polvo de aluminio 1060 – LOBA CHEMIE

ALUMINIUM FINE POWDER (30 um)

Article No.	00880	Grade	A11060	
Purity	99%	CAS No.	7429-90-5	
Molecular Formula	AI	Molecular Weight	26.98	
H.S. Code	7603.1010	Shelf Life	60 Months	

AI 1060

Physical Properties

Physical state at 20 °C	Solid	Colour	Grey powder
Odour	Odorless	Melting point/ Freezing point ["C]	660.37 °C
Auto-ignition temperature [°C]	760 °C	Boiling point [*C]	2327°C
Density [g/cm3]	2.7	Solubility in water [% weight]	Insoluble in water

-	-		ŧ	-	-
02	\sim	~		~	~
гa	G	n.i		u	5
	-				-

500 g	00500
5000 g	05000
25 Kg	0025K
50 Kg	0050K

Safety Information

Symbol: GHS02	
Signal Word: Danger	
UN No.: 1396	Manard Cumbala
IMCO Class No.: 4.3	Hazard Symbols
Packing Group: II	\land
Hazardous Statement: H250-H261	
Precaution Statement: P222-P231 + P232-P402+404	

Revision Date : 11-Apr-2017

www.lobachemie.com

Características zinc – Metalquímica Galvano

Zinc 99.995 % AZSA 37 101

USOS

Galvanización y otros recubrimientos protectores. Ánodos para electrozincado y ánodos de protección catódica. Polvo de zinc, óxido de zinc y otros productos químicos. Aleaciones base zinc. Latones. Zinc laminado

CARACTERÍSTICAS QUÍMICAS

Pb %	Cd %	Fe %	Sn %	Cu %	AI %	Zn %
≤ 0.003	≤ 0.003	≤ 0.002	≤ 0.001	≤ 0.001	≤ 0.001	≥ 99.995

Conforme a las r	normas:
UNE -EN 1179	designación: Z1
ISO 752	designación: ZN -1
ASTM B6	designación: LME grade [Z12002]

PROPIEDADES FÍSICAS

Densidad a 20°C (sólido)	7.14	g/cm ³
Densidad a 419.5 °C (líquido)	6.62	g/cm ³
Viscosidad líquido a 419.5 °C	0.00385	Kg/m·s
Punto de fusión	419.5	°C
Punto de ebullición	907	°C
Contracción al solidificar	17	mm/m
Coeficiente de dilatación	29	10 ⁻⁶ K ⁻¹
Calor de fusión	100.9	kJ/kg
Calor de vaporización	1782	kJ/kg
Calor específico	382	J/kg-K
Conductividad térmica a 18 °C	113	W/m·K
Conductividad eléctrica	28	% IACS
ADVERTENCIA DE SEGURIDAD		

La presencia de humedad en los lingotes puede originar explosiones en la fusión al cargar sobre metal líquido.

Para más información consúltese la correspondiente ficha de datos de seguridad.

Industria Metalquimica Galvano

Juan Barrezueta 158 Y Moisés Luna Andrade - Panamericana Norte Km. 5 1/2 Quito - Ecuador

Teléfonos: 2481 285 / 2485 124 / 2800 860 / 2806 106 / 2800 539

Extensiones: Información: 102 / Fax: 103 / Ventas: 109 / Contabilidad: 111 / Rrhh: 112

Molde probeta ensayo de tracción – pulvimetalurgia

Molde probeta ensayo de impacto- pulvimetalurgia

Probetas para ensayo de tracción codificadas

Probetas para ensayo de impacto codificadas

Informe ensayo de tracción - Centro de fomento productivo

metalmecánico carrocero

RECEPCIÓN E IDENTIFICACIÓN DE MUESTRAS

Informe Nº: 180406214720181114-ET	M	
DATOS DEL CLIENTE		
Empresa / Cliente: Ing. Giovanny Vini	cio Pineda Silva.	
Dirección: Barrio la Carolina.		
Núm. de cédula / RUC: 1804062147	Teléfono: 0995100164	
E-mail: giopineda2009@hotmail.com		

DATOS INFORMATIVOS Laboratorio: Resistencia de Materiales. Designación del material: Combinación aluminio zinc combinada por el método de pulvimetalurgia. Método de ensayo: ASTM E8/E8M-16a: Métodos de prueba estándar para Prueba de tensión de materiales metálicos.

Número de Probetas cuantificadas

Nº	Identificación del grupo	Caracteristica	Configuración	Temperatura	Probetas a ensayar
1	180406214720181114-ETM 01	TT-P0.5-LT	0,5% Zn- 99,5% Al1060	462 °C	5
2	180406214720181114-ETM 02	TT-P0.5-HT	0,5% Zn- 99,5% Al1060	594 °C	5
3	180406214720181114-ETM 03	TT-P1.0-LT	1,0% Zn- 99,0% Al1060	462 °C	5
4	180406214720181114-ETM 04	TT-P1.0-HT	1,0% Zn- 99,0% Al1060	594 °C	5
5	180406214720181114-ETM 05	TT-P1.5-LT	1,5% Zn- 98,5% Al1060	462 °C	5
6	180406214720181114-ETM 06	TT-P1.5-HT	1,5% Zn- 98,5% Al1060	594 °C	5
				Total	30

Nota: La fabricación de las probetas en tipo y cantidad es declarada por el cliente.

Código: RG-RM-001 Fecha de Elaboración: 06-07-2016 Fecha de ultima aprobación: 02-02-2018 Revisión: 3 RECEPCIÓN E IDENTIFICACIÓN DE MUESTRAS Página 1 de 3

Centro de Fomento Productivo Metalmecánico Carrocero

	EN	SAYO SOLICITADO		
No.	No. DE PROBETA	IDENTIFICACION DE PROBETA	DESCRIPCIÓN	FECHAS RECEPCIÓN
1	180406214720181114-ETM 01-1	TT-P0.5-LT-01	Cumple criterios dimensionales	14/11/2018
2	180406214720181114-ETM 01-2	TT-P0.5-LT-02	Cumple criterios dimensionales	14/11/2018
3	180406214720181114-ETM 01-3	TT-P0.5-LT-03	Cumple criterios dimensionales	14/11/2018
4	180406214720181114-ETM 01-4	TT-P0.5-LT-04	Cumple criterios dimensionales	14/11/2018
5	180406214720181114-ETM 01-5	TT-P0.5-LT-05	Cumple criterios dimensionales	14/11/2018
6	180406214720181114-ETM 02-1	TT-P0.5-HT-01	Cumple criterios dimensionales	14/11/2018
7	180406214720181114-ETM 02-2	ТТ-Р0.5-НТ-02	Cumple criterios dimensionales	14/11/2018
8	180406214720181114-ETM 02-3	ТТ-Р0.5-НТ-03	Cumple criterios dimensionales	14/11/2018
9	180406214720181114-ETM 02-4	ТТ-Р0.5-НТ-04	Cumple criterios dimensionales	14/11/2018
10	180406214720181114-ETM 02-5	ТТ-Р0.5-НТ-05	Cumple criterios dimensionales	14/11/2018
11	180406214720181114-ETM 03-1	TT-P1.0-LT-01	Cumple criterios dimensionales	14/11/2018
12	180406214720181114-ETM 03-2	TT-P1.0-LT-02	Cumple criterios dimensionales	14/11/2018
13	180406214720181114-ETM 03-3	TT-P1.0-LT-03	Cumple criterios dimensionales	14/11/2018
14	180406214720181114-ETM 03-4	TT-P1.0-LT-04	Cumple criterios dimensionales	14/11/2018
15	180406214720181114-ETM 03-5	TT-P1.0-LT-05	Cumple criterios dimensionales	14/11/2018
16	180406214720181114-ETM 04-1	ТТ-Р1.0-НТ-01	Cumple criterios dimensionales	14/11/2018
17	180406214720181114-ETM 04-2	ТТ-Р1.0-НТ-02	Cumple criterios dimensionales	14/11/2018
18	180406214720181114-ETM 04-3	ТТ-Р1.0-НТ-03	Cumple criterios dimensionales	14/11/2018
19	180406214720181114-ETM 04-4	TT-P1.0-HT-04	Cumple criterios dimensionales	14/11/2018
20	180406214720181114-ETM 04-5	ТТ-Р1.0-НТ-05	Cumple criterios dimensionales	14/11/2018
21	180406214720181114-ETM 05-1	TT-P1.5-LT-01	Cumple criterios dimensionales	14/11/2018
22	180406214720181114-ETM 05-2	TT-P1.5-LT-02	Cumple criterios dimensionales	14/11/2018
23	180406214720181114-ETM 05-3	TT-P1.5-LT-03	Cumple criterios dimensionales	14/11/2018
24	180406214720181114-ETM 05-4	TT-P1.5-LT-04	Cumple criterios dimensionales	14/11/2018
25	180406214720181114-ETM 05-5	TT-P1.5-LT-05	Cumple criterios dimensionales	14/11/2018

Código: RG-RM-001 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 02-02-2018 Revisión: 3 RECEPCIÓN E IDENTIFICACIÓN DE MUESTRAS

Página 2 de 3

26	180406214720181114-ETM 06-1	TT-P1.5-HT-01	Cumple criterios dimensionales	14/11/2018
27	180406214720181114-ETM 06-2	TT-P1.5-HT-02	Cumple criterios dimensionales	14/11/2018
28	180406214720181114-ETM 06-3	TT-P1.5-HT-03	Cumple criterios dimensionales	14/11/2018
29	180406214720181114-ETM 06-4	TT-P1.5-HT-04	Cumple criterios dimensionales	14/11/2018
30	180406214720181114-ETM 06-5	TT-P1.5-HT-05	Cumple criterios dimensionales	14/11/2018

DATOS INFORMATIVOS: De acuerdo a los criterios de aceptación y rechazo las probetas cumplen con el número mínimo de muestras para el ensayo y en las dimensiones.

NOTA: LA INFORMACIÓN CONSIGNADA EN ESTE FORMULARIO ES DE EXCLUSIVA RESPONSABILIDAD DEL CLIENTE. POSTERIORMENTE A LA EJECUCIÓN DEL(LOS) ENSAYO(S) NO SE ADMITIRÁ ARREGLOS DE ESTA INFORMACIÓN NI DE LOS RESULTADOS OBTENIDOS. FAVOR REVISAR ANTES DE SU FIRMA.

mul Aprobado por: Elaborado por: Ing. Fernando Galarza Mg. Ing. Esteban López Espinel MEng. Analista Técnico Área de Ensayos e Director Técnico Área de Ensayos e Inspecciones CFPMC Inspecciones CFPMC Centro de Fomento Productivo Metalmecánico Carrocero

Código: RG-RM-001 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 02-02-2018 Revisión: 3

Cliente

RECEPCIÓN E IDENTIFICACIÓN DE MUESTRAS Página 3 de 3

LABORATORIO DE RESISTENCIA DE MATERIALES ENSAYO DE TRACCIÓN DE MATERIALES METÁLICOS INFORME DE RESULTADOS Nº: 180406214720181114-ETM

		DILLOD			
Nº d	le proforma: RM_2018_	040			
Emj	oresa / Clientes: Ing. Gic	vanny Vinicio	Pineda Silva.		
RUC	C/C.I.: 1804062147001	(Ciudad: Ambat	to.	
Dire	cción: Barrio la Carolina	ι.			
Telé	fono: 0995100164	Co	rreo: giopined	a2009@hotmai	il.com
DAT	TOS DEL ENSAYO		0 1	U	
Lug	ar de Ejecución del Ens	avo: Laborator	io de Resistenci	ia de Materiales	s.
Dire	cción: Ambato/Catiglata	. Toronto y Rio	de Janeiro.		
Mét	odo de ensayo: ASTM	E8/E8M-16a: N	létodos de pru	eba estándar p	ara Prueba de
tensi	ón de materiales metálico	os.	1	1	
Tipo	de ensayo: Cuantitativo)			
Tipo	de probeta: Plana	Lon	gitud calibrad	a: 25,4 mm	
Equ	ipo utilizado: Máquina d	le ensayos univ	ersal Metrotest	50 KN.	
Mod	lelo: MTE 50.	Seri	e:8210M002		
Velo	cidad de ensavo: 10 mm	n/min. Prec	arga: 100 N		
Desi	gnación del material:	Combinación a	luminio zinc c	ombinada por	el método de
pulv	imetalurgia.			L	
Fech	a de Inicio de Ensavo:	19/11/2018 Fee	ha de Finaliza	ción de Ensav	- 10/11/2010
	in at initio at Linsay of				0: 19/11/2018
Los	resultados obtenidos en	el presente infe	orme correspon	den a ensavos	realizados er
Los prob	resultados obtenidos en etas de materiales metál	el presente infe licos. Las prob	orme correspon etas fueron rec	iden a ensayos cibidas en el I	realizados er
Los prob Resi	resultados obtenidos en etas de materiales metá stencia de Materiales del	el presente infe licos. Las prob	orme correspon etas fueron rec G P Tungurahi	iden a ensayos cibidas en el L	realizados er aboratorio de
Los prob Resi	resultados obtenidos en etas de materiales metá stencia de Materiales del	el presente infe licos. Las prob CFPMC del H.	orme correspon etas fueron rec G.P. Tungurahu E ENSAYO	iden a ensayos cibidas en el L ua.	realizados er aboratorio de
Los prob Resi	resultados obtenidos en etas de materiales metá stencia de Materiales del	el presente infe licos. Las prob CFPMC del H. OBJETOS D ficadas	orme correspon etas fueron rec G.P. Tungurah E ENSAYO	iden a ensayos cibidas en el L ua.	realizados er aboratorio de
Los prob Resi Nún	resultados obtenidos en etas de materiales metá stencia de Materiales del nero de Probetas cuanti	el presente infe licos. Las prob CFPMC del H. OBJETOS D ficadas	orme correspon etas fueron rec G.P. Tungurahi E ENSAYO	iden a ensayos cibidas en el L ua.	realizados er aboratorio de
Los prob Resi Nún	resultados obtenidos en etas de materiales metá stencia de Materiales del nero de Probetas cuanti Identificación del grupo	el presente infe licos. Las prob CFPMC del H. OBJETOS D ficadas Característica	orme correspon etas fueron rec G.P. Tungurah DE ENSAYO Configuración	iden a ensayos cibidas en el L ua. Temperatura	Probetas a ensayar

Observaciones: La fabricación de las probetas y su configuración, están de acuerdo según especificaciones declaradas por el cliente.

Nota: Este informe no significa certificación de calidad, no debe ser usado con fines publicitarios y no debe ser reproducido total ni parcialmente.

Lugar y fecha de emisión de Informe: Ambato,20 de noviembre de 2018 N°. Factura:001-002-000005969

			Search and South South States of States	Total	30
6	180406214720181114-EIM 06	IT-P1.5-HT	1,0% Zn- 98,5% Al1060	594 °C	5
5	180406214720181114-EIM 05	IT-P1.5-LT	1,5% Zn- 98,5% Al1060	462 °C	5
4	180406214720181114-EEM 04	П-Р1.0-НТ	1,0% Zn- 99,0% Al1060	594 °C	5
3	180406214720181114-EIM 03	IT-P1.0-LT	1,0% Zn- 99,0% Al1060	462 °C	5
2	180406214720181114-EIM 02	IT-P0.5-HT	0,5% Zn- 99,5% Al1060	594 °C	5

Código: RG-RM-013 Fecha de Elaboración: 11-05-2016 Fecha de última aprobación: 10- 01 -2017 Revisión: 1 INFORME ENSAYO DE TRACCIÓN DE MATERIALES METALICOS

Página 2 de 5

Resultados:

Probeta	Identificación de probeta	Temperatura	Humedad Relativa	Dimensio	nes mm	Longitud Inicial	Longitud Final	Fuerza Máxima	Fuerza	Fuerza de rotura	Resistencia a la	Limite de fluencia	Resistencia de rotura	% Elongación
		(1)	(96)	Ancho	Espesor	(mm)	(mm)	e	(S)	S	(MPa)	(MPa)	(MPa)	(Calculado)
1	180406214720181114-ETM 01-1	22,4	53,2	8,01	4,73	25,4	27,717	1830,76	508,58	1822,96	48,90	13,41	48,12	9,12
2	180406214720181114-ETM 01-2	22,4	53,2	8,07	4,28	25,4	27,025	1672,03	412,35	1672,03	48,41	11,93	48,41	6,40
3	180406214720181114-ETM 01-3	22,4	53,2	7,98	4,62	25,4	28,387	1691,71	584,60	1689,75	46,76	15,85	45,83	11,76
4	180406214720181114-ETM 01-4	22,4	53,2	7,75	4,32	25,4	27,148	1420,71	468,86	1420,71	42,43	14,03	42,43	6,88
5	180406214720181114-ETM 01-5	22,4	53,2	8,17	4,53	25,4	27,912	1590,55	561,56	1587,45	43,61	15,15	42,89	9,89
						Pro	medio X	1641,152	507,189	1638,580	46,022	14,074	45,536	8,81
					Desvi	ación están	dar S	150.511	69.667	148.165	2.883	1.529	2.814	2.208

25,06

6,18

10,86

6,26

Coeficiente de Variación CV 9,17 13,74 9,04

Probeta	Identificación de probeta	Temperatura	Humedad Relativa	Dimensie	nes mm	Longitud Inicial	Longitud Final	Fuerza Máxima	Fuerza	Fuerza de rotura	Resistencia a la	Limite de fluencia	Resistencia de rotura	% Elongación
		6	(9%)	Ancho	Espesor	(mm)	(mm)	S	(N)	8	(MPa)	(MPa)	(MPa)	(Calculado)
9	180406214720181114-ETM 02-1	23,9	57,1	8,19	5,43	25,4	27,717	1949,08	590,12	1940,77	52,65	15,56	51,23	6,14
7	180406214720181114-ETM 02-2	23,9	57,1	8,22	5,20	25,4	27,025	1837,47	640,12	1837,47	53,65	18,52	53,20	10,81
80	180406214720181114-ETM 02-3	23,9	57,1	8,05	5,09	25,4	28,387	1792,48	501,24	1790,41	48,56	13,59	48,56	15,81
6	180406214720181114-ETM 02-4	23,9	57,1	7,80	4,63	25,4	27,148	1669,83	531,02	1669,83	50,10	15,89	49,87	11,69
10	180406214720181114-ETM 02-5	23,9	57,1	8,06	4,60	25,4	27,912	1804,16	474,08	1800,64	48,65	12,79	48,65	16,21
						Pro	medio X	1810,604	547,317	1807,824	50,722	15,270	50,302	12,132
					Desvii	ación están	dar S _{n-1}	100,106	67,447	97,405	2,326	2,236	1,950	4,123
					Coeficient	te de Varia	ción CV	5,53	12,32	5,39	4,59	14,64	3,88	33,99

INFORME ENSAYO DE TRACCIÓN DE MATERIALES METALICOS

Código: RG-RM-013 Fecha de Elaboración: 11-05-2016 Fecha de última aprobación: 10-01 -2017 Revisión: 1

Pigina 3 de 5

Pigina 4 de 5

INFORME ENSAYO DE TRACCIÓN DE MATERIALES METALICOS

Codigo: RG-RM-013 Fecha de Elaboración: 11-05-2016 Fecha de última aprobación: 10-01 -2017 Revisión: 1

Probeta	Identificación de probeta	Temperatura	Humedad Relativa	Dimensi	ones mm	Longitud Inicial	Longitud Final	Fuerza Máxima	Fuerza	Fuerza de rotura	Resistencia a la	Limite de fluencia	Resistencia de rotura	% Elongación
		2	(96)	Ancho	Espesor	(mm)	(mm)	8	(S)	ε	(MPa)	(MPa)	(NIPa)	(Calculado)
16	180406214720181114-ETM 04-1	24,1	56,3	8,53	4,96	25,4	27,396	2458,14	654,21	2447,66	64,96	17,25	64,61	7,86
17	180406214720181114-ETM 04-2	24,1	56,3	8,18	5,36	25,4	27,876	2060,24	710,63	2060,24	59,65	20,56	59,65	9,75
18	180406214720181114-ETM 04-3	24,1	56,3	8,05	5,11	25,4	25,636	2161,61	816,59	2159,11	59,04	22,14	58,56	0,93
19	180406214720181114-ETM 04-4	24,1	56,3	8,01	4,96	25,4	27,568	1875,76	662,02	1875,76	56,02	19,81	56,02	8,54
20	180406214720181114-ETM 04-5	24,1	56,3	7,95	4,98	25,4	26,546	2309,62	785,07	2305,12	63,11	21,18	62,28	4,51
						Pro	medio X	2173,072	725,706	2169,576	60,556	20,188	60,224	6,318
					Desvi	ación están	dar S _{n-1}	224,256	72,765	220,280	3,522	1,851	3,326	3,584
					Coeficier	tte de Varia	ción CV	10,32	10,03	10,15	5,82	9,17	5,52	56,73

2,567 24,73

3,932 7,55

Desviación estándar S_{n-1} 207,658 125,460 205,993 3,555

Coeficiente de Variación CV 11,05 21,53 10,98

21,84 3,543

6,78

4	Honorable Gobierno	
	-1	2

Centro de Fornento Productivo Metalmecárico Carrocero

Probeta	Identificación de probeta	Temperatura	Humedad Relativa	Dimensi	ones mm	Longitud Inicial	Longitud	Fuerza Máxima	Fuerza	Fuerza de rotura	Resistencia a la	Limite de fluencia	Resistencia de rotura	% Elongación
100000		2	(14)	Ancho	Espesor	(mm)	(mm)	S	(N)	8	(MPa)	(MPa)	(NIPa)	(Calculado)
11	180406214720181114-ETM 03-1	23,8	56,2	8,01	4,52	25,4	28,656	1883,65	464,58	1875,61	50,23	12,25	49,51	12,82
12	180406214720181114-ETM 03-2	23,8	56,2	8,18	5,21	25,4	27,957	1773,91	711,67	1773,91	51,36	20,59	51,36	10,07
13	180406214720181114-ETM 03-3	23,8	56,2	7,98	4,95	25,4	27,282	2002,88	685,66	2000,56	54,26	18,59	54,26	7,41
14	180406214720181114-ETM 03-4	23,8	56,2	7,86	4,98	25,4	28,743	1596,84	438,45	1596,84	48,65	13,12	47,69	13,16
15	180406214720181114-ETM 03-5	23,8	56,2	8,01	5,11	25,4	27,543	2136,80	613,82	2132,64	57,62	16,56	57,62	8,44
					20.02	Pro	providio X	1878.817	582.838	1875.915	52.424	16.222	52.088	10.380

Probeta	Identificación de prebeta	Temperatura	Humedad Relativa	Dimensi	man same	Longitud	Longitud	Fuerza	Fuerza	Fuerza de rotura	Resistencia a la	Limite de Buencia	Resistencia de rotara	% Elongación
		(2)	(9,6)	Ancho	Espesor	(mm)	(mm)	8	(N)	8	(MPa)	(MPa)	(MPa)	(Calculado)
21	180406214720181114-ETM 05-1	24,0	55,4	8,56	4,22	25,4	27,219	1830,76	667,86	1822,96	48,96	17,61	48,12	7,16
22	180406214720181114-ETM 05-2	24,0	55,4	7,98	5,03	25,4	26,219	1886,86	468,00	1886,86	55,32	13,54	54,63	3,22
23	180406214720181114-ETM 05-3	24,0	55,4	8,35	4,98	25,4	27,138	1779,56	599,35	1777,50	48,21	16,25	48,21	6,84
24	180406214720181114-ETM 05-4	24,0	55,4	8,18	5,23	25,4	28,285	1730,77	474,88	1730,77	52,48	14,21	51,69	11,36
33	180406214720181114-ETM 05-5	24,0	55,4	8,32	5,03	25,4	26,501	1805,64	502,62	1802,12	48,69	13,56	48,69	4,33
						Pro	smedio X	1806,718	\$42,542	1804,042	50,732	15,034	50,268	6,582
					Desvi	ación estár	idar S _{n-1}	58,109	87,552	\$7,646	3,073	1,816	2,846	3,147
				-										

47,81

5,66

6,06 12,08

Coeficiente de Vanación CV 3,22 16,14 3,20

Probeta	Identificación de probeta	Temperatura	Humedad Relativa	Dimensi	ones mm	Longitud	Longitud Final	Fuerza	Fuerza	Fuerza de rotura	Resistencia a la	Limite de fluencia	Resistencia de rotura	% Elongación
		(2)	(96)	Ancho	Espesor	(mm)	(mm)	8	(N)	8	(MPa)	(MPa)	(MPa)	(Calculado)
26	180406214720181114-ETM 06-1	24,8	51,8	7,90	4,36	25,4	27,188	2101,27	514,27	2092,31	55,23	13,56	\$5,23	7,04
27	180406214720181114-ETM 06-2	24,8	51,8	8,08	5,04	25,4	28,050	1656,14	615,58	1656,14	48,56	17,81	47,95	10,43
28	180406214720181114-ETM 06-3	24,8	51,8	8,35	5,05	25,4	27,707	2149,79	412,35	2147,31	58,24	11,18	58,24	9,08
29	180406214720181114-ETM 06-4	24,8	51,8	8,29	4,97	25,4	28,087	1660,12	306,78	1660,12	49,58	9,18	49,58	10,58
30	180406214720181114-ETM 06-5	24,8	51,8	7.97	5,40	25,4	26,613	1823,81	376,97	1820,26	49,18	10,17	49,18	4,78
						Pro	medio X	1878,226	445,191	1875,227	52,158	12,380	52,036	8,382
					Desvi	nción están	dar S _{n-1}	236,300	121,134	233,690	4,327	3,444	4,460	2,464
					Coeficien	te de Varia	ción CV	12.58	27.21	12.46	8.30	27.82	8.57	29.40

Codigor RG-RM-013 Feeba de Elaboración: 11-05-2016 Feeta de última aprobación: 10- 01-2017 Revisión: 1

Pigina 5 de 5

INFORME ENSAVO DE TRACCIÓN DE MATERIALES METALICOS

HOJA DE ALMACENAMIENTO DE MUESTRAS

Informe N°: 180406214720181114-ETM		
DATOS DEL CLIENTE		
Empresa / Cliente: Ing. Giovanny Vinicio Pineda Silva.		
Dirección: Barrio la Carolina.		
Núm. de cédula / RUC: 1804062147	Teléfono: 0995100164	
E-mail: giopineda2009@hotmail.com		

DATOS INFORMATIVOS
Laboratorio: Resistencia de Materiales.
Designación del material:
Combinación aluminio zinc combinada por el método de pulvimetalurgia.
Método de ensayo:
ASTM E8/E8M-16a: Métodos de prueba estándar para Prueba de tensión de materiales metálicos.

EVIDENCIAS	THE WEST USED AT CONSISTENTS	THE REAL PROPERTY OF THE PROPE	THE INCOMENTATION OF A DESCRIPTION OF A	THUM INTO THE REPORT OF	INCOMPACT AND A CONTRACT OF THE CONTRACT OF THE
OBSERVACIONES	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente
RESPONSABLE	Cliente	Cliente	Cliente	Cliente	Cliente
FECHA ELIMINACIÓN	21/11/2018	21/11/2018	21/11/2018	21/11/2018	21/11/2018
FECHA INGRESO	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018
IDENTIFICACIÓN DE LA MUESTRA	180406214720181114-ETM 01-1	180406214720181114-ETM 01-2	180406214720181114-ETM 01-3	180406214720181114-ETM 01-4	180406214720181114-ETM 01-5
°N	1	2	3	4	s

Código: RG-RM-003 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 17-01-2017 Revisión: 3

HOJA DE ALMACENAMIENTO DE MUESTRAS

Página 1 de 4

EVIDENCIAS	ente	ente	ente	ente	ente
OBSERVACION	Sc entrega al clie	Se entrega al clie	Sc cntrega al clie	Se entrega al clie	Se entrega al clic
RESPONSABLE	Cliente	Cliente	Cliente	Cliente	Cliente
FECHA ELIMINACIÓN	21/11/2018	21/11/2018	21/11/2018	21/11/2018	21/11/2018
FECHA INGRESO	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018
IDENTIFICACIÓN DE LA MUESTRA	180406214720181114-ETM 02-1	180406214720181114-ETM 02-2	180406214720181114-ETM 02-3	180406214720181114-ETM 02-4	180406214720181114-ETM 02-5
0	9	2	30	6	10

EVIDENCIAS							
OBSERVACIONES	Se entrega al cliente						
RESPONSABLE	Cliente	Cliente	Cliente	Cliente	Cliente		
FECHA ELIMINACIÓN	21/11/2018	21/11/2018	21/11/2018	21/11/2018	21/11/2018		
FECHA INGRESO	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018		
IDENTIFICACIÓN DE LA MUESTRA	180406214720181114-ETM 03-1	180406214720181114-ETM 03-2	180406214720181114-ETM 03-3	180406214720181114-ETM 03-4	180406214720181114-ETM 03-5		

HOJA DE ALMACENAMIENTO DE MUESTRAS

Código: RG-RM-003 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 17-01-2017 Revisión: 3

Página 2 de 4

Página 3 de 4

HOJA DE ALMACENAMIENTO DE MUESTRAS

Código: RG-RM-003 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 17-01-2017 Revisión: 3

EVIDENCIAS	And the second s						
OBSERVACIONES	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente		
RESPONSABLE	Cliente	Cliente	Cliente	Cliente	Cliente		
FECHA ELIMINACIÓN	21/11/2018	21/11/2018	21/11/2018	21/11/2018	21/11/2018		
FECHA INGRESO	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018		
IDENTIFICACIÓN DE LA MUESTRA	180406214720181114-ETM 05-1	180406214720181114-ETM 05-2	180406214720181114-ETM 05-3	180406214720181114-ETM 05-4	180406214720181114-ETM 05-5		
٥N	21	22	23	24	25		

EVIDENCIAS	1. A. CHARLENDER MARKET AND	ETC THEORY PARTY PARTY PARTY - 1	TRU LA DEBRICAL OFFICE B.	THOMAS FILTER OF COMPANY AND	
OBSERVACIONES	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente
RESPONSABLE	Cliente	Cliente	Cliente	Cliente	Cliente
FECHA ELIMINACIÓN	21/11/2018	21/11/2018	21/11/2018	21/11/2018	21/11/2018
FECHA INGRESO	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018
IDENTIFICACIÓN DE LA MUESTRA	180406214720181114-ETM 04-1	180406214720181114-ETM 04-2	180406214720181114-ETM 04-3	180406214720181114-ETM 04-4	180406214720181114-ETM 04-5
°N	16	17	18	19	20

Centro de Fomento Productivo Metalmecánico Carrocero

ð

EVIDENCIAS							
OBSERVACIONES	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente		
RESPONSABLE	Cliente	Cliente	Cliente	Cliente	Cliente		
FECHA ELIMINACIÓN	FECHA ELIMINACIÓN 21/11/2018		21/11/2018	21/11/2018	21/11/2018		
FECHA INGRESO	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018		
IDENTIFICACIÓN DE LA MUESTRA 180406214720181114-ETM 06-1		180406214720181114-ETM 06-2	180406214720181114-ETM 06-3	180406214720181114-ETM 06-4	180406214720181114-ETM 06-5		
°N	26	27	28	29	30		

Por acuerdo con el cliente las muestras son entregadas en su totalidad, el centro no se responsabiliza por el mantenimiento y almacenamiento de las mismas, quedando a responsabilidad del cliente su resguardo.

Jentro de Fomento Productivo Metalmecánico Carrocero Director Técnico Área de Ensayos e Ing. Esteban López Espinel MEng. Inspecciones CFPMC Aprobado por: Analista Técnico Área de Ensayos e Inspecciones ChPMC Ing. Fernando Galarza Chacón Mg. Cliente Elaborado por:

Código: RG-RM-003 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 17-01-2017 Revisión: 3

HOJA DE ALMACENAMIENTO DE MUESTRAS

Página 4 de 4

Informe ensayo de impacto - Centro de fomento productivo

metalmecánico carrocero

RECEPCIÓN E IDENTIFICACIÓN DE MUESTRAS

Informe Nº: 180406214720181114-EIM DATOS DEL CLIENTE

Empresa / Cliente: Ing. Giovanny Vinicio Pineida Silva Dirección: Barrio La Carolina.

Núm. de cédula / RUC: 1804062147001 Teléfono: 0995100164

E-mail: giopineda2009@hotmail.com

DATOS INFORMATIVOS

Laboratorio: Resistencia de Materiales

Designación del material:

Combinación Aluminio Zinc combinada por el método de pulvimetalurgía.

Método de ensayo:

ASTM E23 - 16b Método de prueba estándar para Prueba de Impacto de Barras de Materiales Metálicos

Número de Probetas cuantificadas

Nº	Identificación del grupo	ción del grupo Característica de la probeta Configuración		Temperatura	Probetas a Ensayar
1	180406214720181114-EIM 01	IT-P0.5-LT	0,5% Zn- 99,5% Al1060	462 °C	5
2	180406214720181114-EIM 02	IT-P0.5-HT	0,5% Zn- 99,5% Al1060	594 °C	5
3	180406214720181114-EIM 03	IT-P1.0-LT	1,0% Zn- 99,0% A11060	462 °C	5
4	180406214720181114-EIM 04	IT-P1.0-HT	1,0% Zn- 99,0% Al1060	594 °C	5
5	180406214720181114-EIM 05	IT-P1.5-LT	1,5% Zn- 98,5% Al1060	462 °C	5
6	180406214720181114-EIM 06	IT-P1.5-HT	1,5% Zn- 98,5% Al1060	594 °C	5
	2 - 2007 - 200 - Control - Co			Total	30

Nota: La fabricación de las probetas en tipo y cantidad es declarada por el cliente.

Código: RG-RM-001 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 02-02-2018 Revisión: 3 RECEPCIÓN E IDENTIFICACIÓN DE MUESTRAS

Página 1 de 3

Centro de Fomento Productivo Metalmecánico Carrocero

ENSAYO SOLICITADO							
No.	No. DE PROBETA	IDENTIFICACIÓN DE PROBETA	DESCRIPCIÓN	FECHAS RECEPCIÓN			
1	180406214720181114-EIM 01-1	IT-P0.5-LT-01	Cumple con los criterios dimensionales	2018/11/14			
2	180406214720181114-EIM 01-2	IT-P0.5-LT-02	Cumple con los criterios dimensionales	2018/11/14			
3	180406214720181114-EIM 01-3	IT-P0.5-LT-03	Cumple con los criterios dimensionales	2018/11/14			
4	180406214720181114-EIM 01-4	IT-P0.5-LT-04	Cumple con los criterios dimensionales	2018/11/14			
5	180406214720181114-EIM 01-5	IT-P0.5-LT-05	Cumple con los criterios dimensionales	2018/11/14			
6	180406214720181114-EIM 02-1	IT-P0.5-HT-01	Cumple con los criterios dimensionales	2018/11/14			
7	180406214720181114-EIM 02-2	IT-P0.5-HT-02	Cumple con los criterios dimensionales	2018/11/14			
8	180406214720181114-EIM 02-3	IT-P0.5-HT-03	Cumple con los criterios dimensionales	2018/11/14			
9	180406214720181114-EIM 02-4	IT-P0.5-HT-04	Cumple con los criterios dimensionales	2018/11/14			
10	180406214720181114-EIM 02-5	IT-P0.5-HT-05	Cumple con los criterios dimensionales	2018/11/14			
11	180406214720181114-EIM 03-1	IT-P1.0-LT-01	Cumple con los criterios dimensionales	2018/11/14			
12	180406214720181114-EIM 03-2	IT-P1.0-LT-02	Cumple con los criterios dimensionales	2018/11/14			
13	180406214720181114-EIM 03-3	IT-P1.0-LT-03	Cumple con los criterios dimensionales	2018/11/14			
14	180406214720181114-EIM 03-4	IT-P1.0-LT-04	Cumple con los criterios dimensionales	2018/11/14			
15	180406214720181114-EIM 03-5	IT-P1.0-LT-05	Cumple con los criterios dimensionales	2018/11/14			
16	180406214720181114-EIM 04-1	IT-P1.0-HT-01	Cumple con los criterios dimensionales	2018/11/14			
17	180406214720181114-EIM 04-2	IT-P1.0-HT-02	Cumple con los criterios dimensionales	2018/11/14			
18	180406214720181114-EIM 04-3	IT-P1.0-HT-03	Cumple con los criterios dimensionales	2018/11/14			
19	180406214720181114-EIM 04-4	IT-P1.0-HT-04	Cumple con los criterios dimensionales	2018/11/14			
20	180406214720181114-EIM 04-5	IT-P1.0-HT-05	Cumple con los criterios dimensionales	2018/11/14			
21	180406214720181114-EIM 05-1	IT-P1.5-LT-01	Cumple con los criterios dimensionales	2018/11/14			
22	180406214720181114-EIM 05-2	IT-P1.5-LT-02	Cumple con los criterios dimensionales	2018/11/14			
23	180406214720181114-EIM 05-3	IT-P1.5-LT-03	Cumple con los criterios dimensionales	2018/11/14			
24	180406214720181114-EIM 05-4	IT-P1.5-LT-04	Cumple con los criterios dimensionales	2018/11/14			
25	180406214720181114-EIM 05-5	IT-P1.5-LT-05	Cumple con los criterios dimensionales	2018/11/14			
26	180406214720181114-EIM 06-1	IT-P1.5-HT-01	Cumple con los criterios dimensionales	2018/11/14			
27	180406214720181114-EIM 06-2	IT-P1.5-HT-01	Cumple con los criterios dimensionales	2018/11/14			
28	180406214720181114-EIM 06-3	IT-P1.5-HT-01	Cumple con los criterios dimensionales	2018/11/14			

Código: RG-RM-001 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 02-02-2018 Revisión: 3

29	180406214720181114-EIM 06-4	IT-P1.5-HT-01	Cumple con los criterios dimensionales	2018/11/14
30	180406214720181114-EIM 06-5	IT-P1.5-HT-01	Cumple con los criterios dimensionales	2018/11/14

DATOS INFORMATIVOS: De acuerdo a los criterios de aceptación y rechazo las probetas cumplen con el número mínimo de muestras para el ensayo y en las dimensiones.

NOTA: LA INFORMACIÓN CONSIGNADA EN ESTE FORMULARIO ES DE EXCLUSIVA RESPONSABILIDAD DEL CLIENTE. POSTERIORMENTE A LA EJECUCIÓN DEL(LOS) ENSAYO(S) NO SE ADMITIRÁ ARREGLOS DE ESTA INFORMACIÓN NI DE LOS RESULTADOS OBTENIDOS. FAVOR REVISAR ANTES DE SU FIRMA.

und Elaborado por: Aprobado por: Ing. Esteban López Espinel MEng. Ing. Fernando Galarza Mg. Ing. Fernando Tibán Director Técnico Área de Ensayos Analista Técnico Área de Analista Técnico Área de e Inspecciones CFPMC Ensayos e Inspecciones Ensayos e Inspecciones CFPMC CFPMO MIT An Cliente

Código: RG-RM-001 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 02-02-2018 Revisión: 3 RECEPCIÓN E IDENTIFICACIÓN DE MUESTRAS

Página 3 de 3

LABORATORIO DE RESISTENCIA DE MATERIALES ENSAYO DE IMPACTO CHARPY DE MATERIALES METÁLICOS INFORME DE RESULTADOS Nº: 180406214720181114-EIM

DATOS GENERALES								
Nº (de proforma: RM 201	8 040						
Em	Empresa / Cliente: Ing. Giovanny Vinicio Pineida Silva.							
RU	C/C.I.: 1804062147001	Ci	udad: Amb	oato				
Dir	ección: Barrio La Carol	ina. Te	léfono: 099	5100164				
Cor	reo: giopineda2009@h	otmail.com.						
Dat	os del ensayo							
Lug	ar de Ejecución del E	nsayo: Laboratori	o de Resist	encia de M	ateriales.			
Dir	ección: Ambato/Catigla	ta. Toronto y Río	de Janeiro.					
Mé	todo de ensavo: AS	TM E23. Ensay	o de impa	acto para	materiales m	netálicos a		
tem	peratura ambiente.		1	1				
Tip	o de ensavo: Cuantitati	vo						
Ene	rgía utilizada (J): 450	(J)						
Tip	o de muestra: Sin ental	le.						
Eau	ipo utilizado: Máquina	de ensavos Char	pv. PIC 450	0 J.				
Mo	delo: PIC 450/C		Serie: M15	2552AR14				
Feel	ha de Inicio de Ensavo	:16/11/2018 Fe	cha de Fin	alización d	e Ensavo: 20	/11/2018		
Los	resultados obtenidos e	en el presente in	forme corr	esponden a	a ensavos rea	lizados en		
prob	etas de combinación A	luminio Zinc rea	lizadas nor	el método	de nulvimeta	lurgía Las		
prot	etas fueron recibidas e	n el Laboratorio	de Resister	ncia de Ma	teriales del C	FPMC del		
HG	P Tungurahua		de reconster		deridies der C			
11.0	ir i rungurunuu.	ORIETOS	DE ENSA	vo	A STATE OF STATE			
Núr	nero de Probetes cuen	tificadas	DE ENGA					
Itur	nero de Frobetas cuan	tilicauas.						
NIO	T-1	Característica	C . C	.,		Probetas a		
IN	Identificación del grupo	de la probeta	Configu	uracion	Temperatura	Ensayar		
1	180406214720181114-EIM 0	1 IT-P0.5-LT	0,5% Zn- 99	,5% Al1060	462 °C	5		
Obse	rvaciones: La fabricación	de la probeta para	la ejecución	del ensayo d	le Resistencia a	l impacto es		
respo	nsabilidad del cliente.							
Nota	: Este informe no significa c	ertificación de calida	d, no debe ser	usado con fii	nes publicitarios	y no debe ser		
repro	ducido total ni parcialmente				\bigcirc			
				1				
/	ATT		۵			N		
4	ALT)	1 Alt	*		1/	10		
- (IAAA	E	R		Mun	1		
1	1990	Atto		1	Country	1		
Elaborado por:			Aprobado	por:				
Ing.	Fernando Galarza Mg.	Fernando Galarza Mg. Ing. Fernando Tibán R.		Ing. Estel	oan López Espi	nel MEng.		
An	alista Técnico Área de	Analista Técnico	o Área de	Director T	écnico Área de	e Ensayos e		
Eı	nsayos e Inspecciones	Ensayos e Insp	ecciones	Ins	pecciones CFP	MC		
	CFPMC CFPMC							

Lugar y fecha de emisión de Informe: Ambato, 20 de noviembre de 2018.

N°. Factura: 001-002-000005969. Lentro de Fomento Productivo Metalmecànico Carrocero Página 1 de 5

Código: RG-RM-041 Fecha de Elaboración: 28-04-2018 Fecha de última aprobación:19-11-2018 Revisión:1 INFORME DE ENSAYO DE IMPACTO CHARPY DE MATERIALES METÁLICOS.

2	180406214720181114-EIM 02	IT-P0.5-HT	0,5% Zn- 99,5% Al1060	594 °C	5
3	180406214720181114-EIM 03	IT-P1.0-LT	1,0% Zn- 99,0% Al1060	462 °C	5
4	180406214720181114-EIM 04	IT-P1.0-HT	1,0% Zn- 99,0% Al1060	594 °C	5
5	180406214720181114-EIM 05	IT-P1.5-LT	1,5% Zn- 98,5% Al1060	462 °C	5
6	180406214720181114-EIM 06	IT-P1.5-HT	1,0% Zn- 98,5% Al1060	594 °C	5
22-				Total	30

Código: RG-RM-041 Fecha de Elaboración: 28-04-2018 Fecha de última aprobación: 19-11-2018 Revisión: 1 INFORME DE ENSAYO DE IMPACTO CHARPY DE MATERIALES METÁLICOS. Página 2 de 5

Centro de Formento Productivo Metalmecánico Carrocero

Resultados:

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	tem	Identificación de probeta	Temperatura	Humedad Relativa	Secció	n transvers probeta	al de la	Energía absorbida	Resistencia al impacto	Aspecto de la fractura	Fraci de prob	tura la eta	
1 180406214720181114-EIM 01-1 24,2 50,6 0,1156 0,01250 0,89 71,221 90 X V 2 180406214720181114-EIM 01-2 24,2 50,6 0,1127 0,1027 0,01157 0,59 50,975 100 X V 3 180406214720181114-EIM 01-3 24,2 50,6 0,1131 0,1063 0,01202 0,89 74,028 100 X V 4 180406214720181114-EIM 01-4 24,2 50,6 0,1165 0,01032 0,59 57,190 80 X V <			D°	%	Altura (cm)	Ancho (cm)	Área (cm ²)	(1)	(NCU) (J/cm ²)	(% de cizallamiento)	IS	NO	-
2 180406214720181114-EIM 01-2 24,2 50,6 0,1127 0,0127 0,01157 0,59 50,975 100 X V 3 180406214720181114-EIM 01-3 24,2 50,6 0,1131 0,1053 0,01202 0,89 74,028 100 X V 4 180406214720181114-EIM 01-4 24,2 50,6 0,1053 0,01032 0,59 57,190 80 X V	-	180406214720181114-EIM 01-1	24,2	50,6	0,1156	0,1081	0,01250	0,89	71,221	06	X		-
3 180406214720181114-EIM 01-3 24,2 50,6 0,1131 0,1063 0,01202 0,89 74,028 100 X V 4 180406214720181114-EIM 01-4 24,2 50,6 0,1078 0,0957 0,01032 0,59 57,190 80 X V	-	180406214720181114-EIM 01-2	24,2	50,6	0,1127	0,1027	0,01157	0,59	50,975	100	X		-
4 180406214720181114-EIM 01-4 24,2 50,6 0,1078 0,0957 0,01032 0,59 57,190 80 X	e	180406214720181114-EIM 01-3	24,2	50,6	0,1131	0,1063	0,01202	0,89	74,028	100	Х		-
5 180406214720181114-EIM 01-5 24,2 50,6 0,1165 0,0943 0,01099 0,89 81,013 60 X Promedio X 0,770 66,885 Desviación estándar S _{n-1} 0,164 12,415 Coefficiente de variación CV 21,340 18,562	4	180406214720181114-EIM 01-4	24,2	50,6	0,1078	0,0957	0,01032	0,59	57,190	80	X		-
Promedio X 0,770 66,885 Desviación estándar S _{n-1} 0,164 12,415 Coeficiente de variación CV 21,340 18,562	~	180406214720181114-EIM 01-5	24,2	50,6	0,1165	0,0943	0,01099	0,89	81,013	60	X		-
Desviación estándar S_{n-1} 0,164 12,415 Coeficiente de variación CV 21,340 18,562						H	Promedio X	0,770	66,885				
Coeficiente de variación CV 21,340 18,562					Des	viación estár	odar Sn-1	0,164	12,415				
					Coefi	ciente de va	riación CV	21,340	18,562				

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	in de probeta	Temperatura	Humedad Relativa	Secció	n transvers probeta	al de la	Energía absorbida	Resistencia al impacto	Aspecto de la fractura	Frac	la l
EIM 02-1 25,1 47,6 0,1019 0,0864 0,00880 1,02 115,854 90 X EIM 02-2 25,1 47,6 0,1208 0,105 0,01280 1,03 80,439 80 X EIM 02-3 25,1 47,6 0,105 0,01054 0,74 70,237 60 X EIM 02-4 25,1 47,6 0,1055 0,01059 0,01190 0,74 70,237 60 X EIM 02-5 25,1 47,6 0,1126 0,01133 1,03 93,405 80 X EIM 02-5 25,1 47,6 0,1138 0,01637 0,0123 1,03 93,405 80 X FIM 02-5 25,1 47,6 0,1138 0,01637 1,03 93,405 80 X FIM 02-5 25,1 47,6 0,1138 0,01637 1,03 93,405 80 X Promedio X 0,91103 1,03 93,405 80 X 1 <th></th> <th>°C</th> <th>%</th> <th>Altura (cm)</th> <th>Ancho (cm)</th> <th>Área (cm²)</th> <th>(6)</th> <th>(KCU) (J/cm²)</th> <th>(% de cizallamiento)</th> <th>IS</th> <th>NO</th>		°C	%	Altura (cm)	Ancho (cm)	Área (cm ²)	(6)	(KCU) (J/cm ²)	(% de cizallamiento)	IS	NO
LeEIM 02.2 25,1 47,6 0,1208 0,01280 1,03 80,439 80 X LeEIM 02.3 25,1 47,6 0,1038 0,1015 0,01054 0,74 70,237 60 X LeEIM 02.4 25,1 47,6 0,1056 0,01190 0,74 70,237 60 X LeEIM 02.4 25,1 47,6 0,1156 0,01103 1,03 93,405 80 X FeIM 02.5 25,1 47,6 0,1138 0,01103 1,03 93,405 80 X FeIM 02.5 25,1 47,6 0,1138 0,01103 1,03 93,405 80 X FeIM 02.5 25,1 47,6 0,1138 0,01103 1,03 84,429 80 X Desviación estándat S _{n-1} 0,157 21,990 21,990 24,979 80 17,222 24,979	4-EIM 02	-1 25,1	47,6	0,1019	0,0864	0,00880	1,02	115,854	90	×	
4-EIM 02-3 25,1 47,6 0,1038 0,1015 0,01054 0,74 70,237 60 X 4-EIM 02-4 25,1 47,6 0,1156 0,0190 0,74 62,210 80 X 4-EIM 02-5 25,1 47,6 0,1156 0,0103 1,03 93,405 80 X 4-EIM 02-5 25,1 47,6 0,1138 0,0069 0,01103 1,03 93,405 80 X -EIM 02-5 25,1 47,6 0,1138 0,0969 0,01103 1,03 93,405 80 X -EIM 02-5 25,1 47,6 0,1138 0,0969 0,01103 1,03 84,429 80 X	4-EIM 02	2 25,1	47,6	0,1208	0,106	0,01280	1,03	80,439	80	X	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14-EIM 02	3 25,1	47,6	0,1038	0,1015	0,01054	0,74	70,237	60	х	
I4-EIM 02-5 25,1 47,6 0,1138 0,0969 0,01103 1,03 93,405 80 X Promedio X 0,912 84,429 84,429 Desviación estándar S _{h-1} 0,157 21,090 Coeficiente de variación (V 17,222 24,979	14-EIM 02	4 25,1	47,6	0,1156	0,1029	0,01190	0,74	62,210	80	×	
Promedio \overline{X} 0.912 84,429 Desviación estándar S_{n-1} 0,157 21,090 Coefficiente de variación (V 17,222 24,979	14-EIM 02	5 25,1	47,6	0,1138	0,0969	0,01103	1,03	93,405	80	x	
Desviación estándar S_{n-1} 0,157 21,090 Coeficiente de variación CV 17.222 24.579					-	Promedio X	0,912	84,429			
Coefficiente de variación CV 17.222 24.979				Des	viación está	ndar S _{n-1}	0,157	21,090			
				Coeff	ciente de va	riación CV	17,222	24,979			

INFORME DE ENSAYO DE IMPACTO CHARPY DE MATERIALES METÁLICOS.

Codigo: RG-RM-041 Fecha de Elabornsión: 28-04-2017 Fecha de última aprobación:19-11-2018 Revisión:1

Página 3 de 5

Centro de Fomento Productivo Metalmecánico Carrocero

oheta '	Humedad Seco	ción transvers probeta	al de la	Energía	Resistencia al impacto	Aspecto de la fractura	de l brob	E _ 2
°C	% Altura (cm)	Ancho (cm)	Área (cm ²)	(6)	(KCU) (J/cm ²)	(% dc cizallamiento)	IS	NO
24,9	47,5 0,1091	0,0868	0,00947	1,03	108,766	80	х	
24,9	47,5 0,1102	160'0	0,01003	0,74	73,792	80	×	
24,9	47,5 0,1077	0,0969	0,01044	1,33	127,442	80	х	
24.9	47,5 0,1103	0,1066	0,01176	1,03	87,600	90	×	
24,9	47,5 0,1079	0,1007	0,01087	1,93	177,626	70	x	
			Promedio X	1,212	115,045			
	4	Desviación está	ndar Sn-1	0,452	40,511			
			182					

tem	Identificación de proheta	Temperatura	Humedad Relativa	Secció	n transvers probeta	al de la	Energia absorbida	Resistencia al impacto	Aspecto de la fractura	Fract de prot	tura la beta
		သိ	%	Altura (cm)	Ancho (cm)	Área (cm ²)	(1)	(J/cm ²)	(7º de cizallamiento)	SI	NO
16	180406214720181114-EIM 04-1	24,2	54,5	0,1117	0,1037	0,01158	0,59	50,935	90	х	
17	180406214720181114-EIM 04-2	24,2	54,5	0,1079	0,1062	0,01146	1,18	102,976	100	×	
18	180406214720181114-EIM 04-3	24,2	54,5	0,1108	0,0962	0,01066	1,48	138,850	90	×	
19	180406214720181114-EIM 04-4	24,2	54,5	0,1124	0,1098	0,01234	1,18	95,612	80	×	
20	180406214720181114-EIM 04-5	24,2	54,5	0,1134	0,1052	0,01193	1,18	98,913	90	×	
						Promedio X	1,122	97,457			
				Desr	viación está	ndar Sn-1	0,325	31,280			
				Coefi	ciente de va	vriación CV	28,924	32,096			

INFORME DE ENSAYO DE IMPACTO CHARPY DE MATERIALES METÁLICOS.

Codigo: RG-RM-041 Fecha de Elaboración: 28-04-2017 Fecha de última aprobación:19-11-2018 Revisión:1

Centro de Fomento Productivo Metalmecánico Carrocero

i tam	Idantificación de mecheta	Temneratura	Humedad Relativa	Secció	n transvers probeta	al de la	Energía absorbida	Resistencia al impacto	Aspecto de la fractura	Frac de prot	tura la beta
		3.	%	Altura (cm)	Ancho (cm)	Área (cm ²)	(1)	(J/cm ²)	cizallamiento)	IS	ON
21	180406214720181114-ETM 05-1	242	53.0	0,1155	0,1012	0,01169	0,62	53,043	80	х	
20	180406214720181114-EIM 05-2	24.2	53.0	0,1162	0,0974	0,01132	1,18	104,260	60	×	
23	180406214720181114-EIM 05-3	24.2	53.0	0,1123	0,1118	0,01256	0,88	160'02	70	×	
24	180406214720181114-EIM 05-4	24.2	53.0	0,1067	0,0976	0,01041	0,59	56,655	90	×	
52	180406214720181114-EIM 05-5	24,2	53,0	0,1021	0,1011	0,01032	0,88	85,252	20	x	
						Promedio X	0,830	73,860			
				Des	viación está	ndar S _{n-1}	0,239	21,198			
				Coef	ciente de va	uriación CV	28,840	28,701			

	Idantificación de meheta	Temperatura	Humedad Relativa	Secció	n transvers probeta	al de la	Energía absorbida	Resistencia al impacto	Aspecto de la fractura	Frac de proh	tura la beta
		D °	%	Altura (cm)	Ancho (cm)	Area (cm ²)	(r)	(J/cm ²)	cizallamiento)	IS	NO
36	1-90 M14-F11181022412904081	25.1	51.8	0,1031	0,0942	17900,0	0,59	60,749	60	x	
3 5	180406714720181114-FIM 06-2	25.1	51.8	0,1087	0,1048	0,01139	0,88	77,249	80	х	
38	180406214720181114-ETM 06-3	25.1	51.8	0,1062	0,0965	0,01025	1,18	115,141	09	x	
202	180406214720181114-EIM 06-4	25,1	51.8	0,1111	0,0954	0,01060	1,18	111,332	80	х	
30	180406214720181114-EIM 06-5	25.1	51,8	0,1073	0,1017	0,01091	0,88	80,642	80	x	
						Promedio X	0,942	89,023			
				Des	viación está	ndar S _{n-1}	0,247	23,389			
				Coefi	iciente de va	vriación CV	26,266	26,273			

Observaciones: Ninguna

Codigo: RG-RM-041 Fecha de Elaboración: 28-04-2017 Fecha de última aprobación:19-11-2018 Revisión:1

Página 5 de 5

INFORME DE ENSAVO DE IMPACTO CHARPY DE MATERIALES METÁLICOS.

HOJA DE ALMACENAMIENTO DE MUESTRAS

Informe N°: 180406214720181114-EIM		
DATOS DEL CLIENTE		
Empresa / Cliente: Ing. Giovanny Vinicio Pineda Silva		
DIRECCIÓN: Barrio La Carolina.		
NÚM. DE CEDULA / RUC: 1804062147001	TELÉFONO: 0995100164	
E-MAIL: giopineda2009@hotmail.com		

DATOS INFORMATIVOS
Laboratorio: Resistencia de Materiales
Designación del material:
Combinación Aluminio Zinc combinada por el método de pulvimetalurgía.
Método de ensayo:
ASTM E23 – 16b Método de prueba estándar para Prueba de Impacto de Barras de Materiales Metálicos.

EVIDENCIAS		Print of the provide statement of the	The second se	A NUMBER OF A DESCRIPTION OF A DESCRIPTI	
OBSERVACIONES	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente
RESPONSABLE	Cliente	Cliente	Cliente	Cliente	Cliente
FECHA ELIMINACIÓN	21/11/2018	21/11/2018	21/11/2018	21/11/2018	21/11/2018
FECHA INGRESO	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018
IDENTIFICACIÓN DE LA MUESTRA	180406214720181114-EIM 01-1	180406214720181114-EIM 01-2	180406214720181114-EIM 01-3	180406214720181114-EIM 01-4	180406214720181114-EIM 01-5
°Z	1	2	ю	4	5

Código: RG-RM-003 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 17-01-2017 Revisión: 3

HOJA DE ALMACENAMIENTO DE MUESTRAS

Página 1 de 3

Honorable Gobierno Provincial de Tungurahua

°N	IDENTIFICACIÓN DE LA MUESTRA	FECHA INGRESO	FECHA ELIMINACIÓN	RESPONSABLE	OBSERVACIONES	EVIDENCIAS
9	180406214720181114-EIM 02-1	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
7	180406214720181114-EIM 02-2	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	A CONCEPTION ALCONER 1
~	180406214720181114-EIM 02-3	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
6	180406214720181114-EIM 02-4	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	TAIN ATHING TO A TAIN A TAI
10	180406214720181114-EIM 02-5	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
Π	180406214720181114-EIM 03-1	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
12	180406214720181114-EIM 03-2	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	A TOPOLOGICAL AND A T
13	180406214720181114-EIM 03-3	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	- COMPANY OF A DESCRIPTION OF A A DESCRIPTION OF A DESCRI
14	180406214720181114-EIM 03-4	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
15	180406214720181114-EIM 03-5	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
16	180406214720181114-EIM 04-1	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
17	180406214720181114-EIM 04-2	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	In state
18	180406214720181114-EIM 04-3	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	223012400 0 224300 0 254322 0 254322 0 25432 0 25542 0 255540 0 255560 0 255560 0 255560 0 255560 0 255560 0 255560 0 255560 0 255560 0 25556000000000000000000000000000000000
19	180406214720181114-EIM 04-4	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
20	180406214720181114-EIM 04-5	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
21	180406214720181114-EIM 05-1	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
22	180406214720181114-EIM 05-2	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
23	180406214720181114-EIM 05-3	- 14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
24	180406214720181114-EIM 05-4	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	A STATE OF A DESCRIPTION OF A DESCRIPTIO
25	180406214720181114-EIM 05-5	14/11/2018	21/11/2018	Cliente	Se entrega al cliente	
Códi Fech Fech Revis	o: RG-RM-003 a de Etaboración: 06-07-2016 a de última aprobación: 17-01-2017 sión: 3		HOJA D	E ALMACENAMIENT DE MUESTRAS	0	Página 2 de 3

EVIDENCIAS			At A man and a the star of a second s		
OBSERVACIONES	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente	Se entrega al cliente
RESPONSABLE	Cliente	Cliente	Cliente	Cliente	Cliente
FECHA ELIMINACIÓN	21/11/2018	21/11/2018	21/11/2018	21/11/2018	21/11/2018
FECHA INGRESO	14/11/2018	14/11/2018	14/11/2018	14/11/2018	14/11/2018
IDENTIFICACIÓN DE LA MUESTRA	180406214720181114-EIM 06-1	180406214720181114-EIM 06-2	180406214720181114-EIM 06-3	180406214720181114-EIM 06-4	180406214720181114-EIM 06-5
°N	26	27	28	29	30

Todas las probetas ensayadas por acuerdo, son entregadas al cliente, el CFPMC no se responsabiliza por el mantenimiento y almacenamiento, quedando a responsabilidad del cliente su resguardo.

		Junut
Elaborado nor:		Aprobado por:
Ing. Fernando Galarza Chacón Mg.	Ing. Fernando Tibán R.	Ing. Esteban López Espinel MEng.
Analista Técnico Área de Ensayos e Inspecciones CFPMC	Analista Técnico Área de Ensayos e Inspecciones CFPMC	Director Técnico Área de Ensayos e Inspecciones CFPMC
Cliente	Gentro de Fomento Productivo Gentro de Fomento Productivo Metalmecánico Garrocero	
Código: RG-RM-003 Fecha de Elaboración: 06-07-2016 Fecha de última aprobación: 17-01-2017 Revisión: 3	HOJA DE ALMACENAMIENTO DE MUESTRAS	Página 3 de 3

Tabla de distribución de la prueba de Fisher

Puntos críticos al 5% de la distribución F [32]

									Gra	dos d	e libe	rtad e	n el n	umera	ador									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	20	25	30	40	50	75	100	
	1	161	199	216	225	230	234	237	239	241	242	243	244	245	245	246	248	249	250	251	252	253	253	254
	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	91.5	19.5	19.5	19.5	19.5
	3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	8.73	8.71	8.70	8.66	8.63	8.62	8.59	8.58	8.56	8.55	8.53
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91	5.89	5.87	5.86	5.80	5.77	5.75	5.72	5.70	5.68	5.66	5.63
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68	4.66	4.64	4.62	4.56	4.52	4.50	4.46	4.44	4.42	4.41	4.37
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	3.98	3.96	3.94	3.87	3.83	3.81	3.77	3.75	3.73	3.71	3.67
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.57	3.55	3.53	3.51	3.44	3.40	3.38	3.34	3.32	3.29	3.27	3.23
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.28	3.26	3.24	3.22	3.15	3.11	3.08	3.04	3.02	2.99	2.97	2.93
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10	3.07	3.05	3.03	3.01	2.94	2.89	2.86	2.83	2.80	2.77	2.76	2.71
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91	2.89	2.86	2.85	2.77	2.73	2.70	2.66	2.64	2.60	2.59	2.54
	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79	2.76	2.74	2.72	2.65	2.60	2.57	2.53	2.51	2.47	2.46	2.41
	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69	2.66	2.64	2.62	2.54	2.50	2.47	2.43	2.40	2.37	2.35	2.30
눹	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60	2.58	2.55	2.53	2.46	2.41	2.38	2.34	2.31	2.28	2.26	2.21
ina.	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53	2.51	2.48	2.46	2.39	2.34	2.31	2.27	2.24	2.21	2.19	2.13
N	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48	2.45	2.42	2.40	2.33	2.28	2.25	2.20	2.18	2.14	2.12	2.07
lde	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.42	2.40	2.37	2.35	2.28	2.23	2.19	2.15	2.12	2.09	2.07	2.01
5	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	2.38	2.35	2.33	2.31	2.23	2.18	2.15	2.10	2.08	2.04	2.02	1.96
tad	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34	2.31	2.29	2.27	2.19	2.14	2.11	2.06	2.04	2.00	1.98	1.92
<u></u>	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34	2.31	2.28	2.26	2.23	2.16	2.11	2.07	2.03	2.00	1.96	1.94	1.88
sde	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	2.28	2.25	2.22	2.20	2.12	2.07	2.04	1.99	1.97	1.93	1.91	1.84
-g	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.28	2.25	2.22	2.20	2.18	2.10	2.05	2.01	1.96	1.94	1.90	1.88	1.81
5	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.26	2.23	2.20	2.17	2.15	2.07	2.02	1.98	1.94	1.91	1.87	1.85	1.78
	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.24	2.20	2.18	2.15	2.13	2.05	2.00	1.96	1.91	1.88	1.84	1.82	1.76
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.22	2.18	2.15	2.13	2.11	2.03	1.97	1.94	1.89	1.86	1.82	1.80	1.73
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.20	2.16	2.14	2.11	2.09	2.01	1.96	1.92	1.87	1.84	1.80	1.78	1.71
	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.18	2.15	2.12	2.09	2.07	1.99	1.94	1.90	1.85	1.82	1.78	1.76	1.69
	27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.17	2.13	2.10	2.08	2.06	1.97	1.92	1.88	1.84	1.81	1.76	1.74	1.67
	28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12	2.09	2.06	2.04	1.96	1.91	1.87	1.82	1.79	1.75	1.73	1.65
	29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.14	2.10	2.08	2.05	2.03	1.94	1.89	1.85	1.81	1.77	1.73	1.71	1.64
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09	2.06	2.04	2.01	1.93	1.88	1.84	1.79	1.76	1.72	1.70	1.62
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00	1.97	1.95	1.92	1.84	1.78	1.74	1.69	1.66	1.61	1.59	1.51
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92	1.89	1.86	1.84	1.75	1.69	1.65	1.59	1.56	1.51	1.48	1.39
	100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97	1.93	1.89	1.85	1.82	1.79	1.77	1.68	1.62	1.57	1.52	1.48	1.42	1.39	1.28
	00	3.84	3.00	2.61	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.79	1.75	1.72	1.69	1.67	1.57	1.51	1.46	1.40	1.35	1.28	1.25	1.03

	VELOCIDAD DEL VIENTO - ALTURA											
h(m)	V(m/s)	h(m)	V(m/s)	h(m)	V(m/s)							
2789	3,60	3210	7,57	3455	12,30							
2810	3,67	3216	7,89	3462	12,48							
2824	3,72	3222	8,20	3469	12,25							
2834	3,75	3229	8,49	3475	12,60							
2843	3,76	3237	8,78	3481	12,55							
2852	3,75	3244	9,04	3487	12,60							
2864	3,72	3251	9,30	3494	12,48							
2875	3,66	3257	9,54	3500	12,66							
2885	3,58	3262	9,76	3505	12,52							
2897	3,48	3267	9,97	3510	12,82							
2909	3,36	3271	10,17	3513	12,86							
2922	3,22	3275	10,35	3516	13,05							
2935	3,05	3279	10,52	3519	13,00							
2948	3,20	3282	10,67	3522	13,12							
2957	3,80	3287	10,81	3524	13,15							
2964	3,70	3292	10,93	3527	13,23							
2970	4,05	3298	11,04	3530	13,30							
2977	4,02	3305	11,14	3533	13,36							
2986	4,24	3313	11,23	3536	13,43							
2996	4,28	3322	11,30	3540	13,49							
3007	4,33	3331	11,36	3542	13,56							
3017	4,42	3340	11,43	3544	13,62							
3027	4,51	3347	11,49	3547	13,54							
3040	4,36	3352	11,56	3551	13,48							
3052	4,45	3357	11,62	3554	13,25							
3063	4,52	3363	11,69	3558	13,12							
3072	4,68	3371	11,75	3561	12,95							
3082	4,48	3378	11,82	3565	12,76							
3092	4,70	3386	11,88	3569	12,35							
3104	4,95	3394	11,95	3573	12,17							
3116	4,92	3402	12,01	3578	11,92							
3130	5,06	3411	12,08	3583	11,67							
3144	5,44	3419	12,14	3587	11,42							
3159	5,82	3426	12,21	3591	11,17							
3174	6,18	3432	12,27	3596	11,02							
3188	6,54	3437	12,34	3601	10,85							
3198	6,90	3442	12,40	3606	10,64							
3204	7,24	3448	12,47	3612	10,24							

Velocidad del viento en función de la altura [38]

	VELOCIDA	D DEL VI	ENTO - ALTU	URA (Con	t.)
h(m)	V(m/s)	h(m)	V(m/s)	h(m)	V(m/s)
3617	10,28	3877	8,95	4106	7,13
3623	10,34	3885	8,95	4111	7,07
3629	10,40	3892	8,95	4117	7,03
3636	10,47	3900	8,96	4122	7,00
3642	10,54	3908	8,98	4127	6,97
3649	10,61	3915	8,99	4132	6,96
3655	10,67	3922	9,00	4137	6,94
3662	10,71	3930	9,01	4143	6,94
3668	10,74	3937	9,01	4148	6,93
3674	10,76	3944	9,01	4154	6,93
3680	10,75	3951	9,00	4160	6,92
3686	10,72	3957	8,97	4165	6,92
3692	10,67	3963	8,95	4170	6,91
3697	10,61	3970	8,91	4176	6,91
3702	10,53	3976	8,87	4181	6,91
3708	10,43	3982	8,82	4186	6,91
3714	10,33	3988	8,77	4191	6,91
3720	10,22	3994	8,73	4196	6,92
3727	10,12	4000	8,68	4202	6,94
3734	10,02	4007	8,63	4207	6,96
3741	9,92	4013	8,57	4212	6,99
3748	9,84	4019	8,52	4218	7,03
3755	9,76	4024	8,46	4223	7,07
3763	9,68	4029	8,40	4228	7,11
3770	9,62	4034	8,33	4234	7,16
3778	9,56	4039	8,26	4240	7,21
3786	9,50	4045	8,18	4246	7,25
3793	9,44	4050	8,10	4251	7,29
3800	9,38	4056	8,01	4257	7,33
3807	9,32	4061	7,92	4262	7,36
3815	9,26	4067	7,82	4268	7,38
3822	9,21	4072	7,72	4274	7,39
3830	9,15	4077	7,63	4280	7,40
3838	9,10	4081	7,53	4285	7,39
3846	9,05	4086	7,43	4291	7,38
3855	9,01	4091	7,35	4297	7,36
3862	8,98	4096	7,26	4303	7,34
3870	8,96	4102	7,19	4309	7,31

	VELOCIDA	D DEL VI	ENTO - ALT	URA (Con	t.)
h(m)	V(m/s)	h(m)	V(m/s)	h(m)	V(m/s)
4315	7,29	4594	6,35	4906	7,41
4321	7,26	4602	6,36	4915	7,53
4327	7,24	4610	6,36	4923	7,66
4333	7,23	4618	6,36	4931	7,77
4339	7,22	4626	6,36	4939	7,88
4347	7,22	4633	6,36	4948	7,98
4354	7,22	4641	6,35	4956	8,07
4361	7,22	4649	6,34	4965	8,15
4367	7,22	4657	6,32	4974	8,22
4374	7,22	4664	6,30	4983	8,29
4381	7,20	4672	6,28	4990	8,35
4390	7,18	4680	6,27	4998	8,41
4399	7,13	4688	6,26	5006	8,46
4407	7,08	4696	6,25	5014	8,51
4414	7,00	4705	6,27	5022	8,57
4421	6,92	4713	6,30	5030	8,63
4428	6,82	4722	6,34	5039	8,70
4436	6,73	4729	6,40	5048	8,76
4444	6,63	4736	6,47	5056	8,83
4451	6,55	4743	6,54	5066	8,91
4458	6,47	4750	6,61	5076	8,98
4465	6,41	4758	6,68	5085	9,06
4473	6,37	4766	6,73	5095	9,13
4480	6,35	4774	6,78	5105	9,20
4488	6,34	4783	6,82	5115	9,26
4495	6,34	4792	6,84	5123	9,32
4502	6,35	4802	6,84	5131	9,37
4510	6,37	4812	6,84	5140	9,42
4517	6,38	4820	6,83	5148	9,45
4525	6,40	4828	6,83	5157	9,48
4532	6,41	4837	6,84	5167	9,51
4540	6,41	4846	6,85	5177	9,54
4547	6,41	4854	6,88	5186	9,56
4555	6,40	4863	6,93	5194	9,57
4562	6,39	4872	6,99	5202	9,60
4570	6,38	4880	7,08	5210	9,62
4579	6,37	4888	7,18	5217	9,64
4586	6,36	4897	7,29	5225	9,65

Factores Atmosféricos ISA [39]

	FACTORES ATMOSFÉRICOS ISA											
ALTITUD	TEMPERATURE	PRESSURE	DENSITY	SPEED OF SOUND	VISCOSITY							
h (m)	T (K)	P (N/m²)	ρ (Kg/m³)	a (m/s)	μ (Kg/ms)							
0	288,16	101325	1,22500	340,3	1,79E-05							
500	284,91	95461	1,16730	338,4	1,77E-05							
1000	281,66	89876	1,11170	336,4	1,76E-05							
1500	278,41	84560	1,05810	334,5	1,74E-05							
2000	275,16	79501	1,00660	332,5	1,73E-05							
2500	271,92	74692	0,95696	330,6	1,71E-05							
3000	268,67	70121	0,90926	328,6	1,69E-05							
3500	265,42	65780	0,86341	326,6	1,68E-05							
4000	262,18	61660	0,81935	324,6	1,66E-05							
4500	258,93	57752	0,77704	322,6	1,65E-05							
5000	255,69	54048	0,73643	320,5	1,63E-05							
5500	252,44	50539	0,69747	318,5	1,61E-05							
6000	249,20	47217	0,66011	316,5	1,76E-05							
6500	245,95	44075	0,62431	314,4	1,60E-05							
7000	242,71	41105	0,59002	312,3	1,58E-05							
7500	239,47	38299	0,55719	310,2	1,56E-05							
8000	236,23	35651	0,52578	308,1	1,54E-05							
8500	232,98	33154	0,49575	306,0	1,53E-05							
9000	229,74	30800	0,46706	303,9	1,51E-05							
9500	226,50	28584	0,43966	301,7	1,49E-05							
10000	223,26	26500	0,41351	299,6	1,48E-05							
10500	220,02	25540	0,38857	297,4	1,46E-05							
11000	216,78	22700	0,36480	295,2	1,44E-05							
11500	216,66	20985	0,33743	295,1	1,42E-05							
12000	216,66	19399	0,31194	295,1	1,42E-05							
12500	216,66	17934	0,28837	295,1	1,42E-05							
13000	216,66	16579	0,26659	295,1	1,42E-05							
13500	216,66	15327	0,24646	295,1	1,42E-05							

	FACT	ORES ATMO	SFÉRICOS	ISA (Cont.)	
ALTITUD	TEMPERATURE	PRESSURE	DENSITY	SPEED OF SOUND	VISCOSITY
h (m)	T (K)	P (N/m²)	ρ (Kg/m³)	a (m/s)	μ (Kg/ms)
14000	216,66	14170	0,22785	295,1	1,42E-05
14500	216,66	13101	0,21065	295,1	1,42E-05
15000	216,66	12112	0,19475	295,1	1,42E-05
16000	216,66	10353	0,16647	295,1	1,42E-05
17000	216,66	8849,6	0,14230	295,1	1,42E-05
18000	216,66	7565,2	0,12165	295,1	1,42E-05
19000	216,66	6467,4	0,10399	295,1	1,42E-05
20000	216,66	5529,3	0,08891	295,1	1,42E-05
21000	216,66	4728,9	0,07572	295,1	1,42E-05
22000	216,66	4047,5	0,06451	295,1	1,42E-05
23000	216,66	3466,9	0,05558	295,1	1,42E-05
24000	216,66	2955,4	0,04752	295,1	1,42E-05
25000	216,66	2527,3	0,04064	295,1	1,42E-05
30000	231,24	1185,5	0,01786	295,1	1,49E-05

(Fuente: Brandt, Steven A. (2004). *Introduction to Aeronautics:* A Design Perspective. (2^a Ed.). AIAA Education Series.)

Coordenadas plano de vuelo [38]

PLANO DE VUELO										
CONFIGUR	RACIÓN SU	PERIOR	CONFIGUE	RACIÓN INFERIOR						
X (mm)	Y (mm)	X (mm)	Y ((mm)					
0,00	0,00	0,00	0,00	0,00	0,00					
75,50	11,26	-11,26	100,00	14,92	-14,92					
151,00	15,33	-15,33	200,00	20,31	-20,31					
226,50	18,14	-18,14	300,00	24,03	-24,03					
302,00	20,26	-20,26	400,00	26,86	-26,86					
377,50	21,91	-21,91	500,00	29,02	-29,02					
453,00	23,21	-23,21	600,00	30,74	-30,74					
528,50	24,23	-24,23	700,00	32,09	-32,09					
604,00	25,01	-25,01	800,00	33,15	-33,15					
679,50	25,60	-25,60	900,00	33,91	-33,91					
755,00	26,02	-26,02	1000,00	34,46	-34,46					
830,50	26,28	-26,28	1100,00	34,81	-34,81					
906,00	26,41	-26,41	1200,00	34,98	-34,98					
981,50	26,43	-26,43	1300,00	35,00	-35,00					
1057,00	26,33	-26,33	1400,00	34,87	-34,87					
1132,50	26,13	-26,13	1500,00	34,61	-34,61					
1208,00	25,84	-25,84	1600,00	34,23	-34,23					
1283,50	25,48	-25,48	1700,00	33,75	-33,75					
1359,00	25,04	-25,04	1800,00	33,16	-33,16					
1434,50	24,52	-24,52	1900,00	32,48	-32,48					
1510,00	23,95	-23,95	2000,00	31,72	-31,72					
1585,50	23,31	-23,31	2100,00	30,88	-30,88					
1661,00	22,63	-22,63	2200,00	29,97	-29,97					
1736,50	21,89	-21,89	2300,00	28,99	-28,99					
1800,00	21,12	-21,12	2400,00	27,95	-27,95					
1820,00	21,10	-21,10	2500,00	26,85	-26,85					
1887,50	20,27	-20,27	2600,00	25,69	-25,69					
1963,00	19,40	-19,40	2700,00	24,84	-24,84					
2038,50	18,48	-18,48	2780,00	23,38	-23,38					
2114,00	17,53	-17,53	2800,00	23,22	-23,22					
2189,50	16,54	-16,54	2900,00	21,91	-21,91					
2265,00	15,52	-15,52	3000,00	20,55	-20,55					
2340,50	14,46	-14,46	3100,00	19,15	-19,15					
2416,00	13,37	-13,37	3200,00	17,71	-17,71					
2491,50	12,25	-12,25	3300,00	16,22	-16,22					
2567,00	11,08	-11,08	3400,00	14,68	-14,68					
2642,50	9,89	-9,89	3500,00	13,10	-13,10					
2718,00	8,67	-8,67	3600,00	11,48	-11,48					
2793,50	7,41	-7,41	3700,00	9,81	-9,81					
2869,00	5,66	-5,66	3800,00	7,50	-7,50					
2944,50	3,32	-3,32	3900,00	4,40	-4,40					
3020,00	0,00	0,00	4000,00	0,00	0,00					

Perfil geométrico plano de vuelo [38]

PLANOS

		/	8							
Ĩ		8				А				
0000						В				
Y		DETALLE ESCALA 1	B : 2			С				
						D				
a alán 10/0	0	Disting Coldedo	0.254							
Grado 8	7	3/8" - 16 UNC	-	CC	MPRADO					
eación Al-Zn	6	Pulvimetalurgia Aluminio 1060 - Zinc 1%	0.008	MA	QUINADO					
eación 1060	5	Platina Soldada	0.354	MA						
Balsa	4	Estructura de Balsa	1.46	CC	NSTRUIDO					
Vonokote	2	Tela Monokote e=0.13mm	0.44	СС	MPRADO					
Balsa	1	Estructura de Balsa	5.85	CC	NSTRUÍDO					
Material	de orden	No. del Modelo/semiproducto	Peso kg/pieza	Obs	ervaciones					
Mater VARIO Denor	iales OS mina	: ción:			Escala	a:				
	FIL	VERTICAL			1:20					
Núme	Número del dibujo: 01 de 12									
		(Sustitución)			プレ					

				Tole	rancia	(Peso)	Materiales:			
				:	±1	5.85 Kg	Balsa			
					Fecha	Nombre	Denominación:	Escala:		
				Dibujó:	ujó: 19/6/2019 Ing. Pineda G.					
				Revisó:	12/7/2019	Ing. Mg. López G.	PERFIL VERTICAL	1.10		
				Aprobó:	12/7/2019	Ing. Mg. López G.	ESTRUCTURA PARTE FIJA	1.10		
			1	1	UTA Ing Mecánica		Número del dibujo: 02 de 12			
								$H(\mathcal{Y})$		
 Edición	Modificación	Fecha	Nombre				(Sustitución)	$\checkmark \downarrow$		

7	8	
	N2	/ A
		В
-		с
		D
		E
Materiales: Balsa		
Denominación: PERFIL VERTICAL		Escala:
Número del dibujo: 04	de 12	16
(Sustitue	ción)	νΨ

		/	8						
						А			
		8 DETALL ESCALA	E D 1 · 2			В			
		ESCALA	ι.Ζ			С			
						D			
eación 1060	8	Platina Soldada	0.354	MA	QUINADO				
Grado 8	7	3/8" - 16 UNC	-	СС	MPRADO				
eación Al-Zn	6	Pulvimetalurgia Aluminio 1060 - Zinc 1%	0.008	MA	QUINADO				
eación 1060	5	Platina Soldada	0.354	MA	QUINADO				
AISI 1020	5		0.073	MA					
Balsa	3	Estructura de Balsa	1.55	co	NSTRUIDO	_			
Monokote	2	Tela Monokote e=0.13mm	0.44	CC	MPRADO				
Balsa	1	Estructura de Balsa	7.65	СО	NSTRUÍDO				
Material	ivo. de orden	No. del Modelo/semiproducto	Peso kg/pieza	Obs	ervaciones				
Mater Varios	iales		I .						
Denci	mina	nión:			Facel				
	FIL	HORIZONTAL			∟scala 1:20	d.			
Núme	Número del dibujo: 06 de 12								
	(Sustitución)								

UTA	
Ing. Mecánica	

(Sustitución)

Edición Modificación Fecha Nombre

	7	8	
	63,30	N	2/ A
	63,75		В
	63,75		С
	63,30		D
ì-	G		E
	Materiales:		
	Balsa		
<u>,</u>	Denominación: PERFIL VERTICAL ESTRUCTURA PART	ΈΜΟΎΙΙ	Escala: 1:10
J.	Número del dibujo: 09	de 12	
	(Sustituc	ión)	TY

