

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

CARRERA DE INGENIERÍA MECÁNICA

TRABAJO EXPERIMENTAL PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO TEMA:

"ANÁLISIS DE LA GEOMETRÍA Y DEL RENDIMIENTO DE UNA TURBINA DE FLUJO RADIAL PARA EL ESTUDIO DE FLUIDOS DE TRABAJO EN UN CICLO ORGÁNICO RANKINE USANDO DISTINTOS RECURSOS RENOVABLES DE BAJA ENTALPÍA (SOLAR-BIOMASA-GEOTÉRMICA)

AUTOR: Alex Andrés Almache Jiménez

TUTOR: Ing. Mg. Diego Moya

AMBATO - ECUADOR

2018

CERTIFICACIÓN DEL TUTOR

En mi calidad de tutor del trabajo experimental, previo a la obtención del título de Ingeniero Mecánico, con el tema: "ANÁLISIS DE LA GEOMETRÍA Y DEL RENDIMIENTO DE UNA TURBINA DE FLUJO RADIAL PARA EL ESTUDIO DE FLUIDOS DE TRABAJO EN UN CICLO ORGÁNICO RANKINE USANDO DISTINTOS RECURSOS RENOVABLES DE BAJA ENTALPÍA (SOLAR-BIOMASA-GEOTÉRMICA), elaborado por el señor ALEX ANDRÉS ALMACHE JIMÉNEZ, estudiante de la Facultad de Ingeniería Civil y Mecánica de la Universidad Técnica de Ambato.

Certifico:

Que la presente tesis es original de su autor.

Ha sido revisado cada uno de sus capítulos.

Es concluida y puede continuar con el trámite correspondiente.

Ambato, Julio del 2018

.....

Ing. Mg. Diego Moya DOCENTE INGENIERÍA MECÁNICA

AUTORÍA DEL TRABAJO

Declaro que los criterios expresados en el proyecto experimental denominado: "ANÁLISIS DE LA GEOMETRÍA Y DEL RENDIMIENTO DE UNA TURBINA DE FLUJO RADIAL PARA EL ESTUDIO DE FLUIDOS DE TRABAJO EN UN CICLO ORGÁNICO RANKINE USANDO DISTINTOS RECURSOS RENOVABLES DE BAJA ENTALPÍA (SOLAR-BIOMASA-GEOTÉRMICA), así como también las ideas, análisis, conclusiones son auténticas y de exclusiva responsabilidad de mi persona como autor del presente proyecto.

Ambato, julio de 2018

AUTOR

.....

Alex Andrés Almache Jiménez

C.I 180434572-4

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que haga de este Proyecto Técnico o parte de él, un documento disponible para su lectura, consulta y proceso de investigación según las normas de la institución.

Sedo los derechos en línea patrimoniales de este Proyecto Técnico con fines de difusión pública, además apruebo la reproducción de este Proyecto Técnico dentro de las regulaciones de la Universidad, siempre y cuando esta reproducción no suponga una ganancia económica y se realice respetando mis derechos de autor.

Ambato, julio de 2018

AUTOR

••••••

Alex Andrés Almache Jiménez

C.I 180434572-4

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del Tribunal de Grado aprueban el informe del Trabajo Experimental realizado por el egresado Alex Andrés Almache Jiménez de la carrera de Ingeniería Mecánica, bajo el tema: "ANALISIS DE LA GEOMETRÍA Y DEL RENDIMIENTO DE UNA TURBINA DE FLUJO RADIAL PARA EL ESTUDIO DE FLUIDOS DE TRABAJO EN EL CICLO ORGÁNICO RANKINE USANDO DISTINTOS RECURSOS RENOVABLES DE BAJA ENTALPIA (SOLAR – BIOMASA – GEOTÉRMICA)".

Ambato, septiembre de 2018

Para constancia firman:

.....

.....

Ing. Mg. Santiago Cabrera

Ing. Mg. Diego Núñez

DEDICATORIA

A mis padre Víctor Almache y a mi madre Mónica Jiménez quienes han sido mi guía mi ejemplo, y me acompañan en mis penas, alegrías y triunfos, a ellos que se sacrifican para que sea una persona de bien y pueda ser útil a la sociedad.

A mi hermana Jennifer.

A todos los que conforman mi hogar, y estuvieron apoyándome incondicionalmente.

AGRADECIMIENTO

A la Universidad Técnica de Ambato por abrirme las puertas para poder realizar mis estudios, en especial a la Facultad de Ingeniería Civil y Mecánica a sus autoridades y parte administrativa que hicieron posible mi preparación.

A mis docentes de la Carrera de Ingeniera de Mecánica que con su ejemplo y conocimientos han contribuido en mi formación personal y profesional.

A mi Tutor Ing. Mg. Diego Moya, que me motivo y me guio en todo el proceso de mi tesis de grado

A mis amigos que me acompañaron y me alentaron en esta etapa de mi vida universitaria.

ÍNDICE GENERAL DE CONTENIDOS

PORTADAI
CERTIFICACIÓN DEL TUTOR II
AUTORÍA DEL TRABAJOIII
DERECHOS DE AUTOR IV
DEDICATORIAV
AGRADECIMIENTOVI
RESUMEN EJECUTIVOXXV
ABSTRACTXXVII
CAPÍTULO I1
1. ANTECEDENTES1
1.1. Tema
1.2. Justificación 2
1.3. Objetivos
1.3.1. Objetivo General 4
1.3.2. Objetivos Específicos 4
CAPÍTULO II6
2. FUNDAMENTACIÓN6
2.1. Fundamentación teórica
2.1.1. Ciclo Orgánico Rankine: principio y configuraciones
2.1.1.1. Balance energético para los componentes de un COR y CORH 8
2.1.2. Recurso renovable de baja entalpia11
2.1.2.1. Solar
2.1.2.1.1. Tecnologías y Potencia térmica12
2.1.2.2. Biomasa
2.1.2.2.1. Tecnologías y potencia térmica
2.1.2.3. Geotérmica

2.1.2.3.1. Tecnologías y Potencia térmica geotérmica	19
2.1.3. Fluido de trabajo	20
2.1.3.1. Fluidos de trabajo aprobados para su uso en el contexto	
ecuatoriano	21
2.1.4. Turbina	21
2.1.5. Software de diseño y análisis	23
2.1.5.1. EES (Engineering Equation Solver) versión académica	23
2.1.5.2. ANSYS Académico	24
2.1.5.2.1. ANSYS Vista RTD Académico	25
2.1.5.2.2. ANSYS BladeGen Académico	27
2.1.5.2.3. ANSYS TurboGrid Académico	28
2.1.5.2.4. ANSYS CFX Académico	28
2.2. Hipótesis	29
2.3. Señalamiento de variables de la hipótesis	29
2.3.1. Variable independiente	29
2.2.2 Variable dependiente	20
	2)
CAPÍTULO III	2)
CAPÍTULO III	30
CAPÍTULO III	2) 30 30
CAPÍTULO III	30 30 30
 CAPÍTULO III 3. METODOLOGÍA 3.1. Nivel o tipo de investigación	30 30 30 31
 CAPÍTULO III 3. METODOLOGÍA 3.1. Nivel o tipo de investigación	30 30 30 31 31
 CAPÍTULO III 3. METODOLOGÍA 3.1. Nivel o tipo de investigación	30 30 31 31 31
 CAPÍTULO III 3. METODOLOGÍA 3.1. Nivel o tipo de investigación	30 30 31 31 31 35
CAPÍTULO III 3. METODOLOGÍA 3.1. Nivel o tipo de investigación 3.2. Población y muestra 3.2.1. Población 3.2.1.1. Diseño experimental 3.2.1.1.1. Variables de entrada 3.2.1.1.2. Modelo del experimento	30 30 31 31 31 35 35
CAPÍTULO III	30 30 31 31 31 35 35 36
 CAPÍTULO III	
 CAPÍTULO III	
 CAPÍTULO III	29 30 30 31 31 31 35 35 36 38 38 40
 CAPÍTULO III	29 30 30 31 31 31 35 35 36 38 38 38 40 42

3.5.1. Diagrama del proceso	43
3.5.2. Procesamiento	44
3.5.2.1. Recolección de datos del recurso renovable	44
3.5.2.2. Calculo de potencia térmica	46
3.5.2.3. Selección de fluido de trabajo	46
3.5.2.4. Determinación de parámetros del componentes del COR	47
3.5.2.5. Análisis Termodinámico usando EES académico	49
3.5.2.6. Dimensionamiento de la geometría de la turbina de flujo ra	adial
mediante ANSYS-Vista RTD académico	50
3.5.2.7. Diseño de la geometría de la turbina de flujo radial mediar	nte
ANSYS-Vista RTD académico	50
3.5.2.8. Simulación CFD	51
3.5.2.8.1. Aplicación de ANSYS-TurboGrid académico	51
3.5.2.8.2. Aplicación de ANSYS-CFX académico	52
CAPÍTULO IV	58
4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	58
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 4.1. Recolección de datos 	58 58
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 4.1. Recolección de datos 4.1.1. Cálculo de potencia térmica 	58 58 58
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 4.1. Recolección de datos 4.1.1. Cálculo de potencia térmica	58 58 58 67
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 4.1. Recolección de datos	58 58 58 67
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 4.1. Recolección de datos	58 58 58 67 99
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 4.1. Recolección de datos	58 58 58 67 99 102
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 4.1. Recolección de datos	58 58 58 67 99 102 102
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 4.1. Recolección de datos	58 58 58 67 99 102 102 104
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	58 58 58 67 99 102 102 104 106
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS. 4.1. Recolección de datos. 4.1.1. Cálculo de potencia térmica	58 58 67 99 102 102 104 106 108
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	58 58 67 99 102 102 104 106 108 110
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	58 58 67 99 102 102 104 106 108 110 112
 4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	58 58 67 99 102 102 104 106 108 110 112 114

4.3. Interpretación de resultados167
4.4. Discusión de resultados169
4.5. Verificación de hipótesis182
4.5.1. ANOVA y verificación de hipótesis con respecto a la potencia 182
4.5.2. ANOVA y verificación de hipótesis con respecto a la eficiencia
térmica del ciclo
CAPITULO V
5. CONCLUSIONES Y RECOMENDACIONES185
5.1. Conclusiones
5.2. Recomendaciones
REFERENCIAS188
ANEXOS

ÍNDICE DE GRÁFICOS Y TABLAS

ÍNDICE DE TABLAS

Tabla 1: Procesos termodinámicos en un COR y CORH [20, 26, 27] 10
Tabla 2: Balance energético para componentes del COR Y CORH [19, 20, 24, 27,
39]
Tabla 3: Tipos de concentradores solares según la temperatura de operación [21].
Tabla 4: Investigaciones previas con colectores de cilindro parabólico [42, 43]. 14
Tabla 5: Fuentes obtención de biomasa [21]
Tabla 6: Potenciales energéticos de distintos tipos biomasa [21].15
Tabla 7: Composición de biogás de diferentes fuentes [45]. 16
Tabla 8: Clasificación de yacimientos [2]. 19
Tabla 9: Fluidos recomendados para diferentes aplicaciones [28]. 20
Tabla 10 : Proceso de expansión del fluido en cada componente de una turbina
radial [5]
Tabla 11: Parámetros en la interfaz del software ANSYS-Vista RTD Académico.
Tabla 12: Datos de entrada y repuestas del diseño experimental
Tabla 13: Variables de entrada del modelo experimental. 35
Tabla 14: Factores y niveles del trabajo experimental Recurso Solar. 36
Tabla 15: Numero de simulación para cada recurso renovable
Tabla 16: Numero de simulaciones que se realizaran usando software ANSYS
académico
Tabla 17: Variable independiente
Tabla 18: Potencia en la turbina de flujo radial como Variable dependiente 40
Tabla 19: Eficiencia térmica del ciclo como variable dependiente
Tabla 20: Insolación solar mensual [15]. 44
Tabla 21: Disponibilidad de energía geotérmica en la provincia de Tungurahua [16,
55]
Tabla 22: Selección de fluidos de trabajo para para cada recurso renovable de baja
entalpia

Tabla 23: Temperatura en el evaporador del Ciclo Orgánico Rankine [2, 14-16, 18,
21, 23, 32, 40-42, 44-47, 50, 54, 55, 73]
Tabla 24: Propiedades termo físicas de los fluidos de trabajo seleccionados
mediante software EES académico56
Tabla 25: Ecuaciones necesarias para determinar la potencia térmica [16, 40, 44,
55]
Tabla 26: Criterios de selección del tipo captador. 59
Tabla 27: Características del colector PARASOL [42]
Tabla 28: Características del colector NEP SOLAR PolyTrough 1200 [42] 59
Tabla 29: Características del colector SOLITEM PTC 1800 [42]. 59
Tabla 30: Selección de marca de captador cilindro-parabólico. 60
Tabla 31: Tabla de frecuencias estadística de insolación solar global [15] 60
Tabla 32: Insolación global disponible la mayor parte del año
Tabla 33: Tabla de irradiación solar correspondiente a los meses de febrero, abril,
mayo. junio, julio y diciembre [73]
Tabla 34: Potencia térmica (KW) solar calculada por horas
Tabla 35: Poder calorífico del gas Metano [44, 47, 50].63
Tabla 36: Producción de Biogás en la planta de tratamiento de aguas servidas de
Ambato [14]
Tabla 37: Potencia térmica del Recurso de Biomasa 64
Tabla 21: Selección del recurso geotérmico [16, 55]
Tabla 40: Tabla de variación de potencia térmica en función de la temperatura. 66
Tabla 41: Temperatura de condensador obtenida mediante la medición del agua a
temperatura ambiente
Tabla 42: Resultados del análisis termodinámico del COR, Recurso-Solar en EES
académico
Tabla 43: Resultados del análisis termodinámico del COR, Recurso-Biomasa en
EES académico
Tabla 44: Resultados del análisis termodinámico del COR, Recurso-Geotérmico en
EES académico

Tabla 45: Resultados del análisis termodinámico del CORH, Recurso- Solar-
Biomasa en EES académico75
Tabla 46: Resultados del análisis termodinámico del COR, Recurso- Solar-
Geotérmico en EES académico
Tabla 47: Resultados del análisis termodinámico del Ciclo Orgánico Rankine-
biomasa-Geotérmica en EES académico 80
Tabla 48: Resultados del análisis termodinámico del Ciclo Orgánico Rankine-
Solar-Biomasa-Geotérmica en EES académico
Tabla 49: Ecuaciones usadas para determinar el flujo másico para cara cada COR
y CORH [27, 39]
Tabla 50: Flujo másico del Recurso Solar (kg/seg), en función de la adición de
calores al ciclo
Tabla 51: Flujo másico del Recurso Biomasa (kg/seg) en función de la adición de
calores al ciclo
Tabla 52: Flujos másicos del Recurso Geotérmico (kg/seg), en función de la adición
de calores al ciclo
Tabla 53: Flujos másicos del Recurso Solar-Biomasa (kg/seg), en función de la
adición de calores al ciclo
Tabla 54: Flujos másicos del Recurso Solar-Geotérmica (kg/seg), en función de la
adición de calores al ciclo
Tabla 55: Flujos másicos del Recurso Biomasa-Geotérmica (kg/seg), en función de
la adición de calores al ciclo
Tabla 56: Flujos másicos del Recurso Solar-Biomasa-Geotérmica (kg/seg), en
función de la adición de calores al ciclo
Tabla 57: Temperaturas y presiones del fluido de trabajo, obtenidas del análisis
termodinámico
Tabla 58: Ecuaciones necesarias para determinar la potencia de la turbina y
eficiencia térmica del ciclo [19, 39] 101
Tabla 59: Resultados obtenidos mediante ANSYS y EES en sus versiones
académicas; para el Recurso Solar, usando distintos fluidos de trabajo como Agua,
N-Decano y N-Octano

Tabla 60: Resultados obtenidos mediante ANSYS y EES en sus versiones
académicas; para el Recurso Biomasa, usando distintos fluidos de trabajo como
R123, N-Pentano y N-Hexano
Tabla 61: Resultados obtenidos mediante ANSYS y EES en sus versiones
académicas; para el Recurso Geotérmico, usando distintos fluidos de trabajo como
R134a, R245fa y N-Pentano 106
Tabla 62: Resultados obtenidos mediante ANSYS y EES en sus versiones
académicas; para el Recurso Solar-Biomasa, usando distintos fluidos de trabajo
como Agua, N-Decano y N-Octano
Tabla 63: Resultados obtenidos mediante ANSYS y EES en sus versiones
académicas; para el Recurso Solar-Geotérmico, usando distintos fluidos de trabajo
como Agua, N-Decano y N-Octano
Tabla 64: Resultados obtenidos mediante ANSYS y EES en sus versiones
académicas; para el Recurso Solar-Biomasa-Geotérmico, usando distintos fluidos
de trabajo como Agua, N-Decano y N-Octano
Tabla 65: Resultados obtenidos mediante ANSYS y EES en sus versiones
académicas; para el Recurso Biomasa-Geotérmico, usando distintos fluidos de
trabajo como R123, N-Pentano y N-Hexano 114
Tabla 66: Mejores eficiencias isentrópicas de cada fluido de trabajo con respecto a
cada recurso renovable
Tabla 67: Factores de entrada para una potencia optima en la turbina de flujo radial.
Tabla 68: Factores de entrada para una eficiencia térmica del ciclo en la turbina de
flujo radial
Tabla 69: Verificación de la hipótesis con respecto a la potencia, usando Software
Minitab 18.1
Tabla 70: Verificación de la hipótesis con respecto a la eficiencia térmica del ciclo,
usando Software Minitab 18.1 184
Tabla 71: Datos ingresados en Vista-RTD 198
Tabla 72: Propiedades del fluido de trabajo Agua como gas real 210

ÍNDICE DE GRÁFICOS

Fig. 1: Ciclo Rankine [19]
Fig. 2: Esquema Ciclo Orgánico Rankine [24]
Fig. 3: Esquema de un CORH [25]
Fig. 4: Diagrama Temperatura-entalpia COR [24]9
Fig. 5: Diagrama Temperatura-entalpia CORH [26]9
Fig. 6: Esquema concentradores solares térmicos planos[21] 13
Fig. 7: Esquema concentradores solares de Cilíndrico Parabólico [21] 13
Fig. 8: Esquema concentradores solares de central de torre [21]13
Fig. 9: Procesos para la conversión de biomasa para su aprovechamiento [23] 15
Fig. 10: Sistema que incluye una micro turbina de gas, antes del Ciclo Rankine
Orgánico de fondo [46]18
Fig. 11: Modulo comercial Biogás + Ciclo Orgánico Rankine The Green Machine
Series 4000 [47]
Fig. 12: Componentes de un turbina de flujo radial [5] 22
Fig. 13: Componentes de un turbina de flujo radial [36] 22
Fig. 14: Interfaz del software EES académico
Fig. 15: Diagrama esquemático para diseño y simulación de una turbina de flujo
radial usando ANSYS Académico [4-7, 29, 37, 62, 63, 66]25
Fig. 16: Interfaz software ANSYS-Vista RTD Académico
Fig. 17: Interfaz ANSYS BladeGen software Académico 27
Fig. 18: Mallado de la turbina mediante ANSYS-Turbo Grid Académico
Fig. 19: Esquema COR [24]
Fig. 20: Variables del proceso a experimentar
Fig. 21: Diagrama del proceso del modelo experimental 34
Fig. 22: Diagrama de flujo para el plan Procesamiento y análisis
Fig. 23: Detalle de la cúpula de los digestores primarios; dispositivos de salida de
gases; mezclador mecánico; válvulas se seguridad y quemador de la PTAR de
Ambato [14]
Fig. 24: Temperatura del recurso geotérmico disponible en la ciudad de Baños. 48

Fig. 25: Dimensionamiento de una turbina de flujo radial usando ANSYS-Vista
RTD académico
Fig. 26: Modelo Tridimensional de una turbina de flujo radial usando ANSYS-
BladeGen académico
Fig. 27: Mallado de una turbina de flujo radial usando ANSYS-TurboGrid
académico
Fig. 28: Generación de condiciones de borde para una turbina de flujo radial 53
Fig. 29: Condiciones de borde de una turbina de flujo radial
Fig. 30: Sección "Materials" para el ingreso fluido de trabajo en el Pre Procesador
de ANSYS CFX académico
Fig. 31 :Ingreso del fluido de trabajo en el Pre Procesador de ANSYS CFX
académico
Fig. 32: Esquema un COR [24]
Fig. 33: Diagrama T-h usando agua como fluido de trabajo, obtenido mediante
software EES académico
Fig. 34: Diagrama T-h usando N-Decano como fluido de trabajo, obtenido
mediante software académico
Fig. 35: Diagrama T-h usando N-Octano como fluido de trabajo, obtenido mediante
software EES académico
Fig. 36: Diagrama T-h usando R123 como fluido de trabajo, obtenido mediante
software EES académico
Fig. 37: Diagrama T-h usando N-Pentano como fluido de trabajo, obtenido
mediante software EES académico
Fig. 38: Diagrama T-h usando N-Hexano como fluido de trabajo, obtenido
mediante software EES académico
Fig. 39: Diagrama T-h usando R134a como fluido de trabajo, obtenido mediante
software EES académico
Fig. 40: Diagrama T-h usando R245fa como fluido de trabajo, obtenido mediante
software EES académico
Fig. 41: Diagrama T-h usando N-Pentano como fluido de trabajo, obtenido
mediante software EES académico74

Fig. 42: Esquema Ciclo Rankine Orgánico con dos fuente de calor [25]
Fig. 43: Diagrama T-h usando Agua como fluido de trabajo, obtenido mediante
software EES académico76
Fig. 44: Diagrama T-h usando N-Decano como fluido de trabajo, obtenido
mediante software EES académico
Fig. 45: Diagrama T-h usando N-Octano como fluido de trabajo, obtenido mediante
software EES académico
Fig. 46: Diagrama T-h usando Agua como fluido de trabajo, obtenido mediante
software EES académico
Fig. 47: Diagrama T-h usando N-Decano como fluido de trabajo, obtenido
mediante software EES
Fig. 48: Diagrama T-h usando N-Octano como fluido de trabajo, obtenido mediante
software EES académico
Fig. 49: Diagrama T-h usando r R123 como fluido de trabajo, obtenido mediante
software EES académico
Fig. 50: Diagrama T-h usando N-Pentano como fluido de trabajo, obtenido
mediante software EES académico
Fig. 51: Diagrama T-h usando N-Hexano como fluido de trabajo, obtenido
mediante software EES académico
Fig. 52: Esquema CORH con tres fuente de calor [25] 82
Fig. 53: Diagrama T-h usando Agua como fluido de trabajo, obtenido mediante
software EES académico
Fig. 54: Diagrama T-h usando N-Decano como fluido de trabajo, obtenido
mediante software EES académico
Fig. 55: Diagrama T-h usando N-Octano como fluido de trabajo, obtenido mediante
software EES académico
Fig. 56: Comparación de flujos másicos de distintos fluidos de trabajo (Agua, N-
Decano, N-Octano) en función de la adición de calores al ciclo, para el Recurso
Solar

Fig. 57: Comparación de flujos másicos de distintos fluidos de trabajo (R123, N-
Pentano, N-Hexano) en función de la adición de calores al ciclo, para el Recurso
Biomasa
Fig. 58: Comparación de flujos másicos de distintos fluidos de trabajo (R134a,
R245Fa, N-Pentano) en función de la adición de calores al ciclo, para el Recurso
Geotérmico
Fig. 59: Comparación de flujos másicos de distintos fluidos de trabajo (Agua, N-
Decano, N-Octano) en función de la adición de calores al ciclo, para el Recurso
Solar-Biomasa
Fig. 60: Comparación de flujos másicos de distintos fluidos de trabajo (Agua, N-
Decano, N-Octano) en función de la adición de calores al ciclo, para el Recurso
Solar-Geotérmica
Fig. 61: Comparación de flujos másicos de distintos fluidos de trabajo (R123, N-
Pentano, N-Hexano) en función de la adición de calores al ciclo, para el Recurso
Biomasa-Geotérmica
Fig. 62: Comparación de flujos másicos de distintos fluidos de trabajo (Agua, N-
Decano, N-Octano) en función de la adición de calores al ciclo, para el Recurso
Solar-Biomasa-Geotérmica
Fig. 63: Probabilidad normal de la potencia, recurso-solar Software Minitab® 18.1.
Fig. 64: transformación de datos de potencia mediante la función transformación
de Johnson, recurso-solar Software Minitab® 18.1
Fig. 65: Probabilidad normal de la potencia mediante la función transformación de
Johnson, recurso-solar Software Minitab® 18.1
Fig. 66: Grafica de efectos principales de la potencia, Recurso-Solar Software
Minitab® 18.1
Fig. 67: Interacción variables de entrada para la potencia, Recurso-Solar Software
NC 1 0 10 1
Minitab® 18.1
Minitab® 18.1

Fig. 69: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-
Solar Software Minitab® 18.1 122
Fig. 70: Interacción variables de entrada para la potencia, Recurso-Solar Software
Minitab® 18.1
Fig. 71: Probabilidad normal de la potencia, Recurso -Biomasa Software Minitab®
18.1
Fig. 72: Probabilidad normal de la potencia mediante la función transformación de
Johnson, Recurso -Biomasa Software Minitab® 18.1 125
Fig. 73: Probabilidad normal de la potencia mediante la función transformación de
Johnson, Recurso-Biomasa Software Minitab® 18.1 126
Fig. 74: Grafica de efectos principales de la potencia, Recurso -Biomasa Software
Minitab® 18.1
Fig. 75: Interacción variables de entrada para la potencia, Recurso -Biomasa
Software Minitab® 18.1 127
Fig. 76: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso -Biomasa
Software Minitab® 18.1
Fig. 77: Probabilidad normal de la Eficiencia térmica del ciclo mediante la función
transformación de Johnson, Recurso -Biomasa Software Minitab® 18.1 129
Fig. 78: Probabilidad normal de la potencia mediante la función transformación de
Johnson, Recurso-Biomasa Software Minitab® 18.1
Fig. 79: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso -
Biomasa Software Minitab® 18.1
Fig. 80: Interacción variables de entrada para la potencia, Recurso -Biomasa
Software Minitab® 18.1
Fig. 81: Probabilidad normal de la potencia, Recurso-Geotérmico Software
Minitab® 18.1
Fig. 82: Probabilidad normal de la potencia mediante la función transformación de
Johnson, Recurso-Geotérmico Software Minitab® 18.1
Fig. 83: Probabilidad normal de la potencia mediante la función transformación de
Johnson, Recurso-Geotérmico Software Minitab® 18.1

Fig. 84: Grafica de efectos principales de la potencia, Recurso-Geotérmico
Software Minitab® 18.1
Fig. 85: Interacción variables de entrada para la potencia, Recurso-Geotérmico
Software Minitab® 18.1
Fig. 86: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso-
Geotérmico Software Minitab® 18.1
Fig. 87: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-
Geotérmico Software Minitab® 18.1
Fig. 88: Interacción variables de entrada para la potencia, Recurso-Geotérmico
Software Minitab® 18.1
Fig. 89: Probabilidad normal de la potencia, Recurso-Solar-Biomasa Software
Minitab® 18.1
Fig. 90: Probabilidad normal de la potencia mediante la función transformación de
Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1
Fig. 91: Probabilidad normal de la potencia mediante la función transformación de
Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1
Fig. 92: Grafica de efectos principales de la potencia, Recurso-Solar-Biomasa
Software Minitab® 18.1
Fig. 93: Interacción variables de entrada para la potencia, Recurso-Solar-Biomasa
Software Minitab® 18.1
Fig. 94: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso-Solar-
Biomasa Software Minitab® 18.1
Fig. 95: Probabilidad normal de la potencia mediante la función transformación de
Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1
Fig. 96: Probabilidad normal de la potencia mediante la función transformación de
Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1
Fig. 97: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-
Solar-Biomasa Software Minitab® 18.1
Fig. 98: Interacción variables de entrada para la potencia, Recurso-Solar-Biomasa
Software Minitab® 18.1

Fig. 99: Probabilidad normal de la potencia, Recurso-Solar-Geotérmico Software
Minitab® 18.1
Fig. 100: Grafica de efectos principales de la potencia, Recurso-Solar-Geotérmico
Software Minitab® 18.1
Fig. 101: Interacción variables de entrada para la potencia, Recurso-Solar-
Geotérmico Software Minitab® 18.1
Fig. 102: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso-Solar-
Geotérmico Software Minitab® 18.1
Fig. 103: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-
Solar-Geotérmico Software Minitab® 18.1
Fig. 104: Interacción variables de entrada para la potencia, Recurso-Solar-
Geotérmico Software Minitab® 18.1
Fig. 105: Probabilidad normal de la potencia, Recurso-Solar-Biomasa-Geotérmico
Software Minitab® 18.1
Fig. 106: Grafica de efectos principales de la potencia, Recurso-Solar-Biomasa-
Geotérmico Software Minitab® 18.1
Fig. 107: Interacción variables de entrada para la potencia, Recurso-Solar-
Biomasa-Geotérmico Software Minitab® 18.1
Fig. 108: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso-Solar-
Biomasa-Geotérmico Software Minitab® 18.1
Fig. 109: Probabilidad normal de la potencia mediante la función transformación
de Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1 159
Fig. 110: Probabilidad normal de la potencia mediante la función transformación
de Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1 159
Fig. 111: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-
Solar-Biomasa-Geotérmico Software Minitab® 18.1 160
Fig. 112: Interacción variables de entrada para la potencia, Recurso-Solar-
Biomasa-Geotérmico Software Minitab® 18.1
Fig. 113: Probabilidad normal de la potencia, Recurso-Biomasa-Geotérmico

Fig. 114: Grafica de efectos principales de la potencia, Recurso-Biomasa-
Geotérmico Software Minitab® 18.1
Fig. 115: Interacción variables de entrada para la potencia, Recurso-Biomasa-
Geotérmico Software Minitab® 18.1
Fig. 116: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso-Biomasa-
Geotérmico Software Minitab® 18.1
Fig. 117: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-
Biomasa-Geotérmico Software Minitab® 18.1
Fig. 118: Interacción variables de entrada para la potencia, Recurso-Biomasa-
Geotérmico Software Minitab® 18.1
Fig. 119: Potencia [KW] para cada recurso renovable de baja entalpia 169
Fig. 120: Comparación de distribución de Temperaturas en el alabe de distintas
geometrías de turbinas; con respecto a la potencia optima, para el recurso renovable
de baja entalpia a) Solar; b) Biomasa; c) Geotérmica; d) Solar-Biomasa; e) Solar-
Geotérmica; f) Solar-Biomasa-Geotérmica, y g) Biomasa-Geotérmica 172
Fig. 121: Comparación de distribución de Temperaturas en el alabe de distintas
geometrías de turbinas; con respecto a la eficiencia térmica del ciclo optima, para
el recurso renovable de baja entalpia a) Solar; b) Biomasa; c) Geotérmica; d) Solar-
Biomasa; e) Solar-Geotérmica; f) Solar-Biomasa-Geotérmica, y g) Biomasa-
Geotérmica
Fig. 122: Comparación de distribución de presiones en el alabe de distintas
geometrías de turbinas; con respecto a la potencia optima, para el recurso renovable
de baja entalpia a) Solar; b) Biomasa; c) Geotérmica; d) Solar-Biomasa; e) Solar-
Geotérmica; f) Solar-Biomasa-Geotérmica, y g) Biomasa-Geotérmica 177
Fig. 123: Comparación de distribución de presiones en el alabe de distintas
geometrías de turbinas; con respecto a la eficiencia térmica del ciclo optima, para
el recurso renovable de baja entalpia a) Solar; b) Biomasa; c) Geotérmica; d) Solar-
Biomasa; e) Solar-Geotérmica; f) Solar-Biomasa-Geotérmica, y g) Biomasa-
Geotérmica178
Fig. 124: Comparación de distribución de Energía cinética de turbulencia en el

alabe de distintas geometrías de turbinas; con respecto a la potencia optima, para el

recurso renovable de baja entalpia a) Solar; b) Biomasa; c) Geotérmica; d) Solar-
Biomasa; e) Solar-Geotérmica; f) Solar-Biomasa-Geotérmica, y g) Biomasa-
Geotérmica
Fig. 125: Comparación de distribución de Energía cinética de turbulencia en el
alabe de distintas geometrías de turbina; con respecto a la eficiencia térmica del
ciclo optima, para el recurso renovable de baja entalpia a) Solar; b) Biomasa; c)
Geotérmica; d) Solar-Biomasa; e) Solar-Geotérmica; f) Solar-Biomasa-
Geotérmica, y g) Biomasa-Geotérmica
Fig. 126: Interfaz ANSYS Worbench Academico 18.2 196
Fig. 127: Toolbox de ANSYS Workbench académico 18.2 197
Fig. 128: Selección de ANSYS-Vista RTD académico 197
Fig. 129: Interfaz ANSYS Vista RTD académico -Propiedades aerodinámicas 199
Fig. 130: Interfaz ANSYS Vista RTD académico -Propiedades de geometría 200
Fig. 131: Interfaz ANSYS Vista RTD académico -Resultados 200
Fig. 132: Generación de modelo tridimensional por medio de ANSYS-BladeGen
académico
Fig. 133: Herramienta ANSYS-BladeGen académico en la interfaz Workbench
Fig. 134: Modelo tridimensional en ANSYS-BladeGen académico 202
Fig. 135: Exportación de la geometría hacia la herramienta Turbomachinery Fluid
Flow
Fig. 136: Selecciona de la herramienta Turbo Mesh 204
Fig. 137: Interfaz ANSYS-TurboGrid académico
Fig. 137: Interfaz ANSYS-TurboGrid académico205Fig. 138: Mesh Data- ANSYS TurboGrid académico206
Fig. 137: Interfaz ANSYS-TurboGrid académico205Fig. 138: Mesh Data- ANSYS TurboGrid académico206Fig. 139: Outlet- ANSYS TurboGrid académico207
Fig. 137: Interfaz ANSYS-TurboGrid académico205Fig. 138: Mesh Data- ANSYS TurboGrid académico206Fig. 139: Outlet- ANSYS TurboGrid académico207Fig. 140: Mallado de una turbina de flujo radial usando ANSYS-TurboGrid
Fig. 137: Interfaz ANSYS-TurboGrid académico205Fig. 138: Mesh Data- ANSYS TurboGrid académico206Fig. 139: Outlet- ANSYS TurboGrid académico207Fig. 140: Mallado de una turbina de flujo radial usando ANSYS-TurboGrid207207207
Fig. 137: Interfaz ANSYS-TurboGrid académico205Fig. 138: Mesh Data- ANSYS TurboGrid académico206Fig. 139: Outlet- ANSYS TurboGrid académico207Fig. 140: Mallado de una turbina de flujo radial usando ANSYS-TurboGrid207Fig. 141: Ingreso al preprocesador ANSYS-CFX académico208
Fig. 137: Interfaz ANSYS-TurboGrid académico205Fig. 138: Mesh Data- ANSYS TurboGrid académico206Fig. 139: Outlet- ANSYS TurboGrid académico207Fig. 140: Mallado de una turbina de flujo radial usando ANSYS-TurboGrid207Fig. 141: Ingreso al preprocesador ANSYS-CFX académico208Fig. 142: Ingreso del fluido de trabajo en el preprocesador CFX209

Fig. 144: Ingreso de las propiedades del fluido de trabajo "Agua", como material
en el preprocesador
Fig. 145: Herramienta Turbo Mode, para la creación de condiciones de frontera.
Fig. 146: Configuraciones básicas de la herramienta Turbo Mode 213
Fig. 147: Ingreso de velocidad rotacional en el dominio R1 214
Fig. 148: Selección del fluido de trabajo e ingreso de condiciones de frontera de
entrada y salida
Fig. 149: Condiciones creadas con la herramienta Turbo Mode; a) Interfases, b)
condiciones de frontera
Fig. 150: Condiciones de frontera generadas; a) R1 Intel, b) R1 Outlet y c)
Representación gráfica de las condiciones de frontera 217
Fig. 151:Apartado "Solver Control", a) Ingreso y b) Configuración 218
Fig. 152: Obtención de resultados; a) procesador de datos y b) Ingreso a resultados.
Fig. 153: Inicialización de los componentes turbo
Fig. 154: Ingreso al apartado "Blade-to- Blade"
Fig. 155. Obtención de la potencia de la turbina
Fig. 156: Visualización del valor de potencia obtenida den la turbina 223
Fig. 123: Distribución de presiones en el alabe de una turbinas; combinado los
recursos Solar-Biomasa-Geotérmica, usando Agua como fluido de trabajo y un
flujo másico de 0.2291 kg/seg 224
Fig. 123: Distribución de Temperaturas en el alabe de una turbinas; combinado los
recursos Solar-Biomasa-Geotérmica, usando Agua como fluido de trabajo y un
flujo másico de 0.2291 kg/seg 225
Fig. 123: Distribución de Energía cinética de turbulencia en el alabe de una
turbinas; combinado los recursos Solar-Biomasa-Geotérmica, usando Agua como

RESUMEN EJECUTIVO

El presente proyecto experimental está enfocado en estudiar los recursos renovables disponibles en la provincia de Tungurahua (solar-biomasa-geotérmica). El proyecto se basa en determinar las características de cada recurso renovable para su uso dentro de un Ciclo Orgánico Rankine. Con el fin de aprovechar su potencial energético para micro generación, mediante el uso de una turbina de flujo radial. Además, se aprovecha el uso de herramientas informáticas, como el Software ANSYS Académico y el Software EES Académico, con la finalidad de simplificar el análisis y obtener resultados confiables.

El análisis del Ciclo Orgánico Rankine se realizó usando distintas configuraciones en el ciclo. Como el uso de un solo recurso renovable para la fuente de calor en el evaporador. También, se realizó la hibridación de los recursos renovables, mediante el uso de una y dos fuentes de calor para precalentar el fluido de trabajo antes de llegar al evaporador. Con el fin de aumentar el rendimiento térmico del ciclo y su potencia.

La potencia térmica para ser utilizada como fuente de calor; fue determinada mediante el aprovechamiento de la irradiación global diaria en la superficie de la provincia de Tungurahua para el recurso solar. En el caso del recurso de biomasa se determinó la cantidad del recurso de biomasa transformada a biogás, mediante el tratamiento de lodos disponibles en la planta de tratamientos de aguas residuales de la ciudad de Ambato ubicada en el sector las Viñas. Finalmente, para el recurso geotérmico se determinó el uso de agua geotérmica disponible en las fuentes termales de la "Virgen" en la ciudad de Baños de Agua Santa.

En el estudio termodinámico del ciclo, se utilizaron tres fluidos de trabajo distintos determinados por la temperatura del recurso renovable. Así mismo se calculó el flujo másico de estos para cada configuración del ciclo con el fin de obtener datos como presiones, entalpias y temperaturas en cada punto del ciclo. Cabe mencionar que para este análisis se usó el software EES Académico, ya que dispone una gran base de las propiedades termo físicas de distintos fluidos de trabajo.

Adicionalmente se analizaron distintas geometrías de turbinas radiales. Estas geometrías fueron dimensionadas y diseñadas mediante herramientas disponibles en el software ANSYS Académico. Igualmente, este software nos permitió realizar el análisis de distintos fluidos de trabajo en cada geometría mediante la simulación de estos. Obteniendo resultados como la potencia de la turbina; presiones, temperaturas y energía cinética de turbulencia en el alabe de la turbina.

ABSTRACT

The present experimental project is focused on studying the renewable resources available in the province of Tungurahua (solar-biomass-geothermal). The project is based on determining the characteristics of each renewable resource for using within a Rankine Organic Cycle. In order to take advantage of its energy potential for micro generation, by using a radial flow turbine. And the use of computer tools, such as the ANSYS Software Academic and the EES Software Academic, with the purpose of simplifying the analysis and obtaining reliable results.

First, the Rankine Organic Cycle analysis was performed using different configurations in the cycle. For instance, the use of a single renewable resource, such as heat source inside of evaporator. In addition to this, it was carried out the hybridization of renewable resources, by using one and two heat sources to preheat the working fluid before arriving to the evaporator in order to increase the thermal performance of the cycle and its power.

The thermal power for being used as a heat source was determined by taking advantage of the daily global irradiation on the surface of the Tungurahua province for the solar resource. In the case of the biomass resource, the quantity of biomass resource transformed to biogas was determined, through the treatment of sludge available in the wastewater treatment plant of Ambato city, located in the Las Viñas place. Finally, for the geothermal resource the use of geothermal water available in the thermal sources of the "Virgin" in Baños de Agua Santa city was determined.

In the thermodynamic study of the cycle, three different working fluids, determined by the temperature of the renewable resource were used. Likewise, the mass flow of these was calculated for each configuration of the cycle in order to obtain data such as pressures, enthalpies and temperatures at each point of the cycle. It is worth mentioning that the EES software Academic was used for this analysis, since it has a large base of thermo-physical properties of different working fluids.

Moreover, different geometries of radial turbines were analyzed. These geometries were sized and designed using tools available in the ANSYS software Academic.

Also, this software allowed us to perform the analysis of different working fluids in each geometry by simulating them. Obtaining results such as the power of the turbine; pressures, temperatures and kinetic energy of turbulence in the blade of the turbine.

CAPÍTULO I

1. Antecedentes

Existen investigaciones acerca del aprovechamiento de fuentes de energía renovable para un Ciclo Orgánico Rankine (COR) en donde se ha determinado tanto las temperatura que se maneja en dicho ciclo como los fluidos de trabajo que se puede utilizar [1, 2]. Así mismo, se ha determinado el mejor fluido de trabajo para para recursos renovables de baja entalpia (solar-biomasa-geotérmica) [3].

Por ejemplo, Pinedo et al. [2] estudia el potencial geotérmico para su aprovechamiento mediante una central de ciclo binario para generación de potencia eléctrica en la región Corongo-Ancash, Perú. El recurso geotérmico utilizado en este estudio se encuentra a una temperatura entre 220°C a 290°C. Los resultados muestran que el fluido de trabajo más adecuado es el isopentano con un punto de ebullición (28 °C) [2]. Otras investigaciones se adentran en otros tipos fuentes de energía renovables además de la geotérmica. Por ejemplo, López-Abente Muñoz [1] analiza un COR utilizando varias fuentes de energía renovables. Este análisis recomienda usar R134a y n-pentano como fluidos de trabajo cuando se usa energía geotérmica, ya que muestran buenas propiedades termodinámicas a bajas temperaturas. En este caso se usó una temperatura de 100°C para el recurso geotérmico y 150°C para el recurso solar. Se utilizó también los fluidos orgánicos R600 y benceno. Finalmente, para la biomasa se fijó una temperatura de 350°C y los fluidos orgánicos utilizados fueron ciclopentano y el octametiltetrasiloxano para fuentes de altas temperaturas [1]. Por otro lado, Nájera Calderón [3] analiza un COR combinando el recurso solar, biomasa y geotérmica. Con el fin de generar 14.5 MWe. Para obtener dicha potencia se usó agua como fluido de trabajo a una temperatura de 184 °C [3].

Finalmente, en un COR es importante el diseño de la turbina. Diseño que se ha simplificado mediante el uso software conocido como "DINÁMICA DE FLUIDOS COMPUTACIONAL" o análisis CFD. Dicho análisis determina y genera una

geometría en tres dimensiones de una turbina de flujo radial a partir de datos termodinámicos como: flujo másico, presiones, temperaturas y las propiedades termodinámicas del fluido de trabajo. Por lo tanto, se podrá realizar el mallado de dicha geometría para su posterior simulación con un fluido de trabajo. Y así determinar la potencia generada y rendimiento [4-7].

1.1. Tema

"ANÁLISIS DE LA GEOMETRÍA Y DEL RENDIMIENTO DE UNA TURBINA DE FLUJO RADIAL PARA EL ESTUDIO DE FLUIDOS DE TRABAJO EN UN CICLO ORGÁNICO RANKINE USANDO DISTINTOS RECURSOS RENOVABLES DE BAJA ENTALPÍA (SOLAR-BIOMASA-GEOTÉRMICA).

1.2. Justificación

En Ecuador. La búsqueda de fuentes de energías alternativa nace de la necesidad de diversificar la matriz energética y satisfacer una demanda creciente de energía. En el año 2015, el país alcanzó una generación de 26.462 GWh de los cuales el 49% fueron generados en termoeléctricas, el 47% en hidroeléctricas, el 2% a partir de fuentes renovables no convencionales y el 2% restante corresponden a interconexión con Perú y Colombia [8]. Pese a ello, según el censo del 2010, existe un 8% de viviendas que carecen de acceso a energía eléctrica a nivel nacional [9]. Las soluciones basadas en extensión de red se han ido agotando al tornarse cada vez más costosas y presentan graves efectos en el deterioro de la calidad del servicio [10]. Por ejemplo, en la Provincia de Tungurahua se estima que el 3.2% de la población no tiene acceso al servicio eléctrico [9]. Es por esto por lo que se requiere el desarrollo de nuevos sistemas de generación de energía que permitan usar otros recursos disponibles.

La micro generación es una alternativa para obtención de electricidad en lugares en donde resulta costosa la instalación de una red de tendido eléctrico, esto conlleva a producir un ahorro en los costos energéticos y una baja emisión de CO2. Ya que el diseño de este tipo de sistemas de energías no convencionales se basa en la mejora

del ambiente, mediante la producción de energía limpia. De manera que se deje la desentendencia de combustibles fósiles y los impactos ambientales que los mismos producen, que en su mayoría son irreparables. Esta tecnología puede ser utilizada tanto en sectores rurales como urbanos; usando recursos renovables disponibles en su lugar de aplicación. Estos recursos renovables pueden ser de origen solar, biomasa o geotérmica.

Según Moya, et al. [11] es posible aprovechar los residuos sólidos urbanos para la obtención de biogases, con un adecuado tratamiento del recurso. Y ser aprovechado, para la obtención de energía eléctrica[11]. En este contexto [12],se adentra en determinar el potencial energético de los residuos sólidos urbanos de la ciudad. Obteniendo como resultado 0,0,7 MW por cada tonelada de residuos sólidos urbanos [12].

En la provincia de Tungurahua existen proyectos de generación eléctrica por medio del aprovechamiento de residuos sólidos. Mediante la obtención de gas metano en el relleno sanitario de la ciudad de Ambato. Este recibe un promedio de 240 toneladas diarias de basura, de las cuales el 65% es orgánica; esta puede ser tratada para obtener metano para generación eléctrica [13]. Otro fuente disponible para la obtención de gas metano mediante la descomposición de materia orgánica, es la planta de tratamiento de aguas residuales de la ciudad de Ambato, ubicada en el sector las Viñas [14].

Respecto al uso del recurso energético solar, representan el 0.2 % de la producción de energía renovable no convencional del país con una potencia instalada de 21,2 MW [8]. Este recurso es posible aprovecharlo ya que por estar ubicados en la zona ecuatorial y en la cordillera de los andes se cuenta con un potencial de energía solar de 4275-4750 Wh/m2/día según la insolación que recibe la superficie [15].

Respecto al uso del recurso geotérmico; hay que tener en cuenta que Ecuador está atravesado por más de 40 volcanes activos. De acuerdo con el estudio Beate and Salgado [16], el uso del recurso es de aproximadamente 5MWt a nivel nacional. Pero actualmente este recurso solo es usado en piscinas [16]. Mientras para usos de

generación eléctrica, se estima un potencial 800MWt que aún no ha sido investigado[17].

En la provincia de Tungurahua existen estudios de los recursos geotérmicos de baja entalpia provenientes del volcán Tungurahua. Según estos estudios se tiene un potencial térmico de 0,386 MW, que puede ser utilizado con fines de micro generación [16, 18].

En este contexto, el presente estudio busca determinar el potencial energético de los recurso renovables dentro del contexto ecuatoriano, analizando distintas configuraciones termodinámicas basadas en el Ciclo Orgánico Rankine que tengan como fuente de energía a recursos renovables como son la energía solar, biomasa y geotérmica en el contexto de la provincia de Tungurahua. Igualmente se estudia la geometría de una turbina de flujo radial dentro del Ciclo Orgánico Rankine.

1.3. Objetivos

1.3.1. Objetivo General

 Analizar la geometría y del rendimiento de una turbina de flujo radial para el estudio de fluidos de trabajo en un Ciclo Orgánico Rankine usando distintos recursos renovables de baja entalpía (Solar-Biomasa-Geotérmica) en el contexto de la provincia de Tungurahua, Ecuador, aplicando ANSYS y EES.

1.3.2. Objetivos Específicos

- Realizar un análisis térmico de los fluidos de trabajo (refrigerantes) en un Ciclo Orgánico Rankine aprobados para su uso en el contexto ecuatoriano usando EES.
- Estudiar el recurso energético renovable de baja temperatura disponible en la provincia de Tungurahua para realizar un estudio térmico usando un Ciclo Orgánico Rankine.

- Analizar diferentes configuraciones termodinámicas de un Ciclo Orgánico Rankine combinando los recursos energéticos renovables con diferentes fluidos de trabajo.
- Dimensionar una turbina radial para micro generación en un Ciclo Orgánico Rankine.
- Diseñar una turbina radial para micro generación en un Ciclo Orgánico Rankine utilizando diferentes recursos energéticos renovables y diferentes fluidos de trabajo en el contexto de la provincia de Tungurahua usando ANSYS.

CAPÍTULO II

2. FUNDAMENTACIÓN

2.1. Fundamentación teórica

2.1.1. Ciclo Orgánico Rankine: principio y configuraciones

El Ciclo Rankine (CR) es un ciclo de potencia que utiliza agua como fluido de trabajo, evaporándose y condensándose alternadamente [19]. En la Figura 1 se ilustra un CR. Primeramente consta de una caldera en donde se adiciona calor al fluido de trabajo, se genera vapor que es expandido en una turbina para generar trabajo mecánico. Se rechaza calor del fluido de trabajo en un condensador y cambia a estado líquido, para regresar a la caldera mediante una bomba y repetir el ciclo [20]. Cabe decir que la evaporación del fluido de trabajo se realiza a temperaturas entre los 300 °C y los 550 °C [21].

Fig. 1: Ciclo Rankine [19].

El Ciclo Orgánico Rankine (COR) incorpora un evaporador en lugar de una caldera para la trasferencia de calor al fluido de trabajo como se ilustra en la Figura 2. El evaporador permite utilizar fluidos de trabajo con un menor punto de ebullición comparado con el del agua. Es decir, fuentes de calor de baja temperatura. Estas fuentes de calor pueden ser de origen renovable como solar, biomasa, calor residual (industrial o domestico) y geotérmica [22]. Debido a que las fuentes de calor son de media y baja temperatura el agua no es el fluido de trabajo más adecuado como en un CR, por lo tanto es necesario usar fluido orgánico o refrigerante en lugar de agua [20]. Por lo general las temperaturas del fluido de trabajo en el COR varían entre 80 -100 °C [23].

Fig. 2: Esquema Ciclo Orgánico Rankine [24].
Igualmente, se puede obtener un Ciclo Orgánico Rankine Hibrido (CORH) al aumentar otra fuente de calor en un COR como se ilustra en la Figura 3 [25]. En la primera fuente de calor del CORH, el fluido de trabajo es precalentado con una fuente de origen geotérmico y luego se dirige al evaporador alimentado por una fuente de origen solar, con el fin de aumentar la presión y obtener vapor sobrecalentado a la entrada de la turbina. Por lo tanto se obtendrá un salto de temperatura a la salida de cada fuente de calor [26]. Mientras que el calor total de entrada al CORH está dado por la sumatoria de calores en cada fuente de calor [27].

Fig. 3: Esquema de un CORH [25].

2.1.1.1. Balance energético para los componentes de un COR y CORH

El balance energético en cada uno de los componente del COR y CORH depende de los procesos termodinámicos que se desarrollan en cada punto por el que transita el fluido de trabajo como se ilustra en la Figuras 4 y 5 [24, 26]. En donde se observa un cambio de presion,temperatura y helpatia en cada punto de COR y CORH. En la Tabla 1 se explica de mejor manera como se realiza el cambio de fase entre liquido y vapor del fluido de trabajo a lo largo de los componentes del COR y CORH [20].

Fig. 4: Diagrama Temperatura-entalpia COR [24].

entalpia [kg/kg °k]

Fig. 5: Diagrama Temperatura-entalpia CORH [26].

Proceso	Configuración	Descripción
1-2	COR y CORH	El fluido orgánico fluido de trabajo ya en forma de
		vapor sobrecalentado con la alta presión recibida en
		él evaporador es dirigido al expansor en donde su
		energía térmica se convierte en la energía mecánica
2-3	COR y CORH	El vapor es entonces condensado usando un medio
		de enfriamiento (aire o agua) con una calidad igual a
		0 para obtener un líquido saturado.
3-4	COR y CORH	El fluido orgánico de baja presión es presurizado
		isoentrópicamente en fase liquida con una bomba.
4-1	COR	El fluido orgánico se vaporiza utilizando una fuente
5-1	CORH	de calor, con una calidad igual a 1 para obtener vapor
		saturado y así comienza un nuevo ciclo.
4-5	CORH	EL Fluido orgánico es precalentado antes de ingresar
		al evaporador con el fin de aumentar la eficiencia
		térmica del ciclo.

Tabla 1: Procesos termodinámicos en un COR y CORH [20, 26, 27].

Consecuencia, de la fricción del fluido en los componentes como la bomba y turbina, la eficiencia del ciclo disminuirá obteniendo una desviación entre eficiencia isentrópica (ideal) y eficiencia real. Según investigaciones previas, la eficiencia de componentes como la bomba y turbina se encuentran entre el 70%-85% [4, 6, 28-35]. Cabe mencionar que la eficiencia de la turbina tiene valores mucho menores al realizar simulación CFD, dependiendo del fluido de trabajo y la configuración del ciclo termodinámico [36-38].

La Tabla 2 muestra las ecuaciones necesarias para realizar el balance energético del COR y CORH.

Componentes	Ecuaciones	
Turbina (1-2)	$Q_{\rm T}^{\cdot} = {\rm m}_{{\it COR}{\it y}{\it CORH}}({\rm h}_1 - {\rm h}_2)$	Ec. 1
Condensador (2-3)	$Q_{C}^{\cdot} = m_{COR y CORH}(h_2 - h_3)$	Ec. 2
Bomba (3-4)	$Q_B = m_{COR y CORH}(h_4 - h_3)$	Ec. 3
Evaporador (4-1)	$Q_E = m_{COR y CORH}(h_1 - h_4)$	Ec. 4
Calor del evaporador	$Q_{fuente de calor} = Q_{Evaporador}$	Ec. 5
Flujo másico del COR.	$m_{orc} = \frac{Q_{Evaporador}}{(h_1 - h_4)}$	Ес. б
Flujo másico del CORH.	$m_{orch} = \frac{\Sigma Q}{(h_1 - h_4)}$	Ec. 7
Eficiencia de la bomba	$n_{Bomba} = \frac{h4iso - h3}{h4 - h3}$	Ec. 8
Eficiencia de la turbina	$n_{Turbuna} = \frac{h1 - h2}{h1 - h2iso}$	Ec. 9
Eficiencia del ciclo	$n_{\text{Termica del ciclo}} = \frac{\dot{Q_T} \ \dot{Q_B}}{Q_{\text{ENTRA}}}$	Ec. 10

Tabla 2: Balance energético para componentes del COR Y CORH [19, 20, 24,27, 39].

2.1.2. Recurso renovable de baja entalpia

2.1.2.1. Solar

El recurso solar es una de las energías renovables más prometedoras, ya que es inagotable, libre de contaminación y explotable en la mayoría de las partes del mundo [24]. Se define como la energía radiante procedente del Sol que llega a la superficie de la Terrestre en forma de luz infrarroja, luz visible y ultravioleta [21]. Dicha energía radiante es conocida como irradiancia y su unidad es el W/m² [40]. Sin embargo, si esta irradiancia es medida en un periodo de tiempo se obtiene la cantidad de insolación y es medida en Vatio/hora/metro cuadrado y esta puede ser directa, difusa o global [15, 21, 40].

En cuanto a la irradiación directa es la llega a la tierra sin haber interaccionado con nada es decir llega sin difuminarse o se desviarse a su paso por la atmósfera terrestre. Adicionalmente la irradiación difusa se produce cuando la radiación modifica su dirección debido a diversas circunstancias como partículas sólidas y las moléculas, como el vapor de agua, que existen en la atmósfera. Mientras que la insolación global es la suma de la insolación directa y difusa [15, 21, 40].

2.1.2.1.1. Tecnologías y Potencia térmica

La potencia térmica es igual a la radiación directa multiplicada por el área de apertura del colector y eficiencia del colector. Además del área del colector varía según el número de módulos de cada captador con el fin de obtener la temperatura máxima de operación del mismo, como se muestra en le Ecuación 11 [40-42].

Q = Irradacion x Area de apertura x eficiencia del colector Ec. 11 [40].

Cabe mencionar que el área de apertura depende del tipo de captador utilizado para el aprovechamiento de la energía solar que llega a la tierra [42]. Existen captadores de varios tipos como: solares térmicos, cilindro parabólico y central de torre como se ilustra en las Figuras 6,7 y 8 Cada uno con una temperatura especifica de operación como se ilustra en la Tabla 3 [21, 40].

Tipo	Descripción	Temperatura
Solares	Captan la energía solar transformándola en	Baja temperatura
térmicos	energía térmica e impidiendo su salida al	T<90 °C
planos	exterior.	
	Concentran la radiación solar que recibe la	Media temperatura
Cilíndrico	superficie captadora en un elemento receptor de	90 °C <t<400 th="" °c<=""></t<400>
parabólico	superficie cilíndrica muy reducida.	
	Consisten en una serie de espejos que reflejan la	
Central de	radiación sobre una caldera situada en una torre	Alta temperatura
torre	central	T>400 °C

Tabla 3: Tipos de concentradores solares según la temperatura de operación [21].

Fig. 6: Esquema concentradores solares térmicos planos[21].

Fig. 7: Esquema concentradores solares de Cilíndrico Parabólico [21].

Fig. 8: Esquema concentradores solares de central de torre [21].

Se ha determinado que los concentradores de cilíndrico parabólico son la mejor opción para generación eléctrica [32]. En la Tabla 4 se ilustran proyectos realizados con colectores de cilindro parabólico. También se especifica el lugar donde fueron aplicados, con las respectivas características del proyecto como potencia, área de apertura y temperatura alcanzada.

Marca del	Potencia	Área de	Temperatura	Lugar	Referencias
colector	(KW)	apertura(m ²)	de operación		
			°C		
PARASOL	5	20	100-200	Vorchdorf,	[42]
				Austria	
NEP SOLAR	18	50	120-230	Centro Nacional	[42]
PolyTrough				de Energía Solar	
1200				Australia en	
				2007	
SOLITEM	9,3	180	180	Turkia, hotel	[42, 43]
PTC 1800				Sarigerme Park	
				en el año 2004	

Tabla 4: Investigaciones previas con colectores de cilindro parabólico [42, 43].

2.1.2.2. Biomasa

En lo que respecta al recurso de biomasa. Es la misma energía solar, transformada mediante el proceso de fotosíntesis y almacenada en los seres vivos; como vegetales, animales o desechos de origen humano como se indica en la Tabla 5. El potencial energético de la biomasa variar según el tipo de cultivo y el método de aprovechamiento empleado como se indica en la Tabla 6 para distintos tipos de biomasa [21]. Además, su potencial energético puede ser aprovechado directamente, mediante combustión directa o ser transformado mediante procesos químicos y biológicos [44]. Los procesos de conversión de biomasa más relevantes son los de Combustión Directa, Termo-químicos y Bio-químicos como se muestra en la Figura 9 [23].

Fuentes de energía de biomasa				
Origen vegetal	Origen animal	Origen humano		
Biomasa natural,	Excrementos	Residuos Sólidos Urbanos (RSU),		
cultivos energéticos	purines.	procedentes de viviendas, comercios,		
		fábricas		

Tabla 6: Potenciales energéticos de distintos tipos biomasa [21].

Madera (seca)	15 GJ/Tn (10 GJ/m3)
Papel (periódicos compactados)	17 GJ/Tn (9 GJ/m3)
Paja (empacada)	14 GJ/Tn (1,4 GJ/m3)
Caña de azúcar (seca)	14 GJ/Tn (10 GJ/m3)
Césped (recién cortado)	4 GJ/Tn (3 GJ/m3)
Boñigas (secas)	16 GJ/Tn (4 GJ/m3)
Residuos domésticos (sin tratar)	9 GJ/Tn (1,5 GJ/m3)
Residuos comerciales	16 GJ/Tn

Fig. 9: Procesos para la conversión de biomasa para su aprovechamiento [23].

Biogás

Como consecuencia de un proceso de conversión para fuentes de biomasa es posible obtener biogás para su posterior aprovechamiento. Las fuentes para la obtención de biogás pueden ser rellenos sanitarios, digestores de aguas residuales y plantas de biogás en granjas[11, 45]. La Tabla 7 muestra las fuentes para obtención de biogás, así como el contenido de metano y otros productos de la descomposición de biomasa [45]. Generalmente la transformación de dichas fuentes de biomasa en biogás se realiza por procesos bio-químicos mediante la ausencia de oxígeno por acción de microorganismos y otros factores. El resultado de este proceso es una mezcla gaseosa formada principalmente de Metano (CH4) y dióxido de carbono (CO2) [23]. Cabe mencionar que el metano (CH4), tiene un poder especifico o poder calorífico inferior (PCI) de entre 33501 KJ/m3 a 37270 KJ/m3 [44].

Fuente	CH ₄	CO ₂	O ₂	N ₂	H ₂ S (ppm)	Benceno	Tolueno
	(%)	(%)	(%)	(%)		(mg/m ³)	(mg/m ³)
Relleno	47–	37–	<1	<1-	36–115	0,6–2,3	1,7–5,1
Sanitario	57	41		17			
Digestor de	61–	36–	<1	<2	Abajo del	0,1–0,3	2,8–11,8
aguas	65	38			límite de		
residuales					detección		
Planta de	55–	37–	<1	<1-2	32–169	0,7–1,3	0,2–0,7
biogás en	58	38					
granjas							

 Tabla 7: Composición de biogás de diferentes fuentes [45].

2.1.2.2.1. Tecnologías y potencia térmica

Para determinar la potencia térmica de la biomasa es necesaria una tecnología para su aprovechamiento. En la Figura 10 se ilustra el proceso de conversión de biomasa proveniente de lodos del tratamiento de aguas residuales su aprovechamiento en un COR. Primeramente el lodo se mezcla con agua caliente para dirigirse a un digestor anaerobio en donde se transforma en biogás mediante su descomposición por procesos bio-químicos. Luego se elimina el azufre para su posterior almacenamiento con el fin de ser usar un porcentaje en una turbina de micro gas y finalmente otro porcentaje es enviado al COR [46]. Igualmente, el biogás puede ser quemado directamente en el evaporador de un COR como se ilustra en la Figura 11 con un módulo comercial "The Green Machine Series 4000" fabricado por ElectraTherm. Dichos quemadores tiene eficiencia de recuperación del biogás del 60%, mientras que la eficiencia térmica del evaporador es del 41.5% [47]. Generalmente la temperatura de módulos comerciales OCR de biogás es de 150° [47-49].

Finalmente por la combustión biogás en el evaporador se obtendrá una potencia térmica que se involucra la concentración de metano, el poder calorífico inferior del metano, la eficiencia térmica de la tecnología que se utiliza y la eficiencia del sistema de recuperación como se muestra en la Ecuación 12 [44, 50].

$$Q = %CH_4 \times PCI_CH4 \times %\gamma \times V \times %n$$
 Ec. 12 [44, 50].

Dónde:

Q: Potencia térmica Generada
%CH4: Concentración de metano
PCICH4: Poder Calorífico Inferior
V: Volumen de biogás
%γ: Eficiencia del sistema de recuperación de biogás
%η: Eficiencia térmica de la tecnología utilizada

Fig. 10: Sistema que incluye una micro turbina de gas, antes del Ciclo Rankine Orgánico de fondo [46].

Fig. 11: Modulo comercial Biogás + Ciclo Orgánico Rankine The Green Machine Series 4000 [47].

2.1.2.3. Geotérmica

La energía geotérmica se origina por en el calor acumulado en el interior de la tierra, en su magma fundido. Está disponible en zonas donde el calor se aproxima a la superficie, normalmente en los denominados cinturones sísmicos, bien por una intrusión magmática-cono volcánico, o por una corteza anormalmente delgada [21]. Los yacimientos en donde está disponible el recurso geotérmico se clasifican según el intervalo de temperatura a la que se encuentra el recurso como se muestra en la Tabla 8 [2]. Cabe mencionar que la temperatura aumente con respecto profundidad del yacimiento. A partir de 20 m de profundidad, la temperatura aumenta a razón de unos 3 °C cada 100 m como consecuencia del gradiente geotérmico [51].

Tabla 8:	Clasifi	cación	de	yacimientos	[2]	١.
----------	---------	--------	----	-------------	-----	----

Muy Baja	<30°C	Profundidad a partir de los 20m
Temperatura		
Baja	30°C-90°C	En profundidades de entre 1500m a 2500m
Temperatura		
Media	90°C-150°C	2000m-4000m
Temperatura		
Alta	>de 150°C	En profundidades de entre 3000m-10000m

2.1.2.3.1. Tecnologías y Potencia térmica geotérmica

El aprovechamiento del recurso geotérmico para la generación eléctrica se puede realizar mediante el uso de turbinas de vapor o mediante plantas de generación geotérmica de ciclo binario, en donde se utiliza un COR [52, 53]. Para su aprovechamiento en un COR se realiza la extracción del recurso a un circuito primario o red de tuberías mediante el bombeo de la salmuera de los pozos geotérmicos. Para después pasar a un segundo circuito en donde se tiene intercambiador de calor para la recuperación del calor geotérmico y finalmente la salmuera se reinyecta en el mismo acuífero para crear un circuito de circuito cerrado [54]. Generalmente la salmuera que sale del intercambiador de calor y se reinyecta

al pozo tiene una temperatura de 30°C a 35°C [16, 55, 56]. Finalmente es posible determinar la potencia térmica generada en el intercambiador de calor conociendo el flujo másico, temperaturas de entrada y salida del recurso geotérmico como lo indica la Ecuación 13 [16, 55].

$$\mathbf{Q_{Geo}} = m_{geo} \left(\frac{kg}{s}\right) [t_{entrada}(^{\circ}\text{C}) - t_{salida}(^{\circ}\text{C})] \times 0.004184 \quad \text{Ec.13} [16, 55].$$

2.1.3. Fluido de trabajo

Los fluidos de trabajo son fluidos orgánicos o compuestos pesados con grandes pesos moleculares y baja temperatura de ebullición y presión [24]. Para su uso en un COR una propiedad termo física del fluido de trabajo como la temperatura crítica debe ser ligeramente superior a la temperatura de evaporación que nos provee la fuente de calor, ya que si se toma demasiado lejos de la temperatura crítica provoca altas caídas de presión y la necesidad de componentes más grandes [57]. Por lo tanto será de gran importancia seleccionar un fluido de trabajo acorde a la temperatura que nos proporciona la fuente de calor como lo han determinado investigaciones previas detalladas en la Tabla 9 [28].

Aplicación	Temperatura	temperatura	temperatura	fluido
	fuente de calor	de	de	recomendado
		evaporador	condensación	
Recuperación	85 °C	55–80 °C	25 °C	Butano, R245fa
de calor				y R141b
residual				
Recuperación	85 °C	60 °C	25 °C	R123
de calor				
residual				
Geotérmica	80–115 °C	65–100 °C	25 °C	Propano
Geotérmica	70–90 °C	-	-	Amoníaco

Tabla 9: Fluidos recomendados para diferentes aplicaciones [28].

Geotérmica	120 °C	100 °C	30 °C	RE134, RE245,
				R600, R245fa,
				R245ca, R601
Geotérmica	91.1 °C	Te ⁱ	28 °C	R601a, R601
Biomasa	_	250–350 °C	90 °C	Butilbenceno
Biomasa	_	170 °C	50 °C	Etanol
Solar	_	60–100 °C	35 °C	R134a
Solar	_	70- (T _c -10)	30 °C	R245fa
		°C		
Solar	_	120–150 °C	15 °C	-
_	60–160 °C	55–155 °C	30 °C	Hexano
_	_	80–200 °C	20 °C	R227ea (80–160
				°C)R245fa
				(160–200 °C)

2.1.3.1. Fluidos de trabajo aprobados para su uso en el contexto ecuatoriano

El uso de fluidos de trabajo (Refrigerantes) está regulado mundialmente por el Protocolo de Montreal. Ecuador está sujeto a este protocolo ya que fue reivindicado 17 de noviembre de 2017 mediante Decreto Ejecutivo N° 209 [58]. En donde se establecieron las fechas de control de las sustancias agotadoras de la capa de ozono y un mecanismo de finalización de sus usos. El objetivo es reducir el uso hidroclorofluorocarbonos (HCFC), hidrofluorocarbonos (HFC), hidrocarburos (HC) y algunos refrigerantes naturales como el amoniaco y el dióxido de carbono (CO2) [59]. En cuanto a la fechas límites de reducción de dichas sustancias Estados Unidos y la Unión Europea se han comprometido a reducirlos un 15% hasta el año 2036 con respecto al año 2012. Mientras el resto de países se han comprometido a reducirlo al 20% hasta el año 2047 con respecto al año 2021 [60].

2.1.4. Turbina

Un componente importante del COR es el turbo-expansor o turbina. Debido a que se encarga de producir energía mecánica, que acoplada a un generador puede ser

usada para generación eléctrica a varias escalas como: micro (<5Kw), pequeña (5Kw-5Mw), mediana (5Mw-50Mw) y gran escala (50Mw-300Mw) [24]. Los turbo-expansores usados en el COR, no tienen ninguna diferencia con las turbinas de vapor, cabe decir que estas turbinas pueden ser de flujo radial. Adecuadas para sistemas con caudales más bajos pero con sus relaciones de presión [28]. Una turbina radial consta de cuatro componentes como la voluta o carcasa, boquilla, rotor y difusor como se ilustra en la Figura 12 y Figura 13, cada uno cumpliendo un proceso diferente en el proceso de expansión como se detalla en la Tabla 10 [5].

Fig. 12: Componentes de un turbina de flujo radial [5].

Fig. 13: Componentes de un turbina de flujo radial [36].

 Tabla 10 : Proceso de expansión del fluido en cada componente de una turbina radial [5].

Proceso	Función
1-2	El fluido entrante se acelera y se distribuye alrededor de la
	periferia de la turbina a través de la voluta
2-3	Se logra una mayor aceleración y aumento de la velocidad
	tangencial mediante el anillo de la boquilla antes de que
	ingrese al rotor.
3-4	El espacio vacío entre la boquilla y el rotor permite que las
	estelas a la salida de la boquilla se mezclen.
4-5	La energía cinética del fluido se convierte en energía
	mecánica a medida que se expande a través del rotor
5-6	Si la energía cinética del escape es significativa, con una
	velocidad específica (Ns) tan alta como 0.7, se puede
	emplear un difusor para recuperar la energía desperdiciada
	(5-6).
	Proceso 1-2 2-3 3-4 4-5 5-6

Mientras que para la construcción de los componentes de una turbina de flujo radial es necesario usar aleaciones resistentes a la corrosión [61]. Por ejemplo, una aleación de Acero-Cromo-Molibdeno AISI4140 [62]. Igualmente se puede utilizar como material de construcción el material Inconel 718 que es una aleación de níquel-cromo-molibdeno o aleaciones de titanio [63]. Con el fin de alargar la vida útil de los componentes que están sometidos a la corrosión.

2.1.5. Software de diseño y análisis

2.1.5.1. EES (Engineering Equation Solver) versión académica

EES (Engineering Equations Solver), es un software que permite resolver ecuaciones algebraicas de forma rápida y eficiente [64]. La interfaz de EES es intuitiva y de fácil manejo, para el ingreso de las ecuaciones algebraicas que se desee resolver[65]. Además, provee propiedades termodinámicas de varios fluidos de trabajo. Como Tablas y gráficos termodinámicos en función de las propiedades que se desee analizar [65].

En la Figura 14 se ilustra la interfaz del software EES académico.

Fig. 14: Interfaz del software EES académico.

2.1.5.2. ANSYS Académico

El diseño de la turbina se ha simplificado mediante el uso software conocido como "DINÁMICA DE FLUIDOS COMPUTACIONAL" o Análisis CFD. En donde se ha determinado una serie de pasos para obtener una geometría para su posterior análisis como se Ilustra en la Figura 15. Partiendo desde dimensionamiento hasta la simulación del componente con distintos fluidos de trabajo [4-7, 29, 37, 62, 63, 66].

Fig. 15: Diagrama esquemático para diseño y simulación de una turbina de flujo radial usando ANSYS Académico [4-7, 29, 37, 62, 63, 66].

2.1.5.2.1. ANSYS Vista RTD Académico

ANSYS Vista RTD desarrollado por PCA Engineers. Es un componente de ANSYS Académico, que nos permite dimensionar y diseñar turbinas de flujo radial, como lo indican sus siglas en ingles "RTD" (Radial Turbine Design). Mediante el ingreso de parámetros de diseño a los que está sometida la turbina como se ilustra en la Figura 16. Además, parámetros de diseño se muestran en la Tabla 11 [4-7, 29, 37, 62, 63, 66].

Inlet stagnation temperature 473,15 K Inlet stagnation pressure 187 KPa	 Air Air / fuel ratio 50 Fixed values Cp 2479 J/Kg K 	Units SI Calculate O Imperial Close
Expansion ratio t+ 10 Rotational speed 12000 rpm Blade speed ratio (UIC t+t) 0,45 Efficiencies	R 102,4 J/Kg K Flow angles Inlet angle 2ero relative inlet angle O Relative 5 (a) Absolute 80	2
Stage Correlation Suhmann	Exit angle O Relative -50 O Absolute -60	

Fig. 16: Interfaz software ANSYS-Vista RTD Académico

Tabla 11: Parámetros en la interfaz del software ANSYS-Vista RTD Académico.

Condiciones de operación			
Temperatura de entrada	Calculo del ciclo	°K	[4-6, 29, 30, 63,
	termodinámico		66]
Presión de entrada	Calculo del ciclo	KPa	[5, 6, 29, 30, 40,
	termodinámico		63, 66]
Relación de expansión t-t	1.5 – 30	-	[5, 6, 25, 29, 30,
			40, 63, 66]
Velocidad rotacional	8000-190000	RPM	[5, 6, 23, 28-30,
			40, 47, 63, 66, 67]
Relación de velocidad de	0.4 - 0.9	-	[5, 6, 29, 30, 40,
la cuchilla			63, 66]
Propiedades del fluido			
Cp (Calor específico)	Valor del fluido de trabajo	J/Kg	[5, 6, 29, 30, 40,
	seleccionado	°K	63, 66]

R (Constante de los gases)	Valor del fluido de trabajo	J/Kg	[5, 6, 29, 30, 40,
	seleccionado	°K	63, 66]
Angulo de flujo			
Angulo de entrada	60 - 80(absoluto)	0	[5, 6, 29, 30, 40,
	-6015(relativo)		63, 66]
Angulo de	-60 - 10	0	[5, 6, 29, 30, 40,
salida(absoluto)			63, 66]
Eficiencia			
Eficiencia	70 - 80	%	[5, 6, 29, 30, 40,
			63, 66]
	Alabes		
Numero	3–20	-	[5, 6, 29, 30, 40,
			63, 66, 68]
Espesor	1 - 10	mm	[5, 6, 29, 30, 40,
			63, 66]

2.1.5.2.2. ANSYS BladeGen Académico

ANSYS BladeGen Académico, permite generar un modelo tridimensional usando las dimensiones obtenidas en ANSYS-Vista RTD [4-7, 29, 37, 62, 63, 66]. En la Figura 17 se ilustra la interfaz de ANSYS BladeGen Académico.

Fig. 17: Interfaz ANSYS BladeGen software Académico

2.1.5.2.3. ANSYS TurboGrid Académico

ANSYS TurboGrid Académico, permite generar una topología y mallado controlando el tamaño de los elementos como se muestra en la Figura 18. Así mismo generara las condiciones de frontera. En donde se indica la región por donde ingresa el fluido de trabajo y la región por donde sale dicho fluido [4-7, 29, 37, 62, 63, 66].

Fig. 18: Mallado de la turbina mediante ANSYS-Turbo Grid Académico

2.1.5.2.4. ANSYS CFX Académico

Es una herramienta de software de dinámica de fluidos computacional (CFD). Permite realizar una simulación del comportamiento de turbo maquinaria con gran precisión y rapidez. Consta de un preprocesador en donde se ingresan las propiedades termofílicas a las que está sometido el elemento a simular. Finalmente muestra los resultados en el Post procesador como se muestra en la Figura 19 [4-7, 29, 37, 62, 63, 66].

2.2. Hipótesis

Ho: Al analizar distintas geometrías de una turbina de flujo radial mediante la variación del fluido de trabajo en un Ciclo Orgánico Rankine determinados por los recursos renovables de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador. Determinará que la potencia no cambia con cada fluido de trabajo con el respectivo recurso renovable para su aprovechamiento, así como su rendimiento.

Hi: Al analizar las distintas geometrías de una turbina de flujo radial mediante la variación del fluido de trabajo en un Ciclo Orgánico Rankine determinados por los recursos renovables de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador. Determinará un cambio de potencia con cada fluido de trabajo con el respectivo recurso renovable de baja entalpía para su aprovechamiento. Así como su rendimiento.

2.3. Señalamiento de variables de la hipótesis

2.3.1. Variable independiente

La variable independiente en este estudio es el análisis de la geometría de una turbina de flujo radial mediante la variación del fluido de trabajo seleccionados para un Ciclo Orgánico Rankine con respecto al recurso renovable de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador

2.3.2. Variable dependiente

Como consecuencia del análisis de la geométrica de la turbina flujo radial se obtiene dos variables dependientes como la potencia en la turbina de flujo radial y la eficiencia térmica del ciclo. Dichas variables son los resultados que se espera obtener del análisis.

CAPÍTULO III

3. METODOLOGÍA

3.1. Nivel o tipo de investigación

Bibliográfica

El presente proyecto utiliza una investigación bibliográfica para la validación técnica y científica. Las principales fuentes bibliográficas son libros, artículos científicos, tesis, reglamentos internacionales. Estas bibliografías permiten obtener conceptos, parámetros y recomendaciones útiles para la presente investigación.

Método de diseño de experimentos (DOE).

Primeramente, se usó el método de diseño de experimentos (DOE) para determinar el número de simulaciones a realizarse para llegar a una solución del proyecto con un número representativo de muestra.

Experimental

Adicionalmente se tendrá que experimentar con distintas configuraciones termodinámicas entre recurso renovable de baja entalpia, fluido de trabajo y la geométrica de la turbina para analizar el rendimiento y potencia de una Turbina de Flujo Radial mediante Software ANSYS en su versión académica.

Descriptiva

Igualmente se usa investigación descriptiva al momento de la recolección de datos debido a que es necesario describir las propiedades termo físicas de cada fluido de trabajo con su respectivo recurso renovable que se lo hará mediante software EES académico.

Explicativa

Mientras que la investigación explicativa se usa para facilitar la comprensión de los resultados obtenidos en Software ANSYS en su versión académica con distintas configuraciones termodinámicas entre recurso renovable de baja entalpia, fluido de trabajo y la geométrica de la turbina para analizar el rendimiento y potencia de una Turbina de Flujo Radial y determinar la mejor configuración entre fluido de trabajo y recurso renovable

3.2. Población y muestra

3.2.1. Población

En lo que respecta a la población se consideró a los recursos renovables de baja entalpia disponibles en la Provincia de Tungurahua (Solar-Biomasa-Geotérmica) y mediante investigación bibliográficas se determinó los tres fluidos de trabajo para cada recurso renovable. En consecuencia, se determinó las propiedades termodinámicas de cada punto del Ciclo Orgánico Rankine mediante software EES académico para su posterior análisis mediante Software ANSYS en su versión académica.

Muestra

Para determinar la muestra se utilizó el método de diseño de experimentos (DOE de sus siglas en inglés "DESIGN OF EXPERIMENTS") con el fin de optimizar y organizar el diseño experimental [69]. Debido a que este método nos permite obtener conclusiones válidas y objetivas con el mínimo número de muestras [70]. En este caso se seleccionó un diseño factorial general con tres factores como se muestra en la Ecuación 14 [71].

Muestra = $A \times B \times C$ **Ec. 13** [70, 71].

3.2.1.1. Diseño experimental

Proceso: Ciclo Orgánico Rankine con cada Recurso Renovable De Baja Entalpía

Fig. 19: Esquema COR [24].

- Variables de entrada: Fluido de trabajo, Geometría de la turbina, flujo másico, Eficiencia de la bomba, Temperatura de evaporador
- Variables de salida: Rendimiento del Ciclo Orgánico Rankine, Potencia de la turbina de flujo radial

Fig. 20: Variables del proceso a experimentar.

Según el método de diseño de experimentos (DOE) es necesario determinar los factores que son determinados por el investigador mediante cálculos, mediciones o investigación bibliografía. Es decir, los factores que influyen en la simulación usando software ANSYS académico. Igualmente existen otros factores que servirán para el análisis termodinámico. Con el fin de obtener resultados con la mayor exactitud posible. En la Figura 21 se muestra un diagrama con proceso del modelo experimental [69-71].

Los datos de entrada como el fluido de trabajo, geometría de la turbina y flujo másico, serán usados para realizar la simulación CFD. Por lo tano fueron seleccionados tres fluidos de trabajo para cada recurso renovable según investigación bibliográfica de acuerdo con la temperatura del recurso renovable. Cabe decir que la temperatura del recurso renovable será la misma que la temperatura del evaporador.

En lo que respecta a la geometría, fue dimensionada con ANSYS-VISTA RTD académico y diseñada con ANSYS BladeGEN académico. Para obtener dos geometrías distintas se varió el número de alabes de acuerdo con el diámetro obtenido y mediante investigación bibliográfica. Finalmente, el flujo másico fue obtenido del análisis termodinámico del COR y CORH para cada fluido de trabajo. Obteniendo 30 valores preliminares, de los cuales se seleccionaron 5. Los 5 valores están en orden ascendente. Con el fin que la simulación de la turbina se realice a distintas condiciones de operación.

Por ejemplo, en lo que respecta al recurso solar los valores varían desde niveles bajos de irradiación hasta los niveles más altos a lo largo del año. Igualmente, para el recurso de biomasa los niveles varían desde niveles bajos de poder calorífico de biogás hasta los niveles más altos. Finalmente, para el recurso geotérmico los valores tomados varían desde las temperaturas bajas hasta temperaturas más altas medidas en el sitio.

Mientras que los demás datos como la eficiencia de la Bomba, temperatura de condensador, temperatura de evaporador servirán para obtener datos como

presiones, entalpias y temperaturas en los puntos del ciclo termodinámico del COR y CORH. En la Tabla 12 se ilustran los datos de entrada y respuestas usados en el diseño experimental.

Datos de er	ıtrada	Respuestas
Fluido de trabajo(X1)- Bibliografía	Eficiencia de la Bomba(Z1)- Bibliografía	Rendimiento del Ciclo Orgánico Rankine(Y1)
Geometría de la turbina(X2)-Calculado mediante software ANSYS académico	Temperatura de condensador(Z2)- Medido	Potencia de la turbina de flujo radial(Y2)
Flujo másico(X3)- Calculado mediante software EES académico	Temperatura de evaporador(Z3)- Bibliografía, Medida	-

Tabla 12: Datos de entrada y repuestas del diseño experimental

Fig. 21: Diagrama del proceso del modelo experimental.

3.2.1.1.1. Variables de entrada.

Anteriormente los datos de entrada del COR y CORH fueron determinados para realizar la simulación CFD. Estos datos serán el fluido de trabajo, geometría de la turbina y flujo másico. Ya que estos influyen directamente en el experimento y pueden ser variados según el investigador. A continuación, se muestran los nombres y símbolo de cada variable con el fin de desarrollar el modelo del experimento.

Variables	Símbolo	Unidad
A: Fluido de trabajo	FT	-
B: Geometría de la turbina	Geometría	-
C: flujo másico	m	Kg/seg

 Tabla 13: Variables de entrada del modelo experimental.

3.2.1.1.2. Modelo del experimento

Para determinar el tamaño de muestra con el diseño factorial general usando la Ecuación 14 [70, 71]. Se determinó los siguientes datos: Fluido de trabajo(A=3), Geometría de la turbina (B=2), flujo másico (C=5). En la Tabla 14 se muestra cada dato con su nombre codificado. Finalmente, esta muestra determina el número de simulaciones a realizarse como se muestra en la Tabla 15.

A:	Nombre	B:	Nombre	C: Flujo másico	Nombre
Fluido		Geometría			
de		de la			
trabajo		turbina			
Tres	A1	Dos	B1	Cinco valores en	C1
fluidos		Geometrías	B2	orden ascendente. Con	C2
de	A2	por fluido	B3	el fin que la	C3
trabajo		de trabajo.	B4	simulación de la	C4
	A3	Es decir 6	В5	turbina se realice a	C5
		Geometrías	B6	distintas condiciones	
		en total		de operación	

Tabla 14: Factores y niveles del trabajo experimental Recurso Solar.

Tabla 15: Numero de simulación para cada recurso renovable.

	B 1	B2	B3	B4	B5	B6	Numero de
	A1	A1	A2	A2	A3	A3	simulaciones
C1	1	1	1	1	1	1	6
C2	1	1	1	1	1	1	6
C3	1	1	1	1	1	1	6
C4	1	1	1	1	1	1	6
C5	1	1	1	1	1	1	6
	Tota	al, de si	mulacio	ones de	l proye	cto	30

3.2.1.1.3. Muestra totales

Al determinar un tamaño de muestra igual a 30 para cada recurso renovable. También se determinó un total de 210 análisis que se deberán realizar usando las variables de entrada al COR y CORH mediante Software ANSYS académico.

Recurso renovable de baja entalpia	Simulaciones
Recurso Solar	30
Recurso Biomasa	30
Recurso Geotérmico	30
Recurso Solar-Biomasa	30
Recurso Solar-Geotérmico	30
Recurso Solar-Biomasa- Geotérmico	30
Recurso Biomasa-Geotérmico	30
Total	210

 Tabla 16: Numero de simulaciones que se realizaran usando software ANSYS académico.

3.3. Operacionalización de variables

3.3.1. Variable independiente

La variable independiente en este estudio es el análisis de la geometría de una turbina de flujo radial mediante la variación del fluido de trabajo seleccionados para un Ciclo Orgánico Rankine con respecto al recurso renovable de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador

Conceptualización	Categoría	Indicadores	Índice			Técr	iicas E
						Insti	umentación
El COR es un ciclo de vapor.	Ciclo	Recurso	Solar	Biomasa	Geotérmica	•	nvestigación
Usando para obtener trabajo	Orgánico	renovable				щ	ixplicativa
mediante el uso de una turbina.	Rankine	Fluidos de	Agua	R123	R134	•	nvestigación
Dicha turbina es accionada por el		trabajo	N-decano	N-Pentano	R245fa		ßxperimental
vapor de un fluido de trabajo con			N-octano	N-hexano	N-Pentano	•	nvestigación
bajo punto de ebullición, y una		Propiedades	-Presiones en o	cada punto del	Ciclo Orgánico	, <u>1</u>	Sibliografía
fuente de calor de baja temperatura.		termo físicas	Rankine			•	<i>A</i> étodo de diseño de
Además, esta fuente de calor puede		del fluido de	-Temperaturas	en cada punto	del Ciclo	Ð	xperimentos (DOE)
ser solar, biomasa, calor residual y		trabajo	Orgánico Ranl	kine			

Tabla 17: Variable independiente.

geotérmica. El COR está			-Entalpias en cada punto del ciclo orgánico	Observación directa
configurado por un evaporador,			Rankine	Software ANSYS-
turbina, condensador y una bomba.			-Flujo másico del Ciclo Orgánico Rankine	BladeGen académico
Cabe decir que la turbina puede ser	Geometría	Perfil alabe	¿Cuáles son las dimensiones del alabe?	Tablas
de flujo axial o radial	de la			termodinámicas
	turbina de	Numero de	¿Cuál es el número de alabes generados?	Software EES
	flujo radial	alaoes		académico

Tal	bla 18: Poten	cia en la turbina de flujc) radial como Variable dependiente.	
Conceptualización	Categorías	Indicadores	Índice	Técnicas E Instrumentación
La geometría es desarrollada en		Eficiencia isentrópica	¿Cuál es la eficiencia isentrópica	 Investigación
software ANSYS académico		turbina	turbina de flujo radial según el	Explicativa
mediante la metodología CFD,			análisis CFD?	 Investigación
por medio de un conjunto de		Potencia en la turhina	: Cuál es la Potencia de la turhina de	Explicativa
procesos y rutinas del software		de fluio radial	fluio radial seoín el análisis CFD?	Investigación
nos permite obtener el modelado	Potencia	minnt ofput on		Experimental
de una geometría y su posterior			¿Cuál es la Potencia de la turbina de	 Investigación
simulación. Para así determinar			flujo radial mediante el cálculo	Bibliografía
su Potencia y rendimiento.			analítico usando EES?	Software ANSYS
				CFX académico
				• Software EES
				académico

Como consecuencia del análisis de la geométrica de la turbina flujo radial se obtiene dos variables dependientes como la potencia en

3.3.2. Variable dependiente

la turbina de flujo radial y la eficiencia térmica del ciclo. Dichas variables son los resultados que se espera obtener del análisis.

40

Conceptualización	Categorías	Indicadores	Índice	Técnicas E Instrumentación
La eficiencia térmica o	Eficiencia térmica	Entalpias en cada	Entalpia de entrada y salida en el	Investigación Explicativa
rendimiento de un ciclo	del ciclo	punto del ciclo	Evaporador y en precalentamiento.	 Investigación Explicativa
termodinámico. Es la		termodinámico	- - - - - - -	 Investigación
relación del calor que sale			Entalpia de entrada y salida en la	Experimental
del ciclo termodinámico			turbina	 Investigación Bibliografía
sobre el calor que ingresa			Entalpia de entrada y salida en la	Software ANSVS CFX
al ciclo termodinámico.			bomba.	académico
				 Software EES académico

Tabla 19: Eficiencia térmica del ciclo como variable dependiente.

3.4. Plan de recolección de información

Para el desarrollo del proyecto de experimental se realizó el análisis de la geometría y del rendimiento de una turbina de flujo radial para el estudio de fluidos de trabajo en un ciclo orgánico Rankine usando distintos recursos renovables de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, ecuador. Se usarán distintas técnicas para la recolección de información que se mencionan a continuación.

Bibliográficas

Con el fin de recolectar información acerca de Turbinas de flujo radial usadas en un Ciclo Orgánico Rankine, se ha recolectado información de artículos científicos, Tesis y libros con el fin de tener información útil para el desarrollo del proyecto. Además, se ha determinar el recurso disponible en la provincia de Tungurahua. Con el fin de determinar su potencia térmica para su posterior aprovechamiento en un Ciclo Orgánico Rankine.

Observación directa

Debido a la poca información acerca del recurso geotérmico en la provincia de Tungurahua se procedió a realizar mediciones de la temperatura del recurso en el sitio de "Termas de la Virgen". Con el fin de comprobar la temperatura del recurso, dada en investigaciones bibliográficas.

Software

Finalmente se realizó un análisis CFD en software ANSYS académico con el fin determinar el potencia y rendimiento de la turbina de flujo radial en un Ciclo Orgánico Rankine. Además, se usó Tablas termodinámicas disponibles en el software EES académico. Así mismo se usó el software Minitab 18.1 para realizar el análisis estadístico y verificación de hipótesis

3.5. Plan Procesamiento y análisis.

3.5.1. Diagrama del proceso

Fig. 22: Diagrama de flujo para el plan Procesamiento y análisis.
3.5.2. Procesamiento

3.5.2.1. Recolección de datos del recurso renovable

Para la recopilación de datos del recurso renovable en el contexto de la provincia de Tungurahua, Ecuador se investigará datos como Insolación diaria para el recurso solar. En lo que respecta a la biomasa se investigará la cantidad de biomasa que es transformada en metano en la planta de tratamiento de aguas residuales de la ciudad de Ambato. Mientras que para el recurso geotérmico se investigará la temperatura y caudal másico de la fuente de aguas termales de la Virgen en la ciudad de Baños mediante bibliografía y medición directa de la temperatura en el sitio.

Recurso solar en la Provincia de Tungurahua

En la Tabla 20 se presenta la insolación solar mensual a lo largo de todo el año, tomada del Atlas Solar del Ecuador

INSOLACIÓN GLOBAL KWh/m2/dia							
Enero	Febrero	Marzo	Abril	Mayo	Junio		
4,39	4,46	4,64	4,45	4,26	4,23		
Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre		
4,32	4,64	4,62	4,61	4,7	4,45		

Tabla 20: Insolación solar mensual [15].

Recurso de biomasa en la provincia de Tungurahua

En cuanto a la disponibilidad del recurso de biomasa en la provincia de Tungurahua, existe una fuente que proviene de la planta de tratamiento de aguas residuales (PTAR) AMBATO ubicada en el sector las Viñas. En consecuencia, la biomasa resultante en el proceso de tratamiento de aguas residuales, son lodos que posteriormente son transformados en biogás mediante digestión anaeróbica. En la Figura 23 se ilustra el digestor anaeróbico de la PTAR AMBATO, en donde realiza el proceso de conversión de biomasa a biogás [14]. Primeramente, se observa un mezclador mecánico de lodos, su objetivo es generar una recirculación de biogás. Igualmente, mediante una tubería de material AISI 304 Cedula 10, es dirigido a un quemador. Además, el sistema cuenta con un sistema de válvulas de seguridad, cuyo fin es controlar la presión de gas del sistema. Cabe mencionar que en el proyecto se espera obtener una cantidad de biogás de 2542.46 m3/día con el 70% de contenido de metano, que puede ser aprovechado en un COR [14].

Fig. 23: Detalle de la cúpula de los digestores primarios; dispositivos de salida de gases; mezclador mecánico; válvulas se seguridad y quemador de la PTAR de Ambato [14].

Recurso geotérmico en la provincia de Tungurahua

El potencial energético del recurso geotérmico en Ecuador se estima en 5.157 MWt y 102,4 TJ/año para su uso anual [18]. Igualmente Lloret [72] determina el potencial en 5MWt. En cuanto a la provincia de Tungurahua, cuenta con el potencial energético del volcán Tungurahua. Volcán que ha estado en una actividad de modera a intensa por más de una década. En las estribaciones del volcán se

encuentran varias fuentes termales, entre 40°C y 55°C como se ilustra en la Tabla 21 [16, 55].

Lugar		Caudal (kg/s)	Temperatura (°C)		Potencia térmica	Utilizacio	ón anual	
			Entrada	Salida	(MW)	Caudal	Energía	Factor de
						medio	(TJ/año)	capacidad
						(kg/s)		
Cantón	La Virgen	5,12	53	35	0,386	3,226	7,659	0,629
Baños	El Salado	5	44,3	35	0,195	3,15	3,864	0,628
	Palictahua	2,8	40,7	35	0,0067	1,764	1,326	0,627

Tabla 21: Disponibilidad de energía geotérmica en la provincia deTungurahua [16, 55]

3.5.2.2. Cálculo de potencia térmica

Asimismo, se determinará la potencia térmica disponible con cada recurso renovable que pueda ser utilizada en un Ciclo Orgánico Rankine mediante un sistema para su aprovechamiento o mediante investigaciones previas.

3.5.2.3. Selección de fluido de trabajo

En cuanto a la selección del fluido de trabajo se los realizó de acuerdo con investigaciones previas. En donde se recomienda un fluido de trabajo de acuerdo con la temperatura del recurso renovable de baja entalpia. En la Tabla 22 se muestran los fluidos de trabajo seleccionados para cada recurso renovable de baja [24, 28, 57]. Además, se determinó que en el Ecuador no existe una restricción total en el uso de fluidos de trabajo HFC. Es decir, se espera ir descontinuando su uso paulatinamente a partir de 2036 [58-60].

Recursos Renovables de Baja Entalpía	Fluidos de Trabajo
Solar	Agua, N-decano, N-octano
Biomasa	R 123, N-Pentano, N-hexano
Geotérmica	R134a, R245fa, N-Pentano
Solar- Biomasa	Agua, N-decano, N-octano
Solar- Geotérmica	Agua, N-Decano, N-Octano
Biomasa- Geotérmica	R123, N-Pentano, N-hexano
Solar- Biomasa- Geotérmica	Agua, N-decano, N-octano

 Tabla 22: Selección de fluidos de trabajo para para cada recurso renovable de baja entalpia.

3.5.2.4. Determinación de parámetros del componentes del COR

Temperatura del Evaporador

Para determinar el calor del evaporador. Fue necesario investigar un sistema tecnológico de aprovechamiento del recurso renovable de baja entalpia. Con el fin que esta tecnología determine la temperatura en el evaporador del Ciclo Orgánico Rankine. En el caso del recurso Solar se determinó un sistema de captadores solares de cilindro parabólico con el fin de aprovechar la irradiación disponible en la provincia de Tungurahua. Así mismo para el recurso de Biomasa disponible en la planta de tratamiento de aguas residuales de la ciudad de Ambato, fue necesario determinar una tecnología de conversión de Biomasa a Biogás para su posterior combustión y aprovechamiento en un Ciclo Orgánico Rankine. Mientras que para el recurso Geotérmico se determinó la potencia térmica mediante investigación bibliográfica y además se comprobó la temperatura del recurso renovable de baja entalpia mediante el uso de un termómetro infrarrojo como se muestra en la Figura 24. En la Tabla 23 se ilustran las temperaturas de evaporador para cada recurso renovable.

Tabla 23: Temperatura en el evaporador del Ciclo Orgánico Rankine [2, 14-16, 18, 21, 23, 32, 40-42, 44-47, 50, 54, 55, 73].

Recursos Renovables de Baja Entalpía	Temperatura evaporación
Solar	200°C
Biomasa	150°C
Geotérmica	53°C

Fig. 24: Temperatura del recurso geotérmico disponible en la ciudad de Baños

Eficiencia de Bomba

Mientras que para la eficiencia de la bomba se la estableció en el 75%. Igualmente, mediante investigaciones bibliográficas previas [4, 6, 29, 31, 32, 35].

Temperatura de condensador

Según la bibliografía el fluido usado en el condensador de un Ciclo Orgánico Rankine puede ser agua [20, 24, 39]. En este caso se procedió a medir el agua a temperatura ambiente por varios días en horas aleatorias y obtener un promedio de temperatura para usarla como temperatura de condensación.

3.5.2.5. Análisis Termodinámico usando EES académico

Para realizar en análisis termodinámico la obtención de las propiedades termodinámicas de cada fluido de trabajo mediante software EES académico. El software cuenta con una gran de base de datos de fluidos de trabajo. Por ejemplo, presiones, entalpias y temperaturas del fluido de trabajo en cada punto del ciclo termodinámico. Dichos datos se obtuvieron ingresando las ecuaciones de la Tabla 2. Además del fluido de trabajo y las temperaturas de evaporador y condensador. Con el fin de que el programa nos proporcione una resolución de las ecuaciones ingresadas.

Flujo másico

Finalmente se determinó el flujo másico con la Ecuación 6 y 7. Usando las propiedades termo físicas como entalpias, presiones y temperaturas del fluido de trabajo, obtenido previamente con software EES. En consecuencia, se obtuvo 30 datos preliminares de flujo másico para cada fluido de trabajo; de los cuales se seleccionará 5 valores para posterior análisis usando software ANSYS académico.

Los 5 valores seleccionados están en orden ascendente. Con el fin que la simulación de la turbina se realice a distintas condiciones de operación. Por ejemplo, en lo que respecta al recurso solar los valores varían desde niveles bajos de irradiación hasta los niveles más altos a lo largo del año. Igualmente, para el recurso de biomasa los niveles varían desde niveles bajos de poder calorífico de biogás hasta los niveles más altos. Finalmente, para el recurso geotérmico los valores tomados varían desde las temperaturas bajas hasta temperaturas más altas medidas en el sitio.

Cabe mencionar que el calor de la fuente de calor que se utilizara como calor de evaporador se determinó anteriormente en el cálculo de potencia térmica, con cada recurso renovable de baja entalpia.

3.5.2.6. Dimensionamiento de la geometría de la turbina de flujo radial mediante ANSYS-Vista RTD académico

En cuanto al dimensionamiento se usará el software ANSYS-Vista RTD académico, con el fin de obtener 2 Geometrías por fluido de trabajo para cada recurso renovable de baja entalpia es decir un total de 42 turbinas. Cabe decir que algunos parámetros en la interfaz del software ANSYS-Vista RTD académico son obtenidos mediante el análisis termodinámico del COR y CORH y otros son obtenidos mediante la literatura Tabla 11. Así mismo para obtener dos distintas geometrías se varió el número de alabes.

- Temperatura de entrada. -Depende del recurso renovable de baja entalpia (Solar-200°C, Biomasa-150°C, Geotérmica 53°C)
- Presión de entrada. Depende Cada fluido de trabajo, así como la temperatura de entrada
- Calor específico. Depende Cada fluido de trabajo, así como la temperatura y presión de entrada
- Constante de los gases ideales. Depende Cada fluido de trabajo, así como la temperatura y presión de entrada

3.5.2.7. Diseño de la geometría de la turbina de flujo radial mediante ANSYS-Vista RTD académico

Una vez obtenidas las dimensiones de la turbina de flujo radial en ANSYS-Vista RTD académico como se muestra en la Figura 25. Es posible generar una geometría tridimensional usando ANSYS-BladeGen académico el que nos permitirá generar nuestra turbina en 3 dimensiones como se muestra en la Figura 26.

Fig. 25: Dimensionamiento de una turbina de flujo radial usando ANSYS-Vista RTD académico

Fig. 26: Modelo Tridimensional de una turbina de flujo radial usando ANSYS-BladeGen académico

3.5.2.8. Simulación CFD.

3.5.2.8.1. Aplicación de ANSYS-TurboGrid académico

Realizar un buen mallado mediante el uso ANSYS-TurboGrid académico es importante, para obtener buenos resultados como se muestra en la Figura 27. Dicho mallado no deberá exceder el volumen mínimo del elemento y la relación máxima de volumen del elemento. Con el fin de luego generar las condiciones de borde o de frontera por donde el fluido de trabajo ingresa y sale en la turbina de flujo radial en ANSYS CFX. Cabe decir que la versión Académica de ANSYS está limitada a 512000 nodos como máximo para poder realizar cualquier análisis CFD.

Fig. 27: Mallado de una turbina de flujo radial usando ANSYS-TurboGrid académico

3.5.2.8.2. Aplicación de ANSYS-CFX académico

La simulación de la turbina de flujo radial se realizará aplicando un fluido el fluido de trabajo y flujo másico en una geometría generada y mallada con anterioridad. Un dato importante es el fluido de trabajo; ya que este debe ser configurado correctamente a lo largo del proceso de simulación como se detalla a continuación.

Preprocesador

La geometría mallada es importada al pre-procesado en ANSYS-CFX académico en donde serán generadas las condiciones de borde. Dichas condiciones de borde son generadas al indicar que la geometría importada corresponde a una turbina de flujo radial. Las condiciones de borde son generadas mediante la opción TurboMode en la pestaña Tools del Pre Procesador como se muestra en la Figura 28.

e Edit Session	insert	Tools	Help	Þ											
. () () () () () () () () () () () () ()	0	61		j.	Ŧ i	2 2	Ø	r [CC Sub	f_{\varkappa}	C	S	0] ‡ 6	3
asic Settings															
Machine Type	Radia	l Turbir	ne											•	
Axes															
	Coor	d 0												-	
Coordinate Frame	100603000														
Coordinate Frame Rotation Axis	z													-	
Coordinate Frame Rotation Axis Axis Visibility	Z													•	
Coordinate Frame Rotation Axis Axis Visibility Analysis Type	Z													•	

Fig. 28: Generación de condiciones de borde para una turbina de flujo radial

En consecuencia, se obtendrán las condiciones de borde con las que se realizar las simulaciones como se muestra en la Figura 29. Estas serán las siguientes:

- **R1 Blade.** -Es el alabe de la turbina
- R1 Hub, R1 Shroud, R1 to R1 Periodic 1 Side 1y R1 to R1 Periodic 1
 Side 2.- Representan el contorno al que está sometido el alabe de la turbina y en donde estará contenido el fluido de trabajo en estado de vapor
- R1 Intel. Por aquí ingresa el fluido de trabajo con un flujo másico y temperatura determinadas por el análisis termodinámico en el Ciclo Orgánico Rankine
- **R1 Outlet.** Por aquí salé el fluido de trabajo a una presión determinada por el análisis termodinámico en el Ciclo Orgánico Rankine

Fig. 29: Condiciones de borde de una turbina de flujo radial.

Finalmente es importante configurar el fluido de trabajo como gas real con el fin de obtener buenos resultados en el análisis. El fluido de trabajo se deberá configurar en el apartado de "Materials" como se muestra en la Figura 30 [6, 37, 62]. Las propiedades para cada fluido de trabajo fueron Obtenidos en el software EES académico y se muestran en la Tabla 24. Dichas propiedades se ingresarán como se muestra en la Figura 31.

Fig. 30: Sección "Materials" para el ingreso fluido de trabajo en el Pre Procesador de ANSYS CFX académico

Thermodynamic Propert	ies	E
Equation of State		
Option	Real Gas 👻	
Model	Aungier Redlich Kwong 🗸	
Molar Mass	18.02 [kg kmol^-1]	
Crit. Temp.	374 [C]	
Crit. Pressure	22.064 [MPa]	
Crit. Volume	0.00005595 [m^3 mol^-1]	
Acentric Factor	0.3443	
Boiling Temp.	100 [C]	
Specific Heat Capa	acity	Ξ
Option	Real Gas 🗸	
Zero Pressure Coeffi	cients	
Option	Fourth Order Polynomial 👻	
a1	3.179	
a2	0 [K^-1]	
a3	0 [K^-2]	
a4	0 [K^-3]	
a5	0 [K^-4]	
Lower Cp0(T) T	emperature Limit	Ŧ
Upper Cp0(T) T	emperature Limit	Ŧ

Fig. 31 :Ingreso del fluido de trabajo en el Pre Procesador de ANSYS CFX académico

Las propiedades termo físicas de los fluidos de trabajo seleccionados se muestran a continuación en la Tabla 24. Cabe decir que las propiedades fueron obtenidas mediante software EES académico con respecto a la temperatura del recurso renovable.

Solar (200°C)							
Fluido De Trabajo	Agua	N-	N-Octano	Unidad			
		Decano					
Cp.	2796	2479	2598	J/Kg °K			
R	879.4	102.4	197.4	J/Kg °K			
Masa Molar	18.02	142.3	114.2	kg/kmol			
Temperatura Critica	374	344.6	296.2	°C			
Presión Critica	22.064	2.103	2.497	MPa			
Volumen Critico	0.0000559	0.0006098	0.0004868	M ³ /mol			
	5						
Factor Acéntrico	0.3443	0.4903	0.3928	-			
Punto De Ebullición	100	174.3	125.5	°C			
Coeficiente De Presión	3.179	24.22	13.16	-			
Cero							
Viscosidad Dinámica	0.000043	0.0000419	0.00000900	Kg/m-			
				seg			
Conductividad Térmica	0.2174	0.0000419	0.02847	W/m°K			
	Biomasa ((150°C)					
Fluido De Trabajo	R 123	N-	N-hexano	Unidad			
		Pentano					
Cp.	1310	2858	2455	J/Kg °K			
R	421.3	616.3	262.4	J/Kg °K			
Masa Molar	152.9	72.15	86.17	kg/kmol			
Temperatura Critica	183.7	196.5	234.7	°C			
Presión Critica	3.668	3.364	3.058	MPa			
Volumen Critico	0.0002781	0.000311	0.0003682	M ³ /mol			
Factor Acéntrico	0.2821	0.2499	0.3117	-			
Punto De Ebullición	27.78	35.87	69.27	°C			

Tabla 24: Propiedades termo físicas de los fluidos de trabajo seleccionadosmediante software EES académico.

Coeficiente De Presión	3.11	4.638	9.355	-
Cero				
Viscosidad Dinámica	0.0000167	0.0000106	9.703E-06	Kg/m-
		4		seg
Conductividad Térmica	0.01997	0.02994	0.02659	W/m°K
	Geotérmica	a (53°C)		
Fluido De Trabajo	R134	R245fa	N-Pentano	Unidad
Cp.	1284	1065	1864	J/Kg °K
R	352.2	131	159.2	J/Kg °K
Masa Molar	102	134	72.15	kg/kmol
Temperatura Critica	101	154	196.5	°C
Presión Critica	4.059	3.651	3.364	MPa
Volumen Critico	0.0002009	0.0002597	0.000311	M ³ /mol
Factor Acéntrico	0.3269	0.379	0.2499	-
Punto De Ebullición	-26.09	15.18	35.87	°C
Coeficiente De Presión	3.645	8.129	11.71	-
Cero				
Viscosidad Dinámica	0.0000134	0.0000112	7.486E-06	Kg/m-
	2	9		seg
Conductividad Térmica	0.01754	0.01632	0.01717	W/m°K

Post- Procesador

Gracias a la simulación CFD usando software ANSYS académico, se podrá observar resultados como Temperaturas, Presiones, Energía cinética de turbulencia que actúan en el perfil del alabe de la turbina de flujo radial. Así mismo se obtendrá una potencia y una eficiencia isentrópica.

CAPÍTULO IV

4. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.1. Recolección de datos

4.1.1. Cálculo de potencia térmica

Para determinar la potencia térmica con cada recurso renovable de baja entalpia se usaron las siguientes ecuaciones:

Tabla 25: Ecuaciones necesarias para determinar la potencia térmica [16, 40, 44, 55].

Recurso	Ecuación		Referencias
renovable			
Solar	\mathbf{Q} = Irradacion x Area de apertura x eficiencia del colector	Ec.11	[40]
Biomasa	$\mathbf{Q} = \ \% \mathrm{CH}_4 \ \times \mathrm{PCI}_{\mathrm{CH}4} \ \times \% \gamma \ \times \mathrm{V} \times \% n$	Ec.12	[44]
Geotérmica	$\mathbf{Q} = m_{geo} \left(\frac{kg}{s}\right) [t_{entrada}(^{\circ}C) - t_{salida}(^{\circ}C)] \ge 0.004184$	Ec.13	[16, 55]

Potencia térmica del recuro solar

Para el cálculo de la potencia solar es necesario determinar un captador para el aprovechamiento de la insolación solar. El captador es determinado mediante ponderación entre captadores de cilindro parabólico, Solares térmicos planos y central de torre y sus respectivas características investigadas en la bibliografía. Gracias a la ponderación se determinó que el captador de cilindro parabólico es la mejor opción y en consecuencia se seleccionó un colector de cilindro parabólico según catálogo con sus características técnicas como área de apertura, numero de módulos por colector y temperatura de operación.

Selección de tecnología para aprovechamiento de recurso renovable solar

La selección del captador se realizó de acuerdo con el tipo de captor y sus características como, temperatura de operación, área de apertura y eficiencia.

Mediante un criterio de ponderación de 1 a 5; siendo 1 el valor más bajo y 5 el valor más alto.

Criterio	Cilindro	Solares	Central de	
	parabólico	térmicos planos	torre	
Temperatura de trabajo	4	2	5	
Investigaciones previas	5	3	3	
Madures de la tecnología	5	4	3	
Eficiencia	4	3	4	
Total	18	12	15	

Tabla 26: Criterios de selección del tipo captador.

Tabla 27: Características del colector PARASOL [42].

Área neta de apertura	2	m ²
Número de módulos por Colector	1	u
temperatura de operación	100-200	°C

Tabla 28: Características del colector NEP SOLAR PolyTrough 1200 [42].

Área neta de apertura	2.4	m ²
Número de módulos por Colector	1	u
temperatura de operación	120-230	°C

Tabla 29: Características del colector SOLITEM PTC 1800 [42].

Área neta de apertura	9	m ²
Número de módulos por Colector	1	u
temperatura de operación	100-200	°C

Criterio	PARASOL	NEP SOLAR	SOLITEM
		PolyTrough 1200	PTC 1800
Temperatura de	4	5	4
operación			
Área neta de apertura	5	2	3
Número de módulos	4	2	4
por Colector			
Total	13	9	11

Tabla 30: Selección de marca de captador cilindro-parabólico.

En consecuencia, se seleccionó un captador de cilindro parabólico PARASOL con una apertura de 7.5m² por modulo a una temperatura máxima de 200°C y una eficiencia del 55% [42]. Adicionalmente es necesario aumentar el número de módulos con el fin de obtener una potencia y temperatura mayor.

Insolación solar global en la provincia de Tungurahua

Igualmente es necesario determinar la insolación solar global y así obtener la potencia disponible, mediante el uso del Atlas Solar del Ecuador con el cálculo de frecuencias estadísticas de insolación global en la provincia de Tungurahua para determinar el recurso solar disponible en la mayoría del año como se muestra en la Tabla 31 [15].

Tabla 31: Tabla de frecuencias estadística de insolación solar global [15]	•
--	---

CLASES	ni	hi
4,23 KWh/m2/día - 4,324 KWh/m2/día	3	25%
4,324 KWh/m2/día - 4,418 KWh/m2/día	1	8,333%
4,418 KWh/m2/día - 4,512 KWh/m2/día	3	25%
4,512 KWh/m2/día - 4,606 KWh/m2/día	0	0%
4,606 KWh/m2/día - 4,7 KWh/m2/día	5	41,667%
TOTAL	12	100%

Donde; (hi) corresponde a la frecuencia relativa; con la que se dispone del recurso solar a lo largo del año. Mientras (ni) corresponde a la cantidad de veces que se dispone del recurso solar a lo largo de año; es decir la cantidad de meses.

En consecuencia, al calcular la frecuencia relativa (hi) se determinó el recurso solar disponible por el 50% del año está en el rango de 4,23 KWh/m2/día a 4,324 KWh/m2/día; y 4,418 KWh/m2/día a 4,512 KWh/m2/día. Los meses correspondientes a estos valores de irradiación global se muestran en la Tabla 32.

Tabla 32: Insolación global disponible la mayor parte del año.

Febrero	4,46 KWh/m2/día
Abril	4,45 KWh/m2/día
Mayo	4,26 KWh/m2/día
Junio	4,23 KWh/m2/día
Julio	4,32 KWh/m2/día
Diciembre	4,45 KWh/m2/día

Puesto que ya se determinó los meses se procede a determinar la irradiación global medida cada 3 horas a lo largo del día según las Tablas disponibles en la página web de la NASA para cada mes seleccionado y así tener una muestra de con 30 datos como se muestra en la Tabla 33 [15, 73].

Hora del día	Irradiación (kW/m2)					
	Febrero	Abril	Mayo	Junio	Julio	Diciembre
6	0,08	0,1	0,1	0,09	0,09	0,13
9	0,49	0,52	0,5	0,47	0,47	0,52
12	0,55	0,53	0,51	0,52	0,53	0,53
15	0,3	0,27	0,26	0,28	0,3	0,25
18	0,01	0,01	0,01	0,009	0,009	0,01

Tabla 33: Tabla de irradiación solar correspondiente a los meses de febrero,abril, mayo. junio, julio y diciembre [73].

Con un área de apertura del captador solar de cilindro parabólico de $7.5m^2$ con 100 módulos es decir un área de $750m^2$ y la irradiación solar calcula anteriormente se procede a calcular la potencia térmica solar mediante el uso de la Ecuación 11. obteniendo los resultados que se muestran la Tabla 34.

Tabla 34: Potencia térmica (KW) solar calculada por horas.

Hora	Meses del año seleccionados							
Del	Febrero	Abril	Mayo	Junio	Julio	Diciembre	-	
Día								
6	33	41,25	41,25	37,125	37,125	53,625	KW	
9	202,125	214,5	206,25	193,875	193,875	214,5	KW	
12	226,875	218,625	210,375	214,5	218,625	218,625	KW	
15	123,75	111,375	107,25	115,5	123,75	103,125	KW	
18	4,125	4,125	4,125	3,7125	3,7125	4,125	KW	

Potencia térmica del recurso de biomasa

Para determinar la potencia disponible usando biogás, proveniente del tratamiento de aguas residuales se usó la Ecuación 12 y se varió el poder calorífico inferior del metano desde 33501KJ/m3 a 37270KJ/m3. Igualmente se usó la producción de biogás de la planta de tratamiento de aguas residuales de la ciudad de Ambato. Con el fin de obtener 30 valores de Potencia térmica.

En la Tabla 35 y 36 se realiza la transformación de unidades para el poder calorífico del gas metano y el volumen de biogás respectivamente, con el fin de que se simplifiquen las unidades y facilitar el cálculo

PCI metano				
1 KJ=	2,78E-04 <i>KWh</i>			
$33501\frac{KJ}{m^3}$	$9,3065 \frac{\text{KWh}}{\text{m}^3}$			
$37270 \frac{KJ}{m^3} =$	10,3536 KWh m ³			

Tabla 35: Poder calorífico del gas Metano [44, 47, 50].

Tabla 36: Producción de Biogás en la planta de tratamiento de aguas servidas deAmbato [14].

Volumen de biogás 2542,46 $\frac{m^3}{dia}$ = 105,936 $\frac{m^3}{hora}$

En la Tabla 37 se determina la potencia térmica del recurso de biomasa usando la Ecuación 12.

N°	РСІсн4	Q
1	9,307	171,850
2	9,343	172,515
3	9,379	173,180
4	9,415	173,845
5	9,451	174,509
6	9,487	175,174
7	9,523	175,839
8	9,559	176,504
9	9,595	177,168
10	9,632	177,851
11	9,668	178,516
12	9,704	179,181
13	9,740	179,846
14	9,776	180,510
15	9,812	181,175
16	9,848	181,840
17	9,884	182,505
18	9,920	183,169
19	9,956	183,834
20	9,993	184,517
21	10,029	185,182
22	10,065	185,847
23	10,101	186,511
24	10,137	187,176
25	10,173	187,841
26	10,209	188,506
27	10,245	189,170

Tabla 37: Potencia térmica del Recurso de Biomasa

28	10,281	189,835
29	10,318	190,518
30	10,354	191,183

Donde: Q=Potencia térmica Generada (Kw); %CH4= Concentración de metano (%); PCICH4= Poder Calorífico Inferior ($\frac{KWh}{m^3}$); V= Volumen de biogás ($\frac{Nm^3}{hora}$); % γ = Eficiencia del sistema de recuperación de biogás (%); % η = Eficiencia térmica de la tecnología utilizada (%); Para %CH4 = 70% [14]; PCICH4 =9,3065-10,3536 $\frac{KWh}{m^3}$ [44, 47, 50]; V = 105,936 $\frac{m^3}{hora}$ [14]; % γ = 60% [47]; % η = 41.5% [47].

Potencia térmica del recurso geotérmico

Para determinar una fuente de diseño se tomó criterios como la temperatura, caudal y potencia de cada fuente. Dichos valores se presentan en la Tabla 38. Y fue seleccionada la fuente con los valores más altos.

Lugar		Caudal	Temperatura	Potencia térmica
		(kg/s)	(°C)	(MW)
Cantón Baños	La Virgen	5,12	53	0,386
	El Salado	5	44,3	0,195
	Palictahua	2,8	40,7	0,0067

Tabla 38: Selección del recurso geotérmico [16, 55]

En consecuencia, se determinó a la fuente de energía geotérmica de La Virgen con una temperatura de entre 35°C-53°C, caudal másico de 5.12 kg/s y una potencia térmica de 0.386 MW. Además, se procedió a medir la temperatura en el sitio a lo largo de un día obteniendo las temperaturas de entrada con el fin de variar la potencia térmica usando la Ecuación 13 tal como se muestran en la Tabla 39 [16, 55].

Medición	Temp	Temp	flujo	Potencia	Potencia
	entrada °C	Salida °C	másico	térmica	térmica
			(kg/s)	(MWt)	(KW)
1	44,00	35	5,12	0,1928	192,80
2	44,70	35	5,12	0,2078	207,79
3	45,70	35	5,12	0,2292	229,22
4	46,00	35	5,12	0,2356	235,64
5	46,80	35	5,12	0,2528	252,78
6	46,90	35	5,12	0,2549	254,92
7	47,00	35	5,12	0,2571	257,06
8	47,90	35	5,12	0,2763	276,34
9	48,00	35	5,12	0,2785	278,49
10	48,10	35	5,12	0,2806	280,63
11	48,90	35	5,12	0,2978	297,77
12	49,60	35	5,12	0,3128	312,76
13	50,30	35	5,12	0,3278	327,76
14	50,40	35	5,12	0,3299	329,90
15	50,80	35	5,12	0,3385	338,47
16	51,00	35	5,12	0,3428	342,75
17	51,10	35	5,12	0,3449	344,90
18	51,20	35	5,12	0,3470	347,04
19	51,40	35	5,12	0,3513	351,32
20	51,60	35	5,12	0,3556	355,61
21	51,90	35	5,12	0,3620	362,03
22	52,00	35	5,12	0,3642	364,18
23	52,10	35	5,12	0,3663	366,32
24	52,30	35	5,12	0,3706	370,60
25	52,50	35	5,12	0,3749	374,89

Tabla 39: Tabla de variación de potencia térmica en función de la temperatura.

26	52,70	35	5,12	0,3792	379,17
27	53,00	35	5,12	0,3856	385,60
28	53,10	35	5,12	0,3877	387,74
29	53,30	35	5,12	0,3920	392,02
30	53,40	35	5,12	0,3942	394,17
	53,10 53,30 53,40	35 35 35	5,12 5,12 5,12 5,12	0,3877 0,3920 0,3942	387,74 392,02 394,17

4.1.2. Análisis termodinámico usando EES académico.

Como se especificó en el plan de procesamiento y análisis. Antes de realizar el análisis termodinámico. Se determinó las características de los componentes de un Ciclo Orgánico Rankine. Por ejemplo, la temperatura de evaporador, eficiencia de la bomba. En lo que respecta a la temperatura del condensador se realizó varias mediciones de agua a temperatura ambiente por varios días de determino una temperatura promedio de 18,4 °C.

 Tabla 40: Temperatura de condensador obtenida mediante la medición

 del agua a temperatura ambiente.

Mediciones	Temperatura °C						Promedio				
	19,6	21	17,9	18,8	16	19,7	18,5	19,2	19,4	17,5	18,4
	20,3	19,3	18,3	18,8	17,2	19,5	18,7	17,8	16,7	21,3	-
	17,4	18,5	17,2	19,1	16,5	20,5	18,3	15,2	16,2	18,2	-

Una vez determinado los componentes del COR y CORH, se procedió a realizar el análisis termodinámico. En la Figura 32 sé muestra la configuración de un COR con una sola fuente de calor que puede ser solar, biomasa y geotérmica.

Fig. 32: Esquema un COR [24].

En la Tabla 41 se muestra los resultados obtenidos para el recurso solar, los datos mostrados corresponden a temperaturas, entalpias y presiones en cada componente del COR.

Fluido de trabajo		N_Decano	N_Octano
Fluido de trabajo	Agua	IN-Decallo	N-Octailo
T1°C	200	200	200
T2iso°C	18,4	113	107,3
ТЗ°С	18,4	18,4	18,4
T4°C	18,54	18,48	18,64
h1(KJ/Kg °K)	2793	333,2	696,9
h2iso(KJ/Kg °K)	1872	150,5	515
h3(KJ/Kg °K)	77,14	-386,4	-14,71
h4(KJ/Kg °K)	79,21	-386,1	-13,66
Presión evaporador (P1):	1.554MPa	0.187Mpa	0.5546Mpa
Presión condensador (P2):	0.002117MPa	0.000113Mpa	0.001251Mpa
Eficiencia bomba		70%	

Tabla 41: Resultados del análisis termodinámico del COR, Recurso-Solar enEES académico.

En Las Figuras 33,34 y 35 se muestra el grafico termodinámico Temperatura-Entalpia para cada fluido de trabajo con respecto al recurso solar.

Fig. 33: Diagrama T-h usando agua como fluido de trabajo, obtenido mediante software EES académico.

Fig. 34: Diagrama T-h usando N-Decano como fluido de trabajo, obtenido mediante software académico.

Fig. 35: Diagrama T-h usando N-Octano como fluido de trabajo, obtenido mediante software EES académico.

En la Tabla 42 se muestra los resultados obtenidos para el recurso Biomasa, los datos mostrados corresponden a temperaturas, entalpias y presiones en cada componente del COR.

 Tabla 42: Resultados del análisis termodinámico del COR, Recurso-Biomasa en EES académico.

Fluido de trabajo	R123	N-Pentano	N-hexano
T1°C	150	150	150
T2iso°C	37,39	59,91	70,33
Т3°С	18,4	18,4	18,4
T4°C	19,51	19,24	18,76
h1(KJ/Kg °K)	465,5	557,7	576,5
h2iso(KJ/Kg °K)	407,3	426,7	441,7
h3(KJ/Kg °K)	219,4	-17,31	-19,03
h4(KJ/Kg °K)	221,2	-14,05	-17,58
Presión evaporador (P1):	2.104Mpa	1.591 MPa	0.7357 MPa
Presión condensador (P2):	0.07115Mpa	0.05365Mpa	0.01514 MPa
Eficiencia bomba		70%	

En Las Figuras 36, 37 y 38 se muestra el grafico termodinámico Temperatura -Entalpia para cada fluidos de trabajo con respecto al recurso biomasa.

Fig. 36: Diagrama T-h usando R123 como fluido de trabajo, obtenido mediante software EES académico.

Fig. 37: Diagrama T-h usando N-Pentano como fluido de trabajo, obtenido mediante software EES académico.

Fig. 38: Diagrama T-h usando N-Hexano como fluido de trabajo, obtenido mediante software EES académico.

En la Tabla 43 se muestra los resultados obtenidos para el recurso geotérmico, los datos mostrados corresponden a temperaturas, entalpias y presiones en cada componente del COR.

Tabla 43: Resultados del análisis termodinámico del COR, Recurso-Geotérmicoen EES académico.

Fluido de trabajo	R134a	R245fa	N-Pentano
T1°C	53	53	53
T2iso°C	18,4	22,78	26,32
ТЗ°С	18,4	18,4	18,4
T4°C	19,01	18,53	18,47
h1(KJ/Kg °K)	276,3	443,1	408,2
h2iso(KJ/Kg °K)	257	422	376,4
h3(KJ/Kg °K)	77,08	223,8	-17,31
h4(KJ/Kg °K)	78,03	224	-17,05
Presión evaporador (P1):	1,421Mpa	0.376 Mpa	0,175 Mpa
Presión condensador (P2):	0,5443 Mpa	0,115 Mpa	0,05365 Mpa
Eficiencia bomba		70%	

En Las Figuras 39, 40 y 41 se muestra el grafico termodinámico Temperatura -Entalpia para cada fluidos de trabajo con respecto al recurso geotérmico.

Fig. 39: Diagrama T-h usando R134a como fluido de trabajo, obtenido mediante software EES académico

Fig. 40: Diagrama T-h usando R245fa como fluido de trabajo, obtenido mediante software EES académico

Fig. 41: Diagrama T-h usando N-Pentano como fluido de trabajo, obtenido mediante software EES académico.

Igualmente se analizó un CORH combinando dos fuentes de calor como se muestra en la Figura 42. La fuente con menor temperatura precalienta el fluido de trabajo, para ser evaporador con mayor facilidad en el evaporador a una mayor temperatura. En la Tabla 44 se muestra los resultados obtenidos para el recurso solar-biomasa, los datos mostrados corresponden a temperaturas, entalpias y presiones en cada componente del CORH. En donde el fluido se precalienta con el recurso de biomasa a 150°C y se evapora a 200°C con el recurso solar.

Fig. 42: Esquema Ciclo Rankine Orgánico con dos fuente de calor [25].

Fluido de trabajo	Agua	N-Decano	N-Octano
T1°C	200	200	200
T2iso°C	18,4	113	107,3
ТЗ°С	18,4	18,4	18,4
T4°C	18,44	18,42	18,48
T5°C	150	150	150
h1(KJ/Kg °K)	2793	333,2	696,9
h2iso(KJ/Kg °K)	1872	150,5	515
h3(KJ/Kg °K)	77,14	-386,4	-14,71
h4(KJ/Kg °K)	77.77	-386,3	-14,35
h5(KJ/Kg °K)	632,3	-66,58	310,4
Presión evaporador (P1):	1,554Mpa	0,187Mpa	0,5546Mpa
Presión condensador	0,002117Mpa	0,000113Mpa	0,001251Mp
(P2):			а
Presión	0,4757Mpa	0,05236Mpa	0,1915Mpa
Precalentamiento (P3):			
Eficiencia bomba		70%	

Tabla 44: Resultados del análisis termodinámico del CORH, Recurso- Solar-
Biomasa en EES académico.

En Las Figuras 43, 44 y 45 se muestra el grafico termodinámico Temperatura -Entalpia para cada fluidos de trabajo con respecto a la combinación del recurso solar-biomasa.

Fig. 43: Diagrama T-h usando Agua como fluido de trabajo, obtenido mediante software EES académico

Fig. 44: Diagrama T-h usando N-Decano como fluido de trabajo, obtenido mediante software EES académico

Fig. 45: Diagrama T-h usando N-Octano como fluido de trabajo, obtenido mediante software EES académico

En la Tabla 45 se muestra los resultados obtenido para el recurso solar-geotérmico, los datos mostrados corresponden a temperaturas, entalpias y presiones en cada componente del CORH. En donde el fluido se precalienta con el recurso de geotérmico a 53°C y se evapora a 200°C con el recurso solar.

 Tabla 45: Resultados del análisis termodinámico del COR, Recurso- Solar

 Geotérmico en EES académico

Fluido de trabajo	Agua	N-Decano	N-Octano
T1°C	200	200	200
T2iso°C	18,4	113	107,3
ТЗ°С	18,4	18,4	18,4
T4°C	18,4	18,4	18,4
T5°C	53	53	53
h1(KJ/Kg °K)	2793	333,2	696,9
h2iso(KJ/Kg °K)	1872	150,5	515
h3(KJ/Kg °K)	77,14	-386,4	-14,71

h4(KJ/Kg °K)	77,16	-386,4	-14,7
h5(KJ/Kg °K)	221,9	-309,2	63,72
Presión evaporador	1,554Mpa	0,187Mpa	0,5546Mpa
(P1):			
Presión condensador	0,002117Mpa	0,000113Mpa	0,001251Mpa
(P2):			
Presión	0,0143Mpa	0,001047Mpa	0,007678Mpa
Precalentamiento (P3):			
Eficiencia bomba		70%	

En Las Figuras 46, 47 y 48 se muestra el grafico termodinámico Temperatura -Entalpia para cada fluidos de trabajo con respecto a la combinación del recurso solar-geotérmico.

Fig. 46: Diagrama T-h usando Agua como fluido de trabajo, obtenido mediante software EES académico

Fig. 47: Diagrama T-h usando N-Decano como fluido de trabajo, obtenido mediante software EES.

Fig. 48: Diagrama T-h usando N-Octano como fluido de trabajo, obtenido mediante software EES académico

En la Tabla 46 se muestra los resultados obtenido para el recurso biomasageotérmico, los datos mostrados corresponden a temperaturas, entalpias y presiones
en cada componente del CORH. En donde el fluido se precalienta con el recurso de geotérmico a 53°C y se evapora a 150°C con el recurso biomasa.

Fluido de trabajo	R123	N-Pentano	N-hexano
T1°C	150	150	150
T2iso°C	37,39	59,91	70,33
ТЗ°С	18,4	18,4	18,4
T4°C	18,49	18,47	18,42
T5°C	53	53	53
h1(KJ/Kg °K)	465,5	557,7	576,5
h2iso(KJ/Kg °K)	407,3	426,7	441,7
h3(KJ/Kg °K)	219,4	-17,31	-19,03
h4(KJ/Kg °K)	219,5	-17,05	-18,94
h5(KJ/Kg °K)	255,8	64,71	60,59
Presión evaporador (P1):	2,104Mpa	1,591Mpa	0,7357Mpa
Presión condensador (P2):	0,07115Mpa	0,05365Mpa	0,01514Mpa
Presión Precalentamiento (P3):	0,233Mpa	0,175Mpa	0,05952Mpa
Eficiencia bomba		70%	

 Tabla 46: Resultados del análisis termodinámico del Ciclo Orgánico Rankinebiomasa-Geotérmica en EES académico

En Las Figuras 49, 50 y 51 se muestra el grafico termodinámico Temperatura -Entalpia para cada fluidos de trabajo con respecto a la combinación del recurso biomasa geotérmico.

Fig. 49: Diagrama T-h usando r R123 como fluido de trabajo, obtenido mediante software EES académico

Fig. 50: Diagrama T-h usando N-Pentano como fluido de trabajo, obtenido mediante software EES académico

Fig. 51: Diagrama T-h usando N-Hexano como fluido de trabajo, obtenido mediante software EES académico

Finalmente se realizó el análisis termodinámico del CORH combinando tres fuentes de calor como se muestra en la Figura 52. Primeramente, el fluido se precalienta con el recurso geotérmico a 53°C. Igualmente en un segundo precalentamiento con el recurso de biomasa a 150°C. Finalmente se evapora a 200°C con el recurso solar.

Fig. 52: Esquema CORH con tres fuente de calor [25].

En la Tabla 47 se muestra los resultados obtenidos para la combinación del recurso solar-biomasa-geotérmico, los datos mostrados corresponden a temperaturas, entalpias y presiones en cada componente del CORH.

Fluido de trabajo	Agua	N-Decano	N-Octano
T1°C	200	200	200
T2iso°C	18,4	113	107,3
ТЗ°С	18,4	18,4	18,4
T4°C	18,4	18,4	18,4
T5°C	53	53	53
T6°C	150	150	150
h1(KJ/Kg °K)	2793	333,2	696,9
h2iso(KJ/Kg °K)	1872	150,5	515
h3(KJ/Kg °K)	77,14	-386,4	-14,71
h4(KJ/Kg °K)	77,16	-386,4	-14,7
h5(KJ/Kg °K)	221,9	-309,2	63,72
h6(KJ/Kg °K)	632,3	-66,58	310,4
Presión evaporador (P1):	1,554Mpa	0,187Mpa	0,5546Mpa
Presión condensador	0,002117Mpa	0,000113Mpa	0,001251Mpa
(P2):			
Presión Precalentamiento	0,0143Mpa	0,001047Mpa	0,007678Mpa
1 (P3):			
Presión Precalentamiento	0,4757Mpa	0,05236Mpa	0,1915Mpa
2 (P4):			
Eficiencia bomba		70%	

 Tabla 47: Resultados del análisis termodinámico del Ciclo Orgánico Rankine

 Solar-Biomasa-Geotérmica en EES académico

En Las Figuras 53, 54 y 55 se muestra el grafico termodinámico Temperatura -Entalpia para cada fluidos de trabajo con respecto a la combinación del recurso solar-biomasa-geotérmico.

Fig. 53: Diagrama T-h usando Agua como fluido de trabajo, obtenido mediante software EES académico

Fig. 54: Diagrama T-h usando N-Decano como fluido de trabajo, obtenido mediante software EES académico

Fig. 55: Diagrama T-h usando N-Octano como fluido de trabajo, obtenido mediante software EES académico

Flujo másico del Ciclo Orgánico Rankine con distintas configuraciones

Con el fin de determinar el flujo, anteriormente se determinó la potencia térmica para cada recurso renovable y sustituirlo en la Ecuación 5. Luego se usó la Ecuación 6 para determinar el flujo másico en configuraciones con una sola fuente de calor. Mientras que para las configuraciones con más de una fuente de calor se usó la Ecuación 7. Mediante la sumatoria de calores en el CORH.

Componentes	Ecuaciones		Referencias
С	$\mathbf{Q}_{\mathbf{fuente}\ \mathbf{de}\ \mathbf{calor}} = \mathbf{Q}_{\mathrm{Evaporador}}$	Ec. 5	[39]
Flujo másico del COR	$\mathbf{m}_{\mathbf{COR}} = \frac{\mathbf{Q}_{\mathrm{Evaporador}}}{(\mathbf{h}_1 - \mathbf{h}_4)}$	Ec. 6	[39]
Flujo másico del CORH	$\mathbf{m}_{\mathbf{CORH}} = \frac{\Sigma \mathbf{Q}}{(\mathbf{h}_1 - \mathbf{h}_4)}$	Ec. 7	[27]

Tabla 48: Ecuaciones usadas para determinar el flujo másico para cara cada CORy CORH [27, 39].

A continuación, se muestran los flujos másicos obtenidos para cada configuración de COR y CORH.

N°	Q _{EVAP} (KW)	Agua	N-Decano	N-Octano
1	3,71	0,0014	0,0052	0,0052
2	3,71	0,0014	0,0052	0,0052
3	4,13	0,0015	0,0057	0,0058
4	4,13	0,0015	0,0057	0,0058
5	4,13	0,0015	0,0057	0,0058
6	4,13	0,0015	0,0057	0,0058
7	33	0,0122	0,0459	0,0464
8	37,13	0,0137	0,0516	0,0522
9	37,13	0,0137	0,0516	0,0522
10	41,25	0,0152	0,0573	0,0581
11	41,25	0,0152	0,0573	0,0581
12	53,63	0,0198	0,0746	0,0755
13	103,13	0,038	0,1434	0,1451
14	107,25	0,0395	0,1491	0,1509
15	111,38	0,041	0,1548	0,1567
16	115,5	0,0426	0,1606	0,1625
17	123,75	0,0456	0,172	0,1742
18	123,75	0,0456	0,172	0,1742
19	193,88	0,0714	0,2695	0,2728
20	193,88	0,0714	0,2695	0,2728
21	202,13	0,0745	0,281	0,2845
22	206,25	0,076	0,2867	0,2903
23	210,38	0,0775	0,2925	0,2961
24	214,5	0,079	0,2982	0,3019
25	214,5	0,079	0,2982	0,3019
26	214,5	0,079	0,2982	0,3019

Tabla 49: Flujo másico del Recurso Solar (kg/seg), en función de la adición decalores al ciclo.

27	218,63	0,0806	0,3039	0,3077
28	218,63	0,0806	0,3039	0,3077
29	218,63	0,0806	0,3039	0,3077
30	226,88	0,0836	0,3154	0,3193

Fig. 56: Comparación de flujos másicos de distintos fluidos de trabajo (Agua, N-Decano, N-Octano) en función de la adición de calores al ciclo, para el Recurso Solar

Tabla 50: Flujo másico del Recurso Biomasa (kg/seg) en función de la adición decalores al ciclo.

N°	Q _{EVAP} (KW)	R123	N-Pentano	N-hexano
1	171,85	0,7034	0,3006	0,2893
2	172,515	0,7062	0,3017	0,2904
3	173,18	0,7089	0,3029	0,2915
4	173,845	0,7116	0,3041	0,2926

5	174,509	0,7143	0,3052	0,2937
6	175,174	0,717	0,3064	0,2949
7	175,839	0,7198	0,3075	0,296
8	176,504	0,7225	0,3087	0,2971
9	177,168	0,7252	0,3099	0,2982
10	177,851	0,728	0,3111	0,2994
11	178,516	0,7307	0,3122	0,3005
12	179,181	0,7334	0,3134	0,3016
13	179,846	0,7362	0,3146	0,3027
14	180,51	0,7389	0,3157	0,3038
15	181,175	0,7416	0,3169	0,305
16	181,84	0,7443	0,318	0,3061
17	182,505	0,7471	0,3192	0,3072
18	183,169	0,7498	0,3204	0,3083
19	183,834	0,7525	0,3215	0,3094
20	184,517	0,7553	0,3227	0,3106
21	185,182	0,758	0,3239	0,3117
22	185,847	0,7607	0,325	0,3128
23	186,511	0,7635	0,3262	0,3139
24	187,176	0,7662	0,3274	0,3151
25	187,841	0,7689	0,3285	0,3162
26	188,506	0,7716	0,3297	0,3173
27	189,17	0,7743	0,3309	0,3184
28	189,835	0,7771	0,332	0,3195
29	190,518	0,7799	0,3332	0,3207
30	191,183	0,7826	0,3344	0,3218

Fig. 57: Comparación de flujos másicos de distintos fluidos de trabajo (R123, N-Pentano, N-Hexano) en función de la adición de calores al ciclo, para el Recurso Biomasa.

N°	Q _{EVAP} (KW)	R134a	R245fa	N-Pentano
1	192,8	0,9724	0,88	0,4534
2	207,79	1,048	0,9484	0,4886
3	229,22	1,1561	1,0462	0,539
4	235,64	1,1885	1,0755	0,5541
5	252,78	1,2749	1,1537	0,5944
6	254,92	1,2857	1,1635	0,5995
7	257,06	1,2965	1,1733	0,6045
8	276,34	1,3938	1,2613	0,6498
9	278,49	1,4046	1,271	0,6549
10	280,63	1,4154	1,2808	0,6599

Tabla 51: Flujos másicos del Recurso Geotérmico (kg/seg), en función de laadición de calores al ciclo.

11	297,77	1,5018	1,359	0,7002
12	312,76	1,5775	1,4275	0,7355
13	327,76	1,6531	1,4959	0,7707
14	329,9	1,6639	1,5057	0,7758
15	338,47	1,7071	1,5448	0,7959
16	342,75	1,7287	1,5644	0,806
17	344,9	1,7395	1,5741	0,811
18	347,04	1,7503	1,5839	0,8161
19	351,32	1,7719	1,6035	0,8262
20	355,61	1,7935	1,623	0,8362
21	362,03	1,826	1,6524	0,8513
22	364,18	1,8368	1,6621	0,8564
23	366,32	1,8476	1,6719	0,8614
24	370,6	1,8692	1,6915	0,8715
25	374,89	1,8908	1,711	0,8816
26	379,17	1,9124	1,7306	0,8916
27	385,6	1,9448	1,7599	0,9068
28	387,74	1,9556	1,7697	0,9118
29	392,02	1,9772	1,7892	0,9219
30	394,17	1,988	1,799	0,9269

Fig. 58: Comparación de flujos másicos de distintos fluidos de trabajo (R134a, R245Fa, N-Pentano) en función de la adición de calores al ciclo, para el Recurso Geotérmico.

Tabla 52: Flujos másicos del Recurso Solar-Biomasa (kg/seg), en función de laadición de calores al ciclo.

N°	Precalentamiento	QEVAP	Q	Agua	N-Decano	N-Octano
	(Biomasa)	(Solar) (KW)	(KW)			
	(KW)					
1	171,85	3,71	175,56	0,0647	0,2440	0,2468
2	172,515	3,71	176,225	0,0649	0,2449	0,2478
3	173,18	4,13	177,31	0,0653	0,2464	0,2493
4	173,845	4,13	177,975	0,0655	0,2474	0,2502
5	174,509	4,13	178,639	0,0658	0,2483	0,2512
6	175,174	4,13	179,304	0,0660	0,2492	0,2521
7	175,839	33,00	208,839	0,0769	0,2903	0,2936
8	176,504	37,13	213,634	0,0787	0,2969	0,3004
9	177,168	37,13	214,298	0,0789	0,2978	0,3013

10	177,851	41,25	219,101	0,0807	0,3045	0,3081
11	178,516	41,25	219,766	0,0809	0,3054	0,3090
12	179,181	53,63	232,811	0,0857	0,3236	0,3273
13	179,846	103,13	282,976	0,1042	0,3933	0,3979
14	180,51	107,25	287,76	0,1060	0,3999	0,4046
15	181,175	111,38	292,555	0,1077	0,4066	0,4113
16	181,84	115,50	297,34	0,1095	0,4133	0,4181
17	182,505	123,75	306,255	0,1128	0,4256	0,4306
18	183,169	123,75	306,919	0,1130	0,4266	0,4315
19	183,834	193,88	377,714	0,1391	0,5250	0,5311
20	184,517	193,88	378,397	0,1394	0,5259	0,5320
21	185,182	202,13	387,312	0,1426	0,5383	0,5446
22	185,847	206,25	392,097	0,1444	0,5450	0,5513
23	186,511	210,38	396,891	0,1462	0,5516	0,5580
24	187,176	214,50	401,676	0,1479	0,5583	0,5647
25	187,841	214,50	402,341	0,1482	0,5592	0,5657
26	188,506	214,50	403,006	0,1484	0,5601	0,5666
27	189,17	218,63	407,8	0,1502	0,5668	0,5734
28	189,835	218,63	408,465	0,1504	0,5677	0,5743
29	190,518	218,63	409,148	0,1507	0,5687	0,5753
30	191,183	226,88	418,063	0,1540	0,5810	0,5878

Fig. 59: Comparación de flujos másicos de distintos fluidos de trabajo (Agua, N-Decano, N-Octano) en función de la adición de calores al ciclo, para el Recurso Solar-Biomasa.

Tabla	53: Flujos	másicos	del Recurso	Solar-Ge	otérmica	(kg/seg)	, en	funció	n de
		1	a adición de	calores al	l ciclo.				

N°	Precalentamiento	QEVAP	Q	Agua	N-Decano	N-Octano
	(Geotérmica)	(Solar)	(KW)			
	(KW)	(KW)				
1	192,80	3,71	196,51	0,0724	0,2731	0,2762
2	207,79	3,71	211,5	0,0779	0,2939	0,2972
3	229,22	4,13	233,35	0,0859	0,3243	0,3279
4	235,64	4,13	239,77	0,0883	0,3332	0,3369
5	252,78	4,13	256,91	0,0946	0,3570	0,3610
6	254,92	4,13	259,05	0,0954	0,3600	0,3640
7	257,06	33,00	290,06	0,1068	0,4031	0,4076

8	276,34	37,13	313,47	0,1154	0,4356	0,4405
9	278,49	37,13	315,62	0,1162	0,4386	0,4435
10	280,63	41,25	321,88	0,1185	0,4473	0,4523
11	297,77	41,25	339,02	0,1248	0,4711	0,4764
12	312,76	53,63	366,39	0,1349	0,5092	0,5149
13	327,76	103,13	430,89	0,1587	0,5988	0,6055
14	329,90	107,25	437,15	0,1610	0,6075	0,6143
15	338,47	111,38	449,85	0,1656	0,6251	0,6322
16	342,75	115,50	458,25	0,1687	0,6368	0,6440
17	344,90	123,75	468,65	0,1726	0,6513	0,6586
18	347,04	123,75	470,79	0,1733	0,6542	0,6616
19	351,32	193,88	545,20	0,2007	0,7576	0,7662
20	355,61	193,88	549,49	0,2023	0,7636	0,7722
21	362,03	202,13	564,16	0,2077	0,7840	0,7928
22	364,18	206,25	570,43	0,2100	0,7927	0,8016
23	366,32	210,38	576,70	0,2123	0,8014	0,8104
24	370,60	214,50	585,10	0,2154	0,8131	0,8222
25	374,89	214,50	589,39	0,2170	0,8191	0,8283
26	379,17	214,50	593,67	0,2186	0,8250	0,8343
27	385,600	218,63	604,23	0,2225	0,8397	0,8491
28	387,74	218,63	606,37	0,2233	0,8426	0,8521
29	392,02	218,63	610,65	0,2248	0,8486	0,8581
30	394,17	226,88	621,05	0,2287	0,8630	0,8728

Fig. 60: Comparación de flujos másicos de distintos fluidos de trabajo (Agua, N-Decano, N-Octano) en función de la adición de calores al ciclo, para el Recurso Solar-Geotérmica.

Tabla 54: Flujos másicos del Recurso Biomasa-Geotérmica (kg/seg), en funciónde la adición de calores al ciclo.

N°	Precalentamiento	QEVAP	Q	R123	N-Pentano	N-hexano
	(Geotérmica)	(Biomasa)	(KW)			
	(KW)	(KW)				
1	192,80	171,850	364,650	1,4823	0,6344	0,6124
2	207,79	172,515	380,305	1,5460	0,6617	0,6387
3	229,22	173,180	402,400	1,6358	0,7001	0,6758
4	235,64	173,845	409,485	1,6646	0,7125	0,6877
5	252,78	174,509	427,289	1,7369	0,7434	0,7176
6	254,92	175,174	430,094	1,7483	0,7483	0,7223
7	257,06	175,839	432,899	1,7598	0,7532	0,7270
8	276,34	176,504	452,844	1,8408	0,7879	0,7605
9	278,49	177,168	455,658	1,8523	0,7928	0,7652

10	280,63	177,851	458,481	1,8637	0,7977	0,7700
11	297,77	178,516	476,286	1,9361	0,8287	0,7999
12	312,76	179,181	491,941	1,9998	0,8559	0,8262
13	327,76	179,846	507,606	2,0634	0,8832	0,8525
14	329,90	180,510	510,410	2,0748	0,8881	0,8572
15	338,47	181,175	519,645	2,1124	0,9041	0,8727
16	342,75	181,840	524,590	2,1325	0,9127	0,8810
17	344,90	182,505	527,405	2,1439	0,9176	0,8857
18	347,04	183,169	530,209	2,1553	0,9225	0,8904
19	351,32	183,834	535,154	2,1754	0,9311	0,8988
20	355,61	184,517	540,127	2,1956	0,9398	0,9071
21	362,03	185,182	547,212	2,2244	0,9521	0,9190
22	364,18	185,847	550,027	2,2359	0,9570	0,9237
23	366,32	186,511	552,831	2,2473	0,9619	0,9284
24	370,6	187,176	557,776	2,2674	0,9705	0,9367
25	374,89	187,841	562,731	2,2875	0,9791	0,9451
26	379,17	188,506	567,676	2,3076	0,9877	0,9534
27	385,60	189,170	574,770	2,3365	1,0000	0,9653
28	387,74	189,835	577,575	2,3479	1,0049	0,9700
29	392,02	190,518	582,538	2,3680	1,0136	0,9783
30	394,17	191,183	585,353	2,3795	1,0184	0,9831

Fig. 61: Comparación de flujos másicos de distintos fluidos de trabajo (R123, N-Pentano, N-Hexano) en función de la adición de calores al ciclo, para el Recurso Biomasa-Geotérmica.

Tabla 55: Flujos másicos del Recurso Solar-Biomasa-Geotérmica (kg/seg), enfunción de la adición de calores al ciclo.

N°	Precalentamiento	Precalentamiento	QEVAP	Q	Agua	N-Decano	N-Octano
	1 (Geotérmica)	2 (Biomasa)	(Solar)	(KW)			
	(KW)	(KW)	(KW)				
1	192,80	171,850	3,71	368,36	0,1356	0,5119	0,5177
2	207,79	172,515	3,71	384,015	0,1414	0,5337	0,5397
3	229,22	173,180	4,13	406,53	0,1497	0,5649	0,5713
4	235,64	173,845	4,13	413,615	0,1523	0,5748	0,5812
5	252,78	174,509	4,13	431,419	0,1589	0,5995	0,6063
6	254,92	175,174	4,13	434,224	0,1599	0,6034	0,6102
7	257,06	175,839	33	465,899	0,1715	0,6474	0,6547
8	276,34	176,504	37,13	489,974	0,1804	0,6809	0,6886
9	278,49	177,168	37,13	492,788	0,1814	0,6848	0,6925

10	280,63	177,851	41,25	499,731	0,1840	0,6945	0,7023
11	297,77	178,516	41,25	517,536	0,1906	0,7192	0,7273
12	312,76	179,181	53,63	545,571	0,2009	0,7582	0,7667
13	327,76	179,846	103,13	610,736	0,2249	0,8487	0,8583
14	329,90	180,510	107,25	617,66	0,2274	0,8583	0,8680
15	338,47	181,175	111,38	631,025	0,2323	0,8769	0,8868
16	342,75	181,840	115,50	640,09	0,2357	0,8895	0,8995
17	344,90	182,505	123,75	651,155	0,2398	0,9049	0,9151
18	347,04	183,169	123,75	653,959	0,2408	0,9088	0,9190
19	351,32	183,834	193,88	729,034	0,2684	1,0131	1,0245
20	355,61	184,517	193,88	734,007	0,2703	1,0200	1,0315
21	362,03	185,182	202,13	749,342	0,2759	1,0413	1,0530
22	364,18	185,847	206,25	756,277	0,2785	1,0510	1,0628
23	366,32	186,511	210,38	763,211	0,2810	1,0606	1,0725
24	370,60	187,176	214,50	772,276	0,2844	1,0732	1,0853
25	374,89	187,841	214,50	777,231	0,2862	1,0801	1,0922
26	379,17	188,506	214,50	782,176	0,2880	1,0870	1,0992
27	385,60	189,170	218,63	793,4	0,2921	1,1026	1,1150
28	387,74	189,835	218,63	796,205	0,2932	1,1065	1,1189
29	392,02	190,518	218,63	801,168	0,2950	1,1134	1,1259
30	394,17	191,183	226,88	812,233	0,2991	1,1287	1,1414

Fig. 62: Comparación de flujos másicos de distintos fluidos de trabajo (Agua, N-Decano, N-Octano) en función de la adición de calores al ciclo, para el Recurso Solar-Biomasa-Geotérmica.

4.1.3. Análisis de la geometría de una turbina de flujo radial usando ANSYS académico

La geometría fue dimensionada y diseñada usando ANSYS VISTA RTD y ANSYS BLADEGEN, como se especificó en el Plan de Procesamiento y Análisis en el CAPITULO III. Por lo tanto, se procedió a realizar la simulación usando ANSYS CFX. En el Anexo H, se especifica el procedimiento usado para realizar la simulación usando el software académico.

Para realizar la simulación se usó como parámetros de entrada el flujo másico, geometría y el fluido de trabajo. Cabe decir que los valores de flujo másico usados para la simulación fueron 5. Los 5 valores están en orden ascendente. Con el fin que la simulación de la turbina se realice a distintas condiciones de operación. Por ejemplo, los valores del recurso solar varían desde niveles bajos de irradiación hasta

los niveles más altos a lo largo del año. Igualmente; para el recurso de biomasa los niveles varían desde niveles bajos de poder calorífico de biogás hasta los niveles más altos. Finalmente, para el recurso geotérmico los valores tomados varían desde las temperaturas bajas hasta temperaturas más altas medidas en el sitio.

Mediante el análisis CFD se determinó distintos niveles de Presiones, Temperaturas, Energía cinética de turbulencia, y eficiencia isentrópica presentes en el perfil del alabe de la turbina de flujo radial. Además, se determinó la potencia de la turbina y finalmente el rendimiento térmico del ciclo Orgánico Rankine. Este análisis se lo realizo para cada recurso renovables de baja entalpia (Solar-Biomasa-Geotérmica) del COR y CORH, con sus respectivas temperaturas y presiones a la entrada y salida de la turbina de flujo radial. Cabe mencionar que las presiones y temperaturas de entrada y salida, corresponden al evaporador y condensador respectivamente. Dichos datos fueron obtenidos según el análisis termodinámico usando software EES académico. Igualmente, se determinó las propiedades termo físicas de los fluidos de trabajo, como temperatura critica, presión crítica y temperatura triple.

A continuación, se ilustran dichos datos.

	Sola	r		
Fluido de trabajo	Agua	N-Decano	N-Octano	
Temperatura Critica	374	344.6	296.2	°C
Presión Critica	22.064	2.103	2.497	MPa
Temperatura triple	0,01	-29,65	-56,78	°C
Temperatura Evaporador	200	200	200	°C
Temperatura Condensador	18,4	18,4	18,4	°C
Presión Evaporador	1,554	0,187	0,5546	MPa
Presión Condensador	0,002117	0,000113	0,001251	MPa
	Bioma	sa		
Fluido de trabajo	R 123	N-Pentano	N-hexano	
Temperatura Critica	183.7	196.5	234.7	°C
Presión Critica	3.668	3.364	3.058	MPa

Tabla 56: Temperaturas y presiones del fluido de trabajo, obtenidas del análisis termodinámico.

Temperatura triple	-107,2	-129,7	-95,32	°C
Temperatura Evaporador	150	150	150	°C
Temperatura Condensador	18,4	18,4	18,4	°C
Presión Evaporador	2,104	1,591	0,7357	MPa
Presión Condensador	0,07115	0,05365	0,01514	MPa
	Geotérm	nica		
Fluido de trabajo	R134	R245fa	N-Pentano	
Temperatura Critica	101	154	196.5	°C
Presión Critica	4.059	3.651	3.364	MPa
Temperatura triple	-104,3	-102,1	-129,7	°C
Temperatura Evaporador	53	53	53	°C
Temperatura Condensador	18,4	18,4	18,4	°C
Presión Evaporador	1,421	0,376	0,175	MPa
Presión Condensador	0,5443	0,115	0,05365	MPa

Cabe mencionar que estas temperaturas y presiones, también se utilizaron para la configuración hibrida del ciclo. Ya que, en estos ciclos, se determinó un aumento del flujo másico por la adición de fuentes de calor para el precalentamiento del fluido de trabajo. Además de una geometría diferente.

Finalmente, una vez determinada la potencia y rendimiento isentrópico de la turbina de flujo radial usando ANSYS académico. También se procedió a encontrar la potencia de la turbina de flujo usando software EES académico usando la Ecuación 1. Además de determinar la eficiencia térmica del Ciclo Orgánico Rankine usando la Ecuación 10.

Tabla 57: Ecuaciones	necesarias para	determinar la	potencia	de la turbina	۱y
efie	ciencia térmica o	del ciclo [19, 3	39].		

Componentes	Ecuaciones		Referencias
Potencia de	$\mathbf{Q}_{\mathbf{T}}^{\cdot} = \mathbf{m}_{\mathrm{orc}}^{\cdot}(\mathbf{h}_1 - \mathbf{h}_2)$	Ec.1	[39]
turbina			
Eficiencia térmica	\mathbf{n}_{-}	Ec.10	[19]
del ciclo	^{III} Termica del ciclo [—] Q _{ENTRA}		

				fluide	os de trabajo	como Agua	, N-Decane	o y N-Octar	0.			
Fluido	Geometría	Flujo	Presión	Presión	Temperatura	Temperatura	Energía	Energía	Eficiencia	Potencia	Potencia	Eficiencia
de trabajo		masıco (kg/seg)	maxima (MPa)	minima (MPa)	maxima(°C)	mmma(°C)	cinetica de turbulencia	cinetica de turbulencia	Isentropica ANSYS	ANSYS(KW)	EES(KW)	termica del ciclo
							máxima	mínima				
							(m^{2}/s^{2})	(m^{2}/s^{2})				
Agua	B1	0,0015	-0,005776	-0,01934	200,9	145,473	0,0599	7,58E-22	15,4%	0,216311	0,2145	5,2%
		0,0198	0,0510687	-0,02197	200,848	116,421	4320,18	0,0235091	10,4%	1,89166	1,9008	3,5%
		0,0456	0,118957	-0,0547	200,605	116,649	2619,84	1,17893	16,5%	6,92167	6,9312	5,5%
		0,079	0,24882	-0,08358	200,636	56,6096	2242,68	1,2431	21,3%	15,4945	15,484	7,1%
		0,0836	0,274624	-0,08357	200,69	50,0871	2883,93	2,27212	21,7%	16,7283	16,72	7,3%
Agua	B2	0,0015	-0,00962	-0,02266	203,351	145,607	0,084111	1,10E-20	23,8%	0,332856	0,328	8,0%
		0,0198	0,05096	-0,02693	200,384	95,2167	5596,23	2,41E-02	12,4%	2,26114	2,263	4,2%
		0,0456	0,140321	-0,05387	205,636	99,2194	10539,4	1,0052	19,2%	8,05505	8,044	6,4%
		0,079	0,29308	-0,08188	204,579	31,303	12764,3	1,1373	23,9%	17,3971	17,37	8,0%
		0,0836	0,315343	-0,02075	202,531	26,5157	12555	1,14	24,3%	18,7397	18,71	8,2%
Ż	B3	0,0057	0,005658	-0,04577	191,695	46,2378	64,9602	0,000108	22,82%	0,239152	0,2376	5,8%
Decano		0,0746	0,00608298	-0,03988	191,188	51,46	209,198	0,0006802	28,58%	3,89245	3,894	7,2%
		0,172	0,177049	-0,05303	198,317	133,277	430,26	0,05798	38,87%	12,2189	12,21	9,8%

Tabla 58: Resultados obtenidos mediante ANSYS y EES en sus versiones académicas; para el Recurso Solar, usando distintos

4.1.3.1.1. Configuración Recurso Solar

4.1.3.1. Resultados

		0,2982	0,17443	-0,04691	198,43	134,582	500,012	0,1248	37,72%	20,5529	20,55	9,5%
		0,3154	0,175203	0,047237	198,56	134,756	713,241	0,039295	36,81%	21,2111	21,2	9,3%
Ż	B4	0,0057	0,00609525	-0,04536	191,694	58,7003	65,9286	0,00011054	24,27%	0,254349	0,2527	6,1%
Decano		0,0746	0,0634168	-0,03842	191,245	63,6901	207,395	0,00059716	30,88%	4,20715	4,208	7,8%
		0,172	0,177021	-0,05241	198,345	133,256	679,299	0,04046	42,32%	13,3059	13,3	10,7%
		0,2982	0,174664	-0,04649	198,478	134,749	424,969	0,0604273	37,81%	20,6073	20,6	9,6%
		0,3154	0,175373	-0,04704	198,58	134,496	505,907	0,126876	36,87%	21,2496	21,24	9,3%
Ż	B5	0,0058	0,135347	-0,01008	199,791	165,733	370,952	0,0003649	30,45%	0,321423	0,3212	7,6%
Octano		0,0755	0,1186	-0,06240	201,108	156,258	897,128	0,271335	17,59%	2,41455	2,416	4,4%
		0,1742	0,2069	-0,07127	202,522	149,071	1066,8	0,502416	26,89%	8,51548	8,52	6,7%
		0,3019	0,319363	-0,07888	203,573	130,743	742,438	1,05186	34,37%	18,8663	18,87	8,6%
		0,3193	0,294433	-0,07531	203,221	139,906	960,529	0,698363	28,88%	16,7688	16,77	7,2%
Ż	B6	0,0058	0,144085	-0,01060	200,514	163,116	566,524	6,19E-26	31,52%	0,292096	0,3326	7,9%
Octano		0,0755	0,135037	-0,06553	201,371	161,676	787,712	4,92E-02	16,47%	2,47917	2,263	4,1%
		0,1742	0,257044	-0,07811	203,601	148,447	919,257	0,09773	25,43%	8,26561	8,059	6,4%
		0,3019	0,36347	-0,07969	203,018	133,039	657,932	0,389872	31,69%	18,8081	17,4	8,0%
		0,3193	0,345075	-0,07938	203,32	137,831	808,38	0,0466537	32,27%	18,9056	18,74	8,1%

				fluido	s de trabajo	como R123	, N-Pentanc	y N-Hexai	10		, usanuo,	commer
Fluido de trabajo	Geometría	Flujo másico (kg/seg)	Presión máxima (MPa)	Presión mínima (MPa)	Temperatura máxima(°C)	Temperatura mínima(°C)	Energía cinética de turbulencia	Energía cinética de turbulencia	Eficiencia Isentrópica ANSYS	Potencia ANSYS(KW)	Potencia EES(KW)	Eficiencia del ciclo
							máxima (m²/s²)	mínima (m²/s²)				
R123	B1	0,717	0,389172	-0,05702	153,069	25,0491	598,065	0,415112	52,49%	21,8841	21,93	11,7%
		0,7334	0,4003553	-0,058825	153,199	24,4394	566,997	0,407834	52,84%	22,5354	22,58	11,8%
		0,7498	0,41222	-0,061299	153,351	20,8746	537,824	0,402392	53,29%	23,2325	23,28	12,0%
		0,7662	0,425299	-0,06381	153,543	18,4	519,251	0,397254	53,80%	23,9678	24,02	12,1%
		0,7826	0,438115	-0,065427	153,714	18,4	518,086	0,393292	54,30%	24,7072	24,76	12,2%
R123	B2	0,717	0,64445	-0,079739	157,237	18,4	903,024	0,226951	64,57%	28,6476	26,98	14,7%
		0,7334	0,66069	-0,084561	157,384	18,4	904,407	0,226133	65,05%	29,5206	27,8	14,8%
		0,7498	0,677321	-0,086799	157,527	18,4	905,161	0,225215	65,63%	30,447	28,67	14,9%
		0,7662	0,693827	-0,090065	157,665	18,4	905,872	0,224296	66,14%	31,3567	29,53	15,0%
		0,7826	0,710358	-0,087323	157,81	18,4	906,502	0,223324	66,62%	32,26	30,38	15,1%
N'	B3	0,3064	0,21431	-0,059565	149,61	18,4	750,94	0,059976	77,86%	31,2509	31,25	17,3%
Pentano		0,3134	0,218312	-0,060849	149,688	18,4	748,456	0,0616384	79,06%	32,4575	32,45	17,5%
		0,3204	0,222239	-0,062112	149,756	18,4	751,495	0,0632598	80,05%	33,5963	33,59	17,8%
		0,3274	0,226226	-0,063349	149,82	18,4	759,54	0,0648223	81,12%	34,7906	34,79	18,0%
		0,3344	0,230427	-0,064572	149,899	18,4	767,631	0,0663534	82,06%	35,9436	35,94	18,2%

4.1.3.1.2. Configuración Recurso Biomasa

Ż	B4	0,3064	0,790455	-0,091234	159,596	18,4	2032,04	0,12695	81,13%	32,563	32,56	18,0%
Pentano		0,3134	0,806736	-0,093181	159,819	18,4	2043,31	0,127261	82,38%	33,8184	33,82	18,3%
		0,3204	0,822462	-0,094317	160,047	18,4	2057,72	0,127496	84,11%	35,2982	35,3	18,7%
		0,3274	0,83809	-0,095532	160,296	18,4	2063,08	0,127708	85,53%	36,6807	36,68	19,0%
		0,3344	0,848286	-0,096848	160,512	18,4	2048,3	0,131145	86,26%	37,7858	37,78	19,2%
Ż	B5	0,2949	0,3777736	-0,080603	153,268	97,5852	511,808	0,683318	41,24%	16,3825	16,39	9,1%
Hexano		0,3016	0,387121	-0,081304	153,257	97,3028	511,871	0,68416	41,56%	16,8862	16,89	9,2%
		0,3083	0,396602	-0,081932	153,244	97,0238	511,847	0,684527	41,88%	17,3932	17,4	9,2%
		0,3151	0,406374	-0,082497	153,247	96,7415	511,623	0,684218	42,20%	17,9118	17,92	9,3%
		0,3218	0,416164	-0,082995	153,312	96,4686	511,137	0,683225	42,50%	18,427	18,43	9,4%
N-	B6	0,2949	0,48284	-0,068169	155,38	82,1058	1341,66	0,411235	45,07%	17,909	17,91	10,0%
Hexano		0,3016	0,493481	-0,069371	155,48	81,8664	1346,89	0,411931	45,58%	18,5237	18,53	10,1%
		0,3083	0,504057	-0,070748	155,549	81,6244	1352,25	0,412472	46,10%	19,1549	19,16	10,2%
		0,3151	0,515148	-0,071923	155,686	81,3041	1357,81	0,412501	46,54%	19,7609	19,77	10,3%
		0,3218	0,526674	-0,072519	155,792	80,9683	1362,52	0,41126	46,95%	20,3579	20,36	10,4%

				flui	dos de traba	jo como R13	4a, R245fa	y N-Pentar	0.			
Fluido de	Geometría	Flujo másico	Presión máxima	Presión mínima	Temperatura máxima(°C)	Temperatura mínima(°C)	Energía cinética de	Energía cinética de	Eficiencia Isentrónica	Potencia ANSYS(KW)	Potencia EES(KW)	Eficiencia térmica
trabajo		(kg/seg)	(MPa)	(MPa)			turbulencia	turbulencia	ANSYS			del ciclo
							máxima (m^2/s^2)	mínima (<i>m</i> ²/ <i>s</i> ²)				
R134a	B1	1,2857	1.156	0.4174	51.23	18,000	229.9	0.02806	53,64%	13,2998	13,3	4,7%
		1,5775	1.162	0.426	51.17	18,000	143.083	0.02820	45,74%	13,9139	13,92	4,0%
		1,988	1.203	0.497	52.39	18,000	124.1	0.02834	41,83%	14,1187	16,04	3,6%
		1,8692	1.192	0.4327	51.59	18,000	126	0.02846	39,63%	14,2849	14,29	3,4%
		1,988	1.186	0.4354	50.91	18,000	127.4	0.02856	37,67%	14,4429	14,45	3,2%
R134a	B2	1,2857	1.299	0.4059	56.65	18,000	171.8	0.03079	67,50%	16,7054	16,74	6,1%
		1,5775	1.285	0.4112	55.97	18,000	121.9	0.03089	57,11%	17,3428	17,38	5,1%
		1,988	1.277	0.4126	55.35	18,000	121.6	0.03097	52,47%	17,678	20,12	4,6%
		1,8692	1.285	0.4132	55.28	18,000	122.4	0.03103	49,76%	17,903	17,94	4,4%
		1,988	1.267	0.4173	54.32	18,000	124.2	0.0311	47,36%	18,1229	18,16	4,1%
R245fa	B3	1,1635	0,2057	-0,0399	38,310	17,999	124,200	0,03189	51,21%	12,5112	12,55	4,8%
		1,4275	0,2112	-0,0405	38,700	17,999	120,307	0,03186	41,89%	12,5585	12,6	3,9%
		1,5839	0,2143	-0,0408	38,943	17,999	118,305	0,03185	37,84%	12,5868	12,63	3,6%
		1,6915	0,2164	-0,0410	39,113	17,994	116,890	0,03184	35,49%	12,6069	12,65	3,3%
		1,799	0,2185	-0,0413	39,266	18,000	115,455	0,03182	33,42%	12,6275	12,67	3,1%

Tabla 60: Resultados obtenidos mediante ANSYS y EES en sus versiones académicas; para el Recurso Geotérmico, usando distintos

4.1.3.1.3. Configuración Recurso Geotérmico.

R245fa	B4	1,1635	0,2076	-0,0427	38,605	17,999	140,786	0,03138	58,17%	14,2969	14,26	5,5%
		1,4275	0,2131	-0,0431	38,960	17,999	136,520	0,03136	47,69%	14,3826	14,34	4,5%
		1,5839	0,2162	-0,0433	39,175	17,999	134,085	0,03134	43,14%	14,4359	14,4	4,1%
		1,6915	0,2182	-0,0435	39,321	17,999	132,264	0,03133	40,51%	14,4739	14,44	3,8%
		1,799	0,2266	-0,0431	39,472	17,999	130,363	0,03132	38,19%	14,514	14,48	3,6%
Ż	B5	0,5995	0,0924	-0,0362	43,450	18,000	158,293	0,03653	50,07%	12,2629	12,24	4,8%
Pentano		0,7355	0,0965	-0,0360	43,623	18,000	156,889	0,03686	42,74%	12,8439	12,82	4,1%
		0,8161	0,0990	-0,0357	43,714	18,000	158,288	0,03700	39,70%	13,2365	13,21	3,7%
		0,8715	0,1007	-0,0354	43,777	18,000	161,814	0,03722	37,97%	13,519	13,5	3,6%
		0,9269	0,1024	-0,0348	43,846	18,000	163,920	0,03738	36,42%	13,7908	13,77	3,4%
N-	B6	0,5995	0,1007	-0,0430	42,114	18,000	128,789	0,04289	60,00%	14,703	14,67	5,7%
Pentano		0,7355	0,1038	-0,0437	42,230	18,000	127,622	0,04302	49,99%	15,0279	15	4,7%
		0,8161	0,1058	-0,0437	42,300	18,000	126,706	0,04311	45,71%	15,2464	15,22	4,3%
		0,8715	0,1072	-0,0437	42,370	18,000	127,130	0,04317	43,24%	15,4046	15,37	4,1%
		0,9269	0,1086	-0,0437	42,442	18,000	126,377	0,04324	41,45%	15,7037	15,67	3,9%

Fluido de	Geometría	Flujo másico	Presión máxima	Presión mínima	Temperatura máxima(°C)	Temperatura mínima(°C)	Energía cinética de	Energía cinética de	Eficiencia Isentrópica	Potencia ANSYS(KW)	Potencia EES(KW)	Eficiencia térmica
trabajo		(kg/seg)	(MPa)	(MPa)			turbulencia	turbulencia	ANSYS			del ciclo
							(m^2/s^2)	(m^2/s^2)				
Agua	B1	0,066036395	0,10777	-0,02958	200,521	18	1323,31	0,157067	30,83%	18,7615	18,755	10,4%
		0,085742644	0,138757	-0,02532	200,613	104,085	1298,43	0,4271	31,91%	25,2137	25,208	10,8%
		0,113036096	0,188131	-0,0439	200,702	103,244	1868,7	0,900355	35,53%	37,0101	36,951	12,0%
		0,147934429	0,267148	-0,06241	200,75	67,8296	2515,72	0,938689	40,02%	54,5523	54,575	13,6%
		0,153969645	0,281572	-0,06435	200,753	64,8712	2560,1	0,939565	40,37%	57,2708	57,288	13,7%
Agua	B2	0,066036395	0,03593	-0,304039	199,258	116,335	2255,25	0,005034	46,9%	28,5465	28,529	15,9%
		0,085742644	0,0460108	-0,030859	199,221	106,579	1675,14	0,009452	53,0%	41,8324	41,841	17,9%
		0,113036096	0,0660441	-0,042841	199,128	104,796	1054,17	0,013076	44,8%	46,6349	46,669	15,2%
		0,147934429	0,0981067	-0,060223	198,989	75,6187	1500,83	0,0414785	54,0%	73,5271	73,506	18,3%
		0,153969645	0,10392	-0,062840	198,957	71,1422	1560,73	0,05189	53,5%	75,9195	75,922	18,1%
Ż	B3	0,2492	0,02027	-0,052797	198,332	180,153	405,232	0,0007682	47,47%	21,6141	21,606	12,0%
Decano		0,3236	0,135027	-0,05822	199,462	169,463	454,81	0,00129553	40,71%	24,0666	24,076	10,3%
		0,4266	0,160228	-0,058337	201,625	168,595	539,086	0,0021545	38,95%	30,3581	30,374	9,9%
		0,5583	0,31225	-0,0606	204,128	156,711	937,389	0,003503	35,21%	35,9194	35,899	8,9%
		0,5810	0,0644	-0,054	199,861	171,839	1001,03	0,004176	35,72%	37,9247	37,939	9,1%

Tabla 61: Resultados obtenidos mediante ANSYS v EES en sus versiones académicas: para el Recurso Solar-Biomasa, usando

4.1.3.1.4. Configuración Recurso Solar-Biomasa.

ż	B4	0,2492	0,121815	-0,03114	197,221	184,045	235,306	0,001358	69,92%	31,8448	31,848	17,7%
Decano		0,3236	0,123102	-0,03808	197,403	182,171	234,61	0,00229	57,33%	33,9026	33,913	14,6%
		0,4266	0,125417	-0,03083	197,634	180,228	245,318	0,00398	46,82%	36,4996	36,517	11,9%
		0,5583	0,127447	-0,03143	197,953	178,52	321,181	0,006798	38,64%	39,4225	39,416	9,8%
		0,5810	0,127135	-0,0318	198,014	178,434	320,258	0,007354	37,55%	39,8689	39,857	9,5%
Ż	B5	0,2520	0,14804	-0,06982	200,198	132,887	1030,9	0,209622	26,35%	12,0814	12,071	6,7%
Octano		0,3273	0,176643	-0,069816	200,643	136,217	1068,81	0,344296	28,16%	16,7648	16,758	7,1%
		0,4315	0,1981963	-0,07002	201,37	138,062	1016,28	0,552755	28,28%	22,1897	22,179	7,2%
		0,5647	0,217264	-0,06975	202,573	140,715	963,001	0,827788	30,95%	31,7853	31,793	7,9%
		0,5877	0,221561	-0,069824	202,685	140,557	952,48	0,876676	31,14%	33,2816	33,264	7,9%
-V	B6	0,2520	0,206056	-0,073111	223,499	140,953	597,979	0,0730566	30,93%	14,1816	14,162	7,9%
Octano		0,3273	0,179367	-0,073169	201,1337	137,528	608,077	0,104922	28,05%	19,0856	19,082	8,1%
		0,4315	0,206205	-0,072534	239,973	134,761	616,166	0,18235	31,67%	28,4072	28,393	9,2%
		0,5647	0,27219	-0,072379	263,944	133,389	61,928	0,301282	30,34%	35,6194	35,633	8,8%
		0,5877	0,294348	-0,072266	209,933	131,874	637,631	0,321381	29,94%	36,5827	36,555	8,7%

Fluido	Geometría	Flujo	Presión	Presión	Temperatura	Temperatura	Energía	Energía	Eficiencia	Potencia	Potencia	Eficiencia
de trabajo		másico (kg/seg)	máxima (MPa)	mínima (MPa)	máxima(°C)	mínima(°C)	cinética de turbulencia	cinética de turbulencia	Isentrópica ANSYS	ANSYS(KW)	EES(KW)	térmica del ciclo
,))					máxima (m ² /s ²)	mínima (<i>m²/S²</i>)				
Agua	B1	0,09538485	0,005742	-0,05309	197,466	36,9967	5383,81	0,01591	29,86%	26,241	26,2	10,1%
		0,13490854	0,012638	-0,05549	197,764	29,9242	3938,08	0,0709413	33,77%	41,9729	41,91	11,5%
		0,17334968	0,0297757	-0,053769	197,743	22,919	3613,16	0,170961	35,68%	56,9944	56,91	12,1%
		0,21543979	0,05057	-0,05824	197,669	18,4343	3328,24	0,214545	38,06%	75,5625	75,45	12,9%
		0,22867695	0,0575304	-0,059760	197,624	18,4	3216,69	0,22546	38,89%	81,9401	81,82	13,2%
Agua	B2	0,09538485	0,094047	-0,029558	199,044	52,3161	2987,85	0,014153	60,07%	52,7886	52,72	20,4%
		0,13490854	0,0978366	-0,032843	198,685	42,1464	2611,42	0,023695	44,92%	55,8253	55,75	15,2%
		0,17334968	0,0982232	-0,044489	198,326	31,1543	2871,34	0,0339652	43,08%	68,7912	68,7	14,6%
		0,21543979	0,10239	-0,049139	197,827	27,3743	2723,09	0,043552	45,40%	90,106	89,99	15,4%
		0,22867695	0,104051	-0,050263	197,669	26,6471	2750,93	0,045957	45,88%	96,6451	96,52	15,6%
Ż	B3	0,35999166	0,09939728	-0,064563	197,64	167,73	705,322	0,002198	32,16%	21,1537	21,15	8,2%
Decano		0,50915787	0,172346	-0,064470	199,834	165,907	584,434	0,0042278	27,19%	25,295	25,29	6,9%
		0,65423847	0,00802206	-612837	197,279	165,138	555,659	0,00734629	20,83%	24,8942	24,89	5,3%
		0,81309061	0,147735	-0,065447	198,916	163,898	526,404	0,0109318	21,58%	32,0639	32,05	5,5%
		0,86304892	0,00680531	-0,062688	197,451	164.9	478,593	0,0128608	26,98%	42,5499	42,53	6,9%

4.1.3.1.5. Configuración Recurso Solar-Geotérmico.

Ż	B4	0,35999166	-0,027624	-0,06533	194,996	157,954	362,691	0,004747	25,06%	16,4867	16,48	6,4%
Decano		0,50915787	0,0636625	-0,07198	198,878	155,335	506,799	0,008513	35,90%	33,4016	33,38	9,1%
		0,65423847	0,322077	-0,07876	204,358	152,566	925,356	0,012453	30,79%	36,819	36,8	7,8%
		0,81309061	0,26858	-0,0754	204,441	155,424	1011,78	0,019886	33,62%	49,9536	49,93	8,5%
		0,86304892	0,06339948	-0,07139	199,431	156,236	1092,44	0,02583	39,66%	62,5548	62,52	10,1%
Ż	B5	0,3640388	0,145781	-0,0723	199,998	128,255	1375,74	0,171495	27,45%	18,171	18,18	7,0%
Octano		0,5148820	0,186075	-0,072065	200,776	135,734	909,708	0,3298	28,81%	26,978	26,99	7,4%
		0,6615936	0,211588	-0,072410	201,077	138,583	837,827	0,487132	30,12%	36,2443	36,25	7,7%
		0,8222316	0,2333	-0,07279	211,302	140,691	799,855	0,669783	32,04%	47,9163	47,93	8,2%
		0,8727515	0,242851	-0,07264	202,752	140,736	807,961	0,715339	31,88%	50,6019	50,62	8,1%
Ż	B6	0,3640388	0,264907	-0,068351	200,936	134,757	586,669	0,0358839	46,00%	30,4581	30,46	11,8%
Octano		0,5148820	0,280369	-0,069715	201,895	49,715	613,706	0,0591766	41,73%	39,0815	39,09	10,7%
		0,6615936	0,519485	-0,0758	203,811	131,031	634,617	0,061183	58,68%	70,6068	70,62	15,0%
		0,8222316	0,47481	-0,07414	201,367	90,3797	598,858	0,06066	49,56%	74,1081	74,12	12,7%
		0,8727515	0,26869	-0,07168	201,263	122,556	573,795	0,276837	46,91%	74,4538	74,47	12,0%

Tabla	1 63: Resul	tados ot	otenidos m usan	ediante A) do distint	NSYS y EE9 os fluidos de	S en sus vers trabajo com	iones acad 10 Agua, N	émicas; par -Decano y	a el Recur N-Octano.	so Solar-Bio	masa-Geo	térmico,
Fluido de frahaio	Geometría	Flujo másico (kơ/seơ)	Presión máxima (MPa)	Presión mínima (MPa)	Temperatura máxima(°C)	Temperatura mínima(°C)	Energía cinética de turbulencia	Energía cinética de turbulencia	Eficiencia Isentrópica ANSVS	Potencia ANSYS(KW)	Potencia EES(KW)	Eficiencia térmica del ciclo
							máxima (<i>m²/s</i> ²)	mínima (m²/s²)	2			
Agua	B1	0,15989	0,0499	-0,047134	208,927	44,691	3337,17	0,856599	33,97%	50,0412	49,97	11,5%
		0,20088	0,07773073	-0,05279	205,144	30,3192	5752,74	1,13886	35,04%	64,8593	64,76	11,9%
		0,24079	0,104557	-0,059536	198,733	25,8528	1896,92	1,36614	37,27%	82,6924	82,57	12,6%
		0,28436	0,13339924	-0,067175	198,834	25,2462	1977,25	1,5813	39,29%	102,951	102,8	13,3%
		0,29907	0,144164	-0,069212	198,861	25,1747	1997,49	1,64887	39,92%	110,006	109,8	13,5%
Agua	B2	0,15989	0,329796	-0,061317	204,991	18,4	14142	3,14536	40,12%	59,0894	59,01	13,6%
		0,20088	0,404351	-0,06795	206,472	18,4	14635	3,6585	44,25%	81,8903	81,78	15,0%
		0,24079	0,495618	-0,07153	206,816	18,4	14012,7	3,57619	46,98%	104,226	104,1	15,9%
		0,28436	0,568862	-0,076259	207,849	18,4	15469,7	4,43758	50,72%	132,868	132,7	17,2%
		0,29907	0,6	-0,07785	207,895	18,4	15462,6	4,49225	51,74%	142,545	142,4	17,5%
N-	B3	0,60342	0,0329299	-0,064348	208,627	171,013	739,602	0,0020242	54,44%	60,022	60	13,8%
Decano		0,75816	0,0144397	-0,065070	212,285	170,605	932,581	0,00341846	51,14%	70,8459	70,82	13,0%
		0,90878	-0,0066618	-0,062769	209,382	170,137	968,762	0,00490969	45,11%	74,8978	74,87	11,5%
		1,07320	-0,0028743	-0,062764	206,288	169,823	1015,38	0,00683408	42,53%	83,3922	83,37	10,8%
		1,12873	0,049015	-0,064135	208,066	171,225	1026,78	0,00740141	41,12%	84,8048	84,78	10,4%

4.1.3.1.6. Configuración Recurso Solar-Biomasa-Geotérmico.

Ż	B4	0,60342	0,018816	-0,057124	198,785	179,275	226,395	5,73E-05	17,64%	19,4528	19,44	4,5%
Decano		0,75816	0,031683	-0,056349	199,047	179,47	267,442	0,00016116	17,16%	23,7754	23,76	4,4%
		0,90878	0,0513432	-0,051324	212,901	179,761	322,828	5,31E-05	21,68%	36,0015	35,98	5,5%
		1,07320	0,20106	-0,053943	225,782	173,524	430,817	0,00034568	30,48%	59,7844	59,75	7,7%
		1,12873	0,650902	-0,064318	212,711	180,646	659,289	0,00055595	45,81%	94,5045	94,46	11,6%
ż	B5	0,61021	0,164161	-0,086259	190,34	75,2692	3954,38	0,05658	39,26%	43,5697	43,58	10,0%
Octano		0,76668	0,139404	-0,086439	192,422	76,1705	4667,81	0,109485	39,83%	55,5306	55,55	10,2%
		0,91900	0,310358	-0,0868	195,314	77,3016	4897,42	0,144309	43,64%	72,9305	72,96	11,2%
		1,08527	0,29662	-0,08692	192,242	72,5667	4336,05	0,2189	43,79%	86,4297	86,43	11,2%
		1,14142	0,309932	-0,087043	198,035	72,0048	3935,77	0,254645	44,24%	91,8271	91,82	11,3%
Ż	B6	0,61021	0,119117	-0,088796	187,867	51,3232	4489,21	0,06807405	42,50%	46,639	47,17	10,9%
Octano		0,76668	0,25449	-0,089389	192,279	51,5744	5485,07	0,0981174	48,19%	66,4453	67,21	12,3%
		0,91900	1,5678	-0,093156	207,042	45,2553	5848,91	0,0966535	47,12%	77,8879	78,78	12,0%
		1,08527	1,31923	-0,09287	211,817	53,6956	6149,03	0,1277	47,53%	92,7797	93,82	12,1%
		1,14142	0,55844	-0,0866	205,46	63,0171	5890,99	0,191029	46,30%	95,0402	96,09	11,8%

La	01a 04: Ke	sultados oc	usando	nediante A o distintos	fluidos de tr	rabajo como	rsiones aca R123, N-F	demicas; [Pentano y]	oara el kec N-Hexano	urso Bioma	sa-Ueolen	nico,
Fluido de trahaio	Geometría	Flujo másico (ko/seo)	Presión máxima (MPa)	Presión mínima (MPa)	Temperatura máxima(°C)	Temperatura mínima(°C)	Energía cinética de turbulencia	Energía cinética de turbulencia	Eficiencia Isentrópica ANSVS	Potencia ANSYS(KW)	Potencia EES(KW)	Eficiencia del ciclo
		(B_10/B_1)					máxima (<i>m²/s</i> ²)	mínima (m²/s²)				
R123	B1	1,74835	0,473162	-0,0279232	153,499	33,7969	167,439	0,156688	55,86%	56,7852	56,91	13,3%
		1,99976	0,545231	-0,011404	154,07	30,6161	152,169	0,157795	59,58%	69,2693	69,39	14,1%
		2,15532	0,587641	-0,0380774	154,45	18,4	181,981	0,15949	59,56%	74,6338	74,79	14,1%
		2,26738	0,619871	-0,0278157	154,716	18,4	182,854	0,159186	59,59%	78,5587	78,73	14,1%
		2,37948	0,6542	-0,0286418	154,965	18,4	173,734	0,157604	60,87%	84,2182	84,4	14,4%
R123	B2	1,74835	0,450978	-0,0656082	1251,901	28,7579	1175,19	0,35473	61,03%	62,1504	62,17	14,5%
		1,99976	0,524628	-0,0732351	152,156	18,4	1183,97	0,351172	63,97%	74,5182	74,51	15,2%
		2,15532	0,584667	-0,0758381	152,237	18,4	1171,5	0,331784	66,49%	83,4801	83,5	15,8%
		2,26738	0,62486	-0,0744250	152,435	18,4	1195,86	0,319893	68,98%	91,1084	91,13	16,4%
		2,37948	0,632193	-0,0742764	152,528	18,4	1202,39	0,349245	66,72%	92,4831	92,51	15,8%
Ż	B3	0,74831492	0,327024	-0,0453893	156,592	27,7405	1288,73	1,54017	50,88%	49,8803	49,87	11,6%
Pentano		0,855921705	0,369658	-0,0453539	156,495	20,611	1247,32	1,61377	53,91%	60,4434	60,44	12,3%
		0,922503697	0,400413	-0,047803	156,736	18,4	1226,48	1,50484	56,01%	67,6913	67,68	12,8%
		0,97046716	0.422393	0,422393	156,729	18,4	1190,77	1,44596	57,20%	72,7162	72,71	13,1%
		1,018448021	0.444971	0,04252785	156,525	18,4	1142,72	1,41546	58,20%	77,654	77,64	13,3%

4.1.3.1.7. Configuración Recurso Biomasa-Geotérmico.

ż	B4	0,74831492	0,476864	-0,0495673	156,364	19,1671	3025,2	0,547221	63,04%	61,8	61,79	14,4%
Pentano		0,855921705	0,529526	-0,0582949	157,154	18,4	2369,46	0,3546	59,36%	66,5577	66,55	13,6%
		0,922503697	0,572738	-0,0650538	157,61	18,4	2376,92	0,357363	61,93%	74,8455	74,83	14,2%
		0,97046716	0,622047	-0,0698482	158,005	18,4	2407,43	0,375272	66,17%	84,1244	84,11	15,1%
		1,018448021	0,602714	-0,0718102	156,233	18,4	2475,46	0,779322	66,19%	88,3083	88,29	15,1%
×	B5	0,72231291	0,266828	-0,0711336	152,366	107,749	1614,73	0,712473	42,28%	41,1403	41,16	9,6%
Hexano		0,82618064	0,305519	- 0,076568	152,553	105,948	1279,43	0,769345	44,46%	49,4853	49,5	10,1%
		0,89044908	0,328557	-0,0794603	152,602	103,402	1522,31	0,763936	45,23%	54,2563	54,28	10,2%
		0,93674594	0,381086	-0,0813203	153,328	99,9925	1261,32	0,698356	48,30%	60,9515	60,97	10,9%
		0,98305959	0,423757	-0,0933897	153,96	95,4715	1177,08	0,679412	51,68%	68,4366	68,47	11,7%
ź	B6	0,72231291	0,375766	-0,0689621	163,295	86,8902	2696,01	0,497501	51,62%	50,2409	50,25	11,7%
Hexano		0,82618064	0,407315	-0,0778029	154,074	86,0914	3025,71	0,287902	52,28%	58,205	58,21	11,8%
		0,89044908	0,478701	-0,0792300	154,95	82,7537	2676,86	0,334436	57,70%	69,2281	69,24	13,1%
		0,93674594	0,485818	-0,0800901	154,678	83,5587	2412,65	0,370117	57,80%	72,9641	72,97	13,1%
		0,98305959	0,561152	-0,0807253	155,551	81,1287	2285,72	0,392845	60,94%	80,7293	80,73	13,8%
4.2. Análisis de los resultados

En primer lugar, es necesario realizar un análisis de normalidad en los datos con el fin de determinar que los datos provengan de tengan una distribución normal. En el caso que los datos no tengan una distribución normal es necesario realizar una transformación de dichos datos[74]. En cuanto al método de transformación de datos que no tenga normalidad. Se utilizara la transformación de YEO-JOHNSON con el fin de realizar el análisis estadístico con datos que tengan una distribución normal [75]. Dicha transformación es necesaria ya que los análisis estadísticos se fundamentan en el supuesto de que los datos provienen de una población con distribución normal[76].

Análisis del Recurso -Solar

Prueba de normalidad de los datos de potencia

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de potencia del recurso solar no tienen una distribución normalHi=Los datos de potencia del recurso solar tienen una distribución normal

Numero de muestras:30

Nivel de significancia: 5%

Fig. 63: Probabilidad normal de la potencia, recurso-solar Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,941

Valor - p = 0,01

Decisión = Se rechaza la hipótesis alterna

Como la prueba de normalidad no es mayor a la significancia del 5%, se concluye que las muestras de potencia no tienen una distribución normal. Por lo tanto, se procede a realizar la trasformación de datos. Con el fin que tengan una distribución normal por medio del método de la Función de transformación de Johnson disponible en el software Minitab 18.1

Fig. 64: transformación de datos de potencia mediante la función transformación de Johnson, recurso-solar Software Minitab® 18.1.

Cabe decir que el software Minitab 18.1 realiza la transformación mediante la Ecuación 15

Fig. 65: Probabilidad normal de la potencia mediante la función transformación de Johnson, recurso-solar Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,986

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna

Mediante la transformación de Johnson los datos presentan una distribución normal con un nivel de significancia mayor al 5%

Fig. 66: Grafica de efectos principales de la potencia, Recurso-Solar Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de potencia del Recurso-Solar se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la potencia de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la potencia.

Fig. 67: Interacción variables de entrada para la potencia, Recurso-Solar Software Minitab® 18.1.

Igualmente, mediante la gráfica de interacción de factores que afectan a la potencia. Se determina que la mayor potencia se obtiene con la geometría B4 usando el flujo de trabajo N-Decano y un flujo másico de 0,3154 kg/seg. Cabe de decir que la potencia obtenida es de 21.2496 KW.

Prueba de normalidad de los datos de Eficiencia térmica del ciclo

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de Eficiencia térmica del ciclo del recurso solar no tienen una distribución normal.

Hi=Los datos de Eficiencia térmica del ciclo del recurso solar tienen una distribución normal.

Numero de muestras:30

Nivel de significancia: 5%

Fig. 68: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso-Solar Software Minitab® 18.1.

Estadístico de prueba:

Ryan - Joiner (RJ) = 0,988

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna

Como la prueba de normalidad es mayor a la significancia del 5%, se concluye que las muestras de potencia tienen una distribución normal.

Análisis del diseño factorial de los datos de Eficiencia térmica del ciclo, Recurso-Solar

Fig. 69: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-Solar Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de Eficiencia térmica del ciclo del Recurso-Solar se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la eficiencia térmica del ciclo de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la eficiencia térmica del ciclo.

Fig. 70: Interacción variables de entrada para la potencia, Recurso-Solar Software Minitab® 18.1.

Igualmente, mediante la gráfica de interacción de factores que afectan a la potencia. Se determina que la mayor Eficiencia térmica del ciclo se obtiene con la geometría B4 usando el flujo de trabajo N-Decano y un flujo másico de 0,172kg/seg. Cabe de decir que la que obtienen una eficiencia térmica del ciclo de 10.7%

Conclusión: En cuanto al Recurso-Solar. Se determinó que la configuración mejor para una potencia y eficiencia térmica del ciclo se la obtiene mediante la geometría B4. Por lo tanto, también se muestran datos obtenidos mediante Software ANSYS. Datos que se dan en el perfil del alabe de la turbina de flujo radial como, presiones, temperaturas y Energía cinética de turbulencia,

Análisis del Recurso -Biomasa

Prueba de normalidad de los datos de potencia

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de potencia del Recurso -Biomasa no tienen una distribución normal

Hi=Los datos de potencia del Recurso -Biomasa tienen una distribución normal

Numero de muestras:30

Nivel de significancia: 5%

Fig. 71: Probabilidad normal de la potencia, Recurso -Biomasa Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,958

Valor - p = 0,033

Decisión = Se rechaza la hipótesis alterna

Como la prueba de normalidad no es mayor a la significancia del 5%, se concluye que las muestras de potencia no tienen una distribución normal. Por lo tanto, se procede a realizar la trasformación de datos. Con el fin que tengan una distribución normal por medio del método de la Función de transformación de Johnson disponible en el software Minitab 18.1

Fig. 72: Probabilidad normal de la potencia mediante la función transformación de Johnson, Recurso -Biomasa Software Minitab® 18.1.

Cabe decir que el software realizo la transformación de datos mediante la Ecuación 16

 $0,177645 + 0,452702 \times Ln((X - 16,2823)/(38,0022 - X)))Ec. 15$

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,990

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna

Mediante la transformación de Johnson los datos presentan una distribución normal con un nivel de significancia mayor al 5%

Análisis del diseño factorial de los datos de potencia, Recurso -Biomasa

Fig. 74: Grafica de efectos principales de la potencia, Recurso -Biomasa Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de potencia del Recurso -Biomasa se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la potencia de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la potencia.

Fig. 75: Interacción variables de entrada para la potencia, Recurso -Biomasa Software Minitab® 18.1.

Igualmente, mediante la gráfica de interacción de factores que afectan a la potencia. Se determina que la mayor potencia se obtiene con la geometría B4 usando el flujo de trabajo N-Pentano y un flujo másico de 0,3344 kg/seg. Cabe de decir que la potencia obtenida es de 37.7858 KW.

Prueba de normalidad de los datos de Eficiencia térmica del ciclo

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de Eficiencia térmica del ciclo del Recurso -Biomasa no tienen una distribución normal.

Hi=Los datos de Eficiencia térmica del ciclo del Recurso -Biomasa tienen una distribución normal.

Numero de muestras:30

Nivel de significancia: 5%

Fig. 76: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso -Biomasa Software Minitab® 18.1.

Estadístico de prueba:

Ryan - Joiner (RJ) = 0,947

Valor - p = 0.01

Decisión = Se rechaza la hipótesis alterna

Como la prueba de normalidad no es mayor a la significancia del 5%, se concluye que las muestras de potencia no tienen una distribución normal. Por lo tanto, se procede a realizar la trasformación de datos. Con el fin que tengan una distribución normal por medio del método de la Función de transformación de Johnson disponible en el software Minitab 18.1

Fig. 77: Probabilidad normal de la Eficiencia térmica del ciclo mediante la función transformación de Johnson, Recurso -Biomasa Software Minitab® 18.1.

Cabe decir que el software realizo la transformación de datos mediante la Ecuación 17

 $0,0506562 + 0,357330 \times Ln((X - 0,0909232)/(0,192237 - X))$ Ec. 16

Fig. 78: Probabilidad normal de la potencia mediante la función transformación de Johnson, Recurso-Biomasa Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,994

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna

Mediante la transformación de Johnson los datos presentan una distribución normal con un nivel de significancia mayor al 5%

Fig. 79: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso -Biomasa Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de Eficiencia térmica del ciclo del Recurso -Biomasa se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la eficiencia térmica del ciclo de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la eficiencia térmica del ciclo.

Igualmente, mediante la gráfica de interacción de factores que afectan a la Eficiencia térmica del ciclo. Se determina que la mayor Eficiencia térmica del ciclo se obtiene con la geometría B4 usando el flujo de trabajo N-Pentano y un flujo másico de 0,3344kg/seg. Cabe de decir que la que obtienen una eficiencia térmica del ciclo de 19.2%

Análisis del Recurso-Geotérmico

Prueba de normalidad de los datos de potencia

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de potencia del Recurso-Geotérmico no tienen una distribución normal

Hi=Los datos de potencia del Recurso-Geotérmico tienen una distribución normal

Numero de muestras:30

Nivel de significancia: 5%

Fig. 81: Probabilidad normal de la potencia, Recurso-Geotérmico Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,959

Valor - p = 0,036

Decisión = Se rechaza la hipótesis alterna

Como la prueba de normalidad no es mayor a la significancia del 5%, se concluye que las muestras de potencia no tienen una distribución normal. Por lo tanto, se procede a realizar la trasformación de datos. Con el fin que tengan una distribución normal por medio del método de la Función de transformación de Johnson disponible en el software Minitab 18.1

Fig. 82: Probabilidad normal de la potencia mediante la función transformación de Johnson, Recurso-Geotérmico Software Minitab® 18.1.

Cabe decir que el software realizo la transformación de datos mediante la Ecuación 18

1,20290 + 1,04406 × Ln((X - 11,9138) / (20,7411 - X))Ec. 17

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,985

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna

Mediante la transformación de Johnson los datos presentan una distribución normal con un nivel de significancia mayor al 5%

Análisis del diseño factorial de los datos de potencia, Recurso-Geotérmico

Fig. 84: Grafica de efectos principales de la potencia, Recurso-Geotérmico Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de potencia del Recurso-Geotérmico se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la potencia de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la potencia.

Fig. 85: Interacción variables de entrada para la potencia, Recurso-Geotérmico Software Minitab® 18.1.

Igualmente, mediante la gráfica de interacción de factores que afectan a la potencia. Se determina que la mayor potencia se obtiene con la geometría B2 usando el flujo de trabajo R134a y un flujo másico de 1,9880 kg/seg. Cabe de decir que la potencia obtenida es de 18,12 KW.

Prueba de normalidad de los datos de Eficiencia térmica del ciclo

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de Eficiencia térmica del ciclo del Recurso-Geotérmico no tienen una distribución normal.

Hi=Los datos de Eficiencia térmica del ciclo del Recurso-Geotérmico tienen una distribución normal.

Numero de muestras:30

Nivel de significancia: 5%

Fig. 86: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso-Geotérmico Software Minitab® 18.1.

Estadístico de prueba:

Ryan - Joiner (RJ) = 0,974

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna

Como la prueba de normalidad es mayor a la significancia del 5%, se concluye que las muestras de potencia tienen una distribución normal.

Fig. 87: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-Geotérmico Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de Eficiencia térmica del ciclo del Recurso-Geotérmico se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la eficiencia térmica del ciclo de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la eficiencia térmica del ciclo.

Fig. 88: Interacción variables de entrada para la potencia, Recurso-Geotérmico Software Minitab® 18.1.

Igualmente, mediante la gráfica de interacción de factores que afectan a la Eficiencia térmica del ciclo. Se determina que la mayor Eficiencia térmica del ciclo se obtiene con la geometría B2 usando el flujo de trabajo R134a y un flujo másico de 1.2857 /seg. Cabe de decir que la que obtienen una eficiencia térmica del ciclo de 6,1 %

Análisis del Recurso-Solar-Biomasa

Prueba de normalidad de los datos de potencia

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de potencia del Recurso-Solar-Biomasa no tienen una distribución normal

Hi=Los datos de potencia del Recurso-Solar-Biomasa tienen una distribución normal

Numero de muestras:30

Fig. 89: Probabilidad normal de la potencia, Recurso-Solar-Biomasa Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,953

Valor - p = 0,020

Decisión = Se rechaza la hipótesis alterna

Como la prueba de normalidad no es mayor a la significancia del 5%, se concluye que las muestras de potencia no tienen una distribución normal. Por lo tanto, se procede a realizar la trasformación de datos. Con el fin que tengan una distribución normal por medio del método de la Función de transformación de Johnson disponible en el software Minitab 18.1

Fig. 90: Probabilidad normal de la potencia mediante la función transformación de Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1.

Cabe decir que el software realizo la transformación de datos mediante la Ecuación 19

-0,106144 + 0,748021 × Asenh((X - 31,6270) / 7,42470)Ec. 18

Fig. 91: Probabilidad normal de la potencia mediante la función transformación de Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,987

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna

Mediante la transformación de Johnson los datos presentan una distribución normal con un nivel de significancia mayor al 5%

Fig. 92: Grafica de efectos principales de la potencia, Recurso-Solar-Biomasa Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de potencia del Recurso-Solar-Biomasa se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la potencia de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la potencia.

Igualmente, mediante la gráfica de interacción de factores que afectan a la potencia. Se determina que la mayor potencia se obtiene con la geometría B2 usando el flujo de trabajo Agua y un flujo másico de 0.154 kg/seg. Cabe de decir que la potencia obtenida es de 75,9195KW.

Prueba de normalidad de los datos de Eficiencia térmica del ciclo

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de Eficiencia térmica del ciclo del Recurso-Solar-Biomasa no tienen una distribución normal.

Hi=Los datos de Eficiencia térmica del ciclo del Recurso-Solar-Biomasa tienen una distribución normal.

Numero de muestras:30

Nivel de significancia: 5%

Fig. 94: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso-Solar-Biomasa Software Minitab® 18.1.

Estadístico de prueba:

Ryan - Joiner (RJ) = 0,974

Valor - p = 0,021

Decisión = Se rechaza la hipótesis alterna

Como la prueba de normalidad no es mayor a la significancia del 5%, se concluye que las muestras de potencia no tienen una distribución normal. Por lo tanto, se procede a realizar la trasformación de datos. Con el fin que tengan una distribución normal por medio del método de la Función de transformación de Johnson disponible en el software Minitab 18.1

Fig. 95: Probabilidad normal de la potencia mediante la función transformación de Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1.

Cabe decir que el software realizo la transformación de datos mediante la Ecuación 20

 $0,902930 + 0,816312 \times Ln((X - 0,0639875)/(0,231408 - X))Ec. 19$

Fig. 96: Probabilidad normal de la potencia mediante la función transformación de Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,989

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna.

Mediante la transformación de Johnson los datos presentan una distribución normal con un nivel de significancia mayor al 5%

Análisis del diseño factorial de los datos de Eficiencia térmica del ciclo, Recurso-Solar-Biomasa

Fig. 97: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-Solar-Biomasa Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de Eficiencia térmica del ciclo del Recurso-Solar-Biomasa se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la eficiencia térmica del ciclo de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la eficiencia térmica del ciclo.

Igualmente, mediante la gráfica de interacción de factores que afectan a la Eficiencia térmica del ciclo. Se determina que la mayor Eficiencia térmica del ciclo se obtiene con la geometría B2 usando el flujo de trabajo Agua y un flujo másico de 0.1479 /seg. Cabe de decir que la que obtienen una eficiencia térmica del ciclo de 18.3 %

Análisis del Recurso-Solar-Geotérmico

Prueba de normalidad de los datos de potencia

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de potencia del Recurso-Solar-Geotérmico no tienen una distribución normal

Hi=Los datos de potencia del Recurso-Solar-Geotérmico tienen una distribución normal

Numero de muestras:30

Nivel de significancia: 5%

Fig. 99: Probabilidad normal de la potencia, Recurso-Solar-Geotérmico Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,98

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna

Como la prueba de normalidad es mayor a la significancia del 5%, se concluye que las muestras de potencia tienen una distribución normal.

Fig. 100: Grafica de efectos principales de la potencia, Recurso-Solar-Geotérmico Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de potencia del Recurso-Solar-Geotérmico se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la potencia de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la potencia.

Fig. 101: Interacción variables de entrada para la potencia, Recurso-Solar-Geotérmico Software Minitab® 18.1.

Igualmente, mediante la gráfica de interacción de factores que afectan a la potencia. Se determina que la mayor potencia se obtiene con la geometría B2 usando el flujo de trabajo Agua y un flujo másico de 0.228667 kg/seg. Cabe de decir que la potencia obtenida es de 96,6451 KW.

Prueba de normalidad de los datos de Eficiencia térmica del ciclo

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de Eficiencia térmica del ciclo del Recurso-Solar-Geotérmico no tienen una distribución normal.

Hi=Los datos de Eficiencia térmica del ciclo del Recurso-Solar-Geotérmico tienen una distribución normal.

Numero de muestras:30

Nivel de significancia: 5%

Fig. 102: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso-Solar-Geotérmico Software Minitab® 18.1.

Estadístico de prueba:

Ryan - Joiner (RJ) = 0,972

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna.

Análisis del diseño factorial de los datos de Eficiencia térmica del ciclo, Recurso-Solar-Geotérmico

Fig. 103: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-Solar-Geotérmico Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de Eficiencia térmica del ciclo del Recurso-Solar-Geotérmico se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la eficiencia térmica del ciclo de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la eficiencia térmica del ciclo.

Fig. 104: Interacción variables de entrada para la potencia, Recurso-Solar-Geotérmico Software Minitab® 18.1.

Igualmente, mediante la gráfica de interacción de factores que afectan a la Eficiencia térmica del ciclo. Se determina que la mayor Eficiencia térmica del ciclo se obtiene con la geometría B2 usando el flujo de trabajo Agua y un flujo másico de 0,0953848/seg. Cabe de decir que la que obtienen una eficiencia térmica del ciclo de 20,4%%

Análisis del Recurso-Solar-Biomasa-Geotérmico

Prueba de normalidad de los datos de potencia

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de potencia del Recurso-Solar-Biomasa-Geotérmico no tienen una distribución normal

Hi=Los datos de potencia del Recurso-Solar-Biomasa-Geotérmico tienen una distribución normal

Numero de muestras:30

Nivel de significancia: 5%

Fig. 105: Probabilidad normal de la potencia, Recurso-Solar-Biomasa-Geotérmico Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,992

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna

Como la prueba de normalidad es mayor a la significancia del 5%, se concluye que las muestras de potencia tienen una distribución normal.

Análisis del diseño factorial de los datos de potencia, Recurso-Solar-Biomasa-Geotérmico.

Fig. 106: Grafica de efectos principales de la potencia, Recurso-Solar-Biomasa-Geotérmico Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de potencia del Recurso-Solar-Biomasa-Geotérmico se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la potencia de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la potencia.

Igualmente, mediante la gráfica de interacción de factores que afectan a la potencia. Se determina que la mayor potencia se obtiene con la geometría B2 usando el flujo de trabajo Agua y un flujo másico de 0.2991 kg/seg. Cabe de decir que la potencia obtenida es de 142,545KW.

Prueba de normalidad de los datos de Eficiencia térmica del ciclo

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de Eficiencia térmica del ciclo del Recurso-Solar-Biomasa-Geotérmico no tienen una distribución normal.

Hi=Los datos de Eficiencia térmica del ciclo del Recurso-Solar-Biomasa-Geotérmico tienen una distribución normal.

Numero de muestras:30

Nivel de significancia: 5%

Estadístico de prueba:

Ryan - Joiner (RJ) = 0,958

Valor - p = 0,034

Decisión = Se rechaza la hipótesis alterna

Como la prueba de normalidad no es mayor a la significancia del 5%, se concluye que las muestras de potencia no tienen una distribución normal. Por lo tanto, se procede a realizar la trasformación de datos. Con el fin que tengan una distribución normal por medio del método de la Función de transformación de Johnson disponible en el software Minitab 18.1

Fig. 109: Probabilidad normal de la potencia mediante la función transformación de Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1.

Cabe decir que el software realizo la transformación de datos mediante la Ecuación 21

-0,00961740 + 0,596280 × Asenh((X - 0,117253) / 0,00811629)Ec. 20

Fig. 110: Probabilidad normal de la potencia mediante la función transformación de Johnson, Recurso-Solar-Biomasa Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,99

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna.

Mediante la transformación de Johnson los datos presentan una distribución normal con un nivel de significancia mayor al 5%

Análisis del diseño factorial de los datos de Eficiencia térmica del ciclo, Recurso-Solar-Biomasa-Geotérmico

Fig. 111: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-Solar-Biomasa-Geotérmico Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de Eficiencia térmica del ciclo del Recurso-Solar-Biomasa-Geotérmico se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la eficiencia térmica del ciclo de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la eficiencia térmica del ciclo.

Igualmente, mediante la gráfica de interacción de factores que afectan a la potencia. Se determina que la mayor potencia se obtiene con la geometría B2 usando el flujo de trabajo Agua y un flujo másico de 0.2991 kg/seg. Cabe de decir que la eficiencia térmica del ciclo de 17,5%.

Análisis del Recurso-Biomasa-Geotérmico

Prueba de normalidad de los datos de potencia

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de potencia del Recurso-Biomasa-Geotérmico tienen una distribución normal

Hi=Los datos de potencia del Recurso-Biomasa-Geotérmico no tienen una distribución normal

Numero de muestras:30

Nivel de significancia: 5%

Fig. 113: Probabilidad normal de la potencia, Recurso-Biomasa-Geotérmico Software Minitab® 18.1.

• Estadístico de prueba:

Ryan - Joiner (RJ) = 0,994

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna.

Como la prueba de normalidad es mayor a la significancia del 5%, se concluye que las muestras de potencia tienen una distribución normal.

Análisis del diseño factorial de los datos de potencia, Recurso-Biomasa-Geotérmico

Fig. 114: Grafica de efectos principales de la potencia, Recurso-Biomasa-Geotérmico Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de potencia del Recurso-Biomasa-Geotérmico se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la potencia de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la potencia.

Fig. 115: Interacción variables de entrada para la potencia, Recurso-Biomasa-Geotérmico Software Minitab® 18.1.

Igualmente, mediante la gráfica de interacción de factores que afectan a la potencia. Se determina que la mayor potencia se obtiene con la geometría B2 usando el flujo de trabajo R123 y un flujo másico de 2.379 kg/seg. Cabe de decir que la potencia obtenida es de 92,4831 KW.

Prueba de normalidad de los datos de Eficiencia térmica del ciclo

- Hipótesis:
 - Ho=Hipótesis nula
 - Hi=Hipótesis Alternativa

Ho=Los datos de Eficiencia térmica del ciclo del Recurso-Biomasa-Geotérmico no tienen una distribución normal.

Hi=Los datos de Eficiencia térmica del ciclo del Recurso-Biomasa-Geotérmico tienen una distribución normal.

Numero de muestras:30

Nivel de significancia: 5%

Fig. 116: Probabilidad normal de la Eficiencia térmica del ciclo, Recurso-Biomasa-Geotérmico Software Minitab® 18.1.

Estadístico de prueba:

Ryan - Joiner (RJ) = 0,988

Valor - p = 0,1

Decisión = No se rechaza la hipótesis alterna.

Como la prueba de normalidad es mayor a la significancia del 5%, se concluye que las muestras de potencia tienen una distribución normal.

Análisis del diseño factorial de los datos de Eficiencia térmica del ciclo, Recurso-Biomasa-Geotérmico

Fig. 117: Grafica de efectos principales de la Eficiencia térmica del ciclo, Recurso-Biomasa-Geotérmico Software Minitab® 18.1.

Mediante el análisis del diseño factorial para los datos de Eficiencia térmica del ciclo del Recurso-Biomasa-Geotérmico se determinó que tanto la Geometría de la turbina de flujo radial. Así como el fluido de trabajo y el flujo másico. Influyen en la eficiencia térmica del ciclo de la turbina de flujo radial. Debido a que la variación entre cada uno nos muestra cambios significativos en la eficiencia térmica del ciclo.

Igualmente, mediante la gráfica de interacción de factores que afectan a la potencia. Se determina que la mayor potencia se obtiene con la geometría B2 usando el flujo de trabajo R123 y un flujo másico de 2,267kg/seg. Cabe de decir que la eficiencia térmica del ciclo de 16.4 %.

4.3. Interpretación de resultados

A partir del análisis del diseño factorial con diferentes geometrías de turbinas de flujo radial y fluidos de trabajo determinados por cada recurso renovable de baja entalpia en un COR y CORH. Se determinó los fluidos de trabajo con mayores eficiencias isentrópicas, para cada configuración termodinámica. Adicionalmente, se determinó las mejores configuraciones de acuerdo con la potencia y la eficiencia térmica del ciclo.

En Tabla 65 se ilustran las eficiencias isentrópicas que se obtuvieron con cada fluido de trabajo y recurso renovable. Dichos resultados muestran eficiencias isentrópicas de 24,30% a 86,26%. Mientras en la Tabla 66, se ilustran las configuraciones termodinámicas para cada recurso renovable con las que se obtuvieron los valores más altos de potencias. Dichos resultados muestran potencias de 13,3059 kW a 142,525KW. Igualmente, en la Tabla 67, se ilustran las mejores configuraciones termodinámicas para obtener los valores más altos de eficiencias térmicas del ciclo para cada recurso renovable. Dichos valores, muestran eficiencias térmicas del ciclo del 4,10% a 20,4%.

Recurso	Fluido de trabajo			
Solar	Agua	N-Decano	N-Octano	
	24,30%	42,32%	34,37%	
Biomasa	R123	N-Pentano	N-Hexano	
	66,62%	86,26%	46,95%	
Geotérmica	R134a	R245fa	N-Pentano	
	67,50%	58,17%	60,00%	
Solar-Biomasa	Agua	N-Decano	N-Octano	
	54,00%	69,92%	31,67%	
Solar-Geotérmico	Agua	N-Decano	N-Octano	
	60,07%	39,66%	58,68%	
Solar-Biomasa-Geotérmico	Agua	N-Decano	N-Octano	
	51,74%	54,44%	48,19%	
Biomasa-Geotérmico	R123	N-Pentano	N-Hexano	
	68,98%	66,19%	60,94%	

Tabla 65: Mejores eficiencias isentrópicas de cada fluido de trabajo con respecto a cada recurso renovable.

Recuro	Geometría	Fluido de	Flujo	Eficiencia	Eficiencia	Potencia
Renovable		trabajo	másico(kg/s)	térmica	Isentrópica	(KW)
				del ciclo		
Solar	B4	N-Decano	0,3154	9,3%	36,87%	21,2496
Biomasa	B4	N-Pentano	0,3344	19,2%	86,26%	37,7858
Geotérmica	B2	R134a	1,988	4,1%	47,36%	18,1229
Solar-Biomasa	B2	Agua	0,154	18,1%	53,50%	75,9195
Solar-	B2	Agua	0,228667	15,6%	45,88%	96,6451
Geotérmica						
Solar-Biomasa-	B2	Agua	0,2991	17,5%	51,74%	142,545
Geotérmica						
Biomasa-	B2	R123	2,379	15,8%	66,72%	92,4831
Geotérmica						

Tabla 66: Factores de entrada para una potencia optima en la turbina de flujoradial.

Tabla 67: Factores de entrada para una eficiencia térmica del ciclo en la turbinade flujo radial

	trabaia				
	เกลบสาง	másico(kg/s)	térmica	Isentrópica	(KW)
			del ciclo		
B4	N-Decano	0,172	10,70%	42,32%	13,3059
B4	N-Pentano	0,3344	19,20%	86,26%	37,7858
B2	R134a	1,2857	6,10%	67,50%	16,7054
B2	Agua	0,1479	18,30%	54,00%	73,5271
B2	Agua	0,0953848	20,40%	60,07%	52,7886
B2	Agua	0,2991	17,50%	51,74%	142,545
B2	R123	2,267	16,40%	68,98%	91,1084
	B2 B2 B2	B2 Agua B2 Agua B2 R123	B2 Agua 0,0953848 B2 Agua 0,2991 B2 R123 2,267	B2 Agua 0,0953848 20,40% B2 Agua 0,2991 17,50% B2 R123 2,267 16,40%	B2 Agua 0,0953848 20,40% 60,07% B2 Agua 0,2991 17,50% 51,74% B2 R123 2,267 16,40% 68,98%

4.4. Discusión de resultados

Con respecto a la eficiencia isentrópica

De acuerdo con los resultados obtenido en esta investigación. Las eficiencias isentrópicas en la turbina varían de 24,30% a 86,26%. De acuerdo a Rahbar, et al. [24] las eficiencias isentrópicas para varios fluidos de trabajo en turbinas de COR y CORH; usando la metodología CFD, varían del 18.2 % hasta el 85% [24]. En este aspecto Sauret and Rowlands [77] se adentran en esta metodóloga, usando fluidos de trabajo como N-Pentano y R134a; determinando una eficiencia isentrópica cercana al 77% [77]. Igualmente en la investigación de Zheng, et al. [6] se determina una eficiencia del 82% para el fluido de trabajo R134a.

Con respecto al flujo másico

En primer lugar, al realizar el análisis termodinámico usando software EES académico. Notamos que, al aumentar una fuente de calor para precalentar el fluido de trabajo, el ciclo tiene un aumento de flujo másico. Por lo tanto, al tener un aumento de flujo másico en el CORH con respecto al COR, también aumentara la potencia de la turbina de flujo radial. Además de un aumento en la eficiencia térmica del ciclo.

La Figura 119, ilustra que las configuraciones con mayor potencia son las que tienen más de una fuente de calor es decir un CORH.

Fig. 119: Potencia [KW] para cada recurso renovable de baja entalpia

Con respecto a la geometría

Adicional al flujo másico, La geometría de la turbina también influye en la potencia y rendimiento. Es decir, usando el mismo flujo másico y fluido de trabajo la potencia y rendimiento pueden aumentar o disminuir. Por ejemplo, Lopez Sanz [37] estudia los alabes de una turbina radial para un COR usando el refrigerante R245fa como fluido de trabajo, con el fin de generar 3,5 kW. En el estudio se utiliza cuatro espesores de alabe diferentes (1,7 mm; 2,7 mm, 2.7 mm y 3, 2mm), con flujos másicos para cada espesor (0,142 kg/s; 0,233 kg/s; 0,233 kg/s, y 0,279 kg/s). Finalmente obtiene distintas eficiencias de la turbina (34%;44%;43%, y 48%) generando 3.5 kW en todos los casos [37].

Se concluye que, a mayor flujo másico el espesor y eficiencia de la turbina también aumentaran con el fin de generar la misma potencia. Por esta razón en este estudio se obtuvo una mayor potencia con solo cambiar la geometría de la turbina. El cambio de geometría se realizó al aumentar los alabes de la turbina con el fin que el vapor del fluido de trabajo sea aprovechado de mejor manera. Igualmente, la variación del número de alabes se realizó de acuerdo con el diámetro de la turbina y a investigaciones bibliográficas.

Con respecto al fluido de trabajo

El fluido de trabajo también influye en la potencia. Debido a que deberá permanecer en estado de vapor a lo largo del proceso de expansión en la turbina, con el fin de generar una potencia mecánica en la turbina. La presencia de líquido en el proceso de expansión, indica un bajo rendimiento isentrópico de la turbina [28, 57].

En nuestro estudio se obtuvo eficiencias isentrópicas de 24,30% a 86,26%. Como se mencionó anteriormente, esta eficiencia afecta directamente al proceso de expansión de la turbina. Es decir, también influirá en la eficiencia térmica del ciclo. Ya que según la ecuación 10, a mayor trabajo de la turbina, la eficiencia térmica del ciclo aumenta.

Según las Tablas 66 y 67 se obtuvieron eficiencias térmicas del ciclo de 4,10% a 20,4%. De acuerdo con investigaciones previas, estas eficiencias son comunes en COR y CORH. Como lo indica Nguyen, et al. [78] al estudiar distintos fluidos de trabajo en un COR determino eficiencias de 6,10% al 20.4% [78]. Igualmente Drescher and Brüggemann [79] han determinado una eficiencia térmica del ciclo, entre el 10% y 20 %; usando más de 100 fluidos de trabajo [79].

Otros estudios son más específicos con el fluido de trabajo y su eficiencia. En este sentido Pan and Wang [80] determinaron una eficiencia térmica del ciclo del 4% al 6%,usando el fluido de trabajo R134a [80]. Mientras Li and Ren [81] calcula la eficiencia en un 15%,para el fluido de trabajo R123 [81]. Igualmente Bellos and Tzivanidis [82] determinan una eficiencia del 15%, pero en este caso usaron N-Pentano como fluido de trabajo [82].

Con respecto a las temperaturas en el alabe

De acuerdo a Rodríguez Rodríguez [83] las temperaturas en el alabe serán cercanas a las temperatura de evaporador y condensador usadas en el COR y CORH [83]. Es decir, la temperatura mayor del alabe será cercana a la de temperatura del evaporador e ira descendiendo a lo largo del alabe. Pero no deberá descender por debajo de la temperatura de condensación. En la Figura 120 y 121 se ilustra el cambio de temperatura en distintas geometrías. Cabe decir que la Figura 120 corresponde a geometrías en donde se obtuvo mayores valores de potencia. Mientras la Figura 121 corresponde a geometrías en donde se obtuvo mayores valores de eficiencia térmica del ciclo.

En la Figura 120 se determinó lo siguiente:

En La ilustración a); correspondiente al recurso solar. La temperatura mayor es de 198,58°C y decrece hasta 134,496 °C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 200°C. Esta temperatura está presente en la mayor área del alabe. Mientras que la temperatura menor, si bien tiene 134.496°C, aun estará en proceso de condensación.

En la ilustración b); correspondiente al recurso biomasa; La temperatura mayor es de 160.5°C y decrece hasta 18.4 °C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 150°C. Mientras que la temperatura menor al ser de 18.4 °C. Indica la presencia de fluido condensado en ciertas partes de alabe.

En la ilustración c); correspondiente al recurso geotérmico; La temperatura mayor es de 54.32 y decrece hasta 18°C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 53°C. Mientras que la temperatura menor al ser de 18°C. Indica la presencia de fluido condensado en ciertas partes de alabe.

En la ilustración d); correspondiente al recurso solar-biomasa; La temperatura mayor es de 198.957 y decrece hasta 71.1422°C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 200°C. Mientras que la temperatura menor, si bien tiene 71.1422°C, aun estará en proceso de condensación.

En la ilustración e); correspondiente al recurso solar-geotérmica; La temperatura mayor es de 197.669 y decrece hasta 26.6471 C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 200°C. Mientras que la temperatura menor, si bien tiene 26.6471°C, aun estará en proceso de condensación.

En la ilustración f); correspondiente al recurso solar-biomasa-geotérmica; La temperatura mayor es de 207.895 y decrece hasta 18.4 C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 200°C. Mientras que la temperatura menor al ser de 18.4 °C. Indica la presencia de fluido condensado en ciertas partes de alabe

En la ilustración g); correspondiente al recurso biomasa-geotérmica; La temperatura mayor es de 152.528 y decrece hasta 18.4 C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 150°C. Mientras que la temperatura menor al ser de 18.4 °C. Indica la presencia de fluido condensado en ciertas partes de alabe

En la Figura 121 se determinó lo siguiente:

En La ilustración a); correspondiente al recurso solar. La temperatura mayor es de 198,345°C y decrece hasta 134,256 C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 200°C. Esta temperatura está presente en la mayor área del alabe. Mientras que la temperatura menor, si bien tiene 133.256°C, aun estará en proceso de condensación.

En la ilustración b); correspondiente al recurso biomasa; La temperatura mayor es de 160.512°C y decrece hasta 18.4 °C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 150°C. Mientras que la temperatura menor al ser de 18.4 °C. Indica la presencia de fluido condensado en ciertas partes de alabe.

En la ilustración c); correspondiente al recurso geotérmico; La temperatura mayor es de 56.65°C y decrece hasta 18°C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 53°C. Mientras que la temperatura menor al ser de 18°C. Indica la presencia de fluido condensado en ciertas partes de alabe.

En la ilustración d); correspondiente al recurso solar-biomasa; La temperatura mayor es de 198.989°C y decrece hasta 75.6187 °C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 200°C. Mientras que la temperatura menor, si bien tiene 75.6187°C, aun estará en proceso de condensación.

En la ilustración e); correspondiente al recurso solar-geotérmica; La temperatura mayor es de 199.044°C y decrece hasta 52.3161°C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 200°C. Mientras que la temperatura menor, si bien tiene 52.3161°C, aun estará en proceso de condensación.

En la ilustración f); correspondiente al recurso solar-biomasa-geotérmica; La temperatura mayor es de 207.895°C y decrece hasta 18.4°C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 200°C. Mientras que la temperatura menor al ser de 18.4 °C. Indica la presencia de fluido condensado en ciertas partes de alabe

En la ilustración g); correspondiente al recurso biomasa-geotérmica; La temperatura mayor es de 152.435 y decrece hasta 18.4° C. La temperatura mayor se aproxima a la temperatura del evaporador igual a 150°C. Mientras que la temperatura menor al ser de 18.4 °C. Indica la presencia de fluido condensado en ciertas partes de alabe

Con respecto a las presiones en el alabe

En las Figuras 122 y 123 se observa que la presión a la entrada del alabe es mayor y va decreciendo, hasta ser negativa en la salida. Tener un valor negativo a la salida del alabe es justificado por Rodríguez Rodríguez [83]. Ya que indica que la presión a la salida del alabe será negativa, debido a la succión que existe por parte de la bomba del COR; con el fin de dirigir el fluido de trabajo al condensador [83].

Tener un valor positivo a la entrada y negativo a la salida del alabe, aumenta la diferencia de presión que existe en la turbina. Rodríguez Ibarra [84] al analizar un alabe de una turbina de vapor mediante la metodología CFD determina que a mayor diferencia de presión entre la entrada y salida del alabe, mayor será la potencia de la turbina. Además Hernández Ríos and Garzón Barbosa [68] concluyen que este aumento de potencia se debe, a que la diferencia de presión aumenta la velocidad del fluido de trabajo, que dirigido a los alabes genera mayor movimiento [68].

En la Figura 122, se ilustran la diferencias de presiones existentes en el análisis de geometrías que presentaron mejor potencia; según software ANSYS académico. Igualmente, en la Figura 123, se ilustran las diferencias de presiones existentes en el análisis de geometrías que presentaron mejor eficiencia térmica del ciclo; según software ANSYS académico.

Con respecto a la energía cinética de turbulencia en el alabe

En la Figuras 124 y 125 se ilustran los resultados obtenidos a lo largo de alabe. Notamos que las parte de la geometría en donde existe mayor turbulencia, están obstruidas o son muy estrechas para la circulación del fluido. Por ejemplo, la presencia del alabe ocasiona que a lo largo del perfil exista mayor turbulencia. Otro factor es el cambio brusco de la geometría de alabe.

Martí [85] indica que la presión generada a lo largo de alabe también influirá en el cambio de energía cinética de turbulencia. Por lo general la presión aumenta en partes de la geometría en donde existen obstrucciones para la circulación del fluido de trabajo, generando un aumento en la energía cinética de turbulencia [85]. Estas obstrucciones se las puede visualizar como vortex en donde exista mayor turbulencia [84].

En la Figuras 124, se ilustra la distribución de Energía cinética de turbulencia en el alabe de distintas geometrías que presentaron mejor potencia; según software ANSYS académico. Igualmente, en la Figura 125, se ilustra la distribución de Energía cinética de turbulencia en el alabe de distintas geometrías que presentaron mejor eficiencia térmica del ciclo; según software ANSYS académico

Fig. 124: Comparación de distribución de Energía cinética de turbulencia en el alabe de distintas geometrías de turbinas; con respecto a la potencia optima, para el recurso renovable de baja entalpia a) Solar; b) Biomasa; c) Geotérmica; d) Solar-Biomasa; e) Solar-Geotérmica; f) Solar-Biomasa-Geotérmica, y g) Biomasa-Geotérmica.

Fig. 125: Comparación de distribución de Energía cinética de turbulencia en el alabe de distintas geometrías de turbina; con respecto a la eficiencia térmica del ciclo optima, para el recurso renovable de baja entalpia a) Solar; b) Biomasa; c)
Geotérmica; d) Solar-Biomasa; e) Solar-Geotérmica; f) Solar-Biomasa-Geotérmica, y g) Biomasa-Geotérmica.

4.5. Verificación de hipótesis

A continuación, se procede a la verificación de la hipótesis general planteada; Se realizó un análisis de varianza ANOVA con la ayuda del software Minitab 18; para lo cual se plantearon hipótesis específicas para la evaluación estadística de cada factor en función al valor – p. Para considerar la relevancia de cada uno de los factores y poder rechazar la hipótesis nula, el valor – p debe ser menor a 0,05.

Hipótesis general planteada

Ho: Al analizar distintas geometrías de una turbina de flujo radial mediante la variación del fluido de trabajo en un Ciclo Orgánico Rankine determinados por los recursos renovables de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador. Determinará que la potencia no cambia con cada fluido de trabajo con el respectivo recurso renovable para su aprovechamiento, así como su rendimiento.

Hi: Al analizar las distintas geometrías de una turbina de flujo radial mediante la variación del fluido de trabajo en un Ciclo Orgánico Rankine determinados por los recursos renovables de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador. Determinará un cambio de potencia con cada fluido de trabajo con el respectivo recurso renovable de baja entalpía para su aprovechamiento. Así como su rendimiento.

4.5.1. ANOVA y verificación de hipótesis con respecto a la potencia

Ho: Al analizar distintas geometrías de una turbina de flujo radial mediante la variación del fluido de trabajo en un Ciclo Orgánico Rankine determinados por los recursos renovables de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador. Determinará que la potencia no cambia con cada fluido de trabajo con el respectivo recurso renovable para su aprovechamiento. **Hi:** Al analizar las distintas geometrías de una turbina de flujo radial mediante la variación del fluido de trabajo en un Ciclo Orgánico Rankine determinados por los recursos renovables de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador. Determinará que la potencia con cada fluido de trabajo en un Ciclo Orgánico Rankine determinados por los recursos renovables de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador. Determinará un cambio de potencia con cada

fluido de trabajo con el respectivo recurso renovable de baja entalpía para su aprovechamiento.

Recurso renovable de baja entalpia	Valor-P			
	Geometría	Fluido de	Flujo másico	
		trabajo		
Solar	0,003	0	0	
Biomasa	0	0	0	
Geotérmica	0	0	0	
Solar-Biomasa	0	0	0,007	
Solar-Geotérmica	0	0	0	
Solar-Biomasa-Geotérmica	0,001	0	0	
Biomasa-Geotérmica	0	0	0	

Tabla 68: Verificación de la hipótesis con respecto a la potencia, usandoSoftware Minitab 18.1

Conclusión: En todos los recursos renovable de baja entalpia se obtuvo una potencia diferente al variar el fluido de trabajo del Ciclo Orgánico Rankine. Así como la geometría de la turbina de flujo radial. Ya que el valor de la varianza según el software Minitab 18.1 es menor al 5%.por lo tanto se acepta la hipótesis alterna

4.5.2. ANOVA y verificación de hipótesis con respecto a la eficiencia térmica del ciclo

Ho: Al analizar distintas geometrías de una turbina de flujo radial mediante la variación del fluido de trabajo en un Ciclo Orgánico Rankine determinados por los recursos renovables de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador. Determinará que la eficiencia térmica del ciclo no cambia con cada fluido de trabajo con el respectivo recurso renovable para su aprovechamiento.

Hi: Al analizar las distintas geometrías de una turbina de flujo radial mediante la variación del fluido de trabajo en un Ciclo Orgánico Rankine determinados por los

recursos renovables de baja entalpía (solar-biomasa-geotérmica) en el contexto de la provincia de Tungurahua, Ecuador. Determinará un cambio en la eficiencia térmica del ciclo con cada fluido de trabajo con el respectivo recurso renovable para su aprovechamiento.

Tabla 69: Verificación de la hipótesis con respecto a la eficiencia	térmica	del
ciclo, usando Software Minitab 18.1		

Recurso renovable de	Valor-P				
baja entalpia	Geometría	Fluido de	Flujo		
		trabajo	másico		
Solar	0,003	0	0		
Biomasa	0	0	0		
Geotérmica	0	0	0		
Solar-Biomasa	0	0	0		
Solar-Geotérmica	0,001	0	0,908		
Solar-Biomasa-	0,005	0	0,828		
Geotérmica					
Biomasa-Geotérmica	0	0	0,001		

Conclusión: En todo los recursos renovables de baja entalpia se obtuvo una eficiencia térmica del ciclo diferente al variar el fluido de trabajo del Ciclo Orgánico Rankine. Así como la geometría de la turbina de flujo radial. Ya que el valor de la varianza según el software Minitab 18.1 es menor al 5%.por lo tanto se acepta la hipótesis alterna

CAPITULO V

5. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

- En este estudio, se analizó distintas geometrías de turbinas radiales dentro de un Ciclo Orgánico Rankine, que tengan como fuente de energía a recursos renovables como son la energía solar, biomasa y geotérmica en el contexto de la provincia de Tungurahua. Los resultados obtenidos mediante su análisis usando software ANSYS y EES en sus versiones académicas, ilustran que, se dispone de una potencia de 13,3059Kw a 142,525Kw. Estos datos pueden ayudar a determinar la mejor configuración entre recurso renovable y fluido de trabajo.
- En el caso de fluidos de trabajo aprobados para su uso en el contexto ecuatoriano. Se determino que, no existe un restricción total a su uso; pero planea reducir paulatinamente su utilización partir del año 2036.
- Mediante el estudio del recurso energético renovable, se determinó, que la fuente para la obtención de biomasa está en la planta de tratamiento de aguas residuales de la ciudad de Ambato ubicada en el sector las Viñas. Igualmente, el recurso geotérmico está disponible en las termas de la Virgen en la ciudad de Baños. Además, se dispone del recurso solar en toda la provincia de Tungurahua.
- Los resultados ilustran que, el recurso solar tiene una potencia térmica de 3,71Kw a 226,88Kw. Mientras que el recurso de biomasa dispone de una potencia térmica de 171,85Kw a 191,183Kw. Finalmente, el recurso geotérmico dispone de una potencia térmica de 192,8Kw a 394,17Kw. Este potencial es aprovechado en el evaporador de un Ciclo Orgánico Rankine.
- Al estudiar el recurso renovable, se concluyó que, al combinar más de una fuente de calor en el Ciclo Orgánico Rankine, se obtiene un aumento de la

potencia con respecto a usar una sola fuente de calor. Los resultados ilustran que, el aumento de potencia es producto del incremento de flujo másico en ciclo debido a la adición de calores en el ciclo.

- Así mismo en configuraciones con más de una fuente de calor, la fuente de calor con menor temperatura se encarga de precalentar el fluido de trabajo, con la finalidad que en el evaporador sea transformado a vapor con mayor facilidad. Amentando así la eficiencia del ciclo.
- El uso de Software ANSYS académico, proporciona una gran herramienta para el dimensionamiento de turbinas de flujo radial. Ya que la subrutina ANSYS VISTA RTD académica, nos permitió obtener las dimensiones con solo ingresar las propiedades termodinámicas del fluido de trabajo a la entrada de la turbina, como temperaturas y presiones.
- El diseño de la turbina se realizó mediante la subrutina ANSYS Blade Gen académica, para la generación de una geometría en tres dimensiones, usando las dimensiones determinadas en la subrutina ANSYS VISTA RTD académica.
- La mayor potencia que se obtiene es de 142,545KW; con la geometría B2(Anexo F); usando el flujo de trabajo Agua y un flujo másico de 0.2991 kg/seg, para la configuración Solar-Biomasa-Geotérmica.
- La mayor eficiencia térmica del ciclo fue del 20,40%; con la geometría B2(Anexo E); usando el flujo de trabajo Agua y un flujo másico de 0.0953848 kg/seg, para la configuración Solar-Geotérmica.
- La mayor eficiencia isentrópica con respecto al recurso solar fue del 42,32% usando el fluido de trabajo N-Decano. Mientras que la mayor eficiencia isentrópica con respecto al recurso biomasa fue del 86,26% usando el fluido de trabajo N-Pentano. Igualmente, la mayor eficiencia isentrópica con respecto al recurso geotérmico fue del 67,5% usando el fluido de trabajo R134a. Así mismo la mayor eficiencia isentrópica al combinar el recurso solar con el recurso de biomasa fue del 69,92 % usando el fluido de trabajo N-Decano. Mientras que la mayor eficiencia isentrópica al combinar el recurso solar con el recurso geotérmico fue del 60,07 % usando el fluido de trabajo Agua. Así mismo la mayor eficiencia isentrópica al combinar el recurso solar con el recurso geotérmico fue del 60,07 % usando el fluido de trabajo Agua. Así mismo la mayor eficiencia isentrópica al combinar el recurso solar y geotérmico

fue del 54,44 % usando el fluido de trabajo N-Decano. Finalmente, la mayor eficiencia isentrópica al combinar el recurso biomasa con el recurso geotérmico fue del 68,98 % usando el fluido de trabajo N-Pentano.

5.2. Recomendaciones

- Al ingresar las propiedades del fluido de trabajo para realizar la simulación CFD. Es necesario ingresar dichas propiedades como un gas real. Con el fin de obtener mejores resultados, ya que las propiedades tienen valores diferentes entre un gas real y un gas ideal
- En cuanto a la selección del fluido de trabajo. No se deberá seleccionar un fluido de trabajo con una temperatura critica muy por encima de la temperatura del evaporador. Con la finalidad de evitar caídas excesivas de presión.
- En lo que respecta al mallado del elemento en ANSYS. No debe exceder el numero de 512000 nodos para la versión académica del Software. Además, este mallado deberá tener una buena calidad y ser uniforme. Con el fin de obtener mejores resultados y disminuir el gasto computacional.
- Al realizar la recolección de temperaturas para el recurso solar usando el termómetro infrarrojo. Es necesario hacerlo a menos de 50cm del recurso geotérmico. Con el fin que el haz infrarrojo tenga mejores resultados.
- En cuanto al número de alabes, este no debe ser excesivo con respecto el diámetro del rotor
Referencias

- [1] G. López-Abente Muñoz, "Análise termodinâmica de un ciclo Rankine orgânico utilizando fontes de energia renováveis," 2013.
- [2] C. F. Pinedo Mines and E. G. Ramírez Pintado, "Análisis y evaluación del potencial geotérmico para su aprovechamiento mediante una central de ciclo binario para generación de potencia eléctrica en la región corongo-ancash, perú," 2015.
- [3] C. A. Nájera Calderón, "Propuesta de planta termoeléctrica de ciclo orgánico Rankine con tres fuentes de energía: solar, biomasa y geotermia para la zona de valle de San Vicente," 2014.
- [4] K. Rahbar, S. Mahmoud, R. K. Al-Dadah, and N. Moazami, "Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine," *Energy conversion and management*, vol. 91, pp. 186-198, 2015.
- [5] K. Rahbar, S. Mahmoud, R. K. Al-Dadah, N. Moazami, and S. A. Mirhadizadeh, "Development and experimental study of a small-scale compressed air radial inflow turbine for distributed power generation," *Applied Thermal Engineering*, vol. 116, pp. 549-583, 2017.
- [6] Y. Zheng, D. Hu, Y. Cao, and Y. Dai, "Preliminary design and off-design performance analysis of an Organic Rankine Cycle radial-inflow turbine based on mathematic method and CFD method," *Applied Thermal Engineering*, vol. 112, pp. 25-37, 2017.
- [7] E. M. V. Siggeirsson and S. Gunnarsson, "Conceptual Design Tool for Radial Turbines," *Printed by Chalmers University of Technology Reproservice Gothenburg, Sweden*, 2015.
- [8] Ministerio Coordinador de Sectores Estratégicos, "Balance Energético Nacional 2016," ed. Quito: Ministerio Coordinador de Sectores Estratégicos, 2016.
- [9] I. Censo, "Instituto Nacional de Estadistica y Censo," *Ecuador en cifras,* 2010.
- [10] Ministerio Coordinador de Sectores Estratégicos, "Balance Energético Nacional 2015," ed. Quito: Ministerio Coordinador de Sectores Estratégicos, 2015.
- [11] D. Moya, C. Aldás, G. López, and P. Kaparaju, "Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using waste-to-energy technologies," *Energy Procedia*, vol. 134, pp. 286-295, 2017.
- [12] D. Moya, C. Aldás, D. Jaramillo, E. Játiva, and P. Kaparaju, "Waste-To-Energy Technologies: an opportunity of energy recovery from Municipal Solid Waste, using Quito-Ecuador as case study," *Energy Procedia*, vol. 134, pp. 327-336, 2017.
- [13] Diario El Telégrafo. (2013, Diciembre 09). En Ambato transforman los desechos en energía. Available: <u>https://goo.gl/4QeVAD</u>
- [14] ACSAM CONSULTORES, "ESTUDIOS DEFINITIVOS DE LA RELOCALIZACIÓN DE LA PLANTA DE TRATAMIENTO DE AGUAS SERVIDAS PARA LA CUIDAD DE AMBATO ", Empresa Pública-

Empresa Municipal De Agua Potable Y Alcantarillado De Ambato Ed., ed, 2013.

- [15] Consejo Nacional de Electricidad, "ATLAS SOLAR DEL ECUADOR CON FINES DE GENERACIÓN ELÉCTRICA," ed. Quito: Consejo Nacional de Electricidad, CONELEC, 2008.
- [16] B. Beate and R. Salgado, "Geothermal Country Update for Ecuador, 2000-2005," in *Proceedings*, 2005.
- [17] A. Diego and P. KAPARAJU, "OBSTACLES AND STRATEGIES OF ACHIEVING GEOTHERMAL ENERGY TARGET OF 1000 MW IN ECUADOR: A TECHNO-POLITICAL OVERVIEW," in Proceedings 37th New Zealand Geothermal Workshop, 2015, p. 20.
- [18] Instituto Nacional de Eficiencia Energética y Energías Renovables (INER), "PLAN PARA LÍNEAS DE INVESTIGACIÓN PARA EL DESARROLLO DE LA GEOTERMIA," ed. Quito: Instituto Nacional de Eficiencia Energética y Energías Renovables (INER), 2015.
- [19] Y. A. B. Cengel, A. Michael, V. Campos Olguín, and M. T. Colli Serrano, *Termodinámica*, 2003.
- [20] J. Douglas, F. J. R. Herrer, and F. Javier, "Simulación y optimización de un ciclo Rankine orgánico (ORC) de pequeña potencia (10kW)," 2013.
- [21] C. González, J. A. C. Pérez, R. C. Santos, A. C. Gil, and M.-A. A. C. González, *Centrales de energías renovables: generación eléctrica con energías renovables:* Pearson Prentice Hall:, 2009.
- [22] R. Kheiri, H. Ghaebi, M. Ebadollahi, and H. Rostamzadeh, "Thermodynamic modeling and performance analysis of four new integrated organic Rankine cycles (A comparative study)," *Applied Thermal Engineering*, vol. 122, pp. 103-117, 2017.
- [23] L. B. Banda and J. A. R. Vázquez, "EVALUACIÓN DE UN SISTEMA DE CLIMATIZACIÓN A PARTIR DE RESIDUOS AGRÍCOLAS REGIONALES," JÓVENES EN LA CIENCIA, vol. 1, pp. 1736-1740, 2015.
- [24] K. Rahbar, S. Mahmoud, R. K. Al-Dadah, N. Moazami, and S. A. Mirhadizadeh, "Review of organic Rankine cycle for small-scale applications," *Energy Conversion and Management*, vol. 134, pp. 135-155, 2017.
- [25] G. Ashakiran, A. Gogoi, and Q. Nagpurwala, "Multi-disciplinary design optimization of a axial turbine stage of aircraft auxiliary power unit," in *AIAA/ISSMO multidisciplinary analysis and optimization conference*, 2008.
- [26] C. Zhao, S. Zheng, J. Zhang, and Y. Zhang, "Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China," *International Journal of Green Energy*, vol. 14, pp. 1221-1229, 2017.
- [27] M. Habka and S. Ajib, "Investigation of novel, hybrid, geothermalenergized cogeneration plants based on organic Rankine cycle," *Energy*, vol. 70, pp. 212-222, 2014.
- [28] J. Bao and L. Zhao, "A review of working fluid and expander selections for organic Rankine cycle," *Renewable and Sustainable Energy Reviews*, vol. 24, pp. 325-342, 2013.

- [29] B. Dong, G. Xu, X. Luo, L. Zhuang, and Y. Quan, "Analysis of the supercritical organic Rankine cycle and the radial turbine design for high temperature applications," *Applied Thermal Engineering*, 2017.
- [30] S. H. Kang, "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," *Energy*, vol. 41, pp. 514-524, 2012.
- [31] H. M. Hettiarachchi, M. Golubovic, W. M. Worek, and Y. Ikegami, "Optimum design criteria for an organic Rankine cycle using lowtemperature geothermal heat sources," *Energy*, vol. 32, pp. 1698-1706, 2007.
- [32] A. M. Delgado-Torres and L. García-Rodríguez, "Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)," *Energy Conversion and Management*, vol. 51, pp. 2846-2856, 2010.
- [33] A. A. Lakew and O. Bolland, "Working fluids for low-temperature heat source," *Applied Thermal Engineering*, vol. 30, pp. 1262-1268, 2010.
- [34] R. Rayegan and Y. Tao, "A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)," *Renewable Energy*, vol. 36, pp. 659-670, 2011.
- [35] B. F. Tchanche, G. Papadakis, G. Lambrinos, and A. Frangoudakis, "Fluid selection for a low-temperature solar organic Rankine cycle," *Applied Thermal Engineering*, vol. 29, pp. 2468-2476, 2009.
- [36] S. H. Kang, "Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine," *Energy*, vol. 96, pp. 142-154, 2016.
- [37] E. Lopez Sanz, "Study on a radial turbine stage with inlet guide vanes for an orc process with an electrical output of 3, 5 kw," 2013.
- [38] J. Harinck, T. Turunen-Saaresti, P. Colonna, S. Rebay, and J. van Buijtenen, "Computational study of a high-expansion ratio radial organic rankine cycle turbine stator," *Journal of Engineering for Gas Turbines and Power*, vol. 132, p. 054501, 2010.
- [39] J. Song, C.-w. Gu, and X. Ren, "Parametric design and off-design analysis of organic Rankine cycle (ORC) system," *Energy Conversion and Management*, vol. 112, pp. 157-165, 2016.
- [40] W. Macancela, E. Regalado, F. Campoverde, and F. Quizhpi, "Análisis técnico de un central solar para la producción de energía eléctrica en el cantón Santa Isabel de la provincia del Azuay," 2013.
- [41] D. D. Cañar Reinoso, "Energía solar térmica para generación de electricidad en el Ecuador," 2014.
- [42] W. Weiss and M. Rommel, "Medium temperature collectors," *International Energy Agency, Solar Heating and Cooling Programme, Task,* vol. 33, 2005.
- [43] K. Hennecke, T. Hirsch, D. Krüger, A. Lokurlu, and M. Walder, "Pilot plant for solar process steam supply," in *Eurosun 2008–1st International Congress on Heating, Cooling and Buildings*, 2008.
- [44] R. Legña and D. Fabricio, "Modelización de un sistema de generación distribuida basada en biogás como fuente de energía," 2015.

- [45] J. M. R. Martínez, E. E. S. Lora, and L. N. L. González, *Bioenergía: Fuentes, conversión y sustentabilidad*: José María Rincón Martínez, Electo Eduardo Silva Lora, 2015.
- [46] T. Sung, S. Kim, and K. C. Kim, "Thermoeconomic analysis of a biogasfueled micro-gas turbine with a bottoming organic Rankine cycle for a sewage sludge and food waste treatment plant in the Republic of Korea," *Applied Thermal Engineering*, vol. 127, pp. 963-974, 2017.
- [47] ElectraTherm. Waste heat to power at biogas plants [Online]. Available: <u>http://www.cogenera.si/biomasa-elektrika/download-biomass-</u> <u>depolymerization-orc-chp-13.html</u>
- [48] G. David, F. Michel, and L. Sanchez, "Waste heat recovery projects using Organic Rankine Cycle technology–Examples of biogas engines and steel mills applications," in *World Engineers' Convention, Geneva, Switzerland*, 2011.
- [49] S. Clemente, D. Micheli, M. Reini, and R. Taccani, "Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications," *Applied Energy*, vol. 97, pp. 792-801, 2012.
- [50] A. Panesso and J. Cadena, "Estudio del biogás captado en un relleno sanitario para su posible utilización como combustible primario en la generación de energía eléctrica."
- [51] R. Peralta Quilla and R. E. Miranda Rodriguez, "Análisis de estudio de la energía geotérmica de las aguas termales de Putina empleando isobutano para la generación de energía eléctrica para la localidad de Putina," 2017.
- [52] C. Spadacini, L. Centemeri, M. Danieli, D. Rizzi, and L. Xodo, "Explotación geotérmica con la turbina de flujo orgánico con salida radial Exergy Radial Outflow Turbine," *REVISTA MEXICANA DE GEOENERGÍA* ISSN 0186 5897, vol. 30, p. 18, 2017.
- [53] D. Moya, C. Aldás, and P. Kaparaju, "Geothermal energy: Power plant technology and direct heat applications," *Renewable and Sustainable Energy Reviews*, vol. 94, pp. 889-901, 2018.
- [54] C. Chamorro-Camazón, "Energía eléctrica a partir de recursos geotérmicos.: Estado actual y perspectivas a nivel mundial," *DYNA-Ingeniería e Industria*, vol. 84, 2009.
- [55] B. Beate and R. Salgado, "Geothermal Country Update for Ecuador, 2005-2010," in *Proceedings*, 2010.
- [56] U. Caldiño-Herrera, J. Garcíaa, F. Sierra-Espinosaa, and J. Dávalosb, "Diseño termodinámico de un ciclo Rankine orgánico para el aprovechamiento energético de aguas termales."
- [57] S. Quoilin, S. Declaye, A. Legros, L. Guillaume, and V. Lemort, "Working fluid selection and operating maps for Organic Rankine Cycle expansion machines," in *Proceedings of the 21st international compressor conference at Purdue*, 2012, p. 10.
- [58] L. Moreno, "Decreto Ejecutivo N° 209," Presidencia de la República del Ecuador, Ed., ed. Loja, 2017.
- [59] L. M. D. Guzmán, "Impacto ambiental de los refrigerantes ecológicos," *El Cuaderno Ciencias Estratégicas,* vol. 2, pp. 213-222, 2008.

- [60] M. d. M. H. García, "La adenda al Protocolo de Montreal: un paso más en la lucha contra el cambio climático," *bie3: Boletín ieee,* pp. 17-22, 2016.
- [61] S. L. Zuñiga, "Diseño de una turbina experimental de vapor de baja potencia," Universidad Nacional de Cuyo, 2016.
- [62] E. M. V. Siggeirsson and S. Gunnarsson, "Conceptual design tool for radial turbines," *Journal of Applied Mathematics*, vol. 2011, p. 16, 2011.
- [63] M. Khader, "Optimised Radial Turbine Design D1.8," School of Mathematics Computer Science and Engineering, 2014.
- [64] Á. H. Restrepo, Á. L. Fernández, and V. D. Grajales, "Estudio y analisis de estrategias de ahorro de energía usando el software ees (engineering equation solver) para la empresa frigorifico de pereira sa," *Scientia et technica*, vol. 2, pp. 183-188, 2007.
- [65] R. Betancourt Grajales, "Estudio de la aplicación de la herramienta computacional EES para la transferencia de calor o de masa en estado transitorio," Universidad Nacional de Colombia-Sede Manizales.
- [66] S. Han, J. Seo, and B.-S. Choi, "Development of a 200 kW ORC radial turbine for waste heat recovery," *Journal of Mechanical Science and Technology*, vol. 28, pp. 5231-5241, 2014.
- [67] A. M. Al Jubori, R. K. Al-Dadah, S. Mahmoud, and A. Daabo, "Modelling and parametric analysis of small-scale axial and radial-outflow turbines for Organic Rankine Cycle applications," *Applied Energy*, vol. 190, pp. 981-996, 2017.
- [68] J. S. Hernández Ríos and J. D. Garzón Barbosa, "Metodología de diseño de una turbina radial para una micro-turbina," 2006.
- [69] D. TEMA, D. DE, and C. SESION, "Diseño de experimentos," 1999.
- [70] D. C. Montgomery, *Diseño y análisis de experimentos*: Grupo Editorial Iberoamérica, 1991.
- [71] H. G. Pulido, R. De La Vara Salazar, P. G. González, C. T. Martínez, and M. d. C. T. Pérez, *Análisis y diseño de experimentos*: McGraw-Hill, 2012.
- [72] A. Lloret, "Geothermal development in Ecuador: History, current status and future," 2014.
- [73] P. Stackhouse. NASA Surface meteorology and Solar Energy Available Tables [Online]. Available: <u>https://goo.gl/idZsbX</u>
- [74] H. H. Ramos, N. C. Leyva, and M. L. R. P. Hernández, "TRANSFORMACIÓN POTENCIA DE YEO-JOHNSON APLICADA A MODELOS DE DIFUSIÓN. 11."
- [75] I. J. Lagos and J. A. Vargas, "Sistema de familias de distribuciones de Johnson, una alternativa para el manejo de datos no normales en cartas de control," *Revista Colombiana de Estadística*, vol. 26, pp. 25-40, 2003.
- [76] L. J. d. J. J. Martínez, N. C. Leyva, and J. A. D. Molina, "UNA PROPUESTA GENERAL DE TRANSFORMACIÓN A NORMALIDAD. 14."
- [77] E. Sauret and A. S. Rowlands, "Candidate radial-inflow turbines and highdensity working fluids for geothermal power systems," *Energy*, vol. 36, pp. 4460-4467, 2011.

- [78] V. Nguyen, P. Doherty, and S. Riffat, "Development of a prototype lowtemperature Rankine cycle electricity generation system," *Applied Thermal Engineering*, vol. 21, pp. 169-181, 2001.
- [79] U. Drescher and D. Brüggemann, "Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants," *Applied thermal engineering*, vol. 27, pp. 223-228, 2007.
- [80] L. Pan and H. Wang, "Improved analysis of Organic Rankine Cycle based on radial flow turbine," *Applied thermal engineering*, vol. 61, pp. 606-615, 2013.
- [81] Y. Li and X.-d. Ren, "Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design," *Applied Thermal Engineering*, vol. 96, pp. 547-554, 2016.
- [82] E. Bellos and C. Tzivanidis, "Investigation of a hybrid ORC driven by waste heat and solar energy," *Energy Conversion and Management*, vol. 156, pp. 427-439, 2018.
- [83] A. M. Rodríguez Rodríguez, "Análisis CFD de un álabe del último paso de una turbina de vapor," 2016.
- [84] E. Rodríguez Ibarra, "Análisis termodinámico del álabe," Universidad Autónoma de Nuevo León, 1999.
- [85] M. P. Martí, "Cálculo y análisis del flujo en una turbina de un turbogrupo operando en condiciones fuera de diseño," 2016.

Anexos

Anexo A: Plano de la geometría B4 del Recurso Solar-Lamina 1

Anexo B: Plano de la geometría B4 del Recurso Biomasa - Lamina 2

Anexo C: Plano de la geometría B2 del Recurso Geotérmica Lamina 3

Anexo D: Plano de la geometría B2 del Recurso Solar-Biomasa - Lamina 4

Anexo E: Plano de la geometría B2 del Recurso Solar-Geotérmica Lamina 5

Anexo F: Plano de la geometría B2 del Recurso Solar-Biomasa-Geotérmica -Lamina 6

Anexo G: Plano de la geometría B2 del Recurso Biomasa-Geotérmica-Lamina 7

Anexo H: Procedimiento para realizar una simulación usando Software ANSYS Académico Anexo H: Procedimiento para realizar una simulación usando Software ANSYS Académico.

A continuación, se detalla el procedimiento para realizar la simulación de la configuración del Ciclo Orgánico Rankine Hibrido; al combinar el recurso solar, biomasa y geotérmico usando agua como fluido de trabajo a 200°C.

• En primer lugar abrimos Ansys Worbench academico 18.2.

Fig. 126: Interfaz ANSYS Worbench Academico 18.2

 Como se ilustra en la Figura 127, nos dirigimos a la seccion de Toolbox y seleccionamos la opcions Vista RTD. En este apartado es en donde se dimensionara la turbina, mediante el ingreso de parametros termodinamicos del nuestro Ciclo Organico Rankine Hibrido; combinando el recurso solar,biomasa y geotermico.

Fig. 127: Toolbox de ANSYS Workbench académico 18.2.

Fig. 128: Selección de ANSYS-Vista RTD académico

• Una vez seleccionado esta herramienta. Procedemos a llenar los datos que nos pide ingresar el programa. De acuerdo con el análisis termodinámico,

podemos ingresar la temperatura, presión y el flujo másico que ingresa a la turbina. Igualmente, se ingresará el poder calorífico (CP) y constante del gas a utilizar(R). La Tabla 47 ilustra propiedades como presiones y temperaturas, mientras la 55 ilustra el flujo másico. Igualmente, en la Tabla 24 se ilustra el poder calorífico y la constante del gas utilizado. En cuanto a los demás parámetros, fueron obtenidos mediante investigación bibliográfica.

Tabla 70: Datos ingresados en Vista-RTD

Temperatura de	473.15	°K
entrada		
Presión de entrada	1554	KPa
Relación de expansión	30	-
t-t		
Velocidad rotacional	500000	RPM
Relación de velocidad	0.6	-
de la cuchilla		
Cp (Calor específico)	2796	J/Kg
		°K
R (Constante de los	879.4	J/Kg
gases)		°K
Angulo de entrada	80(absoluto)	0
Angulo de	-60	0
salida(absoluto)		
Eficiencia stage	100	%
Nozzle Eficiencia	80	%
Numero alabes	12	-
Espesor	1	mm

Shroud exit/inlet	0.7	-
Radius Ratio		
Hub exit/inlet Radius	0.6	_
Ratio		

Operating conditions		Fluid properties
Inlet stagnation temperature 473,15 Inlet stagnation pressure 1554 Mass flow rate 0.3 Expansion ratio t-t 30 Rotational speed 50000 Blade speed ratio (U/C t-t) 0.6 Efficiencies Stage O Correlation Sultamana © User specify 1	KPa kg/s rpm	 Air / fuel ratio 60 60 60 70 70
Nozzle Nozzle efficiency 0.8		

Fig. 129: Interfaz ANSYS Vista RTD académico - Propiedades aerodinámicas

odynamics Geometry Results Velocity Triangles			
Impeller Diameters Shroud exit/inlet radius ratio 0,7	Hub exit/inlet radius ratio 0,6	Units	Calculate
Vanes Number of vanes 12 Mean vane thickness at exit 1 mm	Vane roughness Cast finish Vane roughness Radial Vane roughness Cast finish Vane ro	2	
Axial length Correlation Specify Length/diameter 35 %	Tip clearance Image: Tip clearance/vane height Tip clearance Tip clearance 0.2		

Fig. 130: Interfaz ANSYS Vista RTD académico - Propiedades de geometría

• Una vez ingresados todos los datos, hacemos clic en calcular con el fin de obtener las dimensiones de la turbina de flujo radial, como se ilustra en la Figura 131.

A2 : PCA Engineers Ltd	Vista Radial Turbine Design 19.1	– 🗆 X
Aerodynamics Geometry	Results Velocity Triangles	
Input Data Summa T01 (K) P01 (KF 473,15 1554 Imp Thk (mm) In 1 1. Performance W3s/W2 Vax3/I 2,765 0,123 T3 (K) T03 (F 155,6 162,3 Eff (%) : Sig ts	y a) Mass (kg/s) Exp tt N (rpm) U/C Stg eff (%) Noz eff (%) Cp (J/kg K) R (J/kg K) 0.3 30 50000 0.6 100 80 2796 879.4 p Vanes R3shr/R2 R3hub/R2 2 0.7 0.6 J2 Exp ts Q/Qchk MrT/P Pwr (K/v) Rctn U/C ts dH/U^2 Ns tt 34,357 0.483 4,199E-006 260,711 0.442 0.594 1.389 0.175 0 P3 (KPa) P03 (KPa) 45.23 51.80 Stop ti Imp ts Imp tt 3 Stop ti Imp ts Imp tt	Calculate Close
Inlet velocities Mabs Mrel 1.638 0.43 Exit velocities at si Mabs Mrel 0.436 1.632	U2 (m/s) V/2 (m/s) V/2 (m/s) V/2 (m/s) Alpha2 Beta2 791.016 1003.974 263.593 988.721 174.338 80 48.594 roud U3 (m/s) V/3 (m/s) V/3 (m/s) Vax3 (m/s) Alpha3 Beta3 553.711 194.68 728.839 -168.598 97.34 -60 -82.325	
d2 (mm) Tip Wid 302,146 2,348 Nozzle geometry Q/Qchk Inner 0,788 347,4	th (mm) d3hub (mm) d3ahr (mm) d2/d3rms Beta3rms Beta3shr Beta3hhb L/D 181.288 211.502 1.534 -81.904 -82.325 -81.394 0.14 Dia (mm) Vless A/R (mm) Tht Area (mm²) 168 2.601 387	

Fig. 131: Interfaz ANSYS Vista RTD académico -Resultados

- Con el fin de generar un modelo tridimensional, usando las dimensiones obtenidas en ANSYS Vista-RTD académico. Hacemos click derecho en el mismo Vista RTD-Blade Desing y seleccionamos "Create New".
- Seleccionamos BladeGen, para obtener el diseño tridimensional de la turbina de flujo radial, como se ilustra en la Figura 132.

Fig. 132: Generación de modelo tridimensional por medio de ANSYS-BladeGen académico

• Una vez ingresada la herramienta BladeGen, podemos ingresar en está dando doble click y comprobar que la geometría se ha generado, como se ilustra en la Figura 134.

Fig. 133: Herramienta ANSYS-BladeGen académico en la interfaz Workbench

Fig. 134: Modelo tridimensional en ANSYS-BladeGen académico

 Una vez que comprobamos que la geometría este generada, procedemos a exportar la geometría a la herramienta "Turbomachinery Fluid Flow". Igualmente hacemos click derecho en la herramienta BladeGen- Blade Desing. Así mismo, hacemos click en "Tranfer Data To New "y seleccionamos la herramienta "Turbomachinery Fluid Flow". Cabe mencionar que esta herramienta posee varias herramientas agrupadas como "TurboGrid" y "CFX".

Fig. 135: Exportación de la geometría hacia la herramienta Turbomachinery Fluid Flow

 Como se ilustra en la Figura 136, notamos que disponemos de una gran cantidad de apartados en la misma. En primer lugar, realizaremos el mallado de la geometría usando Turbo Grid, disponible en el apartado "Turbo Mesh". Mientras que los demás apartados como "Setup", pertenecen al preprocesador CFX. Y el apartado "Results", pertenecen al postprocesador CFX.

Fig. 136: Selecciona de la herramienta Turbo Mesh

- Una vez seleccionado el apartado "Turbo Mesh", se desplegará una nueva ventana como se ilustra en la Figura 137 en donde se realizar el mallado del elemento. Cabe mencionar que el mallado está restringido a un máximo de 512000 nodos en la versión de ANSYS Académico 18.2. Por lo tanto, no debemos exceder este límite para poder realizar el análisis.
- Conociendo que el software académico no puede exceder el numero de 512000 nodos, se procede a disminuir el número de nodos. Este procedimiento se lo realiza en el apartado Mesh Data. Así mismo no se deberá exceder el volumen mínimo del elemento en la medida del mallado. Esto se realiza en los apartados Inlet y Outlet.

Fig. 137: Interfaz ANSYS-TurboGrid académico

 En lo que respecta al apartado Mesh Data, se usó factor de tamaño de 0.6 en el tamaño de malla; así mismo en el apartado Passage se usó un factor de 0.5 con el fin de disminuir el número de nodos. Mientras que para evitar exceder la relación máxima de volumen del elemento se usó un valor de "Target maximun expansion rate" igual a 4.

Mesh Size	Passage Hub Tip Shroud Tip Inlet Outlet						
Lock mesh s	size						
Method	Global Size Factor						
Size Factor	0.6						
Boundary Lay	/er Refinement Control	8					
Method	Proportional to Mesh Size 🔹						
Parameters							
Factor Base	3.0						
Factor Ratio	0.0						
Cutoff Edge	Split Factor	Ξ					
Leading	1.0						
Target M	1aximum Expansion Rate						
Rate	4						
Near Wall El	ement Size Specification						
Method	Absolute 👻						
Five-Edge Ver	rtex Mesh Size Reduction	Ŧ					
Inlet Domai	n						
	-1-						

Fig. 138: Mesh Data- ANSYS TurboGrid académico

En lo que respecta a este mallado, aun se tenía errores en el mallado. En este caso no se podía continuar con el procedimiento, ya que el mallado excedió el volumen mínimo del elemento. Esto fue corregido en el apartado Outltet como se mostró con anterioridad, disminuyendo el valor del hub de 1 a 0.326755. Cabe mencionar que esto ocasionó un aumento en el número de nodos, pero aún seguían estando por debajo del límite del software académico. Finalmente, no se presentaron errores en el mallado y se pudo continuar con el procedimiento

	 Parametric Points Adjacent bl Fully extension Meridional st 	ade d plitter	
	Parametric Loc	ation Parameters	
	Hub	0.326755	
	Shroud	0.606729	
	Use simple o	conic surface	
[Point Visibility Control Angle	,	ŧ

Fig. 139: Outlet- ANSYS TurboGrid académico

Fig. 140: Mallado de una turbina de flujo radial usando ANSYS-TurboGrid académico

 Luego de concluir con el mallado nos dirigimos al preprocesador CFX, en el apartado "Setup", como se ilustra en la Figura 141. En este apartado se generarán las condiciones de frontera y se ingresara el fluido de trabajo a utilizar. En este caso el fluido de trabajo es agua a 200 °C. Y sus propiedades fueron obtenidas del software EES académico.

Fig. 141: Ingreso al preprocesador ANSYS-CFX académico

Una vez disponible la ventana del preprocesador CFX; primeramente, ingresaremos el fluido de trabajo. Damos click derecho en el apartado de "Materials" y seleccionamos la opción insertar material como se ilustra en la Figura 142. En este punto nombramos el fluido de trabajo como "Agua"

1	-3:	l uri	bom	lachi	nery F	Tula	FION	- CI	-FIE														
ile	E	dit	Ses	ssion	Ins	ert	Тоо	ls I	Help														
	1	۱ I	2	.	01	9	0		合	4	19	厵	6	x		sub	fx	10	9	3	1:	8	•
-			0	0	-		-			0		-	•									_	
O	utline	2																					
~	Ŷ	Me	esh																				
	>	9	TF	F.gtr	n																		
	~	0	Co	nneo	ctivity	/																	
~	<u>و</u>	Si	mula	ation	۱. 																		
	~	P	Flo	w A	nalysi	is 1																	
			0	Ana	lysis T	ype																	
		č	27 9	Inte	arface																		
		÷	0.0			to E		riodic	1														
		~	6	Soh	/er		VILC.	nouic	-														
		~		oks	Solutio	n Lir	nits																
				N	Solver	Con	ntrol																
				Ā	Outpu	t Co	ntrol																
		1	Cod	ordin	ate F	ran	nes																
		T				-	_																
		99	Use	er Lo	catio	ns																	
	_	9	Use	er Lo ansfe	catio	ns ion																	
	~	99 38 8	Use Tra Ma	er Lo Insfe Iteria	catio emat	NS ion	-							-	_				1				
	~	99 38 8	Use Tra Ma	er Lo Insfe Iteria Agui	ocatio emat als	ns ion	-]	Insert				,	· {	3	Mater	rial						
	~	99 38 8	Use Tra Ma	er Lo Iteria Agu: Air Io	ocatio als deal G	ns ion as		1	Insert Import I	ibrar	v Dat	ā	,	. 2	3	Mater	ial]				
	~	99 33 8		er Lo ansfo Iteria Agui Air Io Air a	deal G	ion as		1	Insert Import l	ibrar	y Dat	a	•	· [3	Mater	ial]				
	~	19 33 8		er Lo Iteria Agui Air Io Air a Alum	deal G hinium	as	i i	1 1 1 1	Insert Import I Edit in C	.ibrar	y Dat	a	•	5	3	Mater	ial]				
	~	99 33 8		er Lo teria Agui Air Iu Air a Alum Copp	deal G t 25 C ninium	ns ion as			Insert Import I Edit in C	.ibrar Comma	y Dat and E	a ditor	Þ	· 8	3	Mater	ial]				
	~			er Lo Iteria Agu Air I Air a Alum Copp Soot	deal G hinium per	as	2		Insert Import I Edit in C Paste	.ibrar	y Dat and E	a iditor		ج	3	Mater	ial]				
	~			Agui Agui Air Io Air a Alum Copp Soot Stee	deal G als deal G at 25 C hinium per	as	2		Insert Import I Edit in C Paste Expand	.ibrar Comma	y Dat and E Branc	a iditor	•	· [2	3	Mater	ial]				
	~			er Lo nefe Agu: Air I Air a Alum Copp Soot Stee Wat	deal G hinium per t t t t t t t t t t t t t t t t t t t	ns ion as	2		Insert Import I Edit in C Paste Expand	.ibrar Comma Sub-I	y Dat and E Branc	a iditor hes	•	· [2	3	Mater	ial]				
	~			Air Io Air Io Air Io Air a Alum Copp Soot Stee Wate Wate	deal G als deal G at 25 C ainium per t der der der der der	as al Ga	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Insert Import I Edit in C Paste Expand Collapse	ibrar Comma Sub-l Sub-l	y Dat and E Branc -Bran	ia iditor hes ches	•	· [8	3	Mater	ial]				
	Y			Agui Agui Air Iu Air a Alum Copp Soot Stee Watu Watu	deal G als deal G at 25 C ainium per t er er f er I deal G ns	ns iona as	E B B B B B B B B B B B B B B B B B B B		Insert Import I Edit in C Paste Expand Collapse	ibrar iomma Sub-I 2 Sub-	y Dat and E Branc -Bran	ia iditor hes ches	•	• 8	3	Mater	ial]				
	~			er Lo lteria Agui Air Iu Air a Alum Copp Soot Stee Wati Wati Wati Copressioners	deal G deal deal deal deal deal deal deal deal	as al Ga	E E S S S S S		Insert Import I Edit in C Paste Expand Collapse nd Vari	ibrar iomma Sub-I 2 Sub- able	y Dat and E Branc -Bran s	a iditor hes ches	,	3	3	Mater	rial]				
	~			er Lo auf der Lo Ague Air In Air In Air In Air In Air In Air In Alum Copp Soot Stee Wath Wath Wath Copress Add Add Add Add Add Add Add A	deal G deal G deal G it 25 C ininium per er er Ide: ons sions, itiona	al Ga	E E S S S S S S S S S S S S S S S S S S	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	Insert Import I Edit in C Paste Expand Collapse nd Vari	ibrar Comma Sub-I ≥ Sub-I able	y Dat and E Branc -Bran s	a ditor hes ches	•	S.	3	Mater	ial						
	~			er Lo teria Agui Air Ia Air Ia Air Ia Alum Copp Soot Stee Wata Wata Copress Add Exp	deal G deal G deal G tit 25 C ninium per er Idei ons sions, litiona ressia	al Ga Fur al Va	و الم الم الم الم الم الم الم الم الم الم	ן דיין איייין איין איי	Insert Import I Edit in C Paste Expand Collapse nd Vari	ibrar Comma Sub-I Sub-I able	y Dat and E Branc -Bran s	a ditor hes ches		· [3	3	Mater	ial]				
	Ý			er Lo ansfe Ague Air Ia Air I Air a Alum Copp Soot Stee Wate Wate Wate Copp Soot Stee Wate Wate Copp Soot Stee Wate Wate Copp Soot Stee Wate Wate Copp Stee Wate Stee Wate Copp Stee Wate Stee	catio proved als deal G at 25 C deal G at 25 C ininium per er Idea ons sions, litiona ressia ressia r Fun	al Ga Fur al Va ons ctio	E E E E E E E E E E E E E E E E E E E	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	Insert Import I Edit in C Paste Expand Collapse nd Vari	ibrar comma Sub⊣ ≥ Sub- a ble	y Dat and E Branc Bran	a ditor hes ches	•	3	3	Mater	ial						
	× ×			er Lo ansfo Agui Air Iu Air a Alum Copp Soot Stee Wat Stee Wat Add Exp Use Use	deal G deal G deal G t 25 C ininium per er Idea ns sions, litiona ressia ressia r Fun r Rou	al Ga Fur al Va ons ctio	as for a section and a section	ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı	Insert Import I Edit in C Paste Expand Collapse	ibrar comma Sub-1 e Sub-	y Dat and E Branc Brans	a ditor hes ches	•	3	3	Mater	rial						
~	× ×			er Lo ansfo Agun Air Ja Air Ja Air a Alum Copp Soot Stee Wat Soot Wat actio press Add Exp Use Use	deal G deal G deal G tit 25 C ninium per er ler ressions, littiona ressions,	al Ga al Ga Fur al Va ons ctio tine	i i i i i i i i i i i i i i i i i i i	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	Insert Import I Edit in C Paste Expand Collapse	ibrar comm Sub-I Sub- able	y Dat and E Branc Brans	ia iditor hes ches		· 2	3	Mater	rial						
~	 <td></td><td></td><td>er Lo ansfo Agen Air Ia Air a Air a Alum Copp Soot Stee Wab Wab Wab Wab Wab Copp Soot Stee Wab Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Stee Stee Stee Stee Stee Stee</td><td>catio provention als deal G deal G tit 25 C ninium per er Idea ons sions, litiona ressions, ress</td><td>al Ga al Ga Fur al Va ons ctio tine rol</td><td>nction ariab</td><td>ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا</td><td>Insert Import I Edit in C Paste Expand Collapse</td><td>ibrar Comma Sub-I Sub- able</td><td>y Dat and E Branc Bran s</td><td>ia iditor hes ches</td><td>•</td><td>· 2</td><td>3</td><td>Mater</td><td>rial</td><td></td><td></td><td></td><td></td><td></td><td></td>			er Lo ansfo Agen Air Ia Air a Air a Alum Copp Soot Stee Wab Wab Wab Wab Wab Copp Soot Stee Wab Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Wab Copp Soot Stee Stee Stee Stee Stee Stee Stee	catio provention als deal G deal G tit 25 C ninium per er Idea ons sions, litiona ressions, ress	al Ga al Ga Fur al Va ons ctio tine rol	nction ariab	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	Insert Import I Edit in C Paste Expand Collapse	ibrar Comma Sub-I Sub- able	y Dat and E Branc Bran s	ia iditor hes ches	•	· 2	3	Mater	rial						

Fig. 142: Ingreso del fluido de trabajo en el preprocesador CFX

- Luego de crear el fluido de trabajo, habilitamos la opción de estado termodinámico como un gas, como se ilustra en la Figura 143.
- Finalmente Ingresamos las propiedades del fluido de trabajo, como un Gas Real. Dichas propiedades se muestran en la Tabla 71. Cabe mencionar que las propiedades termodinámicas, capacidad de calor específica y propiedades de transporte fueron obtenidas con el software EES académico y se ilustraron con anterioridad en la Tabla 24 con los demás fluidos de trabajo usados en este estudio. Mientras las propiedades, como el estado de referencia y la generación de Tablas fueron obtenidas del análisis termodinámico del CORH.

C3 : Turbomachiner	ry Fluid Flow - CFX-Pre	
File Edit Session I	Insert Tools Help	
🚽 🔮 🚟 📲	◎ ♥ ♥ 📽 あ 毋 № 😡 🖈 💿 図 🗇 非 🗇 回 非 🕫 🖉 👋 🖓 № 🖓 № 🖓	
Outline Material: A	gua	×
Details of Agua		
Basic Settings Mat	terial Properties	
Option	Pure Substance 👻	
material aroup		e.
Material Descripti	ion E	5
- Intermodynamic S	State	
Thermodynamic State	Gas	
Coordinate Frame	e 🗄	

Fig. 143: Configuración del fluido de trabajo como Gas.

Tabla 71: Pro	piedades del	fluido de t	rabajo Agua	como gas real
---------------	--------------	-------------	-------------	---------------

Propiedades termodinámicas						
Fluido De Trabajo	Agua	Unidad				
Masa Molar	18.02	kg/kmol				
Temperatura Critica	374	°C				
Presión Critica	22.064	MPa				
Volumen Critico	0.00005595	M ³ /mol				
Factor Acéntrico	0.3443	-				
Punto De Ebullición	100	°C				
Capacidad de calor específica						
Coeficiente De Presión Cero	3.179	-				
Estado de referencia						

Temperatura de referencia	200°C	°C					
Presión de referencia	1.554	MPa					
Entalpia de referencia	2793000	J/kg					
Generación d	le tablas						
Temperatura mínima	18.4	°C					
Temperatura máxima	200	°C					
Presión mínima	0.002117	MPa					
Presión máxima	1.554	MPa					
Propiedades de transporte							
Viscosidad Dinámica	0.000043	Kg/m-seg					
Conductividad Térmica	0.2174	W/m°K					

Basic Settings	Material P	Properties		
Option	R	teal Gas ▼	1	
Model	A	Aungier Redlich Kwong 🗸		
Molar Mass	1	18.02 [kg kmol^-1]		
Crit. Temp.	3	374 [C]		
Crit. Pressure	2	22.064 [MPa]		
Crit. Volume	0).00005595 [m^3 mal^-1]		
Acentric Factor	0).3443		
Boiling Temp.	1	100 [C]		
Specific He	eat Capacity	у	Θ	
Option	R	eal Gas 👻		
Zero Pressure	e Coefficien	ats and a second s		
Option		Fourth Order Polynomial		
a1	[3.179		
a2	[0 [K^-1]		
a3	[0 [K^-2]		
a4	[0 [K^-3]		
a5	[0 [K^-4]		
Lower C	Cp0(T) Temp	perature Limit	Đ	
Upper C	Cp0(T) Temp	perature Limit	ŧ	
Reference	State			
Option	S	specified Point 👻		
Ref. Temperatu	ure 2	200 [C]		
Reference Pres	ssure 1	1.554 (MPa)		
Reference	e Specific E	inhalpy		
Ref. Spec. En	thalpy	2793000 [J kg^-1]		
Reference Specific Entropy B				
Table Gene	eration			
Minimum 1	Temperatur	re-	-	
Min. Temperat	ture	18.4 [C]		
Maximum	Maximum Temperature			
Max. Tempera	ature	200 [C]		
Minimum Absolute Pressure				
Min. Absolute	Pres.	0.002117 [MPa]		
OK	Apply	Close		

 En lo que respecta a las condiciones de frontera; fueron creadas en la pestaña Tools en el mismo preprocesador, seleccionando la opción Turbo Mode, como se ilustra en la Figura 145.

Fig. 145: Herramienta Turbo Mode, para la creación de condiciones de frontera.

• Como se ilustra en la Figura 146, seleccionamos la opción de Turbina radial y estado estable para continuar con el análisis.

🗃 C3 : Turbomachinery Fluid Flow - CFX-Pre									
File Edit Session Ins	ert Tools Help								
📕 🔮 😤 🔩 🔟	9 C C D D D C D D D D D D D D D D D D D	₽ _{t:0}							
Basic Settings									
Machine Type	Radial Turbine 🗸 🗸								
Coordinate Frame	Coord 0]							
Rotation Axis	Ζ 🗸								
Axis Visibility									
Analysis Type									
Туре	Steady State 🔹								

Fig. 146: Configuraciones básicas de la herramienta Turbo Mode

En la Figura 147 se ilustra el siguiente paso. Este paso es seleccionar el dominio R1; además de seleccionar el tipo de componente como rotacional a -500000 rpm. El valor negativo tiene el objetivo, que el fluido de trabajo transite en el sentido que están direccionados los alabes de la turbina.

Fig. 147: Ingreso de velocidad rotacional en el dominio R1

En la Figura 148 se ilustran el ingreso de las propiedades físicas que afectan a la turbina como el fluido de trabajo "Agua", creado con anterioridad. Así mismo se ingresarán las condiciones de frontera a la entrada y salida en la turbina. Las condiciones de frontera seleccionadas para esta simulación fueron, el flujo másico y una temperatura estática a la entrada de la turbina. Y para la salida de la turbina se ingresó una presión estática. Dichos parámetros son obtenidos del análisis termodinámico del CORH.

C3 : Turbomachiner	y Fluid Flow - CFX-Pre						
e Edit Session I	insert Tools Help						
. 🔮 😤 🔩 🗃	▯ㅋ┍๒арыы ४४७ых больрый № № № №						
iysics Definition							
=luid	Agua						
Model Data							
Reference Pressure	1 [atm]						
Heat Transfer	Total Energy						
Turbulence	Shear Stress Transport						
Inflow/Outflow Bound	dary Templates						
O None							
Mass Flow Inlet F	P-Static Outlet						
T-Total	200 [C]						
Mass Flow	Per Machine						
Mass Flow Rate 0.2991 [kg s^-1]							
Flow Direction Normal to Boundary							
Outflow							

Fig. 148: Selección del fluido de trabajo e ingreso de condiciones de frontera de entrada y salida

• En la Figura 149a, notamos las interfases fueron creadas. Igualmente, en la Figura 149b se ilustran las condiciones de frontera fueron creadas.

C3 : Turbomachinery Fluid Flow - CFX-Pre	C3 : Turbomachinery Fluid Flow - CFX-Pre
	File Edit Session Insert Tools Help
Interface Definition	
✓ Interfaces	Boundary Definition
	✓ Boundaries
	🕽 🗱 R1 Blade
	Ĵ‡ R1Hub
	🕽 🗱 R1 Inlet
	🕽 🗱 R1 Outlet
	1 R1 Shroud
R1 to R1 Periodic 1	
Side 1 PER 1	
Side 2 PER2	
Type Periodic a) b)

Fig. 149: Condiciones creadas con la herramienta Turbo Mode; a) Interfases, b) condiciones de frontera

- Una parte de gran importancia es la verificación de los datos ingresados en el apartado R1 Intel y R1 Outltet. Cabe decir que por el apartado R1 Intel, ingresa el fluido de trabajo con un flujo másico y temperatura determinadas por el análisis termodinámico en el CORH. Mientras que por el apartado R1 Outlet el fluido de trabajo sale a una presión determinada por condensador del CORH.
- En cuanto la condición de frontera R1 Intel, según el análisis termodinámico la temperatura estática es de 200°C. Mientras el flujo másico es de 0.2991 kg/seg. En lo que respecta a la condiciones de frontera R1 Outlet, se ingresó una presión estática de 0.002117 Mpa, correspondiente a la presión del condensador del CORH.

Fig. 150: Condiciones de frontera generadas; a) R1 Intel, b) R1 Outlet y c) Representación gráfica de las condiciones de frontera

 Finalmente, el apartado "Solver Control" Ingresamos el número de interacciones a realizar, en este caso 500. Con el fin de tener resultados más preciso en este estudio. Igualmente, en los numero de turbulencia, seleccionamos un resolución alta.

🗃 C3 : Turbomachinery Fluid Flow - CFX-Pre	😰 C3 : Turbomachinery Fluid Flow - CFX-Pre	
File Edit Session Insert Tools Help	File Edit Session Insert Tools Help	
i 🖓 🤹 🔤 🔟 🔊 🗞 🚰	i 🖃 😰 🚟 🔩 🞯 🤊 🥐 🎬 🍺 🛱 🖉 🕹 🔶 🗴	v sub
Outline	Outline Solver Control	E
	Details of Solver Control in Flow Analysis 1	
V W Mesh	Basic Settings Equation Class Settings Advanced Options	
Connectivity	Advection Scheme	
	Option High Resolution	-
 Simulation Simulation Simulation Simulation 	Turbulence Numerics	E
	Option High Percelution	-
	Option night Resolution	·
R1 Blade	Convergence Control	_
R1 Hub	Min. Iterations 1	
R1 Inlet	Max. Iterations 500	
R1 Outlet	Fluid Timescale Control	
R1 Shroud	Timescale Control Auto Timescale	•
R1 to R1 Periodic 1 Side 1	Length Scale Option	. I
R1 to R1 Periodic 1 Side 2	Conservative •	
 Interfaces 	Timescale Factor 1.0	
R1 to R1 Periodic 1	Maximum Timescale	Ŧ
✓ 😰 Solver	Convergence Criteria	
o ^h ^h Colution Units	Residual Type RMS	•
Solver Control	Pecidual Target	-
		Ē.
	Elaged Wall Clock Time Central	B
ລໄ) 🖫
u)		

Fig. 151: Apartado "Solver Control", a) Ingreso y b) Configuración.

 En consecuencia, procedemos realizar la simulación en el procesador. El procesado de los datos ingresados, se realiza actualizando el apartado solution como lo ilustra la Figura 152a. Mientras que la Figura 152b ilustra el ingreso al postprocesador para observar los resultados obtenidos.

Fig. 152: Obtención de resultados; a) procesador de datos y b) Ingreso a resultados.

 Con el fin de obtener resultados ingresamos a la pestaña Turbo e inicializamos todos los componentes como se ilustra en la Figura 153. Cabe decir que una vez habilitada esta opción podemos observar las gráficas de distribuciones de temperaturas, presiones y energía cinética de turbulencia en el alabe de la turbina; utilizando la opción "Blade-to- Blade" como se ilustra en la Figura 154.

S : Turbomachinery Fluid Flow - CFD-Post									
File Edit Monitor Session Insert Tools Help									
😤 😤 🔩 🖗 🗃 🦻 🤨 🍋 🔞 Location 🗸 🗳 📶 🃚 🌦 🕼 🖟 🕼 🖉 🔍 🖉 🖽									
Outline Variables Expressions Calculators Turbo									
Y 🦫 Initialization									
✓ Case TFF									
Component 1 (R1)									
Y Plots									
Blade-to-Blade									
Meridional									
✓ Turbo Charts									
Pre Blade Loading									
Circumferential									
Hub to Shroud									
⁷ [≳ Inlet to Outlet									
> Turbo Macros									
Initialization									
Modify Global Rotation Axis									
Li ilualize Ali Components									
Uninitialize All Components									
Calculate Velocity Components									

Fig. 153: Inicialización de los componentes turbo

ile Edit M														
	onitor Ses	sion Insert	t Tools H	Help										
ti 🐔 🕰	🔩 🖸 🔟	36	Cocatio	on ▼ ⇒Ę	2 🗟	20	ABC	ja.		¢ (x	ν		6
Outline Va	ariables E	xpressions	Calculator	rs Turb	0									
 Janitial Case 1 Plots Bla Bla Bla Turbo الله الله	lization TFF Composition View ade-to-Blade eridional Charts Blade Load Circumfere Hub to Shro Inlet to Ou cros	nent 1 (R 1) ing ntial oud tlet												
Details of Blad	de-to-Blade	Plot												
Details of Blad Domains	de-to-Blade	e Plot										•		
Details of Blad Domains Span	de-to-Blade	s Plot										•] [
Details of Blad Domains Span Angular Shift	de-to-Blade All Domain 0.5 0.0 [degree	s see]										•]	
Details of Blad Domains Span Angular Shift Plot Type	All Domain 0.5 0.0 [degree	e Plot s ee]]	
Details of Blad Domains Span Angular Shift Plot Type (Color	de-to-Blade All Domain 0.5 0.0 [degre	e Plot s ee]	ontour		() Vec	tor			() St	tream		•		
Details of Blad Domains Span Angular Shift Plot Type () Color Variable	de-to-Blade All Domain 0.5 0.0 [degree	e Plot s ee] O Co ssure	ontour		() Vec	tor			() SI	tream		•]	

Fig. 154: Ingreso al apartado "Blade-to- Blade"

 Así mismo en la opción Turbo Macros, podemos obtener la potencia de la turbina. Primeramente, tenemos que seleccionar la opción de turbina de gas y dar click en calcular, como se ilustra en la Figura 155.En consecuencia se obtendrá un valor de potencia y se lo puede observar en el apartado "Power" en la pestaña "Expresions", como se ilustra en la Figura 156

Fig. 155. Obtención de la potencia de la turbina

ile Edit	Monitor	Session Ins	ert Tool	s Help							
r in the second se	ž 🔩 🖄	0 🤊 🕈	to Lo	ocation 🔻	**	6	()	223	đ	ABC	Ļ
Outline	Variables	Expressions	Calcu	ulators	Turbo						
2) 2) 20	HTIn HTOut HTSOut		massFlov massFlov HTIn+co	vAveAbs(1 vAveAbs(1 Ref*tTotal	Total Er Total Er In *((p	nthalp nthalp Total	ny in : ny in : Out/c	Stn F Stn F oTota	rame rame (In)^)@Ii)@C ((aa	^
Pt	Power		tAllBlade	s * Absolu	te Ome	ega /	1 [ra	d]		((32	
२ २ २	Pssi Reference Rgas	Pressure	1.0/((gai 1 [atm] cpRef*(g	mma-1)*ml gamma-1)/ <u>(</u>	U^2)* 'gamma	(1-(t)	Total(C	Dut/t	Totali	[n))	
	Sequence	Sten	145			i.				>	~
Definition	Plot	Evaluate									
Definition tAllBla	Plot des * Abs	Evaluate	a 1 [rad]	7							
Definition	Plot des * Abs	Evaluate	a 1 [radj	7							
Definition tAllBla	Plot des * Abs	Evaluate	a 1 <i>[rad</i>]	7							
Definition tAllBla	Plot des * Abs	Evaluate	a / 1 <i>[rad</i>]	7							
Definition tAllBla	Plot des * Abs	Evaluate	a 1 [rad]	7							
Value	Plot des * Abs	Evaluate	a / 1 [rad]	7			142	545 [W]		

Fig. 156: Visualización del valor de potencia obtenida den la turbina

Resultados obtenidos:

Con los datos ingresados se obtuvieron los siguientes resultados a lo largo del alabe de la turbina:

Presión	Presión	Temperatura	Temperatura	Energía	Energía	Potencia
máxima	mínima	máxima(°C)	mínima(°C)	cinética de	cinética de	ANSYS(KW)
(MPa)	(MPa)			turbulencia	turbulencia	
				máxima	mínima	
				(m^2/s^2)	(m^2/s^2)	
0,6	-0,07785	207,895	18,4	15462,6	4,49225	142,545

Fig. 157: Distribución de presiones en el alabe de una turbinas; combinado los recursos Solar-Biomasa-Geotérmica, usando Agua como fluido de trabajo y un flujo másico de 0.2291 kg/seg

Fig. 158: Distribución de Temperaturas en el alabe de una turbinas; combinado los recursos Solar-Biomasa-Geotérmica, usando Agua como fluido de trabajo y un flujo másico de 0.2291 kg/seg

Fig. 159: Distribución de Energía cinética de turbulencia en el alabe de una turbinas; combinado los recursos Solar-Biomasa-Geotérmica, usando Agua como fluido de trabajo y un flujo másico de 0.2291 kg/seg