

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

CARRERA DE INGENIERÍA MECÁNICA

TRABAJO EXPERIMENTAL

PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

TEMA: "ANÁLISIS DE LOS PARÁMETROS DE UN SISTEMA MECÁNICO PIN ON DISK BAJO NORMA ASTM G-99 ENTRE ACERO AISI 1018 Y EL RELLENO DE SOLDADURA SMAW CON ELECTRODO AWS ENI-CI SOBRE HIERRO FUNDIDO NODULAR Y SU INFLUENCIA EN EL DESGASTE"

AUTOR: PAÚL SEBASTIÁN ESCOBAR PEÑAFIEL

TUTOR: ING. MG. HENRY VACA

Ambato – Ecuador

2018

APROBACIÓN DEL TUTOR

CERTIFICACIÓN

En mi calidad de tutor de tesis del trabajo experimental "ANÁLISIS DE LOS PARÁMETROS DE UN SISTEMA MECÁNICO PIN ON DISK BAJO NORMA ASTM G-99 ENTRE ACERO AISI 1018 Y EL RELLENO DE SOLDADURA SMAW CON ELECTRODO AWS ENI-CI SOBRE HIERRO FUNDIDO NODULAR Y SU INFLUENCIA EN EL DESGASTE." Realizado por el Sr. Paúl Sebastián Escobar Peñafiel, egresado de la facultad de Ingeniería Civil Y Mecánica de la Universidad Técnica de Ambato. Certifico:

- Que la presente tesis es original de su autor.
- Ha sido revisada en cada uno de sus capítulos.
- Está concluida y puede continuar con el trámite correspondiente.

Ambato, Enero 2018.

Ing. Mg. Henry Vaca.

AUTORÍA DEL TRABAJO EXPERIMENTAL

Yo, Paúl Sebastián Escobar Peñafiel, expreso que el tema, objetivos, análisis de resultados, conclusiones y recomendaciones en el presente trabajo experimental bajo el tema: "ANÁLISIS DE LOS PARÁMETROS DE UN SISTEMA MECÁNICO PIN ON DISK BAJO NORMA ASTM G-99 ENTRE ACERO AISI 1018 Y EL RELLENO DE SOLDADURA SMAW CON ELECTRODO AWS ENi-CI SOBRE HIERRO FUNDIDO NODULAR Y SU INFLUENCIA EN EL DESGASTE.", son absolutamente de mi autoría, a excepción de conceptos, definiciones y referencias bibliográficas que se incluyen en el trabajo.

Ambato, Enero 2018.

Paúl Sebastián Escobar Peñafiel.

C. I.: 1804243929

AUTOR

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que haga de este Trabajo Experimental o parte de él un documento disponible para su lectura, consulta y procesos de investigación, según las normas de la Institución.

Cedo los Derechos en línea patrimoniales de mi Trabajo Experimental con fines de difusión pública, además apruebo la reproducción de este Trabajo Experimental dentro de las regulaciones de la Universidad Técnica de Ambato, siempre y cuando esta reproducción no suponga una ganancia económica y se realice respetando mis derechos de autor.

Ambato, Enero 2018.

El AUTOR.

Paúl Sebastián Escobar Peñafiel.

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del tribunal de grado aprueban el informe de trabajo experimental realizado por el estudiante Paúl Sebastián Escobar Peñafiel de la Carrera de Ingeniería Mecánica, bajo el tema: "ANÁLISIS DE LOS PARÁMETROS DE UN SISTEMA MECÁNICO PIN ON DISK BAJO NORMA ASTM G-99 ENTRE ACERO AISI 1018 Y EL RELLENO DE SOLDADURA SMAW CON ELECTRODO AWS ENI-CI SOBRE HIERRO FUNDIDO NODULAR Y SU INFLUENCIA EN EL DESGASTE."

Ambato, Enero de 2018

Para constancia firman:

Ing. Mg. Christian Pérez

Ing. Mg. Christian Castro

DEDICATORIA

El presente trabajo está dedicado a Dios quien guía mi camino brindándome sabiduría, entendimiento y humildad, con su amor inagotable y su palabra intachable.

A mis padres por el apoyo brindado en toda mi vida como estudiante, por su esfuerzo, sacrificio y sus enseñanzas a través de concejos y su confianza para alcanzar mis objetivos personales.

AGRADECIMIENTO

Antes de nada, agradezco a Dios por haberme guiado durante toda mi vida, por bendecirme con la oportunidad de superarme y llegar hasta este momento de mi vida en donde he cumplido el objetivo más importante de mi vida.

A la Universidad Técnica de Ambato, a la Facultad de Ingeniería Civil y Mecánica, por abrirme las puertas de sus aulas y laboratorios para adquirir conocimientos y destrezas que me se serán útiles en mi vida profesional.

A los docentes de la carrera de Ingeniería Mecánica, al Ing Henry Vaca, por sus conocimientos compartidos durante el desarrollo de este trabajo experimental y su compromiso por ser parte del mismo

ÍNDICE GENERAL

APROBAC	IÓN DEL TUTOR	II
AUTORÍA	DEL TRABAJO EXPERIMENTAL	III
DERECHO	S DE AUTOR	IV
APROBAC	IÓN DEL TRIBUNAL DE GRADO	V
DEDICATO	DRIA	VI
AGRADEC	IMIENTO	VII
ÍNDICE GE	NERAL	VIII
ÍNDICE DE	FIGURAS	XI
ÍNDICE DE	TABLAS	XIII
RESUMEN	EJECUTIVO	XVII
SUMMARY	7	XVIII
CAPÍTULO	I. ANTECEDENTES	2
1.1. TE	MA DEL TRABAJO EXPERIMENTAL	2
1.2. AN	TECEDENTES	2
1.3. JU	STIFICACIÓN	5
1.4. OB	JETIVOS	6
1.4.1.	OBJETIVO GENERAL	6
1.4.2.	OBJETIVO ESPECÍFICOS	6
CAPÍTULO	II. FUNDAMENTACIÓN	7
2.1. FU	NDAMENTACIÓN TEÓRICA	7
2.1.1.	Tribología	7
2.1.2.	Sistema tribológico	7
2.1.3.	Elementos de la tribología	8
2.1.4.	Desgaste	
2.1.5.	Lubricación	

	2.1	.6.	Materiales de ingeniería	14
	2.1	.7.	Recubrimientos y recuperación de elementos mecánicos	18
	2.1	.8.	Proceso de soldadura	19
	2.1	.9.	Soldadura al Arco con electrodo de metal revestido (SMAW)	20
	2.1	.10.	Electrodos recubiertos para soldar hierro fundido	22
	2.1.	.11.	Método para ensayo de desgaste con un aparato PIN ON DI	SK
	esta	ıbleci	ido en la norma ASTM G-99	23
	2.1	.12.	Parámetros de prueba para el método Pin on Disk	24
	2.1	.13.	Medición de la pérdida volúmetrica	24
-	2.2.	HIP	PÓTESIS	28
4	2.3.	SEÑ	ÑALAMIENTO DE VARIABLES DE LA HIPÓTESIS	28
	2.3	1.	Variable independiente	.28
	2.3	.2.	Variable dependiente	. 28
CA	PÍTU	JLO	III. METODOLOGÍA	. 29
	3.1.	Niv	el o tipo de investigación	.31
	3.1	1.	Investigación exploratoria	.31
	3.1	.2.	Investigación experimental	.31
	3.1	.3.	Investigación bibliográfica	.31
	3.1	.4.	Estudio de casos para ensayo	.31
	3.2.	POI	BLACIÓN Y MUESTRA	.36
	3.3.	OPI	ERACIONALIZACIÓN DE VARIABLES	. 37
	3.4.	PLA	AN DE RECOLECCIÓN DE INFORMACIÓN	. 39
	3.5.	PLA	AN DE PROCESAMIENTO Y ANÁLISIS	. 39
CA	PÍTU	JLO	IV. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	.40
4	4.1.	REG	COLECCIÓN DE DATOS	.40
2	4.2.	INT	ERPRETACIÓN DE RESULTADOS	.54
2	4.3.	VEI	RIFICACIÓN DE LA HIPÓTESIS	.92
				-

4.3.1.	Modelo Lógico	
4.3.2.	Verificación	92
4.3.3.	Regla de decisión	94
CAPÍTULO	V. CONCLUSIONES Y RECOMENDACIONES	
5.1. CO	NCLUSIONES Y RECOMENDACIONES	
5.1.1.	CONCLUSIONES	
5.1.2.	RECOMENDACIONES	101
BIBLIOGRA	AFÍA	102
ANEXOS		104
Anexo A.	Norma ASTM G-99	104
Anexo B.	Tabla "t - student"	109
Anexo C.	Tabla de probabilidad Z	110
Anexo D.	Tabla de Modulo de Young	110
Anexo E.	Tabla de Coeficiente de Poisson	111

ÍNDICE DE FIGURAS

Figura 1. Deslizamiento de un bloque sobre una superficie, para ilustrar la fricción9
Figura 2. Vista microscópica de dos superficies deslizantes y la adhesión de las
asperezas que resisten al movimiento relativo10
Figura 3. Desgaste adhesivo: a) adhesión de asperezas, b) rotura de uniones por
adhesión para formar partículas de desgaste11
Figura 4. Diagrama de fase para el sistema hierro-carbono, por arriba del 6% de
carbono15
Figura 5. Microestructura de la fundición nodular ferrítico perlítica
Figura 6. Esquema de relleno y recubrimiento anti desgaste
Figura 7. Composición del cordón de soldadura20
Figura 8. Método PIN ON DISK
Figura 9. Pérdida volumétrica en pines de Hierro Fundido Nodular bajo carga de
117.6N y 147N a distancias de 250m, 500m, 750m y 1000m54
Figura 10. Tasa de desgaste en pines de Hierro Fundido Nodular bajo carga de
117.6N y 147N a distancias de 250m, 500m, 750m y 1000m55
Figura 11. Coeficiente de desgaste en cada pin de Hierro Fundido Nodular bajo carga
de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m55
Figura 12. Pérdida volumétrica en pines de Acero AISI 1018 bajo carga de 117.6N y
147N a distancias de 250m, 500m, 750m y 1000m56
Figura 13. Tasa de desgaste en pines de Acero AISI 1018 bajo carga de 117.6N y
147N a distancias de 250m, 500m, 750m y 1000m57
Figura 14. Coeficiente de desgaste en pines de Acero AISI 1018 bajo carga de
117.6N y 147N a distancias de 250m, 500m, 750m y 1000m57
Figura 15. Pérdida volumétrica en los discos de Hierro Fundido Nodular bajo carga
de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m58
Figura 16. Tasa de desgaste en los discos de Hierro Fundido Nodular bajo carga de
117.6N y 147N a distancias de 250m, 500m 750m y 1000m58
Figura 17. Coeficiente de desgaste en los discos de Hierro Fundido Nodular bajo
carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m59
Figura 18. Pérdida volumétrica en los discos de Acero AISI 1018 bajo carga de
117.6N y 147N a distancias de 250m, 500m, 750m y 1000m

Figura 19. Tasa de desgaste en los discos de Acero AISI 1018 bajo carga de 117.6N
y 147N a distancias de 250m, 500m, 750m y 1000m60
Figura 20. Coeficiente de desgaste en los discos de Acero AISI 1018 bajo carga de
117.6N y 147N a distancias de 250m, 500m, 750m y 1000m61
Figura 21. (a) Matriz con probeta acanalada, (b) Probeta soldada en matriz para
evitar pandeo, (c) Martillado post-soldadura para aliviar tensiones
Figura 22. Pérdida volumétrica en pines de Hierro Fundido Nodular con relleno de
soldadura SMAW y electrodo AWS ENi-CI bajo carga de 117.6N y 147N a
distancias de 250m, 500m, 750m y 1000m74
Figura 23. Tasa de desgaste en pines de Hierro Fundido Nodular con relleno de
soldadura SMAW y electrodo AWS ENi-CI bajo carga de 117.6N y 147N a
distancias de 250m, 500m, 750m y 1000m75
Figura 24. Coeficiente de desgaste en cada pin de Hierro Fundido Nodular con
relleno de soldadura SMAW y electrodo AWS ENi-CI bajo carga de 117.6N y 147N
a distancias de 250m, 500m, 750m y 1000m
Figura 25. Pérdida volumétrica en pines de Acero AISI 1018 bajo carga de 117.6N y
147N a distancias de 250m, 500m, 750m y 1000m76
Figura 26. Tasa de desgaste en pines de Acero AISI 1018 bajo carga de 117.6N y
147N a distancias de 250m, 500m, 750m y 1000m
Figura 27. Coeficiente de desgaste en pines de Acero AISI 1018 bajo carga de
117.6N y 147N a distancias de 250m, 500m, 750m y 1000m
Figura 28. Pérdida volumétrica del relleno de soldadura SMAW con electrodo AWS
ENi-CI sobre discos de Hierro Fundido Nodular bajo carga de 117.6N y 147N a
distancias de 250m, 500m, 750m y 1000m
Figura 29. Tasa de desgaste del relleno de soldadura SMAW con electrodo AWS
ENi-CI sobre discos de Hierro Fundido Nodular bajo carga de 117.6N y 147N a
distancias de 250m, 500m, 750m y 1000m
Figura 30. Coeficiente de desgaste del relleno de soldadura SMAW con electrodo
AWS ENi-CI sobre discos de Hierro Fundido Nodular bajo carga de 117.6N y 147N
a distancias de 250m, 500m, 750m y 1000m79
Figura 31. Pérdida volumétrica en los discos de Acero AISI 1018 bajo carga de
117.6N y 147N a distancias de 250m, 500m, 750m y 1000m

Figura 32. Tasa de desgaste en los discos de Acero AISI 1018 bajo carga de 117.6N
y 147N a distancias de 250m, 500m, 750m y 1000m
Figura 33. Coeficiente de desgaste en los discos de Acero AISI 1018 bajo carga de
117.6N y 147N a distancias de 250m, 500m, 750m y 1000m
Figura 34. Pérdida volumétrica general
Figura 35. Tasa de desgaste general
Figura 36. Coeficiente de desgaste general
Figura 37. Diferencia de masa
Figura 38. Temperatura final de cada ensayo
Figura 39. Comparación de la masa perdida entre los pines de Hierro Fundido
Nodular y el relleno de soldadura SMAW con electrodo AWS ENi-CI en pines de
HFN
Figura 40. Comparación de la masa perdida entre los pines de Acero 1018 sobre
Hierro Fundido Nodular y el relleno de soldadura SMAW con electrodo AWS ENi-
CI
Figura 41. Comparación de la masa perdida entre los discos de Hierro Fundido
Nodular y el relleno de soldadura SMAW con electrodo AWS ENi-CI sobre discos
de Hierro Fundido Nodular
Figura 42. Comparación de la masa perdida entre los discos de Acero AISI 1018 al
ensayarse con pines de hierro fundido y pines con relleno de soldadura SMAW con
electrodo AWS ENi-CI
Figura 43. Metalografía del depósito de Níquel sobre el Hierro Fundido Nodular88
Figura 44. Par tribológico, Hierro Fundido Nodular y Acero AISI 1018 89
Figura 45. Par tribológico, Relleno SMAW con electrodo AWS WNi-CI y Acero
AISI 1018
Figura 46. Región Ha y Ho para los pines con relleno de soldadura SMAW con
electrodo AWS ENi-CI
Figura 47. Región Ha y Ho para los discos con relleno de soldadura SMAW con
electrodo AWS ENi-CI
Figura 48. Región Ha y Ho para los pines de acero AISI 101896
Figura 49. Región Ha y Ho para los discos de acero AISI 101897

ÍNDICE DE TABLAS

Tabla 1. Valores típicos del coeficiente de fricción para materiales y procesos
seleccionados9
Tabla 2. Propiedades mecánicas del Acero AISI-SAE 1018 (UNS G10180)16
Tabla 3. Composición química del Acero AISI-SAE 1018 (UNS G10180)16
Tabla 4. Clasificación de la fundición nodular teniendo en cuenta sus propiedades
mecánicas, de acuerdo con la norma ASTM A-53617
Tabla 5. Requisitos de composición química AWS para ENi-CI
Tabla 6. Propiedades mecánicas requeridas según AWS para ENi-CI23
Tabla 7. Microestructura de las probetas a ensayar. 33
Tabla 8. Casos de estudio desgaste Acero AISI 1018-Hierro Fundido Nodular 34
Tabla 9. Casos de estudio desgaste Acero AISI 1018-Hierro Fundido Nodular con
relleno SMAW con electrodo AWS ENi-CI
Tabla 10. Variables independientes. 38
Tabla 11. Variables dependientes 39
Tabla 12. Par tribológico para ensayo de desgaste adhesivo bajo norma ASTM G-99.
Tabla 13. Características técnicas del Acero AISI 1018
Tabla 14. Características técnicas del hierro fundido
Tabla 15. Datos del tribosistema y parámetros de ensayo
Tabla 16. Pesos iniciales y finales de los pines de hierro fundido nodular44
Tabla 17. Pesos iniciales y finales de los pines de Acero AISI 1018
Tabla 18. Peso inicial y final de los discos de Hierro Fundido Nodular
Tabla 19. Pesos iniciales y finales de los discos de Acero AISI 101847
Tabla 20. Ensayo de degaste del Hierro Fundido sobre Acero AISI 1018 48
Tabla 21. Ensayo de degaste del Acero AISI 1018 sobre el Hierro Fundido Nodular.
Tabla 22. Resultados del ensayo de desgaste adhesivo bajo Norma ASTM G-99 en
los pines de hierro fundido nodular
Tabla 23. Resultados del ensayo de desgaste adhesivo bajo Norma ASTM G-99 en
los discos de acero AISI 1018
Tabla 24. Resultados del ensayo de desgaste bajo Norma ASTM G-99 en los pines de
acero AISI 1018

Tabla 25. Resultados del ensayo de desgaste bajo Norma ASTM G-99 en los discos
de Hierro Fundido Nodular
Tabla 26. Parámetros de soldadura. 61
Tabla 27. Características técnicas del Electrodo AWS ENi-CI, MG 25062
Tabla 28. Formato de recolección de datos para calcular el desgaste adhesivo del
hierro fundido nodular
Tabla 29. Obtención de los pesos iniciales y finales de los pines de hierro fundido
nodular con relleno de soldadura SMAW con electrodo AWS ENi-CI64
Tabla 30. Obtención de los pesos iniciales y finales de los pines de Acero AISI 1018. 65
Tabla 31. Obtención de los pesos iniciales y finales de los discos de Hierro Fundido
Nodular con relleno de soldadura SMAW con electrodo AWS ENi-CI66
Tabla 32. Obtención de los pesos iniciales y finales de los discos de Acero AISI
1018
Tabla 33. Ensayo de degaste adhesivo del relleno de soldadura SMAW con electrodo
AWS ENi-CI en hierro fundido nodular sobre acero AISI 1018
Tabla 34. Ensayo de degaste adhesivo del acero AISI 1018 sobre el relleno de
soldadura SMAW con electrodo AWS ENi-CI en hierro fundido nodular69
Tabla 35. Resultado del ensayo de desgaste bajo Norma ASTM G-99 en pines con
relleno SMAW y ENi-CI
Tabla 36. Resultados del ensayo de degaste adhesivo del relleno de soldadura
SMAW con electrodo AWS ENi-CI en hierro fundido nodular sobre acero AISI 1018
bajo Norma ASTM G-99; en los discos de Acero AISI 101871
Tabla 37. Resultados del ensayo de desgaste adhesivo de los pines de acero AISI
1018 sobre hierro fundido nodular bajo Norma ASTM G-99
Tabla 38. Resultados del ensayo de desgaste adhesivo de los pines de acero AISI
1018 sobre hierro fundido nodular bajo Norma ASTM G-99
Tabla 39. Datos de X y Y medias para carga de 117.6N y 147N en los pines con
relleno de soldadura SMAW con electrodo AWS ENi-CI para las distancias
utilizadas en el ensayo de desgaste adhesivo93
Tabla 40. Desviación típica para el ensayo de desgaste adhesivo para los pines con
relleno de soldadura SMAW con electrodo AWS ENi-CI93

Tabla 41. Datos de X y Y medias para carga de 117.6N y 147N en los discos con
relleno de soldadura SMAW con electrodo AWS ENi-CI para las distancias
utilizadas en el ensayo de desgaste adhesivo95
Tabla 42. Desviación típica para el ensayo de desgaste adhesivo para los discos con
relleno de soldadura SMAW con electrodo AWS ENi-CI95
Tabla 43. Datos de X y Y medias para carga de 117.6N y 147N en los pines de acero
para las distancias utilizadas en el ensayo de desgaste adhesivo96
Tabla 44. Desviación típica para el ensayo de desgaste adhesivo para los pines con
relleno de soldadura SMAW con electrodo AWS ENi-CI96
Tabla 45. Datos de X y Y medias para carga de 117.6N y 147N en los discos de
acero AISI 1018 para las distancias recorridas utilizadas en el ensayo de desgaste
adhesivo97
Tabla 46. Desviación típica para el ensayo de desgaste adhesivo para los pines con
relleno de soldadura SMAW con electrodo AWS ENi-CI97

RESUMEN EJECUTIVO

En el presente trabajo experimental se realizó el análisis de los parámetros de un sistema mecánico Pin on Disk (carga, velocidad, distancia de recorrido, temperatura, material, lubricación y ambiente atmosférico) bajo Norma ASTM G-99 entre el Acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI sobre hierro fundido nodular y su influencia en el desgaste, se evaluó la pérdida volumétrica, tasa de desgaste, coeficiente de desgaste y la diferencia de masa perdida que se produce en estos dos materiales, tanto en las condiciones de pines como discos utilizando la ecuación establecida en el inciso 9.1 de la Norma ASTM G-99.

Para lograr estos objetivos se procedió a realizar ensayos de desgaste adhesivo con pines de Hierro Fundido Nodular sobre discos de Acero AISI 1018 y pines de Acero AISI 1018 sobre discos de hierro fundido nodular, para obtener datos reales de la tasa de desgaste entre estos dos materiales y compararlos con la tasa de desgaste de los pines con relleno de soldadura SMAW y electrodo AWS ENi-CI en hierro fundido nodular sobre discos de Acero AISI 1018 y pines de Acero AISI 1018 sobre el relleno de soldadura SMAW con electrodo AWS ENi-CI en hierro fundido nodular utilizando el tribómetro Pin on Disk. Los parámetros seleccionados para desarrollar el ensayo fueron aplicando una carga de 117.6N y 147N para las distancias de recorrido de 205m, 500m, 750m y 1000m. Los pines fueron de 10mm de diámetro y 45mm de longitud, mientras las dimensiones de los discos de hierro fundido nodular fueron de 100mm de diámetro y 4mm de espesor; para los discos de Acero AISI 1018 se establecieron con 100mm de diámetro y 10mm de espesor.

Las probetas fueron lijadas y pulidas hasta obtener una rugosidad de 0.8µm, exigidos por la Norma ASTM G-99, en el caso del relleno de soldadura SMAW, se empleó el electrodo comercial MG 250 ENi-CI maquinable. Para realizar el proceso SMAW se utilizó una soldadora Marca Miller 250 DX y una matriz construida a base de placas de acero A36 de 10mm de espesor para evitar la dilatación de los discos de hierro fundido, se efectuó una socavadura para una mejor penetración del depósito SMAW.

SUMMARY

In the present experimental work the analysis of the parameters of a Pin on Disk mechanical system (load, speed, distance of travel, temperature, material, lubrication and atmospheric environment) was carried out under the ASTM G-99 Standard between the AISI 1018 Steel and the SMAW welding filler with AWS ENi-CI electrode on nodular cast iron and its influence on wear, the volumetric loss, wear rate, wear coefficient and the difference in mass lost in these two materials was evaluated, both in the conditions of pins as disks using the equation established in clause 9.1 of the ASTM G-99 Standard.

To achieve these objectives, adhesive wear tests were carried out with Nodular Cast Iron pins on AISI 1018 steel discs and AISI 1018 steel pins on nodular cast iron discs, to obtain real data on the wear rate between these two materials. and compare them with the wear rate of the pins with SMAW welding filler and AWS ENi-CI electrode in nodular cast iron on AISI 1018 steel discs and AISI 1018 steel pins on the SMAW welding filler with AWS ENi-CI electrode in nodular cast iron using the Pin on Disk tribometer. The parameters selected to develop the test were applying a load of 117.6N and 147N for the travel distances of 205m, 500m, 750m and 1000m. The pins were 10mm in diameter and 45mm in length, while the dimensions of the nodular cast iron discs were 100mm in diameter and 4mm thick; For AISI 1018 steel discs they were set with 100mm diameter and 10mm thickness.

The specimens were sanded and polished to a roughness of 0.8µm, required by the ASTM G-99 Standard, in the case of the SMAW welding filler, the commercial electrode MG 250 ENi-CI was machinable. To carry out the SMAW process, a Miller 250 DX welder was used and a matrix built with steel plates A36 of 10mm thickness to avoid the expansion of the cast iron discs, an undercut was made for a better penetration of the SMAW deposit.

CAPÍTULO I. ANTECEDENTES

1.1.TEMA DEL TRABAJO EXPERIMENTAL

ANÁLISIS DE LOS PARÁMETROS DE UN SISTEMA MECÁNICO PIN ON DISK BAJO NORMA ASTM G-99 ENTRE ACERO AISI 1018 Y EL RELLENO DE SOLDADURA SMAW CON ELECTRODO AWS ENI-CI SOBRE HIERRO FUNDIDO NODULAR Y SU INFLUENCIA EN EL DESGASTE

1.2.ANTECEDENTES

Las investigaciones previas a este trabajo experimental son las siguientes:

Roberto Carlos Chicaiza Cajahuishca, desarrollado en 2015 en la ciudad de Ambato, bajo el tema: "Estudio de los parámetros de un sistema mecánico pin on disk bajo norma ASTM G-99 y su influencia en el desgaste adhesivo del teflón sobre el acero AISI 304." Teniendo como objetivo realizar el estudio de los parámetros del método pin on disk bajo norma ASTM G-99 y determinar el volumen de desgaste adhesivo en el teflón sobre acero AISI 304 mediante la ecuación de volumen establecida en la misma norma.

Llegando a las conclusiones siguientes:

- Cuando mayor es la distancia de recorrido, el desgaste incrementa al igual que el tiempo de ensayo, la tasa de desgaste se comporta de manera similar, excepto en el coeficiente de fricción que desciende su valor cuando la distancia de recorrido es mayor.
- El motor de la máquina construida está configurado a una velocidad de 560 rpm, valor estimado tras pruebas con carga máxima de 50N y tomando valores de velocidad con un tacómetro laser.
- Las superficies del disco y pin deben estar limpias para que las impurezas no difieran en los resultados.
- Una vez que se haya terminado el ensayo se debe limpiar las probetas de rebabas o impurezas presentes para obtener pérdidas de volumen más exactas y significativas.

Trabajo realizado por Elizabeth Vázquez Badillo en 2015-2016 en Santa Clara, Cuba. El tema del trabajo realizado es: "Influencia de la estructura de los recubrimientos de electrodos destinados al desgaste abrasivo sobre su comportamiento", concluye lo siguiente:

- Para este estudio emplea tres electrodos con composición química similar, con la diferencia en la disposición de las ferroaleaciones en el recubrimiento: ferroaleaciones internas, externas y homogéneas en la matriz de recubrimiento.
- Los electrodos con ferroaleaciones homogéneas depositan cantidades de masa metálica mayor que las dos variantes de electrodos sujetas a estudio.
- Los electrodos con ferroaleaciones externas poseen mayor resistencia al desgaste abrasivo, debido a que se observa menor pérdida de masa y volumen, respecto a las otras dos variantes estudiadas.
- Así mismo el electrodo con ferroaleaciones externas presenta ventajas como adecuada estabilidad de arco y bajo consumo de potencia, lo que le convierte en una variante muy factible en aspectos tecnológicos y operacionales que los otros dos tipos de electrodos ensayados.
- El electrodo con ferroaleaciones homogéneas presenta mayor taza de deposición reflejando su eficiencia elevada.

La investigación a cargo de Baltazar H., Haro R., López I., y Maldonado Z. desarrollada entre mayo-agosto 2006, en el estado de Zacatecas, bajo el tema: "Evaluación del desgaste en depósitos de soldadura aplicados en discos de frenado desgastados de tractores agrícolas." El objetivo de la investigación es conocer la resistencia al desgaste por fricción de los depósitos de soldadura SMAW sobre fundición gris utilizando electrodos AWS ENi-CI y AWS E7018 bajo el método pin on disk de la norma ASTM G99-95a. Aplicables a la recuperación por soldadura de frenos de disco desgastados en tractores agrícolas. Concluyendo:

- La caracterización del material permitió la aleación del hierro fundido gris, presenta hojuelas de grafito tipo A.
- El valor de dureza depende de las trasformaciones de fase y la composición química del material de aporte.

- La resistencia al desgaste del depósito mediante proceso SMAW con electrodo AWS E7018 es mayor que la resistencia al desgaste de la aleación del hierro fundido gris.
- Los electrodos utilizados en el ensayo "nilox" y "cast alloy" presentaron una alta cantidad de pérdida de masa, por lo que no se recomienda para aplicaciones donde las resistencia al desgaste es muy importante.

Artículo realizado por Oñoz, P., Rodríguez, M. y Fadraga, H. en cuba bajo el tema "Selección de electrodos para la recuperación de las tapas de cilindros del motor de la locomotora TGM8K" tienen como fin determinar el electrodo más adecuado para realizar la recuperación de las tapas de cilindros de las locomotoras TGM8K mediante el uso del método de soldadura manual por arco eléctrico; se prepararon probetas de hierro fundido nodular y se procedió a soldarlas con dos tipos de electrodos, ENi-CI (UTP8) y ENiFe-CI (UTP86FN). Las probetas se sometieron a ensayo de fatiga térmica simulando un proceso de calentamiento y enfriamiento más severo presentes en las condiciones de trabajo de la culata. Se determinó las siguientes conclusiones.

- En las probetas soldadas con electrodo ENi-CI se generaron grietas en la zona de influencia térmica cuando se contabilizaba 145 ciclos.
- En las probetas que se soldaron con electrodo ENiFe-CI surgieron grietas en la zona de influencia térmica a los 585 ciclos, determinando que estos electrodos son los más apropiados para la recuperación de las tapas de los cilindros.
- Los electrodo ENiFe-CI presentan 500 MPa de resistencia a la tracción y 300 MPa de límite de fluencia, superiores a los valores de los electrodos ENi-CI (300 MPa y 250 Mpa respectivamente), favoreciendo a la resistencia a la fatiga térmica del metal depositado por el electrodo.

1.3.JUSTIFICACIÓN

Es muy importante determinar el comportamiento tribológico de los materiales de los elementos mecánicos que están diseñados y construidos para trabajar bajo condiciones de rozamiento, a lo largo de la historia el desarrollo tecnológico se ha enfocado en reducir, tanto la fricción como el desgaste para lograr mayor durabilidad de los componentes de pares tribológicos en funcionamiento. La tribología se ha desarrollado en la industria debido a su incidencia en el aspecto técnico-económico, relacionando el incremento de durabilidad en elementos de máquinas e incluso prolongando la vida útil de los mismos.

El desgaste en piezas metálicas se define como una pérdida gradual de masa y dimensiones de metal, la deformación excesiva de elementos mecánicos interfiere en el trabajo para el que fueron diseñados y construidos, lo que obliga a reemplazarlos o recuperarlos mediante diferentes procesos de adición de material para suplantar el material desgastado. Debido a los aspectos económicos, factibilidad y rapidez, el proceso SMAW es uno de los más utilizados para rellenar y recuperar elementos mecánicos desgastados y así elevar la resistencia al desgaste. La finalidad de recuperar elementos desgastados mediante depósito por proceso SMAW sobre la superficie a modificar o rellenar es ahorrar significativamente los costos de adquisición de nuevos elementos mecánicos como cigüeñales, arboles de leva, blocks de motor, culatas, ejes, entre otros.

Este trabajo experimental pretende evaluar el desgaste producido por carga axial, utilizando el método de determinación de desgaste Pin on Disk bajo norma ASTM G99-95a, entre el acero AISI 1018 y el hierro fundido nodular. Una vez determinado el comportamiento tribológico entre estos dos materiales se procederá a realizar el mismo ensayo bajo las mismas condiciones y parámetros entre el acero AISI 1018 y el material de relleno depositado mediante proceso SMAW con electrodo AWS ENi-CI y comparar su influencia en el desgaste. Se eligieron estos materiales debido a su factibilidad, costo de adquisición y proceso de manufactura.

1.4.OBJETIVOS

1.4.1. OBJETIVO GENERAL

Realizar un análisis de los parámetros de un sistema mecánico pin on disk bajo Norma ASTM G99-95a entre Acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI sobre hierro fundido nodular y su influencia en el desgaste.

1.4.2. OBJETIVO ESPECÍFICOS

• Realizar ensayos de desgaste de material Acero AISI 1018 sobre el hierro fundido nodular, bajo parámetros propuestos por la norma ASTM G99-95a.

• Realizar ensayos de desgaste de material Acero AISI 1018 sobre el material de relleno depositado con el electrodo AWS ENi-CI, bajo parámetros propuestos por la norma ASTM G99-95a.

• Determinar el volumen de desgaste mediante la ecuación de masa a volumen que establece la norma ASTM G99-95a.

CAPÍTULO II. FUNDAMENTACIÓN 2.1. FUNDAMENTACIÓN TEÓRICA

En la industria podemos encontrar elementos de máquinas diseñados para trabajar en condiciones de contacto, para ello se debe tomar en cuenta aspectos como material de la superficie, sistema de lubricación, condición de operación y medio circundante en donde se desarrolla el funcionamiento de dichos elementos. Para alcanzar un mayor grado de optimización en las aplicaciones mecánicas se toman en cuenta una variedad de materiales como las aleaciones de acero, bronces, fundiciones, entre otros. Además se procede a rellenar y recubrir los elementos de máquinas desgastados para alargar su vida útil mediante diferentes procesos de adición de material.

2.1.1. Tribología

Una definición amplia la encontramos en [2] Phakatkar, H., Ghorpade, R. (2009). Donde indica que el tema "tribología" se refiere generalmente a la tecnología de lubricación, control de fricción y prevención de desgaste de superficies que tienen movimiento relativo bajo carga. La fricción se clasifica generalmente como una rama de la física o de la ingeniería mecánica. Lubricación y Lubricantes, que afectan la fricción y el desgaste se consideran una parte de la química. Sin embargo, los fenómenos de interacción superficial están tan estrechamente relacionados con todas las disciplinas anteriores. Esto hace que el estudio de la tribología sea un concepto multidisciplinario. Así, la tribología es verdaderamente una ciencia interdisciplinaria y es muy útil para sus practicantes. Incluye, principalmente, Ingeniería Mecánica, Ingeniería de Producción, Dinámica de Fluidos, Química e Ingeniería Química, Ciencia de Materiales y otros temas relacionados.

2.1.2. Sistema tribológico

Es un sistema que consiste en dos sólidos enfrentados en movimiento relativo, están incluidos por lo menos dos solidos a y b, una capa de separación, sea lubricante óxido, contaminantes, y el ambiente, sea aire, gas inerte. En un sistema tribológico hay que distinguir: estructura, interacciones con el medio y función. Según Arizmendi, L. (1987). Tribología. Selección de publicaciones.

2.1.3. Elementos de la tribología

La tribología consta de tres elementos de estudio: Fricción, Desgaste, Lubricación.

Fricción

Kalpakjian, S. y Schmid, S. (2002). Manufactura, ingeniería y tecnología, definen a la fricción como la resistencia al movimiento relativo entre dos cuerpos que se tocan, sometidos a una carga normal (perpendicular). Desempeña un papel importante en procesos de conformado de metales y manufactura, debido al movimiento y fuerzas en herramientas, dados y piezas. La fricción disipa energía y en consecuencia genera calor, que puede tener efectos negativos en una operación. Además, como la fricción impide el movimiento libre en las interface, puede afectar mucho el flujo y la deformación de los materiales en los procesos de conformado de metales. Por otro lado, no siempre es indeseable la fricción; por ejemplo, sino la hubiera, sería imposible laminar metales, sujetar piezas en máquinas o sostener las brocas en lo broqueros.

Fricción estática

La fricción, tradicionalmente ha sido conceptualizada en la forma de un bloque sobre una superficie horizontal, al bloque se aplica una fuerza para moverlo a lo largo de la superficie. Además de la fuerza horizontal *F*, también existe una fuerza normal *N* entre la superficie y el bloque, mostrada como el peso del bloque. Cuando la fuerza aumenta desde un valor bajo, no existe movimiento debido a la fricción, al alcanzar un cierto valor *F* (llamado F_s), y vence la fricción entre las dos superficies el bloque empieza a deslizarse. Se define como fricción estática μ_s

$$\mu_s = \frac{F_s}{N}$$
 Ec. (1.1) Fricción Estática.

Dónde:

µ_s=Fricción estática.

F_s=Fuerza.

N=Normal.

Figura 1. Deslizamiento de un bloque sobre una superficie, para ilustrar la fricción **Fuente:** Kalpakjian, S. y Schmid, S. (2002). Manufactura, ingeniería y tecnología.

Fricción cinética

Cuando el bloque está en movimiento, la fuerza para mantener este movimiento disminuye a un valor F_k . En la mayor parte de las situaciones mecánicas, la fuerza cinética se aproxima al 75% de la fuerza estática, dependiendo de los materiales involucrados; para cierta combinación de materiales, la diferencia entre fuerzas cinéticas y estáticas es cero. Se puede definir el coeficiente de fricción cinética μ en los términos siguientes:

Ec. (1.2) Fricción Cinética.

 $\mu = \frac{F_k}{N}$

Dónde:

 μ = Fricción cinética.

 F_k = Fuerza.

N= Normal.

Tabla 1. Valores típicos del coeficiente de fricción para materiales y procesos

seleccionados.		
Material o proceso	μ	
Metal sobre metal	0.12-0.6	
Metal sobre metal (estático)	0.16-0.5	
Metal sobre madera	0.2-0.4	
Hule sobre concreto	0.5-0.7	
Teflón (PTFE)	0.05-0.1	
Nylon	0.2-0.3	
Laminado (frio)	0.04-0.2	
Laminado (caliente)	0.2-0.8	
Forjado (frio9	0.05-0.1	
Forjado (caliente)	0.1-0.4	
Maquinado de metal	0.7-1.3	

Fuente: Kalpakjian, S. y Schmid, S. (2002). Manufactura, ingeniería y tecnología.

Área de contacto de fricción

Según Groover, M. (1997). Fundamentos de manufactura moderna Materiales, procesos y sistemas, para explicar el fenómeno de la fricción se basa en la teoría de la adhesión, la cual sostiene que dos superficies (no lubricadas) están en contacto una con la otra solo en pequeñas fracciones dela área aparente entre ellas. Al observar vistas amplificadas se determina que el contacto solo se presenta en ciertos puntos, estos puntos comprenden el área real de contacto *A*, entre dos superficies.

Figura 2. Vista microscópica de dos superficies deslizantes y la adhesión de las asperezas que resisten al movimiento relativo.

Fuente: Kalpakjian, S. y Schmid, S. (2002). Manufactura, ingeniería y tecnología.

El área real soporta la carga normal, los esfuerzos en estos puntos son muy altos y conllevan a deformaciones plásticas de los materiales y la adhesión. Para romper los enlaces adhesivos se requiere una fuerza F, la cual es aplicada como una fuerza cortante en las uniones. Las conexiones forman un área equivalente al área real de contacto, la fuerza normal N genera resistencia al deslizamiento del material sobre el área real de contacto. De acuerdo a la teoría de adhesión podemos definir el coeficiente de fricción como:

$$\mu = \frac{F}{N} = \frac{\tau}{Y}$$

Ec. (1.3) Coeficiente de fricción.

Dónde:

 μ = Coeficiente de fricción.

 $\tau = Esfuerzo cortante$

Y = Esfuerzo de fluencia a la compresión de la aspereza.

2.1.4. Desgaste

El desgaste es un efecto de la fricción. El desgaste implica remover gradualmente el material de una superficie. Algunos procesos se basan en la abrasión para producir el desgaste de una manera positiva, como por ejemplo: esmerilado, pulido, piedras abrasivas, entre otras. Groover, M. (1997). Fundamentos de manufactura moderna Materiales, procesos y sistemas.

Desgaste adhesivo

Es una manifestación de la teoría de la adhesión en fricción. Cuando dos superficies se deslizan una sobre otra y las asperezas se unen como se observa en la figura.., el movimiento ocasiona el rompimiento de las juntas enlazadas, removiéndose una pequeña partícula de una de las superficies. La partícula desgastada proviene de una u otra superficie dependiendo de las resistencias involucradas, el material con menos dureza es la fuente es la fuente de estas partículas de desgaste, la acción del desgaste ocurre en las dos superficies. [5]

Figura 3. Desgaste adhesivo: a) adhesión de asperezas, b) rotura de uniones por adhesión para formar partículas de desgaste.

Fuente: Kalpakjian, S. y Schmid, S. (2002). Manufactura, ingeniería y tecnología.

Abrasión

En este caso el desgaste es causado por la acción de asperezas duras entre dos superficies. Las asperezas pueden resultar de la rugosidad general e irregularidad de la superficie más dura, o debido a que en el material se encuentran partículas duras sobresaliendo la superficie. En todo caso, la acción abrasiva implica el rayado y desgaste de la superficie para formar y remover partículas de desgaste, dando como resultado la pérdida gradual del material, este desgaste produce marcas de rayado de manera longitudinal en la dirección del movimiento relativo.[5]

Oxidación y otras reacciones químicas

En este tipo de desgaste, se forma una delgada película superficial por oxidación u otras reacciones químicas. Esta película es mucho más débil que el metal base, facilitando la remoción de estas capas por abrasión y otros métodos de desgaste. El mecanismo se repite desgastando gradualmente la superficie, al remover la película de la superficie se expone una nueva superficie al ataque químico, se remueve y continúa así sucesivamente. [5]

Difusión

La difusión metálica puede presentarse como un factor a altas temperaturas, la difusión es un proceso de transferencia de masa, se acelera al incrementarse la temperatura. Tomando como ejemplo el proceso de maquinado, se puede deducir que el contacto íntimo entre el material de trabajo y la herramienta de corte, que en ocasiones se aproximan a los 200°F, la difusión es un mecanismo de desgaste significativo de la herramienta. [5]

Otros tipos de desgaste

Pueden considerarse el ludimiento, desgaste por vibración y la erosión. El ludimiento se relaciona a las partes significantes de material que son arrancados de una o ambas superficies, se asocia por lo regular a las velocidades altas y obstrucciones repentinas entre las superficies. El desgaste por vibración ocurre cuando las dos superficies vibran una contra la otra, rompiendo las películas protectoras naturales que normalmente las separan y forman partículas de desgaste que desbastan las superficies. Mientras que el desgaste por erosión es una acción de desgaste que es causada por el flujo de fluido o el choque de partículas abrasivas contra las superficies. La diferencia de las otras debido a que solo se involucra una superficie sólida. [5]

2.1.5. Lubricación

La manera para reducir la fricción y el desgaste es por medio de la lubricación, los lubricantes se usan ampliamente en el trabajo de metales y procesos de manufactura.

Lubricación por película fluida

Este tipo de lubricación se da cuando dos superficies están separadas por un fluido, esta separación entre las superficies es grande con respecto a la altura de las asperezas, en el caso ideal las superficies no entran en contacto y se la conoce como lubricación de película gruesa. El coeficiente de fricción está determinado por las propiedades del lubricante, especialmente por la viscosidad y para describirlo se utiliza el término lubricación hidrodinámica. Cuando la velocidad de la superficie o la velocidad del fluido son demasiadas bajas, la hidrodinámica se deteriora ocasionando una lubricación de película delgada llevando a una brecha reducida y contactos ocasionales entre las asperezas de las superficies. [5]

Lubricación de límites

Define la lubricación de límites como la presencia de capas que se forman en las superficies opuestas para soportar la fuerza normal y prevenir el contacto entre los metales. La lubricación a presión extrema se relaciona con la lubricación de límites, las capas limitantes formada por el lubricante no prevalecen cuando se presentan altas temperaturas y presiones, la capa limitante se rompe en los puntos altos de la superficie permitiendo el contacto entre metales y a su vez incrementando la fricción y el desgasten las zonas expuestas. [5]

Lubricación sólida

Se utilizan materiales sólidos para reducir la fricción y el desgaste entre las dos superficies en movimiento relativo (fricción seca), entre los más comunes podemos encontrar al grafito, disulfuro de molibdeno y teflón. La función de la lubricación solida es separar las superficies móviles con una interfaz de bajo coeficiente de fricción y baja resistencia al corte, así se reduce el desgaste y se pueden aplicar en situaciones que incluyan altas temperaturas y presiones en ambientes químicamente reactivos y otras situaciones en donde la lubricación por líquidos no son efectivos. Cuando la temperatura de funcionamiento es alta, los lubricantes solidos pueden convertirse en líquidos. [5]

Tipos de lubricantes para el trabajo en metales

En la siguiente lista se presentan los principales tipos de lubricantes para el trabajo en metales. [5]

- Aceites minerales. Se derivan de los hidrocarburos, generalmente petróleo crudo, su utilidad es limitada, cuando se incluyen ingredientes que mejoran su rendimiento, se convierten en los lubricantes más usados en el trabajo de metales.
- Aceites naturales, grasas y derivados. Provienen de fuentes animales, vegetales y marinas, los aceites se presentan en forma líquida, las grasa en forma semisólida, se puede mencionar las ceras, ácidos grasos y jabones.
- Fluidos sintéticos. Algunos son similares a los aceites naturales, mientras que otros no tienen equivalentes naturales, se incluyen ésteres sintéticos y compuestos de silicio.
- Lubricantes compuestos. En esta categoría se encuentran los aceites mejorados con aditivos: aditivos para límites, aditivos PE, solidos como el grafito y disulfuro de molibdeno, inhibidores de oxidación y corrosión, agentes antiespumantes y agentes germicidas.
- Lubricantes acuosos. El agua en si ya es un lubricante pobre, además sirve como base para agregar varias sustancias que actúan como lubricantes.
- Entre los tipos de lubricantes acuosos podemos encontrar las emulsiones o suspensiones de gotitas de aceite mezcladas con agua, sustancias químicas disueltas en agua, fluidos semi químicos (combinaciones de emulsiones y fluidos químicos).
- Recubrimientos y portadores. Son productos solidos o líquidos aplicados al material de trabajo, incluyen los recubrimientos metálicos (zinc, plomo y otros metales con baja resistencia al corte), recubrimientos de polímeros como el teflón, vidrio (usado como lubricante en la extrusión en caliente del acero).

2.1.6. Materiales de ingeniería

Actualmente, los metales se han convertido en el material más importante de ingeniería, satisfaciendo una amplia variedad de requerimientos de diseño al transformarse en productos útiles a través de la manufactura.

Metales ferrosos

Este tipo de metales está basado en el hierro, conocido desde hace mucho tiempo. Los metales ferrosos que tienen mayor importancia en la ingeniería son las aleaciones de hierro y carbón, dividiéndose en aceros y fundiciones de hierro.

Con ayuda del diagrama Hierro-Carbono podemos determinar que el hierro puro se funde a 2802°F (1539°C), al ascender la temperatura las transformaciones en su fase solida sufren una variación, como se indica en la figura. A temperatura ambiente la fase es alfa (α), también llamada ferrita. Cuando se alcanza una temperatura de 1674 °F (912°C), la ferrita se transforma en gama (γ) llamada austenita. A los 2541°F (1394°C) se transforma en delta (δ), en esta fase se mantiene hasta que ocurre la fusión. Las fases no son iguales; alfa y delta tienen estructura BBC; y gama, situada entre estas dos fases tiene estructura FCC.

Figura 4. Diagrama de fase para el sistema hierro-carbono, por arriba del 6% de carbono.
Fuente: Kalpakjian, S. y Schmid, S. (2002). Manufactura, ingeniería y tecnología.

Acero AISI-SAE 1018 (UNS G10180)

Es un acero de bajo-medio carbono con buena soldabilidad y mejor maquinabilidad que los aceros con grados menores de carbono, es adecuado para componentes de maquinaria debido a su alta tenacidad y baja resistencia mecánica. Este acero es muy versátil al tener mejores propiedades mecánicas, el estirado en frio mejora los valores de resistencia mecánica, utilizado en la fabricación de partes de maquinaria automotriz, línea blanca, su ductilidad le permite tomar transformaciones en frio como doblar, estampar y recalcar, usado típicamente como pines, cuñas, remaches, tornillos entre otros. Moreno, J., Romero, F., y Muso, E. (2013). Informe pruebas del acero AISI-SAE 1018.

Propiedades	Valores	
Dureza	163 HB (83.1 HRb)	
Esfuerzo de fluencia	304 MPa	
Esfuerzo máximo	500-696 MPa	
Esfuerzo ultimo	440 MPa	
Elongación máxima	20% (en 50 mm)	
Reducción de área	40%	

Tabla 2. Propiedades mecánicas del Acero AISI-SAE 1018 (UNS G10180).

Fuente: Moreno, J., Romero, F., y Muso, E. (2013). Informe pruebas del acero AISI-SAE 1018.

Tabla 3. Composición química del Acero AISI-SAE 1018 (UNS G10180).

Componente	% en peso
Carbono	0.15-0.20
Silicio	0.15-0.35
Manganeso	0.60-0.90
P máx.	0.04
S máx.	0.06

Fuente: Moreno, J., Romero, F., y Muso, E. (2013). Informe pruebas del acero AISI-SAE 1018.

Hierro Fundido Nodular

La fundición nodular, llamada también dúctil o esferoidal, es producida en hornos cubilotes fusionando chatarra mezclada con coque y piedra caliza. El contenido de carbono en el hierro nodular se presenta en forma de esferoides, para que se produzca la estructura nodular se inocula el hierro fundido con magnesio, cerio, o ambos para lograr propiedades deseables como alta ductilidad, resistencia, buen maquinado, buena tenacidad y endurecibilidad. La característica de esta fundición es que el grafito aparece en forma de esferas minúsculas dando lugar a una resistencia a la tracción y tenacidad mayor a la fundición gris ordinaria, la cantidad de ferrita depende de la composición y velocidad de enfriamiento. Torres, E., Marín, L., Suárez, J., Lovera, J., y Muñoz, M., (2014). Clasificación de los Hierros Fundidos.

Figura 5. Microestructura de la fundición nodular ferrítico perlítica. Fuente: Torres, E., Marín, L., Suárez, J., Lovera, J., y Muñoz, M., (2014).

Clasificación de los Hierros Fundidos.

Al pasar el tiempo muchos componentes de máquinas que eran de fundición gris se están reemplazando por fundición nodular.

Tabla 4. Clasificación de la fundición nodular teniendo en cuenta sus propiedade	S
mecánicas, de acuerdo con la norma ASTM A-536.	

Clase	Resistencia	Límite de fluencia	Dureza Brinell	Alargomianto (%)
	(psix1000)	(psix1000)	(HBN)	Alargannento (%)
60-40-18	42000	28000	149-187	18
65-45-12	45000	32000	170-207	12
80-55-06	56000	38000	187-255	6
100-70-03	70000	47000	217-267	3

Fuente: Torres, E., Marín, L., Suárez, J., Lovera, J., y Muñoz, M., (2014).

Producción del hierro y del acero.

- Producción de hierro. Para la producción de hierro, se deja caer una carga de menas de hierro, coque y piedra caliza por la parte superior del alto horno (cámara revestida de 9 a 15 m de diámetro y 40 m de alto), en el cual se hacen pasar una corriente de gases calientes a gran velocidad desde la parte baja del alto horno para combustionar y reducir el hierro, en la cámara se alcanzan temperaturas alrededor de 3000°F (1650°C).
- Producción de acero. Actualmente se utilizan dos procesos para refinar el arrabio y convertirlo en acero, estos son el horno básico de oxigeno (HBO) y el horno eléctrico, ambos son utilizados para producir acero al carbono y aleaciones.

2.1.7. Recubrimientos y recuperación de elementos mecánicos

Conforme a Ortúzar, R. (1997). Desgaste y Recuperación. Señala que la recuperación y/o protección antidesgaste de piezas da origen a nuevos conceptos en ingeniería debido a que se deben analizar aspectos técnico económicos para determinar la factibilidad de los procesos y materiales a emplear en la recuperación de elementos mecánicos, dentro de este análisis se tiene que recurrir a los conocimientos de mecánica, metalurgia, química y resistencia de materiales, así como a técnicas económicas de evaluación. Se ha logrado la prolongación de la vida útil de los elementos mecánicos mediante el desarrollo de las áreas de aplicación de recubrimientos y reparación con soldadura.

La recuperación de piezas y partes fue ocupado por la tecnología de la soldadura, debido a la escasez de información para realizar trabajos de mantención se ha desarrollado aleaciones especiales que permiten elevar la confiabilidad de la reparación y recuperación de elementos mecánicos. Estas aleaciones proveen propiedades mecánicas al componente mecánico presentando mayor ventaja económica ya que se evita la adquisición de componentes nuevos.

La recuperación de piezas consiste en aplicar un material de aleación especial sobre la superficie de una pieza metálica mediante proceso de soldadura, con el objetivo de mejorar e incrementar la resistencia al desgaste, producto de la abrasión, impacto, adhesión, calor, corrosión o combinaciones de estas, y/o recuperar las dimensiones originales o requeridas.

Figura 6. Esquema de relleno y recubrimiento anti desgaste.Fuente: INDURA. (2010). Manual de electrodos de mantenimiento.

Razones para la recuperación o el recubrimiento de piezas mecánicas

Existen numerosas razones para recuperar elementos mecánicos y recubrir con materiales anti desgaste.

- Reducir costos. El fin de aplicar un material de recubrimiento a un elemento metálico desgastado es proporcionar una condicen igual a la de una nueva pieza, por lo general constituye entre el 25-75% del costo de un repuesto nuevo.
- Prolongar la vida útil del equipo. El recubrimiento prolonga la vida útil de los elementos mecánicos entre el 30 y 300%, comparándola con una pieza nueva.
- Menor pérdida de tiempo. Cuando la vida útil del elemento mecánico es mayor, se interrumpe menos el trabajo para reemplazarla.
- Reducción del inventario de repuestos. No se necesita mantener en stock repuestos que se podrían recuperar devolviéndoles las dimensiones originales.

Áreas en donde se utiliza el recubrimiento y la recuperación de elementos mecánicos

Recuperación de piezas devolviéndoles sus dimensiones originales

Se puede recuperar las dimensiones originales mediante la aplicación de capas de relleno o bien de relleno y recubrimiento anti desgaste. En los dos casos. Las propiedades del elemento mecánico recuperado son superiores a las de la pieza original, además, si los elemento mecánicos se mantienen en buenas condiciones se puede recuperar varias veces, siguiendo los procedimientos adecuados.

2.1.8. Proceso de soldadura

Existen varios procesos de soldadura para aplicar aleaciones de recubrimiento y recuperación, se necesita tener en cuenta cuales son las preferencias, necesidades, habilidades y disponibilidad de equipos y aleaciones de recubrimiento. Los procesos de soldadura más utilizados para recuperar y recubrir son:

- Soldadura al Arco con electrodo de metal revestido (SMAW).
- Soldadura al Arco con núcleo fundente (FCAW).
- Soldadura por Arco Sumergido (SAW).
Además de proceso como Oxigas y Tig, su uso es limitado debido a su baja tasa de depósito de material de recuperación y recubrimiento.

2.1.9. Soldadura al Arco con electrodo de metal revestido (SMAW)

La soldadura SMAW utiliza el calor producido al establecerse un arco eléctrico entre dos conductores de distinta polaridad, a través de la masa y la pinza porta-electrodo. Alcanza una temperatura de 3500°C, la cual es necesaria para fundir la zona de soldadura; el arco eléctrico forma una depresión o "cárter", al mismo tiempo que se funde el electrodo desprendiéndose en forma de gota incorporándose a la pieza formándose el cordón de soldadura.

El arco eléctrico debe mantenerse a lo largo de la línea de soldadura constantemente para evitar porosidades y poca penetración; la penetración depende de la intensidad, si es bajo, la pieza a soldar no se calienta lo suficiente, y si es elevada, existe el riesgo de perforar la pieza. Navarro, J. y otros. (2010). Elementos fijos

Figura 7. Composición del cordón de soldadura. Fuente: J. y otros. (2010). Elementos fijos

Ventajas

- Disponibilidad de aleaciones. La mayoría de aleaciones para la recuperación o recubrimiento de elementos mecánicos se las puede encontrar en forma de electrodos.
- Espesor de material. La mayor parte de piezas pueden recuperarse por proceso SMAW.
- Posición de soldadura. Los electrodos para proceso SMAW se pueden soldar en todas las posiciones.

- Versatilidad. Los electrodos se pueden utilizar en lugares distantes y en exteriores.

Desventajas

- Dilución. Para alcanzar la máxima propiedad de desgaste, es necesario aplicar dos o tres capas.
- Baja eficiencia y tasa de depósito. Se pierde material en las colillas y la tasa de depósito varía entre 0.5-4(kg/hr).

Consideraciones de soldadura

Se debe tener en cuenta las recomendaciones citadas en la norma AWS A5.15 para los electrodos de revestimiento.

- La piel de fundición debe retirarse de la zona a soldar usando medios como esmerilado, rectificado, entre otros; en la reparación y recuperación se debe eliminar el aceite, grasa, suciedad u otros materiales con disolventes o mediante la aplicación de calor en la zona a soldar (una temperatura de 400°C generalmente es suficiente para esta operación).
- La corriente debe estar entre el rango recomendado por el proveedor del electrodo y lo más bajo posible para tener un buen funcionamiento y buen contorno de cordón; la anchura del cordón no debe ser mayor que tres veces el diámetro nominal del electrodo.
- Si la soldadura es continua, la entrada de calor de los pases anteriores sirve como precalentamiento moderado, el precalentamiento no siempre es necesario, pero a menudo se lo utiliza. La dureza superficial está en función de la composición y la velocidad de enfriamiento del metal base. Si la velocidad de enfriamiento aumenta también aumentara la dureza de la zona afectada por el calor, por lo tanto, cualquier método utilizado para retrasar la velocidad de enfriamiento será beneficioso para disminuir la dureza de la zona afectada por el calor. La dureza proporcionada por el electrodo AWS ENi-CI rodea los 350 Brinell.
- El precalentamiento se utiliza para superar el efecto de masa diferencial encontrada al soldar un metal grueso o fino, también para la estanqueidad a la presión y el aumento a la resistencia al agrietamiento en la interfaz de soldadura

Al usar el precalentamiento en la soldadura de hierro fundido permite que la soldadura y el área circundante se enfrié a una velocidad más uniforme.

2.1.10. Electrodos recubiertos para soldar hierro fundido

En la norma AWS A5.15-90 Especificaciones para electrodos de soldadura y varillas para hierro fundido (Specification for Welding Electrodesand Rods for Cast Iron), se especifican los requisitos de composición química para electrodos y varillas para soldar hierro fundido, así mismo, están incluidos los requisitos generales, pruebas y pautas de aplicación.

La soldadura SMAW con electrodos de base níquel se emplea para soldar hierro fundido, el metal de soldadura puede ser mecanizado, incluso sin precalentamiento, la soldadura es bastante rápida. Este electrodo es para usarse en posición de soldadura plana, sin embargo, algunos electrodos pueden ser capaces de usarse en otras posiciones de soldadura.

Electrodo AWS ENi-CI

Este electrodo se puede utilizar para unir hierros grises comunes a sí mismos, u otros materiales ferrosos y no ferrosos, y para recuperar o reparar piezas de hierro fundido. Pueden producirse soldaduras satisfactorias en piezas de fundición pequeñas y medianas donde las tensiones de soldadura no son excesivamente severas, o cuando el contenido de fósforo del hierro no es alto. AWS A5.15-90 (Specification for Welding Electrodesand Rods for Cast Iron).

En la siguiente tabla se indica las características, tanto químicas como mecánicas, del electrodo AWS ENi-CI

		Porcentaje de peso									
Clasificación	C	Mn	Si	Р	S	Fe	Ni	Mo	Cu	Al	Otros elementos,
AWS											Total
ENi-CI	2.0	2.5	4	-	0.03	8.0	85 min	-	2.5	1.0	1.0

Tabla 5. Requisitos de composición química AWS para ENi-CI.

Los valores son máximos, excepto el contenido de níquel.

Fuente: AWS A5.15-90. (1990). Specification for Welding Electrodes and Rods for

Cast Iron.

- •				- Bernin - Hills	para zra en	
	Resistencia a	la tracción.	Compensación de la		Elongación	Dureza
			elasticidad	0/2%		BHN
Electrodo	ksi	MPa	ksi	MPa		
ENi-CI	40-65	276-448	38-60	262-414	3-6	135-218

Tabla 6. Propiedades mecánicas requeridas según AWS para ENi-CI.

Fuente: AWS A5.15-90. (1990). Specification for Welding Electrodes and Rods for

Cast Iron.

2.1.11. Método para ensayo de desgaste con un aparato PIN ON DISK establecido en la norma ASTM G-99

La norma ASTM G-99 establece que el método Pin on Disk es un método de ensayo para medir el desgaste de materiales en condiciones no abrasivas durante deslizamiento utilizando una máquina pin sobre disco, para esta prueba se requieren dos especímenes, un pasador colocado perpendicularmente sobre un disco circular plano. La máquina puede hacer girar el disco o el pin, en cualquier caso la trayectoria deslizante será un circulo en la superficie del disco, la orientación del disco puede ser horizontal o vertical (los resultados de degaste puede variar de acuerdo a la orientación), el pin se presiona contar el disco con una carga, generalmente por medio de un brazo y pesos conectados, aunque se utilizan otros métodos de carga como hidráulicos o neumáticos (los resultados de degaste puede variar de acuerdo al método de carga). Cuando se ensayan dos materiales diferentes, se recomienda que se pruebe en las dos posiciones.

Figura 8. Método PIN ON DISK. Fuente: ASTM G-99 (2000) Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus.

Las condiciones dependerán del propósito de la prueba y la cantidad de desgaste del número de factores del sistema como carga, velocidad, distancia, entorno y propiedad del material; este método no pretende duplicar las condiciones de servicio, es por eso que no se garantiza que el ensayo prediga la tasa de desgaste de los materiales en condiciones diferentes al del ensayo.

2.1.12. Parámetros de prueba para el método Pin on Disk

- Carga. Los valores de la fuerza (F) en Newtons [N] en el contacto de desgaste.
- Velocidad. La velocidad (V) de deslizamiento entre las superficies deben estar en metros por segundo [m/s]
- Distancia. La distancia (D) de deslizamiento en metros [m]
- **Temperatura.** La temperatura (T) de las muestras cercanas al contacto de desgaste.
- Atmosfera. La atmosfera (aire de laboratorio, HR, lubricante, entre otras) que rodea el contacto de desgaste.

2.1.13. Medición de la pérdida volúmetrica

En la norma ASTM G-99 (2000) Standard Test Method for Wear Testing with a Pinon-Disk Apparatus. Indica que los resultados de desgaste se reportan como perdida de volumen en milímetros cúbicos, tanto del pin y el disco por separados, la cantidad de desgaste se determina midiendo las dimensiones lineales o pesando ambos especímenes antes y después del ensayo.

Los instrumentos para obtener medidas lineales de desgaste deben contar con una sensibilidad de 2.5 μ m o superior. Las balanzas utilizadas para medir la pérdida de masa de las muestras deben tener sensibilidad de 0.1mg o superior.

Si el desgaste es bajo, se debe contar con balanzas de mayor sensibilidad. Para la conversión de pérdida de masa en perdida de volumen se debe utilizar la siguiente ecuación.

Volumen loss,
$$mm^3 = \frac{mass \ loss,g}{density,g/cm^3} x1000$$
 Ec. (2.1) Pérdida de volumen

Este método determina el desgaste como perdida de volumen y para que no haya confusión en las variaciones de densidad se debe usar y reportar el mejor valor de densidad disponible para los materiales probados; cuando se calcula la perdida de volumen a partir de la pérdida de masa.

Tasa de degaste

La tasa de desgaste es la erosión del material de una superficie solida por acción de una segunda superficie como el resultad de una acción mecánica y se calcula mediante la expresión siguiente:

$$Q=\Delta P/L$$
 Ec. (2.2) Tasa de desgaste

Dónde:

Q=Tasa de desgaste [mg/m].

 ΔP =Pérdida de peso [mg].

L=distancia deslizada [m]

Coeficiente de desgaste

Por su parte el coeficiente de desgaste k, se obtiene utilizando la siguiente ecuación:

K=Q/W Ec. (2.3) Tasa de desgaste

Dónde:

k= coeficiente de desgaste [mg/mN].

Q=tasa de desgaste [mg/m].

W=Carga aplicada [N].

ESFUERZOS DE CONTACTO

El tipo de contacto presentado en este ensayo fue CONTACTO ENTRE ELEMENTOS ESFERICOS. Se toma como caso estudiado una esfera sobre una placa plana, debido a que el pin actúa como esfera y el disco actúa como placa plana. Para calcular los esfuerzos de contacto se utilizan las siguientes ecuaciones.

$$R^* = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1}$$
 Ec. (2.4). Radio Equivalente.

En donde:

R^{*}=Radio Equivalente [mm].

R₁=Radio del pin [mm].

 R_2 =Radio de la superficie (∞)

$$E^* = \left(\frac{1-v_1^2}{E_1} + \frac{1-v_2^2}{E_2}\right)^{-1}$$

En donde:

E^{*}= Módulo de Young Equivalente [GPa].
E₁= Módulo de Young del pin [GPa].
E₂= Módulo de Young del disco [GPa].

v₁=Relación de Poisson del pin.

v₂=Relación de Poisson del disco.

$$a = \sqrt[3]{\frac{3PR^*}{4E^*}}$$

En donde:

P=Carga [N].

$$P_{cm\acute{a}x} = \frac{3P}{2\pi a^2}$$

En donde:

P_{cmáx}=Presión máxima [MPa].

Ec. (2.5). Módulo de Young Equivalente.

Ec. (2.6). Radio de la huella.

Ec. (2.7). Presión máxima.

Ec. (2.8). Esfuerzo cortante máximo.

$$S_{smáx} = \frac{P_{cmáx}}{2} \left[\frac{(1-2\nu)}{2} + \frac{2}{9}(1+\nu)\sqrt{2(1+\nu)} \right]$$

En donde:

S_{smáx}= Esfuerzo cortante máximo [MPa].

v=Relación de Poisson del material menos resistente.

Ec. (2.9). Profundidad.

$$Z_{\tau} = a \sqrt{\frac{2+2\nu}{7-2\nu}}$$

En donde:

 Z_{τ} =Profundidad [m²].

v= Relación de Poisson del material menos resistente

Método "t" student.

Cálculo de la desviación típica y "t" student.

Para calcular la desviación típica utilizamos la siguiente ecuación:

$$S_{1}^{2} = \frac{\Sigma(Xi - X^{-})^{2}}{n - 1}$$
Ec. (2.10) Desviación típica para X
$$S_{2}^{2} = \frac{\Sigma(Yi - \bar{Y})^{2}}{n - 1}$$
Ec. (2.11). Desviación típica para Y

Para calcular la varianza se utiliza la siguiente ecuación:

$$\delta^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{1} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}$$
 Ec. (2.12). Varianza,

Mientras que para calcular la "t" student se utilizamos la ecuación:

$$t = \frac{X^{-} - \bar{Y} - \delta}{\sqrt{\frac{\sigma^{2}}{n_{1}} + \frac{\sigma^{2}}{n_{2}}}}$$
 Ec. (2.13). Formula t-Student.

2.2. HIPÓTESIS

El análisis de los parámetros de un sistema mecánico pin on disk bajo norma ASTM G-99 entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre hierro fundido nodular, influirá en el desgaste.

2.3.SEÑALAMIENTO DE VARIABLES DE LA HIPÓTESIS

2.3.1. Variable independiente

Análisis de los parámetros de un sistema mecánico pin on disk bajo norma ASTM G-99.

2.3.2. Variable dependiente

Desgaste entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre hierro fundido nodular.

CAPÍTULO III. METODOLOGÍA

3.1.Nivel o tipo de investigación

3.1.1. Investigación exploratoria

Exploratoria, porque se pretende dar una solución de ingeniería a los elementos mecánicos de hierro fundido nodular desgastados, centrando el trabajo en conocer las propiedades mecánicas del electrodo AWS ENi-CI utilizado como material de relleno.

3.1.2. Investigación experimental

Experimental, porque se realizó un estudio experimental utilizando el método pin sobre disco que permita determinar la tasa de desgaste entre el acero AISI 1018 y el relleno del electrodo AWS ENi-CI, con el fin de analizar el comportamiento tribológico entre los dos materiales.

3.1.3. Investigación bibliográfica

Bibliográfica, con la finalidad de investigar sobre este tema, se indago y recolecto información de libros, normas, manuales, catálogos, artículos científicos, revistas científicas, para desarrollar el tema propuesto.

3.1.4. Estudio de casos para ensayo

Material. (A). Se trabajará con tres materiales; Acero AISI 1018, Hierro Fundido Nodular y Relleno de soldadura SMAW con electrodo AWS ENi-CI sobre Hierro Fundido Nodular.

Fuerza aplicada. (B). Para este trabajo experimental se seleccionan dos cargas: 117.6N y 147N.

Velocidad de giro. (C). La velocidad de giro se establece en 560rpm.

Distancia de recorrido. (D). Se seleccionan cuatro distancias de recorrido: 250m, 500m 750m y 1000m.

DE CASOS=3Ax2BxCx4D=24.

Parámetros de probetas

En la norma ASTM G99-95a, en el inciso 6 se establecen los requerimientos que deben cumplir las probetas, entre los parámetros más relevantes se encuentran los siguientes:

Material. Se puede aplicar a gran variedad de materiales, solamente se deben cumplir las dimensiones especificadas para soportar las tensiones impuestas en la prueba sin fallo o flexión excesiva.

Se debe describir las dimensiones, tipo de material, forma, composición, microestructura, acabado superficial y dureza. Se optó por realizar los ensayos con Hierro Fundido Nodular y Acero AISI 1018, debido a que gran parte de los elementos mecánicos de la industria son fabricados de hierro fundido gris o nodular.

Probetas. El pin puede ser de forma cilíndrica o esférica, los diámetros varían de 2 a 10 mm. El diámetro típico del disco se encuentra en el intervalo de 30 a 100 mm y el espesor en el rango de 2 a 10 mm.

Acabado superficial. Es recomendable tener una rugosidad superficial de 0.8 μ , el ensayo de dureza se realizó en el laboratorio de la FICM-UTA bajo la norma JIS1994 utilizando el equipo medidor de rugosidad SJ-210.

Dureza. La dureza fue medida bajo la norma ASTM E18-15 Standard Test Methods for Rockwell Hardness of Metallic Materials, en escala C con tres mediciones, este ensayo se realizó en el laboratorio de la FICM-UTA. Se realizó tres mediciones tanto en los discos de hierro fundido nodular y el acero AISI 1018, la realización de este ensayo se dio para corroborar la dureza teórica de los materiales.

Microestructura. Para determinar la microestructura de los materiales que van a ser sometidos a ensayo de desgaste se procedió a extraer muestras de las probetas tanto del disco como del pin del hierro fundido nodular y del Acero AISI 1018 para comprobar que los materiales sean los correctos.

Este ensayo metalográfico se lo realizó en el laboratorio de materiales de la FICM-UTA con la ayuda del microscopio existente.

Probeta disco acero AISI 1018	100X El Acero AISI 1018 contiene 0.18%C hasta 0.2%C.
Probeta Pin acero AISI 1018	100X El acero AISI 1018 es considerado con bajo contenido de carbono y presentación de martensita.
Probeta disco Hierro Fundido Nodular	100X El porcentaje del Hierro Fundido nodular es de 3.4%C.
Probeta pin Hierro Fundido Nodular.	100X Claramente se puede diferenciar e identificar el hierro fundido nodular por la forma redonda del grafito en su microestructura.

Tabla 7. Microestructura de las probetas a ensayar.

Fuente: Autor.

Una vez determinado la microestructura de los materiales elegidos para realizar el ensayo de desgaste adhesivo se procedió a elegir los parámetros y los casos para realizar el ensayo de desgaste adhesivo entre el hierro fundido nodular y el acero AISI 1018, los casos serán los mismos para el ensayo de desgaste entre el Acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI. Entre los parámetros principales esta la carga y la distancia, así como la velocidad, lubricación y ambiente atmosférico.

En la siguiente tabla se plantean los casos de estudio escogidos para realizar el ensayo de desgaste adhesivo mediante Norma ASTM G-99 entre el Acero AISI 1018 y el Hierro Fundido Nodular

	Material	Diámetro [mm]	Distancia [m]	Carga aplicada [N]	N° de probetas	Acabado superficial [µm]	Dureza [HBN]
			250	117.6	3	0.8	143
				147.0	3	0.8	143
			500	117.6	3	0.8	143
Din	AISI	10		147.0	3	0.8	143
Г Ш	1018	10	750	117.6	3	0.8	143
			730	147.0	3	0.8	143
			1000	117.6	3	0.8	143
			1000	147.0	3	0.8	143
			250	117.6	3	0.8	149
			250	147.0	3	0.8	149
	Hianno		500	117.6	3	0.8	149
Disco	fundido	100	500	147.0	3	0.8	149
Disco	nodular	100	750	117.6	3	0.8	149
				147.0	3	0.8	149
			1000	117.6	3	0.8	149
				147.0	3	0.8	149
	II: arma	10	250	117.6	3	0.8	149
				147.0	3	0.8	149
			500	117.6	3	0.8	149
Din	fundido			147.0	3	0.8	149
F 111	nodular		750	117.6	3	0.8	149
	nouulai		730	147.0	3	0.8	149
			1000	117.6	3	0.8	149
			1000	147.0	3	0.8	149
			250	117.6	3	0.8	143
			230	147.0	3	0.8	143
			500	117.6	3	0.8	143
Disco	AISI	100	500	147.0	3	0.8	143
Disco	1018	100	750	117.6	3	0.8	143
			750	147.0	3	0.8	143
			1000	117.6	3	0.8	143
			1000	147.0	3	0.8	143

Tabla 8. Casos de estudio desgaste Acero AISI 1018-Hierro Fundido Nodular.

Fuente: AUTOR.

En la siguiente tabla se plantean los casos de estudio escogidos para realizar el ensayo de desgaste adhesivo mediante Norma ASTM G-99 entre el Acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre Hierro Fundido Nodular.

	Material	Diámetro [mm]	Distancia [m]	Carga aplicada [N]	N° de probetas	Acabado superficial [µm]	Dureza [HRC]
			250	117.6	3	0.8	143
				147.0	3	0.8	143
			500	117.6	3	0.8	143
Din	AISI	10		147.0	3	0.8	143
1 111	1018	10	750	117.6	3	0.8	143
			750	147.0	3	0.8	143
		1000 117.6 3	0.8	143			
			1000	147.0	3	0.8	143
			250	117.6	3	0.8	149
	LIENI		230	147.0	3	0.8	149 149 149
	HFN		500	117.6	3	0.8	149
Disco	con	100		147.0	3	0.8	149
Disco	AWS		750	117.6	3	0.8	149
	ENi-CI			147.0	3	0.8	149
			1000	117.6	3	0.8	149
				147.0	3	0.8	149
			250	117.6	3	0.8	149
	LIENI		230	147.0	3	0.8	149
	HFN		500	117.6	3	0.8	149
Din	con	10	500	147.0	3	0.8	149
PIII	AWS		750	117.6	3	0.8	149
	AWS ENi_CI		730	147.0	3	0.8	149
	LINFCI		1000	117.6	3	0.8	149
			1000	147.0	3	0.8	149
			250	117.6	3	0.8	143
			230	147.0	3	0.8	143
			500	117.6	3	0.8	143
Disco	AISI	100	500	147.0	3	0.8	143
Disco	1018	100	750	117.6	3	0.8	143
			750	147.0	3	0.8	143
			1000	117.6	3	0.8	143
			1000	147.0	3	0.8	143

 Tabla 9. Casos de estudio desgaste Acero AISI 1018-Hierro Fundido Nodular con relleno SMAW con electrodo AWS ENi-CI.

Fuente: AUTOR.

Entonces el número probetas par los dos casos del estudio de desgaste son 192

3.2. POBLACIÓN Y MUESTRA

3.2.1. Población

El siguiente trabajo experimental tendrá como población 96 especímenes, 24 barras cilíndricas de acero AISI 1018 y 24 barras cilíndrica de Hierro Fundido Nodular; 24 discos de hacer AISI 1018 y 24 discos de Hierro Fundido Nodular.

3.2.2. Muestra

Para realizar el análisis de desgaste adhesivo entre el acero AISI 1018 y el Hierro Fundido Nodular se tomaran 3 muestras por cada diámetro, tanto de pin como disco, las variaciones a realizar son de la distancia de recorrido del disco y la carga aplicada por pesas, esta recomendación es tomada de Chicaiza, R. (2015), en donde se utilizan 3 muestras para realizar el ensayo de desgaste adhesivo. Las distancias tomadas para realizar la prueba son de 250m, 500m, 750m y 1000 m.

Con la siguiente formula se puede obtener el tamaño de la muestra.

Para un nivel de confianza del 95%

$$1-\alpha = 0.95$$

$$\alpha = 0.05$$

$$\alpha/2 = 0.025$$

$$Z(0.95) = 1.96$$
 (ANEXO C)

$$n = \frac{Z^2 P q}{e^2} = 79.37$$

Dónde:
Z=nivel de confianza (1.96).

Pq=Varianza de la población (0.5).

E = Error muestral (0.11).

Dónde:

 $1-\alpha = nivel de confianza$

Entonces:

$$Muestra = \frac{79.37}{24} = 3.30 = 3$$
 Probetas.

3.3.OPERACIONALIZACIÓN DE VARIABLES

3.3.1. Carga

La carga asignada fue tomada como referencia del trabajo realizado por López, A. y otros (2011), en donde se realizó el estudio tribológico del acero AISI 1045 bajo una carga de 30 N, se tomó las cargas de 117.6N y 147N para obtener datos más significativos debido a que son materiales de alta dureza.

3.3.2. Velocidad

La norma ASTM G99-95a en el inciso 5.2 establece que la velocidad de rotación se encuentra en el intervalo de 0.3 a 3 rad/seg (60 a 600 r/min), la velocidad elegida es de 560 r/min.

3.3.3. Temperatura

La temperatura promedio es de 20 °C dentro del Laboratorio en donde se desarrolla el ensayo de desgaste, tomando en consideración que en días nublados se apreció temperaturas de 10°C y en días despejados temperaturas de 22°C.

3.3.4. Ambiente atmosférico.

Como indica Chicaiza, R. (2015), en su tesis realizada en el laboratorio de la FICM-UTA, el flujo de aire en este lugar es estático, entonces se toma este parámetro como referencia.

3.3.5. Volumen de desgaste

Tomando referencia al estudio tribológico del acero AISI 1045 en condición seca realizado por López, A. y otros en (2011) en México, en donde el volumen de desgaste adhesivo se encuentra en el orden de 0.0112 mm³ a 0.0296 mm³.

Al tratarse de materiales similares se espera rodear esos valores, así como la pérdida volumétrica.

3.3.6. Tasa de desgaste

En el estudio tribológico realizado por Massetti, A. y otros en 2008, en el cual se deduce el efecto de la carga y la velocidad en la resistencia al desgaste de aceros para herramientas depositados por soldadura aplicando 10 y 40N y distancias de 1000 a 5000m se logra determinar que el desgaste aumenta con la velocidad y la carga obteniendo la tasa de desgaste para las diferentes condiciones en valores entre 0.00001 mm³/m a 0.001 mm³/m. se espera rodear estos valores debido a que los materiales a ensayar también son ferrosos.

Variable independiente

Análisis de los parámetros de un sistema mecánico pin on disk bajo norma ASTM G-99.

Conceptualización.	Dimensiones.	Indicadores.	Ítems.	Técnicas-
				Instrumentos.
				Pesas.
	Carga.	¿Cuál es la carga		
		aplicada en el pin en		
		un sistema pin sobre	117.6N	
		disco?	147N	
		¿Cuál es la velocidad		Fichas de
Este método nos		de rotación del		datos,
permite analizar los		disco?	60-600	dinamómetro.
parámetros de un	Velocidad.		r/min.	Econder.
sistema pin on disk		¿Cuál es la		
para obtener		distancia?		
información acerca			250, 500,	Pirómetro.
del desgaste de	Distancia.	¿Qué temperatura	750 y	
materiales, y al		tenemos en el	1000m.	
evaluar los resultados		laboratorio?		
del desgaste se debe	Temperatura.			
tener en cuenta	•	¿Cuál es el flujo de	18-23°C	
parámetros como		aire?		
carga, distancia,				
velocidad,	Ambiente	¿Qué tipo de	Estático.	
temperatura, y otros.	atmosférico.	lubricación se		
· · · ·		ocupará?		
	Lubricación.	•	Ninguna.	

Tabla 10. Variables independientes.

Variable dependiente

Desgaste entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre hierro fundido nodular.

Conceptualización.	Dimensio	Indicadores.	Ítems.	Técnicas-
	nes.			Instrumentos.
Este desgaste		¿Cuál es la		Balanza.
ocurre cuando se		pérdida		Calibrador.
deslizan dos	Desgaste.	volumétrica del	0.0112 mm^3	Fichas de toma de
superficies sólidas		hierro fundido	a 0.0296	datos.
una sobre la otra		nodular y el acero	mm ³	Experimentación
bajo presión,		AISI 1018?		en el Laboratorio
generando calor de				de la FICM-UTA.
fricción y la	Tasa de	¿Cuál es la tasa de		Cálculos.
adherencia de las	desgaste.	desgaste de los		
asperezas de los		dos materiales?	0.00001	
puntos elevados de			mm ³ /m a	
las superficies en			0.001 mm ³ /m	
contacto.				

Tabla 11. Variables dependientes

Fuente: Autor.

3.4. PLAN DE RECOLECCIÓN DE INFORMACIÓN

En la recolección de datos se utilizará herramientas como calibrador, goniómetro, balanza para determinar las unidades de masa y dimensiones de las probetas; también se deberá apoyar en instrumentos bibliográficos como catálogos, escritos técnicos, normas, fichas técnicas y registros que tengan relación con el experimento.

3.5. PLAN DE PROCESAMIENTO Y ANÁLISIS

Durante la recolección de datos se debe eliminar información errónea o inconclusa, se debe tener en cuenta criterios lógicos para que la información recogida sustente el estudio de desgaste de manera segura y confiable. La información debe ayudar a describir el fenómeno a estudiar y se pueda obtener resultados coherentes para que la comparación de la hipótesis con los resultados obtenidos sea verificable o rechazada. También se debe tener en cuenta criterios sistemáticos y lógicos para poder interpretar la información recogida y sustentarla de una manera segura y así estudiar, analizar y comparar los resultados con los trabajos relacionados con el tema desarrollado.

CAPÍTULO IV. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.1. **RECOLECCIÓN DE DATOS**

Una vez que se ha obtenido las probetas se realizaron los ensayos de desgaste utilizando la máquina Pin on Disk que se encuentra en el Laboratorio de Fundición de la FICM-UTA.

Para el ensayo se utilizó Acero AISI 1018 y Hierro Fundido Nodular, siguiendo las especificaciones de la Norma ASTM G-99 para determinar las pérdidas volumétricas del desgaste y a su vez la tasa de desgaste entre estos dos materiales.

Teniendo un precedente de la tasa de desgaste entre el hierro fundido nodular y el Acero AISI 1018, se realizó el mismo ensayo de desgaste bajo los mismos parámetros y asumiendo una recuperación de las dimensiones con soldadura SMAW con electrodo ENi-CI para determinar la tasa de desgaste entre el acero AISI 1018 y el Relleno de Soldadura SMAW con electrodo AWS ENi-CI.

El desgaste es considerado tanto en el pin como en el disco debido a que la dureza de los dos materiales permite que el desgaste sea notorio, siguiendo las recomendaciones de la norma se ensayaran los dos materiales bajo las dos condiciones, es decir, tanto como pines y como discos, tal como lo recomienda la Norma ASTM G-99. Para un mejor entendimiento se detallan los pares tribológicos en la siguiente tabla.

PARES TRIBOLÓGICOS.					
PIN	DISCO				
Acero AISI 1018	Hierro Fundido Nodular				
Hierro Fundido Nodular	Acero AISI 1018				
Acero AISI 1018	Relleno de soldadura SMAW con				
Actio Alsi 1018	electrodo AWS ENi-CI				
Relleno de soldadura SMAW con	Acero AISI 1018				
electrodo AWS ENi-CI	Actio Alsi 1018				

Tabla 12. Par tribológico para ensayo de desgaste adhesivo bajo norma ASTM G-99.

Características técnicas del acero AISI 1018

Es un acero de cimentación no aleado, el porcentaje de carbono es bajo-medio teniendo una buena soldabilidad y es ligeramente mejor maquinable, el porcentaje de carbón se encuentra entre el 0.15 y 0.20% y una dureza de 163HB

En la siguiente tabla se presentan las características técnicas del acero AISI 1018 adquirido del centro ferretero DIPAC-Ambato.

En este lugar se adquirieron los discos y los pines, se utilizó una sierra de cinta para metal con refrigerante y así evitar cambios en las propiedades químicas, físicas y mecánicas debido al incremento de temperatura. En la siguiente tabla se muestran las características físico-mecánicas del Acero AISI 1018.

,	Tabla 13. Características técnicas del Acero AISI 1018.							
	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA							
DATOS INFORMATIVOS.								
Material:	Acero AISI 1018	Fecha de realización:	20/08/2017					
Realizado por:	Paúl Escobar.	Autorizado por:	Ing. Mg. Henry Vaca.					
Lugar de realización:	Laboratorio de Fundición. FICM-UTA	Temperatura ambiente:	19°C					
ESPECIFICACIONES TÉCNICAS DEL ACERO AISI 1018								
	Pin	Disc	0					
Maquinado:	Torneado.	Superficie:	Lisa. (lija N° 2000)					
Maquinado: Composición q	Torneado. uímica: 0-0.2%C; 00.25%S	Superficie: Si; 0-0.70% Mn; 0-0.04% P	Lisa. (lija N° 2000) ; 0-0.05%S					
Maquinado: Composición q Dureza:	Torneado. uímica: 0-0.2%C; 00.25%S 143 Rokwell B.	Superficie: Si; 0-0.70% Mn; 0-0.04% P Punto de fluencia:	Lisa. (lija N° 2000) ; 0-0.05%S 235 N/mm ²					
Maquinado: Composición q Dureza: Limpieza:	Torneado. uímica: 0-0.2%C; 00.25%S 143 Rokwell B. Alcohol.	Superficie: Si; 0-0.70% Mn; 0-0.04% P Punto de fluencia: Elongación:	Lisa. (lija N° 2000) ; 0-0.05%S 235 N/mm ² 20%					
Maquinado: Composición q Dureza: Limpieza: Densidad:	Torneado. uímica: 0-0.2%C; 00.25%S 143 Rokwell B. Alcohol. 7.87 g/cm ³ (0.284 lb/in ³)	Superficie: Si; 0-0.70% Mn; 0-0.04% P Punto de fluencia: Elongación: Coeficiente de fricción:	Lisa. (lija N° 2000) ; 0-0.05%S 235 N/mm ² 20% 0.18					

En la siguiente tabla se muestran las características físico-mecánicas del Hierro Fundido Nodular, el mismo fue obtenido de la Empresa Fundiciones LÁSER, ubicada en la ciudad de Ambato

La obtención del material fue en lingote de 113mm de diámetro y 500mm de largo, se utilizó una sierra circular y refrigerante en el momento de cortar los discos, luego, se mecanizó por medio de torno para obtener las dimensiones finales. Además, se realizó un lijado para llegar a obtener la rugosidad que establece la norma de 0.8µ

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA									
DATOS INFORM	DATOS INFORMATIVOS.								
Norma:	ASTM A-536	Fecha de realización:	20/08/2017						
Realizado por:Paúl Escobar.A		Autorizado por:	Ing. Mg. Henry Vaca						
Lugar de realización:	ugardeLaboratoriodeTemperaturaalización:fundición. FICM-UTAambiente:								
ESPECIFICACIONES TÉCNICAS DEL HIERRO FUNDIDO NODULAR.									
Disco	Disco Pin								
Superficie:	Lisa. (lija N° 2000)	Límite de fluencia:	28000 kPSI						
Material:	Hierro Fundido Nodular.	Densidad:	7.2 g/cm^3						
Dureza:	149 BHN.	Resistencia:	42000 kPSI						
Limpieza:	Limpieza: Alcohol. Alargamiento: 18%								
Composición química: 3.4-3.85%C; 2.3-3.1%Si; 0.1-0.3%Mn; 0.02max%S; 0.1max %P.									
Observaciones: Datos obtenidos de a Norma ASTM A-536 y FARMERS COPPER.									

Tabla 14. Características técnicas del hierro fundido.

A continuación se muestra la tabla con los datos informativos del ensayo de desgaste adhesivo, el lugar en donde se realizará el ensayo es en el Laboratorio de Fundiciones de la Facultad de Ingeniería Civil y Mecánica en donde se encuentra el tribosistema, los ensayos se empezaron a realizar el 08 de agosto de 2017, también se detallan los parámetros establecidos bajo la Norma ASTM G-99 y los parámetros escogidos para realizar el ensayo de desgaste adhesivo.

Tabla 15. Datos del tribosistema y parámetros de ensayo.								
FAC	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA							
ENSAYO DE DES	GASTE ADHESIVO D	EL HIERRO FUNDIDO NO	DDULAR					
	1 DATOS INI	FORMATIVOS						
Centro de estudio	Centro de estudio y análisis: Laboratorio de Fundiciones FICM-UTA.							
Tipo de estudio:	De laboratorio	N°. de ensayo:	1					
Solicitado por:	Ing. Mg. Henry Vaca.	Realizado por:	Paul Escobar					
Revisado por:	Ing. Mg. Henry Vaca.	Fecha de inicio del	2017/08/02					
Norma anlicada:	ASTM C 00	Eacha final dal ancava:	2017/10/05					
Norma apricaua.		DIROSISTEMA	2017/10/03					
Tino do tribómotro	DATOS DEL T.	Configuración dol	Vartical					
11po de tribometro	PIN ON DISK.	tribómetro:	vertical.					
Tipo de lubricació	n: Seco.	Tipo de movimiento:	Deslizante.					
2 PARÁMI	ETROS RECOMENDA	DOS POR LA NORMA AS	TM G-99					
DATOS BAJO NO	RMA	DATOS SELECCIONAD	OS.					
Diámetro del pin:	2-10mm	Diámetro seleccionado	10mm					
		del pin:						
Diámetro del disco	: 30-100mm	Diámetro seleccionado	100mm					
		del disco:						
Espesor del disco:	2mm-10mm	Espesor seleccionado:	4.23mm					
Velocidad d	el 60-600rpm	Velocidad de giro del	560rpm.					
motor:		motor:						
Rugosidad:	0.8µm	Carga aplicada:	12kg					
			15kg.					
Sensibilidad d	le 0.0001mg	Fuerza aplicada:	117.6N					
balanza:			147N					
Sensibilidad d	el 2.4 micras.	Distancia de recorrido:	250, 500, 750,					
instrumento d	le		1000 [m]					
medida lineal:								
3 OBSERVACIO	NES.							

En la siguiente tabla se indican los valores del peso inicial y final de los pines de hierro fundido nodular utilizando la balanza SCIENTECH con una sensibilidad de 0.0001g, lo que es importante para obtener valores más exactos acerca del ensayo.

OND TECNICA D		UNIVERSIDAD TÉCNICA DE AMBATO					
		FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA					
1 0 V		CARRERA	DE INGE	ENIERÍA MECÁNI	ICA FIGM		
OBTENCIÓN DEL PESO DE LOS PINES DE HIERRO FUNDIDO NODULAR.							
Material:		Hierro Fundido	Nodular	Fecha:	2017/08/03		
Realizado	por:	Paul Escobar.		Solicitado por:	Ing. Mg. Henry Vaca		
DATOS DI	ELAB	ORATORIO.					
Laboratori	io.	Lab. 3.1 FCIA-U	JTA.	Temperatura:	20°C		
Facultad:		Ingeniería en Al	imentos	Autorizado por:	Ing. Marco Analuisa		
Equipo:		Balanza SCIEN	ГЕСН	Precisión:	0.0001g		
Hora de in	icio:	08:00 am		Hora de fin.	08:30 am		
N°	Peso	o inicial (Pi) [g]	Pese	o final (Pf) [g]	ΔP (Pi-Pf) [g]		
PHFN-1		24.4889		24.4863	0.0026		
PHFN-2		24.9938		24.9887	0.0051		
PHFN-3		24.3394		24.3344	0.0050		
PHFN-4		23.4086		23.4049	0.0037		
PHFN-5		23.2748		23.2685	0.0063		
PHFN-6		22.2806		22.2692	0.0114		
PHFN-7	PHFN-7 24.4900			24.4844	0.0056		
PHFN-8	PHFN-8 24.9975			24.9868	0.0107		
PHFN-9		24.3431		24.3325	0.0106		
PHFN-10		23.4108	23.4030		0.0078		
PHFN-11		23.2799	23.2666		0.0133		
PHFN-12		22.2915	22.2673		0.0242		
PHFN-13		24.0782	24.0677		0.0105		
PHFN-14		23.2744		23.2633	0.0111		
PHFN-15		22.6727	22.6550		0.0177		
PHFN-16		21.5676		21.5402	0.0274		
PHFN-17		22.6073		22.5728	0.0345		
PHFN-18		21.7387		21.6930	0.0457		
PHFN-19		25.4416		25.4261	0.0155		
PHFN-20		24.6332		24.6217	0.0115		
PHFN-21		24.0382		24.0134	0.0248		
PHFN-22		22.9458		22.8986	0.0472		
PHFN-23		23.9871		23.9312	0.0559		
PHFN-24		23.1189		23.0514	0.0675		
Observacio	nes: se	e debe limpiar la	balanza a	antes de ser utilizad	a y calentar el equipo		
5min							

Tabla 16. Pesos iniciales y finales de los pines de hierro fundido nodular.

Fuente: Autor.

En la siguiente tabla se indican los valores del peso inicial y final de los pines de Acero AISI 1018 utilizando la balanza SCIENTECH con una sensibilidad de 0.0001g, lo que es importante para obtener valores más exactos acerca del ensayo.

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA												
CARRERA DE INGENIERÍA MECÁNICA												
OPTENCIÓ	OBTENCIÓN DEL PESO DE PINES DE ACERO AISI 1018											
UBIENCI Motorial:	JN DE	A cero AISI 1018	ES DE ACE	LKU AISI 1018.	2017/08/03							
Naterial. Doolizado n	0 r •	Paul Escobar	Solicito	da nari	Ing Mg Henry Vaca							
DATOS DE	LARC	RATORIO	Solicita	uo por:	nig. Nig. Henry Vaca.							
Laboratorio	<u>L' IDC</u>).	Lab 31 FCIA-U	ТА	Temp.:	20°C							
Facultad:		Ingeniería en Ali	mentos	Autorizado por:	Ing Marco Analuisa							
Equipo:		Balanza SCIENT	ECH	Precisión:	0.0001g							
Hora de inio	cio:	08:30 am	-	Hora de fin.	09:00 am							
N°	Peso	o inicial (Pi) [g]	Peso	final (Pf) [g]	ΔP (Pi-Pf) [g]							
PA-1		26.3308		26.3266	0.0042							
PA-2		25.7088		25.7044	0.0044							
PA-3		25.7997	- 	25.7936	0.0061							
PA-4		26.3605	2	26.3552	0.0053							
PA-5		24.8680	7	24.8625	0.0055							
PA-6		25.5394	r 4	25.5349	0.0045							
PA-7		25.3391	r 4	25.3311	0.0080							
PA-8		24.7172	4	24.7089	0.0083							
PA-9		24.8080		24.7981	0.0099							
PA-10		25.3698	2	25.3597	0.0101							
PA-11		23.8775	2	23.8670	0.0105							
PA-12		24.5480		24.5394	0.0086							
PA-13		23.4295		23.4196	0.0099							
PA-14		22.7526		22.7442	0.0084							
PA-15		22.3575	4	22.3481	0.0094							
PA-16		23.4593	4	23.4484	0.0109							
PA-17		23.2724	4	23.2623	0.0101							
PA-18		22.6690	2	22.6587	0.0103							
PA-19		23.8740	4	23.8640	0.0100							
PA-20		23.4780	2	23.4679	0.0101							
PA-21		24.5774		24.5682	0.0092							
PA-22		24.3966	2	24.3821	0.0145							
PA-23		23.7919	2	23.7785	0.0134							
PA-24		23.1686		23.1549	0.0137							
Observacion	es: se	debe limpiar la	balanza ante	es de ser utilizada	y prender el equipo 5							
minutos.												

Tabla 17. Pesos iniciales y finales de los pines de Acero AISI 1018.UNIVERSIDAD TÉCNICA DE AMBATO

En la siguiente tabla se indican los valores del peso inicial y final de los discos de hierro fundido nodular utilizando la balanza METTLER TOLEDO con una sensibilidad de 0.001g.

_

UNIVERSIDAD TECNICA DE AMBATO											
		FACULTAD DE	E INGENI	IERIA CIVIL Y MI	ECANICA						
a.o		CARRERA	A DE ING	ENIERIA MECAN	ICA FICM						
OBTENCIÓN DEL PESO DE DISCOS DE HIERRO FUNDIDO NODULAR.											
Material:		Hierro Fundido	Nodular	Fecha	2017/08/03						
Realizado	por:	Paul Escobar.		Solicitado por:	Ing. Mg. Henry Vaca.						
DATOS DE LABORATORIO.											
Laboratori	io.	Lab. 2.2 FCIA-U	JTA.	Temp.:	20°C						
Facultad:		Ingeniería en Al	imentos	Autorizado por:	Ing. Marco Analuisa.						
Equipo:		B. METTLER T	OLEDO.	Precisión:	0.001g						
Hora de ini	icio:	09:00 am		Hora de fin.	09:30 am						
N°	Peso	o inicial (Pi) [g]	Pes	so final (Pf) [g]	ΔP (Pi-Pf) [g]						
DHFN-1		210.9440		210.939	0.005						
DHFN-2		205.0330		205.030	0.003						
DHFN-3		206.6590		206.655	0.004						
DHFN-4		238.1340		238.128	0.006						
DHFN-5		233.3770		233.372	0.005						
DHFN-6		276.7800		276.776	0.004						
DHFN-7		209.9409		209.935	0.006						
DHFN-8		204.0350		204.029	0.006						
DHFN-9		205.6577		205.652	0.006						
DHFN-10		237.1280		237.122	0.006						
DHFN-11		232.3727		232.367	0.006						
DHFN-12		275.7802		275.773	0.007						
DHFN-13		223.6129		223.606	0.007						
DHFN-14		264.4614		264.455	0.006						
DHFN-15		224.0170		224.012	0.005						
DHFN-16		231.7116		231.705	0.007						
DHFN-17		226.4992		226.492	0.007						
DHFN-18		247.5082		247.503	0.005						
DHFN-19		224.7310		224.726	0.005						
DHFN-20		265.5880		265.575	0.013						
DHFN-21		225.1380		225.132	0.006						
DHFN-22		232.8362		232.825	0.011						
DHFN-23		227.6190		227.612	0.007						
DHFN-24		248.6342		248.623	0.011						
Observacio	ones: S	Se utilizó la balan	za METT	LRE TOLEDO de 0	.001g, debido a que las						
probetas superaban la capacidad máxima de la balanza SCIENTECH de 0.0001g											

En la siguiente tabla se indican los valores del peso inicial y final de los discos de Acero AISI 1018 utilizando la balanza METTLER CITIZON, con una sensibilidad de 0.01g, lo que es importante para obtener valores más exactos acerca del ensayo.

	Image: Strategy of the control of t										
OBTENCIÓN DEL PESO INICIAL DE DISCOS DE ACERO AISI 1018.											
Material:		Acero AISI 1018	Fecha		20	017/08/03					
Realizado	por:	Paul Escobar.	Solicita	do por:	In	g. Mg. Henry Vaca.					
DATOS DE LABORATORIO.											
Laborator	io.	Lab. 2.2 FCIA-U	TA.	Tem. laboratorio	:	20°C					
Facultad:		Ingeniería en Ali	mentos	Autorizado por:		Ing. Marco Analuisa.					
Equipo:		BALANZA CIT	IZON.	Precisión:		0.01g					
Hora de in	nicio:	09:00 am		Hora de fin.		10:00 am					
N°	Pese	o inicial (Pi) [g]	Peso	final (Pf) [g]		ΔP (Pi-Pf) [g]					
DA-1		596.25		596.24		0.01					
DA-2		598.75		598.72		0.03					
DA-3		625.05		625.03		0.01					
DA-4		614.39		614.37		0.02					
DA-5		602.57	602.53			0.04					
DA-6		619.63	619.59			0.04					
DA-7	595.25		595.24			0.01					
DA-8		597.78	597.72			0.06					
DA-9		624.08	624.03			0.05					
DA-10		613.41	613.37			0.04					
DA-11		601.60		601.53	0.07						
DA-12		618.65		618.59	0.06						
DA-13		670.98		670.92	0.06						
DA-14		612.72		612.67		0.05					
DA-15		633.32		633.25		0.07					
DA-16		627.48		627.46		0.02					
DA-17		633.30		633.28		0.02					
DA-18		628.28		628.22		0.06					
DA-19		672.04		671.96		0.08					
DA-20		613.79		613.73		0.06					
DA-21		634.37	634.24			0.13					
DA-22		629.61	629.55			0.06					
DA-23		634.40		634.37		0.03					
DA-24		629.66		629.58		0.08					
Observaci	ones:	Se utilizó la balan	za CITIZO	N de 0.01g, debido	a c	que las probetas de Acero					
AISI1018 s	superal	ban la capacidad m	axima de la	balanza METTLRE	3 T (OLEDO de 0.001g.					

Tabla 19. Pesos iniciales y finales de los discos de Acero AISI 1018.

Una vez obtenidos los pesos iniciales de los especímenes, se procedió a realizar el ensayo de desgaste adhesivo para determinar la pérdida de masa y obtener los resultados. En la siguiente tabla se indica los resultados del ensayo de desgaste adhesivo para el Hierro Fundido Nodular (pines) sobre el Acero AISI 1018 (discos).

Tabla 20. Ensayo de degaste del Hierro Fundido sobre Acero AISI 1018.

))	UNIVERSIDAD TECNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA										
EN	ISAYO DE	DESGA	STE DE H	HERRO H	FUNDID) NODULA	R SOBRE	ACERO				
T		• /	[AISI 1	.018.							
Lug	ar de realiz	acion:			torio de F	undicion FIC	M-UTA	2000				
Fech	ha de realiza	acion:		2017/07/03)	Temp. Am	biente:	20°C				
Real	izado por:		P Luc N	aul Escoba	ur Maaa	Hora inici	08:00 am					
Kevi	sado por:	DINLE	Ing. N	Ig. Henry	vaca.	Hora IIn:	ς το Μόν	16:00 pm				
			STATICO			DI						
Mat	erial:		Hierro	Fundido N	lodular	Material:		1018				
Form	na			Pasador		Diámetro	[mm]:	100				
Diár	netro [mm]]:		10		Rugosidad	[µm]:	0.8				
Dens	sidad [g/cm	³]:		7.2		Densidad	[g/cm ³]:	7.87				
Dur	eza [HBN]:			149		Dureza [H	BN]:	143				
	Distancia	Carga	ΔP	Temp. I.	Temp.	ΔP	Temp. I.	Temp. F.				
#	[m]	[N]	[g]	[°C]	F. [°C]	[g]	[°C]	[°C]				
1			0.0026	17.0	39.2	0.010	17.0	39.2				
2		117.6	0.0051	17.0	37.8	0.030	17.0	37.8				
3	250		0.0050	16.0	40.0	0.015	16.0	40.0				
4	230	147.0	0.0037	16.0	41.2	0.020	16.0	41.2				
5			0.0063	16.0	40.0	0.040	16.0	40.0				
6			0.0114	16.0	39.0	0.040	16.0	39.0				
7			0.0056	17.0	48.5	0.012	17.0	48.4				
8		117.6	0.0107	17.0	39.1	0.060	17.0	34.1				
9	500		0.0106	16.0	42.3	0.050	16.0	36.2				
10	500		0.0078	16.0	37.9	0.040	16.0	30.1				
11		147.0	0.0133	16.0	39.5	0.070	16.0	37.9				
12			0.0242	16.0	37.0	0.060	16.0	35.6				
13			0.0105	17.0	38.0	0.060	17.0	38.0				
14		117.6	0.0111	17.6	35.9	0.050	17.6	35.9				
15	750		0.0177	19.0	32.0	0.070	19.0	32.0				
16			0.0274	16.5	34.0	0.020	16.5	34.0				
17		147.0	0.0345	15.8	33.8	0.020	15.8	33.8				
18			0.0457	16.0	37.2	0.060	16.0	37.2				
19		117 (0.0155	16.0	36.5	0.080	16.0	36.5				
20		117.6	0.0115	16.0	35.4	0.060	16.0	35.4				
21	1000		0.0248	16.0	38.3	0.130	16.0	32.8				
22		147.0	0.04/2	16.0	33.5	0.060	16.0	39.0				
23		147.0	0.0559	16.0	39.0	0.030	16.0	39.0				
24			0.0675	16.0	39.0	0.080	16.0	36.3				

En la siguiente tabla se indica los resultados del ensayo de desgaste adhesivo para el Acero AISI 1018 sobre el Hierro Fundido Nodular, cabe recalcar que este ensayo se realizó en el Laboratorio de Fundiciones de la FICM-UTA.

S S S S S S S S S S S S S S S S S S S)	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA										
	ENSAYO I	DE DESC	GASTE AI	DHESIVO	DEL ACE	RO AISI 10	18 SOB	RE EL				
			HIERR	O FUNDIE	O NODU	LAR.						
Lug	ar de realiz	ación:	Laborato	prio de Func	lición FICN	A-UTA		2 00 9				
Fech	ia de realiza	ación:	2017/08/	02		Temp. Ambiente:	20°C					
Real	izado por:		Paul Esc	obar		Hora inicio):	08:00 am				
Revi	sado por:		Ing. Mg.	Henry Vac	a.	Hora fin:		16:00 pm				
		PIN E	ESTÁTICO).		DIS	CO MÓ	VIL.				
Mat	erial:		AISI 101	8		Material:	Hierro Nodula	Fundido ar				
Forr	na		Pasador			Diámetro [mm]:	100				
Dián	netro [mm]	:	9.50			Rugosidad	[µm]:	1.799				
Dens	sidad [g/cm	³]:	7.87			Densidad [g/cm ³]:	7.2				
Dur	eza [HBN]:		143			Dureza [H	BN]:	149				
#	Distancia	Carga	ΔP	Temp. I.	Temp. F.	ΔP	Temp	Temp. F.				
	[m]	[N]	[g]	[°C]	[°C]	[g]	. I. [°C]	[°C]				
1	250	117.6	0.0042	16.0	31.0	0.005	16.0	31.0				
2			0.0044	17.2	29.0	0.003	17.2	29.0				
3			0.0061	16.8	30.0	0.004	16.8	30.0				
4		147.0	0.0053	15.3	28.0	0.006	15.3	28.0				
5			0.0055	17.2	30.0	0.005	17.2	30.0				
6			0.0045	16.0	35.0	0.004	16.0	35.0				
7	500	117.6	0.0080	15.8	26.7	0.006	16.3	29.1				
8			0.0083	16.1	31.8	0.006	15.9	29.3				
9			0.0099	16.0	30.2	0.006	16.0	31.4				
10		147.0	0.0101	17.0	38.9	0.006	17.0	34.0				
11			0.0105	16.0	39.9	0.006	17.2	37.4				
12			0.0086	16.3	33.6	0.007	17.5	38.2				
13	750	117.6	0.0099	16.3	33.6	0.007	17.5	38.2				
14			0.0084	18.1	38.2	0.006	18.1	38.2				
15		1.47.0	0.0094	16.3	33.2	0.005	16.3	33.2				
16		147.0	0.0109	19.0	35.1	0.007	19.0	35.1				
1/			0.0101	20.0	34.0	0.007	20.0	34.0				
18	1000	117 6	0.0103	20.0	29.0	0.005	20.0	29.0				
19	1000	11/.6	0.0100	10.8	40.6	0.005	16.8	36.2				
20			0.0101	1/.1	55.8	0.013	20.0	32.7				
21		147.0	0.0092	18.0	45.0	0.006	21.0	<u> </u>				
22		147.0	0.0145	17.0	51.5	0.011	20.3	40.1				
25			0.0134	17.0	45.4	0.007	10.8	39.3 25.6				
24	ruppiones		0.0137	17.8	37.8	0.011	18.0	33.0				
Obse	rvaciones.											

 Tabla 21. Ensayo de degaste del Acero AISI 1018 sobre el Hierro Fundido Nodular.

En las siguientes tablas se indican los resultados que se produjeron en los pines y discos del acero AISI 1018 y el Hierro Fundido Nodular.

UNIVERSIDAD TÉCNICA DE AMBATO											
	ŀ	FACU	LTAD DI	E INGEN	IE	CRÍA CIVIL Y	ME	CÁNICA			
AN ON		C	ARRER	A DE IN	GE	NIERÍA MEC	CÁN	ICA	FICM		
		Res	ultados en	pines de	H	ierro Fundido N	lodu	lar.			
Datos informativos.											
Lugar	de	Labo	oratorio	(le	Realizado po	r:	Paul Esc	obar		
realización:		Fund	lición FIC	CM-UTA							
Fecha:	Ing. Mg.	Henry Vaca.									
Norma aplic	cada:	AST	M G-99.			Aprobado po	or:	Ing. Mg.	Henry Vaca.		
Datos de ensayo Pin on Disk											
Material:			Hierro F	undido N	I.	Velocidad [r]	pm]:		560		
Densidad [g	/cm ³]:		7.2			Dureza del d	isco	[HRC]:	13		
Radio de en	sayo [1	mm]:	25			Radio de la e	sfera	a [mm]:	5		
Flujo de air	e de la	borat	orio.	Estático).		Lub	ricación:	Seca.		
				RESU	LT	ADOS					
N° de	Carg	a D	istancia	ΔΡ		Volumen	Т	asa de	Coeficiente		
probeta.	[N]	re	ecorrida	[g]		perdido	de	sgaste.	de desgaste		
		_	[m]	0.000		[mm']	[mg/m]		[mg/mN]		
PHFN-1	117.	6	250	0.0026		0.3611	0.0104		0.0001		
PHFN-2	117.6 250		250	0.0051		0.7083	0.0204		0.0002		
PHFN-3	117.	7.6 250		0.0050		0.6944	0	.0200	0.0002		
PHFN-4	147.	0	250	0.0037		0.5139	0	.0148	0.0001		
PHFN-5	147.	0	250	0.0063	0.0063 0.8		0.0252		0.0002		
PHFN-6	147.	0	250	0.0114		1.5833	0.0456		0.0003		
PHFN-7	117.	6	500	0.0056		0.7778	0.0112		0.0001		
PHFN-8	117.	6	500	0.0107	-	1.4861	0.0214		0.0002		
PHFN-9	117.	6	500	0.0106)	1.4722	0	0.0212	0.0002		
PHFN-10	147.	0	500	0.0078	5	1.0833	0	0156	0.0001		
PHFN-11	147.	0	500	0.0133	5	1.84/2	0	0.0266	0.0002		
PHFN-12 DHEN 12	14/.	0	500	0.0242	-	3.3011	0	0.0484	0.0003		
PHFN-13 DHEN 14	117	6	750	0.0105)	1.4585	0	0150	0.0001		
PHFN-14 DUEN 15	117.	0	750	0.0111	7	1.5417	0	0252	0.0001		
PHFN-15 DHEN 16	117.	0	750	0.0177	1	2.4385	0	0201	0.0002		
PHFN-10 DHEN 17	147.	0	750	0.0274	+	3.8030	0	0402	0.0003		
PHFN-17 DHFN 18	147.	0	750	0.0343) 7	4.7917	0	0652	0.0003		
PHEN 10	147.	6	1000	0.0437		0.3472	0	0155	0.0004		
PHFN_20	117.	6	1000	0.0133	, ;	2.1320	0	0115	0.0001		
PHFN-20 117.6 1000 0.0115 1.5972 0.0115 PHEN 21 117.6 1000 0.0248 2.4444 0.0248							0.0001				
PHFN.22	147	0	1000	0.0240	,)	6 5 5 5 6	0	0472	0.0002		
PHFN-23	147	0	1000	0.0559	-)	7.7639	0	.0559	0.0004		
PHFN-24	147	0	1000	0.0675	5	9.3750	0	.0675	0.0005		
Elaborado r	or:	Paul	Escobar		V	erificado por:	In	g. Mg. He	nry Vaca		
Revisado po	or:	Ing. N	Ig. Henry	Vaca	V	alidado por:	In	g. Mg. He	nry Vaca		

Tabla 22. Resultados del ensayo de desgaste adhesivo bajo Norma ASTM G-99 en
los pines de hierro fundido nodular.

A continuación se muestran los resultados obtenidos tras el ensayo de desgaste adhesivo generados en los discos de acero AISI 1018.

Tabla 23. Resultados del ensayo de desgaste adhesivo bajo Norma ASTM G-99 enlos discos de acero AISI 1018.

	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA Resultados en discos de Acero AISI 1018											
Datos informativos.												
Lugar de Laboratorio de Baolizado por Paul Escobar												
Lugar	. ue	Eun	dición EICM		Ne	Realizado por: Faul Escobal						
Facha	•	201	7/07/06	FOIA	Da	Les Ma Hours Voo						
recha:	andar	201	TM C 00		An	visado por:	Ing. Mg. I	Jonry Vaca.				
Norma apr	caua:	AS.	D-4		Ap D:	robado por:	IIIg. Mg. I	Telli y vaca.				
Motorial				e ensayo		On DISK	<u></u>	560				
Dongidad [a/am ³ 1.			51 1018		elociuau [rpi		500				
Delisiuau [3	g/ciii j:	.].	25		D	adio do lo osf	CO [IIKC]:	5				
Fluio do si	isayu [IIII] ra da laba	ij. roto	rio Fetátic	20	T	ubricación.		5 Seca				
riujo de ali	e ue labo	1 a 10		.u. FSIII TA		NS		Seca.				
Nº de	Carga		Distancia		σ	Volumen	Tasa de	Coeficiente				
probeta	[N]		recorrida	[] []		perdido	desgaste	de desoaste				
protocia.	[1]		[m]	١٤J		[mm ³]	[mg/m]	[mg/mN]				
DA-1	117.6		250	0.01		1 2706	0.0400	0.0003				
DA-1 DA-2	117.0		250	0.01		3 8119	0.0400	0.0003				
DA-2 DA-3	117.0		250	0.015		1 9060	0.0600	0.0010				
DA-3	147.0		250	0.02		2 5413	0.0800	0.0005				
DA-4 DA-5	147.0		250	0.02		5.0826	0.1600	0.0003				
DA-6	147.0		250	0.04		5.0826	0.1600	0.0011				
DA-7	117.6		500	0.04		1.5248	0.0240	0.0002				
DA-8	117.6		500	0.06	0.01 1.		0.1200	0.0010				
DA-9	117.6		500	0.05		6.3532	0.1000	0.0009				
DA-10	147.0		500	0.04		5.0826	0.0800	0.0005				
DA-11	147.0		500	0.07		8.8945	0.1400	0.0010				
DA-12	147.0		500	0.06		7.6239	0.1200	0.0008				
DA-13	117.6		750	0.06		7.6239	0.0857	0.0007				
DA-14	117.6		750	0.05		6.3532	0.0714	0.0006				
DA-15	117.6		750	0.07		8.8945	0.1000	0.0009				
DA-16	147.0		750	0.02		2.5413	0.0286	0.0002				
DA-17	147.0		750	0.02		2.5413	0.0286	0.0002				
DA-18	147.0		750	0.06		7.6239	0.0857	0.0006				
DA-19	117.6		1000	0.08		10.1652	0.0800	0.0007				
DA-20	117.6		1000	0.06		7.6239	0.0600	0.0005				
DA-21	117.6		1000	0.13		16.5184	0.1300	0.0011				
DA-22	147.0		1000	0.06		7.6239	0.0600	0.0004				
DA-23	147.0		1000	0.03		3.8119	0.0300	0.0002				
DA-24	147.0		1000	0.08	-	10.1652	0.0800	0.0005				
Elaborado	por:	Pa	ul Escobar		V	erificado por	: Ing. Mg	. Henry Vaca				
Revisado por: Ing. Mg. Henry Vaca Validado por: Ing. Mg. Henry Vaca												

Los resultados que se generaron en los pines de Acero AISI 1018 se muestran a continuación.

Tabla 24. Resultados del ensayo de desgaste bajo Norma ASTM G-99 en los pines
de acero AISI 1018.

	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA											
	Resultados en los pines de Acero AISI 1018											
Datos informativos.												
Lugar	d	e Lab	orator	io		de I	Realizado	o por:	Paul Es	coba	r	
realización	:	Fun	dición	FICM	I-UT	A		•				
Fecha:		201	7/07/0	7		I	Revisado	por:	Ing. Mg	. He	nry Vaca.	
Norma apli	icada:	AST	TM G-	99.		A	Aprobad	o por:	Ing. Mg	. He	nry Vaca.	
Datos de ensavo Pin on Disk												
Material:			Ace	ro AIS	SI 101	8	Veloci	dad [r	pm]:		560	
Densidad [g/cm^3]:		7.87	1			Dureza	a del d	isco [HRC	1:	6	
Radio de er	nsayo [r	nm]:	25				Radio	de la e	sfera [mm		5	
Flujo de air	re de la	borator	io:	Está	tico.		Lubric	ación:	<u> </u>		Seca.	
*				R	ESU	LTAI	DOS					
N° de	Car	rga	Dista	ncia	Z	ΔP	Volum	nen	Tasa de	С	oeficiente	
probeta.	[N	1]	reco	rrida	[g]	perdic	lo	desgaste.	de	e desgaste	
			[n	n]			[mm ³	3]	[mg/m]	[mg/mN]	
PA-1	117	7.6	25	50	0.0042		0.533	37	0.0168		1.43E-04	
PA-2	117.6		25	50	0.0044		0.559)1	0.0176		1.50E-04	
PA-3	117	117.6		250 0.0061)61	0.775	51	0.0244		2.07E-04	
PA-4	147	7.0	250 0.00)53	0.6734		0.0212	1.44E-04			
PA-5	147	7.0	25	250 0.0055)55	0.698	39	0.0220		1.50E-04	
PA-6	147	7.0	25	250 0.0045)45	0.571	8	0.0180		1.22E-04	
PA-7	117	7.6	500 0.0080)80	1.0165		0.0160		1.36E-04		
PA-8	117	7.6	500 0.0083)83	1.0546		0.0166	0.0166 1.41E-			
PA-9	117	7.6	5()0	0.00)99	1.2612		0.0199	0.0199 1.69F		
PA-10	147	7.0	50)0	0.01	01	1.283	1.2834 0.02			1.37E-04	
PA-11	147	7.0	50)0	0.01	05	1.334	2	0.0210		1.43E-04	
PA-12	147	7.0	50)0	0.00)86	1.092	28	0.0172		1.17E-04	
PA-13	117	7.6	75	50	0.00)99	1.253	30	0.0131		1.12E-04	
PA-14	117	7.6	75	50	0.00)84	1.065	50	0.0112	0.0112		
PA-15	117	7.6	75	50	0.00)94	1.198	30	0.0126		1.07E-04	
PA-16	147	7.0	75	50	0.01	09	1.385	50	0.0145		9.89E-05	
PA-17	147	7.0	75	50	0.01	01	1.283	34	0.0135		9.16E-05	
PA-18	147	7.0	75	50	0.01	03	1.308	88	0.0137		9.34E-05	
PA-19	117	7.6	10	00	0.01	00	1.270)6	0.0100		8.50E-05	
PA-20	117	7.6	10	00	0.01	01	1.283	34	0.0101		8.59E-05	
PA-21	117	7.6	10	00	0.00)92	1.169	0	0.0092		7.82E-05	
PA-22	147	7.0	10	00	0.01	45	1.842	24	0.0145		9.86E-05	
PA-23	147	7.0	10	00	0.01	34	1.702	27	0.0134		9.12E-05	
PA-24	147	7.0	10	00	0.01	37	1.740)8	0.0137		9.32E-05	
Elaborado	por:	Paul Es	cobar			Veri	ficado p	or:	Ing. Mg. H	Ienr	y Vaca	
Revisado p	Revisado por: Ing. Mg. Henry Vaca Validado por: Ing. Mg. Henry Vaca										y Vaca	

Los resultados generados en los discos de Hierro Fundido Nodular se muestran a continuación.

Tabla 25. Resultados del ensayo de desgaste bajo Norma ASTM G-99 en los discos
de Hierro Fundido Nodular.

SOLD TECNICA DA	UNIVERSIDAD TÉCNICA DE AMBATO										
	ŀ	ACUL	TAD DE IN	GEN	IER.	IA CIVIL Y M	ECANICA	ENCIA			
0.0					GEN	IERIA MECA	NICA				
Resultados en discos de Hierro Fundido Nodular.											
.		T 1	Dat	os in	torm	ativos.		1			
Lugar	bar										
realization; runulcion FICM-UTA Faches 2017/07/07											
Fecha:2017/07/07Revisado por:Ing. Mg. Henry V											
Norma aplicada:ASTM G-99.Aprobado por:Ing. Mg. Henry Vaca											
Datos de ensayo Pin on Disk											
Material:	2		Hierro Fun	Idido	N.	Velocidad	[rpm]:	560			
Densidad [g/cm°]:		7.2			Dureza [H	RC]:	13			
Radio de el	nsayo [mm]:	25			Radio [mn	n]:	5			
Lubricació	n:		Seca.		Fluj	o de aire de lal	ooratorio.	Estático.			
	I		R	ESU	LTAI	DOS					
N° de	Carg	a l	Distancia	Δ	١P	Volumen	Tasa de	Coeficiente			
probeta.	[N]	ree	corrida [m]	[g]	perdido	desgaste.	de desgaste			
						[mm ³]	[mg/m]	[mg/mN]			
DHFN-1	117.	6	250	0.005		0.6944	0.0200	1.70E-04			
DHFN-2	117.	6	250	0.0	003	0.4167	0.0120	1.02E-04			
DHFN-3	117.	6	250		004	0.5556	0.0160	1.36E-04			
DHFN-4	147.	0	250		006	0.8333	0.0240	1.63E-04			
DHFN-5	147.	0	250	0.005		0.6944	0.0200	1.36E-04			
DHFN-6	147.	0	250	0.0	004	0.5556	0.0160	1.09E-04			
DHFN-7	117.	6	500	0.0	006	0.8254	0.0119	1.01E-04			
DHFN-8	117.	6	500	0.0	006	0.8333	0.0120	1.02E-04			
DHFN-9	117.	6	500	0.0	006	0.7984	0.0115	9.78E-05			
DHFN-10	147.	0	500	0.0	006	0.8278	0.0119	8.11E-05			
DHFN-11	147.	0	500	0.0	006	0.7889	0.0114	7.73E-05			
DHFN-12	147.	0	500	0.0	007	0.9956	0.0143	9.75E-05			
DHFN-13	117.	6	750	0.0	007	0.9556	0.0092	7.80E-05			
DHFN-14	117.	6	750	0.0	006	0.8889	0.0085	7.26E-05			
DHFN-15	117.	6	750	0.0	005	0.6944	0.0067	5.67E-05			
DHFN-16	147.	0	750	0.0	007	0.9167	0.0088	5.99E-05			
DHFN-17	147.	0	750	0.0	007	0.9944	0.0095	6.49E-05			
DHFN-18	147.	0	750	0.0	005	0.7167	0.0069	4.68E-05			
DHFN-19	117.	6	1000	0.0	005	0.6944	0.0050	4.25E-05			
DHFN-20	117.	6	1000	0.0	013	1.8056	0.0130	1.11E-04			
DHFN-21	117.	6	1000	0.0	006	0.8333	0.0060	5.10E-05			
DHFN-22	147.	0	1000	0.0	011	1.5556	0.0112	7.62E-05			
DHFN-23	147.	0	1000	0.007		0.9722	0.0070	4.76E-05			
DHFN-24	147.	0	1000	0.0	011	1.5556	0.0112	7.62E-05			
Elaborado	por:	Paul Es	scobar		Veri	ificado por:	Ing. Mg.	Henry Vaca			
Revisado p	Revisado por:Ing. Mg. Henry VacaValidado por:Ing. Mg. Henry Vaca										

4.2. INTERPRETACIÓN DE RESULTADOS

Interpretación de los resultados de desgaste adhesivo en los pines de Hierro Fundido Nodular sobre discos de acero AISI 1018

En la figura 9, se muestran los valores de volumen desgastado de los pines de hierro fundido nodular en función de la distancia recorrida de 250m, 500m, 750m y 1000m y bajo carga de 117.6N y 147N. Para cada ensayo se utilizaron tres probetas y mediante la ecuación de masa perdida a volumen perdido se obtuvo la pérdida volumétrica. El ensayo se comporta de manera ascendente dando valores de 7.89mm³ a 147N y 1000m de recorrido; y 2.39mm³ al aplicarse una carga de 117.6N y 1000m de distancia recorrida.

Estos pines de hierro fundido nodular (P-HFN) actuaron estáticamente sobre discos de Acero AISI 1018 que giraron a 560rpm, la temperatura más alta fue de 48.5°C

Figura 9. Pérdida volumétrica en pines de Hierro Fundido Nodular bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

En la figura 10 podemos apreciar la tasa de desgaste producido en los pines de hierro fundido nodular sobre discos de acero AISI 1018, los valores se encuentran en miligramos por cada metro recorrido, a 117.6N la tasa de desgaste se mantiene relativamente desde 0.017 a 0.019mg/m, mientras que a 147N se comporta de manera ascendente al incrementar la distancia de recorrido, desde 0.029 a 0.057mg/m.

Figura 10. Tasa de desgaste en pines de Hierro Fundido Nodular bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

La figura 11 se muestra el coeficiente de desgaste para cada probeta, el valor tiende a mantenerse a 0.0002mg/mN a una carga de 117.6N y las distancias de 250m y 50m; a las distancias de 750m y 1000m el coeficiente de desgaste disminuye a 0.0001mg/m.

Mientras que a 147N tiende a mantenerse a 0.0002mg/m al recorrer 250m y 500m, asciende a 0.0004 mg/mN cuando se recorre una distancia de 1000m.

Interpretación de los resultados de desgaste adhesivo en los pines Acero AISI 1018 sobre discos de Hierro Fundido Nodular

En la figura 12 se muestran los valores de la pérdida volumétrica para los pines de acero AISI 1018 sometidos a desgaste al aplicar una carga de 117.6N y 147N en una distancia de 250m, 500m, 750m y 1000m. Se puede observar que la perdida volumétrica es mayor a 147.0N con un promedio de 4.973mm³, mientras que a la carga de 117.6N el promedio de la perdida volumétrica es 4.147mm³ durante todo el ensayo.

Los pines de Acero AISI 1018 actuaron estáticamente sobre los discos de Hierro Fundido Nodular que giran a 560rpm.

Figura 12. Pérdida volumétrica en pines de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

En la figura 13 se puede observar que se produce una tasa de desgaste mayor bajo la carga de 177.0N, siendo de mayor proporción en una distancia de 1000m. La tasa de desgaste, tanto a 117.6N y 147N se comporta de manera decreciente, empezando desde 0.0204mg/m hasta 0.0139mg/m y de 0.0196mg/m hasta 0.0098mg/m, respectivamente.

Los pines de acero AISI 1018 actuaron de manera estática, mientras que el disco giraba a 560rpm y la huella de desgaste se produjo a un radio de 25mm desde el centro del disco.

Figura 13. Tasa de desgaste en pines de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

El coeficiente de desgaste, expuesto en la figura 14, se comporta relativamente de forma descendente para cada pin de acero AISI 1018 ensayados bajo los parámetros establecidos. Al igual que la tasa de desgaste, el coeficiente de desgaste es mayor a una carga de 117.6N y menor a 147N.

Los pines de Acero AISI 1018 actuaron estáticamente sobre los discos de Hierro Fundido Nodular que giran a 560rpm.

Figura 14. Coeficiente de desgaste en pines de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

Interpretación de los resultados de desgaste adhesivo en los discos de Hierro Fundido Nodular

En la gráfica 15 se muestra que el ensayo realizado a 147N y 1000m la pérdida volumétrica tiende a incrementar, obteniendo un valor máximo de 1.361 mm³, utilizando una carga de 117.6N se obtiene la mayor pérdida volumétrica también a 1000m de distancia recorrida y es de 1.111mm³.

Figura 15. Pérdida volumétrica en los discos de Hierro Fundido Nodular bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

Se puede observar en la figura 16 que la tasa de desgaste tiene un comportamiento descendiente, a 250m y 500m la tasa de desgaste es mayor cuando se aplica una fuerza de 147N, en todo el transcurso del ensayo.

Figura 16. Tasa de desgaste en los discos de Hierro Fundido Nodular bajo carga de 117.6N y 147N a distancias de 250m, 500m 750m y 1000m. Fuente: Autor.

Se puede observar en la figura 17 dos comportamientos tribológicos diferentes del coeficiente de desgaste debido a que a las distancias de 250m y 500m se obtienen los valores más altos del ensayo. Una vez promediado los valores de las probetas se manifiesta un descenso del coeficiente a 750m y 1000m.

A una distancia de 250m el coeficiente de desgaste es igual para las dos cargas aplicadas, a 500m de recorrido y aplicando una carga de 147N se produce un coeficiente de desgaste de 8.53E-5mg/mN, valor superior a 1.0E-4 que es el que se obtiene a 117.6N.

A las distancias de 500m y 100m se produce un cambio radical al resultar un coeficiente de desgaste mayor aplicando 117.6N descendiendo hasta 6.82E-5, mientras que al aplicar 147N el coeficiente de desgaste desciende hasta 6.67E-5

Figura 17. Coeficiente de desgaste en los discos de Hierro Fundido Nodular bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

Interpretación de los resultados de desgaste adhesivo en los discos de Acero AISI 1018

La pérdida volumétrica en los discos de acero AISI 1018 tiende a comportarse de manera ascendente hasta 11.436mm³ aplicando 117.6N y 1000m.

Figura 18. Pérdida volumétrica en los discos de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

La gráfica 19 de la tasa de desgaste en los discos de acero AISI 1018 tiene un comportamiento similar a la perdida volumétrica pues está en función de la misma, la mayor tasa de desgaste se da cuando el ensayo se realiza a 500m y a 147N con un promedio de 0.24mg/m y a 117.6N con 0.227mg/m promedio.

Figura 19. Tasa de desgaste en los discos de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

La figura 20 muestra que el coeficiente de desgaste en los discos de acero AISI 1018 (D-A) tiene un comportamiento diferente para cada probeta, en la probeta DA-1 el coeficiente de desgaste es nulo, mientras que el coeficiente de desgaste más alto se encuentra en la probeta DA-3 con 0.00476mg/mN.

Figura 20. Coeficiente de desgaste en los discos de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

Parámetros de soldadura

El consumible que se empleó fue un electrodo AWS ENi-CI, de la marca MG 250 de 3.2mm de diámetro, depositado mediante el proceso SMAW con precalentamiento utilizando una soldadora marca Miller Syncrowave 250 DX.

Para obtener una mejor penetración de la soldadura se realizó un canal en la probeta siguiendo la trayectoria de la huella de desgaste.

Los parámetros de soldadura por proceso SMAW empleados se indican en la siguiente tabla.

Tensión	Corriente	Polaridad	Posición.				
(V)	(A)	i Ulanuau.					
52.5	101	AC	1G (Plana)				
Fuente: Autor.							

 Tabla 26. Parámetros de soldadura.

Además se utilizó una matriz elaborada con placas de acero A36 de 10mm de espesor para evitar el pandeo de las probetas, conjuntamente se procedió a golpear de manera sutil las probetas una vez soldadas para ayudar a que las tensiones se alivien.

(a) (b) (c) **Figura 21.** (a) Matriz con probeta acanalada, (b) Probeta soldada en matriz para evitar pandeo, (c) Martillado post-soldadura para aliviar tensiones.

Fuente: Autor.

A continuación se presenta una tabla con las especificaciones técnicas, químicas y físicas del electrodo MG 250 ENi CI maquinable, se decidió por este electrodo debido a que se necesita cumplir con la rugosidad de 0,8µm; rugosidad que se la adquiere mediante mecanización.

Tabla 27. Característica	s técnicas del	Electrodo	AWS E	Ni-CI, MG 250.
--------------------------	----------------	-----------	-------	----------------

UNIVERSIDAD TÉCNICA DE AMBATO									
FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA									
AN OF	CARRERA DE INGENIERÍA MECÁNICA								
DATOS INFORM	ATIVOS.								
Norma:	ASTM A-536	Fecha de realización:	20/08/2017						
Realizado por:	Paúl Escobar.	Autorizado por:	Ing. Mg. Henry						
			Vaca.						
Lugar de	Laboratorio d	e Temperatura	19°C						
realización:	fundición. FICM-UTA	ambiente:							
ESPECIFICACIO	NES TÉCNICAS DEL	ELECTRODO							
Diámetro:	1/8" (3.2mm)	Límite de fluencia:	50,000 PSI						
Amperaje:	55-110	Densidad:	8.71 g/cm ³						
Amp. Seleccionado	: 101	Polaridad:	AC or DC						
Dureza:	160 HB	Coincidencia de	Similar al Hierro						
		color:	Fundido						
Composición quím	ica:								
3.4-3.85%C; 2.3-3.1	%Si; 0.1-0.3%Mn; 0.02	max%S; 0.1max %P.							
Observaciones:									

Fuente: Autor.

Par la segunda parte de este trabajo experimental en donde se realizó el ensayo de desgaste adhesivo entre el Acero AISI 1018 y el relleno de soldadura SMAW con electrodo ENi-CI (MG 205 ENi CI) de debe tener en cuenta los mismos parámetros de distancia, carga, lubricación, temperatura y ambiente atmosférico, para ello se utiliza el mismo formato de la primera parte del proyecto en donde se realizó ensayos de desgaste adhesivo entre el Acero AISI 1018 y el Hierro Fundido Nodular, a más de contar con valores de pérdida de volumen, tasa de desgaste y coeficiente de desgaste entre estos dos materiales.

 Tabla 28. Formato de recolección de datos para calcular el desgaste adhesivo del hierro fundido nodular.

Sto TECNICA DE	UNIV	VERSIDAD TÉCNICA DE AMBATO						
	ACULTAD DE INGENIERÍA CIVIL Y MECÁNICA							
2 01	CARRERA DE INGENIERÍA MECÂNICA							
ENSAYO DE DESC	GASTE A	DHESIV	O DEI	L HIERRO FUNDIDO NO	DULAR			
1 DATOS INFOR	MATIVO	S						
Centro de estudio y	análisis:	Laborator	io de F	undiciones FICM-UTA.				
Tipo de estudio:	De labor	ratorio		N°. de ensayo:	1			
Solicitado por:	Ing. Mg	Henry V	aca.	Realizado por:	Paul Escobar.			
Revisado por:	Ing. Mg	Henry V	aca.	Fecha de inicio ensayo:	2017/09/04			
Norma aplicada:	ASTM 0	G-99		Fecha final del ensayo:	2017/10/31			
DATOS DEL TRIB	OSISTE	MA						
Tipo de tribómetro:	Pin on	Disk.	Confi	iguración del tribómetro:	Vertical.			
Tipo de lubricación	: Seco.		Tipo	de movimiento:	Deslizante.			
2 PARÁMETROS	RECOME	ENDADO:	DADOS POR LA NORMA ASTM G-99					
DATOS BAJO NOR	MA	DATOS SELECCIONAD		DS.				
Diámetro del pin:		2-10mm		Diámetro del pin:	10mm			
Diámetro del disco:		30-100mm		Diámetro del disco:	100mm			
Espesor del disco:		2mm-10mm		Espesor seleccionado:	4.23mm			
Velocidad del motor	•	60-600rpm		Velocidad de giro del	560rpm.			
				motor:				
Rugosidad:		0.8µm		Carga aplicada:	12kg			
					15kg.			
Sensibilidad de bala	nza:	0.0001mg		Fuerza aplicada:	117.6N			
					147N			
Sensibilidad	del	2.4 micr	as.	Distancia de recorrido:	500m			
instrumento de				1000m.				
lineal:								
3 OBSERVACION	NES.							
Los datos selecci	onados	se encu	entrar	n dentro de las recon	nendaciones y			
especificaciones de la norma ASTM G-99.								

Fuente: Autor.

Para logar un peso más específico se utilizó una balanza de 0.0001g marca SCIENTECH.

OBD TECNICA	UNIVERSID	AD T	ÉCNIC	CA DE AMBA	ТО					
	FACULTAD DE IN	FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA								
AT OF	CARRERA D	CARRERA DE INGENIERÍA MECÁNICA								
OBTENCIÓN DEL PESO DE LOS PINES DE HIERRO FUNDIDO NODULAR.										
Material:	Hierro Fundido N	odular	c con	Fecha	2017/09/04					
	relleno SMAW y E	Ni-CI								
Realizado por	: Paul Escobar.		Soli	citado por:	Ing. Mg. Henry Vaca.					
	DATOS I	DE LA	BORA	ATORIO.						
Laboratorio.	Lab. 3.1 FCIA-UTA	A .	Tem.	laboratorio:	20°C					
Facultad:	Ingeniería en Alime	entos	Auto	rizado por:	Ing. Marco Analuisa.					
Equipo:	Balanza SCIENTEO	CH	Preci	sión:	0.0001g					
Hora de inicio	08:00 am		Hora	de fin.	08:30 am					
N°	Peso inicial (Pi) [g]	H	Peso fir	nal (Pf) [g]	ΔP (Pi-Pf) [g]					
PHFNR-1	25.4552		25.	.4515	0.0037					
PHFNR-2	26.0673		25.	.6130	0.4543					
PHFNR-3	25.4164		24.	.9969	0.4195					
PHFNR-4	23.3753		23.	.0202	0.3552					
PHFNR-5	24.0187		23.	.4093	0.6094					
PHFNR-6	23.5789		22.	.9992	0.5797					
PHFNR-7	24.4631		24	.456	0.0071					
PHFNR-8	25.4807		24.	.6175	0.8632					
PHFNR-9	24.7985		24.	.0014	0.7971					
PHFNR-10	22.6995		22.	.0247	0.6748					
PHFNR-11	23.0839		22.	.4138	0.6701					
PHFNR-12	22.6870		22.	.0037	0.6833					
PHFNR-13	25.4133		24.	.6569	0.7564					
PHFNR-14	24.2655		23.	.7395	0.5260					
PHFNR-15	23.6884		23.	.1618	0.5266					
PHFNR-16	22.9999		22.	.2838	0.7161					
PHFNR-17	25.0911		24.	.3199	0.7712					
PHFNR-18	23.6398		22.	.9746	0.6652					
PHFNR-19	25.7767		24.	.7708	1.0059					
PHFNR-20	24.8593		24.	.1598	0.6995					
PHFNR-21	24.2816		23.	.5813	0.7003					
PHFNR-22	23.4036		22.	.4513	0.9523					
PHFNR-23	25.4397		24.	.4141	1.0256					
PHFNR-24	24.0944		23.	.2097	0.8847					
Observaciones	: Se debe limpiar la ba	alanza	antes	de ser utilizad	la, calentar el equipo 5					
minutos.										

Tabla 29. Obtención de los pesos iniciales y finales de los pines de hierro fundidonodular con relleno de soldadura SMAW con electrodo AWS ENi-CI.

Fuente: Autor.

La siguiente tabla muestra el peso inicial y final de los pines de Acero AISI1018 antes y después del ensayo de desgaste adhesivo.

Tabla 30. Obtención de los pesos iniciales y finales de los pines de Acero AISI

1018.

SAD TECNICA ON		UNIVERSIDAD TÉCNICA DE AMBATO							
		FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA							
CARRERA DE INGENIERIA MECANICA									
N 4 1 1	OBTENCION DEL PESO DE PINES DE ACERO AISI 1018.								
Material:		Acero AISI 1018	S Feel	ha		20	017/09/06		
Realizado p	or:	Paul Escobar.	Soli	citac	lo por:	In	g. Mg. Henry Vaca.		
T 1 1 1			JS DE L	ABO			2000		
).	Lab. 3.1 FCIA-U) I A.		Tem. laboratorio	:	20°C		
Facultad:		Ingenieria en Al	Imentos		Autorizado por:		Ing. Marco Analuisa.		
Equipo:	•	Balanza SCIEN	IECH		Precision:		0.0001g		
Hora de inic	210: D	08:30 am			Hora de fin.		09:00 am		
N°.	Pe	so inicial (Pi)		Pes	o final (Pf)		$\Delta P (P1-Pf)$		
DA 1									
PA-1		25.9933			25.9507		0.0426		
PA-2		25.4544			25.4082		0.0462		
PA-3		25.4355			25.3988		0.0367		
PA-4		26.0712			26.0277		0.0435		
PA-5		24.4567	24.4131				0.0436		
PA-6		25.2534	25.2042			0.0492			
PA-7		24.9552			24.8743		0.0809		
PA-8		24.4127			24.3249		0.0878		
PA-9		24.4033		24.3335			0.0698		
PA-10		25.0322	24.9496			0.0826			
PA-11		23.4176	23.3347			0.0829			
PA-12		24.2087	24.1152				0.0935		
PA-13		22.2992	22.1632			0.1360			
PA-14		21.9273			21.8042		0.1231		
PA-15		22.8891	22.8103		0.0788				
PA-16		22.5967	22.4776			0.1191			
PA-17		22.2736			22.1594		0.1142		
PA-18		21.6044			21.4810		0.1234		
PA-19		23.4638		23.2830 0.180		0.1808			
PA-20		23.0877			22.9240		0.1637		
PA-21		24.0349			23.9301		0.1048		
PA-22		23.7558		-	23.5974		0.1584		
PA-23		23.4311			23.2792	0.1519			
PA-24		22.7649			22.6008		0.1641		
Observacion	es: se o	debe limpiar la ba	lanza ant	tes de	e ser utilizada, se d	ebe	calentar el equipo por		
lo menos 5 n	ninutos	S.							

Fuente: Autor.

Para medir el peso inicial y final de los discos de Hierro Fundido Nodular se utilizó una balanza con una apreciación de 0.001g debido al peso de las mismas.

UNIVERSIDAD TÉCNICA DE AMBATO								
	FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA							
AN ON	CARRERA DE I	NGEI	NIERÍA MECÁNI	CA	FICM			
OBTENCIÓN DEL PESO DE DISCOS DE HIERRO FUNDIDO NODULAR.								
Material:	Hierro Fundido Nodula	ar F	echa	20	17/09/06			
Realizado por:	Paul Escobar.	Se	olicitado por:	Ing	g. Mg. Henry Vaca.			
	DATOS DE	LAB	ORATORIO.					
Laboratorio.	Lab. 2.2 FCIA-UTA.		Tem. laboratorio	:	20°C			
Facultad:	Ingeniería en Alimento	S	Autorizado por:		Ing. Marco Analuisa.			
Equipo:	B. METTLER TOLED	0.	Precisión:		0.001g			
Hora de inicio:	09:00 am		Hora de fin.		09:30 am			
N°	Peso inicial (Pi)		Peso final (Pf)		ΔP (Pi-Pf)			
	[g]		[g]		[g]			
DHFNR-1	213.897		213.049		0.847			
DHFNR-2	239.013		238.298		0.714			
DHFNR-3	207.241		206.296		0.944			
DHFNR-4	205.103	204.227			0.875			
DHFNR-5	234.122	233.276			0.845			
DHFNR-6	274.593	273.651			0.942			
DHFNR-7	213.664	212.054			1.610			
DHFNR-8	238.660	237.303			1.357			
DHFNR-9	207.095		205.301		1.794			
DHFNR-10	204.895		203.232		1.663			
DHFNR-11	233.887		232.281		1.606			
DHFNR-12	274.445		272.656		1.789			
DHFNR-13	226.056		224.471		1.584			
DHFNR-14	264.738		263.114		1.623			
DHFNR-15	229.565		227.843		1.722			
DHFNR-16	235.209		232.939		2.270			
DHFNR-17	231.059		229.271	271 1.788				
DHFNR-18	250.476		247.461		3.015			
DHFNR-19	225.591		223.484		2.107			
DHFNR-20	264.234		262.075		2.159			
DHFNR-21	228.963		227.831		1.132			
DHFNR-22	234.059		231.040 3.01		3.019			
DHFNR-23	230.391		228.013 2.378		2.378			
DHFNR-24	248.581		244.572		4.009			
Observaciones: S	e utilizó la balanza ME	ETTLR	RE TOLEDO de 0	.00	lg, debido a que las			
probetas superaban la capacidad máxima de la balanza SCIENTECH de 0.0001g								

Tabla 31. Obtención de los pesos iniciales y finales de los discos de Hierro FundidoNodular con relleno de soldadura SMAW con electrodo AWS ENi-CI.

Fuente: Autor.

La siguiente tabla indica el peso inicial y final de los discos de Acero AISI 1018.

UNIVERSIDAD TÉCNICA DE AMBATO								
F	FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA 🛛 📢 🏹 🗌							
AN OV	CARRERA DE INGENIERÍA MECÁNICA							
OBTENCIÓN DEL PESO INICIAL DE DISCOS DE ACERO AISI 1018.								
Material:	Acero AISI 1018	Fecha	2017/09/06					
Realizado por:	Paul Escobar.	Solicitado por:	Ing. Mg. Henry Vaca.					
	DATOS DE L	LABORATORIO.						
Laboratorio.	Lab. 2.2 FCIA-UTA.	Tem. laboratorio	: 20°C					
Facultad:	Ingeniería en Alimento	s Autorizado por:	Ing. Marco Analuisa.					
Equipo:	BALANZA CITIZON.	Precisión:	0.01g					
Hora de inicio:	09:30 am	Hora de fin.	10:00 am					
N°	Peso inicial (Pi)	Peso final (Pf)	ΔP (Pi-Pf)					
	[g]	[g]	[g]					
DA-1	595.87	595.77	0.100					
DA-2	598.31	598.16	0.160					
DA-3	624.18	623.97	0.220					
DA-4	613.86	613.58	0.280					
DA-5	602.03	601.79	0.250					
DA-6	619.10	618.85	0.250					
DA-7	594.96	594.77	0.190					
DA-8	597.46	597.16	0.300					
DA-9	623.38	622.97	0.410					
DA-10	613.12	612.58	0.540					
DA-11	601.26	600.79	0.470					
DA-12	618.33	617.85	0.480					
DA-13	670.28	669.77	0.510					
DA-14	612.45	611.75	0.700					
DA-15	615.28	614.64	0.640					
DA-16	632.41	631.55	0.860					
DA-17	627.91	627.44	0.470					
DA-18	616.22	615.51	0.710					
DA-19	671.57	670.89	0.680					
DA-20	613.80	612.87	0.930					
DA-21	616.61	615.76	0.850					
DA-22	633.81	632.67	1.140					
DA-23	629.19	628.56	0.630					
DA-24	617.58	616.63	0.950					
Observaciones:								
Se utilizó la balanza CITIZON de 0.01g, debido a que las probetas de Acero AISI1018								

Tabla 32. Obtención de los pesos iniciales y finales de los discos de Acero AISI1018.

superaban la capacidad máxima de la balanza METTLRE TOLEDO de 0.001g. Fuente: Autor A continuación se muestra los datos obtenidos en el ensayo de desgaste entre el Acero AISI 1018 y el relleno de soldadura SMAW con electrodo ENi-CI depositado en Hierro Fundido Nodular.

Tabla 33. Ensayo de degaste adhesivo del relleno de soldadura SMAW con electrodo AWS ENi-CI en hierro fundido nodular sobre acero AISI 1018.

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA									FICM
ENSAYO DE DESGASTE ADHESIVO DEL HIERRO FUNDIDO NODULAR SOBRE ACERO AISI 1018									
Luga	ar de r	ealiz	ación:	Laborato	rio de Func	lición FICN	<i>I</i> -UTA		
Fech	a de r	ealiz	ación:	2017/09/	/07		Temp. Aı	nbiente:	20°C
Real	izado	por:		Paul Esc	obar		Hora inic	io:	08:00 am
Revi	sado p	or:		Ing. Mg.	Henry Vac	a.	Hora fin:		16:00 pm
	-		PIN	ESTÁTIC	0.		DIS	SCO MÓ	VIL.
Mate	erial:	Hie	rro Fu	ndido No	odular cor	n relleno	Material	:	AISI
		SM	AW cor	electrodo	AWS ENi-0	CI			1018
Forn	na			Pasador			Diámetro) [mm]:	100
Dián	netro [mm]	:	10			Rugosida	ıd [μm]:	1.799
Dens	sidad [g/cm	³]:	8.71			Densidad	l [g/cm ³]:	7.87
Dure	eza [H]	BN]:		160			Dureza []	HBN]:	143
#	Dista	ncia	Carga	ΔP	Temp. I.	Temp. F.	ΔP	Temp. I.	Temp.
	[m]	[N]	[g]	[°C]	[°C]	[g]	[°C]	F.
1	25	0	117	0.0027	10.0	20	0.100	10.1	
1	25	0	117. 6	0.0037	18.0	39	0.100	18.1	39
2			0	0.4343	19.0	20	0.100	19.3	20
3			147	0.4195	20.0		0.220	20.0	41
4			147.	0.5552	18.0	20	0.260	18.0	20
5			0	0.0094	18.6	<u> </u>	0.250	18.0	40
7	50	0	117	0.0071	20.0	30	0.230	20.0	38
8	50	0	6	0.8632	20.0	35	0.170	20.0	36
9			0	0.7971	20.6	40	0.300	20.6	40
10			147	0.7748	20.5	40	0.410	20.5	48
11			0	0.6710	19.8	49	0.510	19.8	49
12			Ũ	0.6833	20.0	49	0.480	20.0	49
13	75	0	117.	0.7564	18.6	50	0.510	18.6	50
14		-	6	0.5260	20.0	48	0.700	20.0	48
15				0.5266	21.0	44	0.640	21.0	44
16			147.	0.7161	20.6	51	0.860	20.6	51
17			0	0.7712	20.5	50	0.470	20.5	50
18	1			0.6652	19.8	39	0.710	19.8	39
19	100	0	117.	1.0059	20.0	50	0.680	20.0	50
20			6	0.6995	20.0	47	0.930	20.0	48
21	1			0.7003	21.0	49	0.850	21.0	49
22	1		147.	0.9523	20.0	52	1.140	20.0	52
23	1		0	1.0256	20.0	50	0.630	20.0	50
24	1			0.8847	20.0	56	0.950	20.0	56
Obse	ruacio	noc	•		•		•	•	

Fuente: Autor

Tabla 34. Ensayo de degaste adhesivo del acero AISI 1018 sobre el relleno d	le
soldadura SMAW con electrodo AWS ENi-CI en hierro fundido nodular	

	UNIVERSIDAD TÉCNICA DE AMBATOFACULTAD DE INGENIERÍA CIVIL Y MECÁNICACARRERA DE INGENIERÍA MECÁNICA								
EN	ENSAYO DE DESGASTE ADHESIVO DEL ACERO AISI 1018 SOBRE EL HIERRO FUNDIDO NODULAR								
Luga	ar de realiz	zación:	Labor	ratorio de F	Fundición H	FICM-UT	A		
Fech	a de realiz	ación:	2017/	/09/08		Temp.		20°C	
						Ambien	te:		
Real	izado por:		Paul I	Escobar		Hora in	icio:	08:00 am	
Revi	sado por:		Ing. N	Ag. Henry	Vaca.	Hora fi	n:	16:00pm	
	•	D	ISCO	<u> </u>			PIN	*	
Mat	erial:	elleno S	MAW (con electro	odo AWS	Materia	վ:	AISI	
Dián	L.	1.			nouulai.	Formo		1010 Pasador	
Dian	neuro [IIIM ogidad [~]• _]•	1 700			r or ina Diámat	no [mm].		
Rug	υδιαάα [μΠ	1];	1./99			Damet	io [mm]: .d	9.30	
Dens	sidad [g/cn	n ³]:	8.71			[g/cm ³]	ia :	/.8/	
Dure	eza [HBN]	:	160			Dureza	[HBN]:	143	
			D	ISCO MÓ	VIL.	PI	N ESTÁT	TICO.	
#	Distancia [m]	Carga [N]	ΔP [g]	Temp. I. [°C]	Temp. F. [°C]	ΔP [g]	Temp. I. [°C]	Temp. F. [°C]	
1	250	117.6	0.847	19.0	48	0.0426	20.0	51	
2			0.714	20.0	47	0.0462	21.0	49	
3			0.944	20.0	49	0.0367	20.0	39	
4		147.0	0.875	20.0	51	0.0435	19.0	57	
5			0.845	18.0	49	0.0436	19.0	49	
6			0.942	18.0	39	0.0492	19.0	56	
7	500	117.6	1.610	18.0	57	0.0809	19.0	58	
8			1.357	19.0	49	0.0878	20.0	63	
9			1.794	19.0	56	0.0698	18.0	65	
10		147.0	1.663	20.0	58	0.0826	18.0	58	
11			1.606	19.5	63	0.0829	19.0	48	
12			1.789	19.4	65	0.0935	19.0	55	
13	750	117.6	1.584	19.0	58	0.1360	19.0	51	
14			1.623	20.0	48	0.1231	20.0	49	
15			1.722	20.0	55	0.0788	20.0	39	
16		147.0	2.270	20.0	58	0.1191	20.0	57	
17			1.788	18.0	63	0.1142	18.0	49	
18			3.015	18.0	66	0.1234	18.0	56	
19	1000	117.6	2.107	18.0	61	0.1808	18.0	52	
20			2.159	19.0	62	0.1637	19.0	62	
21			1.132	19.0	54	0.1048	19.0	54	
22		147.0	3.019	20.0	63	0.1584	20.0	63	
23			2.378	19.5	58	0.1519	19.5	58	
24]		4.009	19.4	59	0.1641	19.4	61	
Obse	rvaciones.			•		•		•	

Fuente: Autor.

En las siguientes tablas se indican resultados del ensayo de degaste adhesivo del relleno de soldadura SMAW con electrodo AWS ENi-CI en hierro fundido nodular sobre acero AISI 1018 bajo Norma ASTM G-99.

Tabla 35. Resultado del ensayo de desgaste bajo Norma ASTM G-99 en pines con	
relleno SMAW y ENi-CI.	

	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA									
Resultados en los pines de hierro fundido nodular con relleno SMAW con ENi-CI										
Datos informativos.										
Lugar	de	La	boratorio	de	;	Realizado por	:	Paul Escobar		
realización:		Fu	ndición FIO	CM-UTA						
Fecha:			17/09/08		Revisado por:		Ing. Mg. Henry Vaca.			
Norma aplica	ada:	ASTM G-99.				Aprobado por:		Ing. Mg. Henry Vaca.		
			Datos	de ensay	o I	Pin on Disk				
Material:		R	Relleno de soldadura SMAW con electrodo AWS ENi-CI en HFN.							
Densidad [g/	8.71				Dureza del d	isco) [HRC]:	13		
Radio de ens	ayo [mr	m]: 25				Radio de la esfera [mm]:			5	
				RESULT	Ά	DOS				
N° de	Carga	I	Distancia	ΔP	_	Volumen	·	Tasa de	Coeficiente	
probeta.	[N]	r	recorrida	[g]		perdido	d	esgaste.	de desgaste	
			[m]			[mm ³]		[mg/m]	[mg/mN]	
PHFNR-1	117.6		250	0.0037		0.4248		0.0148	0.0001	
PHFNR-2	117.6		250	0.4543		52.1584		1.8172	0.0155	
PHFNR-3	117.6	250		0.4195		48.1630		1.6780	0.0143	
PHFNR-4	147.0		250	0.3552		40.7807		1.4208	0.0097	
PHFNR-5	147.0		250	0.6094		69.9656		2.4376	0.0166	
PHFNR-6	147.0		250	0.5797		66.5557		2.3188	0.0158	
PHFNR-7	117.6		500	0.0071		0.8152		0.0142	0.0001	
PHFNR-8	117.6	500		0.8632		99.1045		1.7264	0.0147	
PHFNR-9	117.6	500		0.7971		91.5155		1.5942	0.0136	
PHFNR-10	147.0		500	0.6748		77.4742		1.3496	0.0092	
PHFNR-11	147.0		500	0.6701		76.9392		1.3402	0.0091	
PHFNR-12	147.0		500	0.6833		78.4524		1.3666	0.0092	
PHFNR-13	117.6		750	0.7564		86.8427		1.0806	0.0092	
PHFNR-14	117.6		750	0.5260		60.3904		0.7514	0.0064	
PHFNR-15	117.6		750	0.5266		60.4592		0.7523	0.0064	
PHFNR-16	147.0		750	0.7161		82.2158		1.0230	0.0070	
PHFNR-17	147.0		750	0.7712		88.5419		1.1017	0.0075	
PHFNR-18	147.0		750	0.6652		76.3720		0.9503	0.0065	
PHFNR-19	117.6		1000	1.0059		115.4879		1.0059	0.0086	
PHFNR-20	117.6		1000	0.6995		80.3100		0.6995	0.0059	
PHFNR-21 117.6			1000	0.7003		80.4018		0.7003	0.0060	
PHFNR-22 147.0			1000	0.9523		109.3341		0.9523	0.0065	
PHFNR-23	147.0		1000	1.0256		117.7497		1.0256	0.0070	
PHFNR-24	147.0		1000	0.8847		101.5729		0.8847	0.0060	
Elaborado p	or:	Paul Escobar			V	verificado por:	erificado por: Ing. Mg. Henry V		enry Vaca	
Revisado por	Ing. Mg. Henry Vaca				/alidado por:	Ing. Mg. Henry Vaca				

Fuente: Autor

Tabla 36. Resultados del ensayo de degaste adhesivo del relleno de soldaduraSMAW con electrodo AWS ENi-CI en hierro fundido nodular sobre acero AISI1018 bajo Norma ASTM G-99; en los discos de Acero AISI 1018.

	UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA								
Resultados de las pruebas de desgaste adhesivo en discos de acero AISI 1018									
Datos informativos.									
Lugar de J		Labo	Laboratorio de			Realizado por: Paul Esco		bar	
realizaci	ión:	Fund	lición FI	n FICM-UTA					
Fecha:		2017	17/09/08			Revisado por:	Ing. Mg. H	lenry Vaca.	
Norma aplicada: ASTM			M G-99.			Aprobado por	Ing. Mg. H	lenry Vaca.	
		_	Dat	os de ensa	ayo	Pin on Disk			
Materia	l:		Acero AISI 1018			Velocidad [rp]	n]:	560	
Densida	d [g/cm ³]:		7.87			Dureza del dis	6		
Radio de	e ensayo [1	mm]:	n]: 25			Radio de la est	5		
Lubrica	ción:		Seca. Flujo de a			e de laboratorio	Estático.		
				RESU	LT.	ADOS			
N° de	Carga	Di	stancia	ΔP		Volumen	Tasa de	Coeficiente	
probeta	[N] re		corrida	[g]		perdido	desgaste.	de desgaste	
			[m]			$[mm^3]$	[mg/m]	[mg/mN]	
DA-1	117.6		250	0.100		0.400	0.003	2.55E-05	
DA-2	117.6		250	0.160		0.640	0.005	4.25E-05	
DA-3	117.6		250	50 0.220		0.880	0.007	5.95E-05	
DA-4	147.0		250	0.280		1.120	0.008	5.44E-05	
DA-5	147.0		250	0.250		1.000	0.007	4.76E-05	
DA-6	147.0		250	0.250		1.000	0.007	4.76E-05	
DA-7	117.6		500	0.190		0.380	0.003	2.55E-05	
DA-8	117.6		500	0.300		0.600	0.005	4.25E-05	
DA-9	117.6		500	0.410		0.820	0.007	5.95E-05	
DA-10	147.0		500	0.540		1.080	0.007	4.76E-05	
DA-11	147.0		500	0.470		0.940	0.006	4.08E-05	
DA-12	147.0		500	0.480		0.960	0.007	4.76E-05	
DA-13	117.6		750	0.510		0.729	0.006	5.10E-05	
DA-14	117.6		750	0.700		1.000	0.009	7.65E-05	
DA-15	117.6		750	0.640		0.914	0.008	6.80E-05	
DA-16	147.0		750	0.860		1.229	0.008	5.44E-05	
DA-17	147.0		750	0.470		0.671	0.005	3.40E-05	
DA-18	147.0		750	0.710		1.014	0.007	4.76E-05	
DA-19	117.6	117.6		0.680		0.680	0.006	5.10E-05	
DA-20	117.6		0.930			0.930	0.008	6.80E-05	
DA-21	1 117.6		1000 0.850		50 0.850		0.007	5.95E-05	
DA-22	2 147.0		1000	1.140		1.140	0.008	5.44E-05	
DA-23	147.0		1000	0.630		0.630	0.004	2.72E-05	
DA-24	147.0		1000	000 0.950		0.950	0.006	4.08E-05	
Elabora	do por:	Paul E	ul Escobar			erificado por:	Ing. Mg. He	enry Vaca	
Revisad	o por:	Ing. N	lg. Henry	y Vaca	V	alidado por:	Ing. Mg. He	enry Vaca	

Tabla 37. Resultados del ensayo de desgaste adhesivo de los pines de acero AISI1018 sobre hierro fundido nodular bajo Norma ASTM G-99.

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA MECÁNICA							FICM			
Resultados de las pruebas de desgaste adhesivo nodular en los pines de acero AISI 1018										
			Γ	Datos informativos.						
Lugar	de	L	aboratorio	de	Realizado por:	Realizado por: Paul Escoba				
realizaci	ón:	F	undición FIO	CM-UTA						
Fecha: 20		01/09/08		Revisado por:	Ing. Mg. Henry Vaca.					
Norma anlicada: A		STM G-99.		Aprobado por:	Ing. Mg. Henry Vaca.					
	1		Datos de ensavo Pin on Disk							
Material:			Acero AIS	SI 1018	Velocidad [rpr	560				
Densida	Densidad [g/cm ³]:				Dureza del dis	co [HRC]:	6			
Radio	de ensa	ayo	25		Radio de la esf	era [mm]:	5			
[IIIII]:	[mm]:			Fluio do	rio	Estático				
Lubrica			Seca.	RESULT	ADOS	10.	Lotatico.			
Nº de	Carga		Distancia	ΛΡ	Volumen	Tasa de	Coeficiente			
probeta	[N]		recorrida	[g]	perdido	desgaste.	de desgaste			
· ·			[m]	101	[mm ³]	[mg/m]	[mg/mN]			
PA-1	117.6		250	0.0426	5.4130	0.1704	0.0014			
PA-2	117.6		250	0.0462	5.8704	0.1848	0.0016			
PA-3	117.6		250	0.0367	4.6633	0.1468	0.0012			
PA-4	147.0		250	0.0435	5.5273	0.1740	0.0012			
PA-5	147.0		250	0.0436	5.5400	0.1744	0.0012			
PA-6	147.0		250	0.0492	6.2516	0.1968	0.0013			
PA-7	117.6		500	0.0809	10.2795	0.1618	0.0014			
PA-8	117.6		500	0.0878	11.1563	0.1756	0.0015			
PA-9	117.6		500	0.0698	8.8691	0.1396	0.0012			
PA-10	147.0		500	0.0826	10.4956	0.1652	0.0011			
PA-11	147.0		500	0.0829	10.5337	0.1658	0.0011			
PA-12	147.0		500	0.0935	11.8806	0.1870	0.0013			
PA-13	117.6		750	0.1360	17.2808	0.1943	0.0017			
PA-14	117.6		750	0.1231	15.6417	0.1759	0.0015			
PA-15	117.6		750	0.0788	10.0127	0.1126	0.0010			
PA-16	147.0		750	0.1191	15.1334	0.1701	0.0012			
PA-17	147.0		750	0.1142	14.5108	0.1631	0.0011			
PA-18	147.0		750	0.1234	15.6798	0.1763	0.0012			
PA-19	117.6		1000	0.1808	22.9733	0.1808	0.0015			
PA-20 117.6		1000 0.1637		20.8005	0.1637	0.0014				
PA-21 117.6			1000 0.1048		13.3164	0.1048	0.0009			
PA-22 147.0			1000 0.1584		20.12/1 0.1584		0.0011			
PA-23	PA-23 147.0		1000	0.1319	20 8512	0.1319	0.0010			
I A-24 Flabora	147.0	Par	ul Escobar	0.1041	Verificado por	<u>U.1041</u> Ing Mg Ц	enry Vaca			
Revised	Elaborado por: P			Vaca	Validado por:	Ing. Mg. H	ig. wig. ficility vaca			
Revisauo por:			5. wig. Heilly	vaca	vanuauv por:		my vaca			

Fuente: Autor.

Tabla 38. Resultados del ensayo de desgaste adhesivo de los pines de acero AISI1018 sobre hierro fundido nodular bajo Norma ASTM G-99.

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA									
CARRERA DE INGENIERÍA MECÁNICA									
Resultados de las pruebas de desgaste adhesivo del acero AISI 1018 sobre hierro fundido									
nodular en d	iscos de	e hierr	o fundido	nodular.					
	Datos informativos.								
Lugar	de	Lat	oratorio	de	Realizado por:	Paul Esco	Paul Escobar		
realización:		Fur	ndición FI	CM-UTA					
Fecha:		201	7/09/08 Revisado p			Ing. Mg. Henry Vaca.			
Norma aplicada: A			TM G-99.		Aprobado por	Ing. Mg.	Ing. Mg. Henry Vaca.		
Datos de ensavo Pin on Disk									
Material: Relleno de soldadura SMAW con AWS ENi-CI sobre Hierro Fundido Nodular.									
Densidad [g	/cm ³]:		8.71		[HRC]:	13			
Radio de en	sayo [n	ım]:	25		Radio de la esfer	:a [mm]:	5		
Lubricación	n:	_	Seca.		Flujo de aire de	laboratorio:	Estático.		
				RESULT	TADOS		•		
N° de	Carg	a I	Distancia	ΔP	Volumen	Tasa de	Coeficiente		
probeta.	[N]	r	recorrida	[g]	perdido	desgaste.	de desgaste		
			[m]		$[mm^3]$	[mg/m]	[mg/mN]		
DHFNR-1	117.	6	250	0.847	97.245	3.388	0.029		
DHFNR-2	117.	6	250	0.714	81.975	2.856	0.024		
DHFNR-3	117.	6	250	0.944	108.381	3.776	0.032		
DHFNR-4	147.	0	250	0.875	100.459	3.500	0.024		
DHFNR-5	147.	0	250	0.845	97.015	3.380	0.023		
DHFNR-6	147.	0	250	0.942	108.152	3.768	0.026		
DHFNR-7	117.	6	500	1.610	184.845	3.220	0.027		
DHFNR-8	117.	6	500	1.357	155.798	2.714	0.023		
DHFNR-9	117.	6	500	1.794	205.970	3.588	0.031		
DHFNR-10	147.	0	500	1.663	190.930	3.326	0.023		
DHFNR-11	147.	0	500	1.606	184.386	3.212	0.022		
DHFNR-12	147.	0	500	1.789	205.396	3.578	0.024		
DHFNR-13	117.	6	750	1.584	181.860	2.263	0.019		
DHFNR-14	117.	6	750	1.623	186.338	2.319	0.020		
DHFNR-15	117.	6	750	1.722	197.704	2.296	0.020		
DHFNR-16	147.	0	750	2.270	260.620	3.243	0.022		
DHFNR-17	147.	0	750	1.788	205.281	2.554	0.017		
DHFNR-18	147.0		750	3.015	346.154	4.307	0.029		
DHFNR-19	117.	6	1000	2.107	241.906	2.107	0.018		
DHFNR-20 117.6		6	1000 2.1		247.876	2.159	0.018		
DHFNR-21 117.6		6	1000	1.132	129.966	1.132	0.010		
DHFNR-22 147.0		0	1000	3.019	346.613	3.019	0.021		
DHFNR-23	FNR-23 147.0		1000	2.378	273.020	2.378	0.016		
DHFNR-24	147.	0	1000	4.009	460.276	4.009	0.027		
Elaborado p	por:	Paul	Escobar		Verificado por:	Ing. Mg. H	enry Vaca		
Revisado po	or:	Ing.	Mg. Henry	y Vaca	Validado por:	Ing. Mg. Henry Vaca			

Fuente: Autor.

Interpretación de los resultados de desgaste adhesivo en los pines con relleno de soldadura SMAW con electrodo AWS ENi-CI en hierro fundido nodular sobre discos de acero AISI 1018

En la figura 22 se muestra el comportamiento tribológico del ensayo de desgaste adhesivo del relleno de soldadura SMAW con electrodo AWS ENi-CI (PHFN-RENi-CI), se observa que la pérdida volumétrica en los pines de hierro fundido nodular con relleno SMAW de electrodo AWS ENi-CI es ascendente cuando se incrementa la distancia. A 1000m y 147N se obtiene una mayor pérdida volumétrica de 109.552mm³, mientras que para la carga de 117.6N el comportamiento tribológico es normal, es decir, ascendente desde 33.582mm³ hasta 92.067mm³.

Figura 22. Pérdida volumétrica en pines de Hierro Fundido Nodular con relleno de soldadura SMAW y electrodo AWS ENi-CI bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

En la figura 23 podemos apreciar la tasa de desgaste producido en los pines de hierro fundido nodular con relleno SMAW con electrodo AWS ENi-CI sobre discos de acero AISI 1018, los valores se encuentran en miligramos por cada metro recorrido y tienen un comportamiento similar al volumen perdido. Esta tasa de desgaste es mayor a las distancias de 250m y 500m para las dos cargas seleccionadas, para 750m y 1000m la tasa disminuye hasta 0.861mg/m y 0.802mg/m a 117.6N; y de 1.025mg/m y 0.954mg/m a 147N.

Figura 23. Tasa de desgaste en pines de Hierro Fundido Nodular con relleno de soldadura SMAW y electrodo AWS ENi-CI bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

La figura 24 Muestra el coeficiente de desgaste para cada tres probetas, el valor tiende disminuir al incrementarse la distancia, a 250m y 500m el coeficiente de desgaste a 147N permanece por encima del coeficiente a 117.6N, pero, a 750m y 1000m el coeficiente de desgaste se produce en mayor cantidad a 117.6N y menor a 147N.

Figura 24. Coeficiente de desgaste en cada pin de Hierro Fundido Nodular con relleno de soldadura SMAW y electrodo AWS ENi-CI bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

Interpretación de los resultados de desgaste adhesivo en los pines Acero AISI 1018 sobre discos con relleno de soldadura SMAW con electrodo AWS ENi-CI en Hierro Fundido Nodular

En la figura 25 se muestran los valores de la pérdida volumétrica para los pines de acero AISI 1018 sometidos a desgaste bajo carga de 117.6N y 147N en una distancia de 250m, 500m, 750m y 1000m. El comportamiento es relativamente normal, debido a que al incrementar la distancia y carga, incrementa la pérdida volumétrica.

Los pines actuaron de manera estática, y bajo las cargas de 117.6N y 147N, sobre los discos que contenían el relleno SMAW con electrodo AWS ENi-CI depositado en hierro fundido nodular, girando a una velocidad de 560rpm, velocidad contemplada en la norma ASTM G-99.

Figura 25. Pérdida volumétrica en pines de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

La tasa de desgaste en los pines de acero AISI 1018 es diferente a las diferentes distancias de ensayo, al igual que la figura anterior el comportamiento es normal, la tasa de desgaste es mayor a 147N, aunque tiende a descender. A una carga de 117.6N también tiende a descender iniciando con un valor de 0.167mg/m hasta 0.150mg/m, a una distancia de 250m y 1000 m, respectivamente.

Figura 26. Tasa de desgaste en pines de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

Para el coeficiente de desgaste de los pines de acero AISI 1018, se puede observar que al incrementar la distancia dicho coeficiente tiende a descender, como se aprecia en la figura 27. Además se indica que el comportamiento del coeficiente de desgaste es mayor cuando la carga aplicada es de 117.6N, mientras que el coeficiente de desgaste a 147N permanece por debajo de la carga de 117.6N durante todas las distancias seleccionadas a ensayar.

Figura 27. Coeficiente de desgaste en pines de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

Interpretación de los resultados de desgaste adhesivo en los discos con relleno de soldadura SMAW con electrodo AWS ENi-CI sobre Hierro Fundido Nodular

La gráfica 28 muestra que la pérdida volumétrica tiende a incrementar al aumentar la distancia y al aplicar 147N. Cuando se trata de 117.6N relativamente tiende a incrementar también, a excepción de la distancia desde 500m a 1000m en donde tiende a mantenerse constante.

Figura 28. Pérdida volumétrica del relleno de soldadura SMAW con electrodo AWS ENi-CI sobre discos de Hierro Fundido Nodular bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

En la figura 29 se muestra la tasa de desgaste que se produce en los discos de hierro fundido nodular con relleno de soldadura SMAW con electrodo AWS ENi-CI.

Fuente: Autor.

El coeficiente de desgaste del relleno de soldadura SMAW con electrodo AWS ENi-CI se comporta de manera diferente para cada disco ensayado, de manera general se puede apreciar que adopta una forma descendente hasta la finalización del ensayo, a 147N el comportamiento es descendente, pero hay momentos en que la carga de 117.6N tiende a superar el coeficiente de desgaste cuando se trabaja a 147N.

Figura 30. Coeficiente de desgaste del relleno de soldadura SMAW con electrodo AWS ENi-CI sobre discos de Hierro Fundido Nodular bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

Interpretación de los resultados de desgaste adhesivo en los discos de Acero AISI 1018

La figura 31 indica el volumen perdido en los discos de acero AISI 1018, el ensayo se realizó en grupos de tres probetas. El comportamiento tribológico entre el pin con relleno SMAW y electrodo AWS ENi-CI es diferente para cada parámetro establecido, podemos ver que para una carga de 117.6N la pérdida volumétrica es relativamente ascendente, mientras que para 147N descender cuando la distancia incrementa.

Los discos de Acero AISI 1018 giraron a 560rpm, mientras los pines con relleno SMAW con electrodo AWS ENi-CI actuaron estáticamente.

Figura 31. Pérdida volumétrica en los discos de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

La gráfica 32 revela la tasa de desgaste que se produce en los discos de acero AISI 1018 después de ser ensayados con relleno de soldadura SMAW y electrodo AWS ENi-CI en pines de hierro fundido nodular, en manera general se puede ver que la tasa de desgaste es mayor a 147N en las distancias de 250m y 500m, mientras que para las distancias de 750m y 1000m la mayor tasa de desgaste se produce a 117.6N.

Figura 32. Tasa de desgaste en los discos de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

El coeficiente de desgaste en los discos de acero AISI 1018, en cada probeta se comporta de una manera diferente, no presentan valores similares, el menor valor de coeficiente de desgaste se da a 1000m y 147N con un valor de 4.05e-5, mientras que el mayor se da a 750m y 117.6N con un valor de 6.52e-5.

Figura 33. Coeficiente de desgaste en los discos de Acero AISI 1018 bajo carga de 117.6N y 147N a distancias de 250m, 500m, 750m y 1000m. Fuente: Autor.

Comparacion de la pérdida volumétrica, tasa de desgaste, coeficiente de desgaste, pérdida de masa y temperatura final

Con el objetivo de apreciar de una mejor manera se procedió a realizar una comparación de cada parámetro determinado en cada espécimen ensayado, así, se deduce con facilidad que material fue el más afectado.

En la gráfica 34 podemos observar la pérdida volumétrica resultante del ensayo de desgaste adhesivo entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI sobre Hierro Fundido Nodular, se puede apreciar que la mayor cantidad de volumen perdido se da en el relleno SMAW con ENi-CI sobre los disos de Hierro Fundido Nodular; suiguiendo el relleno SMAW con ENi-CI sobre los

pines de Hierro Fundido Nodular, mientras que en el Acero AISI 1018 la pérdida volumétrica es menor.

Dicha pérdida volumetrica se manifiesta bajo las condiciones mas extremas, es decir a 1000m de recorrido y aplicando una fuerza de 147N.

Figura 34. Pérdida volumétrica general. Fuente: Autor.

En la gráfica 35 podemos observar la tasa de desgaste resultante del ensayo de desgaste adhesivo entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI sobre Hierro Fundido Nodular.

Se puede apreciar que la mayor tasa de desgaste se da en el relleno SMAW con ENi-CI sobre los discos de Hierro Fundido Nodular bajo las condiciones de 147N y 250m. En el relleno SMAW con ENi-CI sobre los pines de Hierro Fundido Nodular tambien se incrementa la tasa de desgaste bajo las condiciones de 147N y 250m; 147N y 250m; 117.6N y 250m; y, 147N y 750m.

Figura 35. Tasa de desgaste general. Fuente: Autor

A continuación se observa el coeficiente de desgaste producido en las probetas ensayadas, de manera general se aprecia que el coeficiente dominante se da en el relleno de soldadura SMAW con ENi-CI sobre discos de Hierro Fundido Nodular duarnte todas las variable de carga y distancia.

Seguidamente se observa que también se produce un alto coeficiente de desgaste en el relleno de soldadura SMAW con ENi-CI sobre los pines de Hierro Fundido Nodular, al ser comparados con el Acero AISI 1018.

Teniendo un mayor desgaste en el material de relleno SMAW se debe tener consideraciones al aplicar este material para trabajos en donde las condiciones de trabajo se trate de contacto metal-metal.

Al igual que la pérdida volumétrica, la mayor cantidad de tasa de desgaste se presentó en los discos con relleno SMAW al girar a 560rpm, utilizando pines de Acero AISI 1018, los mismos q tuvieron una tasa de desgaste menor.

Figura 36. Coeficiente de desgaste general. Fuente: Autor.

En la figura 37 se aprecia la masa perdida durante el ensayo de desgaste adhesivo, la mayor cantidad de masa perdida se genera en el relleno de soldadura SMAW con electrodo ENi-CI depositado en los discos de Hierro Fundido Nodular al actuar dinámicamente girando a 560rpm con pines de Acero AISI 1018 que se mantuvieron estáticos en el tribosistema.

Este fenómeno se presentó bajo las condiciones extremas, es decir, al realizar el ensayo aplicando una carga de 147N y una distancia de recorrido de 1000m. Seguidamente se aprecia que los pines con relleno de soldadura SMAW con electrodo AWS ENi-CI también sufrieron una considerable pérdida de masa al ser ensayados con discos de Acero AISI 1018, los mismos que al finalizar el ensayo no presentaron mayor pérdida de masa.

Figura 37. Diferencia de masa. Fuente: Autor.

La gráfica 38 muestra la temperatura generada al final del ensayo de desgaste adhesivo, cuyo valor llega hasta los 60°C.

Figura 38. Temperatura final de cada ensayo. Fuente: Autor.

Comparación de la masa perdida del relleno de soldadura SMAW con electrodo AWS ENI-CI, Hierro Fundido Nodular y acero AISI 1018, tanto en pines como en discos

En la figura 39 se muestra la pérdida de masa tanto en los pines de Hierro Fundido Nodular y el relleno de soldadura SMAW con electrodo AWS ENi-CI en pines de hierro fundido nodular. La masa perdida del relleno de soldadura es mayor si la comparamos con la masa del hierro fundido nodular que tiene un valor total de 0.16g, mientras que el relleno de soldadura perdió un total de 5.12g.

Figura 39. Comparación de la masa perdida entre los pines de Hierro Fundido Nodular y el relleno de soldadura SMAW con electrodo AWS ENi-CI en pines de HFN.

Fuente: Autor.

La masa perdida en los pines de Acero AISI 1018 que actuaron sobre el relleno de soldadura SMAW con electrodo AWS ENi-CI es muy alta, presentan un valor máximo y mínimo de 0.042g y 0.158g respectivamente al compararla con la masa perdida que se obtuvo cuando se ensayaron pines de Acero AISI 1018 sobre el hierro fundido nodular con valores máximo y mínimo de 0.005g y 0.0145g respectivamente.

En los dos tipos de ensayos el comportamiento tribológico del desgaste se manifestó de manera ascendente al incrementar la distancia de recorrido.

Figura 40. Comparación de la masa perdida entre los pines de Acero 1018 sobre Hierro Fundido Nodular y el relleno de soldadura SMAW con electrodo AWS ENi-CI. Fuente: Autor.

La gráfica 41 nos presenta la pérdida de masa en los discos donde se depositó el relleno de soldadura SMAW con electrodo AWS ENi-CI y los discos de Hierro Fundido Nodular sin relleno. El relleno de soldadura SMAW se comporta de manera ascendente debido a que la carga y la distancia van incrementando. La diferencia entre D-HFNR y D-HFN es grande obteniéndose valores máximos de 3.135g y 0.010g respectivamente.

Figura 41. Comparación de la masa perdida entre los discos de Hierro Fundido Nodular y el relleno de soldadura SMAW con electrodo AWS ENi-CI sobre discos de Hierro Fundido Nodular. Fuente: Autor.

En la gráfica 42 se observa la diferencia de la pérdida de masa en los discos de acero AISI 1018, la diferencia es notoria llegando a obtenerse un valor total de 4.241g contra un total de 0.388g de masa pérdida cuando son ensayados pines con relleno de soldadura SMAW y electrodo AWS ENi-CI y pines de Hierro Fundido Nodular, respectivamente.

Figura 42. Comparación de la masa perdida entre los discos de Acero AISI 1018 al ensayarse con pines de hierro fundido y pines con relleno de soldadura SMAW con electrodo AWS ENi-CI. Fuente: Autor.

METALOGRAFÍA DE PROCESO DE SOLDADURA SMAW

Se realizaron ensayo destructivo para obtener muestras de las probetas y realizar metalografías para observar la penetración del depósito de soldadura SMAW.

Figura 43. Metalografía del depósito de Níquel sobre el Hierro Fundido Nodular. Fuente: Autor.

En la microestructura se aprecia la unión entre el Hierro Fundido Nodular con el grafito en forma de nódulos y el deposito SMAW del electrodo AWS ENi-CI, en donde se aprecia el níquel depositado por el electrodo.

ESFUERZOS DE CONTACTO

El tipo de contacto presentado en este ensayo fue CONTACTO ENTRE ELEMENTOS ESFÉRICOS.

Se toma como caso estudiado una esfera sobre una placa plana, debido a que el pin actúa como esfera y el disco actúa como placa plana.

Para calcular los esfuerzos de contacto se utilizan las ecuaciones 2.4, 2.5, 2.6, 2.7, 2.8 y 2.9.

Nota: para calcular el esfuerzo cortante máximo se debe tomar en cuenta la relación de Poisson del material menos resistente.

Figura 44. Par tribológico, Hierro Fundido Nodular y Acero AISI 1018. Fuente: Autor.

Entonces:

Datos:

Material 1= Acero AISI 1018.

 $v_1 = 0.27$

E₁=207 GPa

 $R_1 = 5mm$

Material 2= Hierro Fundido Nodular.

 $v_2 = 0.25$

E₂=170GPa

 $R_2 = \infty$

Para P=117.6N	Para P=147N
$R^* = 5mm$	$R^* = 5mm$
$E^* = 100.06GPa$	$E^* = 100.06GPa$
$a = 1.64x10^{-4}m^2$	$a = 1.766 x 10^{-4} m^2$
$P_{cm\acute{a}x} = 2.08 MPa$	$P_{cm\acute{a}x} = 2.266 MPa$
$S_{sm\acute{a}x} = 0.71 MPa$	$S_{smáx} = 0.71 MPa$
$Z_{\tau} = 1.028 x 10^{-4} m^2$	$Z_{\tau} = 1.107 x 10^{-4} m^2$

El tipo de contacto presentado en este ensayo de desgaste adhesivo fue CONTACTO ENTRE ELEMENTOS ESFÉRICOS. Se toma como caso estudiado una esfera sobre una placa plana, debido a que el pin actúa como esfera y el disco actúa como placa plana. Los valores del Coeficiente de Poisson fueron tomados de Mayori, A.; en donde señala que dicho coeficiente varía de 0.25 a 0.35 para materiales metálicos, mientras que Medina, H. señala un coeficiente de Poisson de 0.3, el Módulo de Young o elasticidad lo tomamos del níquel, un valor de 206GPa.

Figura 45. Par tribológico, Relleno SMAW con electrodo AWS WNi-CI y Acero AISI 1018. Fuente: Autor.

Datos:

Material 1= Relleno SMAW con electrodo AWS ENi-CI sobre Hierro Fundido Nodular $v_1=0.30$ $E_1=206$ GPa $R_1=5mm$ Material 2= Acero AISI 1018. $v_2=0.27$ $E_2=207GPa$ $R_2=\infty$

Entonces:

Para P=117.6N

Para P=147N

$R^* = 5mm$	$R^* = 5mm$
$E^* = 112.41$ <i>GPa</i>	$E^* = 112.41$ <i>GPa</i>
$a = 1.57 x 10^{-4} m^2$	$a = 1.698 x 10^{-4} m^2$
$P_{cm\acute{a}x} = 2.278 MPa$	$P_{cm\acute{a}x} = 2.434 MPa$
$S_{smáx} == 0.77 MPa$	$S_{sm\acute{a}x} = 0.77 MPa$
$Z_{\tau} = 9.84 x 10^{-5} m^2$	$Z_{\tau} = 1.059 x 10^{-4} m^2$
4.3. VERIFICACIÓN DE LA HIPÓTESIS

4.3.1. Modelo Lógico Hipótesis alternativa

Ha: El análisis de los parámetros de un sistema mecánico pin on disk bajo norma ASTM G-99 entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre hierro fundido nodular, influye en el desgaste.

Hipótesis nula

Ho: El análisis de los parámetros de un sistema mecánico pin on disk bajo norma ASTM G-99 entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre hierro fundido nodular, **NO** influye en el desgaste.

4.3.2. Verificación

Para la verificación de la hipótesis utilizaremos el método estadístico "t" de student, consiste en una distribución simétrica en forma de campana con las curvas a tachadas, el nivel de significancia es de 5% para un ensayo bilateral.

Cálculo de los grados de libertad.

v = n1 + n2 - 2 = 4 + 4 - 2 = 6 Ec. (11). Grados de libertad Probabilidad (a)

El valor de la probabilidad es estimado por el investigador, generalmente la probabilidad se encuentra entre el 5% y el 10%, este valor refleja el nivel de confianza en la realización de la investigación. Si la probabilidad es P=0.05 quiere decir que solo el 5% de las veces que el ensayo se realice, el resultado se debería al azar y el 95% de los resultados serán reales. Para este trabajo experimental se toma una probabilidad de 5%.

α=0.05

$$\propto = \frac{0.05}{2} = 0.025$$
 Ec. (4.1). Probabilidad.

Medias muéstrales para los pines con relleno de soldadura SMAW con electrodo AWS ENi-CI depositado en Hierro Fundido Nodular

A continuación se muestra en la siguiente tabla la carga aplicada al ensayo y la distancia recorrida en el ensayo para los pines con relleno de soldadura SMAW con electrodo AWS ENi-CI, la cual permite determinar calcular y determinar la tasa de desgaste en función de la pérdida de masa por la distancia recorrida.

Tabla 39. Datos de X y Y medias para carga de 117.6N y 147N en los pines con relleno de soldadura SMAW con electrodo AWS ENi-CI para las distancias utilizadas en el ensayo de desgaste adhesivo.

TASA DE DESGASTE PHFNR-ENi-CI (mg/m)									
CARGA*DISTANCIA	250m	500m	750m	1000m	ΣΤΟΤΑL				
117.6N	1.1700	1.1116	0.8614	0.8019	3.9449	0.9862	x		
147N	2.0591	1.9561	1.0250	0.9542	5.9944	1.4986	Ŷ		
Fuente: Autor									

Cálculo de la desviación típica y "t" student.

Para calcular la desviación típica utilizamos la siguiente Ec. 2.10 y Ec. 2.11

Para calcular la varianza se utiliza la siguiente Ec. 2.12.

Mientras que para calcular la "t" student se utilizamos la Ec. 2.13

Tabla 40. Desviación típica para el ensayo de desgaste adhesivo para los pines conrelleno de soldadura SMAW con electrodo AWS ENi-CI.

$(Xi-\overline{X})^2$	$(Xii-\overline{X})^2$	$(Xiii-\overline{X})^2$	$(Xiv-\overline{X})^2$	$\frac{\text{TOTAL}}{\Sigma(X_n-\overline{X})^2}$	S^2	σ^2	t _C
0.0338	0.0157	0.0156	0.0339	0.099	0.0198		
$(Yi-\bar{Y})^2$	$(Yii-\bar{Y})^2$	$(Yiii-\bar{Y})^2$	$(\text{Yiv}-\overline{Y})^2$	$\frac{\text{TOTAL}}{\Sigma(Y_n-\bar{Y})^2}$	S^2	0.1143	-2.68
0.3141	0.2093	0.2243	0.2964	1.0441	0.2088		

Fuente: Autor

Al obtener el resultado de "t" de student calculado, así como el valor del grado de libertad, recurrimos a la tabla de "t" student en donde se determina el valor de la probabilidad P y verificar el rango de aceptación o rechazo de la hipótesis. El valor "t" student en la Tabla con 4 grados de libertad es $t_T = -2.45$.

Figura 46. Región Ha y Ho para los pines con relleno de soldadura SMAW con electrodo AWS ENi-CI. Fuente: Autor.

4.3.3. Regla de decisión

Se da por aceptada la Hipótesis alterna, es decir el análisis de los parámetros de un sistema mecánico pin on disk bajo norma ASTM G-99 entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre hierro fundido nodular, influye en el desgaste, si el valor "t" a calcularse se encuentra fuera del intervalo -2.45 a +2.45. Si el valor "t" cae dentro de este rango se da por aceptada la Hipótesis nula Ho es decir el análisis de los parámetros de un sistema mecánico pin on disk bajo norma ASTM G-99 entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre hierro fundido nodular, **NO** influye en el desgaste.

Entonces: El análisis de los parámetros de un sistema mecánico pin on disk bajo norma ASTM G-99 entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre hierro fundido nodular, influye en el desgaste.

Medias muéstrales para los discos con relleno de soldadura SMAW con electrodo AWS ENi-CI depositado en Hierro Fundido Nodular

Tabla 41. Datos de X y Y medias para carga de 117.6N y 147N en los discos conrelleno de soldadura SMAW con electrodo AWS ENi-CI para las distanciasutilizadas en el ensayo de desgaste adhesivo.

TASA DE DESGASTE DHFNR-ENi-CI (mg/m)								
CARGA*DISTANCIA	250m	500m	750m	1000m	ΣΤΟΤΑL			
117.6N	3.3400	3.1740	1.9327	1.7993	10.2460	2.5615	x	
147N	3.5493	3.3720	3.3680	3.1353	13.4247	3.3562	Ŷ	

Fuente: Autor.

En la siguiente tabla se muestra el cálculo de la desviación típica y "t" student para la tasa de desgaste de los discos de Hierro Fundido Nodular con relleno de soldadura SMAW con electrodo AWS ENi-CI.

 Tabla 42. Desviación típica para el ensayo de desgaste adhesivo para los discos con relleno de soldadura SMAW con electrodo AWS ENi-CI.

$(Xi-\overline{X})^2$	$(Xii-\overline{X})^2$	$(Xiii-\overline{X})^2$	$(Xiv-\overline{X})^2$	$\frac{\text{TOTAL}}{\Sigma(X_n-\overline{X})^2}$	S ²	σ^2	t _C
0.6061	0.3752	0.3954	0.5809	1.9575	0.3915		
$(Yi-\bar{Y})^2$	$(Yii-\bar{Y})^2$	$(Yiii-\overline{Y})^2$	$(\text{Yiv}-\overline{Y})^2$	$\frac{\text{TOTAL}}{\Sigma(Y_n - \bar{Y})^2}$	S ²	0.2035	-2.515
0.0373	0.0003	0.0001	0.0488	0.0865	0.0173		

Fuente: Autor

Al obtener el resultado de "t" de student calculado, así como el valor del grado de libertad, recurrimos a la tabla de "t" student en donde se determina el valor de la probabilidad P y verificar el rango de aceptación o rechazo de la hipótesis.

El valor "t" student en la Tabla con 4 grados de libertad es $t_T = -2.45$.

Medias muéstrales para los pines de acero AISI 1018

Tabla 43. Datos de X y Y medias para carga de 117.6N y 147N en los pines de aceropara las distancias utilizadas en el ensayo de desgaste adhesivo.

TASA DE DESGASTE	TASA DE DESGASTE P-A (mg/m)									
CARGA*DISTANCIA	250m	500m	750m	1000m	ΣΤΟΤΑL					
117.6N	0.1673	0.1590	0.1609	0.1498	0.6370	0.1593	x			
147N	0.1817	0.1727	0.1698	0.1581	0.6824	0.1756	Ŷ			
	Fuente: Autor									

En la siguiente tabla se muestra el cálculo de la desviación típica y "t" student para la tasa de desgaste de los pines de acero AISI 1018.

Tabla 44. Desviación típica para el ensayo de desgaste adhesivo para los pines conrelleno de soldadura SMAW con electrodo AWS ENi-CI.

$(Xi-\overline{X})^2$	$(Xii-\overline{X})^2$	$(Xiii-\overline{X})^2$	$(Xiv-\overline{X})^2$	$\begin{array}{c} \text{TOTAL} \\ \Sigma(X_n - \overline{X})^2 \end{array}$	S^2	σ^2	t _C
					3.16E-		
6.52E-05	6.67E-08	2.81E-06	9.01E-05	1.58E-04	05		
$(Yi-\bar{Y})^2$	$(Yii-\bar{Y})^2$	$(Yiii-\bar{Y})^2$	$(\text{Yiv-}\bar{\text{Y}})^2$	$\begin{array}{c} \text{TOTAL} \\ \Sigma(Y_n \text{-} \bar{Y})^2 \end{array}$	S ²	4.42E-5	-3.198
					5.68E-		
1.24E-04	4.31E-06	5.75E-07	1.55E-04	2.84E-04	05		
			Fuonto.	lutor			

Fuente: Autor

Al obtener el resultado de "t" de student calculado, así como el valor del grado de libertad, recurrimos a la tabla de "t" student en donde se determina el valor de la probabilidad P y verificar el rango de aceptación o rechazo de la hipótesis.

El valor "t" student en la Tabla con 4 grados de libertad es $t_T = -2.45$.

Medias muéstrales para los discos de acero AISI 1018

Tabla 45. Datos de X y Y medias para carga de 117.6N y 147N en los discos de acero AISI 1018 para las distancias recorridas utilizadas en el ensayo de desgaste adhesivo.

TASA DE DESGASTE D-A (mg/m)									
CARGA*DISTANCIA	250m	500m	750m	1000m	ΣΤΟΤΑL				
117.6N	0.0050	0.0050	0.0077	0.0070	0.0247	0.0062	x		
147N	0.0073	0.0067	0.0067	0.0060	0.0267	0.0074	Ŷ		
	Evente: Autor								

Fuente: Autor

En la siguiente tabla se muestra el cálculo de la desviación típica y "t" student para la tasa de desgaste de los discos de acero AISI 1018.

 Tabla 46. Desviación típica para el ensayo de desgaste adhesivo para los pines con relleno de soldadura SMAW con electrodo AWS ENi-CI.

$(Xi-\overline{X})^2$	$(Xii-\overline{x})^2$	$(Xiii-\overline{x})^2$	$(Xiv-\overline{x})^2$	$\frac{\text{TOTAL}}{\Sigma(X_n-\overline{\mathbf{X}})^2}$	S^2	σ^2	t _C		
1.36E-06	1.36E-06	2.25E-06	6.94E-07	5.67E-06	1.13E-06				
$(Yi-\bar{Y})^2$	$(Yii-\bar{Y})^2$	$(Yiii-\bar{Y})^2$	$(\text{Yiv-}\bar{\text{Y}})^2$	$\begin{array}{c} \text{TOTAL} \\ \Sigma(Y_n \text{-} \bar{Y})^2 \end{array}$	S ²	6.54E-7	-2.55		
4.44E-07	0.00E+00	0.00E+00	4.44E-07	8.89E-07	1.78E-07				
Fuente: Autor									

Al obtener el resultado de "t" de student calculado, así como el valor del grado de libertad, recurrimos a la tabla de "t" student en donde se determina el valor de la probabilidad P y verificar el rango de aceptación o rechazo de la hipótesis.

El valor "t" student en la Tabla con 4 grados de libertad es $t_T = -2.45$.

Figura 49. Región Ha y Ho para los discos de acero AISI 1018. Fuente: Autor.

Conclusión de Verificación de la Hipótesis

En cada espécimen se adopta la Hipótesis Alternativa debido a que mediante la utilización del método "t" de student, el valor calculado se encuentra fuera del rango de la Hipótesis Nula. Entonces al aceptar la hipótesis alternativa se puede concluir que se obtuvo una tasa de desgaste mayor entre el relleno de soldadura SMAW con electrodo AWS ENi-CI y el acero AISI 1018 en los pines y discos, no recomendando la utilización de este electrodo para trabajos de contacto metal-metal sin lubricación y bajo los parámetros escogidos para la realización del ensayo.

CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES 5.1. CONCLUSIONES Y RECOMENDACIONES

5.1.1. CONCLUSIONES

- Cuando se realizaron las pruebas se pudo observar que se desprenden limallas al finalizar cada ensayo, entonces a más de tener una comprobación de numérica con la diferencia de pesos, una comprobación estadística mediante el método "t" student, se presenció fenómenos físicos q demuestran la existencia de desgaste entre los dos materiales.
- De manera genérica, el relleno SMAW con electrodo comercial MG ENi-CI tuvo una mayor pérdida volumétrica que el Hierro Fundido Nodular.
- El trabajo experimental consta de dos partes, se realizó el ensayo de desgaste adhesivo entre el acero AISI 1018 y el Hierro Fundido Nodular para obtener precedentes de la tasa de desgaste entre estos dos materiales, en la segunda parte se realizó el ensayo de desgaste adhesivo entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre Hierro Fundido Nodular y analizar el comportamiento tribológico del electrodo frente al desgaste adhesivo.
- Se utilizó el electrodo comercial MG E NiCI maquinable, se seleccionó este electrodo debido a que en la norma G-99 literal 6.3, establece el valor de rugosidad de 0,8 o menor y se necesita una mecanización para alcanzar este parámetro.
- En los pines de Hierro Fundido Nodular con relleno de soldadura SMAW y electrodo AWS ENi-CI, y las dos variables escogidas para el ensayo (Carga y Distancia), la mayor pérdida volumétrica es de 109.552 mm³ presentada al aplicar una carga de 147n y 1000m de recorrido; la mayor tasa de desgaste es de 2.1mg/m a 147.0N y 250m recorridos; un coeficiente de desgaste de 1.4E-2mg/mN a 147N y 250m de recorrido, la mayor cantidad de masa perdida es de 0.158g a 147N y 1000m de recorrido; en el caso de la temperatura de contacto fue de 53°C a 1000m y 147N.
- En los discos de Hierro Fundido Nodular con relleno de soldadura SMAW y electrodo AWS ENi-CI, los valores críticos son los siguientes, la mayor pérdida volumétrica fue de 359.9mm³ a una carga de 147N y a una distancia de 1000m, la

mayor tasa de desgaste se presentó a 147N y 250m, el coeficiente de desgaste es similar para todas las condiciones, la mayor cantidad de diferencia de pesos se dio a los 1000m de recorrido y 147N dándonos 3.14g de material perdido.

- En los pines de acero AISI 1018, los valores críticos se dieron en las siguientes condiciones, la mayor pérdida volumétrica fue de 20.09mm³ bajo una carga de 147N y 1000m, la mayor tasa de desgaste se presentó a 250m y 147N, el coeficiente de desgaste es relativamente el mismo para todas las condiciones, mientras que la mayor temperatura fue de 62 °C y se produjo a 500m y 117.6N.
- En los discos de acero AISI 1018, los valores críticos del ensayo se presentaron en las siguientes condiciones, la mayor cantidad de pérdida volumétrica se da bajo una carga de 147N y 250m con un valor de 1.04mm³, la tasa de desgaste es similar para todas las condiciones ensayadas con desde 0.005 a 0.007mg/m. El coeficiente de desgaste es muy mínimo y se encuentra en el orden de 7E-5mg/mN, mientras que la mayor temperatura fue de 53°C a la condición más extrema, es decir 1000m de distancia y bajo una carga de 147N.
- La pérdida de masa es menor en el ensayo de desgaste adhesivo entre el acero AISI 1018 y el Hierro Fundido Nodular (Ensayo 1) y mayor en el ensayo de desgaste adhesivo entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre hierro fundido nodular (Ensayo 2), en el Ensayo 1 se perdió un total de 0.072g en los pines de Hierro Fundido Nodular, en el Ensayo 2 se perdió un total de 0.793g de relleno de soldadura SMAW con electrodo AWS ENi-CI en pines de Hierro Fundido Nodular.
- En el Ensayo 1, desgaste adhesivo entre el acero AISI 1018 y el Hierro Fundido Nodular, la masa total perdida en los pines de Acero AISI 1018 fue 0.072g, mientras que en el Ensayo 2, desgaste adhesivo entre el acero AISI 1018 y el relleno de soldadura SMAW con electrodo AWS ENi-CI depositado sobre hierro fundido nodular se perdió un total de 0.793g. De igual manera en el Ensayo 1 la masa total perdida en los discos de Hierro Fundido Nodular fue 0.05g, mientras que en el Ensayo 2 la pérdida de masa total del relleno de soldadura SMAW con electrodo AWS ENi-CI sobre los discos de Hierro Fundido Nodular fue de 13.914g. La masa total que se perdió en los discos de Acero AISI 1018 en el Ensayo 1 y Ensayo 2 fue de 0.389g y 4.241g respectivamente.

 Existe una mayor tasa de desgaste entre el relleno de soldadura SMAW con electrodo AWS ENi-CI y el acero AISI 1018, la pérdida volumétrica también es mayor lo que significa que el electrodo MG E NiCI no se puede utilizar para recuperación y relleno de elementos mecánicos que vayan a trabajar en condiciones de trabajo metal-metal, bajo las condiciones de lubricación seca, carga variable y que adopten un sistema tribológico pin on disk.

5.1.2. RECOMENDACIONES

- Por ningún motivo se debe interrumpir el ensayo una vez empezada la prueba de desgaste adhesivo para no llegar a tener datos erróneos, en caso de que esto pase y se detenga el ensayo, se debe volver a preparar los especímenes para que el desgaste se produzca desde el instante en que se inicia hasta que finalice el ensayo.
- Se debe tomar en cuenta las distancias de 250, 500, 750 y 1000 metros, son distancias coherentes y mayoritariamente elegidas por diferentes autores para este ensayo, asimismo se debe considerar la carga aplicada teniendo en cuenta que el porta brocas es de 10mm de diámetro y utiliza un vástago de 3/8 de plg para soportar la carga.
- Se debe tener en cuenta que algunos materiales, especialmente los materiales ferrosos, al ser sometidos a este tipo de desgaste adhesivo pueden producir una soldadura en frio, adherencia del material de menor dureza al material de mayor dureza, este fenómeno puede producir vibraciones excesivas que pueden terminar fatigando los elementos del tribosistema pin on disk.
- Se debe limpiar el tribosistema después de cada ensayo para evitar que las partículas removidas por la fricción y la naturaleza del ensayo actúen como material abrasivo y caer en un ensay de desgaste abrasivo por tres cuerpos.
- Los reportes de desgate se deben presentar en mm³ utilizando la ecuación de la Norma ASTM G-99 en la cual se utiliza la masa perdida y la densidad del material.
- Siguiendo la recomendación de la Norma ASTM G-99 al realizar el ensayo de desgaste adhesivo entre dos materiales se debe realizar la prueba utilizando los

dos materiales en las dos condiciones tanto como pin y como discos, además el reporte de desgaste se debe considerar en los pines y en el disco.

- La longitud de los pines no debe exceder os 45mm, y el espesor de los discos debe ser mayor a los 2mm para evitar una vibración entre el disco y el porta brocas del tribosistema.
- Utilizar un nivel y manipular las masas de contrapeso existentes en el brazo del tribosistema para mantener un equilibrio y pueda actuar solamente la carga que se requiera.
- La temperatura de contacto entre los dos especímenes se debe medir a de 25m a 50m antes de que el ensayo termine para obtener el dato real debido a que se pudo identificar que la temperatura es diferente en el transcurso de la prueba y al finalizar la misma.

BIBLIOGRAFÍA

[1] Cembrelo, J., Ferrer, C., Guilamon, M., Perez, M. (2005). Ciencia y tecnología de materiales. Problemas y Cuestiones. Pearson Educación S.A. Madrid.

[2] Phakatkar, H., Ghorpade, R. (2009). Tribology. Segunda Edición. Editorial Nirali Prakashan.

[3] Arizmendi, L. (1987). Tribología. Selección de publicaciones. Madrid

[4] Kalpakjian, S. y Schmid, S. (2002). Manufactura, ingeniería y tecnología. Cuarta Edición. Pearson Educación. México.

[5] Groover, M. (1997). Fundamentos de manufactura moderna Materiales, procesos y sistemas. Primera Edición. Prentice-Hall. México

[6] Ortúzar, R. (1997). Desgaste y Recuperación.

[6] INDURA. (2010). Manual de Electrodos de Mantenimiento.

[7] Navarro, J. y otros. (2010). Elementos fijos. Quinta edición. Ediciones Paraninfo. España.

[8] Jeffus, L. (2009). Soldadura. Principios y aplicaciones. Quinta edición. Ediciones Paraninfo. Madrid. [9] AWS A5.15-90. (1990). Specification for Welding Electrodes and Rods for Cast Iron.

[10] Moreno, J., Romero, F., y Muso, E. (2013). Informe pruebas del acero AISI-SAE 1018. Departamento de Ciencias de la Energía y Mecánica.

[11] Torres, E., Marín, L., Suárez, J., Lovera, J., y Muñoz, M., (2014). Clasificación de los Hierros Fundidos. Universidad de Matanzas.

[12] INDURA. (2010). Manual de Electrodos de Mantenimiento. Página: 17.

[13] TAYPE, L. (2013). Influencia del contenido de vanadio en la resistencia al desgaste de recubrimientos duros con 5% de ferro-titanio Página: 2.

[14] ASTM. (2000). Standar Test Method for Wear Testing with a Pin-on-Disk Apparatus.

[15] CHICAIZA, R. (2015). Tesis "ESTUDIO DE LOS PARÁMETROS DE UN SISTEMA MECÁNICO PIN ON DISK BAJO NORMA ASTM G-99 Y SU INFLUENCIA EN EL DESGASTE ADHESIVO DEL TEFLÓN SOBRE EL ACERO AISI 304."

[16] FINNING. DEPARTAMENTO DE DESARROLLO PROFESIONAL FINNING SUDAMÉRICA. Análisis de fallas1. Módulo desgaste.

[17] FUENTES, R. Medición del desgaste de materiales con el método Pin en Dico.

[18] IVAN BOHMAN C. A. (2016). Bronces especiales. SAE 40 (BS-1400 LG-2) /SAE 660 (BS-1400 LG-4)

[19] SALAZAR. (2005). Cojinete de motor.

[20]. MAYORI, A. RESISTENCIA DE MATERIALES. Primera Edición. Editorial Yucatan.

ANEXOS

Anexo A. Norma ASTM G-99

Aun Designation: G 99 – 95a (Reapproved 2000)^{€1}

Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus¹

This standard is issued under the fixed designation G 99; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

e1 Nore-Editorial corrections were made throughout in May 2000.

1. Scope

1.1 This test method describes a laboratory procedure for determining the wear of materials during sliding using a pin-on-disk apparatus. Materials are tested in pairs under nominally non-abrasive conditions. The principal areas of experimental attention in using this type of apparatus to measure wear are described. The coefficient of friction may also be determined.

 The values stated in SI units are to be regarded as standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

E 122 Practice for Choice of Sample Size to Estimate a Measure of Quality for a Lot or Process²

E 177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods²

E 178 Practice for Dealing with Outlying Observations²

G 40 Terminology Relating to Wear and Erosion³

2.2 Other Standard:⁴

DIN-50324 Testing of Friction and Wear

3. Summary of Test Method

3.1 For the pin-on-disk wear test, two specimens are required. One, a pin with a radiused tip, is positioned perpendicular to the other, usually a flat circular disk. A ball, rigidly held, is often used as the pin specimen. The test machine causes either the disk specimen or the pin specimen to revolve about the disk center. In either case, the sliding path is a circle on the disk surface. The plane of the disk may be oriented

^a Annual Book of ASIM Standards, Vol 14.02.
³ Annual Book of ASIM Standards, Vol 03.02.

Copyright © ASTM, 100 Barr Harbor Drive, West Conshchocken, PA 19428-2959, United States.

either horizontally or vertically.

NOTE 1-Wear results may differ for different orientations.

3.1.1 The pin specimen is pressed against the disk at a specified load usually by means of an arm or lever and attached weights. Other loading methods have been used, such as, hydraulic or pneumatic.

NOTE 2-Wear results may differ for different loading methods.

3.2 Wear results are reported as volume loss in cubic millimetres for the pin and the disk separately. When two different materials are tested, it is recommended that each material be tested in both the pin and disk positions.

3.3 The amount of wear is determined by measuring appropriate linear dimensions of both specimens before and after the test, or by weighing both specimens before and after the test. If linear measures of wear are used, the length change or shape change of the pin, and the depth or shape change of the disk wear track (in millimetres) are determined by any suitable metrological technique, such as electronic distance gaging or stylus profiling. Linear measures of wear are converted to wear volume (in cubic millimetres) by using appropriate geometric relations. Linear measures of wear are used frequently in practice since mass loss is often too small to measure precisely. If loss of mass is measured, the mass loss value is converted to volume loss (in cubic millimetres) using an appropriate value for the specimen density.

3.4 Wear results are usually obtained by conducting a test for a selected sliding distance and for selected values of load and speed. One set of test conditions that was used in an interlaboratory measurement series is given in Table 1 and Table 2 as a guide. Other test conditions may be selected depending on the purpose of the test.

3.5 Wear results may in some cases be reported as plots of wear volume versus sliding distance using different specimens for different distances. Such plots may display non-linear relationships between wear volume and distance over certain portions of the total sliding distance, and linear relationships over other portions. Causes for such differing relationships include initial "break-in" processes, transitions between regions of different dominant wear mechanisms, etc. The extent of such non-linear periods depends on the details of the test system, materials, and test conditions.

3.6 It is not recommended that continuous wear depth data

¹ This test method is under the jurisdiction of ASTM Committee G02 on Wear and Erosion and is the direct responsibility of Subcommittee G02.40 on Non-Abrasive Wear.

Current edition approved Nov. 10, 1995. Published January 1996. Originally published as G 99–90. Last previous edition G 99–95. ² Annual Book of ASTM Standards, Vol 14.02.

⁴ Available from Beuth Verlag GmbH, Burggrafenstnasse 6, 1000 Berlin 30, Germany.

41) G 99

TABLE 1 Characteristics of the Interlaboratory Wear Test Specimens

	Composition Ausiabelli)	Managination	Hardroom (HV 40)	Roughness ⁴		
	Composition (weightss)	Microstructure	Haldness (HV 10)	R _a (mean) (µm)	R _e (mean) (µm)	
Steel ball (100 Cr6) (AISI 52 100) [®] Diameter 10 mm	1.35 to 1.65 Cr ← 0.95 to 1.10 C 0.15 to 0.35 Si 0.25 to 0.45 Mn	martensitic with minor carbides and austenite	838 ± 21	0.100	0.010	
Steel disc (100 Cr6) (AISI 52 100) ⁰ Diameter 40 mm	← <0.030 P <0.030 S	martensitic with minor carbides and austenite	852 ± 14	0.952	0.113	
Alumina ball, diameter = 10 mm ^p	← 95 % Al ₂ O ₃ (with addi- tives of TiO ₂ .	equi-granular alpha alumina with very minor secondary	1610 \pm 101 (HV 0.2)	1.369	0.123	
Alumina disc, diameter = 40.6 mm ^D	← MgO and ZnO)	phases	1599 \pm 144 (HV 0.2)	0.968	0.041	

⁴Measured by stylus profilometry. R_x is maximum peak-to-valley roughness. R_x is arithmetic average roughness.

NOTE 1-See Note 4 in 10.4 for information

⁸ Standard ball-bearing balls (SKF).
⁹ Standard spacers for thrust bearings (INA).
⁹ Manufactured by Compagnie Industrietle des Ceramiques Electroniques, France.

TABLE 2 Results of the Interlaboratory Tests^A

NOTE 1— See Note 4 in 10.4. NOTE 2—Numbers in parentheses refer to all data received in the tests. In accordance with Practice E 178, outlier data values were identified in some cases and discarded, resulting in the numbers without parentheses. The differences are seen to be small.

Note 3-Values preceded by ± are one standard deviation.

Note 4-Between eleven and twenty laboratories provided these data.

NOTE 5-Calculated quantities (for example, wear volume) are given as mean values only.

NOTE 6-Values labeled "NM" were found to be smaller than the reproducible limit of measurement.

NOTE 7-A similar compilation of test data is given in DIN-50324

Docute (hall) (diek)		Specime	an Pairs	
Hospits (Dail) (disk)	Steel-steel	Alumina-steel	Steel-alumina	Alumina-alumina
Ball wear scar diameter	2.11 ± 0.27	NM	2.08 ± 0.35	0.3± 0.06
(mm)	(2.11 ± 0.27)		(2.03 ± 0.41)	(0.3 ± 0.06)
Ball wear volume (10 ⁻³	198		186	0.08
mm ³)	(198)		(169)	(80.0)
Number of values	102		60	56
	(102)		(64)	(59)
Disk wear scar width (mm)	NM	0.64 ± 0.12	NM	NM
		(0.64 ± 0.12)		
Disk wear volume (10 ⁻³		480	_	_
mm ³)		(480)		
Number of values		60	_	_
		(00)		
Friction coefficient	0.60 ± 0.11	0.76 ± 0.14	0.60 ± 0.12	0.41 ± 0.08
Number of values	109	75	64	76

^A Test conditions: F = 10 N; v = 0.1 ms ⁻¹, T = 23°C; relative humidity range 12 to 78 %; laboratory air; sliding distance 1000 m; wear track (nominal) diameter = 32 mm; materials: steel = AISI 52 100; and alumina = α -Al $_2O_3$

obtained from position-sensing gages be used because of the complicated effects of wear debris and transfer films present in the contact gap, and interferences from thermal expansion or contraction.

4. Significance and Use

4.1 The amount of wear in any system will, in general, depend upon the number of system factors such as the applied load, machine characteristics, sliding speed, sliding distance, the environment, and the material properties. The value of any wear test method lies in predicting the relative ranking of material combinations. Since the pin-on-disk test method does not attempt to duplicate all the conditions that may be experienced in service (for example; lubrication, load, pressure, contact geometry, removal of wear debris, and presence of corrosive environment), there is no ensurance that the test will predict the wear rate of a given material under conditions differing from those in the test.

5. Apparatus

5.1 General Description-Fig. 1 shows a schematic drawing of a typical pin-on-disk wear test system, and photographs of two differently designed apparatuses.5 One type of typical system consists of a driven spindle and chuck for holding the revolving disk, a lever-arm device to hold the pin, and attachments to allow the pin specimen to be forced against the revolving disk specimen with a controlled load. Another type of system loads a pin revolving about the disk center against a stationary disk. In any case the wear track on the disk is a

2

⁵ A number of other reported designs for pin-on-disk systems are given in "A Catalog of Finction and Wear Devices," A merican Society of Lubrication Engineers (1973). The sole source of supply of commercially built machines known to the committee at this time is Falex Corp., 1020 A inpark Dr., Sugar Grove, IL 60554. If you are aware of alternative suppliers, please provide this information to ASTM Headquarters. Your comments will receive areful consideration at a meeting of the responsible technical committee, ¹ which you may attend.

1 G 99

Note 1-F is the normal force on the pin, d is the pin or ball diameter, D is the disk diameter, R is the wear track radius, and w is the rotation velocity of the disk.

FIG. 1 (a) Schematic of pin-on-disk wear test system. (b) Photographs of two different designs.

circle, involving multiple wear passes on the same track. The system may have a friction force measuring system, for example, a load cell, that allows the coefficient of friction to be determined.

5.2 Motor Drive—A variable speed motor, capable of maintaining constant speed (± 1 % of rated full load motor speed) under load is required. The motor should be mounted in such a manner that its vibration does not affect the test. Rotating speeds are typically in the range 0.3 to 3 rad/s (60 to 600 r/min).

5.3 Revolution Counter—The machine shall be equipped with a revolution counter or its equivalent that will record the number of disk revolutions, and preferably have the ability to shut off the machine after a pre-selected number of revolutions.

5.4 Pin Specimen Holder and Lever Arm— In one typical system, the stationary specimen holder is attached to a lever arm that has a pivot. Adding weights, as one option of loading, produces a test force proportional to the mass of the weights applied. Ideally, the pivot of the arm should be located in the plane of the wearing contact to avoid extraneous loading forces

due to the sliding friction. The pin holder and arm must be of substantial construction to reduce vibrational motion during the test.

5.5 Wear Measuring Systems—Instruments to obtain linear measures of wear should have a sensitivity of 2.5 µm or better. Any balance used to measure the mass loss of the test specimen shall have a sensitivity of 0.1 mg or better; in low wear situations greater sensitivity may be needed.

6. Test Specimens and Sample Preparation

6.1 Materials—This test method may be applied to a variety of materials. The only requirement is that specimens having the specified dimensions can be prepared and that they will withstand the stresses imposed during the test without failure or excessive flexure. The materials being tested shall be described by dimensions, surface finish, material type, form, composition, microstructure, processing treatments, and indentation hardness (if appropriate).

6.2 Test Specimens—The typical pin specimen is cylindrical or spherical in shape. Typical cylindrical or spherical pin specimen diameters range from 2 to 10 mm. The typical disk specimen diameters range from 30 to 100 mm and have a thickness in the range of 2 to 10 mm. Specimen dimensions used in an interlaboratory test with pin-on-disk systems are given in Table 1.

6.3 Surface Finish—A ground surface roughness of 0.8 μm (32 μin.) arithmetic average or less is usually recommended.

NOTE 3-Rough surfaces make wear scar measurement difficult.

6.3.1 Care must be taken in surface preparation to avoid subsurface damage that alters the material significantly. Special surface preparation may be appropriate for some test programs. State the type of surface and surface preparation in the report.

7. Test Parameters

7.1 Load-Values of the force in Newtons at the wearing contact.

7.2 Speed—The relative sliding speed between the contacting surfaces in metres per second.

7.3 Distance-The accumulated sliding distance in meters.

7.4 Temperature—The temperature of one or both specimens at locations close to the wearing contact.

7.5 Atmosphere—The atmosphere (laboratory air, relative humidity, argon, lubricant, etc.) surrounding the wearing contact.

8. Procedure

8.1 Immediately prior to testing, and prior to measuring or weighing, clean and dry the specimens. Take care to remove all dirt and foreign matter from the specimens. Use non-chlorinated, non-film-forming cleaning agents and solvents. Dry materials with open grains to remove all traces of the cleaning fluids that may be entrapped in the material. Steel (ferromagnetic) specimens having residual magnetism should be demagnetized. Report the methods used for cleaning.

8.2 Measure appropriate specimen dimensions to the nearest 2.5 μm or weigh the specimens to the nearest 0.0001 g.

8.3 Insert the disk securely in the holding device so that the disk is fixed perpendicular $(\pm 1^{\circ})$ to the axis of the resolution.

8.4 Insert the pin specimen securely in its holder and, if necessary, adjust so that the specimen is perpendicular $(\pm 1^{\circ})$ to the disk surface when in contact, in order to maintain the necessary contact conditions.

8.5 Add the proper mass to the system lever or bale to develop the selected force pressing the pin against the disk.

8.6 Start the motor and adjust the speed to the desired value while holding the pin specimen out of contact with the disk. Stop the motor.

8.7 Set the revolution counter (or equivalent) to the desired number of revolutions.

8.8 Begin the test with the specimens in contact under load. The test is stopped when the desired number of revolutions is achieved. Tests should not be interrupted or restarted.

8.9 Remove the specimens and clean off any loose wear debris. Note the existence of features on or near the wear scar such as: protrusions, displaced metal, discoloration, microcracking, or spotting.

8.10 Remeasure the specimen dimensions to the nearest 2.5 µm or reweigh the specimens to the nearest 0.0001 g, as appropriate.

8.11 Repeat the test with additional specimens to obtain sufficient data for statistically significant results.

9. Calculation and Reporting

9.1 The wear measurements should be reported as the volume loss in cubic millimetres for the pin and disk, separately.

9.1.1 Use the following equations for calculating volume losses when the pin has initially a spherical end shape of radius R and the disk is initially flat, under the conditions that only one of the two members wears significantly:

= 64 (sphere radius, mm)

assuming that there is no significant disk wear. This is an approximate geometric relation that is correct to 1 % for (wear scar diameter/sphere radius) < 0.3, and is correct to 5 % for (wear scar diameter/sphere radius) < 0.7. The exact equation is given in Appendix X1.

dis

$$=\frac{\pi (\text{wear track radius}, mm)(\text{track width}, mm)^3}{6 (\text{sphere radius}, mm)}$$

assuming that there is no significant pin wear. This is an approximate geometric relation that is correct to 1 % for (wear track width/sphere radius) < 0.3, and is correct to 5 % for (wear track width/sphere radius) < 0.8. The exact equation is given in Appendix X1.

9.1.2 Calculation of wear volumes for pin shapes of other geometries use the appropriate geometric relations, recognizing that assumptions regarding wear of each member may be required to justify the assumed final geometry.

9.1.3 Wear scar measurements should be done at least at two representative locations on the pin surfaces and disk surfaces, and the final results averaged.

9.1.4 In situations where both the pin and the disk wear significantly, it will be necessary to measure the wear depth profile on both members. A suitable method uses stylus profiling. Profiling is the only approach to determine the exact final shape of the wear surfaces and thereby to calculate the volume of material lost due to wear. In the case of disk wear, the average wear track profile can be integrated to obtain the track cross-section area, and multiplied by the average track length to obtain disk wear volume. In the case of pin wear, the wear scar profile can be measured in two orthogonal directions, the profile results averaged, and used in a figure-of-revolution calculated for pin wear volume.

9.1.5 While mass loss results may be used internally in laboratories to compare materials of equivalent densities, this test method reports wear as volume loss so that there is no confusion caused by variations in density. Take care to use and report the best available density value for the materials tested when calculating volume loss from measured mass loss.

9.1.6 Use the following equation for conversion of mass loss to volume loss.

volume loss,
$$mm^3 = \frac{mass loss, g}{density, g/cm^3} \times 1000.$$
 (3)

9.2 If the materials being tested exhibit considerable transfer between specimens without loss from the system, volume loss may not adequately reflect the actual amount or severity of wear. In these cases, this test method for reporting wear should not be used.

9.3 Friction coefficient (defined in Terminology G 40) should be reported when available. Describe the conditions associated with the friction measurements, for example, initial, steady-state, etc.

9.4 Adequate specification of the materials tested is important. As a minimum, the report should specify material type, form, processing treatments, surface finish, and specimen preparation procedures. If appropriate, indentation hardness should be reported.

10. Precision and Bias 6

10.1 The precision and bias of the measurements obtained with this test method will depend upon the test parameters chosen.

10.2 The reproducibility of repeated tests on the same material will depend upon material homogeneity, machine and material interaction, and careful adherence to the specified procedure by the machine operator.

10.3 Normal variations in the procedure will tend to reduce the accuracy of the test method as compared to the accuracy of such material property tests as hardness, density, or thermal expansion rate. Properly conducted tests should, however, maintain a within-laboratory coefficient of variation of 20 % or less for wear loss values. Table 2 contains wear data obtained

⁶ Additional data are available at ASTM Headquarters.

from interlaboratory tests (see Note 4). Standard deviation values are given for the measured quantities. Limits of 95 % repeatability can be obtained by multiplying those standard deviation values by the factor $2.8 \times$. Reproducibility limits (between laboratories) are not available but are estimated to be twice as large as the repeatability limits.

10.4 No bias can be assigned to these results since there are no absolute accepted values for wear.

Note 4—The interlaboratory data given in Table 1 and Table 2 resulted through the cooperation of thirty one institutions in seven countries with the help of national representatives within the Versailles Advanced Materials and Standards (VAMAS) working party on wear test methods.⁷

10.5 In any test series, all data must be considered in the calculation, including outliers (data exceeding the obvious range); they are treated according to Practice E 178.

10.6 While two or more laboratories may develop test data that is within the acceptable coefficient of variation for their own individual test apparatus, the actual data of each laboratory may be relatively far apart. The selection of sample size and the test method for establishing the significance of the difference in averages shall be agreed upon between laboratories and shall be based on established statistical methods of Practice E 122, Practice E 177, and STP 15D.⁸

11. Keywords

 11.1 ceramic wear; friction; metal wear; non-abrasive; pinon-disk; wear

⁷ Czichos, H., Becker, S., and Lexow, J., Wear, Vol 114, 1987, pp 109–130 and Wear, Vol 118, 1987, pp 379–380. ⁸ Manual on Quality Control of Materials, ASTM STP 15D, ASTM, 1951.

APPENDIX

(Nonmandatory Information)

X1. EQUATIONS

X1.1 Exact equations for determining wear volume loss are as follows for: X1.1.1 A spherical ended pin: pin volume loss = $(\pi h/6)[3d^2/4 + h^2]$ (X1.1)	Assuming no significant disk wear. X1.1.2 A disk: disk volume loss = $2\pi R \left[r^2 \sin^{-1}(d/2r) - (d/4)(4r^2 - d^2)^{4/2}\right]_{(X1.2)}$
where:	where:
$h = r - [r^2 - d^2/4]^{\frac{1}{2}}$	R = wear track radius, and
d = wear scar diameter, and	d = wear track width.
r = pin end radius.	Assuming no significant pin wear.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

Anexo B. Tabla "t - student"

Tabla de valores críticos de la distribución t de Student

1 1 1 1 1 1 1 1 1 1		Niveles de Significancia DOS COLA							
	0.500	0.250	0.200	0.100	0.050	0.025	0.020	0.010	0.005
1	1.00	2.41	3.08	6.31	12.71	25.45	31.82	63.66	127.32
2	0.82	1.60	1.89	2.92	4.30	6.21	6.96	9.92	14.09
3	0.76	1.42	1.64	2.35	3.18	4.18	4.54	5.84	7.45
4	0.74	1.34	1.53	2.13	2.78	3.50	3.75	4.60	5.60
5	0.73	1.30	1.48	2.02	2.57	3.16	3.36	4.03	4.77
6	0.72	1.27	1.44	1.94	2.45	2.97	3.14	3.71	4.32
7	0.71	1.25	1.41	1.89	2.36	2.84	3.00	3.50	4.03
8	0.71	1.24	1.40	1.86	2.31	2.75	2.90	3.36	3.83
9	0.70	1.23	1.38	1.83	2.26	2.69	2.82	3.25	3.69
10	0.70	1.22	1.37	1.81	2.23	2.63	2.76	3.17	3.58
11	0.70	1.21	1.36	1.80	2.20	2.59	2.72	3.11	3.50
12	0.70	1.21	1.36	1.78	2.18	2.56	2.68	3.05	3.43
13	0.69	1.20	1.35	1.77	2.16	2.53	2.65	3.01	3.37
14	0.69	1.20	1.35	1.76	2.14	2.51	2.62	2.98	3.33
15	0.69	1.20	1.34	1.75	2.13	2.49	2.60	2.95	3.29
10	0.69	1.19	1.04	1.75	2.12	2.47	2.50	2.92	3.20
17	0.69	1.19	1.00	1.74	2.11	2.40	2.57	2.90	3.22
10	0.09	1.19	1.33	1.73	2.10	2.40	2.55	2.00	3.20
20	0.09	1.19	1.33	1.73	2.09	2.43	2.54	2.00	3.17
20	0.09	1.10	1.32	1.72	2.09	2.42	2.53	2.83	3.14
21	0.03	1 18	1.32	1.72	2.00	2.41	2.52	2.00	3.12
23	0.69	1 18	1.32	1 71	2.07	2.40	2.50	2.81	3.10
24	0.68	1 18	1.32	1 7 1	2.06	2.39	2 4 9	2.80	3.09
25	0.68	1.18	1.32	1.71	2.06	2.38	2.49	2.79	3.08
26	0.68	1.18	1.31	1.71	2.06	2.38	2.48	2.78	3.07
27	0.68	1.18	1.31	1.70	2.05	2.37	2.47	2.77	3.06
28	0.68	1.17	1.31	1.70	2.05	2.37	2.47	2.76	3.05
29	0.68	1.17	1.31	1.70	2.05	2.36	2.46	2.76	3.04
30	0.68	1.17	1.31	1.70	2.04	2.36	2.46	2.75	3.03
31	0.68	1.17	1.31	1.70	2.04	2.36	2.45	2.74	3.02
32	0.68	1.17	1.31	1.69	2.04	2.35	2.45	2.74	3.01
33	0.68	1.17	1.31	1.69	2.03	2.35	2.44	2.73	3.01
34	0.68	1.17	1.31	1.69	2.03	2.35	2.44	2.73	3.00
35	0.68	1.17	1.31	1.69	2.03	2.34	2.44	2.72	3.00
36	0.68	1.17	1.31	1.69	2.03	2.34	2.43	2.72	2.99
37	0.68	1.17	1.30	1.69	2.03	2.34	2.43	2.72	2.99
38	0.68	1.17	1.30	1.69	2.02	2.33	2.43	2.71	2.98
39	0.68	1.17	1.30	1.68	2.02	2.33	2.43	2.71	2.98
40	0.68	1.17	1.30	1.68	2.02	2.33	2.42	2.70	2.97
a a	0.250 0.125 0.100 0.050 0.025 0.013 0.010 0.005						0.003		

Anexo C. Tabla de probabilidad Z.

Probabilidad acumulada inferior para distribución normal N(0,1)								www.vaxasoftware.com									
μ = Media																	
σ = Desviación típica					$P(z \le z_0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_0} e^{\frac{-z^2}{2}} dz$												
Tipificación: $z_0 = \frac{x - \mu}{\sigma}$													0 z ₀				
70	0,00	0,01	0,0	2	0,0	3	0	,04		0,05		0,06	0,07	0,08	0,09	70	
0,0	0,5000	0,5040	0,508	0	0,5120		0,5160		0,5199		0,5239		0,5279	0,5319	0,5359	0,0	
0,1	0,5398	0,5436	0,547	1 0	0,591	0	0,5	948	0,	5987	0,6	5026	0,6064	0,6103	0,6141	0,1	
0,3	0,6179	0,6217	0,625	5 0	0,6293		0,6331		0,6368		0,6	0,6406	0,6443	0,6480	0,6517	0,3	
0,5	0,6915	0,6950	0,698	5 0	0,7019		0,7054		0,1	0,7088		0,7123	0,7157	0,7190	0,7224	0,5	
0,6	0,7257	0,7291	0,732	4 0	0,7357		0,7389		0,7422		0,	7454	0,7486	0,7517	0,7549	0,6	
0,7	0,7881	0,7910	0,793	9 0	0,796	57	0,7	995	0,1	3023	0,8	3051	0,8078	0,8106	0,8133	0,7	
0,9	0,8159	0,8186	0,821	2 0	0,823	38	0,8	264	0,1	3289	0,8	3315	0,8340	0,8365	0,8389	0,9	
1,0	0,8413	0,8438	0,846	1 0	0,8485		0,8508		0,8531		0,8	3554 3770	0,8577	0,8599	0,8621	1,0	
1,2	0,8849	0,8869	0,888	8	0,890	07	0,8	925	0,1	3944	0,8	3962	0,8980	0,8997	0,9015	1,2	
1,3	0,9032	0,9049	0,906	6 0	0,908 0,923	32 36	0,9	099 251	0,9	9115 9265	0,9	9131 9279	0,9147 0,9292	0,9162	0,9177	1,3	
1,5	0,9332	0,9345	0,935	7 0	0,9370		0,9382		0,9394		0,9	9406	0,9418	0,9429	0,9441	1,5	
1,6	0,9452	0,9463	0,947	4 0	0,9484		0,9495		0,9505		0,9	9515	0,9525	0,9535	0,9545	1,6	
1,8	0,9641	0,9649	0,965	6 0	0,966	64	0,9	671	0,9	9678	0,9	9686	0,9693	0,9699	0,9706	1,8	
1,9	0,9713	0,9719	0,972	6 0	0,9732		0,9738		0,9	0,9744		9750	0,9756	0,9761	0,9767	1,9	
2,0	0,9772	0,9778	0,978	3 0	0,9788		0,9793		0,9798		0,9803		0,9808	0,9812	0,9817	2,0	
2,2	0,9861	0,9864	0,986	8 0	0,9871		0,9875		0,9878		0,9881		0,9884	0,9887	0,9890	2,2	
2,3	0,9893	0,9896	0,989	2 0	0,9901		0,9904		0,9908		0,9909		0,9911	0,9913	0,9916	2,3	
2,5	0,9938	0,9940	0,994	41 0,9		9943 0		0,9945		0,9946		9948	0,9949	0,9951	0,9952	2,5	
2,6	0,9953	0,9955	0,995	6 0	0,9957		0,9959		0,9960		0,9961		0,9962	0,9963	0,9964	2,6	
2,8	0,9974	0,9975	0,997	6 0	0,9977		0,9977		0,9978		0,9979		0,9979	0,9980	0,9981	2,8	
2,9	0,9981	0,9982	0,998	2 0	0,9983		0,9984		0,9	0,9984		9985	0,9985	0,9986	0,9986	2,9	
3,0	0,99865	0,99869	0,998	74 0	0,99878		0,99882		0,99886		0,99889		0,99893	0,99896	0,99900	3,0	
3,2	0,99931	0,9993	4 0,999	36	0,99938		0,99940		0,	0,99942		99944	0,99946	0,99948	0,99950	3,2	
3,3 3,4	0,99952	0,9995	3 0,999	55 (69 (0,99957		0,99958		0,9	0,99960		99961 99973	0,99962	0,99964	0,99965	3,3	
3.5	0,99977	0,99978	3 0.999	78 0	0.99979		0.99980		0.9	0,99981		99981	0,99982	0,99983	0,99983	3.5	
3,6	0,99984	0,9998	5 0,999	85 0	0,99986		0,99986		0,9	0,99987		99987	0,99988	0,99988	0,99989	3,6	
3,7	0,99993	0,99999	3 0,999	93 0	0,99990		0,99991		0,9	0,99991		99992 99994	0,99992	0,99992	0,99992	3,7	
3,9	0,99995	0,9999	5 0,999	96	0,99996		0,99996		0,9	0,99996		99996	0,99996	0,99997	0,99997	3,9	
1-a	90%	92%	94%	95	%	96	%	979	6	98%		99%	Siendo:				
α	10%	8%	6%	59	%	6 4%		6 3%		2%		1%	1-α=	$1 - \alpha = Nivel de confianza$			
Zee/2	1,645	1,751	1,881	1,9	60 2,0		54	54 2,17		2,326	3	2,576	α=	Nivel de	significació	δn	
Za	1,282	1,405	1,555	1,6	45	1,7	51	1,88	31	2,054	4	2,326					

Anexo D. Tabla de Modulo de Young.

Módulo de elasticidad o módulo de Young.

Nombre	Módulo de elasticidad Y 10 ¹⁰ N/m ²
Aluminio	6,8
Cobre	10,8
Oro	7,6
Hierro, fundido	7.8
Plomo	1,7
Nickel	20,6
Platino	16,7
Plata	7,4
Latón	4,6
Acero	20,0

	Nombre	Módulo de Poisson σ					
		Sin dimensiones					
	Aluminio	0,34					
	Acero	0,28					
	Cobre	0,35					
	Oro	0,41					
_	Hierro, fundido	0,28					
	Plomo	0,33					
_	Nickel	0,30					
	Platino	0,38					
	Plata	0,37					
	Latón	0,33					

Anexo E. Tabla de Coeficiente de Poisson.